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Resumo 

 

As gap junctions (GJ) são estruturas intercelulares multiméricas que permitem a comunicação 

directa entre células eucariotas, nomeadamente, a transferência de pequenos metabolitos, iões e 

mensageiros secundários. Para formar uma GJ, duas células adjacentes precisam de contribuir 

com um hemicanal, ou conexão, sendo este, por sua vez, composto por seis subunidades de uma 

proteína denominada conexina (Cx). A Cx43, um membro da família alfa das conexinas, pode ser 

encontrada em tecidos tão diversos como o coração, cristalino, retina, epiderme, cérebro, rim e 

medula óssea. 

A extensão da comunicação intercelular através de gap junctions (CIGJ) está directamente 

relacionada com o número e estado funcional dos canais presentes na membrana plasmática. Por 

isso, processos que influenciam a estabilidade de conexinas na membrana plasmática são críticos 

para regular a comunicação intercelular. Apesar da CIGJ poder ser regulada através da abertura e 

do fecho do poro do canal, a degradação de conexinas, particularmente da Cx43, desempenha 

um papel fundamental na regulação da CIGJ. De facto, e quando comparada com outras 

proteínas da membrana plasmática, a Cx43 tem um tempo de vida invulgarmente curto, de menos 

de 5 horas. Assim, é previsível que a desregulação da CIGJ tenha impacto em vários órgãos e 

tecidos. Por exemplo, no olho, o cristalino e o epitélio pigmentado da retina dependem da CIGJ 

para a manutenção da sua homeostase, e eventos que interfiram com a comunicação através de 

gap junctions poderão comprometer irreversivelmente a viabilidade destes tecidos ou ter 

importantes implicações funcionais. 

Nesta tese começamos por investigar os eventos moleculares que levam à disrupção da CIGJ em 

células epiteliais do cristalino. Procedemos depois com a investigação dos eventos moleculares 

que levam à internalização e degradação da conexina43, e que contribuem assim para a 

regulação da comunicação intercelular através de gap junctions. 

A comunicação intercelular no cristalino depende de uma extensa rede de gap junctions que são 

essenciais para a manutenção da transparência do cristalino. Como o cristalino está 

continuamente exposto a insultos oxidativos e as membranas plasmáticas do cristalino contêm a 

maior proporção de colesterol de qualquer membrana biológica, investigámos se a acumulação de 

produtos de oxidação do colesterol poderia interferir com a comunicação intercelular. Os 

resultados apresentados neste trabalho demonstram, pela primeira vez, que o oxisterol 7-

ketocolesterol induz aumentos na CIGJ, que são muito provavelmente devidos a um aumento da 

estabilidade da proteína na membrana plasmática e a um consequente aumento na formação de 

placas de gap junctions. A sobreregulação da CIGJ no cristalino poderá afectar uma variedade de 

eventos altamente regulados, incluindo a diferenciação das células epiteliais do cristalino em 

fibras, o que, em último caso, poderá comprometer a transparência do cristalino levando ao 

desenvolvimento da catarata. 
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A degradação da Cx43 como forma de regular a CIGJ, tem sido motivo de debate há mais de 

duas décadas, e tanto o proteassoma como o lisossoma já foram implicados neste mecanismo. 

Enquanto que a degradação da Cx43 pelo lisossoma está bem estabelecido, o papel do 

proteassoma no “turnover” da Cx43 é ainda pouco compreendido. No entanto, foi sugerido 

recentemente que o efeito da inibição do proteassoma na internalização de GJ está relacionado 

com a deplecção de ubiquitina livre, uma vez que está descrito que a conjugação da ubiquitina a 

uma variedade de proteínas membranares funciona como um sinal de endocitose. 

Alternativamente, o proteassoma poderá mediar a degradação de uma proteína ainda 

desconhecida, envolvida na regulação da estabilidade da Cx43 ao nível da membrana plasmática. 

Apesar de já ter sido demonstrado que a Cx43 é ubiquitinada, e que a fosforilação poderá servir 

como um sinal para a ubiquitinação da proteína, os mecanismos moleculares envolvidos na 

regulação da internalização e degradação da Cx43 continuam por esclarecer. Dados 

apresentados neste trabalho demonstram, pela primeira vez, que a ubiquitinação da Cx43 é 

mediada pela E3 ligase Nedd4 e que a conjugação de ubiquitina à Cx43 é necessária para a 

subsequente interacção com a proteína endocítica Eps15. De forma consistente, demonstramos 

ainda que a interacção entre os motivos de interacção com a ubiquitina da Eps15 e a forma 

ubiquitinada da Cx43 é necessário para que ocorra a internalização da Cx43. 

Demonstramos também que a ubiquitinação da Cx43 induz a internalização da proteína através 

de um mecanismo que é independente do motivo de endereçamento YXXØ, que medeia a 

internalização constitutiva da proteína por uma via dependente de clatrina. É provável que este 

mecanismo necessite da ubiquitinação de algumas, mas não de todas, as subunidades de um 

hemicanal. Ao passo que o papel da clatrina na internalização da Cx43 está bem estabelecido, os 

resultados apresentados neste estudo sugerem que, alternativamente, a Cx43 ubiquitinada 

poderá ser internalizada através de um mecanismo independente de clatrina. 

Está descrito que a ubiquitinação de algumas proteínas membranares também funciona como um 

sinal de endereçamento intracelular, que direcciona proteínas membranares para degradação no 

lisossoma. Neste estudo demonstramos que a ubiquitinação da Cx43 também pode sinalizar o 

seu tráfego intracelular para o lisossoma, através de um mecanismo que envolve a Hrs e a 

Tsg101, que são subunidades dos complexos ESCRT. Também foi demonstrado que a enzima de 

desubiquitinação UBPY poderá estar envolvida na modulação do tráfego intracelular da Cx43, 

promovendo o seu endereçamento para o lisossoma, onde é degradado. Por último, fornecemos 

provas de que a Cx43 internalizada pode ser reciclada de volta à membrana plasmática através 

de vias de reciclagem rápida e lenta, dependentes de Rab4 e Rab11 respectivamente, 

constituindo assim um novo nível de regulação para controlar a CIGJ. 

Apesar de caracterizarmos parcialmente as vias de internalização e de tráfego intracelular  

seguidas pela Cx43, muitas questões continuam por resolver, incluindo os mecanismos 

moleculares que determinam a via de internalização seguida pela Cx43 ubiquitinada bem como os 
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mecanismos de interacção entre enzimas desubiquitinantes e proteínas Rab envolvidas no 

redireccionamento de Cx43 internalizada de volta à membrana plasmática. No entanto, este 

trabalho providencia uma base sólida para estudos futuros que tenham como objectivo uma 

melhor caracterização dos determinantes moleculares e mecanismos envolvidos na internalização 

e degradação da Cx43. 
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Abstract 

 

Gap junctions (GJ) are specialized cell–cell contacts that provide direct intercellular communication 

(IC) between eukaryotic cells, allowing for the transfer of small metabolites, ions and second 

messengers. Each of two adjacent cells contributes with one hemichannel to form a complete gap 

junction channel. Each hemichannel, or connexon is, in turn, composed by six subunits of a protein 

called connexin (Cx). Cx43, a member of the alpha connexin family, is the most widely expressed 

connexin protein, being found in tissues as diverse as the heart, lens, retina, skin, brain, kidney 

and bone marrow. 

The extent of gap junction intercellular communication (GJIC) is directly related to the number and 

functional state of gap junction channels present at the plasma membrane. Therefore, processes 

that influence the stability of connexins at the plasma membrane are critical for regulating 

intercellular communication. Although GJIC can be regulated through the gating of the channel 

pore, degradation of connexins, particularly Cx43, appears to play an unexpected and critical role 

in regulating GJIC. Indeed, Cx43 has a remarkably short half-life, of less than 5 hours, when 

compared to other plasma membrane proteins. Disruption of GJIC is likely to have an impact upon 

a variety of organs and tissues. For example, the eye lens and retinal pigmented epithelium rely on 

GJIC and disruption of communication through gap junctions is likely to have important functional 

implications. 

In this thesis we start by investigating the molecular events that lead to disruption of GJIC in lens 

epithelial cells. We further proceed by investigating the molecular events that lead to internalization 

and putative degradation of connexin43, and thus contribute to regulating intercellular 

communication through gap junctions. 

Intercellular communication in the eye lens relies on an extensive network of gap junctions 

essential for maintenance of lens transparency. Since the lens is continuously exposed to oxidative 

insult and lens plasma membranes contain the highest cholesterol content of any biological 

membrane we investigated whether accumulation of cholesterol oxidation products might interfere 

with intercellular communication. Results presented in this work show, for the first time, that the 

oxysterol 7-ketocholesterol induces an increase in GJIC, which is most likely due to an increased 

stability of the protein at the plasma membrane and to an increased abundance of Cx43 assembly 

into gap junction plaques. The upregulation of GJIC in the lens may disrupt a variety of highly 

regulated events, including differentiation of lens epithelial cells into fibres, which ultimately 

compromises lens transparency leading to the formation of cataract. 

Degradation of Cx43 as a means to regulate GJIC, has been a matter of debate for over the last 

two decades and both the proteasome and the lysosome have been implicated. Whereas 

degradation of Cx43 by the lysosome has long been established, the role of the proteasome in 

Cx43 turnover is poorly understood. However, recently it has been suggested that the proteasome 
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may act by regulating the availability of free ubiquitin, as the conjugation of ubiquitin to a variety of 

plasma membrane proteins is known to function as an endocytic signal. Alternatively, the 

proteasome could mediate the degradation of a putative and still unknown protein involved in the 

regulation of Cx43 stability at the plasma membrane. Indeed, it has been shown that Cx43 is a 

substrate for ubiquitination and that treatments that promote Cx43 internalization, such as 

phosphorylation, also induce the ubiquitination of the protein. However, the molecular players and 

regulatory mechanisms involved in the internalization and degradation of Cx43 have remained 

elusive. Data presented in this work show, for the first time, that Cx43 ubiquitination is mediated by 

the E3 ligase Nedd4 and that the conjugation of ubiquitin to Cx43 is required for subsequent 

interaction with the endocytic protein Eps15. Consistently, we show that the interaction between 

the ubiquitin-interacting motif of Eps15 and the ubiquitinated form of Cx43 is required for Cx43 

internalization. 

We have further shown that ubiquitination of Cx43 induces the internalization of the protein through 

a mechanism that is independent on the YXXØ sorting motif of Cx43, that mediates the constitutive 

internalization of the protein. This mechanism is likely to require the ubiquitination of some, but not 

all, subunits of one hemichannel. While the role of clathrin in Cx43 internalization has been well 

established, the results presented in this study suggest that ubiquitinated Cx43 can also be 

internalized through a clathrin-independent mechanism.  

Ubiquitination of some integral membrane proteins is also known to function as an intracellular 

sorting signal, which directs membrane proteins for degradation in the lysosome. In this study we 

show that ubiquitination of Cx43 can also act as a signal for its intracellular sorting to the 

endolysosomal compartment, through a mechanism involving the ESCRT machinery components 

Hrs and Tsg101. The deubiquitinating enzyme UBPY was also shown to modulate the intracellular 

trafficking of Cx43, by promoting its intracellular sorting to the lysosome for degradation. Finally, 

we provide evidence that internalized Cx43 can be recycled back to the plasma membrane through 

both a rapid and a slow recycling pathway, thus adding a new level of regulation to control GJIC. 

Although we partially characterize the internalization and intracellular trafficking routes followed by 

Cx43, many questions remain unresolved, these include the molecular mechanisms that determine 

the internalization pathway followed by ubiquitinated Cx43 as well as the interplay between 

deubiquitinating enzymes and Rab proteins in redirecting internalized Cx43 back to the plasma 

membrane. Nevertheless, this study provides a solid basis for future research aiming at further 

characterizing the molecular players and mechanisms involved in Cx43 internalization and 

degradation.
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Chapter 1: Introduction 

 

Intercellular communication is essential for the survival of all multicellular organisms. The evolution 

of increasingly fine tuned communication mechanisms between cells allowed for the development 

of more complex organisms, with specialized cells, tissues and organs. 

Cells can communicate with each other through the release of signalling molecules into the 

extracellular environment. These signalling molecules can then travel through the extracellular 

medium until reaching their target cells, which can be located either in the immediate vicinity of the 

originating cell, such as in the case of neurotransmitters, or over long distances, such as in the 

case of hormones. Upon reaching their target cell, signalling molecules are recognized by specific 

receptors on the cell surface, initiating signalling cascades that ultimately lead to specific cellular 

responses by inducing the expression (or repression) of genes. These signalling cascades 

normally involve the modulation of small molecules or ions (such as ATP, AMP, Ca2+, etc) often 

referred to as secondary messengers. However, not all intercellular communication relies on the 

release of signalling molecules into the extracellular environment. In fact, cells can communicate 

directly with each other through gap junctions, channel structures that establish direct 

communications between the cytoplasm of adjacent cells. 

 

Gap Junctions 

 

Gap junctions are specialized cell-cell contacts that provide direct intercellular communication 

between eukaryotic cells, allowing for the direct passage of small molecules inferior to 1 kDa (such 

as ATP) and ions between adjacent cells. Gap junctions are composed from a few to many 

thousands of gap junction channels. Each channel, in turn, is formed by the docking of two 

hemichannels from adjacent cells. Hemichannels are hexameric protein structures. In vertebrates, 

the most well documented protein family of hemichannel monomers are the connexins; other 

hemichannel forming proteins include pannexins and their invertebrate homologues, the innexin 

protein family. While connexins and pannexins/innexins are structurally and functionally similar, 

they share little sequence homology and are evolutionarily distinct. Gap junction structures formed 

by connexins and innexins have been widely reported, however, reports concerning the ability of 

pannexins to form functional gap junctions are scarce. 

The function of gap junctions in cell and tissue biology is of the utmost importance and, 

unsurprisingly, gap junction intercellular communication exists in nearly every mammalian cell type 

(Goodenough et al, 1996; Saez et al, 2003). In vertebrates, connexin gap junctions play critical 

roles in embryonic development, coordinated contraction of excitable cells, tissue homeostasis, 

normal cell growth and differentiation. Connexin gene mutations have been linked to several 

diseases (Laird, 2006). The first discovered connexin-linked human disease was chromosome-X-
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Figure 1 - Structure of gap junction channels. (A) Freeze-fracture replica of gap junctions of cultured B-16 melanoma 
cells. Scale bar, 0.1 µm (Larsen et al, 1979). (B) Schematic drawing of a gap junction plaque. The gap junction channels 
are drawn as a Cα trace spanning two adjoining membranes with an inter-membrane space of 40 A° (Nakagawa et al, 
2010). (C) Surface charge representation of the Cx26 gap junction channel. The outer surface is represented on the left 
while the channel interior sectioned along the pore axis is represented on the right. The displayed potentials range from 
20kT/e (blue) to -20kT/e (red) (Nakagawa et al, 2010). 
 
linked Charcot-Marie-Tooth disease (Bergoffen et al, 1993) which is caused by mutations in Cx32 

that result in aberrant Cx32 trafficking, misassembly of gap junction channels or abnormal gating 

properties (Krutovskikh & Yamasaki, 2000; Zhou & Griffin, 2003). Since then, several other human 

conditions have been linked to mutations in connexin family members. Mutations in Cx26, Cx30, 

Cx30.3 and Cx31 can give rise to sensorineural hearing loss and hyperproliferative skin disorders 

(Richard et al, 2003), while oculodentodigital dysplasia (ODDD) has been linked to mutations in the 

Cx43 gene (Paznekas et al, 2003). 
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Connexins 

 

All members of the connexin family contain four transmembrane domains, two extracellular loops 

and one cytosolic loop. Both the amino- and carboxyl-terminal of connexins are located in the 

cytosolic face of the plasma membrane. At present, 21 different connexin genes have been 

reported in humans, and 20 in mice. The transmembrane domains and extracellular loops are 

highly conserved throughout the connexin family; however, many key functional differences 

between connexins stem from amino acid sequence differences in these domains. Differences 

between the primary amino acid sequences of connexin family members are mostly found in the 

cytoplasmic loop and the carboxyl-terminal of the proteins. 

There are two nomenclature systems for connexin proteins. The first system identifies connexins 

according to their predicted molecular weight in kDa, for example, Cx32, Cx40, Cx43, etc (Cx = 

Connexin). The second nomenclature system identifies connexins according to their sequence 

homology, length of their cytoplasmic domains and by order of discovery. As such, Cx43, the first 

connexin of the alpha family to be discovered, is named gja1 (gj = gap junction). In this 

nomenclature two more protein families have been described, beta (b) and gamma (c). Connexins 

unrelated to either the α, β or γ families are classified as divergent connexins and identified as 

being a part of the delta family (d). 

Many tissues and cell types express two or more members of the connexin family. Cardiomyocytes 

express Cx40, Cx43 and Cx45 (Beyer et al, 1995; Gros & Jongsma, 1996; Moreno, 2004), while 

the lens expresses Cx43, Cx46 and Cx50 (Paul et al, 1991; White et al, 1992). Expression of 

multiple members of the connexin family within the same cell type may allow for compensatory 

mechanisms to take place when a specific connexin protein is either mutated or lost. This has 

been demonstrated in several studies where the endogenous expression of several connexins was 

able to compensate for the deletion of a specific connexin gene (Houghton et al, 1999; Simon et al, 

1997). However, this does not mean that all connexins are redundant when present in cells 

expressing more than one type of connexin protein; in some cell types the presence of a specific 

connexin protein is sometimes essential for the normal function of the cell, regardless of the 

presence of more members of the connexin family (White, 2003). In the developing lens, knockout 

of Cx46 results in the formation of cataracts while knockout of the Cx50 gene results in the 

formation of cataracts and a lens growth defect. Interestingly, knockin of the Cx46 gene into the 

loci of the Cx50 gene is capable of preventing the formation of opacities in the lens, but does not 

rescue the growth defect, demonstrating the requirement of Cx50 for normal development of the 

lens (Martinez-Wittinghan et al, 2004; Sellitto et al, 2004). 
Of all the connexin family members, Cx43 is the most ubiquitously expressed and is endogenously 

expressed in at least 34 distinct tissues and 46 cell types that include cardiomyocytes, 
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Table 1 - Connexin genes and their expression. Adapted from (Oyamada et al, 2005). 

 

keratinocytes, astrocytes, endothelial cells and smooth muscle cells (Solan & Lampe, 2009). 

Unsurprisingly, Cx43 is also the most widely studied connexin protein. 

 
Connexons 

 

Hemichannels formed by the oligomerization of 6 monomeric connexin units are called connexons. 

Connexons can be composed of a single type of connexin (homomeric) or multiple types of 

different connexins (heteromeric). Similarly, gap junction channels can be formed by the docking of 

two identical connexon hemichannels (homotypic) or through the docking of connexons composed 

of different connexin proteins (heterotypic). The ability of a specific connexin to participate in the 

assembly of a heteromeric connexon varies from connexin to connexin. As a general rule, 

connexin proteins of the alpha family cannot form heteromeric connexons with connexin proteins of 

the beta family. Examples of heteromeric channels formed by endogenously expressed connexins 

include the α family members Cx46-Cx50 in the lens (Jiang & Goodenough, 1996) and Cx43-Cx46 

in the lung (Das Sarma et al, 2001) and the β family members Cx32-Cx26 in the liver (Ahmad et al, 

1999; Harris, 2001). Connexins that do not belong to either family (i.e. γ and δ connexins) can form 
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Figure 2 - Basic structure of connexins and connexons. (A) Representation of a single connexin subunit inserted at 
the plasma membrane. Connexin protein subunits are tetra-spanning membrane proteins with two extracellular loops 
and one cytoplasmic loop. Both the amino- and carboxyl-terminals of the protein face the cytoplasm. (B) Schematic 
drawing of a connexon. Six connexin subunits oligomerize to form a connexon or hemichannel. Each of the subunits 
contributes to the formation of the channel pore. 
 

heteromeric connexins with members of either the α or β family, but not with both. Cx45, a member 

of the γ family has been shown to form heteromeric connexons with Cx43 (Koval et al, 1995), while

mCx29, a member of the δ family has been shown to form heteromeric connexons with Cx32 

(Altevogt et al, 2002).  

However, the ability of different connexins to form heteromeric connexons is not only dependent on 

direct compatibility between connexins, but is also regulated by the cellular environment. For 

example, endogenous Cx43 and Cx46 can form heteromeric connexons in type I alveolar epithelial 

cells, but they do not hetero-oligomerize in type II alveolar epithelial cells or osteoblastic cells 

(Abraham et al, 1999; Das Sarma et al, 2001; Koval et al, 1997). Selective connexin hetero-

oligomerization can also take place within a cell. Vascular endothelium and smooth muscle cells 

express Cx37, Cx40 and Cx43, which can all hetero-oligomerize with each other. However, it was 

found that Cx37 was specifically excluded from myoendothelial junctions between endothelial cells 

and smooth muscle cells, while still being incorporated in gap junction channels connecting 

adjacent endothelial cells or adjacent smooth muscle cells (Isakson & Duling, 2005). 

Likewise, the ability of different connexons to assemble a heterotypic gap junction channel also 

varies with the connexin composition of each connexon. Although, and contrary to what happens 

with hetero-oligomerization, heterotypic gap junction channel assembly is not entirely restricted by 

connexin family subtypes. For example, Cx32 and Cx43 cannot form heterotypic channels, 
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Figure 3 - Types of gap junction channel. Each cylinder represents an individual connexin protein. From left to right: 
Homotypic and homomeric channels composed of a single connexin type; Heterotypic channels composed of two types 
of connexin expressed in two different cells; Heteromeric channels composed of two different connexins expressed 
within a single cell. 
 

however, the α connexins Cx46 and Cx50 can form heterotypic channels with either one (White et 

al, 1995). Heterotypic compatibility between connexins appears to be determined by the 

extracellular loops and the cytoplasmic loop of connexin proteins (Bruzzone et al, 1994; White et 

al, 1994). The selectivity in heterotypic gap junction assembly is an important property of 

connexons, allowing cells expressing different connexins to remain structurally and functionally 

independent, which in turn allows for the presence of independent communication pathways within 

tissues or organs such as the retina or the brain. 

The permeability properties of gap junction channels are also directly affected by their connexin 

composition (Goldberg et al, 2004). While several studies have shown that the relative selectivity 

of gap junction channels towards monovalent cations is similar across a number of connexins: 

Cx43, Cx40, Cx37 and Cx45 (Beblo & Veenstra, 1997; Veenstra et al, 1995; Veenstra et al, 1994; 

Wang & Veenstra, 1997), the same does not remain true when examining the selectivity of 

channels towards cyclic nucleotides. Homomeric hemichannels formed by Cx32 display no 

preference towards cAMP or cGMP, however, heteromeric channels composed of Cx32 and Cx26 

are less restrictive to the passage of cGMP compared to cAMP, indicating that Cx26 is selective 

against cAMP (Bevans et al, 1998). Another study shows that Cx32 gap junction channels are 

more restrictive towards the passage of AMP and ATP compared to gap junction channels formed 

by Cx43 (Goldberg et al, 2002b). Interestingly, while the passage of ATP through Cx43 channels is 

100 fold better than the passage of the same negatively charged molecule through Cx32 channels, 

this same study also demonstrated that adenosine is transferred several fold more easily through 
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Cx32 gap junctions when compared to Cx43 gap junctions, indicating that Cx32 gap junction 

selectivity for this particular molecule may be dependent on charge, with the passage of negatively 

charged species of adenosine being restricted. However, the selectivity of Cx32 gap junction 

channels does not appear to be dictated by charge alone, since other studies have shown that the 

anionic metabolite IP3 passes more easily through Cx32 channels than through channels formed 

by either Cx43 or Cx26 (Niessen et al, 2000). This diversity in connexon composition and 

permeability allows for the functional diversity of gap junctions in different tissues and organs. 

Thus, gap junction channels are capable of modulating the passage of different molecular effectors 

in different cell types, according to the specific needs of each tissue and organ.  

Assembly of oligomeric integral membrane proteins usually occurs in the organelle in which they 

are synthesized, however, connexon assembly can occur either in the endoplasmic reticulum (ER) 

or in the Golgi network, although recent reports suggest that for some connexin species, ER 

connexon oligomerization may be a product of connexin overexpression, rather than a 

physiologically relevant event (Vanslyke et al, 2009). Nevertheless, connexins are only transported 

to the plasma membrane after being oligomerized into a connexon unit. Upon reaching the plasma 

membrane, connexons may remain as a hemichannel or assemble into a gap junction channel by 

docking to a hemichannel of an adjacent cell. Docking of two hemichannels to form a gap junction 

channel is done through non-covalent interactions between the two extracellular loops of 

connexins from adjacent cells. Newly formed gap junction channels are then added to the 

periphery of gap junction plaques, while older gap junction channels are internalized from the 

centre of the gap junction plaque.  

Connexon hemichannels were originally thought to be permanently closed, remaining inactive until 

they docked to a connexon from an adjacent cell to form a functional gap junction channel. 

However, it has been demonstrated that hemichannels are capable of opening to establish 

communication between the cytoplasm and the extracellular environment. In fact, important 

physiological functions have already been described for connexon hemichannels, such as calcium 

signalling, regulation of cell proliferation and death as well as the normal function and development 

of several cell types (Evans et al, 2006). Cx43 hemichannels have been shown to be important in 

bone remodelling through the release of Prostaglandin E(2) following mechanical stimuli (Burra & 

Jiang, 2009). Connexin hemichannels have also been shown to participate in inositol 1,4,5-

trisphosphate (IP3) release in the cochlea (Gossman & Zhao, 2008) while Cx26 and Cx30 

hemichannels are also important for the propagation of Ca2+ in the inner ear through the release of 

ATP into the extracellular medium (Anselmi et al, 2008), these roles of hemichannels in the inner 

ear may indicate that some of the hearing loss associated to mutations in connexin proteins may 

result not only from defects in gap junctional communication but also from defects in hemichannel 

function, similarly to what has recently been suggested for Cx26 mutations that cause skin 

diseases (Lee et al, 2009). In the heart, connexin hemichannels have an osmoregulatory role, with 



Chapter 1 

 26 

both negative and positive effects in myocardial infarcts and cardiac physiology (John et al, 2003; 

John et al, 1999). Hemichannels composed of the same connexin species can have opposite 

functions in promoting cell survival depending on the cell type where it is being expressed and the 

stimuli it receives. In a rat C6 glioma cell model, Cx43 hemichannels were shown to promote 

apoptosis in response to treatments with cytochrome C (Decrock et al, 2009), while in osteoblastic 

cells, Cx43 hemichannels were shown to mediate the anti-apoptotic effects of bisphophonates 

(Plotkin et al, 2002). 

However, despite all the important functions that have been ascribed to connexin hemichannels, 

recent reports have suggested that some of the functions attributed to connexin hemichannels may 

in reality be due to the presence of pannexin hemichannels (Shestopalov & Panchin, 2008). 

 

Post-translational modification of Connexins 

 

Phosphorylation 

 

Protein phosphorylation consists in the addition of a phosphate group (PO4) to a protein residue. 

Phosphorylation (and dephosphorylation) of proteins is a very common post-translational 

modification, functioning as a molecular switch that modulates the activity of most proteins. The 

most common protein phosphorylation residues are serine and threonine, followed by tyrosine.  

Many connexin species have been demonstrated to be phosphoproteins: Cx31, Cx32, Cx36, Cx37, 

Cx40, Cx43, Cx45, Cx46, Cx50 and Cx56 (Lampe & Lau, 2004; Solan & Lampe, 2009). Consistent 

with its importance in modulating most aspects of connexin function, phosphorylation of connexins 

occurs mostly in the carboxyl-terminal (CT), however, phosphorylation in the cytoplasmic loop has 

been described for at least Cx36, Cx50 and Cx56 (Berthoud et al, 1997; Urschel et al, 2006; Wang 

& Schey, 2009). Currently, there are no reports of connexins being phosphorylated on the amino-

terminal (NT). 

Phosphorylation has been implicated in many important metabolic events of connexin life. 

Phosphorylation of Cx36 by protein kinase A (PKA) has been linked to decreased gap junctional 

communication between amacrine cells in the retina (Urschel et al, 2006). In contrast, activation of 

PKA has been linked to increased gap junctional communication in T84 cells expressing Cx32 

(Chanson et al, 1996) and in a human hepatoma cell line expressing Cx40 (van Rijen et al, 2000). 

Additionally, dephosphorylation of Cx40 has been linked to a decrease in gap junctional 

communication in microvascular endothelial cells (Bolon et al, 2008), further reinforcing the 

importance of phosphorylation in Cx40 gap junctional communication. Cx45 gap junctions have 

also been demonstrated to be modulated by phosphorylation in HeLa cells (van Veen et al, 2000), 

while protein kinase C-gamma (PKCγ) has been implicated in regulating Cx46 and Cx50 gap 

junctional communication in the lens (Zampighi et al, 2005).  
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Due to its widespread expression and importance in many tissues and cell types, more is known 

about Cx43 phosphorylation than for all other connexin species. For example, phosphorylation of 

Cx43 has been implicated in Cx43 transport to the plasma membrane, as activation of PKA 

enhances transport of the protein to the plasma membrane and increases gap junctional 

communication (Atkinson et al, 1995; Paulson et al, 2000). Assembly of Cx43 hemichannels into 

gap junction channels has been shown to involve casein kinase 1 (CK1) activity, as mutation of the 

serines targeted by CK1 impairs the ability of Cx43 to form gap junctional channels (Cooper & 

Lampe, 2002). Activation of PKC by phorbol 12-myristate 13-acetate (PMA) induces Cx43 

phosphorylation and internalization (Lampe, 1994; Pitts & Burk, 1987). PKC induced 

phosphorylation is also important for Cx43 channel gating (Lampe et al, 2000). Phosphorylation of 

Cx43 by mitogen-activated protein kinase (MAPK) has been implicated in channel gating by 

reducing the time Cx43 channels remain in the open state (Cottrell et al, 2003). Furthermore, 

phosphorylation was shown to act as a stimuli for Cx43 proteasome-dependent degradation in lens 

epithelial cells (Girao & Pereira, 2003), while both PMA and EGF (epidermal growth factor) 

induced phosphorylation of Cx43 has been shown to induce Cx43 ubiquitination and subsequent 

internalization (Leithe & Rivedal, 2004a; Leithe & Rivedal, 2004b). Lastly, phosphorylation of Cx43 

is also involved in regulating the interaction of Cx43 with other proteins. For example, Cx43 

phosphorylation has been shown to be important for its interaction with the E3 ligase Nedd4 

(Leykauf et al, 2006).  

 

Ubiquitination 

 

Ubiquitination is another common post-translational modification of proteins that is characterized 

by the covalent attachment of the 76 amino acid protein ubiquitin to lysine residues on the target 

protein. The most commonly described function of ubiquitination is the targeting of proteins for 

degradation by the proteasome (Hershko & Ciechanover, 1998). However, unlike phosphorylation, 

to date only two connexin family members have been shown to be ubiquitinated: Cx43 (Laing & 

Beyer, 1995) and more recently the Cx50 chicken lens orthologue Cx45.6 (Yin et al, 2008).  

Cx26 has been described to interact with organ of Corti protein 1 (OCP1) a subunit of the SCF E3 

ubiquitin ligase complex (Henzl et al, 2004), however ubiquitination of Cx26 was not demonstrated. 

The importance of this interaction for Cx26 function is also still unknown. 

In primary lens cell cultures, Cx45.6 turnover was shown to be decreased in the presence of 

proteasome inhibitors, suggesting that Cx45.6 degradation is proteasome dependent. Cx45.6 

phosphorylation was also shown to be involved in regulation of Cx45.6 ubiquitination in N2A cells 

(Yin et al, 2008). In another study using primary embryonic lens epithelial cells, both Cx45.6 and 

Cx56 (the chicken lens ortologue of Cx46) were shown to accumulate at the plasma membrane in 

the presence of proteasome inhibitors, suggesting that the ubiquitin proteasome pathway may be 
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involved in regulating the stability of these two proteins at the plasma membrane (Boswell et al, 

2009). 

Due to the numerous studies focusing on Cx43, more is known about the importance of 

ubiquitination in regulating Cx43 function than for any other connexin protein. It has been 

demonstrated that Cx43 is a substrate for ER associated degradation (ERAD) (VanSlyke & Musil, 

2002), a process by which newly synthesized misfolded proteins are ubiquitinated and targeted for 

proteasomal degradation. In response to mild oxidative or thermal stress, ERAD degradation of 

Cx43 was reduced, leading to increased gap junction assembly and GJIC. Ubiquitination of Cx43 

at the plasma membrane has been suggested to target the protein for internalization (Leithe & 

Rivedal, 2004a; Leithe & Rivedal, 2004b), while more recent studies have shown that 

ubiquitination of Cx43 is necessary for the late endossomal sorting of Cx43 to the lysosome for 

degradation (Auth et al, 2009; Leithe et al, 2009). Thus, ubiquitination of Cx43 is a major post-

translational modification, regulating gap junction intercellular communication (GJIC) both at the 

biosynthesis level, by regulating Cx43 exit from the ER and subsequent transport of the protein to 

the plasma membrane, as well as regulating Cx43 degradation by targeting Cx43 present at the 

plasma membrane for internalization and lysosomal degradation. 

 

Connexin43 

 

Cx43, a member of the alpha connexin family, was the second connexin family member to be 

identified (Beyer et al, 1987), following the characterization of Cx32 (Kumar & Gilula, 1986; Paul, 

1986), and is also the most widely expressed connexin protein, being found in at least 35 tissues 

and 46 cell types (Solan & Lampe, 2009). Cx43 has been found to be expressed in tissues as 

diverse as the heart, lens, retina, skin, brain, kidney and bone marrow (Laird, 2006). 

Knockout of Cx43 in mice was shown to be lethal, with mouse embryos dying shortly after birth 

due to defects in the right ventricular outflow tract of the heart (Reaume et al, 1995), which was 

later shown to be caused by defects in the neural crest cells required for the normal development 

of that region of the heart (Lo et al, 1997). However, knockout of the Cx43 gene did not appear to 

cause any major defects in other organs.  

Mutations in the Cx43 gene have also been linked to oculodentodigital dysplasia (Paznekas et al, 

2003; Paznekas et al, 2009). Abnormalities observed in ODDD affect the eye, dentition, and digits 

of the hands and feet. ODDD is also characterized by neurological problems, conductive hearing 

loss, cardiac defects, and anomalies of the skin, hair, and nails. Considering that Cx43 is the most 

universal connexin found in the human body, it is somewhat surprising that patients carrying this 

autossomal dominant mutation in the Cx43 gene aren’t considerably more ill than they appear to 

be. In fact, patients suffering from this disease appear to live long lives in relatively good health 

(Laird, 2006). It is likely that more severe defects in Cx43 knockout mice and humans suffering 
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from ODDD are prevented due to functional compensation by the other connexin family members. 

 

Cx43 oligomerization and delivery to the plasma membrane 

 

Unlike most multimeric ion channels that oligomerize in the ER (Deutsch, 2003), Cx43 

oligomerization occurs in the trans-Golgi network (TGN) after exiting the ER (Musil & Goodenough, 

1993). A recent study demonstrated that the site of connexon formation was not dictated by 

connexin species, cell type or whether the connexin is native to the cell type, but rather by the level 

of connexin synthesis (Vanslyke et al, 2009). One hypothesis would be that a molecular chaperone 

could associate with newly synthesized connexins in the ER, preventing them from oligomerizing 

until they reached the TGN. Overexpression of Cx43 would then saturate the limited amount of the 

chaperone protein leading to Cx43 oligomerization in the ER instead. However, no evidence for 

such a chaperone protein was found in this study, leading to the proposition of an alternative 

hypothesis in which Cx43 oligomerization in the TGN was largely a concentration-driven self-

assembly process, similar to what is suggested for later stages of gap junction formation (Castro et 

al, 1999; Valiunas et al, 1997). Thus, in physiologically relevant conditions, levels of Cx43 

monomers would only reach the required concentration for oligomerization in the TGN (Vanslyke et 

al, 2009). Nonetheless, another recent study reported that the ER-associated chaperone ERp29 

helps stabilize monomeric Cx43 facilitating its oligomerization in the TGN (Das et al, 2009). 

Interference with normal ERp29 function, either by depletion of ERp29 through RNAi or through 

the overexpression of a dominant negative mutant of the protein, was shown to decrease Cx43 

gap junction formation and lead to the oligomerization of Cx43 in the ER, suggesting that 

premature oligomerization of Cx43 impedes efficient trafficking along the secretory pathway. 

Furthermore, ERp29 chaperone activity was shown to be able to distinguish between different 

classes of connexins since interference with ERp29 activity had little effect on the beta connexin 

family member Cx32. This result is in agreement with results obtained by Vanslyke et al, showing 

that overexpression of Cx32 did not affect the normal oligomerization of endogenous Cx43 in LA25 

NRK cells (Vanslyke et al, 2009). 

Upon reaching the plasma membrane Cx43 connexons may either remain as an uncoupled 

hemichannel, connecting the cytoplasm directly with the extracellular medium or, as more 

commonly described, connect with a connexon from an adjacent cell to form a functional gap 

junction. Incorporation of Cx43 into gap junction plaques has been shown to confer resistance to 

solubilization with mild detergents such as Triton X-100 (Musil & Goodenough, 1991), thus, forms 

of Cx43 that are insoluble in Triton X-100 are considered to be forming gap junction plaques. 

Incorporation of Cx43 hemichannels into gap junction plaques was shown to require previous 

phosphorylation of specific serine residues by CK1 (Cooper & Lampe, 2002). Inhibition of CK1 was 

shown to increase the amount of non-junctional Cx43 present at the plasma membrane as well as 
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reduce the levels of Triton X-100 insoluble Cx43. Furthermore, expression of mutant forms of Cx43 

where the serine residues targeted by CK1 were mutated decreases the ability of cells to form gap 

junctions, indicating that conformational changes that occur after phosphorylation by CK1 were 

important for gap junction assembly (Cooper & Lampe, 2002). 

Caveolins (Cav) are a structural component of caveolae and vesicles derived from the TGN, that 

serve as scaffolding proteins to cluster lipids and signalling molecules (Williams & Lisanti, 2004). 

Cav-1 and Cav-2 have been shown to interact with Cx43 and are involved with trafficking of the 

protein to the plasma membrane and to cholesterol and sphingolipid rich plasma membrane 

domains, commonly termed lipid rafts (Langlois et al, 2008; Schubert et al, 2002). Disruption of 

lipid rafts with methyl-β-cyclodextrin or depletion of Cav-1 and Cav-2 with siRNA, was shown to 

reduce GJIC, while overexpression of Cav-1 in HEK293FT cells (which express Cx43 but are 

caveolin deficient) enhanced GJIC. Furthermore, Cx43 and caveolins were shown to colocalize 

mainly in the TGN with little colocalization found at the plasma membrane (Langlois et al, 2008). 

Studies using Cav-1 knockout mice also showed that the absence of Cav-1 lead to reduced 

expression of Cx43 in the aorta. Gap junction formation and GJIC were also decreased in arteries 

of Cav-1 knockout mice (Saliez et al, 2008). In accordance with what is suggested for other 

connexins (Locke et al, 2005), Cx43 and caveolins may traffic together to the plasma membrane in 

lipid rafts, where they then disassociate as Cx43 is inserted into gap junctional plaques (Langlois 

et al, 2008). Activation of PKCγ by PMA or insulin growth factor 1 was shown to translocate PKCγ 

to lipid rafts where it colocalized with Cav-1 and phosphorylated Cx43, leading to the disassembly 

of Cx43 gap junction plaques and reduced GJIC. The disassembly of Cx43 gap junctions plaques 

following PKCγ activation was suggested to be due to relocalization of Cx43 to Cav-1 containing 

lipid rafts and not due to the internalization of Cx43 (Lin et al, 2003). A later study demonstrated 

that PKCγ mediated reduction of Cx43 GJIC could be induced by oxidative stress, suggesting that 

the rapid disassembly of gap junction plaques triggered by PKCγ phosphorylation of Cx43 could 

function as a protective mechanism against the spread of oxidative damage (Lin & Takemoto, 

2005). A recent study demonstrated that Cx43 also interacts and colocalizes with Cav-3, 

suggesting that it may also play a role in regulating Cx43 GJIC (Liu et al, 2009). 

Connexin gap junction plaques isolated from various cell types and organisms have shown that 

gap junctions are localized in membrane microdomains rich in cholesterol (Malewicz et al, 1990). 

Supplementation of exogenous cholesterol to cultured hepatoma cells was shown to increase gap 

junction assembly and permeability in a dose-dependent manner (Meyer et al, 1990). In studies 

using cardiac cells, Heptanol was shown to block Cx43 GJIC by reducing the fluidity of cholesterol-

rich membrane domains, which in turn decreased the open probability of Cx43 gap junction 

channels (Bastiaanse et al, 1993). Oxidized phospholipids have also been suggested to take part 

in the pathogenesis of atherosclerosis by inducing modifications in Cx43 expression and 
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phosphorylation (Isakson et al, 2006; Johnstone et al, 2009).  

Cx43 has been reported to interact with several components of the cytoskeleton (Dbouk et al, 

2009; Olk et al, 2009). Sedimentation experiments were used to show that Cx43 interacts directly 

with microtubules (Giepmans et al, 2001a). Using several Cx43 protein constructs Giepmans et al 

demonstrated that amino acids 228 to 263 in the juxtamembrane region of the CT domain were 

essential for the interaction between Cx43 and microtubules. This region was also shown to 

contain a putative microtubule binding motif. Cx43 was also shown to interact directly with both α-

tubulin and β-tubulin. Immunofluorescence and immunoelectronic microscopy experiments also 

showed that the distal ends of microtubules colocalized with Cx43 gap junctions (Giepmans et al, 

2001a; Giepmans et al, 2001b). A recent study demonstrated that microtubules have an important 

function in the delivery of Cx43 to the plasma membrane. Using live-imaging to follow the 

intracellular transport of Cx43-YFP (yellow fluorescent protein), Shaw et al. demonstrated that 

treatments that impaired normal microtubule formation also delayed the delivery of Cx43 to the 

plasma membrane. Additionally, microtubules appeared to deliver Cx43 directly to plasma 

membrane domains containing N-cadherin, a major component of adherens junctions, thus 

suggesting that microtubules may be involved in the direct delivery of Cx43 hemichannels to points 

of cell-cell contact (Shaw et al, 2007). 

Actin cytoskeleton filaments have long been known to associate with connexins. Annular gap 

junctions have been shown to be surrounded by actin-containing filaments (Larsen et al, 1979). 

Furthermore, invaginating gap junctions were also shown to be surrounded by a network of actin-

containing microfilaments, suggesting that the microfilament network and sheath of actin act in 

concert to provide the mechanical force necessary for internalization of gap junctions and 

formation of annular gap junctions (Watanabe et al, 1988). Actin filament bundles have also been 

suggested to help stabilize Cx43 gap junctions at the plasma membrane (Wall et al, 2007). 

Although actin has been shown to colocalize or co-immunoprecipitate with Cx43, no direct 

interaction between the two proteins has been shown, suggesting that Cx43 interacts with actin 

through linker proteins. Drebrin (Developmentally Regulated Brain Protein) is one of these linker 

proteins. Butkevich et al. demonstrated that Drebrin interacts directly with Cx43. Furthermore, 

depletion of Drebrin with siRNA was shown to impair GJIC due to Cx43 gap junction internalization 

and degradation, while Drebrin overexpression stabilized Cx43 gap junctions at the plasma 

membrane (Butkevich et al, 2004). Drebrin was later shown to colocalize with Cx43 at gap junction 

plaques (Xu et al, 2006). As such, Drebrin is a prime candidate for linking Cx43 to the actin 

cytoskeleton, stabilizing Cx43 gap junction plaques at the plasma membrane. Recently, RhoA and 

F-actin were shown to have a role in modulating the permeability of the Cx43 channel pore. RhoA 

is a member of the Rho GTPases family, which are major regulators of the actin cytoskeleton 

(Etienne-Manneville & Hall, 2002). Derangeon et al. reported that activation of RhoA by cytotoxic 

necrotizing factor 1 enhanced GJIC while inhibition of RhoA by Clostridium botulinum C3 
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exoenzyme reduced GJIC. Both treatments had little effect on the distribution of gap junction 

plaques and Cx43 phosphorylation, indicating that the observed changes in GJIC following RhoA 

stimulation were due to changes in the permeaselectivity of the Cx43 channel pore and not by 

variations in the number of gap junction channels at the plasma membrane or cell-cell contacts. 

Additionally, RhoA was shown to exert its effect upon Cx43 gap junctions through the actin 

cytoskeleton as agents that stabilized actin filaments, such as phalloidin, markedly reduced the 

effects of RhoA activation or inhibition (Derangeon et al, 2008). As such, the actin cytoskeleton is 

not only important for stabilizing Cx43 at the plasma membrane, but also plays a role in modulating 

the channel pore. 

Adherens junctions are membrane structures responsible for the mechanical coupling of cells. 

Considering how gap junction formation requires the close proximity of cells, it comes as no 

surprise that adherens junctions and gap junctions are closely linked. Cx43 GJIC was first shown 

to be modulated by the calcium-dependent cell adhesion molecule N-cadherin (Jongen et al, 

1991). Blockage of the extracellular domains of Cx43 with antibodies prevented adherens junction 

formation, likewise, blockage of the extracellular domains of N-cadherin also prevented gap 

junction formation (Meyer et al, 1992). Furthermore, Cx43 was shown to co-assemble with N-

cadherin and several other N-cadherin associated proteins in a process that was important for the 

trafficking of Cx43 to the plasma membrane. Depletion of either Cx43 or N-cadherin through siRNA 

was shown to decrease levels of N-cadherin and Cx43 at the plasma membrane and reduce GJIC 

(Wei et al, 2005). Although cadherins and adherens junctions were originally thought to only be 

important for establishing points of close cell-cell contact, thus enabling gap junction formation, the 

discovery that several protein members of the adherens junction complex are signal transduction 

molecules has led to the suggestion that adherens junctions may be involved in the transduction of 

signals relating to the status of cell-cell coupling, however, such signalling has yet to be formally 

demonstrated (Herve et al, 2007). 

Cx43 has been shown to interact with several elements of tight junctions. Tight junctions are 

transmembrane protein structures that connect adjacent cells providing both barrier and fence 

functions. Tight junction proteins include occludins and claudins as well as proteins of the zonula 

occludens (ZO) family that function as scaffolds, connecting occludins and claudins to the actin 

cytoskeleton and signal transduction molecules (Koval, 2006). Cx43 was shown to interact and 

colocalize with the tight junction proteins occludin and claudin-5 in porcine blood-brain barrier 

endothelial cells (Nagasawa et al, 2006). Cx43 was the first connexin protein to be found to 

interact with ZO-1 (Giepmans & Moolenaar, 1998; Toyofuku et al, 1998), subsequently many other 

connexin members of the alpha family have been shown to interact with ZO-1 (Herve et al, 2007). 

However, to date no member of the other connexin families have been shown to interact with ZO-

1, suggesting specificity of the alpha connexins for this interaction. Cx43-ZO-1 interactions are 

often found only at the periphery of gap junction plaques (Hunter et al, 2005). Disruption of the 
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Figure 4 - Cx43 delivery and incorporation into gap junction plaques. A simplified model detailing part of the life 
cycle of Cx43. After being correctly folded and inserted into the membrane of the endoplasmic reticulum, monomeric 
Cx43 is trafficked to the trans-Golgi network where it oligomerizes into hexameric connexons and associates with Cav-1. 
Connexons are then transported through microtubules to the plasma membrane where they localize to lipid raft domains. 
Connexons can then dock with connexons from adjacent cells to form gap junction channels that diffuse laterally through 
the plasma membrane until aggregating at gap junction plaque sites. During this process, Cx43 is phosphorylated by 
CK1. Several proteins are known to interact with Cx43 at gap junction plaques, possibly modulating Cx43 function and 
signal transduction. 
 

interaction between ZO-1 and Cx43 was shown to lead to the formation of abnormally large Cx43 

gap junction plaques due to increased accretion of non-junctional Cx43 gap junctions, and not by 

increased Cx43 expression or decreased Cx43 turnover, thus suggesting that ZO-1 may be 

important in regulating the size of Cx43 gap junction plaques. A more recent study demonstrated 

that the interaction between Cx43 and ZO-1 was modulated by the proteasome (Girao & Pereira, 

2007). Inhibition of the proteasome was shown to decrease the interaction of Cx43 with ZO-1 and 

lead to the formation of abnormally large gap junction plaques. This effect of the proteasome on 

gap junction plaque size was shown to specifically involve the modulation of the Cx43-ZO-1 
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interaction since inhibition of the proteasome had no effect on the size of gap junctions plaques 

formed by a mutant Cx43 in which the ZO-1 interacting domain was blocked with a tag. This study 

suggested that the proteasome modulated this interaction by degrading a putative Cx43-binding 

protein, which in turn regulated Cx43 and ZO-1 interaction (Girao & Pereira, 2007). The non-

receptor tyrosine kinase c-Src was also shown to modulate the interaction between Cx43 and ZO-

1. Binding of c-Src to Cx43 through its SH2 domain and subsequent Cx43 phosphorylation on 

Tyr265, reduced the interaction of Cx43 with ZO-1, impairing Cx43 mediated GJIC and leading to 

its internalization (Toyofuku et al, 2001). A more recent study by Gilleron et al further elucidated 

the role of c-Src in Cx43-ZO-1 dissociation and Cx43 internalization (Gilleron et al, 2008). γ-

hexachlorocyclohexane (HCH) is a non-genomic carcinogen that is known to be a potent inducer 

of Cx43 internalization (Defamie et al, 2001). Treatment of 42GPA9 Sertoli cells with HCH was 

shown to recruit c-Src to the plasma membrane and induce Cx43 internalization. Furthermore, 

while ZO-1 was found on both sides of gap junction plaques in untreated cells, following treatment 

with HCH, ZO-1 would only be found on one side of the gap junction plaque, opposite to the side 

where c-Src is recruited. Additionally, during internalization of Cx43, ZO-1 would only be found in 

the inner side of the invaginating gap junction plaque and inside annular gap junction vesicles, 

while c-Src associated to Cx43 would be found in the outer side of annular gap junctions and was 

absent from the interior of the annular gap junction (Gilleron et al, 2008). These observations 

suggest a role for c-Src in initiating Cx43 gap junction internalization by disrupting the interaction 

between Cx43 and ZO-1. These findings are in agreement with earlier studies demonstrating that 

Cx43 phosphorylation induced its internalization and that proteasome inhibitors stabilized the 

phosphorylated form of Cx43, preventing its internalization and subsequent degradation 

(Fernandes et al, 2004; Girao & Pereira, 2003). 

Cx43 has also been shown to interact with another zonula occludens protein, ZO-2 (Singh et al, 

2005). ZO-1 and ZO-2 were shown to preferentially interact with Cx43 in different phases of the 

cell cycle, suggesting that both of these scaffold proteins may compete to influence gap junction 

patterning during cell cycle. 

 

Cx43 channel gating 

 

Similar to other transmembrane channels, gap junction channels are not permanently open and 

feature a gating mechanism that can be regulated through several factors, such as voltage, pH, 

calcium or phosphorylation (Gonzalez et al, 2007; Moreno & Lau, 2007; Peracchia, 2004). 

To detect changes in voltage, the gating mechanisms of connexins must possess a voltage 

sensor. Typically, charged amino acids can be considered sensors since their electric charge 

position or electrical dipole orientation are sensitive to changes in the electric field. Modifications in 

the position of the charged group would then induce conformational changes in the protein leading 
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to the opening or closure of the channel pore. Connexin voltage gating can be modulated both by 

transjunctional voltage (Vj), which refers to the voltage difference between the two cells involved in 

forming the gap junction, and membrane voltage (Vm), which refers to the voltage difference 

between the interior of the cell and the extracellular medium. Cx43 is sensitive to both voltage 

differences (Gonzalez et al, 2007). 

The Vj sensor of connexins appears to be located in the cytoplasmic amino-terminal domain 

(Gonzalez et al, 2007). Cx43 gap junctions appear to have two Vj sensitive gating mechanisms 

which allow for 3 functional states of the gap junctional channel, a main open state, a residual state 

(with lower conductance) and a closed state. Transitions from the main open state to the residual 

state are usually fast (<1-2 ms), while transitions from the residual state to the closed state are 

much slower, in the range of tens of milliseconds (Banach & Weingart, 2000). As such, these two 

gating processes have been termed as “fast Vj-gating” and “slow Vj-gating” respectively. These 

kinetically distinct gating states of Cx43 appear to be the result of two different gating mechanisms. 

The first evidence pointing towards this conclusion appeared in studies using a mutant form of 

Cx43 in which the CT domain had been truncated. CT truncated Cx43 mutants were shown to lose 

their fast gating component while the resulting differences in gating properties were largely 

attributed to slow Vj-gating (Revilla et al, 1999), indicating that not only were the gating 

mechanisms of fast Vj-gating and slow Vj-gating distinct, but also that the CT domain of Cx43 was 

important for the fast Vj-gating mechanism. Additionally, the differences found in slow Vj-gating 

kinetics in the Cx43 CT truncated mutants also indicate that the two gating mechanisms interact 

electrically in series. The action of the CT domain of Cx43 in fast Vj-gating was also shown to be 

blocked by the fusion of relatively large proteins to the CT domain, such as aequorin (Martin et al, 

1998) or GFP (Bukauskas et al, 2000), possibly by limiting CT domain mobility or by interfering 

with some of its intramolecular interactions. These findings led to the suggestion that the fast Vj-

gating mechanism of connexin proteins might follow the “ball and chain” model initially proposed to 

mediate fast inactivation in other unrelated ion channel families (Armstrong & Hille, 1998). 

According to this model, following stimulation, the CT domain of Cx43 (“chain”) would fold into a 

“ball” (acting as a “gating particle”) and move towards the entrance of the pore, physically blocking 

the passage of metabolites. Further support for this model appeared when it was shown that 

expression of a separate fragment containing the CT domain could restore fast Vj-gating in CT 

truncated Cx43 mutants (Anumonwo et al, 2001; Moreno et al, 2002). Therefore, even as a 

separate fragment, the CT domain of Cx43 can bind to the channel pore blocking its function. In 

Cx43, it has been suggested that the receptor site for the CT gating particle resides within the 

cytoplasmic loop of the protein. Fragments of Cx43 containing the second half of the cytoplasmic 

loop (termed the “L2” region) have been shown to interact with fragments containing the CT 

domain in a pH-dependent manner in vitro (Duffy et al, 2002). Expression of the fragment 

containing the cytoplasmic loop of Cx43 was also shown to block fast Vj-gating, suggesting that the 
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L2 peptide could interact with the CT domain of Cx43, therefore functioning as a competitive 

inhibitor that blocks its interaction with the native L2 region of Cx43 (Seki et al, 2004). 

In Cx43, the transmembranar voltage gaiting (Vm-gating) mechanism seems to be independent of 

both Vj-gating mechanisms. Additionally, and unlike Vj-gating, Vm-gating induces transitions from 

an open state directly to a fully closed state of the channel pore (Gonzalez et al, 2007). Structural 

components of the Vm-gating sensor have been shown to reside in the CT domain of Cx43 near 

the forth transmembranar domain. Truncation of the CT domain of Cx43 at amino acid 257 fully 

abolished fast Vj-gating having little effect on Vm-gating (Revilla et al, 2000). On the other hand, 

truncation of the Cx43 CT domain at amino acid 242, which is the minimum length to retain 

channel-forming ability (Dunham et al, 1992), abolished sensitivity to Vm (Revilla et al, 2000). In 

this same study amino acids Arg243 and Asp245 were shown to be essential for Vm gating, 

indicating that, as opposed to the case of the Vj sensor, the Vm sensor appears to be located within 

the CT domain of Cx43. 

pH-dependent gating of Cx43 was first described in a study detailing the inhibition of ionic 

communication by carbon dioxide (Turin & Warner, 1977), in which acidification of the intracellular 

medium would lead to the closure of Cx43 gap junction channels. Similar to the case of voltage 

dependent gating, the “ball and chain” model is also the proposed model for pH-dependent gating 

of Cx43 (Ek et al, 1994; Liu et al, 1993; Morley et al, 1996). A study where a fragment containing 

the CT domain of Cx43 was overexpressed, was shown to lead to the inhibition of pH-dependent 

gating of Cx43, supporting the “ball and chain” model for pH-gating (Morley et al, 1996). In later 

studies it was shown that this fragment interacted in vitro with the L2 region of the cytoplasmic loop 

in a pH-dependent manner (Duffy et al, 2002). As with voltage-gating, pH-gating would require a 

pH sensor in the protein. Histidine residues were proposed as the pH sensors of connexins due to 

the fact that histidine is the only amino acid whose sidechain dissociation constant from protons 

(pKa) falls within physiological range (Creighton, 1993). pH gating of Cx43 would then result from 

conformational changes induced by intracellular protons (Spray & Burt, 1990). Accordingly, His95 

in the cytoplasmic loop of Cx43 was shown to be important for pH-dependent gating (Ek et al, 

1994). Later studies also showed that acidification lead to conformational alterations and 

protonation of the histidines present in the L2 region (second half of the cytoplasmic domain) 

(Duffy et al, 2002), indicating that histidines may indeed function as a pH sensor for Cx43 gating. 

Additionally, studies have also shown that non-histidine residues located in the CT domain are also 

essential for pH-dependent gating (Ek-Vitorin et al, 1996), perhaps due to their importance in the 

function of the CT domain as a gating particle. 

Although it was initially proposed that acidification of the intracellular medium with the concomitant 

rise in H+ would directly modulate pH-gating of connexins, others have proposed that pH-gating of 

connexins is mediated by an intermediate molecule that binds to the connexin protein, given that in 

some cellular models connexins are insensitive to intracellular acidification as in the case of Cx43 
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Figure 5 - Gating models for connexin gap junction channels. The centre connexon represents an open channel. 
Following an increase in intracellular calcium levels, Ca2+ binds to calmodulin inducing a conformational change in the 
protein, allowing it to bind to the cytosolic loop of Cx43 and physically obstruct the channel pore. Alternatively, stimuli 
that do not involve an increase in intracellular calcium levels may induce a change in the conformation of the carboxyl-
terminal of Cx43, enabling it to physically obstruct the channel pore. For simplicity purposes only one of the six carboxyl-
terminals of each connexon is represented. 
 

gap junctions expressed in oocytes (Johnston & Ramon, 1981). Calcium and the Ca2+ binding 

protein calmodulin (CaM) were proposed to be this mediator (Peracchia et al, 1983), with later 

studies suggesting that acidification of the intracellular medium can induce the release of Ca2+ 

(Peracchia, 1990a; Peracchia, 1990b). CaM is a soluble acidic protein with high affinity for Ca2+. 

Following Ca2+ attachment, CaM undergoes a conformational change that exposes two 

hydrophobic pockets, allowing it to bind to its molecular targets (Peracchia, 2004). CaM was first 

shown to bind to a synthetic peptide containing the first 16 amino acids of the NT domain of Cx43 

(Torok et al, 1997). However, a later study could not detect any interaction between CaM and a 

similar peptide containing the first 21 amino acids of the NT domain (Duffy et al, 2002). Later 

studies showed that CaM inhibitors could block the Ca2+ induced gating of Cx43 in lens epithelial 

cells (Churchill et al, 2001; Lurtz & Louis, 2003). Using a search programme for CaM binding sites 

(Yap et al, 2000), Zhou et al recently identified a putative CaM binding site in Cx43 corresponding 

to amino acids 136 to 158 in the cytoplasmic loop of the protein (Zhou et al, 2007). The same 

study also demonstrated that activated CaM was capable of interacting directly with peptides 
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encompassing this region of Cx43. Mutation of the CaM binding site on Cx43 was shown to impair 

gap junction assembly and GJIC, indicating that this region of the cytoplasmic loop was important 

for the structure of the channel pore. GJIC in cells expressing these Cx43 mutants were also 

insensitive to increases in intracellular Ca2+, further ascribing an important role for CaM in 

mediating the response of gap junctions to Ca2+. Lastly, it was shown that the attachment of yellow 

fluorescent protein to the carboxyl-terminal of Cx43 did not affect CaM mediated gating (Zhou et al, 

2007). Another recent study demonstrated that CaM mediated gating of Cx43 did not require the 

CT domain of Cx43 (Lurtz & Louis, 2007). Since it was previously shown that both the truncation of 

the CT domain and the attachment of GFP to the CT of Cx43 blocked fast Vj-gating (Bukauskas et 

al, 2000; Revilla et al, 1999), these results suggest that the mechanism by which CaM mediates 

Cx43 gating must differ from the “ball and chain” model suggested for fast Vj-gating and pH-gating. 

This is in accordance with the “cork” mechanism previously suggested by Peracchia et al, in which 

increases in intracellular Ca2+, would lead to CaM association with Ca2+, with subsequent activation 

of the protein. Activated CaM would then translocate to gap junction plaques, where it bound to 

connexin, physically obstructing the channel pore, similar to a “cork” (Peracchia et al, 2000). 

CaM is not the only molecular intermediate involved in Cx43-gating modulation. Connexin 

phosphorylation is also an important modulator of gap junction channel gating (Moreno & Lau, 

2007). Activation of protein kinase C (PKC) has been shown to induce changes in Cx43 gap 

junction channel conductance, favouring an intermediate conductance level (Moreno et al, 1992). 

This effect of PKC on Cx43 conductance levels was later reported to depend on Ser368 (Lampe et 

al, 2000). Protein kinase G (PKG) was shown to induce a similar shift in conductance levels in rat 

Cx43 but not in human Cx43 (Kwak et al, 1995; Takens-Kwak & Jongsma, 1992). This species 

specific response in Cx43 GJIC was shown to depend on Ser257 of rat Cx43, an amino acid that is 

not present in human Cx43 (Kwak et al, 1995). Cx43 gap junction channel gating has also been 

shown to be modulated through mitogen-activated protein kinase (MAPK) phosphorylation. MAPK 

was first shown to phosphorylate Cx43 in vitro (Kanemitsu & Lau, 1993), while a later study 

mapped the phosphorylation sites of MAPK to serines 255, 279 and 282 in the carboxyl-terminal of 

Cx43 (Warn-Cramer et al, 1998). Treatment of Cx43 channels reconstituted in liposomes with 

MAPK was also shown to reduce permeability of the channels to sucrose and Lucifer yellow (Kim 

et al, 1999). Another study that used a variety of Cx43 mutants, suggested that MAPK mediates 

the gating effect of v-Src upon Cx43 (Zhou et al, 1999). Cx43 mutants in which the serines 

targeted by MAPK were replaced by alanines were shown to be more insensitive to v-Src induced 

gating than wild type Cx43. Silencing or chemical inhibition of components of the MAPK pathway 

were also shown to inhibit the effects of v-Src upon Cx43 channel gating. The involvement of v-Src 

in Cx43 gating was first documented in works showing that mammalian cells expressing a 

constitutively active form of the protein presented lower gap junctional communication as 

measured by the transfer of a fluorescent dye (Crow et al, 1990; Zhou et al, 1999). It was later 
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shown that v-Src phosphorylated Cx43 on tyrosines 247 and 265 of the carboxyl-terminal (Lin et al, 

2001). Subsequent studies using Cx43 mutants showed that v-Src gating of Cx43 not only blocked 

the transfer of fluorescent dyes but also reduced gap junction channel conductance. Co-

expression of v-Src with wild type Cx43 was shown to induce a reduction in channel conduction, 

while co-expression of v-Src with the Cx43Y247F/Y265F double mutant showed no significant 

difference in channel conductance when compared to control cells expressing only wild type Cx43 

(Cottrell et al, 2003). This is in stark contrast with results previously reported by Zhou et al, who 

showed that the replacement of Tyr247 and Tyr265 had no effect on v-Src induced gating of Cx43 

(Zhou et al, 1999). These differences may be explained by the way v-Src was activated in each 

study. In the study by Zhou et al, v-Src was acutely activated with a temperature shift, while in the 

study by Cottrell et al, a constitutively activated v-Src was used. In the latter case it is possible that 

a prolonged exposure of cells to active v-Src might induce a negative feedback mechanism that 

inactivates the MAPK pathway, thus making these cells more insensitive to v-Src induced Cx43 

channel gating (Moreno & Lau, 2007). Cottrell et al also showed that v-Src phosphorylation of 

Cx43 could affect the selectivity of the channel pore. Permeability to Lucifer yellow, a 457 Da 

protein with a net charge of 2-, was shown to be reduced further than permeability to NBD-TMA, a 

280 Da protein with a net charge of 1+, when Cx43 was co-expressed with v-Src. Additionally, the 

reduction in NBD-TMA permeability was greater than expected when considering only the 

predicted changes in electrical conductances. These results suggest that phosphorylation of Cx43 

by v-Src may alter the permeability of the channel pore by a process that restricts the passage of 

larger molecules (Cottrell et al, 2003). 

Several mechanisms have been suggested to explain the process by which Cx43 phosphorylation 

may induce channel gating. Similar to fast Vj-gating or pH-gating, and given the many 

phosphorylation events that occur in the CT of Cx43, phosphorylation may induce conformational 

changes in the protein that favour or restrict interaction of the CT with the cytoplasmic loop of 

Cx43, thus phosphorylation may have a role in the “ball and chain” mechanism of Cx43 gating. 

Alternatively, phosphorylation of Cx43 may permit or restrict interactions with other molecules 

directly involved in occluding the entrance to the channel pore, thus phosphorylation of Cx43 may 

also have a role in the “cork” mechanism suggested for CaM mediated gating of Cx43. 

 

Cx43 internalization 

 

Connexins have a markedly short half-life, of less than 5 hours, when compared to other plasma 

membrane proteins (Girao & Pereira, 2003; Laird, 2006; Leithe & Rivedal, 2007). Considering that 

connexin mediated GJIC can be regulated through the gating of the gap junction channel, it is 

intriguing that cells would opt to regulate GJIC in such an energetically costly manner by constantly 

synthesizing and degrading Cx43. This might be partially explained by the observation that gap 
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junctional channels have a higher probability of being in an open state than closed (Christ & Brink, 

1999), suggesting that gap channel gating is a rather limited regulatory mechanism. Thus, 

connexins may retain a short half-life in order to better respond to physiological changes in cells or 

tissues that require finer and more efficient changes in gap junction coupling (Bukauskas & 

Verselis, 2004; Harris, 2001). 

The first studies involving internalization of gap junctions were observations made through electron 

microscopy depicting large double-membrane vesicular structures termed “annular junctions” that 

were suggested to be the result of the internalization of gap junction plaques (Archard & Denys, 

1979; Kitson et al, 1978; Marquart, 1977). Later studies using specific antibodies confirmed that 

these structures were formed in large part by connexin proteins (Murray et al, 1997; Nagy et al, 

1997; Naus et al, 1993). Annular junctions were later shown to indeed result from the 

internalization of connexin gap junctions (Jordan et al, 2001). Co-culture experiments using green 

fluorescent protein tagged Cx43 (Cx43-GFP) expressed in normal rat kidney (NRK) cells (that 

endogenously express Cx43) showed that large areas of gap junction plaques containing Cx43-

GFP could be internalized into adjacent non transfected cells as vesicular like structures. 

Microinjection of anti-Cx43 antibodies also revealed that antibody-tagged gap junctions could be 

found in adjacent cells that were in contact with the microinjected cell (Jordan et al, 2001). 

A study using Cx43 proteins containing tetracysteine tags marked with biarsenical fluorophores, 

has shown that newly synthesized Cx43 proteins are added to the periphery of existing gap 

junction plaques while older Cx43 proteins were mostly localized in the inner regions of the plaque 

from where they were internalized (Gaietta et al, 2002). This study demonstrates that gap junction 

plaques are not a static entity, but rather one that exists in a constant state of degradation and 

renewal. 

Endocytosis of Cx43 has been reported to follow a clathrin-dependent pathway (Gumpert et al, 

2008; Leithe & Rivedal, 2004a; Piehl et al, 2007). Clathrin was first suggested to interact with 

annular gap junction vesicles based on electron microscopy data showing structures similar to 

clathrin coats surrounding both invaginating sections of gap junctions as well as gap junction 

containing vesicles near the plasma membrane (Larsen et al, 1979). Years later, another study 

detected colocalization of Cx43 and clathrin in intracellular vesicles, through confocal microscopy 

and immunolabeling with antibodies directed against Cx43 and clathrin (Huang et al, 1996). A later 

study detailing the internalization of Cx43 in response to treatment with EGF, reported that EGF-

induced internalization of Cx43 could be blocked by subjecting cells to hypertonic conditions 

(Leithe & Rivedal, 2004a), a method previously shown to inhibit clathrin-mediated endocytosis 

(Hansen et al, 1993; Heuser & Anderson, 1989; Wu et al, 2001). Recent studies have further 

elucidated the clathrin-mediated endocytosis of Cx43, showing that knockdown of several proteins 

critical for clathrin-mediated endocytosis inhibited Cx43 internalization. Piehl et al. reported that 

knockdown of clathrin in HeLa cells reduced the number of internalized annular gap junctions. 
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Furthermore, the clathrin adaptor disabled 2 (Dab2) and the GTPase dynamin were both found to 

colocalize with gap junctions and annular gap junctions (Piehl et al, 2007). Gumpert et al. further 

demonstrated that the siRNA depletion of Dab2, dynamin and the clathrin adaptor AP2 (adaptor 

protein 2) also significantly decreased gap junction internalization (Gumpert et al, 2008). 

Although the role of clathrin-mediated endocytosis in Cx43 internalization has been extensively 

characterized, it is conceivable that Cx43 gap junction plaques may also be internalized through 

clathrin-independent endocytic pathways. In studies where clathrin-dependent endocytosis was 

inhibited either by siRNA depletion of clathrin or by incubation of cells in hypertonic conditions, the 

presence of internalized annular gap junction plaques was only reduced by roughly 55%, in 

comparison, internalization of transferrin, a protein previously shown to be internalized exclusively 

by clathrin coated pits (Mellman, 1996), was nearly abolished (Gumpert et al, 2008; Piehl et al, 

2007). This suggests that a great part of Cx43 gap junctions are internalized through clathrin-

independent mechanisms. A possible alternative mechanism may involve caveolar endocytosis. 

The interaction of Cx43 with Cav-1 (Langlois et al, 2008; Schubert et al, 2002), suggests that Cx43 

may also be internalized through caveolae, a specialized invagination of the plasma membrane 

rich in Cav-1 that can bud from the plasma membrane (Kiss & Botos, 2009). However, more work 

is needed to ascertain a possible role for Cav-1 and caveolae in Cx43 internalization. 

Both the lysosome and the proteasome have been implicated in regulating Cx43 turnover (Laing et 

al, 1997). This same study also showed that inhibition of the proteasome lead to the accumulation 

of Cx43 at the plasma membrane, suggesting that proteasomal activity was required for regulating 

the extent of Cx43 at the plasma membrane. Ubiquitinated Cx43 has been identified in gap 

junctional plaques in conditions where delivery of newly synthesized proteins to the plasma 

membrane was inhibited, indicating that Cx43 ubiquitination can occur at the plasma membrane 

(Rutz & Hulser, 2001). High glucose conditions were shown to induce Cx43 phosphorylation and 

subsequent internalization in retinal endothelial cells. In these conditions, the increased 

internalization of Cx43 was shown to require an active proteasome (Fernandes et al, 2004). 

Furthermore, PMA and EGF-induced phosphorylation and subsequent ubiquitination of Cx43 also 

lead to proteasome-dependent internalization of the protein in a rat liver epithelial cell line, further 

establishing ubiquitination as an internalization signal for Cx43 (Leithe & Rivedal, 2004a; Leithe & 

Rivedal, 2004b). In a subsequent study, Leithe et al demonstrated that Cx43 gap junctions are 

redistributed from the plasma membrane to intracellular vesicles positive for markers of early and 

late endossomes and for the endolysosomal protease cathepsin D. They further showed that 

annular gap junctions were broken down from double membrane structures to connexin-enriched 

multivesicular endosomes with a single limiting membrane prior to their arrival at the lysosome 

(Leithe et al, 2006). These results further reinforced the notion that while proteasome activity is 

required for Cx43 internalization, degradation of the protein occurs in the endolysosomal 

compartment. More recently it was shown that treatment of cells with PMA or EGF decreased the 
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Figure 6 - Cx43 internalization and degradation. A simplified model detailing part of the life cycle of Cx43. Nedd4 is 
recruited to Cx43 gap junction plaques where it presumably mediates the ubiquitination of the protein. c-Src is recruited 
to the gap junction plaque on the side that will be internalized, phosphorylates Cx43, and induces the dissociation of ZO-
1. Clathrin is then recruited to the nascent endocytic vesicle and both sides of the gap junction plaque are internalized 
into one of the adjacent cells as a double membrane structured termed annular gap junction. The annular gap junction is 
broken down into a single membrane vesicle and fuses with the early endosome. Following the maturation of 
endosomes, ubiquitinated Cx43 is sorted into multivesicular bodies in a process mediated by the ESCRT components 
Hrs and Tsg101. Lastly, the multivesicular bodies fuse with the lysosome where Cx43 is degraded. 
 

Triton X-100 resistance of Cx43 in a process mediated by MAPK. This loss of detergent resistance 

of Cx43 was shown to occur at the plasma membrane and was suggested to be one of the first 

steps in Cx43 internalization (Sirnes et al, 2008).  

The CT domain of Cx43 contains a protein-protein interaction PY-motif (XPPXY, with P = Proline 

and X = any amino acid) corresponding to amino acids 282-286, and an overlapping putative 

tyrosine-based sorting signal (YXXØ, with Ø = hydrophobic amino acid) corresponding to amino 

acids 286-289 (Thomas et al, 2003). Using SKHep1 cells, Thomas et al showed that mutation of 

essential residues in either domain, P283L for the PY-motif and V289D for the tyrosine-based 

sorting signal, lead to the accumulation of total Cx43 levels in cells, however, this effect was more 

pronounced for the V289D mutant. Mutation of the overlapping amino acid Y286 to alanine showed 
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no cumulative effects, which lead the authors to suggest that the putative PY-motif had a limited 

role in Cx43 turnover. The Y286A mutant was also shown to have a longer half-life when 

compared to wild type Cx43. Furthermore, treatment of cells with the lysosome inhibitor NH4Cl had 

little effect on total levels, subcellular localization and GJIC of the Y286A mutant when compared 

to the wild type form of the protein. These results suggest that the tyrosine-based sorting motif is 

important for regulating Cx43 stability by targeting the protein for internalization and degradation by 

the endocytic/lysosomal compartment (Thomas et al, 2003). 

Fragments of the CT of Cx43 were shown to interact with all three WW domains of the E3 ligase 

Nedd4 (Neuronal precursor cell-expressed developmentally downregulated 4) in a process 

modulated by Cx43 phosphorylation. Surface plasmon resonance was used to show that the PY-

motif of Cx43 binds only to the WW2 domain of Nedd4. The interaction of Cx43 with Nedd4 was 

confirmed in vivo through immunofluorescence and immunoprecipitation. Silencing of Nedd4 was 

also shown to lead to the accumulation of Cx43 at the plasma membrane, indicating that Nedd4 

may have a role in regulating Cx43 internalization, however the role of Nedd4 in Cx43 

ubiquitination was not investigated (Leykauf et al, 2006). 

The ubiquitin binding protein Tsg101 (tumour susceptibility protein 101) is involved with late 

endossomal sorting of ubiquitinated proteins to the lysosome (Raiborg & Stenmark, 2009). Tsg101 

has been shown to interact with the carboxyl-terminals of several connexins (Cx30.2, Cx36 and 

Cx43) as well as co-precipitate with several other full-length connexins (Cx31, Cx43 and Cx45). 

Silencing of Tsg101 with siRNA also led to the accumulation of total levels of Cx43 and Cx45 as 

well as increased gap junction intercellular communication. On the other hand, silencing of Tsg101 

failed to affect the levels of Cx31 (Auth et al, 2009). Thus, Tsg101 appears to be involved in the 

internalization of several connexins, however, the importance of previous ubiquitination of the 

connexin protein for Tsg101 function was only demonstrated in another study showing that Tsg101 

and the ubiquitin binding protein Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) 

are necessary for Cx43 sorting into the endolysosomal compartment (Leithe et al, 2009). Leithe et 

al. also suggested that the observed stabilization of Cx43 at the plasma membrane following 

proteasome inhibition is due to a reduction in the levels of free ubiquitin. As such, depletion of free 

ubiquitin would prevent Cx43 ubiquitination, internalization and sorting to the endolisosomal 

compartment where it would be degraded. 

 

The ubiquitin-proteasome pathway 

 

The ubiquitin-proteasome pathway is the main cytosolic proteolytic system in eukaryotes, being 

implicated in a wide variety of cell functions with relevance to health and disease. In the history of 

life sciences, protein degradation was a neglected area for years with most researchers dedicating 

their attention to the study of nucleic acids and how the information contained within was translated 
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into protein synthesis. Protein degradation was at the time considered to be a mostly non-specific 

dead-end process. The discovery of the lysosome did little to change this view since, at the time, it 

appeared to only be involved in the non-specific degradation of extracellular proteins. However, the 

discovery of the ubiquitin-proteasome pathway of protein degradation revolutionized the field, 

demonstrating that the degradation of cellular proteins is a highly complex, temporally controlled 

and tightly regulated process (Glickman & Ciechanover, 2002). 

Degradation of a protein by the ubiquitin-proteasome pathway involves two distinct and successive 

steps: the first step entails the covalent attachment of a polyubiquitin chain to the target protein; 

the second step involves recognition and degradation of the targeted protein by the 26S 

proteasome with the release of free and reusable ubiquitin (Glickman & Ciechanover, 2002; 

Hershko & Ciechanover, 1998). 

Ubiquitin is a highly evolutionarily conserved 76 amino acid protein that is found in all eukaryotes, 

but not in members of the Eubacteria and Archaea superkingdoms. Conjugation of ubiquitin to the 

protein substrate proceeds through a three step process. The first step involves the activation of 

ubiquitin by the ubiquitin-activating enzyme E1. In this reaction, ATP-dependent energy is used to 

form a high-energy thiol ester intermediate, E1-S~ubiquitin. In the second step, the activated 

ubiquitin moiety is transferred to an E2 (ubiquitin-carrier protein or ubiquitin-conjugating enzyme) 

where another thiol ester intermediate is formed, E2-S~ubiquitin. In the last step, the activated 

ubiquitin is transferred from the E2 enzyme to the target protein with the help of an E3 ubiquitin-

protein ligase enzyme that specifically binds to the target substrate. The ubiquitin molecule is 

normally transferred to an –NH2 group of an internal lysine in the substrate, though in a few cases 

ubiquitin can also be conjugated to the NH2-terminal amino group of the substrate. The covalent 

attachment of several ubiquitin moieties in series to a substrate, with the formation of a 

polyubiquitin chain, generally targets the protein for degradation by the 26S proteasome (Glickman 

& Ciechanover, 2002; Hershko & Ciechanover, 1998).  

The ubiquitin-conjugation machinery has a pyramidal structure, with the number of components 

increasing the closer one is to the substrates. The human genome is estimated to encode two 

potential E1s, approximately 30 E2s and over 600 E3s (Li et al, 2008). 

 

Ubiquitin-activating enzyme E1 

 

Similar to ubiquitin, the E1 enzyme is an essential protein. Inactivation of the UBA1 gene in yeast, 

which encodes the only E1 enzyme present in its genome, has been shown to be lethal (McGrath 

et al, 1991). This single E1 enzyme is responsible for the activation of all ubiquitin molecules, 

which it can then transfer to any type of E2 enzyme in the cell. Thus, the E1 enzyme does not 

confer any specificity to the ubiquitin-conjugation system. 
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Figure 7 - The ubiquitination cascade. The conjugation of ubiquitin to target substrates is a sequential process 
involving several enzymes. First, the ubiquitin-activating enzyme E1 forms a high-energy thiol ester intermediate with 
ubiquitin, in a process that requires ATP. The activated ubiquitin moiety is then transferred to an E2 ubiquitin-conjugating 
enzyme. In the final step, the ubiquitin moiety is transferred to the substrate with the assistance of an E3 ubiquitin-protein 
ligase enzyme that specifically binds to the target protein. E3 ligase enzymes can be subdivided into two major groups, 
the RING domain containing E3s and the HECT domain containing E3s, as well as a few other minor groups. RING 
domain containing E3s facilitate the transfer of the activated ubiquitin moiety directly from the E2 to the target substrate 
(bottom). HECT domain containing E3s, however, first transfer the ubiquitin moiety to a conserved Cys residue in the 
HECT domain before transferring the ubiquitin moiety to the target substrate (top). A polyubiquitin chain is formed on the 
target substrate after several rounds of ubiquitin conjugation. 
 
 
Ubiquitin-conjugating enzymes E2 

 

E2s, or ubiquitin-conjugating enzymes, confer the first level of specificity to the ubiquitin system. 

E2s catalyze the covalent attachment of ubiquitin to target proteins with the aid of E3s. All E2 

enzymes share an active-site ubiquitin-binding Cys residue and a UBC domain required for binding 

to distinct E3s. Although a single type of E2 can bind to several different E3s, some members of 

the E2 family appear to be involved with specific cellular mechanisms. For example, yeast Ubc6 

and Ubc7 appear to be involved with degradation of proteins from within the endoplasmic reticulum 

(ER) (Bays et al, 2001; Plemper et al, 1997), while yeast Ubc11 has been shown to act along with 

the anaphase promotor complex (APC), which is the E3 enzyme that targets cell cycle regulators 

(Page & Hieter, 1999). 

 

Ubiquitin-protein ligases E3 

 

E3s, or ubiquitin-protein ligases, are responsible for catalyzing the transfer of activated ubiquitin 

from E2 enzymes to the target substrate. They are also the major determinants of specificity in the 

ubiquitin-conjugation system since E3s are responsible for recognizing all substrates that are 

ubiquitinated in the cell. As such, they constitute the largest group of enzymes in the ubiquitin 

system. E3s can operate as a single molecule or as a protein complex with ancillary proteins that 

aid in substrate recognition. In either case the E3 enzyme or complex binds to both E2 and the 

substrate to catalyze the transfer of ubiquitin. In most cases, such as in the case of RING domain 
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containing E3s, the E3 enzyme catalyzes this reaction by acting as a scaffold that brings the E2 

close to the substrate, allowing for the efficient transfer of activated ubiquitin from E2 to the 

substrate. In the case of HECT domain containing E3s, the activated ubiquitin is first transferred to 

an internal Cys residue on the E3 before being conjugated to the substrate. 

Even though E3 enzymes are highly heterogenous, due to all the different substrates that they 

must recognize and bind to, they can be classified into two major groups, the RING domain 

containing E3s and the HECT domain containing E3s, as well as a few other minor groups. 

 

RING E3s 

 

RING (Really Interesting New Gene) domains are typically characterized by a pattern of conserved 

Cys and His residues that form a cross-brace structure that binds two atoms of Zinc. The basic 

sequence expression of the canonical RING is Cys-X2-Cys-X(9-39)-Cys-X(1-3)-His-X(2-3)-Cys-X2-Cys-

X(4-48)-Cys-X2-Cys (where X is any amino acid). However, numerous RING variants have already 

been described, including some in which the Cys and His residues are swapped or where a Cys 

residue is replaced by another amino acid capable of coordinating zinc (Deshaies & Joazeiro, 

2009). The RING domain of E3s is responsible for recruiting activated E2 enzymes. However, how 

RING domain E3s catalyze the transfer of activated ubiquitin from the E2 to the substrate is still 

poorly understood. Conventionally, bisubstrate enzymes catalyze reactions by positioning both 

substrates in close apposition to facilitate the chemical reaction, but in the case of all RING E3s 

that have been studied to date by X-crystallography, the substrate-docking site is located 50-60 Å 

from the location where the activated ubiquitin is expected to be. Two models have been 

suggested to resolve this problem. Deffenbaugh et al. suggested that the activated E2 must 

dissociate from the RING domain and encounter the substrate by diffusion (Deffenbaugh et al, 

2003). However in cullin-RING E3s, it has been suggested that the gap between the substrate and 

E2~Ub could be bridged by a major conformational change in the RING domain (Petroski et al, 

2006). Additionally, it has been suggested that RING E3s also catalyze the transfer of ubiquitin by 

inducing a conformational change in the activated E2 that facilitates ubiquitin discharge from the 

active site (Seol et al, 1999; Skowyra et al, 1999). RING domain E3s can exist as a single unit or 

as a multisubunit protein complex. While the single unit E3s must contain both the E2 binding 

domain (the RING domain) and the substrate binding domain, in the case of RING E3s that are 

part of a multisubunit complex, the substrate binding domain can sometimes be found in different 

subunits. Some well described multisubunit RING E3s include the SCF and the APC complexes. 

SCF complexes (Skp1-Cullin-Fbox) usually include 4 proteins, Hrt1/Rbx1/Roc1, Skp1, a member 

of the Cdc53/Cullin-1 family and an F-box protein. In this complex, the Hrt1/Rbx1/Roc1 protein is 

the RING domain containing protein responsible for binding to the E2, while the F-box protein is 

involved in substrate recognition. Hrt1/Rbx1/Roc1, Skp1 and members of the Cdc53/Cullin-1 family 
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components are most likely common to all SCF complexes, while the specific substrate binding F-

box protein is the most variable component, therefore the different SCF complexes are designated 

according to the variable F-box component (Glickman & Ciechanover, 2002). SCF complexes have 

a large variety of substrates, such as IκBα (Yaron et al, 1998) or β-catenin (Kitagawa et al, 1999), 

but are probably involved in targeting phosphorylated substrates (Glickman & Ciechanover, 2002). 

The Anaphase-Promoting Complex or Cyclosome (APC/C) contains 11 subunits in yeast and 12 

subunits in humans (Page & Hieter, 1999; van Leuken et al, 2008). Similar to SCF complexes, 

APC/C has a large cullin-like subunit, APC2 (Yu et al, 1998), while the subunit containing the RING 

domain is APC11 (Leverson et al, 2000). Together, these two subunits of APC/C are sufficient to 

drive E2-dependent ubiquitination in vitro (Tang et al, 2001). Substrate recognition by the APC/C is 

dependent on the additional binding of one of two activating subunits containing WD40 domains, 

Cdc20 or Cdh1 (Visintin et al, 1997), although the activity of APC/C can also be modulated by the 

phosphorylation status of its various subunits (Glickman & Ciechanover, 2002). The APC/C 

complex is involved in targeting cyclins for degradation, important regulators of the cell cycle, as 

well as securin, which regulates the separation of sister chromatids (Acquaviva & Pines, 2006). 

 

HECT E3s 

 

The second largest group of E3 ligases are characterized by the presence of a 350 amino acid 

residue HECT domain (Homologous to the E6-AP Carboxyl-Terminus) that is found at the 

carboxyl-terminal of proteins. Most HECT ligases also contain protein-protein or protein-lipid 

interaction domains located towards the amino-terminal of the protein. The HECT domain is a 

bilobal domain where the active Cys residue is located towards the carboxyl-terminal while the 

amino-terminal region binds the E2 enzyme. Substrate recognition occurs in regions outside of the 

HECT domain. Unlike RING domain containing ubiquitin ligases, that catalyze the transfer of 

activated ubiquitin from an E2 enzyme directly to the substrate, HECT domain E3s first directly 

bind the activated ubiquitin through the conserved Cys residue present within the HECT domain 

before transferring the ubiquitin moiety to the substrate. The three dimensional structure of the 

HECT domain can vary from protein to protein (Rotin & Kumar, 2009). For example, the HECT 

domain of E6AP has an L shaped structure (Huang et al, 1999), while the HECT domain of WWP1 

has an inverted T structure (Verdecia et al, 2003). To catalyze the transfer of activated ubiquitin 

from the E2 to the conserved Cys residue on the E3 protein, both the E2 and E3 thiol groups must 

be positioned closely. However, while for WWP1 the active Cys residues in both enzymes are 

predicted to be within 6 Å of each other (Verdecia et al, 2003), for E6AP the active Cys residues 

are separated by 41 Å, which suggests that a large conformational change has to occur within the 

HECT domain during catalysis (Huang et al, 1999). 

Based on the structure homology of the amino-terminal, HECT E3 ligases can be divided into three 
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groups: the Nedd4 family, the HERC family and other HECTs. Nedd4 family members are 

characterized by the presence of a C2 domain at the amino-terminal and two to four WW domains. 

The C2 domain binds to phospholipids, targeting the protein to the plasma membrane, endosomes 

and multivesicular bodies. The WW domains bind to PY-motifs in substrate proteins. The HERC 

family members are characterized by the presence of one or more RLD domains which interact 

with chromatin. The other HECT family members contain a varied assortment of protein domains 

including WWE domains, ankyrin repeats, UBA domains, zinc fingers, PABC domains, RING 

domains, IQ motifs and other domains (Rotin & Kumar, 2009). 

A well characterized member of the HECT E3 family is Nedd4 and its Saccharomyces cerevisae 

orthologue Rsp5. In yeast, Rsp5 is an essential protein and has been shown to participate in 

several cellular functions, including mitochondrial inheritance, chromatin remodelling, transcription 

regulation, endocytosis regulation, and sorting of cargo into MVBs from endocytic vesicles or from 

the Golgi apparatus to endosomes (Rotin & Kumar, 2009). In mammals, Nedd4 has been 

suggested to be a positive regulator of cell proliferation and animal growth. Similar to what was 

shown for Rsp5, Nedd4 has also been shown to control the sorting of some transmembrane 

proteins such as LAPTM5 (Pak et al, 2006). In addition to Nedd4L, Nedd4 can also bind to PY-

motifs of the epithelial Na+ channel (ENaC), ubiquitinating the protein and driving its endocytosis 

from the plasma membrane (Staub et al, 1996). More recently, Nedd4 has been shown to be 

involved in regulating the internalization of Cx43. Nedd4 was shown to interact with the carboxyl-

terminal of Cx43 and depletion of Nedd4 by siRNA led to the accumulation of Cx43 at the plasma 

membrane (Leykauf et al, 2006). However, the importance of Nedd4 for Cx43 ubiquitination was 

not investigated. 

 

E4 and U box E3s 

 

E4s are a small family of E3 ligases that are normally associated with the elongation of ubiquitin 

chains. All E4s contain a modified version of the RING domain, denominated U box, that lacks the 

metal-chelating residues of the RING domain. Most of the conserved Cys residues of the RING 

domain are absent from the U box, and the structure is likely stabilized by hydrogen bonds and salt 

bridges (Glickman & Ciechanover, 2002). Several U box proteins have been shown to elongate 

ubiquitin chains in a process dependent of both E1 and E2s, but independent of the presence of 

any E3 enzymes (Hatakeyama et al, 2001). Thus, U box proteins are suggested to target 

ubiquitinated proteins, catalyzing the elongation of a polyubiquitin chain that would make the target 

more susceptible to be recognized by the proteasome and degraded (Koegl et al, 1999). This 

model requires the presence of an E3 enzyme to catalyze the addition of the first ubiquitin moiety 

to the substrate. However, some U box-containing E3s have been shown to target their substrates 

directly, without requiring their previous ubiquitination (Hatakeyama et al, 2001). A well described 
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member of this family of E3s is CHIP (Carboxyl-terminus of Hsc70-Interacting Protein). CHIP 

interacts with the chaperon proteins Hsc70 and Hsp90 through TPR domains located towards its 

amino-terminal, while the E2 is recruited through the U box domain located at the carboxyl-

terminal. Misfolded proteins bound to the chaperon proteins are ubiquitinated by CHIP and 

directed for proteasomal degradation, as is the case for the degradation of CFTR (Cystic Fibrosis 

Transmembrane conductance Regulator) (Meacham et al, 2001). Thus, CHIP functions as a bridge 

connecting refolding/chaperon machinery to proteasomal degradation (McDonough & Patterson, 

2003). 

 

Functions of Ubiquitin Conjugation 

 

Similar to how the phosphorylation of a protein may elicit different cellular responses depending on 

the type of phosphorylation, i.e., which position or residue type (Tyr, Thr or Ser) is phosphorylated 

on the protein, ubiquitin conjugation may also elicit different responses depending on if the protein 

is monoubiquitinated on a single Lys residue or multimonoubiquitinated on several Lys residues. 

The monoubiquitin moiety itself may be subjected to further ubiquitin conjugation on one of its 

seven Lys residues (polyubiquitination). Additionally, the polyubiquitin chains themselves can also 

vary depending on which Lys on the ubiquitin moiety is used to produce the chain links, which 

furthers adds to the variability of the ubiquitin signal. Lastly, the carboxyl-terminal group of ubiquitin 

can also be linked to the amino-terminal group of another ubiquitin to form a linear ubiquitin chain. 

Canonically, ubiquitin conjugation is usually linked to proteasomal degradation of the targeted 

protein, however, along the years and with the characterization of the various types of ubiquitin 

signals, several new functions of ubiquitin conjugation, that are independent of proteasomal 

degradation, have been described (Glickman & Ciechanover, 2002; Li & Ye, 2008; Mukhopadhyay 

& Riezman, 2007; Pickart & Eddins, 2004). 

One of the first non-proteasomal functions of ubiquitin conjugation to be described was the 

signalling of plasma membrane proteins for internalization. Monoubiquitination, 

multimonoubiquitination and polyubiquitination through Lys63-linked chains have all been 

suggested to function as signals for internalization (Mukhopadhyay & Riezman, 2007). 

Ubiquitination signals are thought to mediate interactions with several endocytic proteins that 

contain ubiquitin-binding domains (UBD), such as Epsin, Eps15 and Eps15R. Monoubiquitination 

and multimonoubiquitination also function as a sorting signal at endosomes, targeting its 

substrates to the interior of the multivesicular body (MVB), and leading to their subsequent 

degradation in the lysosome (Komada & Kitamura, 2005). Most proteins that are not ubiquitinated 

are recycled back from endosomes to other cellular compartments. Aside from its role in triggering 

endocytosis and endosomal sorting, monoubiquitination may also directly regulate the function of 

proteins. Many UBD-containing proteins are themselves monoubiquitinated, such as the endocytic 
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adaptor proteins (Hicke et al, 2005). Sts1 and Sts2 are UBD-containing proteins that bind to 

ubiquitinated epithelial growth factor receptor (EGFR) complexes, inhibiting their endocytosis. 

Once monoubiquitinated, Sts2 was shown to form an intramolecular interaction between its UBD 

and the ubiquitin moiety, preventing its interaction with ubiquitinated EGFR, thus allowing the 

endocytosis of the receptor. Similarly, other endocytic adaptors containing UBDs, such as Eps15 

and Hrs, were also shown to form these intramolecular interactions once monubiquitinated (Hoeller 

et al, 2006). 

The addition of a Lys48-linked polyubiquitin chain of at least four ubiquitin moieties is the canonical 

signal for directing substrates for proteasomal degradation. However, Lys48-linked polyubiquitin 

chains have also been implicated in other mechanisms non related to proteasomal degradation (Li 

& Ye, 2008). An example of one of these non-proteolytic functions is the regulation of the yeast 

transcription factor Met4. Following polyubiquitination, Met4 transcriptional activity decreases, 

however polyubiquitination of Met4 has little effect on its half-life (Kaiser et al, 2000; Kuras et al, 

2002). Met4 contains an UBD that binds to the nascent polyubiquitin chain, preventing the 

elongation of the chain to levels that would make it a suitable target for proteasome recognition. 

Thus, Lys48-linked chains can inactivate the function of a substrate protein without leading to its 

subsequent proteasomal degradation (Flick et al, 2006). Lys48-linked polyubiquitin chains are also 

involved in the activation of the chaperone p97. p97 is capable of recognizing Lys48-linked 

polyubiquitinated substrates and subsequently extract them from immobilized cellular 

compartments or from a large protein complex. This “segregase” function of p97 has been 

described for the extraction of ERAD substrates from the ER, for the activation of the yeast 

membrane bound transcription factor Spt23 and also for the extraction of Aurora B kinase from 

chromatin during mitosis (Li & Ye, 2008). 

Besides its importance in targeting plasma membrane proteins for internalization, Lys63-linked 

polyubiquitin chains have also been shown to be a major regulator of the NFκB signalling pathway. 

In basal conditions the transcription factor NFκB is retained in the cytoplasm by the inhibitor IκB. 

However, following activation by pro-inflammatory cytokines, such as TNF-α (tumour necrosis 

factor-α) and IL-1β (interleukin-1β), an upstream regulator of IκB, the IκB kinase (IKK), is 

polyubiquitinated, leading to the phosphorylation of IκB which subsequently targets it for 

proteasomal degradation. Other activators and repressors in this signalling pathway also bind to 

Lys63-linked polyubiquitin modified proteins, eventually leading to the activation of NFκB and its 

translocation to the nucleus (Mukhopadhyay & Riezman, 2007). Lys63-linked polyubiquitin chains 

are also involved in targeting substrates for degradation through a proteasome-independent 

mechanism termed autophagy. Autophagy is a molecular process by which organelles or part of 

the cytoplasm is engulfed in a double membrane structure termed autophagosome that 

subsequently fuses with lysosomes, enabling the degradation of large structures that are 
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Figure 8 - Types of ubiquitin conjugation. (A) Ribbon diagram of ubiquitin. The seven lysine residues are shown in red 
and labeled, while the Leu8–Ile44–Val70 hydrophobic patch is shown in gold ball-and-stick. (B and C) Solution 
conformation of two ubiquitins linked through Lys48 (B) or Lys63 (C). The hydrophobic patches on the ubiquitin units are 
shown in ball-and-stick (colored gold or cyan) along with the side chains of Lys48 and Lys63 in stick representation (red). 
The location of Gly76 forming an isopeptide bond with the corresponding lysine is indicated. As shown in the figure, 
Lys48-linked ubiquitin chains have a more closed structure when compared to the linear structure of Lys63-linked chains 
(Pickart & Fushman, 2004). (D) Schematic representation of several different types of ubiquitin conjugation. From left to 
right: Monoubiquitination, the addition of a single ubiquitin moiety to a target protein; Multimonoubiquitination, the 
addition of several individual ubiquitin moieties to different lysine residues of the target protein; Polyubiquitination, the 
addition of an ubiquitin chain to a target protein. Different types of polyubiquitin chains can be formed depending on the 
lysine residue on ubiquitin that is used to extend the chain. Although it has been shown that all of the seven lysine 
residues on ubiquitin form polyubiquitin chains in vivo (as well as linear ubiquitin chains formed by conjugation to the 
NH2-terminal amino group of ubiquitin), Lys48- and Lys63-linked polyubiquitin chains remain the most well described. 
 

inaccessible to the proteasome (Reggiori & Klionsky, 2005). p62 is a protein that belongs to the 

Ubl/UBA protein family that contains both an ubiquitin-like domain (UBL) and an UBD, thus 

enabling it to recognize ubiquitinated proteins. p62 also interacts directly with LC3, which is an 

essential component of the autophagic machinery. p62 can also oligomerize to form protein bodies 

that contain ubiquitinated misfolded proteins, which in turn display partial colocalization with 

autophagosomes. These observations have led to the suggestion that misfolded proteins bearing 

Lys63-linked chains are first recognized by p62. Polymerization of p62 would then sequester these 

misfolded proteins in large protein bodies, that are recognized by LC3 who then signals their 

degradation by the autophagy pathway (Li & Ye, 2008). 

Although the formation of polyubiquitin chains linked through each of the seven Lys residues of 
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ubiquitin has been detected in yeast (Peng et al, 2003), aside from Lys48- and Lys63-linked 

chains, little is known about the physiological functions of polyubiquitin chains linked through the 

other five Lys residues of ubiquitin. Lys29-linked chains have been shown to target the Notch 

signalling modulator DTX for lysosomal degradation (Chastagner et al, 2006). Another study has 

shown that the conjugation of Lys29- or Lys33-linked chains to two AMPK-related kinases may 

regulate the enzymatic activity of these enzymes (Al-Hakim et al, 2008). Lastly, the tumour 

suppressor BRCA1 E3 complex was shown to assemble Lys6- or Lys29-linked chains on itself, 

which in turn may regulate the stability of the E3 enzyme (Nishikawa et al, 2004). 

 

The Proteasome 

 

The proteasome is a 2.5 megadaltons complex made up of two copies each of at least 33 different 

subunits that are highly conserved among eukaryotes (Finley, 2009; Glickman & Ciechanover, 

2002), and functions primarily to degrade proteins that have been modified by the covalent 

attachment of ubiquitin moieties. It works through a multi-step process in which ubiquitinated 

substrates are first recognized by the proteasome complex, followed by substrate unfolding, 

translocation into the catalytic pore and deubiquitination, finally ending with the cleavage of peptide 

bonds. The proteasome exists in various forms, the most commonly described being the 26S 

proteasome. The 26S proteasome can be subdivided into two subunits, the 28-subunit core 

particle (CP, also known as the 20S particle) and a regulatory particle (RP, also known as the 19S 

particle or PA700) consisting of 19 subunits in yeast and probably the same number in other 

eukaryotes. The RP can be further subdivided into two subunits: the base and the lid. The 

proteolytic active sites of the proteasome are sequestered in the interior of the CP. Access to the 

interior of the CP is restricted, and few substrates are capable of entering the CP without the aid of 

the RP. Recognition of ubiquitinated substrates is an intrinsic propriety of the RP, and it is also the 

RP that is responsible for substrate unfolding, deubiquitination and translocation into the CP 

(Finley, 2009). 

 

The Core Particle 

 

The CP has 28 subunits arranged into four heptaheteromeric rings, exhibiting a two fold symmetry 

and a hollow cylindrical shape (Groll et al, 1997). Each inner ring is formed by β-type subunits, 

three of which contain proteolytic active sites (β1, β2 and β5), making a total of 6 catalytic sites for 

each proteasome. Each active site favours the cleavage of specific peptide sequences. The β1 

subunit exhibits caspase like activity, preferring to cleave on the carboxyl-terminal side of acidic 

residues. β2 exhibits trypsin like activity preferring to cleave after tryptic residues. Finally, β5 

exhibits chymotrypsin like activity, preferring to cleave after hydrophobic residues. Because the 
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Figure 9 - Structure of the 26S proteasome. (A) 26S proteasome from Xenopus laevis oocytes. The image was 
generated by averaging of electron micrographs of negatively stained proteasomes. Scale bar, 20 nm (Walz et al, 1998). 
(B) Three-dimensional reconstructions of the 26S proteasome. i–iii, side views, with the approximate location of 
proteasome components indicated (left) with viewing directions parallel to the C2 axis (i), normal to the C2 axis (ii), and 
parallel to the C2 axis (iii), in opposite direction to i (da Fonseca & Morris, 2008). 
 

active sites are enclosed in the interior space of the CP, substrates must first gain access to this 

space. In the closed form of the CP, the amino-termini of the α-subunits converge axially to close 

the entrance to the channel (Groll et al, 2000; Groll et al, 1997). Although purified CP can 

hydrolyze small peptides and some unfolded proteins, it cannot degrade multiubiquitinated proteins 

(Glickman & Ciechanover, 2002). Binding of the RP to the outer side of the α-subunit ring, 

activates the CP, allowing the access of substrates to the catalytic sites. 

Aside from its major importance in clearing ubiquitin tagged proteins from cells, proteasome based 

proteolysis also has an important immunological function in the processing of antigens to be 

presented at the plasma membrane by Major Histocompatibiliy Complex (MHC) class I molecules. 

In mammals, following stimulation by γ-interferon, the three catalycally active β-subunits of the 

proteassome are replaced by inducible variants with different cleavage specificities (β1i, β2i and 

β5i), forming a proteasome variant known as the immunoproteasome (Borissenko & Groll, 2007; 

Goldberg et al, 2002a). β1i is thought to enhance the production of peptides with a hydrophobic 

carboxyl-terminal instead of an acidic one, while β2i enhances the production of peptides with a 

basic termini (Unno et al, 2002). These product peptides bind more favourably to MHC class I 

molecules, accounting for the enhanced antigen presentation conferred by immunoproteasomes 

(Goldberg et al, 2002a). More recently, another variant of the CP has been described in thymic 

cortical epithelial cells in which, besides the replacement of β1 and β2 for their inducible variants, 

β5 is replaced by a novel variant, β5t, to form a proteasome known as thymoproteasome (Murata 

et al, 2007). Similar to β1i and β2i, β5t also presents cleavage specificities that differ from both β5 

and β5i subunits. β5 and β5i both produce peptides with a hydrophobic carboxyl-terminal, while β5t 
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Figure 10 - Schematic representation of the 20S core particle. The 20S core particle is formed by four hollow 
heptaheteromeric rings, exhibiting a two fold symmetry. The inner ring is formed by β-type subunits, three of which 
contain proteolytic active sites. Left: surface representation of the CP. Right: Medial section of the CP displaying the 
channel in its closed state. Red dots represent the proteolytic active sites. Adapted from (Finley, 2009). 
 

favours the production of peptides with a more hydrophilic termini, that weakens, but does not 

eliminate, the interaction of the peptides with MHC class I molecules. The thymoproteasome is 

thought to be critically important for thymic education and the generation of mature CD8+ T cells 

(Murata et al, 2007). 

 

The Regulating Particle 

 

Besides functioning as an activator of the CP, by opening the gate formed by the α-ring in the CP, 

the RP also regulates the activity of the CP through several other mechanisms: selecting 

substrates, unfolding and deubiquitinating substrates, as well as translocating them into the CP. 

The RP contains at least 19 subunits and can be subdivided into two functional elements, the base 

assembly, which binds directly to the CP, and the lid assembly, which binds to the base (Finley, 

2009; Glickman & Ciechanover, 2002). The RP can assemble at either end of the CP to form the 

26S proteasome. Isolated proteasomes usually consist of a mixture of free CP, singly capped CP 

or double capped CP (Glickman, 2000). While in yeast most proteasomes are present as double 

capped forms (Russell et al, 1999), in mammals the ratio of RP to CP is lower, and therefore free 

20S and single capped forms are often present (Brooks et al, 2000). 

The base of the RP is composed of 10 subunits. Six of the subunits are ATPases of the AAA family 

that are found in many multicellular machines such as translocators, transporters, membrane 

fusion complexes and proteases, and are designated as Rpt1-6 following their nomenclature in 

yeast (Glickman & Ciechanover, 2002). The 6 Rpt subunits form a ring that binds directly to the 

outer α-subunit ring of the CP, and as such are critical components for the formation of the 26S 

proteasome. Additionally, degradation of typical proteasome substrates is ATP-dependent, 

indicating a central role for this ATPase ring in the reaction mechanism of proteasomal 
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Figure 11 - Schematic representation of the 19S regulating particle. The 19S regulating particle contains at least 19 
subunits and can be divided into two functional elements, the base assembly, which binds directly to the outer α-subunit 
ring of the core particle, and the lid assembly which binds to the base. (A) Schematic representation of the 19S 
regulating particle, displaying the base and lid assemblies. Adapted from (Rosenzweig et al, 2008; Sharon et al, 2006). 
(B) The Rpt1-6 ATPase ring of the base assembly surrounding a channel formed by the Rpn1-2 subunits. The upper 
image displays a top side view of the base assembly while the lower image displays a side view of the base assembly 
where one of the Rpt subunits was removed to better visualize the position of the Rpn1-2 subunits. Adapted from 
(Rosenzweig et al, 2008). (C) The 26S proteasome displaying two 19S regulating particles bound to the ends of a single 
20S core particle. 
 

degradation. This probably occurs by mediating the translocation of the unfolded substrate through 

the translocation channel formed at the center of the Rpt ring. Other components of the base 

include the scaffolding proteins Rpn1 and Rpn2 as well as the ubiquitin receptors Rpn10 and 

Rpn13 (Finley, 2009).  

Rpn1 and Rpn2 form a channel that can attach directly to the CP, indicating that the Rpn1/Rpn2 

channel might be a part of the substrate translocation channel of the base, however the role and 

mechanism of action of this channel is currently unknown. Another function of these proteins is to 

serve as scaffolds mediating the binding of other proteins to the proteasome. Currently, all known 

binding partners of Rpn1 and Rpn2 act directly on ubiquitin conjugates, either serving as ubiquitin 

receptors, such as in the case of the integral proteasome subunit Rpn13, or as enzymes that 
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Figure 12 - Degradation of ubiquitinated substrates by the proteasome. The proteasome first recognizes the 
polyubiquitin chain attached to the substrate most likely through the Rpn10 or Rpn13 subunits of the base assembly. The 
next step involves the unfolding of the substrate. The unfolded substrate is then translocated into the catalytic pore, in an 
ATP-dependent process mediated by the Rpt1-6 ring of ATPases of the base assembly. Once a substrate is committed 
to degradation, the Rpn11 subunit of the lid assembly deubiquitinates the substrate, with the release of a free 
polyubiquitin chain. The substrate is then broken down into smaller peptides that subsequently exit the proteasome. 
 

disassemble or extend ubiquitin chains, such as the ubiquitin ligase Hul5 and the deubiquitinating 

enzyme (DUB) Ubp6. Another DUB, Uch37, is associated to Rpn2 by directly binding to Rpn13. 

Because the factors that recognize, disassemble or extend ubiquitin chains are collected at Rpn1 

and Rpn2, these subunits represent a major site in the proteasome for the regulation of chain 

dynamics and proteasome activity (Finley, 2009).  

Rpn10 and Rpn13 both function as ubiquitin receptors for the proteasome, being capable of 

binding to ubiquitin chains as well as to proteins containing ubiquitin-like domains. Rpn10 is 

important for the structural integrity of the RP, since deletion of its von Willebrand A domain leads 

to the dissociation of the lid and base (Glickman et al, 1998). In humans, Rpn13 contains a 

receptor site for the DUB Uch37, suggesting that ubiquitin chains bound by Rpn13 may be 

disassembled by Uch37. 

The lid consists of nine subunits arranged in a disklike shape that can detach from the RP base as 
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a discreet complex and reattach to it. None of the lid subunits are ATPases, and as of yet, only the 

Rpn11 subunit has a known function (Finley, 2009; Glickman & Ciechanover, 2002). Degradation 

of ubiquitinated substrates by the proteasome requires the lid component of the RP, suggesting an 

important function of the lid in substrate recognition or initial removal of the ubiquitin chain from the 

target (Glickman et al, 1998). Curiously, certain non-ubiquitinated proteins can be efficiently 

processed by proteasomes in which the lid has been detached, as well as by archaeal or 

prokaryotic proteasomes that do not natively possess a lid. This suggests that the lid may have 

appeared alongside the development of the ubiquitin targeting system in order to direct 

ubiquitinated substrates towards the proteasome for degradation (Glickman & Ciechanover, 2002). 

Rpn11 is a DUB and its activity is critical for the normal function of the proteasome. Before being 

degraded, the ubiquitin chain present in substrates must be removed, in order to facilitate the 

entrance of the substrate into the CP. This may be necessary due to the fact that the ubiquitin 

molecule is physically very stable, and as such, the presence of ubiquitin on the target protein may 

slow down the unfolding step of proteasomal degradation. The deubiquitinating activity of Rpn11 is 

only exerted upon proteolytic substrates. Furthermore, deubiquitination by Rpn11 is not observed 

in the absence of ATP. Since Rpn11 is unlikely to be an ATPase, this suggests that Rpn11 may 

only exert its DUB activity upon substrates that are proceeding along the pathway of degradation. 

Although no function has as yet been described for the remaining 8 subunits of the lid, they may 

serve to activate, position or regulate the specificity of Rpn11 (Finley, 2009). 

 

The Proteasome Activator 28αβ  

 

The proteasome activator 28αβ or PA28, is a heteroheptamer or hexamer of 28 kDA subunits that 

binds to the CP opening the CP channel. In contrast to the RP, PA28 lacks ATPase activity and 

does not bind to ubiquitinated proteins. Expression of the PA28 subunits is induced by γ-interferon, 

and is required for efficient presentation of antigens at the cell surface by MHC class I molecules 

(Finley, 2009; Glickman & Ciechanover, 2002). In most cases, proteasomes cleave proteins into 

small peptides varying between 3 and 23 amino acids in length (Kisselev et al, 1999; Nussbaum et 

al, 1998). However, only a fraction of the peptides produced by the proteasome are of the correct 

length to be presented by MHC class I molecules. PA28 appears to be involved in altering the 

cleavage specificity of the proteasome, despite not being in direct contact with the catalytically 

active β-subunits. The mechanism through which this happens is still unclear, however it has been 

suggested that PA28 might facilitate the exit of substrates from chimeric RP-CP-PA28 

proteasomes. Rapid peptide exit could prevent overdigestion of substrates, allowing for the exit of 

peptides with an adequate size for MHC class I presentation (Finley, 2009; Glickman & 

Ciechanover, 2002). 
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Deubiquitinating enzymes 

 

Similar to how protein phosphorylation is a reversible process, protein ubiquitination can also be 

reversed through the action of deubiquitinating enzymes, also known as DUBs. DUBs are 

proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of 

proteins by ubiquitin or ubiquitin-like proteins, and remodel polyubiquitin chains on target proteins. 

DUBs have been implicated in the regulation of numerous cellular functions including cell cycle 

regulation, proteasome and lysosome dependent protein degradation, gene expression, DNA 

repair, kinase activation and microbial pathogenesis (Reyes-Turcu et al, 2009). DUBs play several 

roles in the ubiquitin pathway. First, DUBs are essential for activating newly expressed ubiquitin. 

Ubiquitin is always synthesized either as a proprotein fused to one of two ribosomal proteins or as 

a linear polyubiquitin chain that must be processed to yield the free ubiquitin monomer. 

Furthermore, the carboxyl-terminal of the polyubiquitin gene product also contains an additional 

amino acid that must be removed to activate ubiquitin (Baker & Board, 1987; Ozkaynak et al, 1987; 

Wiborg et al, 1985). DUBs are also involved in the recycling of ubiquitin that may have been 

trapped by the reaction of small cellular nucleophiles with the thiol ester intermediates that are 

formed during the ubiquitination process (Pickart & Rose, 1985). DUBS also play a major role in 

reversing the modification of proteins by ubiquitin or ubiquitin-like conjugation (Nijman et al, 2005; 

Wilkinson, 1997). Lastly, DUBs are also responsible for the recycling of monomeric ubiquitin from 

free polyubiquitin chains that are synthesized de novo by the conjugating machinery or that have 

been released from target proteins by other DUBs (Piotrowski et al, 1997; Wilkinson et al, 1995). 

Like most proteases, DUB activity is tightly controlled in order to avoid the cleavage of 

inappropriate substrates. DUB activity can be regulated through phosphorylation, ubiquitination or 

sumoylation (the conjugation of proteins with the ubiquitin-like protein SUMO), modifications that 

are likely to affect activity, localization or half-life of DUBs (Reyes-Turcu et al, 2009). Similar to 

other enzymes, besides their catalytic domain, DUBs also contain additional ubiquitin-binding 

domains as well as several protein-protein interaction domains. These domains enable the binding 

and recognition of different ubiquitin chain linkages and can also direct the assembly of 

multiprotein complexes that localize DUBs and assist in substrate selection (Reyes-Turcu et al, 

2009; Reyes-Turcu & Wilkinson, 2009). 

The human genome encodes over 100 putative DUBs that can be subdivided into at least five 

protein families. These 5 families can be grouped into two major groups, papain-like cysteine 

proteases which include the ubiquitin carboxyl-terminal hydrolases (UCH), the ubiquitin-specific 

proteases (USP/UBP), the ovarian tumour domain (OTU) DUBs and the Josephin domain (MJD) 

DUBs. The other group includes the JAB1/MPN/Mov34 metalloenzyme (JAMM) domain zinc-

dependent metalloprotease family (Reyes-Turcu et al, 2009). 

Ubiquitin carboxyl-terminal hydrolase domain DUBs are characterized by the presence of a 230 
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amino acid UCH catalytic core domain. Examples of these DUBs are Uch-L1, Uch-L3, BAP1 and 

the proteasome binding DUB Uch37. 

Ovarian tumour domain DUBs are characterized by the presence of an OTU core domain 

composed of five β-strands, sandwiched between helical domains that vary in size among OTU 

family members. An example of an OTU DUB is otubain 1 (Komander & Barford, 2008; Lin et al, 

2008b; Messick et al, 2008; Nanao et al, 2004). 

Josephin domain DUBs contain a catalytic domain that is similar to UCH domains. Examples of 

these DUBs include Ataxin-3, a protein implicated in the neurodegenerative disorder 

spinocerebellar ataxia type 3 (Mao et al, 2005). 

Ubiquitin-specific protease domain DUBs are characterized by the presence of an USP domain 

fold and are the largest DUB family. The USP domain fold is highly conserved among USPs, 

despite low sequence similarity (Avvakumov et al, 2006; Hu et al, 2002; Hu et al, 2005; Komander 

et al, 2008; Renatus et al, 2006). The USP fold consists of three subdomains, the finger, palm and 

thumb, which together form a structure that is often compared to a right hand. Examples of these 

DUBs include yeast Ubp1-16. Another member of this DUB family, UBPY (ubiquitin-specific 

processing protease Y9 also known as USP8), is a deubiquitinating enzyme that associates with 

endossomes in response to EGF and is implicated in receptor downregulation in mammalian cells 

(Clague & Urbe, 2006). UBPY shows little discrimination between Lys48 and Lys63-linked chains 

and appears to be important for the endossomal sorting of internalized plasma membrane proteins 

such as EGFR (Mizuno et al, 2005; Row et al, 2006). It can also protect proteins, such as STAM2, 

from proteasomal degradation (Row et al, 2006). 

Lastly, JAB1/MPN/Mov34 Metalloenzyme domain DUBs differ from all other DUB families in that 

their catalytic site does not depend on a cysteine residue to form a thiol group with ubiquitin, 

instead, their catalytic activity involves Zinc ions present in the JAMM domain (Reyes-Turcu et al, 

2009). Another important feature of JAMM DUBs is that they are not inhibited by ubiquitin 

aldehyde, a potent inhibitor of papain-like DUBs. Ubiquitin aldehyde inhibition results from its 

reaction with the cysteine active site of papain-like DUBs, forming a stable covalent bond. JAMM 

DUBs do not employ a covalent enzyme-ubiquitin reaction intermediate, and as such, are not 

inhibited by ubiquitin aldehyde. Instead, JAMM DUBs can be inhibited by zinc ion chelators such 

as TPEN (Finley, 2009; Yao & Cohen, 2002). An example of a member of this family is AMSH 

(Associated Molecule with the SH3 domain of STAM). 

 

Ubiquitin-like proteins 

 

The post-translational modification of proteins by conjugation to another protein is not exclusive to 

ubiquitin, a number of other small proteins are also capable of being conjugated to amino residues 

of proteins in processes similar to ubiquitin conjugation. Although these proteins sometimes have a 
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Table 2 - Known and putative UBLs. ND, not detectable by standard BLAST searches. *UBLs are listed as the yeast 
(Saccharomyces cerevisae) symbol if the UBL is present in yeast, otherwise vertebrate symbols are listed. Known 
vertebrate orthologues with symbols that differ from yeast proteins are listed in parentheses. **The identities listed are for 
each of two ubiquitin-related domains. Adapted from (Hochstrasser, 2009). 

 

primary sequence that can be very different from that of ubiquitin, they all share the same distinct 

three-dimensional core structure characteristic of ubiquitin, the β-grasp fold. The conjugation of 

these proteins is catalyzed by distinct but evolutionarily related enzyme cascades to those used for 

ubiquitin conjugation. As such, these proteins have been termed ubiquitin-like proteins or UBLs 

(Glickman & Ciechanover, 2002; Hochstrasser, 2009). 

UBLs are divided into two groups, those that are free-standing moieties that can be conjugated to 

other proteins and those that are synthesized as fusion proteins. Although the first group of 

proteins are capable of forming isopeptide bonds with internal lysines of target proteins, just as 

ubiquitin does, no modification by poly-UBL chains is known. The second group is heterogeneous, 

with the only common denominator being a region with sequence homology to ubiquitin. UBLs in 

this group do not end with Gly-Gly sequences, the UBL is permanently fused and they are not 

processed by DUB-like proteases (Glickman & Ciechanover, 2002). 

Although the covalent attachment of UBLs to proteins does not target substrates for proteasomal 

degradation, UBLs appear to be intimately linked to the ubiquitin-proteasome pathway, regulating 

the interaction of ubiquitin and proteasome machinery with their target substrates. Conjugation of 
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UBLs to proteins can have several general functions (Hochstrasser, 2009). UBL conjugation may 

facilitate protein association by providing an additional binding site, such as in the case of the 

binding of SUMO-conjugated RanGAP1 with the nuclear-pore complex (Mahajan et al, 1997). UBL 

conjugation may also cause a conformational change in the target protein that enhances or 

decreases its affinity for interaction with other proteins. An example of this is the sumoylation of 

thymine-DNA glycosylase (TDG) which induces a conformational change in TDG that lowers its 

affinity for DNA (Steinacher & Schar, 2005). Modification of a protein by different UBLs may also 

recruit different binding factors. These modifications may be mutually exclusive and involve the 

same attachment site. For example, the modification of proliferating cell nuclear antigen (PCNA) by 

SUMO, ubiquitin or ubiquitin polymers causes PCNA to bind different factors (Ulrich, 2004). 

Another example is the binding of SUMO to IκBα, which precludes its ubiquitination and 

degradation as it occurs on the same residues that serve as polyubiquitin anchors as well 

(Desterro et al, 1998). Lastly, and given the bulk of UBLs, they may also exert their function 

through steric hindrance by simply blocking the interaction of two proteins. A potential example of 

this is the sumoylation of the vaccinia A40R that prevents association and aggregation between 

A40R monomers (Palacios et al, 2005). 

UBLs that are expressed as permanent fusions with other proteins appear to act as interaction 

modules for binding to ubiquitin-binding domains. Binding of specific UBL domain-containing 

proteins can link the proteasome to potential substrates. For instance, Bag-1 can help target 

misfolded proteins to the proteasome (Luders et al, 2000), while Rad23 targets the proteasome to 

sites of DNA damage and repair (Russell et al, 1999a). Additional UBL domain-containing proteins 

are also linked to the ubiquitin system. The DUB Ubp6 and the E3 enzymes UIP28 and Parkin all 

contain UBL domains (Glickman & Ciechanover, 2002). 

 

Internalization of membrane proteins 

 

The plasma membrane of eukaryotic cells is composed of a mixture of different lipids as well as a 

complex assortment of different transmembrane proteins used for recognition, adhesion, nutrient 

uptake and signalling. The composition of the plasma membrane is not static, proteins present at 

the plasma membrane are constantly being renewed and the surface expression of different 

proteins is modulated in response to both extracellular and intracellular stimuli. Intracellular 

trafficking mechanisms control the lipid and protein composition of the plasma membrane and are 

also critical for the function of endosomes and lysosomes (Bonifacino & Traub, 2003; Doherty & 

McMahon, 2009; Traub, 2009). 

Endocytosis of plasma membrane lipids and proteins as well as extracellular components can 

proceed through a diverse assortment of vesicular mechanisms. In general, vesicle-mediated 

transport between the plasma membrane and intracellular organelles (or between the organelles 
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themselves) follows similar steps. First, during biogenesis there is a restricted assembly of vesicle 

coat components at a designated site on the donor membrane. This is followed by membrane 

deformation linked to cargo concentration in order to form a coated bud. Upon membrane scission 

the intracellular vesicle is uncoated and transported to the proximity of an acceptor compartment. 

Lastly, the vesicle fuses with the acceptor membrane delivering its contents (Traub, 2009). The 

most well studied mechanism of internalization is clathrin-mediated endocytosis, however, several 

other clathrin-independent endocytosis mechanisms are known, including Caveolae-mediated 

endocytosis; CLIC/GEEC pathway (clathrin-independent carrier/GPI-AP-enriched early endosomal 

compartment); IL2Rβ pathway; Arf6 dependent endocytosis; Flotillin dependent endocytosis; 

phagocytosis; macropinocytosis, circular dorsal ruffles and entosis (Doherty & McMahon, 2009). 

 

Clathrin-mediated endocytosis 

 

Clathrin-mediated endocytosis (CME) is the most widely studied mechanism of internalization in 

eukaryotic cells. A wide variety of integral membrane proteins are substrates for this internalization 

pathway, that is characterized by the packaging of cargo into clathrin coated vesicles (CCVs). 

CCVs are not restricted to endocytosis events and can also be used for the intracellular trafficking 

of membranes and proteins between organelles, with the use of different adaptor proteins (Doherty 

& McMahon, 2009). 

The assembly of a clathrin coated vesicle occurs through several sequential steps. The first step 

involves the nucleation de novo of the vesicle during which clathrin adaptor proteins form a 

transient complex with lipids of the plasma membrane that is stabilized by accessory proteins. The 

most well described clathrin adaptor protein (AP) is AP2, which is capable of interacting with 

phosphatidylinositol-4,5-biphosphate (PtdIns(4,5)P2) at the plasma membrane. Following this first 

step the nascent clathrin coated vesicle can either fail to form a CCV and its components can 

dissolve, or further lateral extension can occur with the addition of more adaptor and accessory 

proteins that recruit clathrin to the nascent pit. This in turn promotes the polymerization of clathrin 

into curved polyhedral lattices, that stabilize the deformation of the attached membrane. Clathrin 

polymerization, coupled with the action of other proteins, aids in the formation and constriction of 

the vesicle neck, helping to bring the membranes surrounding the neck into close apposition. 

Concurrently with this process, co-assembled clathrin-associated sorting proteins (CLASPs), such 

as disabled 2 (Dab2), autosomal recessive hypercholesterolemia protein (ARH), Stonin 2, Epsin 1 

and epidermal growth factor receptor substrate 15 (Eps15), can also cluster cargo molecules 

within the forming sorting scaffold. Lastly, the GTPase membrane scission protein dynamin is 

recruited to the neck of the vesicle, forming an oligomeric dynamin spiral to enwrap the vesicle 

neck. Upon GTP hydrolysis, the dynamin spiral is constricted, and with the aid of tension 

generated by actin linkage, the vesicle is severed from the plasma membrane. After vesicle 
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Figure 13 - Clathrin-mediated endocytosis. (A) Visualization of clathrin coat structures at the plasma membrane of 
HeLa SS6 cells. Cells were grown on glass coverslips and “unroofed” using sonication. The exposed plasma membranes 
were fixed, critical point dried and rotary shadowed with PT/C from an angle of 27º. Scale bar, 125 nm (Meyerholz et al, 
2005). (B) A model illustrating the assembly and internalization of a clathrin coated vesicle. Assembly zones are probably 
nucleated de novo at sites of the plasma membrane where AP2 and CLASPs accumulate. From this point, the nascent 
pit may either fail to assemble, leading to the dissolution of the accessory components, or it may grow, recruiting 
additional accessory components, clathrin, actin and cargo to be internalized. These help to stabilize the membrane 
deformation. Once the coated pit is fully formed, dynamin is recruited to the connection point between the plasma 
membrane and the bulbous coated bud. Following GTP hydrolysis, and with the help of the tension force exerted by actin 
microfilaments, the vesicle detachs from the plasma membrane. The resulting vesicle moves quickly away from the 
plasma membrane and is rapidly uncoated. The uncoated vesicle can then fuse with other intracellular compartments, 
delivering its cargo. Adapted from (Traub, 2009). 
 

release, the clathrin coat is removed from the vesicle by auxilin and Hsc70. The naked vesicle is 

then trafficked through the cell until reaching an intracellular compartment where it releases its 

cargo (Doherty & McMahon, 2009; Traub, 2009). 

 

Caveolae-mediated endocytosis 

 

Caveolae are specialized forms of lipid rafts that are generated by the oligomerization of caveolin 

proteins. Caveolae are detergent resistant, highly hydrophobic and are composed mainly of 

cholesterol and sphingolipids. They appear as flask or omega shaped plasma membrane 
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invaginations, which are present in many, but not all, eukaryotic plasma membranes (Doherty & 

McMahon, 2009; Kiss & Botos, 2009; Mosesson et al, 2008). There are three mammalian caveolin 

proteins, caveolin1 and 2 are found widely in non muscle cells while caveolin3 is muscle specific. 

Cells that do not express Cav-1 (or Cav-3 in muscle cells) are devoid of morphologically evident 

caveolae. Overexpression of Cav-1 in caveolae-deficient cells is sufficient to produce the flask-

shaped plasma membrane invaginations characteristic of caveolae, implying that Cav-1 is 

necessary for the formation of these structures (Lipardi et al, 1998). Cav-2, however, does not 

seem to be required for caveolae formation, but may play a role in the formation of deep plasma 

membrane attached caveolae (Sowa et al, 2003). Caveolae appear to form in the Golgi complex, 

where they acquire their characteristic detergent insolubility. Interaction of oligomerized Cav-1 with 

Cav-2 renders the latter detergent insoluble, and induces the delocalization of Cav-2 from the 

Golgi complex to the plasma membrane. Exit of precaveolae from the Golgi complex is accelerated 

by cholesterol (Pol et al, 2005) and inhibited by glycosphingolipid depletion (Cheng et al, 2006). 

Cholesterol depletion flattens caveolae and increases the mobility of Cav-1 at the plasma 

membrane (Rothberg et al, 1992). Once the precaveolae reaches the plasma membrane they 

become relatively immobile structures (Kiss & Botos, 2009). Similar to how clathrin acts as a coat 

protein for CCVs, Cav-1 and PTRF-cavin (p-cavin) appear to function as coat proteins for 

caveolae. The recruitment of p-cavin to membrane domains containing oligomerized caveolin, 

cholesterol and phosphatidylserine stabilizes the membrane curvature of caveolae, producing the 

classical flask shaped structure of caveolae. p-cavin also appears to only interact with mature 

caveolae at the plasma membrane and not with non-caveolar caveolin present in the Golgi 

complex (Hill et al, 2008; Liu & Pilch, 2008). 

While the abundance of caveolae in many cell types is consistent with a role of these structures in 

the trafficking of membrane proteins, the effective role of caveolae in the endocytosis of plasma 

membrane proteins remains controversial. Studies detailing the dynamic properties of GFP-tagged 

Cav-1 revealed that the internalization rate of Cav-1 is surprisingly slow (van Deurs et al, 2003). 

Moreover, overexpression of Cav-1 was also shown to inhibit the endocytosis of cargo localized in 

caveolae, suggesting that Cav-1 itself can be responsible for stabilizing caveolae on the plasma 

membrane (Minshall et al, 2000). Additionally, although caveolar-type structures can be observed 

in regions of the cell distant form the plasma membrane, it has been shown that many of these 

structures are still directly connected to the plasma membrane (Parton et al, 2002; Sandvig et al, 

2008). Another problem with assessing the real function of caveolae in endocytosis is that Cav-1-

associated cargos can also be found within other clathrin-independent vesicles such as those 

formed by the CLIC-GEEC internalization pathway, which raises the possibility that previous 

manipulations thought to affect caveolar endocytosis may in fact be acting on other endocytic 

pathways (Doherty & McMahon, 2009). Nevertheless, although caveolae are not normally involved 

in endocytosis, interaction of caveolae or caveolin with specific ligands can trigger the rapid 
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Figure 14 - Caveolae-mediated endocytosis. Electron micrographs of caveolin-expressing FRT cells. Cav-1 
transfected FRT cells were grown on filters for five days and then fixed and treated for electron microscopy. (A) Apical 
side. (B) Basal side. Arrows indicate caveolae, which are characterized as coat-free flask-shaped plasmalemmal 
invaginations with the diaphragm at the neck (Lipardi et al, 1998). 
 

internalization of caveolae and several substrates of this pathway have already been described 

(Kiss & Botos, 2009). Caveolae internalization has been shown to be regulated by kinases and 

phosphotases. Phosphorylation of tyrosine residues on Cav-1 and Cav-2 has been shown to 

induce caveolae internalization (Kiss et al, 2004; Lee et al, 2002; Tiruppathi et al, 1997), while 

treatment with vanadate, a tyrosine phosphatase inhibitor, stimulates internalization by causing 

hyperphosphorylation of Cav-1 (Botos et al, 2007). Besides its role in the pinching off of CCVs, 

dynamin also appears to be important for the scission of caveolae from the plasma membrane 

(Henley et al, 1998; Oh et al, 1998). Lastly, internalized caveolae have been shown to form large 

grape-like structures containing Cav-1, termed caveosomes. The fate of caveosomes appears to 

be regulated by its cargo. Caveosomes containing SV40 virus do not fuse with lysosomes, allowing 

the virus to escape lysosomal degradation (Pelkmans et al, 2001). However, other studies show 

that cargo internalized through caveolae can be translocated to early endosomes, a component of 

the classical endosomal degradation pathway (Kiss & Botos, 2009). Although caveolae are often 

considered a major pathway for the internalization of plasma membrane proteins, many questions 

concerning this pathway remain unanswered, including the molecular effectors responsible for 

accumulating cargo in caveolae. 

 

Endocytic adaptor and accessory proteins 

 

As mentioned above, the endocytosis of plasma membrane proteins can occur through several 

different mechanisms, which in turn can internalize a wide assortment of different substrates. Thus, 

in order to internalize a specific protein within the wide variety of possible substrates, endocytosis 
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machinery requires components capable of recognizing specific substrates or endocytic signals. 

These components are usually referred to as endocytic adaptors and accessory proteins. 

Considering how clathrin-mediated endocytosis is the best characterized internalization 

mechanism, more is known about the process of clathrin coated pit (CCP) formation and cargo 

recruitment than for any other internalization mechanism. As such, this segment will focus on 

describing the function of endocytic adaptors and accessory proteins for clathrin-mediated 

endocytosis. 

Adaptor proteins are thought to initiate CCP formation through two ways. First, they are 

responsible for selecting and accumulating specific cargo at the plasma membrane into the 

nascent CCP. Second, they are also responsible for recruiting structural and regulatory 

components (clathrin and scaffold proteins) that help stabilize early endocytic protein complexes 

that are essential for the formation of CCPs (Maldonado-Baez & Wendland, 2006). 

The term endocytic adaptor is generally reserved for proteins that bind to the lipid PtdIns(4,5)P2, 

and also to clathrin and to sorting signals within the cytosolic regions of transmembrane cargo. 

Two major classes of endocytic adaptors participate in CCV formation: multimeric adaptor proteins, 

such as AP2, and monomeric adaptor proteins, such as CLASPs (Maldonado-Baez & Wendland, 

2006). 

Adaptor proteins share a common basic structure with a region containing folded domains that 

binds to plasma membrane components and unstructured regions that contain multiple peptide-

binding motifs, that provide recruiting areas for clathrin and accessory proteins. This modular 

organization of endocytic adaptors allows them to interact simultaneously with several partners. 

These interactions can be classified into three groups according to the binding partner: lipid-

adaptor interactions (Owen, 2004), cargo-sorting-signal-adaptor interactions (Robinson, 2004), and 

accessory-protein-adaptor interactions (Maldonado-Baez & Wendland, 2006). 

AP2 is the main non-clathrin constituent of purified endocytic CCVs, and also the best 

characterized endocytic adaptor. AP2 is a stable complex comprised of four non-identical subunits 

termed α-subunit, β2-subunit, µ2-subunit and σ2-subunit (Collins et al, 2002; Matsui & 

Kirchhausen, 1990). Besides providing a bridge between clathrin and the plasma membrane, some 

subunits of AP2 also possess domains capable of recognizing protein sorting signals (described 

further below) present in the substrate. Although AP2 possesses lipid binding domains that allow 

its interaction with PtdIns(4,5)P2, the association of AP2 with the plasma membrane is more stable 

when the adaptor is simultaneously binding a cargo molecule (Maldonado-Baez & Wendland, 

2006). Deletion of genes that encode components of AP2 are lethal in several metazoan models, 

however depletion of AP2 subunits in Saccharomyces cerevisiae is non-lethal and has a minimal 

effect on clathrin function, which suggests that although AP2 is a major component of CCVs, some 

organisms have developed other proteins that overlap with AP2 function (Huang et al, 1999a; 

Traub, 2009; Yeung et al, 1999), CLASPs are such proteins. Examples of CLASP proteins include 
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Epsin, Dab2, ARH and Eps15. Most CLASPs bind both to AP2 and clathrin through short peptide 

interaction motifs located in the structurally disordered carboxyl-terminal region (Owen, 2004). This 

might explain why AP2 can associate with the plasma membrane in the absence of cargo. 

Furthermore, due to the considerable connectivity between CLASPs and because they also 

possess lipid interaction domains, they are capable of nucleating the assembly of fewer and 

diminutive but still operational clathrin coated structures when AP2 levels are depleted (Traub, 

2009).  

Besides their function in stabilizing the interaction between AP2 and the plasma membrane, 

CLASPs also have a role in inducing membrane curvature to form the CCP. Biophysical 

considerations suggest that membranes prefer a more flat structure, thus elements external to the 

plasma membrane are needed to induce the high membrane curvature present in the nascent 

endocytic vesicles. Studies have shown that clathrin polymerization alone is insufficient for 

membrane curvature generation (Nossal, 2001). CLASPs such as those belonging to the Epsin 

family of proteins, can help drive membrane deformation by the insertion of an amphipathic helix 

into the plasma membrane. This initial deformation is then stabilized by the polymerization of the 

clathrin coat (Ford et al, 2002). 

CLASP proteins also participate in the recognition of endocytic cargo. For example, both Epsin and 

Eps15 are involved in the recruitment of ubiquitinated cargo into endocytic vesicles (Sorkina et al, 

2006; Wendland, 2002). 

 

Protein sorting signals 

 

The composition of the plasma membrane is constantly being renewed in response to extra and 

intracellular stimuli. To ensure the proper response of the cell, plasma membrane proteins must be 

specifically and selectively internalized. Considering that each endocytic pathway can internalize 

multiple substrates, cells require a system to target plasma membrane proteins for degradation. 

The endocytosis machinery can recognize protein substrates through the direct binding to short 

polypeptide motifs present in the primary sequence of proteins, which are normally constitutively 

active, but also to post-translational modifications such as phosphorylation and ubiquitination 

(Bonifacino & Traub, 2003; Doherty & McMahon, 2009; Maldonado-Baez & Wendland, 2006; 

Traub, 2009). 

 

YXXØ sorting signals 

 

YXXØ sorting signals (in which X is any amino acid and Ø is a bulky hydrophobic amino acid) are 

found in a wide variety of integral membrane proteins, such as LAMP-1 or the transferrin receptor. 

Although YXXØ motifs have been shown to be essential for the rapid internalization of a variety of 
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plasma membrane proteins, their function is not limited to endocytosis. YXXØ motifs have been 

implicated in the intracellular sorting of transmembrane proteins to the lysosome and lysosome-

related organelles and also in the sorting of proteins to the basolateral membrane of polarized 

epithelial cells (Bonifacino & Traub, 2003). Although the YXXØ tetrapeptide is the minimal motif to 

confer sorting information to proteins, the X residues and other residues flanking the motif may 

also confer sorting specificity to the signal. For instance, lysossomal-sorting YXXØ motifs tend to 

have acidic residues at the X positions and a glycine preceding the critical tyrosine residue (Harter 

& Mellman, 1992; Rous et al, 2002). YXXØ signals interact with the endocytic machinery through 

the µ2-subunit of AP2 (Owen & Evans, 1998). For some proteins this interaction can be modulated 

through phosphorylation. Phosphorylation of GABAA (γ-aminobutyric acid type A) receptor γ2-

subunit on either tyrosine of its YGYECKL signal impedes its interaction with AP2 (Kittler et al, 

2008). YXXØ signals can also be recognized by the α-subunit of AP2, as is the case for the CD317 

protein (Masuyama et al, 2009). 

 

Dileucine sorting signals 

 

Dileucine sorting signals are characterized by the consensus sequence [DE]XXXL[LIM] and are 

involved in mediating the internalization of proteins such as the cluster of differentiation antigen 4 

protein (CD4) and Tyrosinase (Bonifacino & Traub, 2003; Traub, 2009). Similar to YXXØ signals, 

Dileucine signals have also been shown to be important in signalling the trafficking of integral 

membrane proteins between intracellular compartments (Bonifacino & Traub, 2003). Dileucine 

sorting signals are structurally different from YXXØ signals and do not compete with it for entry into 

CCVs (Marks et al, 1996). Dileucine sorting signals also interact with the endocytic machinery 

through the AP2 complex, however they bind to a different subunit, the σ-subunit, through a 

domain that is adjacent to the PtdIns(4,5)P2-binding site on the α-subunit (Kelly et al, 2008). The 

interaction between the [DE]XXXL[LIM] signal and the σ-subunit of AP2 can also be modulated by 

phosphorylation. In the case of CD4, its dileucine motif SQIKRLL must be phosphorylated on the 

serine residue to enable the binding of the protein to the AP2 complex (Pitcher et al, 1999). 

 

[FY]XNPX[YF] sorting signals 

 

Unlike YXXØ sorting signals, [FY]XNPX[YF] signals are not normally recognized by the µ2-subunit 

of AP2. Instead, [FY]XNPX[YF] signals are decoded by a subfamily of CLASPs containing the 

phosphoTyr-binding domain (PTB), which includes Dab2 and ARH. PTB domains are capable of 

binding both [FY]XNPX[YF]-containing cargo and PtdIns(4,5)P2 simultaneously (Stolt & Bock, 

2006). Even though YXXØ and [FY]XNPX[YF] signals both feature critical Tyr residues in their 
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sequence the PTB domain is selective towards [FY]XNPX[YF] signals. For example, the 

expression of Dab2 has been shown to enhance the uptake of [FY]XNPX[YF]-containing cargo, but 

not YXXØ-containing cargo (Chetrit et al, 2009). 

 

Ubiquitin as a sorting signal 

 

All the short peptide sequences mentioned above are normally constitutively active, with proteins 

bearing those motifs being rapidly and efficiently internalized through clathrin-mediated 

endocytosis. However, certain membrane proteins, such as signalling receptors, ion channels and 

transporters, persist at the cell surface and are internalized in a temporally defined manner. This 

defined regulation in the internalization of plasma membrane proteins usually requires a post-

translational modification of the target protein to signal it for internalization. In Saccharomyces 

cerevisiae, the predominant internalization signal is the conjugation of ubiquitin to lysine residues 

of the targeted protein. These signals are recognized through a subfamily of CLASPs that include 

Epsins and Eps15. Epsin and Eps15 recognize ubiquitinated cargo through their ubiquitin-

interacting motifs (UIM), and in turn, both of these CLASPs bind strongly to AP2. Additionally, 

Epsin can also associate with Eps15 and recruit clathrin, which enables it to assemble clathrin 

coats even in the absence of AP2 (Traub, 2009). 

Monoubiquitination, multimonoubiquitination and Lys63-linked polyubiquitin chains have all been 

reported to function as endocytosis signals, however, several studies report that 

monoubiquitination appears to be a weak internalization signal (Barriere et al, 2006; Hawryluk et 

al, 2006). This is explained by observations showing that the UIM domains present in endocytic 

adaptors such as Eps15 have a relatively weak affinity for monoubiquitin. Instead, UIM domains 

have been shown to bind more strongly to polyubiquitin signals, especially Lys63-linked chains. 

Additionally, multimonoubiquitination of a single protein or monoubiquitination of several subunits 

of a protein complex was also suggested to be a strong endocytic signal since the close proximity 

of several monoubiquitin moieties would resemble a polyubiquitin signal, which is the preferred 

binding partner for UIM domains. 

Ubiquitination of plasma membrane proteins is itself a regulated process. The main E3 ligase 

responsible for targeting proteins for internalization in Saccharomyces cerevisiae is Rsp5. 

Although Rsp5 contains several WW motifs that interact with PPXY motifs on target substrates, no 

plasma membrane cargo seems to interact directly with Rsp5 through these domains (Lin et al, 

2008a; Nikko et al, 2008). Instead, prior phosphorylation of Rsp5 substrates is required for 

substrate internalization (Belgareh-Touze et al, 2008; Lundh et al, 2009; Paiva et al, 2009). 

Curiously, besides its role in targeting plasma membrane proteins for internalization, ubiquitin also 

regulates the activity of UIM-containing endocytic adaptor proteins (Hoeller et al, 2006; Woelk et al, 

2006). Eps15 was shown to be monoubiquitinated by the Nedd4 ubiquitin ligase. The proposed 
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model first involves the self-ubiquitination of Nedd4. This provides a binding site for the UIM 

domains of Eps15, which would then enable Nedd4 to ubiquitinate Eps15 (Woelk et al, 2006). The 

monoubiquitination of Eps15 (and other sorting proteins containing UIM domains) impairs its ability 

to regulate the trafficking of ubiquitinated transmembrane proteins. Monoubiquitination of Eps15 

was suggested to induce the formation of an intramolecular interaction between the UIM domains 

of Eps15 and the monoubiquitin moiety. According to this model, following monoubiquitination, the 

UIM domains of Eps15 would be occupied in this intramolecular interaction, preventing the 

endocytic adaptor from interacting with ubiquitinated cargo. Accordingly, fusion of an ubiquitin 

molecule to the carboxyl-terminal of Eps15 prevented its recruitment to the plasma membrane and 

inhibited its association and colocalization with EGFR-containing endocytic vesicles (Hoeller et al, 

2006). 

 

Endosomal sorting of ubiquitinated membrane proteins 

 

Following internalization, endocytosed cargos have several distinct molecular fates. One possibility 

that awaits internalized cargo is their transport to the lysosome for degradation. Endosomes can 

be defined as being either early or late, based on the relative time it takes for endocytosed material 

to reach either stage. During the maturation process of endosomes their structure and composition 

is altered, with late endosomes showing characteristics of typical multivesicular bodies (MVBs). 

The transition between the two stages is thought to proceed through the progressive involution of 

the limiting membrane of endosomes to form intralumenal vesicles (ILVs) and with the concomitant 

removal of recycling material via the fission of tubular elements that give rise to recycling 

endosomes. When the resulting MVBs fuse with lysosomes (or with the vacuole in yeast), the ILV 

membrane is degraded by lipases and its transmembrane content processed by lysosomal 

proteases (Raiborg & Stenmark, 2009; Williams & Urbe, 2007). 

The best characterized signal directing membrane proteins to the degradative MVB pathway is 

ubiquitination. Ubiquitinated cargo arriving at endosomes are sorted into ILVs and are not recycled 

back to the plasma membrane, transported retrogradely to the secretory pathway or retained in the 

limiting endosome membrane. At the endosomal membrane, ubiquitinated cargo is recognized by 

the endosomal sorting complex required for transport (ESCRT) machinery, a series of protein 

complexes that are highly conserved in eukaryotes. The ESCRT machinery performs three distinct 

but connected functions: it recognizes ubiquitinated cargo and prevents their recycling or 

retrograde transport; it deforms the endosomal membrane to initiate ILV formation and 

accumulation of cargo; and it also catalyzes the abcission of the endosomal invaginations, forming 

ILVs containing the sorted cargo. The ESCRT machinery consists of the four complexes, ESCRT-

0, -I, -II and -III, plus several accessory components. ESCRT-0, -I and -II all possess ubiquitin-

binding domains that are used to recognize cargo to be sorted into ILVs. Although there is no clear 
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model that explains how ubiquitinated cargo can be transferred from one ESCRT complex to the 

next, the directional flow of cargo from ESCRT-0 to -I and finally to -II is plausible when one 

considers the sequential recruitment of the complexes (Raiborg & Stenmark, 2009; Williams & 

Urbe, 2007).  

 

ESCRT-0 

 

In mammals, the ESCRT-0 complex consists of the subunits Hrs and STAM (signal transducing 

adaptor molecule); in yeast the ESCRT-0 complex is formed by Vps27 and Hse1. ESCRT-0 can be 

considered as a filter that retains ubiquitinated membrane proteins in the endosomal membrane 

(Raiborg & Stenmark, 2009). Both Hrs and STAM are capable of binding ubiquitin, which allows 

the ESCRT-0 complex to recognize cargo destined for lysosomal degradation. Both subunits of 

ESCRT-0 contain an amino-terminal VHS (Vps27, Hrs and STAM) domain of unknown function, in 

addition to ubiquitin and clathrin binding domains (Hofmann & Falquet, 2001; McCullough et al, 

2006; Raiborg et al, 2001). The Hrs subunit in particular contains a FYVE zinc-finger domain which 

it uses to bind to phosphatydilinositol-3-phosphate (PtdIns(3)P), this interaction is responsible for 

the recruitment of the ESCRT-0 complex to endosomes (Raiborg et al, 2001). Hrs also has an 

important role in recruiting the downstream ESCRTs by direct interaction with the ESCRT-I 

component Tsg101 (Clague & Urbe, 2003). 

A third ubiquitin-binding protein, Eps15b (an isoform of Eps15), has been found to be associated 

with ESCRT-0 in human cells. Although the exact function of this protein is not known, it was 

shown to be important in sorting epidermal growth factor receptors for degradation (Roxrud et al, 

2008). 

 

ESCRT-I 

 

ESCRT-I was the first ESCRT complex to be identified. The ESCRT-0 complex initially wasn’t 

classified as a member of the ESCRTs, until later evidence showed that it functions to recruit 

ESCRT-I (Bache et al, 2003; Katzmann et al, 2003; Lu et al, 2003). The ESCRT-I complex has a 

1:1:1:1 ratio of four subunits: Tsg101 or Vps23 in yeast, Vps28, Vps37 and Mvb12 (Chu et al, 

2006; Morita et al, 2007). The structure of the ESCRT-I complex contains a headpiece (that binds 

to ESCRT-II), a rigid stalk and an endpiece that contains an UEV domain. The UEV domains of 

Tsg101 and Vps23 are capable of binding ubiquitin (which they use to recruit ubiquitinated 

substrates) and also to PSAP-like motifs in Hrs/Vps27, and together with additional interactions 

contribute to the recruitment of ESCRT-I to endosomes. As such, in the absence of ESCRT-0, 

recruitment of ESCRT-I to endosomal membranes in inhibited (Bache et al, 2003; Katzmann et al, 

2003; Lu et al, 2003). 
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Figure 15 - Composition and molecular interactions of the ESCRT machinery. Interactions between the four 
ESCRT complexes are indicated, as are interactions with ubiquitinated cargo and accessory molecules such as 
PtdIns(3)P, deubiquitinating enzymes (DUBs), Alix and the ATPase Vps4. Protein domains are labelled in white. Dashed 
arrow indicates interaction predicted by genetic studies but not yet confirmed biochemically. Adapted from (Raiborg & 
Stenmark, 2009). 
 
 
ESCRT-II 

 

ESCRT-II is composed of one Vps36, one Vps22 and two Vps25 subunits. The core of the 

ESCRT-II complex is a flat y-shaped heterotetramer, with Vps22 and Vps36 forming the base of 

the y and the two copies of Vps25 forming the arms (Hierro et al, 2004; Teo et al, 2004). All of the 

subunits of ESCRT-II have two tandem repeats of a winged-helix domain, a common type of 

protein-protein and protein-DNA interaction module (Hierro et al, 2004; Teo et al, 2004; Wernimont 

& Weissenhorn, 2004). Additionally, Vps36 has a GLUE (Gram-like ubiquitin-binding in Eap45) 

domain that can bind both to ubiquitin and to PtdIns(3)P (Hirano et al, 2006; Slagsvold et al, 2005). 

ESCRT-II interacts with the Vps28 subunit of ESCRT-I through its Vps36 subunit. In addition to the 

GLUE domain of Vps36, the first helix of Vps22 also has lipid-binding properties, though less 

specific, and is likely to participate in the membrane recruitment of ESCRT-II (Teo et al, 2006). 

 

ESCRT-III 

 

ESCRT-III consists of small, highly charged subunits that assemble into higher-order multimers on 

membranes (Raiborg & Stenmark, 2009). The core complex of ESCRT-III contains the subunits 

Vps20, Vps32, Vps24 and Vps2, which are assembled in a highly ordered manner. Vps20 is the 

subunit responsible for initiating the assembly of ESCRT-III by first binding to the Vps25 subunit of 

ESCRT-II. Vps20 then interacts with Vps32, which triggers the assembly of Vps32 into filamentous 

oligomers that are capped by Vps24. Finally, Vps2 associates with Vps24, recruiting the ATPase 

Vps4 to the ESCRT-III complex (Saksena et al, 2009; Teis et al, 2008; Teo et al, 2004). 
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Table 3 - ESCRTs subunits. NA, not applicable. Note that the assignment of accessory proteins to Vps4 rather than to 
ESCRT-III is arbitrary in light of our incomplete understanding of their functions. Adapted from (Raiborg & Stenmark, 
2009). 
 

The ESCRT-III complex appears to be involved in the deforming of the endosomal membrane and 

in the abscission of ILVs into endosomes. Overexpression of Vps32, but not of other ESCRT-III 

subunits, in mammalian cells was shown to cause the protrusion of buds and tubules from the 

plasma membrane, triggered by spiralled filaments formed by Vps32 multimers (Hanson et al, 

2008). Furthermore, in vitro assembly experiments show that Vps24 and Vps2 are capable of 

forming hollow tubules. Vps4 is recruited into these tubules, depolymerizing them from the inside 

following ATP hydrolysis (Ghazi-Tabatabai et al, 2008; Lata et al, 2008). 

The opposite topology of ILV budding requires that the abscission machinery be recruited from 

inside of the membrane stalk, unlike how dynamin is recruited to the outside of the membrane stalk  

to induce the budding of CCPs. Equivalent membrane stalks are also severed during cytokinesis 

and viral budding from the plasma membrane, and accumulating evidence indicates that ESCRT-

III and Vps4 represent a highly conserved machinery for this type of membrane fission. In fact, 

phylogenetic analyses indicate that ESCRT-III is the most ancient and conserved of the ESCRTs 
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(Leung et al, 2008; Raiborg & Stenmark, 2009). Thus, it is likely that the ESCRTs originated from a 

device for cell division in unicellular organisms that later evolved to recognize ubiquitinated 

membrane proteins in endosomes to mediate their translocation into ILVs. Although there is no 

definite evidence as to how ESCRT-III mediates membrane abscission, the ability of ESCRT-III 

subunits to assemble into circular arrays suggests a model where Vps4-mediated removal of 

individual Vps32 subunits from one end of the spiral polymer at the neck of the invagination may 

lead to the constriction of these circular arrays culminating in membrane scission (Saksena et al, 

2009). Alternatively, ESCRT-III mediated clustering of cargo with bulky intraluminal domains could 

also contribute to both membrane deformation and scission (Raiborg & Stenmark, 2009). 

 

Deubiquitination and endosomal sorting 

 

Although ubiquitination is important to signal membrane cargo for vesicular sorting, proper 

deubiquitination of cargo is also necessary to ensure the normal function of the sorting system. For 

instance, it has been shown that the DUB Doa4 (degradation of alpha 4) is essential for MVB 

sorting (Amerik et al, 2000). Doa4 is recruited to endosomes through ESCRT-III and the accessory 

protein Bro1, where it is responsible for the deubiquitination of endosomal cargo before their entry 

into ILVs. The importance of Doa4 for proper endosomal sorting was suggested to be related to 

the recycling of ubiquitin, since if ubiquitin were allowed to degrade alongside endocytosed cargo, 

intracellular levels of free ubiquitin would be compromised (Swaminathan et al, 1999). Additionally, 

the DUB activity of Doa4 may also be important for reactivating components of the ESCRT 

machinery that have been inactivated by monoubiquitination (Nikko & Andre, 2007). 

Two other DUBs have also been described to localize to endosomes in mammalian cells, AMSH 

and UBPY. Both DUBs can be recruited at two points of the ESCRT system: at the ESCRT-0 

subunit STAM, or also at ESCRT-III and the accessory protein Alix (McCullough et al, 2006; 

Mizuno et al, 2006; Row et al, 2006). Given their association with the ESCRT-0 complex, these 

DUBs presumably serve to deubiquitinate cargo that is not destined for endosomal sorting to the 

lysosome. Some authors also suggest that they can activate Hrs and STAM by reversing the 

autoinhibitory monoubiquitination of these proteins (Raiborg & Stenmark, 2009). Curiously, UBPY 

and AMSH have different substrate specificity, with AMSH showing a preference for Lys63-linked 

polyubiquitin chains, while UBPY has no preference between Lys48 and Lys63-linked chains (Row 

et al, 2006). Given their different substrate specificity, its possible that these DUBs may be 

involved in the remodelling of ubiquitin chains attached to endosomal cargo. This different 

substrate specificity may also explain the antagonistic functions these two DUBs show in relation 

to some membrane proteins. For instance, while AMSH seems to promote the recycling of EGFR, 

UBPY promotes its endosomal sorting (Clague & Urbe, 2006). 
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Endocytic recycling 

 

Endocytosis is one of the major mechanisms that regulate the lipid and protein composition of the 

plasma membrane. Additionally, it is estimated that cells internalize the equivalent of their cell 

surface one to five times per hour (Steinman et al, 1983). As such, pathways that deliver materials 

to the plasma membrane must be robust and coordinately regulated. Lipids and proteins can reach 

the plasma membrane through two broad mechanisms, the biosynthetic pathway and endocytic 

recycling, the latter of which being responsible for most of the material being delivered to the 

plasma membrane. The recycling of receptors back to the plasma membrane was one of the first 

characterized examples of recycling of endocytosed proteins, and since then, the recycling of 

many other types of integral membrane proteins has been described (Maxfield & McGraw, 2004). 

Endocytic recycling is also essential for maintaining the difference between apical and basolateral 

membranes in polarized cells (Wang et al, 2000). As an example, in hepatocytes, most basolateral 

membrane proteins are first delivered to the apical membrane from where they are subsequently 

delivered to the basolateral membrane following an intracellular route (Kipp & Arias, 2000; Schell 

et al, 1992; Zegers & Hoekstra, 1998). 

Due to their nature and function, organelles involved in intracellular sorting pathways are not stable 

structures, with their membrane composition constantly shifting according to arriving and departing 

cargo. In fact, the characteristics of entire organelles may shift over time, leading to their 

transformation into a different organelle with a different function, such as in the case of early 

endosomes maturing into late endosomes. 

 

Early endosomes 

 

The early endosome is defined as the organelle that receives material from primary vesicles that 

have been generated by endocytosis. Markers of the early endosome include the small GTPase 

Rab5, phosphoinositide 3-kinase (PI3K) and its product phosphatydilinositol-3-phosphate 

(PtdIns(3)P). Regardless of the mode of entry, endocytosed cargo is usually delivered to the early 

endosome where sorting occurs. From there cargo can be routed to late endosomes and 

lysosomes for degradation, to the trans-Golgi network or to recycling endosomal carriers that bring 

the cargo back to the plasma membrane (Grant & Donaldson, 2009; Maxfield & McGraw, 2004). 

Although clathrin-mediated internalization of proteins relies on the recognition of sorting signals 

(that can either be short polypeptide sequences or post-translational modifications such as 

ubiquitination), the predominant sorting mechanism of early endosomes is based more on 

organelle geometry than on the recognition of a specific sorting motif in the cargo proteins 

(Maxfield & McGraw, 2004). Most of the membrane of early endosomes is removed by the 

pinching off of narrow-diameter tubules (Dunn et al, 1989; Mayor et al, 1993). The surface-area-to-
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volume ratio of these tubules is greater than that of the vesicular portion of the sorting endosome, 

and therefore, the pinching off of tubules preferentially sorts recycled membrane from the soluble 

molecules. As such, membrane proteins that arrive to the early endosome without any specific 

targeting information will be transported from the sorting endosome with the bulk of the membrane. 

On the other hand, the transport of membrane proteins to the late endosome requires specific 

targeting signals to separate them from the bulk of the plasma membrane. 

The lumen of the early endosome is mildly acidic (Johnson et al, 1993; Presley et al, 1997); which 

can induce conformational changes in proteins that lead to the release of ligands from receptors. 

Thus, the now free receptor protein can be trafficked back to the plasma membrane for further 

rounds of signalling, while the ligand is retained in the lumen of the early endosome, eventually 

being degraded in the lysosome. This functions as one of the protein sorting mechanisms in early 

endosomes, separating the bulk of receptor proteins from their ligands (Maxfield & McGraw, 2004). 

The ESCRT system mentioned in the previous section also functions as a sorting mechanism in 

early endosomes that diverts ubiquitin tagged membrane proteins to ILVs, eventually being 

degraded in the lysosome alongside the luminal content of the early endosome. 

Although recycling back to the plasma membrane seems to be the default pathway for cargo 

internalized through clathrin-dependent endocytosis, the recycling of cargoes internalized through 

clathrin-independent pathways might involve a positive selection process (Grant & Donaldson, 

2009). 

Recycling cargo exiting early endosomes have two possible destinations: the rapid recycling route, 

that delivers them directly to the plasma membrane; or the slow recycling route, that first delivers 

cargo to the endocytic recycling compartment (ERC) before they arrive at the plasma membrane. 

 

Rapid recycling route 

 

The rapid recycling route is characterized by the recycling of proteins directly from early 

endosomes, or from earlier stages in the endocytic pathway, back to the plasma membrane. The 

GTPase Rab4 is a commonly used marker for rapid recycling endosomes. Rab4 has been shown 

to be important for the rapid recycling of the transferrin receptor (TFR) and glycosphingolipids from 

early endosomes (Choudhury et al, 2004; Maxfield & McGraw, 2004; van der Sluijs et al, 1992), 

however the exact role that Rab4 plays in this recycling route remains unknown. Indeed, while the 

overexpression of a dominant negative form of Rab4 was shown to inhibit fast recycling, siRNA-

mediated depletion of Rab4 was shown to increase rapid recycling, perhaps by blocking trafficking 

between the early endosome and ERCs (Deneka et al, 2003; Yudowski et al, 2009). 

Another Rab GTPase involved in regulating rapid recycling is Rab35. Rab35 localizes to the 

plasma membrane and early endosomes and has been shown to be required for the rapid 

recycling of TFR (Kouranti et al, 2006). 
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Slow recycling route 

 

The slow recycling route involves the transport of cargo proteins from the early endosome to the 

ERC and from the ERC to the plasma membrane. The above-mentioned model of geometry based 

sorting of proteins by the early endosome postulates that during maturation narrow-diameter 

tubules pinch off from the early endosome. These are thought to give rise to the ERC, while the 

main body of the early endosome becomes the multivesicular body (Grant & Donaldson, 2009; 

Maxfield & McGraw, 2004). In fact, live imaging studies have shown that over time early 

endosomes lose Rab5 and acquire Rab11, one of the molecular markers of the ERC (Sonnichsen 

et al, 2000). The ERC is morphologically defined as a tubular compartment that is largely devoid of 

fluid. Besides Rab11, EHD1 (Eps15 homology domain-containing 1) is also considered a 

molecular marker of the ERC (Grant & Donaldson, 2009). 

While it is still mainly unknown why proteins sometimes recycle back to the plasma membrane 

through fast recycling endosomes and other times through the ERC, the delivery of cargo to the 

ERC might function to prevent their entry into degradative compartments (Grant & Donaldson, 

2009). 

Transport from the ERC to the plasma membrane has been suggested to proceed through several 

distinct pathways according to cargo. In HeLa cells distinct recycling pathways have been 

described for TFR and for cargo that was internalized through clathrin-independent pathways, as 

the recycling endosomes that carry TFR are separate from the tubular recycling endosomes that 

carry cargo internalized through clathrin-independent endocytosis (Naslavsky et al, 2003; 

Naslavsky et al, 2004; Radhakrishna & Donaldson, 1997). Although both types of recycling 

endosomes are Rab11-dependent, the trafficking of tubular recycling endosomes is much more 

regulated (Grant & Donaldson, 2009). 

As a molecular marker of the ERC, the GTPase Rab11 is an important regulator of recycling. 

Interfering with Rab11, or with the many proteins that interact with it, inhibits recycling and often 

alters the positioning of the ERC in the cell. Rab11 has been shown to be important for the 

recycling of TFR, a canon substrate for clathrin-dependent endocytosis, but also for MHC class I 

and β-integrin, that internalize through clathrin-independent pathways (Grant & Donaldson, 2009). 

 

The Rab GTPase proteins 

 

Rab GTPases constitute the largest family of small GTPases, proteins that catalyze the 

dephosphorylation of GTP into GDP. They function as docking sites for other molecules and 

through their indirect interactions with coat components, motor proteins and SNAREs (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) the Rab GTPases serve as 

multifaceted organizers of almost all membrane trafficking processes in eukaryotic cells 
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Figure 16 - Pathways of endocytic recycling. Regardless of the internalization pathway used, most cargo is delivered 
to the early endosome. Rab5 is a marker of this compartment. During the maturation process of the early endosome, 
cargo to be delivered to the lysosome is internalized into intralumenal vesicles. For this process to occur, cargo must 
contain specific sorting motifs, such as an ubiquitin moiety, though other sorting motifs exist. The mature multivesicular 
body, or late endosome, then fuses with the lysosome with the aid of Rab7. Alternatively, cargo present at the early 
endosome can be recycled back to the plasma membrane through two major pathways. Rapid recycling traffics cargo 
directly from the early endosome back to the plasma membrane through vesicles positive for Rab4. Slow recycling first 
traffics cargo to the endocytic recycling compartment before delivering the cargo to the plasma membrane through 
vesicles positive for Rab11. Endocytic recycling is considered to be the default route followed by plasma membrane 
proteins that reach the early endosome. Additionally, ubiquitinated cargo can also be recycled back to the plasma 
membrane as long as they are deubiquitinated before being sorted into ILVs by the ESCRT machinery present at early 
endosomes (Grant & Donaldson, 2009; Raiborg & Stenmark, 2009; Stenmark, 2009). 
 

(Stenmark, 2009). For example, Rab5 has been shown to be involved in mediating cargo 

sequestration into and budding of endocytic vesicles, uncoating of CCVs, vesicle motility along 

microtubules and the tethering of vesicles to acceptor membranes. In humans there are more than 

sixty members of the Rab family that are localized to distinct intracellular membranes (Stenmark, 

2009). 

Rab proteins alternate between two conformational states: a GTP bound “on” form and a GDP 

bound “off” form, which allows Rab proteins to function as molecular switches. The conversion of 
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Rab proteins between the GDP- and GTP-bound forms involves major conformational changes in 

two variable regions: switch I and switch II (Pfeffer, 2005). The exchange of GDP for GTP is 

catalyzed by GEFs (guanine nucleotide exchange factors) that facilitate the release of GDP from 

the Rab protein (Delprato et al, 2004). The high cytosolic concentration of GTP ensures that GTP 

binds as soon as GDP has been released. In their GTP-bound form, Rab proteins are capable of 

interacting with several types of effector molecules, including sorting adaptors, tethering factors, 

kinases, phosphatases and motor proteins. Rab proteins are inactivated following GTP hydrolysis, 

which is driven both by the intrinsic GTPase activity of the Rab protein and by GTPase-activating 

proteins (GAPs) (Stenmark, 2009). Although there are some examples of Rab effectors that prefer 

the GDP-bound form (Shirane & Nakayama, 2006), this form is considered to be the inactive state 

of Rab GTPases. 

Due to their crucial role in intracellular membrane trafficking, functional impairment of Rab 

pathways are associated with diseases, such as immunodeficiency, cancer and neurological 

disorders (Stenmark, 2009). 
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Chapter 2: Objectives 

 

Gap junction intercellular communication (GJIC) mediated by connexin proteins is essential for the 

survival of all vertebrate organisms, being critical for processes such as embryonic development, 

coordinated contraction of excitable cells, tissue homeostasis, normal cell growth and 

differentiation. In fact, connexin gene mutations have already been linked to several human 

diseases. The extent of GJIC is directly related to the number and functional state of gap junction 

channels present at the plasma membrane, therefore, processes that influence the stability of 

connexins at the plasma membrane are critical for regulating intercellular communication. Although 

GJIC can be regulated through the gating of the channel pore, degradation of connexins, 

particularly Cx43, appears to play an unexpected and critical role in regulating GJIC. The 

underlying goal of this thesis is the characterization of the molecular mechanisms that modulate 

Cx43 internalization, intracellular trafficking and degradation. 

The physiological importance of GJIC is well illustrated in the eye lens where inner fibre cells fully 

depend on a complex network of gap junctions for nutrition and signalling. The lens plasma 

membrane is also unique among eukaryotic cell membranes due to its extremely high content of 

cholesterol and deficit of polyunsaturated fatty acids. As the main unsaturated lipid present in lens 

membranes, cholesterol is prone to oxidation yielding a variety of oxidation products. Some of 

these cholesterol oxides were shown to be increased in human cataractous lenses, 7-

ketocholesterol being the predominant oxysterol present in human cataracts. The accumulation of 

oxysterols at the plasma membrane may alter intercellular communication by a variety of 

mechanisms, most of which unclear. Therefore, one of the purposes of this work was to investigate 

if oxysterols alter intercellular communication through Cx43 gap junctions in lens epithelial cells. 

Both the proteasome and the lysosome have been implicated in the degradation of Cx43. While 

degradation of Cx43 by the lysosome has long been established, the role of the proteasome in 

Cx43 turnover is still poorly understood. Initial studies suggested that the proteasome could be 

directly involved in connexin degradation, however, more recently, it has been hypothesized that 

the proteasome acts by regulating the stability of Cx43 at the plasma membrane. Although several 

reports have suggested that ubiquitin may be implicated in gap junction internalization, direct 

evidence of ubiquitin-dependent internalization/degradation of Cx43 has not been clearly 

demonstrated. Recently it was demonstrated that Cx43 interacts with the ubiquitin ligase Nedd4, 

suggesting that Nedd4 also plays a role in GJ internalization and/or degradation. Although it was 

suggested that Nedd4 binds to and ubiquitinates Cx43 molecules at the cell surface, leading to 

their internalization and subsequent degradation probably via the interaction with accessory 

proteins, Nedd4-mediated ubiquitination of Cx43 has not been demonstrated. In mammalian cells, 

the monoubiquitination of plasma membrane proteins is associated with the internalization and 

sorting of cargo receptors. Although the exact mechanism and molecular players involved in 
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ubiquitin-dependent internalization of cell surface proteins is still unknown, several studies have 

consistently demonstrated the existence of ubiquitin receptors playing a key role in the 

internalization of membrane proteins. Indeed, a number of endocytic proteins, including Eps15, 

Epsin and Hrs, contain ubiquitin-binding domains that recognize ubiquitinated proteins and sort 

them along the endocytic pathway, thus acting as a link between cargo and components of the 

endocytic and sorting machinery. Thus, a major objective of this study is to evaluate the 

importance of ubiquitination as a signal for the internalization of Cx43, as well as to identify the 

molecular players involved in the ubiquitination of Cx43 and in the recognition and internalization of 

ubiquitinated Cx43. 

Clathrin has long been suggested to mediate the internalization of annular gap junctions, with 

several recent studies showing that impairment of clathrin-mediated endocytosis (CME) leads to 

the accumulation of Cx43 at the plasma membrane. However, other recent studies suggest that 

large portions of Cx43 gap junctions are internalized through clathrin-independent mechanisms. As 

such, another aim of this study is to identify and characterize this clathrin-independent endocytic 

pathway for Cx43. 

Although several reports have suggested that Cx43 is ubiquitinated, it is currently unknown 

whether ubiquitinated Cx43 is a substrate for deubiquitination, and the physiological relevance of 

such modification for the intracellular sorting of Cx43. Another aim of this study is to identify 

putative deubiquitinating enzymes (DUBs) that may be involved in the intracellular sorting of Cx43. 

Following internalization and their arrival at the early endosome, endocytosed cargos may have a 

variety of different fates. Proteins may either be delivered to the trans-Golgi network, be recycled 

back to the plasma membrane or remain in association with the early endosome while it matures 

into late endosomes, which eventually fuse with lysosomes. Although Cx43 internalization and 

subsequent degradation is well established, little (or nothing) is known about the intracellular 

sorting mechanisms of Cx43 or about any putative endocytic recycling mechanisms directing Cx43 

back to the plasma membrane. This work also aims to characterize the intracellular trafficking of 

Cx43. 

Altogether, this study is aimed at characterizing the molecular mechanisms that modulate the 

internalization and intracellular trafficking of Cx43.  
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Chapter 3: Material and Methods 

 

Antibodies and reagents 

 

The rabbit anti-Cx43 polyclonal antibody, obtained from Zymed (CA, USA) was raised against a 

peptide corresponding to a segment of the third cytoplasmic domain (carboxyl-terminal portion) of 

rat Cx43 (Cat No 71-0700). The mouse anti-Cx43 monoclonal antibody obtained from Zymed (CA, 

USA) was raised against a cytoplasmic sequence located near the carboxyl-terminus of rat Cx43 

(Cat No 13-8300). The mouse monoclonal anti-c-myc antibody, obtained from Zymed (CA, USA) 

was raised against a 32 amino acid synthetic peptide (residues 408-439) derived from the 

carboxyl-terminus of the human c-myc protein (Cat No 13-2500). The mouse anti-GFP monoclonal 

antibody (Cat No 33-2600) was obtained from Zymed (CA, USA). The mouse anti-Cx43 

monoclonal antibody obtained from BD Transduction Laboratories (BD Biosciences, CA, USA) was 

raised against a peptide sequence that represents amino acid residues 252-270 of rat Cx43. The 

rabbit polyclonal antibodies against Eps15 (H-896) were obtained from Santa Cruz Biotechnology 

(Heidelberg, Germany). The rabbit polyclonal antibodies against Nedd4 (ab14592), GFP (ab290) 

and Tsg101 (ab30871) were obtained from Abcam (Cambridge, UK). The mouse monoclonal 

P4D1 antibodies against ubiquitin were obtained from Covance (CA, USA). The mouse 

monoclonal FK1 antibodies against ubiquitin were obtained from Biomol (Exeter, UK). The rabbit 

polyclonal antibodies against ubiquitin were kindly provided by Dr. Fu Shang (Tufts University, 

Boston, MA, USA). The mouse monoclonal antibodies against V5 were obtained from Invitrogen 

(Paisley, UK). The rabbit polyclonal antibodies against FLAG were obtained from Alexis 

Biochemicals. 

Unless otherwise noted, all other reagents were obtained from Sigma. Oxysterols were dissolved 

in ethanol. 

 

Cell culture 

 

For primary cultures of lens epithelial cells, eyeballs were removed from adult bovines and the 

anterior capsule of the lens, with the attached epithelium, was cut along the equator and cultured 

in a 24 well-plate containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% fetal bovine serum (Gibco BRL Life Technologies, Inchinnan, UK), 100 U/ml penicillin, 100 

µg/ml streptomycin, at 37°C with 5% CO2. The epithelial cells were then allowed to spread out from 

the capsule into the plate. The cells were kept in culture for 48 hours before treatments. At this 

stage they reached 90% confluence. 1x106 cells were plated onto 60 mm Petri dishes. 

The kidney derived cell lines NRK, Cos-7 and HEK293FT were cultured in DMEM supplemented 

with 10% fetal bovine serum and antibiotics (100 U/ml penicillin and 100 µg/ml streptomycin). The 
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retinal pigment epithelium cell line ARPE-19 (LGC Promochem, Teddington, UK) was cultured in 

Ham’s F12/DMEM (1:1) supplemented with 10% fetal bovine serum, antibiotics (100 U/ml penicillin 

and 100 µg/ml streptomycin) and GlutaMax (1x). Transient transfections of cells were performed 

with Lipofectamine 2000 (Invitrogen), according to manufacturer’s recommendations. 

 

Plasmid constructions 

 

Cx43 cDNA was cloned into a modified pENTR GFP C2 vector (Hume et al, 2006; Lopes et al, 

2007). Site-directed mutagenesis was performed to generate the Cx43P283L and Cx43Y286A 

mutants from Cx43 cDNA. Site-directed mutagenesis was performed to generate the UbK48R(AA) 

mutant from ubiquitin cDNA. myc and UbK48R(AA) were then subcloned into a pCMV7 vector 

containing Cx43 to generate the myc-Cx43-Ub mutant. Correct mutagenesis was verified by 

sequencing the constructs. Plasmids expressing GFP-Cx43 were generated by cloning Cx43 

cDNA into a pENTR GFP C2 vector. Plasmids expressing GFP-Cx43Y286A were generated by 

subcloning Cx43Y286A cDNA into a pEGFP vector. Plasmids expressing V5-Cx43 were generated 

by cloning Cx43 cDNA into a pENTR vector containing V5. Plasmids expressing RFP-Cx43 were 

generated by cloning Cx43 cDNA into a pENTR vector containing RFP. Plasmids expressing GFP-

Rab11 were generated by cloning Rab11 cDNA into a pENTR vector containing GFP. Mouse 

Rab5a and Rab7a cDNA were amplified from AtT20 cells by RT-PCR and cloned into a pENTR 

GFP C2 vector to obtain plasmids expressing GFP-Rab5 and GFP-Rab7 (Hume et al, 2006). The 

UBPY cDNA was kindly provided by Dr. F Fiore (European Institute of Oncology, Milan, Italy). The 

V5-UBPY plasmids were generated by subcloning UBPY cDNA into a pENTR vector containing 

V5. Plasmids expressing Nedd4 and the Nedd4(C/A) mutant were kindly provided by Dr. Dale S 

Haines (Temple University School of Medicine, Philadelphia, PA, USA). Plasmids expressing 

Eps15 and the Eps15(ΔUIM) mutant were kindly provided by Dr. Simona Polo (University of Milan, 

Italy). Plasmids expressing Hrs-FLAG were kindly provided by Dr. Sylvie Urbé (University of 

Liverpool, Liverpool, UK). Plasmids expressing YFP-Rab4 were kindly provided by Dr. P van der 

Sluijs (Erasmus Medical Center, Rotterdam, The Netherlands). 

 

siRNA and shRNA-mediated knockdown 

 

siRNA targeting Eps15 (s4773 (CAGCAUUCUUGUAAACGGAtt) or s4774 

(CUACCUUACUAGCCCAUAUtt)) or Nedd4 (s9416 (GGAAGAUCCAAGAUUGAAAtt) or s9417 

(GGCGAUUUGUAAACCGAAUtt)) and a non-targeting control sequence were obtained from 

Ambion (Silencer Select Pre-designed siRNA). shRNA targeting UBPY was generated by inserting   

the sequence GGTCTCCATGAAGATCTAA into a plasmid under the U6 promotor. Prior to 

transfection, cells were grown until they reached 40-50% confluency. siRNA or shRNA was 
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complexed with Lipofectamine 2000 (Invitrogen), according to manufacturer’s recommendations, 

and added to the cells medium to a final concentration of 20 nM. Eps15, Nedd4 or UBPY 

knockdown was achieved by transfecting twice at intervals of 24 hours, and experiments were 

performed 24 hours after the second transfection.  

 

Immunoprecipitation and Western blot 

 

Cells were rinsed with PBS at 4°C, resuspended in lysis buffer (190 mM NaCl, 50 mM Tris-HCl, 6 

mM EDTA, 1% Triton X-100, pH 8.3) supplemented with protease inhibitor cocktail (Roche), 2 mM 

PMSF, 10 mM iodacetamide (that alkylates cysteine residues at the active site of deubiquitinating 

enzymes (DUB), preventing protein deubiquitination), and incubated on ice during 10 minutes. The 

samples were then centrifuged at 10.000 g, for 10 minutes, and the supernatants used for 

immunoprecipitation. Briefly, protein A was incubated with polyclonal antibodies directed against 

Cx43 (Zymed, Cat No 71-0700), Eps15, Nedd4 or GFP (Abcam, ab290), while protein G was 

incubated with monoclonal antibodies directed against the V5 or myc tags. Non-specific antibodies 

or non-immune rabbit serum were used as controls. Incubations proceeded for 1 hour, at 4 °C, 

followed by incubation with supernatants, for 3 hours at 4 °C. The samples were then centrifuged 

and the protein A/G-sepharose sediments washed 3 times in an appropriate washing buffer (500 

mM NaCl, 50 mM Tris-HCl, 6 mM EDTA, 1% Triton X-100, pH 8.3), resuspended in Laemmli buffer 

and denatured at 37°C for 30 minutes or at 100ºC for 5 minutes. Samples for the connexon 

immunoprecipitation experiments were resuspended in Laemmli buffer without β-mercaptoethanol 

in order to preserve the integrity of connexons, before being denatured at 100 ºC for 5 minutes. 

For Western blot analysis of the immunoprecipitated proteins, samples were separated by SDS-

PAGE, transferred to a PVDF or nitrocellulose membrane, and probed with appropriate antibodies. 

Inputs represent about 5% of the total amount of protein in the lysates before immunoprecipitation. 

 

Isolation of Triton X-100 soluble fractions 

 

To isolate the Triton X-100 soluble fraction, cells were rinsed with PBS at 4°C, scraped and 

resuspended in lysis buffer (190 mM NaCl, 50 mM Tris-HCl, 6 mM EDTA, 1% Triton X-100, pH 

8.3) supplemented with protease inhibitor cocktail (Roche), 2 mM PMSF, 10 mM iodacetamide, 10 

mM NaF and 500 mM Na3VO4. Following incubation on ice for 30 minutes, samples were ultra-

centrifuged for 50 minutes at 100.000 g at 4°C and the supernatant collected (Triton X-100 soluble 

fraction), while the pellet was resuspended in lysis buffer containing 1% SDS and solubilized by 

sonication (Triton X-100 insoluble fraction). After denaturation with Laemmli buffer for 30 minutes 

at 37°C, the proteins were separated by SDS-PAGE, transferred to PVDF membranes and probed 

with appropriate antibodies. 
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Immunofluorescence 

 

Lens epithelial cells grown on glass coverslips were fixed with 4% paraformaldehyde (PFA) in 

phosphate buffered saline (PBS), containing Ca2+ and Mg2+. The samples were then washed with 

PBS, permeabilized with 1% v/v Triton X-100 in PBS, and blocked with goat serum (1:10) for 20 

minutes. Incubation with primary mouse anti-Cx43 monoclonal antibodies (Zymed) proceeded for 1 

hour at room temperature. The samples were then washed three times with PBS before incubation 

with secondary antibodies for 1 hour at room temperature. The specimens were rinsed in PBS and 

mounted with Glycergel (Dako, Glostrup, Denmark). All solutions were made up in 0.2% w/v BSA 

(Sigma) containing 0.02% sodium azide (Sigma, St Louis, MO, USA) in PBS. For controls, primary 

antibodies were omitted.  

Preparations using cell lines grown on glass coverslips were fixed with 4% PFA in PBS. The 

samples were then washed with PBS, permeabilized with 0.2% v/v Triton X-100 in PBS, and 

blocked with goat serum (1:10) for 20 minutes prior to incubation with primary antibodies. 

Incubation with primary antibodies against Cx43 (Transduction Lab), Eps15 (Santa Cruz 

Biotechnology), ubiquitin, myc (Zymed), FLAG (Alexis Biochemical) and Tsg101 (Abcam) 

proceeded for 1 hour at room temperature. The samples were then washed three times with PBS 

before incubation with secondary antibodies for 1 hour at room temperature. The specimens were 

rinsed in PBS and mounted with Glycergel (Dako) or MOWIOL 4-88 Reagent (Calbiochem). All 

solutions were made up in 0.2% w/v BSA (Sigma) containing 0.02% sodium azide (Sigma) in PBS. 

For controls, primary antibodies were omitted. For DAPI staining, cells were incubated with the 

DAPI reagent for 10 minutes. 

The images were collected by confocal microscopy using a Bio-Rad MRC-600 or a Zeiss LSM 710 

or by fluorescence microscopy using a Leica CTRMIC. 

 

Dextran uptake 

 

Lens epithelial cells grown on glass coverslips were incubated with 10 mg/ml RITC-dextran (Mr 

10200 Da) in DMEM for 30 minutes, at 37°C. Cells were then rinsed with PBS and incubated with 

fresh DMEM without dextran and returned to the incubator for an additional 30 minutes. The cells 

were subsequently rinsed with PBS and fixed with 4% PFA and imaged by fluorescence confocal 

microscopy. 

 

Dye transfer assay for gap junctional intercellular communication 

 

Lens epithelial cells grown on glass coverslips were assayed for gap junction-mediated 

intercellular coupling as described by Le and Musil (Le & Musil, 1998). Briefly, the culture medium 
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from a confluent monolayer of LEC was removed and saved. The cells were rinsed three times 

with Hank’s balanced salt solution containing 1% bovine serum albumin (HBSS), after which a 27-

gauge needle was used to create multiple scrapes through the cell monolayer in the presence of 

Dulbecco’s phosphate buffered saline containing 0.5% rhodamine-dextran and 0.5% lucifer yellow. 

After exactly 1 minute, the culture was rinsed three times with HBSS and then incubated for an 

additional 8 minutes in the saved culture medium to allow the loaded dye to transfer to adjoining 

cells. The cells were then rinsed, fixed with 4% paraformaldehyde and imaged on a fluorescence 

microscope under UV light. 

 

Biotinylation of cell surface proteins 

 

Cells grown on 60 mm culture dishes were rinsed twice with 5 ml of ice-cold PBS containing 0.5 

mM MgCl2 and 1 mM CaCl2, followed by the addition of 3 ml of the same ice-cold solution 

containing 1 mg/ml of freshly added SULFO-NHS-SS-biotin (Pierce, Rockford, IL, USA). After 30 

minutes at 4º C, to stop subcellular trafficking, the medium was discarded and the plates were 

washed 3 times with PBS containing 0.5 mM MgCl2, 1 mM CaCl2 and 100 mM glycine. The cells 

were scraped in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM EGTA, containing 1% Triton, 

0.5% DOC, 0.1% SDS and supplemented with protease inhibitor cocktail (Roche), 2 mM PMSF, 10 

mM iodoacetamide, 10 mM NaF and 500 µM Na3VO4; pH 7.5). After 15 minutes on ice the cells 

were sonicated and the homogenates were centrifuged at 14000 rpm, for 10 minutes. The protein 

content of the supernatants was determined and the same quantity of protein was transferred to 

1.5 ml Eppendorf microfuge tubes containing 200 µl of Neutravidin beads (Pierce, Rockford, IL, 

USA). After 2 hours of incubation at 4º C under agitation, the beads were washed four times with 

RIPA buffer. The final pellets were resuspended in 150 µl 2x Laemmli buffer and incubated 1 hour 

at 37º C. The beads were pelleted and the solubilized proteins were separated by SDS-PAGE, 

transferred to PVDF or nitrocellulose membranes and probed with antibodies directed against 

Cx43.  

To determine the stability of Cx43 at the plasma membrane, biotinylated cells were incubated for 

an additional 2 hours in DMEM, at 37°C, in the absence or presence of cholesterol or oxysterols. 

The culture medium was then rejected and the cells extracted in situ by incubation in DPBS 

containing 0.5% Triton X-100, for 10 minutes, at room temperature. The samples were then 

processed as described above. 
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Statistical analysis 

 

Data present in this manuscript is representative of at least three independent experiments. Data 

are expressed as means ± S.D. Comparison between groups was performed using a Student's t 

test. 
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Chapter 4: 7-Ketocholesterol modulates intercellular communication through gap junctions 

in bovine lens epithelial cells 

 

Abstract 

 

Connexin43 is an integral membrane protein that forms intercellular channels called gap junctions. 

Intercellular communication in the eye lens relies on an extensive network of gap junctions 

essential for the maintenance of lens transparency. The association of Cx43 with cholesterol 

enriched lipid raft domains has been previously demonstrated. The objective of this chapter is to 

assess if products of cholesterol oxidation (oxysterols) affect gap junction intercellular 

communication. 

Primary cultures of lens epithelial cells (LEC) were incubated with 7-ketocholesterol (7-keto), 25-

hydroxycholesterol (25-OH) or cholesterol and the subcellular distribution of Cx43 was evaluated 

by immunofluorescence confocal microscopy. The levels of Cx43 present in gap junction plaques 

was assessed by its insolubility in Triton X-100 and quantified by Western blot. The stability of 

Cx43 at the plasma membrane following incubation with oxysterols was evaluated by biotinylation 

of cell surface proteins. Gap junction intercellular communication was evaluated by transfer of the 

dye Lucifer yellow. The results obtained showed that 7-keto induces an accumulation of Cx43 at 

the plasma membrane and an increase in intercellular communication through gap junctions. 

However, incubation with cholesterol or 25-OH did not lead to significant alterations in the 

subcellular distribution of Cx43 nor in intercellular communication. Data further suggests that 

increased intercellular communication results from increased stability of Cx43 at the plasma 

membrane, presumably forming functional gap junctions, as suggested by decreased solubility of 

Cx43 in 1% Triton X-100. The increased stability of Cx43 at the plasma membrane seems to be 

specific and not related to disruption of the endocytic pathway, as demonstrated by dextran 

uptake.  

Results demonstrate, for the first time, that 7-keto induces an increase in gap junction intercellular 

communication, that is most likely due to an increased stability of the protein at the plasma 

membrane and to increased abundance of Cx43 assembled in gap junction plaques. 

 

Introduction 

 

Gap junction channels consist of two connexons that are located at the plasma membrane of two 

adjacent cells. Each connexon is composed of six subunits termed connexins. These channels 

allow the passage of molecules with a molecular mass below 1 kDa, such as small metabolites, 

ions, and second messengers (Kumar & Gilula, 1996). The physiological importance of intercellular 

communication through gap junctions is well illustrated in the eye lens where inner fibre cells fully 
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depend on a complex network of gap junctions for nutrition and signalling (Mathias et al, 1997; Rae 

et al, 1996). The lens is an avascular organ containing a central mass of fibre cells covered by an 

anterior monolayer of epithelial cells. In the lens, gap junctions allow the passage of small 

molecules between metabolically active epithelial cells, which produce most of the ATP used by 

the lens, and the fully differentiated fibre cells that present low metabolic activity. At the equatorial 

region of the lens, epithelial cells exit the cell cycle and undergo significant morphological and 

biochemical changes that result in the formation of fully differentiated fibre cells, where virtually all 

organelles, including the nuclei, are absent (Sue Menko, 2002). Three connexin genes are 

expressed in the vertebrate lens; α1 (Cx43) connexin that is expressed mostly in epithelial cells 

(Beyer et al, 1989); α3 (Cx46) and α8 (Cx50) connexins which are expressed in fibre cells (Paul et 

al, 1991; White et al, 1992). 

The lens plasma membrane is unique among eukaryotic cell membranes due to its extremely high 

content of cholesterol and deficit of polyunsaturated fatty acids. In fact, lens membranes contain 

the highest cholesterol content of any known biological membrane (Li et al, 1985; Zelenka, 1984). 

As the main unsaturated lipid present in lens membranes, cholesterol is prone to oxidation yielding 

a variety of oxidation products. Some of these cholesterol oxides (or oxysterols) were shown to be 

increased in human cataractous lenses (Girao et al, 1998), 7-ketocholesterol being the 

predominant oxysterol present in human cataracts. 

Accumulation of oxysterols at the plasma membrane may alter intercellular communication by a 

variety of mechanisms, most of which unclear. For example, oxysterols may alter lipid bilayer order 

and, therefore, affect intercellular communication (Verhagen et al, 1996). It has been shown that 

Cx43 at the plasma membrane is localized in specialized domains called caveolae (Schubert et al, 

2002). The presence of products of cholesterol oxidation on caveolae disturbs the function of such 

domains (Liu et al, 2000; Myers & Stanley, 1999; Pike & Miller, 1998). Moreover, Cx43 trafficking, 

assembly, and turnover are regulated by multiple mechanisms, including those mediated by the 

cytoskeleton (Lauf et al, 2002; Theiss & Meller, 2002; Thomas et al, 2001). Cholesterol oxides 

were shown to disrupt the cytoskeleton network organisation, through a mechanism that involves 

activation of Rho GTPases (Girao et al, 2003a).  

The objective of this study is to evaluate if oxysterols alter intercellular communication through 

Cx43 gap junctions in lens epithelial cells. 

 

Results 

 

7-keto stabilizes Cx43 at the plasma membrane 

 

Cholesterol has been shown to increase gap junction assembly and cell-cell communication. In this 

study we evaluated the effect of products of cholesterol oxidation on the subcellular distribution of 
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Figure 17 - Effect of oxysterols on the subcellular distribution of Cx43. LEC were treated with 20 µg/ml cholesterol, 
7-keto or 25-OH for 3 hours. Cells incubated in 0.2% ethanol were used as controls. The cells were fixed and stained 
with antibodies directed against Cx43 and imaged by confocal microscopy. 
 

Cx43 and GJIC in LEC. 

To investigate the effects of cholesterol oxides on the subcellular distribution of Cx43, primary 

cultures of lens epithelial cells were incubated with 20 µg/ml cholesterol, 7-keto or 25-OH, for 3 

hours. Cells incubated with 0.2% ethanol were used as controls. The cells were fixed and stained 

with antibodies directed against Cx43 and imaged by immunofluorescence confocal microscopy 

(Figure 17). In control cells Cx43 staining appeared as small punctate spots at the plasma 

membrane and cell-cell interfaces. After 3 hours of incubation with 7-keto the abundance of Cx43 

at the plasma membrane (as evaluated by the number of punctate staining) was higher while 

incubation with cholesterol or 25-OH did not result in major alterations on Cx43 staining at the 

plasma membrane. A perinuclear staining was also observed following incubation with both 7-keto 

or 25-OH.  

There are a variety of factors reported to affect the amount of Cx43 at the plasma membrane. 

These are often cell specific and lead to either recruitment of Cx43 to the plasma membrane or to 

stabilization of the protein at the membrane. The observation that the total amount of Cx43 does 

not change following treatment with 7-keto (Figure 18A) strongly suggests that Cx43 is not 

upregulated in response to cholesterol oxides. 

In order to determine if accumulation of Cx43 at the plasma membrane following incubation with 7-

keto was associated with an increased stabilization of the protein at the plasma membrane, cell 

surface proteins were labelled with biotin. The cells were incubated in the absence or presence of 

20 µg/ml cholesterol, 7-keto or 25-OH, for 30 minutes, prior to biotinylation. The stabilization of 

Cx43 at the plasma membrane was evaluated as the amount of biotinylated Cx43 remaining at the 

cell surface 2 hours after biotinylation (Figure 18B). The internalized Cx43 was washed out from 

the cells following permeabilization with 0.5% Triton X-100 (Govindarajan et al, 2002). In controls, 

the levels of Cx43 at the plasma membrane decreased about 70%, while in cells incubated with 7-

keto the decrease was only of about 37% (Figure 18C). Cells incubated with cholesterol or 25-OH 
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Figure 18 - Effect of oxysterols on Cx43 stability at the plasma membrane. (A) The total amount of Cx43 following 
treatment with 20 µg/ml cholesterol, 7-keto or 25-OH, for 3 hours, was determined by Western blot using antibodies 
directed against Cx43. Actin on the same samples is included to demonstrate comparable loading of the lanes. (B) LEC 
were treated with 20 µg/ml cholesterol (lane 3), 7-keto (lane 5) or 25-OH (lane 7) for 30 min prior biotinylation. Cells 
incubated in 0.2% ethanol were used as controls (lane 1). To determine the stability of Cx43 at the plasma membrane, 
the biotinylated cells were returned to the incubator for an additional 2 hours in DMEM, in the absence (lane 2) or 
presence of cholesterol (lane 4), 7-keto (lane 6) or 25-OH (lane 8). After extraction in situ by incubation in DPBS 
containing 0.5% Triton X-100, the biotinylated surface Cx43 was detected with antibodies directed against Cx43 
following isolation with Neutravidin beads. (C) The results obtained in B are depicted in a graph and correspond to the 
Cx43 remaining at the plasma membrane 2 hours after biotinylation. The values are the average of three individual 
experiments ± SD. * indicates statistically significant differences from controls (p < 0.01). 
 

showed a decrease in the amount of Cx43 at the plasma membrane of about 53% and 80%, 

respectively (Figure 18C).  
 

Stabilization of Cx43 at the plasma membrane is not related to a decrease in endocytosis  

 

Endocytosis of dextran is often used as a functional test for the endocytic pathway (Govindarajan 

et al, 2002; Kauppi et al, 2002; Song et al, 2002). To demonstrate that the stabilization of Cx43 

induced by 7-keto results from a specific effect on the protein, rather than a general effect on 

endocytic pathways, the uptake of RITC-dextran was evaluated in LEC in culture (Figure 19). The 

internalized fluorescently labelled dextran was assessed by confocal microscopy. For negative 

controls, cells were incubated at 4°C to inhibit endocytosis. Results show that endocytosis is 

slightly enhanced in cells treated with 7-keto or cholesterol, as revealed by the increased 

fluorescence inside cells. Conversely, endocytosis was not affected following treatment with 25-

OH. Despite the increase in endocytosis following treatment with 7-keto, Cx43 accumulates at the 

plasma membrane, indicating that the effect of 7-keto is most likely associated with stabilization of 

Cx43 at the plasma membrane. 

 

7-keto increases intercellular communication through gap junctions 

 

The functional implications of Cx43 redistribution following incubation with 7-keto was investigated 

in primary cultures of lens epithelial cells by scrape loading/dye transfer assays. Intercellular 

communication was quantified as the distance travelled by the dye Lucifer yellow 8 min after 
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Figure 19 - Effect of oxysterols on the endocytic pathway. Lens epithelial cells were incubated with RITC-dextran for 
30 min, at 37°C, following incubation with 20 µg/ml cholesterol, 7-keto or 25-OH for 2 hours. Cells incubated with 0.2% 
ethanol were used as controls. The cells were incubated for an additional 30 min in the absence of the dye, and 
subsequently fixed with 4% PFA and imaged by fluorescence confocal microscopy. For negative controls, cells were 
incubated at 4°C to inhibit endocytosis. 
 

loading of the dye. The results obtained are presented in a histogram (Figure 20). Incubation of 

LEC with 7-keto resulted in a 57% increase in GJIC, as compared to controls, while incubation with 

cholesterol did not significantly affect intercellular communication. On the other hand, when cells 

were incubated with 25-OH there was a slight decrease in intercellular communication through gap 

junctions. 

 

7-keto induces partition of Cx43 into Triton X-100 insoluble fractions and accumulation of 

phosphorylated forms of Cx43 

 

Formation of functional gap junctions requires incorporation of Cx43 into gap junction plaques. 

Thus, by increasing intercellular communication 7-keto should consistently stabilize Cx43 in GJ. To 

confirm this hypothesis primary cultures of lens epithelial cells were incubated with 20 µg/ml 

cholesterol, 25-OH or 7-keto, for 3 hours. Cells incubated with 0.2% ethanol were used as controls. 

Phosphorylation of Cx43 and its assembly into GJ plaques results in an increased insolubility in 

1% Triton X-100 (Musil & Goodenough, 1991). The results presented in Figure 21A and 21B show 

that incubation with 7-keto led to a 2 fold increase in the amount of Triton X-100 insoluble Cx43 

(Figure 21A, lane 3, and 21B). Incubation of cells with cholesterol resulted in a 53% increase in the 

amount of Cx43 partitioned into the Triton insoluble fraction (Figure 21A, lane 2, and 21B) while 

cells incubated with 25-OH presented a decrease of about 20% (Figure 21A, lane 4, and 21B).  

Incorporation of Cx43 into GJ is associated with phosphorylation of the protein (Cooper & Lampe, 

2002; Lampe & Lau, 2000; Musil & Goodenough, 1991). The presence of phosphorylated Cx43 in 

the Triton insoluble fraction was determined by Western blot using polyclonal antibodies that 

recognize the phosphorylated forms of Cx43 (Figure 21A, middle panel). Three major forms of 

Cx43 are often recognized by Western blot: the non-phosphorylated (NP) form and two slower 

migrating bands corresponding to the phosphorylated species (P1 and P2). However, in Figure 

21A, due to overexposure of the film, the non-phosphorylated form could not be quantified. Thus, 

only the phosphorylated forms P1 and P2 were considered and quantified (Figure 21A and 21C). 
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Figure 20 - Effect of oxysterols upon gap junction intercellular communication. LEC were treated with 20 µg/ml 
cholesterol, 7-keto or 25-OH for 3 hours. Cells were assayed for intercellular communication by Lucifer yellow dye 
transfer, following scrape loading. Intercellular communication was evaluated as the average distance travelled by the 
dye Lucifer yellow along the monolayer and is represented as a histogram. The values are the average of three 
individual experiments ± SD. * indicates statistically significant differences from controls (p < 0.05). 
 

The results show that the amount of phosphorylated Cx43 increased in cells incubated with 7-keto 

(Figure 21A, lane 3) suggesting its assembly into gap junction plaques. 

 

Discussion 

 

In this chapter we demonstrate, for the first time, that 7-keto can modulate gap junction intercellular 

communication, probably through a mechanism that involves stabilization of Cx43 at the plasma 

membrane. Data presented in this study shows that incubation of LEC with 7-keto leads to an 

accumulation of the protein at the plasma membrane and to an increase in cell-cell 

communication. Additionally, an increased partition of Cx43 into Triton X-100 insoluble fractions 

after treatment with 7-keto suggests that Cx43 is incorporated into gap junctions plaques. This 

hypothesis is further supported by the observation that the amount of total Cx43 is not altered 

following incubation with 7-keto. Such changes in subcellular distribution may thus account for the 

increased intercellular communication. On the other hand, the biotinylation experiments showed 

that the rate of endocytosis of Cx43 is significantly reduced following incubation with 7-keto. Biotin 

labels mainly non-junctional Cx43, therefore and taken together, the biotinylation and solubility in 

Triton X-100 experiments suggest a role for 7-keto in the stabilization of Cx43 at the plasma 

membrane. Moreover, at least part of the Cx43 that is stabilized at the plasma membrane is likely 

to be incorporated into functional gap junctions, as revealed by the increased intercellular 

communication. Thus, it is conceivable that the accumulation of Cx43 into gap junctions induced 

by 7-keto is a consequence of an increase in the amount Cx43 at the plasma membrane available 

to form gap junction plaques.  

It is not likely that perinuclear accumulation of Cx43 following treatment with 7-keto or 25-OH can 

account for the accumulation of Cx43 at the plasma membrane. Indeed, although both 7-keto and 

25-OH lead to an accumulation of Cx43 in the perinuclear region it is only 7-keto that stabilizes 
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Figure 21 - Effect of oxysterols on Cx43 phosphorylation and solubility in Triton X-100. (A) LEC were incubated 
with 20 µg/ml cholesterol, 7-keto or 25-OH for 3 hours. Cells incubated with 0.2% ethanol were used as controls. The 
Triton X-100 insoluble fractions of cell lysates were separated by SDS-PAGE, transferred to PVDF membranes and 
probed with antibodies directed against Cx43 (upper panel). To allow quantification of the phosphorylated forms of Cx43 
the film was overexposed (middle panel). Actin on the same samples is included to demonstrate comparable loading of 
the lanes (lower panel). (B and C) The intensity of the bands was determined by laser scanning of the films followed by 
quantitative densitometric analysis and the results obtained are depicted in a graph. The values are the average of three 
individual experiments ± SD. * indicates statistically significant differences from controls (p < 0.05). 
 

Cx43 at the plasma membrane. 

The findings in this study further suggest that the effects of 7-keto on Cx43 endocytosis are rather 

specific and most likely involve activation of specific signalling pathways. This hypothesis is 

supported by two main observations: (1) the effects of 7-keto cannot be mimicked by other 

cholesterol oxides such as 25-OH and (2) the effects of 7-keto are exerted specifically on Cx43 as 

the endocytic pathway is not inhibited (internalization of dextran is not diminished). Taken together 

these observations suggest that the effects of 7-keto reported in this study are not the result of 

unspecific cholesterol oxidation at the plasma membrane but rather reflect a physiological role for 

7-keto in LEC intercellular communication. Presumably, a similar effect may also be present in 

other cells and tissues, where changes in intercellular communication are likely to compromise cell 

or tissue function.  

The effects of cholesterol oxidation on endocytosis are controversial. In fact, Chow et al. have 

shown that OxLDL (rich in 7-keto) promotes endocytosis in endothelial cells (Chow et al, 1998), 

while Borsum et al. showed that OxLDL induces a decrease in the activity of endocytic pathways 

(Borsum et al, 1985). The results presented in this study indicate that 7-keto slightly enhances 

endocytosis in LEC. This emphasizes that Cx43 stabilization is a specific phenomena unrelated to 

alterations in the endocytic pathway. 
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Two main pathways for Cx43 internalization have been suggested: via clathrin coated pits (Larsen 

et al, 1979; Naus et al, 1993) and via caveolae (Schubert et al, 2002). Caveolae are membrane 

lipid rafts rich in cholesterol and sphingolipids that are involved in signal transduction (Galbiati et 

al, 2001; Razani et al, 2000; Shaul & Anderson, 1998), endocytosis (Schnitzer et al, 1996) and 

cholesterol transport (Fielding & Fielding, 1995; Smart et al, 1996). Indeed, connexins, including 

Cx43, were shown to specifically target to lipid raft/caveolae and directly interact with Cav-1, a 

membrane protein that acts as a scaffolding protein to cluster lipids and signalling molecules within 

caveolae (Schubert et al, 2002). Lin et al. showed that phosphorylation of Cx43 regulates the 

distribution of the protein within caveolae in lens epithelial cells (Lin et al, 2003b). Disruption of 

caveolae following incubation with cholesterol oxidase was reported to affect the activity of various 

membrane receptors sequestered in these membrane domains, including the endothelin receptor 

type A (Okamoto et al, 2000), GLUT4 (Shigematsu et al, 2003) and the platelet-derived growth 

factor receptor (PDGFR) (Liu et al, 2000). The presence of oxysterols, namely 7-keto, on caveolae 

has been shown to interfere with enzymes that concentrate in such membrane domains (Blair et al, 

1999; Myers & Stanley, 1999). Additionally, in vitro studies demonstrated that 7-keto interacts with 

caveolin (Sleer et al, 2001). Therefore, by disturbing caveolae structure and/or function, 7-keto 

may affect proteins involved in regulating the stability of Cx43 at the plasma membrane. The 

identity of such proteins is largely unknown as are the mechanisms whereby Cx43 is extracted 

from the plasma membrane, endocytosed and eventually degraded. Protein kinases are likely 

candidates to assist in the regulation of Cx43 stability and endocytosis. Indeed, the carboxyl-

terminal domain of Cx43 was shown to be phosphorylated by a variety of kinases including PKC 

(Solan et al, 2003), v-Src (Lin et al, 2001), MAPK (Cottrell et al, 2003; Warn-Cramer et al, 1998) or 

casein kinase I (Cooper & Lampe, 2002). Hyperphosphorylation of Cx43 was also shown to be 

associated with decreased GJIC and with increased protein degradation (Girao & Pereira, 2003; 

Lampe & Lau, 2000; Qin et al, 2003). However, recent studies reported increased GJIC following 

phosphorylation of Cx43. For example, it was shown that casein kinase 1 directly phosphorylated 

Cx43, promoting gap junction assembly (Cooper & Lampe, 2002) while FGF upregulated 

intercellular communication between lens epithelial cells through the activation of extracellular 

signal-regulated kinase (ERK) (Le & Musil, 2001). Initial phosphorylation of Cx43 is normally 

involved in the assembly of the protein into gap junction plaques (Cooper & Lampe, 2002; Lampe 

& Lau, 2000; Musil & Goodenough, 1991). Significantly, 7-keto was shown to activate a variety of 

protein kinases (Deckert et al, 2002; Myers & Stanley, 1999). It is thus conceivable that the 

presence of 7-keto at the plasma membrane may enhance Cx43 assembly and formation of gap 

junction plaques by a mechanism that probably involves phosphorylation of Cx43. The importance 

of cholesterol oxidation in the lens is not without significance. Indeed, cholesterol is the most 

abundant lipid in lens membranes and it has been shown before that cholesterol oxides are 

present at detectable levels in the lens and more so in human cataracts (Girao et al, 1998). 
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Although the ratio of cholesterol/phospholipid is higher in the inner regions of the lens (Li et al, 

1985), where oxysterols are more likely to accumulate, this does not exclude that cholesterol 

oxides in fibre cells may still affect the function of lens epithelial cells nor that cholesterol oxides 

may interfere with intercellular communication through gap junctions formed by Cx46/Cx50 in inner 

regions of the lens. It has been previously shown that cholesterol oxides affect the organization of 

the cytoskeletal network in LEC, through a mechanism mediated by Rho GTPases (Girao et al, 

2003a). Since the cytoskeleton plays a major role in the trafficking and recruitment of connexins 

into gap junction plaques (Lauf et al, 2002; Theiss & Meller, 2002; Thomas et al, 2001) it is 

conceivable that the effect of 7-keto on GJIC may be caused by a mechanism involving 

cytoskeleton disruption. Although the data presented in this study does not allow the 

demonstration of a mechanism whereby 7-keto increases Cx43 stability at the plasma membrane, 

it certainly provides a new insight into the effects of cholesterol oxides in LEC and into its 

physiological implications in intercellular communication. The inner layers of the lens fully depend 

on a complex network of gap junctions through which nutrients and signal molecules produced in 

the outer layers reach the inner fibres. Through a model similar to that described for Cx43 in lens 

epithelial cells, upregulation of intercellular communication through gap junctions formed by 

Cx46/Cx50 in deeper cortical regions of the lens may compromise lens transparency leading to the 

formation of cataract. Additionally, the increase in intercellular communication induced by 7-keto 

may also disrupt a variety of highly regulated events, including differentiation of LEC into fibres. 

Several studies have shown that connexins play an important role in lens differentiation and 

development (Gong et al, 1997; Gu et al, 2003; Qin et al, 2003; White, 2002). For example, it has 

been shown that 7-keto induces differentiation of LEC, by an unknown mechanism (Girao et al, 

2003b). Thus, by interfering with GJIC, cholesterol oxides may affect highly regulated 

differentiation programs and compromise normal lens growth and transparency, contributing to the 

cataractogenic process. 

 

Conclusions 

 

The results obtained in this study show for the first time that 7-keto induces an increase in GJIC, 

that is most likely due to an increased stability of the protein at the plasma membrane and to an 

increased abundance of Cx43 assembled into gap junction plaques. The upregulation of GJIC in 

the lens may disrupt a variety of highly regulated events, including differentiation of LEC into fibres 

that, ultimately, compromises lens transparency leading to the formation of cataract. 
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Chapter 5: Eps15 interacts with ubiquitinated Cx43 and mediates its internalization 

 

Abstract 

 

Gap junctions are specialized cell–cell contacts that provide direct intercellular communication 

between eukaryotic cells. Regulation of GJIC by degradation of Cx43 has been a matter of debate 

over the last two decades and both the proteasome and the lysosome have been implicated. 

However, the underlying mechanism and molecular players involved remain elusive. In this study 

we demonstrate, for the first time, that the ubiquitin ligase Nedd4 is involved in Cx43 ubiquitination. 

Indeed, depletion of Nedd4 with siRNA resulted in a decrease of the amount of ubiquitin attached 

to Cx43. Ubiquitinated membrane proteins are often recognized and targeted by endocytic 

adaptors containing ubiquitin-binding domains, such as Eps15. By co-immunoprecipitation and 

immunofluorescence we show interaction of Cx43 with Eps15 and colocalization of these proteins 

mainly at the plasma membrane. Moreover, depletion of Eps15 results in an accumulation of Cx43 

at the plasma membrane. Furthermore, the interaction of Eps15 with Cx43 requires the ubiquitin-

interacting motifs of Eps15 suggesting that the interaction occurs through ubiquitin attached to 

Cx43. Data presented in this chapter is consistent with a new molecular model in which Nedd4-

mediated ubiquitination of Cx43 is required to recruit Eps15, through its ubiquitin-interacting motifs, 

and targets ubiquitinated Cx43 to the endocytic pathway. This provides the basis for future studies 

aiming at identifying the molecular players and mechanisms involved in Cx43 internalization and 

degradation.  

 

Introduction 

 

Gap junctions are specialized cell–cell contacts that provide direct intercellular communication 

between eukaryotic cells. Each channel consists of two hemichannels termed connexons, each 

composed of six connexin subunit proteins. Connexins have four membrane-spanning domains, 

two extracellular loops and three cytoplasmic domains. GJ can be composed of a few to many 

thousands of individual channels.  

The extent of gap junction intercellular communication is a direct result of the number and 

functionality of connexin-based pores. Therefore, processes that influence the stability of 

connexins at the plasma membrane are critical for regulating intercellular communication. It is now 

well established that rapid degradation of connexins is one of the mechanisms involved in 

regulation of GJIC. Indeed, one of the most remarkable aspects of gap junction turnover is the 

exceptional metabolic lability of connexins (Girao & Pereira, 2003; Laird, 2006; Leithe & Rivedal, 

2007). While the half-life of the vast majority of plasma membrane proteins exceed 24 hours, 

connexins turnover with a half-life of only 1.5-5 hours.  
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Recent studies have shown that docked connexons cannot be separated under physiological 

conditions. As a consequence, entire GJ plaques are internalized by one of two adjacent cells, as 

large double-membrane vesicular structures termed “annular GJ” (Leithe et al, 2006). These 

“annular GJ” are then fragmented into smaller vesicles and subsequently degraded by endo-

lysosomal pathways. Clathrin itself and proteins associated to clathrin-mediated endocytosis 

(CME) play a critical role in “annular GJ” internalization, translocation and degradation (Gumpert et 

al, 2008; Piehl et al, 2007). The internalization of double-membrane structures by one of two 

adjacent cells is clearly distinct from the majority of other established mechanisms for the turnover 

of junctional complexes. 

Both the proteasome (Beardslee et al, 2000; Fernandes et al, 2004; Girao & Pereira, 2003; Laing 

& Beyer, 1995; Laing et al, 1997; Musil et al, 2000) and the lysosome (Laing et al, 1997; Musil et 

al, 2000) have been implicated in the degradation of Cx43. Whereas degradation of Cx43 by the 

lysosome has long been established, the role of the proteasome in Cx43 turnover is still poorly 

understood. Initial studies suggested that the proteasome could be directly involved in connexin 

degradation (Laing & Beyer, 1995). However, more recently, it has been hypothesized that the 

proteasome acts by regulating the stability of Cx43 at the plasma membrane, most likely by 

degrading a connexin-interacting protein (Girao & Pereira, 2007; Musil et al, 2000). For example, a 

model has been proposed in which proteasome-dependent degradation of a putative Cx43 binding 

protein regulates Cx43-ZO-1 interaction which in turn regulates Cx43 internalization (Barker et al, 

2002; Girao & Pereira, 2007). Cx43 is known to interact with several proteins that may regulate 

channel assembly and/or the stability of Cx43 at the plasma membrane. These include cytoskeletal 

proteins and anchoring proteins, such as E-cadherin (Fujimoto et al, 1997), Cav-1 (Schubert et al, 

2002), and ZO-1 (Giepmans et al, 2001b; Toyofuku et al, 1998). More recently, it was 

demonstrated that Cx43 interacts with the ubiquitin ligase Nedd4 through the binding of its 

carboxyl-terminal PY-motif (XPPXY) with the WW2 domain of Nedd4, suggesting that Nedd4 also 

plays a role in GJ internalization and/or degradation. Although it was suggested that Nedd4 binds 

to and ubiquitinates Cx43 molecules at the cell surface, leading to their internalization and 

subsequent degradation probably via the interaction with accessory proteins (Leithe & Rivedal, 

2007; Leykauf et al, 2006), Nedd4-mediated ubiquitination of Cx43 has not been demonstrated. 

Binding of ubiquitin moieties can direct substrates to different pathways. For example, binding of 

polyubiquitin chains is associated with protein degradation (Lys48-linked chains) and with 

endocytosis (Lys63-linked chains). In many instances a single ubiquitin binds to one 

(monoubiquitination) or multiple (multimonoubiquitination) lysine residues on the substrate. In 

mammalian cells, the monoubiquitination of plasma membrane proteins is associated with the 

internalization and sorting of cargo receptors. Although the exact mechanism and molecular 

players involved in ubiquitin-dependent internalization of cell surface proteins is still unknown, 

several studies have consistently demonstrated that ubiquitin receptors play a key role in the 
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internalization of membrane proteins (Hicke & Dunn, 2003; Miranda & Sorkin, 2007; 

Mukhopadhyay & Riezman, 2007; Traub & Lukacs, 2007). Indeed, a number of endocytic proteins, 

including Eps15, Epsin and Hrs, contain ubiquitin-binding domains that recognize ubiquitinated 

proteins and sort them along the endocytic pathway, thus acting as a link between cargo and 

components of the endocytic and sorting machinery (Kirkin & Dikic, 2007; Traub & Lukacs, 2007). 

Moreover, some of these ubiquitin receptors are often themselves monoubiquitinated (Di Fiore et 

al, 2003; Hicke et al, 2005; Hoeller et al, 2006; Woelk et al, 2006). 

Although the involvement of clathrin in Cx43 endocytosis is widely accepted, the role of ubiquitin in 

this process is still a matter of debate. The results presented in this chapter show, for the first time, 

that Cx43 ubiquitination is mediated by Nedd4 and that the conjugation of ubiquitin to Cx43 is 

required for subsequent interaction with the endocytic protein Eps15. Therefore, the interaction 

between the ubiquitin-interacting motifs (UIM) of Eps15 and the ubiquitinated form of Cx43 is 

shown to be required for Cx43 internalization. 

 

Results 

 

Cx43 is multimonoubiquitinated  

 

Several studies carried out in different cell types have suggested that both the lysosome and the 

proteasome are involved in Cx43 degradation. Although Cx43 ubiquitination has previously been 

demonstrated (Laing & Beyer, 1995; Leithe & Rivedal, 2004a; Leithe & Rivedal, 2004b), its role in 

Cx43 internalization and/or degradation remains elusive. We first assessed whether the NRK cell 

line, that endogenously expresses high amounts of Cx43, presents detectable levels of ubiquitin 

conjugated to Cx43. For this purpose, endogenous Cx43 was selectively immunoprecipitated using 

polyclonal antibodies, followed by Western blot and probing with antibodies against ubiquitin. To 

distinguish between mono and polyubiquitinated Cx43 we used two different antibodies directed 

against ubiquitin: the P4D1 monoclonal antibody, that recognizes polyubiquitinated and 

monoubiquitinated proteins, and the FK1 monoclonal antibody that only recognizes 

polyubiquitinated proteins (Haglund et al, 2003). The results presented in Figure 22 show that a 

significant fraction of immunoprecipitated Cx43 reacts with the P4D1 antibody, that can recognize 

monoubiquitinated proteins. On the other hand, when the immunoprecipitated material was probed 

with FK1 antibodies, it was not possible to detect any band, suggesting that, as described before 

for rat liver epithelial cells (Leithe & Rivedal, 2004a; Leithe & Rivedal, 2004b), Cx43 is 

multimonoubiquitinated. The presence of a band with 50 kDa (asterisk), that reacts both with Cx43 

and P4D1 antibodies, most likely corresponds to the single monoubiquitinated form of Cx43. 
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Figure 22 - Cx43 is multimonoubiquitinated. Lysates from NRK cells were immunoprecipitated with polyclonal 
antibodies against Cx43. Immunoprecipitates were then analyzed by Western blot using monoclonal antibodies against 
Cx43 and two different antibodies against ubiquitin; P4D1 (that recognizes both monoubiquitinated and polyubiquitinated 
proteins) and FK1 (only recognizes polyubiquitinated proteins). A significant fraction of immunoprecipitated Cx43 cross-
reacts with the P4D1 antibody. Conversely, when the immunoprecipitated material was probed with FK1 antibodies, it 
was not possible to detect any band, suggesting that Cx43 is multimonoubiquitinated. The presence of a band with 50 
kDa (*), that cross-reacts both with Cx43 and P4D1 antibodies, most likely corresponds to the single monoubiquitinated 
form of Cx43. 
 

Cx43 ubiquitination depends on Nedd4 

 

A recent study by Leykauf et al. demonstrated that the WW2 domain of Nedd4 binds to a 

sequence in the carboxyl-terminal of Cx43 that contains a PY motif (Leykauf et al, 2006). However, 

in that study the authors did not show that Nedd4 is involved in Cx43 ubiquitination. Thus, in the 

present study we assessed whether Cx43 ubiquitination is indeed mediated by Nedd4.  

To first evaluate if the two proteins interact in our experimental model, Cos-7 cells were co-

transfected with DNA encoding Cx43 and Nedd4. Cx43 or Nedd4 were then selectively 

immunoprecipitated using polyclonal antibodies against each of these proteins, followed by 

Western blot and probing with antibodies against Nedd4 or Cx43, respectively. As shown in Figure 

23A, and consistent with previous reports (Leykauf et al, 2006), Nedd4 co-precipitates with Cx43.  

To address the putative role of Nedd4 in Cx43 ubiquitination, we evaluated the levels of 

ubiquitinated Cx43 in cells depleted of endogenous Nedd4, following gene silencing with siRNA 

against Nedd4. As shown in Figure 23B, transfection of Cos-7 cells with two different siRNAs for 

Nedd4 resulted in almost total depletion of endogenous Nedd4 (upper panel). To analyze the effect 

of Nedd4 depletion upon the conjugation of ubiquitin to Cx43, Cx43 was selectively 

immunoprecipitated using polyclonal antibodies, followed by Western blot and probing with 

antibodies against ubiquitin (P4D1). The results obtained show that silencing of Nedd4 results in a 

decrease in ubiquitination levels of Cx43 (Figure 23B, compare lane 2 with lane 3 in the upper right 

panel probed with ubiquitin). However, as shown in the lower panels of Figure 23B, the total 

amount of Cx43 does not vary in cells transfected with siRNA for Nedd4. 

Previous studies have reported that multiple ubiquitin ligases can be part of an ubiquitination 
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Figure 23 - Cx43 ubiquitination depends on Nedd4. (A) Lysates from Cos-7 cells overexpressing both Nedd4 and 
Cx43 were immunoprecipitated with polyclonal antibodies against Cx43 (upper panel) or Nedd4 (lower panel). 
Immunoprecipitates were then analyzed by Western blot and probed with monoclonal antibodies against Cx43 (lower 
panel) or polyclonal antibodies against Nedd4 (upper panel). (B) Lysates from Cos-7 cells transfected with Cx43 and two 
different siRNA for Nedd4 were analyzed by Western blot using antibodies against Nedd4 (upper panel) or 
immunoprecipitated with polyclonal antibodies against Cx43 (lower panels), Western blotted and probed for ubiquitin 
(P4D1) or Cx43. Depletion of endogenous Nedd4 by transfecting cells with siRNAs for Nedd4 (#1) resulted in a dramatic 
decrease in the ubiquitination levels of Cx43 (lower right panel), although the total amount of Cx43 does not vary. (C) 
Lysates from Cos-7 cells transfected with Cx43 and either the wild type or the catalytically inactive form of Nedd4 
(Nedd4(C/A)) were immunoprecipitated with polyclonal antibodies against Cx43 and then analyzed by Western blot using 
monoclonal antibodies against ubiquitin (P4D1) or Cx43. Overexpression of the Nedd4(C/A) mutant induced a robust 
decrease in Cx43 ubiquitination levels (compare lane 7 with lane 5 and 6, left panel), while the total amount of Cx43 
does not vary. 
 

complex, such as in the case of Itch and A20 regulated ubiquitination of RIP1 (Shembade et al, 

2008) or Cbl3 and Itch regulated ubiquitination of EGFR (Courbard et al, 2002), as such we 

hypothesized that silencing of Nedd4 by siRNA could disrupt a putative E3 ligase complex 
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responsible for ubiquitinating Cx43. To address this possibility, we tested the effect of 

overexpressing a catalytically inactive mutant of Nedd4, in which the active cysteine in the HECT 

domain was replaced by an Alanine. Cos-7 cells were co-transfected with plasmids encoding Cx43 

and either the wild type or an inactive form of Nedd4. Cx43 was then selectively 

immunoprecipitated using polyclonal antibodies, followed by Western blot and probing with 

antibodies against ubiquitin (P4D1). Levels of ubiquitinated Cx43 significantly decreased in cells 

overexpressing an inactive form of Nedd4 (Figure 23C, compare lane 7 with lanes 5 and 6 in the 

left panel), while the total amount of Cx43 does not vary (Figure 23C, right panel). 

Taken together, these data show, for the first time, that the ligase activity of Nedd4 is required for 

Cx43 ubiquitination. 

 

Cx43-Nedd4 interaction is required for Nedd4-dependent ubiquitination of Cx43 

 

To further establish whether ubiquitination of Cx43 requires binding to Nedd4, we used a mutated 

form of Cx43, in which Pro283 of the PY-motif was replaced by a leucine (Cx43P283L). To first 

investigate the role of the PY-domain in binding to Nedd4, Cos-7 cells were co-transfected with 

plasmids encoding Nedd4 and either the wild type or the mutated form of Cx43 (Cx43P283L). The 

results presented in Figure 24A show that the amount of Nedd4 that co-immunoprecipitates with 

the mutated form of Cx43 is significantly lower when compared to the wild type (compare lane 2 

with lane 4). These results demonstrate that the PY-motif in Cx43 is involved in the interaction with 

Nedd4. Consistently, data presented in Figure 24B shows that the Cx43P283L mutant that weakly 

binds to Nedd4 is less ubiquitinated when compared to wild type Cx43, as demonstrated by the 

lower levels of both low and high molecular weight proteins that are immunoprecipated with Cx43 

and cross react with ubiquitin (compare lane 4 and lane 6 in the rightmost panels). Moreover, a 

band with a molecular weight of about 50 kDa, that reacts both with antibodies against Cx43 and 

ubiquitin (asterisk), which presumably corresponds to the single monoubiquitinated form of Cx43, 

is present in much lower levels in cells overexpressing the mutated form Cx43P283L. Although the 

amount of Cx43P283L that interacts with Nedd4 is much lower than wild type Cx43, it is still 

possible to detect ubiquitinated Cx43 in cells overexpressing Cx43P283L. This may be explained 

by the presence of endogenous Cx43 in the cells overexpressing Cx43P283L. Moreover, although 

the interaction of Nedd4 with Cx43P283L is greatly impaired, some degree of interaction is still 

detectable, which may lead to the ubiquitination of this mutant of Cx43. Furthermore, it is possible 

that another E3 protein might be involved in Cx43 ubiquitination, through a mechanism 

independent of the PY-motif of Cx43. 

Taken together these data show that an intact PY-domain of Cx43 is important for the interaction 

with Nedd4 and is, at least in part, required for Cx43 ubiquitination. 
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Figure 24 - The interaction between Cx43 and Nedd4 depends on the Proline-rich motif of Cx43. (A) Lysates from 
Cos-7 cells transfected with Nedd4 and either the wild type or mutated form of Cx43 (Cx43P283L) were 
immunoprecipitated using polyclonal antibodies against Cx43 and then analyzed by Western blot using monoclonal 
antibodies against Cx43 or polyclonal antibodies against Nedd4. The amount of Nedd4 co-immunoprecipitated with 
Cx43P283L is significantly lower when compared to wild type (compare lane 2 with lane 4). (B) Lysates from Cos-7 cells 
following transfection with Nedd4 and either the wild type or mutated form of Cx43 (Cx43P283L) were 
immunoprecipitated with polyclonal antibodies against Cx43 and then analyzed by Western blot using monoclonal 
antibodies against Cx43 or ubiquitin (P4D1). The lower panels correspond to longer exposures of the same membranes 
shown in the upper panels (LMW Ub Cx43 = Low molecular weight forms of ubiquitinated Cx43; HMW Ub Cx43 = High 
molecular weight forms of ubiquitinated Cx43). The intensity of the bands was measured and plotted in a graph (Black 
bars = Cx43wt; Grey bars = Cx43P283L). Cx43P283L is substantially less ubiquitinated (roughly two to three times) than 
wild type Cx43. Moreover, a band with a molecular weight of about 50 kDa (*), that reacts both with antibodies against 
Cx43 (lower left panel, lane 4) and ubiquitin (upper right panel, lane 4), and presumably corresponds to the single 
monoubiquitinated form of Cx43, is much weaker in cells overexpressing the mutant Cx43P283L. 
 

Eps15 interacts with Cx43 

 

The binding of ubiquitin to membrane proteins is known to promote the internalization and sorting 

of cargo. Several endocytic adaptors, including Eps15, have been traditionally linked to clathrin-
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dependent endocytosis, namely through interaction with AP2. However, it is currently accepted 

that some of these adaptor proteins can also direct ubiquitinated cargos to clathrin-dependent or 

clathrin-independent endocytosis. Indeed, studies on EGFR showed that Eps15, through its UIMs, 

acts as an ubiquitin receptor that recognizes ubiquitinated proteins and sorts them along the 

endocytic pathway.  

Considering that the binding of ubiquitin to Cx43 localized at the plasma membrane may act as an 

endocytic signal, this suggested a role for UIM-containing endocytic proteins, such as Eps15, in 

mediating gap junction endocytosis. To address this possibility, we investigated the interaction of 

Cx43 with Eps15 in NRK cells that express high levels of both Cx43 and Eps15. The interaction of 

Cx43 with Eps15 was evaluated by selectively immunoprecipitating Cx43 using polyclonal 

antibodies, followed by Western blot and probing with antibodies against Eps15. The results 

obtained and presented in Figure 25A show that a significant fraction of Eps15 co-precipitates with 

Cx43. 

 

Cx43 colocalizes with Eps15 at the plasma membrane 

 

To further confirm the interaction of Cx43 with Eps15, NRK cells were fixed and stained with 

monoclonal antibodies directed against Cx43 and polyclonal antibodies directed against Eps15. 

Cells were subsequently imaged by immunofluorescence confocal microscopy. The results show 

that a significant amount of Cx43 colocalizes with Eps15 (Figure 25B). Although most of the 

colocalization observed occurs at the plasma membrane (arrows), the two proteins can also be 

detected in the same cytoplasmic vesicles (arrowheads). These results demonstrate that Eps15 

interacts with Cx43, most likely at the plasma membrane, thus suggesting a role for Eps15 in gap 

junction internalization. 

 

The UIM of Eps15 is required for its interaction with Cx43 

 

The carboxyl-terminus of Eps15 contains two UIMs, thus, we investigated if these domains are 

required for the interaction with Cx43. To address this question, we overexpressed a mutant of 

Eps15 lacking the UIMs, and its ability to bind Cx43 was compared with full-length Eps15. 

Consistent with what is observed for the two endogenous proteins in NRK, Cx43 and wild type 

Eps15 still interact when overexpressed in Cos-7 cells. However, when the wild type Eps15 was 

replaced by a mutant Eps15 lacking the UIMs, the interaction was dramatically reduced (Figure 

26A, compare lane 10 with lane 12), indicating that interaction of Cx43 with Eps15 occurs through 

the UIM of Eps15. To investigate whether Cx43 ubiquitination is required for the interaction with 

Eps15, we performed several experiments where Cx43 ubiquitination was impaired. In the first 

experiment we overexpressed the Cx43 PY-mutant (Cx43P283L), which was previously shown to 
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Figure 25 - Cx43 interacts with Eps15 mainly at the plasma membrane. (A) Lysates from NRK cells were 
immunoprecipitated with polyclonal antibodies against Cx43. Immunoprecipitates were then analyzed by Western blot 
and probed with antibodies against Eps15. Eps15 co-immunoprecipitates with Cx43. (B) NRK cells were fixed and 
stained with monoclonal antibodies directed against Cx43 (BD Transduction) and polyclonal antibodies against Eps15. A 
significant amount of Cx43 colocalizes with Eps15. Although most of the colocalization observed occurs at the plasma 
membrane (arrows), the two proteins can also be detected in the same cytoplasmic vesicles (arrowheads). Scale bars, 
10 µm. 
 

poorly interact with Nedd4 and be less ubiquitinated (Figure 24). Data presented in Figure 26A 

shows that the PY-mutant also interacts poorly with Eps15 as compared to the wild type (compare 

lane 6 with lane 10). We then impaired Cx43 ubiquitination by either overexpressing an inactive 

form of Nedd4 (Nedd4 (C/A)) or by siRNA silencing Nedd4. Cos-7 cells were co-transfected with 

plasmids encoding Cx43, Eps15 and either the wild type or an inactive form of Nedd4 (Figure 

26B), and we then evaluated the amount of Eps15 that co-immunoprecipitates with Cx43 in each 

condition. The results presented in Figure 26B (right panels) show that the interaction between 

Eps15 and Cx43 was significantly impaired in cells overexpressing the inactive form of Nedd4 

when compared to cells overexpressing the wild type form of Nedd4. The importance of Nedd4 for 

interaction of Cx43 with Eps15 was further confirmed by gene silencing with siRNA against Nedd4. 

Indeed, in cells depleted of Nedd4 the amount of Eps15 that co-immunoprecipitates with Cx43 is 

significantly lower (Figure 26C, upper panel). Taken together, this data indicates that the 

interaction of Eps15 with Cx43 requires its prior ubiquitination, most likely by Nedd4. To further 

confirm that Eps15 preferentially interacts with endogenous ubiquitinated Cx43, Eps15 was 

selectively immunoprecipitated using polyclonal antibodies, blotted and probed for Cx43. As shown 

in Figure 26D, a 50 kDa band, which presumably corresponds to single monoubiquitinated Cx43, 

can be observed. It is noteworthy that unmodified Cx43 does not co-precipitate with Eps15, 

indicating specificity for the ubiquitinated form. These results further confirmed the hypothesis that 
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Figure 26 - The interaction of Cx43 with Eps15 depends on the UIMs of Eps15 and requires the PY-motif of Cx43. 
(A) Cos-7 cells were transfected with either wild type or the mutant Cx43 (Cx43P283L) together with full-length Eps15 or 
a mutant of Eps15 lacking the domain containing the two UIMs (Eps15(ΔUIM)). Lysates were immunoprecipitated with 
polyclonal antibodies against Cx43 and immunoprecipitates were then analyzed by Western blot and probed with 
antibodies against Eps15. Data shows a clear interaction between Cx43 and Eps15, however, the interaction of Cx43 
with the mutant Eps15 lacking its UIMs is lost to a significant extent (compare lane 10 with lane 12). Full-length Eps15 
also shows a lower interaction with Cx43P283L, the mutant Cx43 which is also less ubiquitinated than the wild type form 
of Cx43 (compare lane 6 with lane 10). (B) Lysates from Cos-7 cells transfected with Cx43, Eps15 and either the wild 
type or mutant form of Nedd4 (Nedd4(C/A)) were immunoprecipitated with polyclonal antibodies against Cx43 and then 
analyzed by Western blot and probed with antibodies against Eps15 or monoclonal antibodies against Cx43 (right 
panels). Left panels correspond to the input levels of Nedd4 and Eps15. Eps15 co-precipitates substantially less with 
Cx43 in cells overexpressing the catalytically inactive mutant Nedd4(C/A) when compared to cells overexpressing the 
endogenous form of the protein. (C) HEK293FT cells were transfected with Cx43 and siRNA directed against Nedd4 
(#1). Lysates were then immunoprecipitated with polyclonal antibodies against Cx43 and analyzed by Western blot using 
antibodies against Eps15. Eps15 co-precipitates significantly less with Cx43 in cells depleted of Nedd4 when compared 
to control cells. (D) NRK cell lysates were immunoprecipitated with polyclonal antibodies against Cx43 or Eps15 and 
immunoprecipitates were then analyzed by Western blot and probed with monoclonal antibodies against Cx43. A 50 kDa 
band, that is attributed to monoubiquitinated Cx43, can be observed following immunoprecipitation with Eps15 antibodies 
(lane 4). 
 

Eps15 interacts and targets mainly ubiquitinated Cx43. 
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Eps15 is required for Cx43 internalization 

 

To further examine the functional significance of the interaction between Cx43 and Eps15, 

endogenous Eps15 was depleted using siRNA and the effect of Eps15 depletion on Cx43 

degradation was evaluated by Western blot. NRK cells were transiently transfected with Eps15 

siRNA and the expression levels of endogenous Eps15 were evaluated 48 hours after transfection. 

Transfection with two different siRNAs for Eps15 resulted in a significant depletion of endogenous 

Eps15 (data not shown). Results presented in Figure 27A show a ~70% decrease in the amount of 

Eps15, in cells transfected with siRNAs for Eps15 compared with non-targeting siRNA. However, 

this reduction in Eps15 levels has no effect on Cx43 protein levels, comparing with non-targeting 

siRNA transfected control cells (Figure 27A). To analyze whether Eps15 depletion leads to altered 

subcellular distribution of Cx43, transfected cells were immunolabelled with antibodies against 

Cx43 and subsequently imaged by immunofluorescence confocal microscopy. The effect of Eps15 

depletion was further evaluated by measuring the size of gap junction plaques. Results presented 

in Figure 27B show that depletion of Eps15 by siRNA results in an accumulation of Cx43 at the 

plasma membrane, with the formation of larger plaques, as compared to cells transfected with non-

targeting siRNA, strongly suggesting that Eps15 is required for Cx43 internalization. To further 

confirm the accumulation of Cx43 at the plasma membrane following knockdown of Eps15, cells 

were subjected to cell surface protein biotinylation. Biotinylated proteins from cell lysates were then 

precipitated with Neutravidin beads, followed by Western blot analysis with antibodies directed 

against Cx43. Data present in Figure 27C shows that Eps15 silencing results in a 2 fold increase of 

Cx43 at the plasma membrane. 

 

Discussion 

 

The results presented in this chapter demonstrate for the first time that Nedd4 is involved in Cx43 

ubiquitination and that the binding of ubiquitin to Cx43 is required and sufficient for further 

recognition by the endocytic adaptor Eps15. Indeed, cells depleted of Nedd4 presented 

significantly lower levels of ubiquitinated Cx43. Moreover, we show that the interaction between 

Eps15 and Cx43 occurs through the ubiquitin-interacting motifs (UIM) of Eps15 and the ubiquitin 

moieties attached to Cx43, and that this interaction is required for Cx43 internalization.  

The reduced levels of ubiquitination of a mutant form of Cx43 that has lower affinity for binding to 

Nedd4 (Cx43P283L) confirms that ubiquitination of Cx43 is, at least in part, dependent upon 

binding to Nedd4. Overexpression of a catalytically inactive mutant of Nedd4 impaired Cx43 

ubiquitination, indicating a role for the ligase activity of Nedd4 in Cx43 ubiquitination. Although it 

was previously shown that Nedd4 binds to Cx43, to our knowledge, this is the first study 

demonstrating its role in Cx43 ubiquitination. 
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Figure 27 - Gap junction internalization depends on Eps15. (A) Lysates of NRK cells transfected with siRNA for 
Eps15, were analysed by Western blot using monoclonal antibodies against Cx43 or polyclonal antibodies against 
Eps15. The reduction in the levels of Eps15 has no effect on the levels of Cx43. (B) NRK cells were transfected with 
siRNA for Eps15 or a non-targeting siRNA. Cells were then stained with monoclonal antibodies directed against Cx43 
(BD Transduction). Depletion of Eps15 by siRNA results in an accumulation of Cx43 at the plasma membrane, with the 
formation of larger plaques, as compared to cells transfected with non-targeting siRNA. Scale bars, 5 µm. (C) HEK293FT 
cells were transfected with Cx43, and siRNA directed against Eps15. Cells were then subjected to cell surface protein 
biotinylation and the biotinylated fraction of the cell lysates was precipitated with Neutravidin beads. Precipitates were 
then analyzed by Western blot using monoclonal antibodies against Cx43. Cx43 accumulates at the plasma membrane 
(PM) in cells depleted of Eps15 when compared to control cells. Data represents the average with standard deviation of 
three independent experiments. 
 

Although the exact mechanism through which ubiquitin directs cell surface protein internalization is 

still unknown, several studies have shown that ubiquitin receptors play a key role in internalization. 

Indeed, it is well established that a number of endocytic proteins, including Eps15, Epsin and Hrs, 

contain ubiquitin-binding domains that are able to recognize ubiquitinated proteins and sort them 

along the endocytic pathway. For example, it was previously shown for EGFR that non-clathrin 

mediated internalization of ubiquitinated EGFR depends on its interaction with proteins harbouring 

UIMs, thus ascribing an important function to these proteins in coupling ubiquitinated cargo to 

clathrin-independent internalization (Sigismund et al, 2005). 

Having established the role of Nedd4 in Cx43 ubiquitination, we further attempted to ascribe a 
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biological role to such modification, as well as unveil some of the molecular players involved in GJ 

internalization. By analogy with EGFR, it was hypothesized that ubiquitination of Cx43 may act as 

an internalization signal through a mechanism that involves Eps15 as a recognition adaptor. In this 

model, the UIM of Eps15 would interact with ubiquitinated Cx43 and target the protein for 

endocytosis. Indeed, we showed that interaction of Cx43 with Eps15 is dependent upon the UIM of 

Eps15 as well as Cx43 ubiquitination. The role of Eps15 on Cx43 internalization was confirmed by 

Eps15 gene silencing. Depletion of Eps15 led to the accumulation of Cx43 at the plasma 

membrane forming large plaques, which most likely reflect defects in gap junction internalization. 

Over the last years, several studies have demonstrated the involvement of clathrin in gap junction 

internalization (Gumpert et al, 2008; Larsen et al, 1979; Piehl et al, 2007). In addition to the 

tyrosine-based motif, it was also demonstrated that the PY-motif may have a role in Cx43 turnover 

(Thomas et al, 2003). Indeed, a mutation in the PY-motif of Cx43, that interacts with Nedd4, also 

stabilizes Cx43. On the other hand, depletion of clathrin induces only a partial inhibition of Cx43 

internalization. Together, these results strongly suggest that CME is the main endocytic pathway 

involved in Cx43 internalization, although a non-clathrin alternative pathway may also be involved 

in Cx43 turnover and regulation of GJIC. Although Eps15 has been traditionally linked to clathrin-

dependent endocytosis, due to its interaction with clathrin, the involvement of Eps15 in targeting 

Ub-conjugated cargo to clathrin-independent endocytosis has also been recently demonstrated. 

Thus, Eps15 may participate in different endocytic pathways, depending on which signal the cargo 

protein presents and on the endocytic route used by the cargo. Therefore, in addition to its 

canonical role in CME it is conceivable that, as suggested for EGFR, Eps15 may direct 

ubiquitinated Cx43 to non-clathrin mediated internalization (Sigismund et al, 2005). 

Although previous reports show that Cx43 accumulates at the plasma membrane in conditions 

where the proteasome is inhibited, little is known on the role of the proteasome in Cx43 

internalization or degradation. It is conceivable that the proteasome may be responsible for 

degradation of a putative protein involved in Cx43 stabilization at the plasma membrane (either by 

directly interacting with Cx43 or by inhibiting the action of Nedd4 or Eps15). Alternatively, inhibition 

of the proteasome may lead to the depletion of free ubiquitin levels in the cell, required for 

signalling Cx43 internalization. Results presented in this chapter show that ubiquitination of Cx43 

can serve as an internalization signal for the protein, however, downregulation of Cx43 

internalization through siRNA silencing of Nedd4 (Leykauf et al, 2006) or Eps15 does not 

significantly increase total levels of Cx43. Rutz et al. demonstrated that ubiquitinated Cx43 can be 

found within gap junction plaques (Rutz & Hulser, 2001). Based on this observation and on the 

data we describe here, we suggest that the interaction of Eps15 with ubiquitinated Cx43 regulates 

the internalization of Cx43 involved in gap junctions. This hypothesis is based, in part, on 

immunofluorescence data showing an accumulation of Cx43 at the plasma membrane, with the 

formation of larger plaques, following knockdown of Eps15. Indeed, depletion of Eps15 results in a 
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4 fold increase in the size of gap junction plaques, as compared to cells transfected with non-

targeting siRNA. However, biotinylation experiments show less than a 2 fold increase in the 

amount of Cx43 at the plasma membrane. Taking into account that biotin seems to have less 

access to connexins found within gap junction plaques in comparison to the extrajunctional surface 

pool, this result is consistent with our hypothesis, that Eps15 regulates internalization of Cx43 

preferentially localized at gap junction plaques. 

 

Conclusions 

 

Altogether, these observations and the data presented in this chapter led us to propose a model in 

which Nedd4-mediated ubiquitination of Cx43 acts as a triggering signal for gap junction 

internalization, through a mechanism that involves recognition of ubiquitinated Cx43 by Eps15. 

While the role of clathrin in Cx43 internalization has been well established, the results presented in 

this study envision an alternative mechanism for regulation of gap junction internalization, that 

involves Cx43 ubiquitination and Eps15-mediated endocytosis. Although Eps15 may mediate 

clathrin dependent or independent endocytosis, the role of this endocytic adaptor in Cx43 

internalization is unclear and should be a matter of future research. 
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Chapter 6: Internalization and intracellular trafficking of Cx43 

 

Abstract 

 

Gap junctions (GJ) are specialized cell-cell contacts that provide direct intercellular communication 

(IC) between eukaryotic cells. In recent years ubiquitination of Cx43 has been proposed as a 

regulatory mechanism of GJIC, however, the underlying mechanism and molecular players 

involved remain elusive. In this chapter we demonstrate that ubiquitinated Cx43 is internalized 

through a mechanism that is independent on the YXXØ sorting signal. Indeed, expression of a 

Cx43-Ub chimera was shown to drive the internalization of a mutant Cx43 in which the YXXØ-motif 

was surpressed. Cyclohexamide-chase and cell surface protein biotinylation experiments 

demonstrate that oligomerization of Cx43-Ub into Cx43 hemichannels decreases protein half-life 

and reduces the stability of the protein at the plasma membrane. Furthermore, the destabilization 

of Cx43 at the cell surface by Cx43-Ub was shown to depend on the interaction with Eps15. 

Ubiquitinated Cx43 was shown to undergo internalization through clathrin-independent 

endocytosis. Immunofluorescence and immunoprecipitation experiments also show that Cx43 

colocalizes with the ESCRT components Hrs and Tsg101, and that Cx43 intracellular trafficking is 

modulated by the deubiquitinating enzyme UBPY. Moreover, data shows that Cx43 can be 

recycled back to the plasma membrane, presumably by two independent pathways, the rapid and 

slow endocytic recycling pathways. The results presented in this chapter further elucidate the 

molecular mechanisms underlying ubiquitin-mediated internalization of Cx43 and provide an initial 

characterization of the intracellular trafficking pathways of the protein. 

 

Introduction 

 

Gap junctions are specialized areas of the plasma membrane that directly connect adjacent cells, 

allowing for the transfer of small metabolites, ions and second messengers. Two adjacent cells 

must supply one hemichannel each to form a functional gap junction channel. Each hemichannel, 

or connexon, is, in turn, composed of six connexin subunits. Connexons can result from the 

oligomerization of a single or multiple types of connexins. The function of gap junctions in cell and 

tissue biology is of the utmost importance, and unsurprisingly, gap junction intercellular 

communication is present in nearly every mammalian cell type (Goodenough et al, 1996; Saez et 

al, 2003). In vertebrates, connexins play critical roles in embryonic development, coordinated 

contraction of excitable cells, tissue homeostasis, normal cell growth and differentiation. Cx43, a 

member of the alpha connexin family, is the most widely expressed connexin, being found in 

tissues as diverse as the heart, lens, retina, skin, brain, kidney and bone marrow (Laird, 2006; 

Laird, 2009). 



Chapter 6 

 124 

The extent of gap junction intercellular communication is directly related to the number and 

function of gap junction channels present at the plasma membrane. Although GJIC can be 

regulated by the gating of the channel pore, degradation of connexins, particularly Cx43, also plays 

a somewhat unexpected role in regulating GJIC. Indeed, Cx43 has a markedly short half-life, of 

less than 5 hours, when compared to other plasma membrane proteins (Girao & Pereira, 2003; 

Laird, 2006; Leithe & Rivedal, 2007). Gap junctions are not static entities, but rather exist in a 

constant state of degradation and renewal. As such, newly synthesized connexin hemichannels 

are constantly being added to the periphery of existing gap junction plaques while older 

hemichannels are internalized from the inner regions of the plaque (Gaietta et al, 2002). In contrast 

to most plasma membrane proteins, which are internalized through single membrane vesicles, 

both membrane sides of a gap junction plaque are internalized by one of two adjacent cells, as 

large double membrane vesicular structures termed annular gap junctions (Leithe et al, 2006). 

Both the lysosome and the proteasome have been implicated in regulating Cx43 turnover 

(Beardslee et al, 2000; Fernandes et al, 2004; Girao & Pereira, 2003; Laing et al, 1997; Musil et al, 

2000). While degradation of Cx43 by the lysosome has long been established, the role of the 

proteasome in Cx43 turnover is still poorly understood. Initial studies suggested that the 

proteasome could be directly involved in connexin degradation (Laing & Beyer, 1995), however, 

more recently it was suggested that the proteasome acts by regulating the stability of Cx43 at the 

plasma membrane, most likely by degrading a still unknown connexin-interacting protein (Girao & 

Pereira, 2007; Musil et al, 2000). For example, a model has been proposed in which proteasome-

dependent degradation of a putative Cx43 binding protein regulates Cx43-ZO-1 interaction, which 

in turn regulates Cx43 internalization (Girao & Pereira, 2007).  

It is well established that in mammalian cells, ubiquitin acts as a triggering signal for the 

internalization and sorting of a variety of cargo receptors, thus acting as a link between cargo and 

components of the endocytic and sorting machinery (Hicke & Dunn, 2003; Miranda & Sorkin, 2007; 

Mukhopadhyay & Riezman, 2007; Traub & Lukacs, 2007). However, to promote the internalization 

of membrane proteins, ubiquitin needs to be recognized by ubiquitin receptors, such as Eps15, 

Epsin and Hrs, that contain ubiquitin-binding domains which recognize ubiquitinated proteins and 

sort them along the endocytic pathway (Hicke & Dunn, 2003; Kirkin & Dikic, 2007; Miranda & 

Sorkin, 2007; Mukhopadhyay & Riezman, 2007; Traub & Lukacs, 2007). Moreover, some of these 

ubiquitin receptors are often themselves monoubiquitinated (Di Fiore et al, 2003; Hicke et al, 2005; 

Hoeller et al, 2006; Woelk et al, 2006). 

Several studies have also shown that Cx43 is a substrate for ubiquitination (Laing et al, 1997). For 

example, data obtained by immunofluorescence and immunogold labelling, suggests that at least 

part of the Cx43 found at gap junction plaques is ubiquitinated (Rutz & Hulser, 2001). Moreover, 

treatments that induce Cx43 internalization also induce ubiquitination of the protein (Leithe & 

Rivedal, 2004a; Leithe & Rivedal, 2004b). Furthermore, the E3 ligase Nedd4 was shown to interact 



Ubiquitin-mediated Cx43 internalization 

 125 

with Cx43 (Leykauf et al, 2006), and we have consistently shown that Nedd4 mediates the 

ubiquitination of Cx43, through a mechanism that requires the Proline-rich motif (PY) of Cx43 

(Chapter 5). We also demonstrated that Eps15 binds to ubiquitinated Cx43 through its ubiquitin-

interacting motifs (UIMs) and that this interaction is, at least in part, required for the internalization 

of Cx43. Although several reports have suggested that ubiquitin may be implicated in gap junction 

internalization, direct evidence of ubiquitin-dependent internalization/degradation of Cx43 has not 

been clearly demonstrated. 

Monoubiquitination, multimonoubiquitination and Lys63-linked polyubiquitin chains have all been 

reported to function as endocytosis signals, however, several studies report that 

monoubiquitination appears to be a weak internalization signal (Barriere et al, 2006; Hawryluk et 

al, 2006). This is explained by observations showing that the UIM domains present in endocytic 

adaptors such as Eps15 have a relatively weak affinity for monoubiquitin. However, UIM domains 

have been shown to bind with more avidity to polyubiquitin signals, especially Lys63-linked chains. 

Additionally, multimonoubiquitination of a single protein or monoubiquitination of several subunits 

of a protein complex was also suggested to be a strong endocytic signal since the close proximity 

of several monoubiquitin moieties would mimic a polyubiquitin signal, which binds strongly to UIM 

domains (Barriere et al, 2006). 

Clathrin has long been suggested to mediate the internalization of annular gap junctions (Larsen et 

al, 1979), with several recent studies showing that impairment of clathrin-mediated endocytosis 

(CME) leads to the accumulation of Cx43 at the plasma membrane (Gumpert et al, 2008; Leithe & 

Rivedal, 2004a; Piehl et al, 2007). However, it is conceivable that Cx43 gap junction plaques may 

also be internalized through clathrin-independent endocytic (CIE) pathways. In studies where CME 

was inhibited, the presence of internalized annular gap junction plaques was only reduced by 

roughly 55%, whereas internalization of transferrin, a protein previously shown to be internalized 

exclusively by clathrin coated pits (Mellman, 1996), was nearly abolished (Gumpert et al, 2008; 

Piehl et al, 2007). This suggests that large portions of Cx43 gap junctions are internalized through 

clathrin-independent mechanisms. An alternative mechanism may involve caveolar endocytosis. 

The interaction of Cx43 with Cav-1 (Langlois et al, 2008; Schubert et al, 2002), suggests that Cx43 

may also be internalized through caveolae, a specialized invagination of the plasma membrane 

rich in Cav-1 that can bud from the plasma membrane (Kiss & Botos, 2009). 

Following internalization, endocytosed cargos may have a variety of different fates, although, as a 

general rule, all endocytosed cargo is delivered to the early endosome. From there proteins can be 

delivered to the trans-Golgi network, be recycled back to the plasma membrane or remain in 

association with the early endosome while it matures into late endosomes, which eventually fuse 

with lysosomes. During the maturation process of endosomes their structure and composition are 

altered, with late endosomes showing characteristics of typical multivesicular bodies (MVBs). The 

transition between the two stages is thought to proceed through the progressive involution of the 
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limiting membrane of endosomes to form intralumenal vesicles (Raiborg & Stenmark, 2009; 

Williams & Urbe, 2007). The best characterized signal directing membrane proteins to the 

degradative MVB pathway is ubiquitination. At the endosomal membrane, ubiquitinated cargo is 

recognized by the endosomal sorting complex for transport (ESCRT) machinery, a series of protein 

complexes that are highly conserved in eukaryotes. The ESCRT machinery consists of four 

complexes, ESCRT-0, -I, -II and –III, plus several ancillary components. Several subunits of the 

ESCRT complexes, such as Hrs of ESCRT-0 and Tsg101 of ESCRT-I, possess ubiquitin-binding 

domains that are thought to be responsible for substrate recognition. Furthermore, several 

deubiquitinating enzymes (DUBs), such as Doa4, AMSH or UBPY, have been shown to bind to 

elements of the ESCRT machinery. DUBs presumably serve a regulatory function in the ESCRT 

complexes, being responsible for recycling free ubiquitin, rescuing substrates from endolysosomal 

sorting and activating components of the ESCRT machinery (Clague & Urbe, 2006; Raiborg & 

Stenmark, 2009). However, little is known about the molecular players that direct internalized gap 

junction plaques to the endolysosomal compartment or whether the Cx43 protein is a substrate for 

deubiquitinating enzymes. 

Cargo that escapes sorting to late endosomes is generally recycled back to the plasma membrane. 

Endocytic recycling can proceed via two major pathways, the rapid recycling pathway, which 

traffics proteins directly from the early endosome back to the plasma membrane in Rab4 positive 

vesicles, or the slow recycling pathway, which first directs cargo to the endocytic recycling 

compartment, which is positive for Rab11, before being delivered back to the plasma membrane 

(Grant & Donaldson, 2009; Maxfield & McGraw, 2004). Although Cx43 internalization and 

subsequent degradation in the lysosome is well established, little (or nothing) is known about any 

putative endocytic recycling mechanisms directing Cx43 back to the plasma membrane (VanSlyke 

& Musil, 2005). 

 

Results 

 

Cx43 colocalizes with ubiquitin at the plasma membrane 

 

Ubiquitination of plasma membrane proteins is a well described internalization signal. Indeed, in 

the previous chapter we show that ubiquitination increases the interaction/association between 

Cx43 and Eps15, and that Eps15 is required to mediate the internalization of Cx43. Nevertheless, 

many questions still remain unanswered on the role of ubiquitin in Cx43 internalization. Thus, we 

first sought to characterize the subcellular distribution of Cx43 and ubiquitin. For this purpose NRK 

cells (that endogenously express high levels of Cx43) were fixed and stained with monoclonal 

antibodies directed against Cx43 and polyclonal antibodies directed against ubiquitin. Cells were

subsequently imaged by immunofluorescence confocal microscopy. As shown in Figure 28, a 
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Figure 28 - Cx43 and ubiquitin colocalize at the plasma membrane and intracellular vesicles. NRK cells were fixed 
and stained with monoclonal antibodies directed against Cx43 (BD Transduction) and polyclonal antibodies against 
ubiquitin. A significant amount of Cx43 colocalizes with ubiquitin. Although most of the colocalization observed occurs at 
the plasma membrane (arrows), the two proteins can also be detected in the same cytoplasmic vesicles (arrowheads). 
Scale bars, 5 µm. 
 

significant amount of Cx43 colocalizes with ubiquitin, at the plasma membrane, suggesting that 

much of the Cx43 present at the plasma membrane is ubiquitinated. However, based on this data 

the possibility that ubiquitin is bound to proteins located in close proximity to Cx43 cannot be ruled 

out. Although most of the colocalization occurs at the plasma membrane (arrows), most likely at 

gap junction plaques, some colocalization can also be detected in cytoplasmic vesicles localized in 

the close vicinity of the plasma membrane, that presumably correspond to early steps of annular 

gap junction internalization (arrowheads). 

This immunofluorescence data strongly suggests that Cx43 and ubiquitin colocalize mostly at the 

plasma membrane and/or at internalized vesicles, thus suggesting a role for ubiquitin in gap 

junction internalization. 

 

A Cx43-Ub chimera oligomerizes into the same connexons as Cx43 

 

Following the observation that ubiquitin colocalizes with Cx43 at gap junction plaques, we 

hypothesized that the incorporation of ubiquitinated Cx43 into connexin hemichannels would be 

sufficient to trigger the internalization of non-ubiquitinated Cx43 present in the same hemichannels. 

Several studies have demonstrated that ubiquitination of various plasma membrane proteins is 

both necessary and sufficient to target them for internalization, in a process mediated by endocytic 

adaptors containing ubiquitin-binding domains (UBDs). A common strategy to evaluate the role of 

ubiquitin in the internalization of membrane proteins involves the overexpression of a chimeric 

protein formed by the membrane protein fused to an ubiquitin molecule. We constructed a chimeric 

Cx43 protein in which an ubiquitin molecule was fused in frame to the carboxyl-terminal of Cx43 

(Cx43-Ub). To prevent this fusion protein from being conjugated to other proteins by the 

ubiquitination machinery, the two terminal glycines were mutated to alanine. Furthermore, to 

prevent the chimeric protein from being recognized by the ERAD machinery and degraded by the 

proteasome, Lys48 was also mutated to Arg, to prevent the extension of a Lys48 polyubiquitin 

chain on the fused ubiquitin. Lastly, to allow the specific detection of this chimeric protein through 

immunofluorescence, a myc tag was fused in frame to the amino-terminal of Cx43, completing the 
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Figure 29 - Cx43 and Cx43-Ub oligomerize into the same connexons. (A) Lysates of Cos-7 cells co-transfected with 
Cx43 and Cx43-Ub were analyzed by Western blot using polyclonal antibodies directed against Cx43. (B) Lysates of 
Cos-7 cells, co-transfected with varying proportions of GFP-Cx43 and Cx43-Ub, were immunoprecipitated with polyclonal 
antibodies directed against GFP. Precipitates were then analyzed by Western blot using monoclonal antibodies directed 
against Cx43. Monomeric Cx43-Ub is selectively co-precipitated with GFP-Cx43. (C) Lysates of Cos-7 cells, co-
transfected with V5-Cx43 and myc-Cx43-Ub, were immunoprecipitated with monoclonal antibodies directed against V5 
or myc. Samples were denatured with Laemmli buffer without β-mercaptoethanol, which preserves the integrity of 
oligomeric connexons, and the precipitates were then analyzed by Western blot using monoclonal antibodies directed 
against V5 or myc. Connexons containing Cx43-Ub selectively co-precipitate with Cx43 and vice-versa. 
 

Cx43-Ub chimera. To first evaluate the expression levels of Cx43 and Cx43-Ub, cDNA encoding 

these proteins was transfected into Cos-7 cells and the presence of each of the two proteins 

determined by Western blot, using polyclonal antibodies against Cx43. As shown in Figure 29A, 

the presence of a slower migrating band, with a molecular weight of about 50 KDa, that is 

recognized by Cx43 antibodies, is compatible with the expression of a chimeric protein. 

Transport of Cx43 to the plasma membrane requires its prior oligomerization into connexons, a 

process that occurs in the trans-Golgi network. To investigate whether Cx43-Ub oligomerizes into 

connexons with wild-type Cx43, thus forming heteromeric hemichannels, Cos-7 cells were co-

transfected with varying quantities of plasmids encoding Cx43-Ub and a construct in which GFP 

was fused in frame to the amino-terminal of Cx43 (GFP-Cx43). Polyclonal antibodies directed 

against GFP were then used to selectively immunoprecipitate the GFP-Cx43 chimera. As depicted 

in Figure 29B, monomeric Cx43-Ub precipitates only with the GFP antibodies when co-expressed 

with GFP-Cx43, suggesting that Cx43-Ub oligomerizes into the same connexons as GFP-Cx43. 

Moreover, as the amount of expressed Cx43 increases, the levels of Cx43-Ub that co-

immunoprecipitate with the protein also increase. To further confirm that Cx43-Ub can oligomerize 

with wild type Cx43 to form heteromeric connexons, experiments were performed in 
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Figure 30 - Cx43 and Cx43-Ub colocalize in the same intracellular vesicles. Cos-7 cells were transfected with GFP-
Cx43 together with myc-Cx43-Ub. Cells were then fixed and stained with monoclonal antibodies directed against myc. 
Cx43 and Cx43-Ub display extensive colocalization, further reinforcing that they oligomerize into the same connexons. 
Scale bars, 50 µm. 
 

conditions where the structural integrity of connexons was maintained. Cos-7 cells were 

transfected with plasmids encoding myc-tagged Cx43-Ub and V5-tagged wild type Cx43. Following 

immunoprecipitation using antibodies directed against either tag, samples were denatured with 

Laemmli buffer without β-mercaptoethanol, in order to maintain the integrity of connexons. As 

shown in Figure 29C, connexons containing myc-Cx43-Ub were readily detected when wild type 

Cx43 was selectively immunoprecipitated using antibodies directed against V5. The opposite was 

also true, with V5-Cx43 being detected when Cx43-Ub was selectively immunoprecipitated using 

antibodies directed against the myc tag. Taken together, these results demonstrate that Cx43-Ub 

is capable of forming heteromeric connexons with Cx43. 

To investigate the subcellular distribution of hemichannels containing Cx43-Ub, Cos-7 cells were 

co-transfected with cDNA encoding GFP-Cx43 and myc-tagged Cx43-Ub. Cells were subsequently 

fixed and stained with monoclonal antibodies directed against the myc tag, and imaged by 

immunofluorescence microscopy. Results depicted in Figure 30 show an extensive colocalization 

of the two proteins, thus reinforcing that they are being incorporated into the same hemichannels. 

 

Expression of the Cx43-Ub chimera induces the internalization and degradation of Cx43 

 

Once we established that Cx43-Ub incorporates into Cx43-containing hemichannels, we attempted 

to evaluate the effect of the presence of ubiquitin moieties upon Cx43 channels. First, we 

investigated the effect of Cx43-Ub overexpression upon the stability of endogenous Cx43. For this 

purpose, we used a retinal epithelial cell line (ARPE-19) that endogenously expresses detectable 

amounts of Cx43. The half-life of endogenous Cx43, either in the presence or absence of Cx43-

Ub, was determined by a cyclohexamide (CHX)-chase assay. Following transfection with plasmids 

encoding Cx43-Ub, protein synthesis was inhibited with 50 µg/ml of CHX and cells were collected 

at several time points. Samples were then analysed by Western blot using polyclonal antibodies 

directed against Cx43 and the density of the detected bands was measured and plotted in a graph. 
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Figure 31 - Expression of the Cx43-Ub chimera reduces the half-life of endogenous Cx43. ARPE-19 cells 
transfected with Cx43-Ub, were incubated with 50 µg/ml cyclohexamide for 0, 2 and 4 hours. Lysates were then 
analyzed by Western blot using polyclonal antibodies directed against Cx43. The intensity of the endogenous Cx43 
bands was measured and plotted in a graph (Squares = non-transfected cells; Triangles = transfected cells). Expression 
of Cx43-Ub reduced the half-life of endogenous Cx43 from 4 to 1.5 hours. 
 

The results presented in Figure 31 show that the overexpression of Cx43-Ub results in a decrease 

of endogenous Cx43 half-life from around 4 hours to 1.5 hours. Similar results were obtained when 

Cx43 was co-expressed with Cx43-Ub in Cos-7 cells. As shown in Figure 32A, the presence of 

Cx43-Ub results in a decrease in Cx43 half-life from 2.5 hours to 1 hour. 

It was previously shown for various membrane proteins that the conjugation of ubiquitin may act as 

a triggering signal for their internalization. Therefore, we decided to evaluate the effect of the 

presence of ubiquitin moieties on the stability of Cx43 at the plasma membrane surface, by co-

expressing Cx43 with the Cx43-Ub chimera. To determine the half-life of Cx43 at the plasma 

membrane, transfected Cos-7 cells were first treated with 50µg/ml of CHX, during different time 

frames, before being subjected to cell surface protein biotinylation. Biotinylated proteins from cell 

lysates were then precipitated with Neutravidin beads, followed by Western blot analysis with 

antibodies directed against Cx43. Results presented in Figure 32B show that the co-expression of 

Cx43-Ub induces a reduction in the surface stability of wild type Cx43 from 1 hour to roughly 40 

minutes. 

To investigate the effect of the Cx43-Ub chimera on the subcellular localization of Cx43, Cos-7 

cells were transfected with GFP-Cx43, either in the presence or absence of Cx43-Ub, after which 

the cells were fixed and stained with antibodies directed against ubiquitin or the myc tag, and 

imaged by immunofluorescence microscopy. When GFP-Cx43 is expressed alone (Figure 33, 
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Figure 32 - Ubiquitination of Cx43 reduces its half-life and cell surface stability. (A) Cos-7 cells transfected with 
Cx43 either alone or together with Cx43-Ub, were incubated with 50 µg/ml cyclohexamide for 0, 1, 2 or 4 hours. Lysates 
were then analyzed by Western blot using polyclonal antibodies directed against Cx43. The intensity of the bands was 
measured and plotted in a graph (Squares = Cx43; Triangles = Cx43 + Cx43-Ub). Co-expression of Cx43 with Cx43-Ub 
reduced its half-life from 2.5 hours to 1 hour. (B) Cos-7 cells transfected with Cx43 either alone or together with Cx43-
Ub, were incubated with 50 µg/ml cyclohexamide for 0, 1 or 2 hours. Cells were then subjected to cell surface protein 
biotinylation and the biotinylated fraction of the cell lysates was precipitated with Neutravidin beads. Precipitates were 
then analyzed by Western blot using polyclonal antibodies against Cx43. The intensity of the bands was measured and 
plotted in a graph (Squares = Cx43; Triangles = Cx43 + Cx43-Ub). Co-expression of Cx43 with Cx43-Ub reduced its 
surface half-life from 1 hour to 40 minutes. The values are the average of three individual experiments ± SD. Asterisks 
indicate statistically significant differences from controls (* p < 0.05; ** p < 0.01). 
 

upper panels), extensive gap junction plaques can be found along cell-cell interfaces. In these 

conditions, GFP-Cx43 displays a weak colocalization pattern with ubiquitin. However, when Cx43- 
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Figure 33 - Ubiquitination induces the internalization of gap junction plaques. Cos-7 cells were transfected with 
GFP-Cx43 either alone (upper panels) or together with myc-Cx43-Ub (lower panels) and then fixed and stained with 
polyclonal antibodies against ubiquitin (upper panels) or monoclonal antibodies against myc (lower panels). Nuclei were 
stained with DAPI. Co-expression of Cx43-Ub induces the internalization of gap junction plaques. Scale bars, 100 µm. 
 

Ub is co-expressed with the GFP-Cx43 chimera (Figure 33, lower panels) there is a substantial 

decrease in GFP-Cx43 gap junction plaque size. Taken together, the immunofluorescence data 

and the biotinylation data strongly suggest that the presence of ubiquitin in Cx43-containing 

channels induces the internalization and subsequent degradation of gap junctions. 
It is well established that the attachment of ubiquitin to membrane proteins, either by enhancing 

protein internalization or by modulating intracellular sorting, results in their degradation in the 

lysosome. To further confirm that incorporation of Cx43-Ub into hemichannels induces their 

lysosomal degradation, we evaluated the amount of Cx43 present in cells overexpressing the 

Cx43-Ub chimera either in the presence or absence of the lysosome inhibitor NH4Cl. The results 

presented in Figure 34 show that lysosomal inhibition results in the accumulation of both Cx43 and 

Cx43-Ub, following 4 hours of chase in the presence of CHX (compare lane 6 with lane 8). 

Although we show that the co-expression of Cx43-Ub induces the internalization and degradation 

of Cx43, it cannot be excluded that a functional ubiquitin conjugation system is still required for 

internalization of Cx43. This is likely to explain the accumulation of Cx43 and Cx43-Ub in the 

presence of proteasome inhibitors as these treatments lead to the depletion of free ubiquitin 

(compare lane 6 with lane 7). 

The small Rab GTPases are known to regulate the intracellular trafficking of membrane proteins 

along the endocytic pathway. For example, vesicle traffic from the plasma membrane to early 

endosomes is regulated by the small GTPase Rab5 (Bucci et al, 1992), while Rab7 is involved with 
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Figure 34 - Inhibition of the proteasome or the lysosome stabilizes Cx43-Ub. Cos-7 cells transfected with Cx43 
either alone or together with Cx43-Ub, were incubated with 50 µg/ml cyclohexamide for 4 hours, either in the presence or 
absence of the proteasome inhibitor MG132 (40 µM) or the lysosome inhibitor NH4Cl (10 mM). Lysates were then 
analyzed by Western blot using polyclonal antibodies against Cx43. Inhibition of either the proteasome or the lysosome 
stabilizes both wild type Cx43 and the Cx43-Ub chimera. 
 

trafficking from early to late endosomes (Feng et al, 1995) and from late endosomes to lysosomes 

(Meresse et al, 1995). To investigate whether Cx43-Ub localizes to endocytic vesicles, cells co-

expressing GFP-tagged Rab5 or Rab7 and Cx43-Ub were analyzed by confocal microscopy. 

Results presented in Figure 35 clearly show the accumulation of Cx43-Ub in intracellular vesicles 

containing Rab5 or Rab7, thus demonstrating that at least part of the detected vesicles containing 

Cx43-Ub are being transported to lysosomes. 

 

Ubiquitin triggers the internalization of an endocytic-impaired mutant of Cx43 

 

Cx43 contains within its carboxyl-terminal a putative tyrosine-based sorting signal domain 

corresponding to the consensus sequence YXXØ (where X is any amino acid and Ø is a 

hydrophobic amino acid). It was previously shown that mutation of Tyr286, which is critical for the 

sorting function of the YXXØ motif on Cx43, increases the half-life of the protein, induces its 

accumulation at the plasma membrane and increases intercellular communication (Thomas et al, 

2003), suggesting that the YXXØ motif is the prime determinant of the stability of Cx43 at the cell 

surface. Thus, we decided to investigate the role of ubiquitin as an internalization signal in 

channels containing an endocytic defective mutant of Cx43. Besides its critical role as a part of the 

YXXØ domain on Cx43, Tyr286 is also an integral part of the PY-motif on Cx43, which is important 

for the interaction and ubiquitination of Cx43 by Nedd4. Therefore, we first generated a Cx43 

mutant in which the tyrosine at position 286 was replaced with an alanine (Cx43Y286A), and 

investigated whether this mutation impaired Cx43 ubiquitination. Cos-7 cells were transfected 

either with the wild type or the mutated form of Cx43, after which the proteins were selectively 

immunoprecipitated using polyclonal antibodies against Cx43. The levels of ubiquitinated protein 

were then determined by Western blot using antibodies against Cx43. The results presented in 

Figure 36 consistently show that the Cx43Y286A mutant is less ubiquitinated as compared to wild 

type Cx43. Taken together with the previous data showing that ubiquitin induces the internalization 

and degradation of Cx43, it is possible to suggest that the increased stability of the Cx43Y286A 
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Figure 35 - Cx43 and the Cx43-Ub chimera colocalize with markers of endosomal vesicles. Cos-7 cells were co-
transfected with V5-Cx43 or myc-Cx43-Ub and either Rab5-GFP or Rab7-GFP. Cells were then fixed and stained with 
monoclonal antibodies directed against V5 (upper panels) or myc (lower panels) before being imaged by confocal 
microscopy. Cx43-Ub displays increased colocalization with the endosomal markers Rab5 and Rab7 when compared to 
wild type Cx43. Scale bars, 50 µm. 
 

mutant may not only be due to a defect in the tyrosine-based sorting signal, but also due to an 

ubiquitination defect. 

Since internalization of Cx43 mainly occurs through a mechanism that depends on the tyrosine-

based sorting signal, and mutations on this motif are known to dramatically stabilize Cx43 at the 

plasma membrane, we hypothesized that when YXXØ-driven internalization of Cx43 is impaired, 
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Figure 36 - Mutation of Tyr286 on Cx43 impairs its ubiquitination. Lysates from Cos-7 cells, transfected with either 
wild type or mutant Cx43 (Cx43Y286A), were immunoprecipitated with polyclonal antibodies against Cx43. 
Immunoprecipitates were then analyzed by Western blot and probed with monoclonal antibodies against Cx43 or 
ubiquitin (P4D1). Cx43Y286A is substantially less ubiquitinated than wild type Cx43. 
 

ubiquitin could act as an internalization signal, triggering the endocytosis of this Cx43Y286A 

mutant. As with the wild type form of Cx43, we first evaluated the effect of Cx43-Ub on Cx43Y286A 

half-life. Consistent with a previous report (Thomas et al, 2003), mutation of Tyr286 on Cx43 

increased its half-life from roughly 2.5 hours to 5.5 hours, thus reinforcing the importance of the 

YXXØ sorting motif for Cx43 internalization (compare Figure 32A with Figure 37A). However, co-

expression of Cx43-Ub with Cx43Y286A markedly reduced its half-life from 5.5 to only 3 hours 

(Figure 37A). 

To further investigate the effect of incorporating Cx43-Ub into Cx43Y286A-containing 

hemichannels, the cell surface half-life of Cx43Y286A was determined when expressed alone or 

together with Cx43-Ub, by cell surface protein biotinylation. Results presented in Figure 37B show 

that mutation of Tyr286 on Cx43 induces a two fold increase in the half-life of Cx43 at the cell 

surface, further reinforcing the importance of this residue for Cx43 internalization (compare Figure 

32B with Figure 37B). Similarly to what was observed for Cx43 surface half-life, co-expression of 

Cx43-Ub induces a significant reduction in the surface stability of the Y286A mutant from 2 hours 

to less than 1 hour. Consistent with the results obtained with the biotinylation assays, the 

subcellular distribution of the Cx43Y286A mutant is still affect by the presence of Cx43-Ub. Indeed, 

using a construct in which GFP was fused to the amino-terminal of Cx43Y286A (GFP-

Cx43Y286A), we show that this construct localizes to the plasma membrane where it appears to 

form large gap junction plaques, when compared to cells expressing GFP-Cx43 (compare the 

upper panels of Figure 33 with the upper panels of Figure 38). Furthermore, and as demonstrated 
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Figure 37 - Ubiquitination reduces the half-life and cell surface stability of the endocytic-impaired mutant 
Cx43Y286A. (A) Cos-7 cells transfected with Cx43Y286A either alone or together with Cx43-Ub, were incubated with 50 
µg/ml cyclohexamide for 0, 2, 4 and 6 hours. Lysates were then analyzed by Western blot using polyclonal antibodies 
directed against Cx43. The intensity of the bands was measured and plotted in a graph (Squares = Cx43Y286A; 
Triangles = Cx43Y286A + Cx43-Ub). Co-expression of Cx43Y286A with Cx43 reduced its half-life from 5.5 to 3 hours. 
(B) Cos-7 cells transfected with Cx43Y286A either alone or together with Cx43-Ub, were incubated with 50 µg/ml 
cyclohexamide for 0, 1 and 2 hours. Cells were then subjected to cell surface protein biotinylation and the biotinylated 
fraction of the cell lysates was precipitated with Neutravidin beads. Precipitates were then analyzed by Western blot 
using polyclonal antibodies against Cx43. The intensity of the bands was measured and plotted in a graph (Squares = 
Cx43Y286A; Triangles = Cx43Y286A + Cx43-Ub). Co-expression of Cx43Y286A with Cx43-Ub reduced its surface half-
life from 2 to less than 1 hour. The values are the average of three individual experiments ± SD. Asterisks indicate 
statistically significant differences from controls (* p < 0.05; ** p < 0.01). 
 

for GFP-Cx43, the incorporation of Cx43-Ub into GFP-Cx43Y286A hemichannels results in a 



Ubiquitin-mediated Cx43 internalization 

 137 

 
Figure 38 - Ubiquitination induces the internalization of Cx43Y286A gap junction plaques. Cos-7 cells were 
transfected with GFP-Cx43Y286A either alone (upper panels) or together with myc-Cx43-Ub (lower panels) and then 
fixed and stained with polyclonal antibodies against ubiquitin (upper panels) or monoclonal antibodies against myc (lower 
panels). Nuclei were stained with DAPI. Co-expression of Cx43-Ub induces the internalization of the large gap junction 
plaques formed by Cx43Y286A. Scale bars, 100 µm. 
 

decrease of GFP-Cx43Y286A at the plasma membrane (Figure 38, lower panels). Interestingly, 

while GFP-Cx43 shows weak colocalization with ubiquitin at the plasma membrane, the large gap 

junction plaques formed by the GFP-Cx43Y286A construct show an extensive colocalization with 

ubiquitin (Figure 38, upper panels). 

The current model of Cx43 gap junction plaque renewal states that newly formed channels are 

accrued to the edges of the plaque, while older channels are internalized from the centre of the 

plaque (Falk et al, 2009; Gaietta et al, 2002). Although the co-expression of Cx43-Ub impairs the 

formation of large gap junction plaques by GFP-Cx43Y286A, some are still observed. When the 

large plaques formed by GFP-Cx43Y286A are analyzed at a higher magnification, it is possible to 

visualize small holes in the plaques (Figure 39). These may correspond to locations where part of 

the gap junction plaque has internalized. Interestingly, small vesicles containing both GFP-

Cx43Y286A and Cx43-Ub, that may correspond to internalized sections of the plaque, are also 

detected near these holes. Taken together, these results indicate that the incorporation of Cx43-Ub 

into gap junction plaques can induce the destabilization of plaques formed both by the wild type 

form of Cx43, as well as by the mutant Cx43Y286A that harbours an internalization defect. 

Furthermore, the data also supports a model in which the destabilizing effect of Cx43-Ub 

expression is due to increased internalization of gap junction plaques. 

Treatment of cells with PMA is known to induce the phosphorylation of Cx43, inducing its 

ubiquitination and subsequent internalization (Lampe, 1994; Leithe & Rivedal, 2004b; Pitts & Burk,
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Figure 39 - Ubiquitination induces the internalization of small sections of gap junction plaques. Cos-7 cells co-
transfected with GFP-Cx43Y286A and myc-Cx43-Ub were fixed and stained with monoclonal antibodies directed against 
myc. Small intracellular vesicles positive for GFP-Cx43Y286A and Cx43-Ub can be found in close vicinity to holes in the 
gap junction plaque. Scale bars, 1 µm. 
 

1987). To investigate the effect of PMA treatment upon GFP-Cx43Y286A subcellular distribution, 

Cos-7 cells were transfected with plasmids encoding GFP-Cx43Y286A and treated with 50nM 

PMA for several lengths of time. Cells were then fixed and imaged by fluorescence microscopy. 

Figure 40 shows that treatment with 50 nM PMA during 5 minutes induces an increase in the 

number and size of the small holes present on gap junction plaques. Furthermore, after 45 minutes 

of treatment, the size of the plaques was greatly reduced, with only very few holes still present. 

This data suggests that PMA treatment, which is known to induce Cx43 ubiquitination and gap 

junction plaque internalization, leads to gap junction internalization through a process that appears 

to be similar to what is observed when GFP-Cx43Y286A is co-expressed with Cx43-Ub. 

 

Internalization of Cx43 triggered by ubiquitin is dependent on the interaction with Eps15 

 

In the previous chapter we showed that Eps15 interacts with ubiquitinated Cx43 and that Eps15 

depletion resulted in the accumulation of both Cx43 at the cell surface and gap junction plaques. 

Having shown that the expression of a chimeric Cx43 fused to ubiquitin induces the destabilization 

of gap junction plaques and reduces the surface stability of non-ubiquitinated Cx43, we attempted 

to ascertain if this results from an increased interaction with Eps15. To address this question, Cos-

7 cells were transfected with Eps15 and wild type Cx43 either in the presence or absence of Cx43-
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Figure 40 - PMA induces the internalization of small sections of gap junction plaques. Cos-7 cells transfected with 
GFP-Cx43Y286A were treated with 50 nM of PMA for 0, 5 or 45 minutes before being fixed and imaged by confocal 
microscopy. 5 minutes of PMA treatment led to a substantial increase in the size and number of holes present in gap 
junction plaques. After 45 minutes of treatment few gap junction plaques still remained. Scale bars 1.3 µm. 
 

Ub. Cx43 was then selectively immunoprecipitated using polyclonal antibodies against Cx43, 

followed by Western blot and probing with antibodies against Eps15 (Figure 41A). The results 

obtained clearly show that, in cells co-expressing Cx43-Ub, the amount of Eps15 co-

immunoprecipitated with anti-Cx43 antibodies is higher than in cells expressing Cx43 wild type 

alone. 

To demonstrate that Eps15 is important for Cx43-Ub-triggered internalization of Cx43, endogenous 

Eps15 was depleted using siRNA, after which the levels of Cx43 at the plasma membrane, either 

in the presence or absence of Cx43-Ub, were determined by biotinylation assays. Cos-7 cells were 

first transfected with siRNA targeted against Eps15. Following 24 hours, cells were then 

transfected with either wild type Cx43, Cx43-Ub or both. After another 24 hours, cells were 

subjected to cell surface protein biotinylation. Biotinylated proteins from cell lysates were isolated 

with Neutravidin beads and the samples analyzed by Western blot using polyclonal antibodies 
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Figure 41 - Internalization of Cx43 induced by Cx43-Ub depends on the interaction with Eps15. (A) Cos-7 cells 
were co-transfected with Cx43 and Eps15 either alone or together with Cx43-Ub. Lysates were then immunoprecipitated 
with polyclonal antibodies against Cx43 and the samples analyzed by Western blot using antibodies against Eps15 
(upper panels) or Cx43 (lower panel). Eps15 displays increased interaction with Cx43 when Cx43-Ub is co-expressed. 
(B) Cos-7 cells were transfected with Cx43 and/or Cx43-Ub alone or together with siRNA for Eps15. Cells were then 
subjected to cell surface protein biotinylation and the biotinylated fraction of the cell lysates was precipitated with 
Neutravidin beads. Precipitates were analyzed by Western blot using polyclonal antibodies against Cx43. Cx43 and 
Cx43-Ub both accumulate at the plasma membrane in cells depleted of Eps15 when compared to control cells. 
 

directed against Cx43. Given that Eps15 was previously shown to be important for the 

internalization of Cx43, and that Cx43 ubiquitination was shown to be important for the recognition 

of the protein by Eps15 (Chapter 5), we predicted that the depletion of Eps15 would lead to the 

accumulation of Cx43-Ub at the plasma membrane. Indeed, data depicted in Figure 41B confirms 

this hypothesis as Eps15 depletion induced the accumulation of both Cx43 and Cx43-Ub at the 

plasma membrane.  

 

Depletion of Nedd4 leads to the accumulation of Cx43-Ub at the plasma membrane 

 

Leykauf et al. have shown that Nedd4 depletion leads to the accumulation of gap junction plaques 

(Leykauf et al, 2006). Furthermore, in the previous chapter it was also shown that mutation of the 

PY-motif in Cx43 or impairment of Nedd4 function (through the expression of a ligase dead form of 

the protein or siRNA depletion) reduced the levels of ubiquitinated Cx43. Similar conditions were 

also shown to impair the interaction of Cx43 with Eps15. Thus we attempted to evaluate whether 

Nedd4 was still required for the internalization of Cx43 when in the presence of Cx43-Ub. Cos-7 

cells were first transfected with siRNA targeted against Nedd4. Following 24 hours, cells were then 

transfected with either wild type Cx43, Cx43-Ub or both. After another 24 hours, cells were 
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Figure 42 - Nedd4 depletion stabilizes ubiquitinated Cx43 at the plasma membrane. Cos-7 cells were transfected 
with Cx43 and/or Cx43-Ub alone or together with siRNA for Nedd4. Cells were then subjected to cell surface protein 
biotinylation and the biotinylated fraction of the cell lysates was precipitated with Neutravidin beads. Precipitates were 
analyzed by Western blot using polyclonal antibodies against Cx43. Cx43 and Cx43-Ub both accumulate at the plasma 
membrane in cells depleted of Nedd4 when compared to control cells. 
 

subjected to cell surface protein biotinylation. Biotinylated proteins from cell lysates were isolated 

with Neutravidin beads and the samples analyzed by Western blot using polyclonal antibodies 

directed against Cx43. Interestingly, data depicted in Figure 42 shows that the depletion of Nedd4 

also leads to the accumulation of Cx43 and Cx43-Ub at the plasma membrane. 

Given that in the previous chapter Eps15 was shown to be important for the internalization of 

Cx43, and that Cx43 ubiquitination was shown to be important for Eps15 recognition of the protein, 

it was not surprising that depletion of Eps15 led to the accumulation of Cx43-Ub at the plasma 

membrane (Figure 41B). On the other hand, the similar effect resulting from Nedd4 depletion is 

harder to explain. Nedd4 is suggested to mediate Cx43 internalization by ubiquitinating the protein. 

As such, we expected that the expression of Cx43-Ub would bypass the necessity of Nedd4 

ubiquitination of the protein, however, Nedd4 depletion not only induced the accumulation of Cx43 

at the plasma membrane, it also resulted in the accumulation of the Cx43-Ub chimera. Previous 

reports have suggested that a single ubiquitin moiety is insufficient to signal the internalization of 

plasma membrane proteins, since the UBD domains present in the necessary endocytic adaptors 

bind poorly to monoubiquitin (Barriere et al, 2006; Hawryluk et al, 2006). Thus, it is possible that 

the single ubiquitin present in Cx43-Ub is not sufficient to drive the internalization of the protein, 

even when multiple Cx43-Ub monomers are oligomerized into the same connexon, and that Nedd4 

activity is still required for further Cx43 ubiquitination. Alternatively, and given the role of Nedd4 in 

ubiquitinating multiple other plasma membrane proteins and endocytic adaptor proteins, it is 

possible that impairing Nedd4 function has other negative effects on Cx43 internalization, that are 

independent of Cx43 ubiquitination. 

 

Ubiquitinated Cx43 is internalized through both clathrin-dependent and clathrin-

independent pathways 

 

Although the role of clathrin-mediated endocytosis in Cx43 internalization has been extensively 
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Figure 43 - Ubiquitinated Cx43 is internalized though both CME and CIE. (A) HEK293FT cells transfected with Cx43 
were treated with 0.45 M of sucrose or 5 µg/mL of Filipin III for 1 hour. Lysates were then immunoprecipitated using 
polyclonal against Cx43 and the immunoprecipitates analyzed by Western blot using monoclonal antibodies against 
ubiquitin (P4D1). Both inhibition of CME with sucrose and inhibition of CIE with Filipin III, lead to an increase in 
ubiquitinated Cx43 levels. (B) Cos-7 cells transfected with Cx43 and/or Cx43-Ub were treated with 0.45 M of sucrose or 
5 µg/mL of Filipin III for 1 hour before being subjected to cell surface protein biotinylation. The biotinylated fraction of the 
cell lysates was precipitated with Neutravidin beads and the precipitates analyzed by Western blot using polyclonal 
antibodies against Cx43. Inhibition of CME leads to the accumulation of both Cx43 and Cx43-Ub at the cell surface. 
However, inhibition of CIE only leads to the accumulation of Cx43 at the cell surface when Cx43-Ub is present. 
 

characterized, several reports suggest that Cx43 can also be internalized through a clathrin-

independent mechanism that may involve caveolae (Langlois et al, 2008; Schubert et al, 2002). To 

assess the internalization pathway followed by ubiquitinated Cx43, HEK293FT cells were 

transfected with Cx43 and then treated for 1 hour with either 0.45 M sucrose, which creates 

hypertonic conditions that inhibit CME, or with 5 µg/ml of Filipin III, an antibiotic that sequesters 

membrane cholesterol and inhibits clathrin-independent endocytosis. Cell lysates were then 
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precipitated with polyclonal antibodies directed against Cx43 and samples were subsequently 

analyzed by Western blot using monoclonal antibodies against Cx43 or ubiquitin (P4D1). As shown 

in Figure 43A, inhibition of both clathrin-dependent and clathrin-independent pathways led to the 

accumulation of ubiquitinated Cx43 when compared to controls. This data suggests that both 

pathways are responsible for the internalization of ubiquitinated Cx43. 

To further characterize the importance of each pathway in the internalization of ubiquitinated Cx43, 

experiments were performed using the Cx43-Ub chimera. Cos-7 cells were transfected with wild 

type Cx43, either alone or alongside Cx43-Ub, and then treated during 1 hour with either 0.45 M of 

sucrose or with 5 µg/ml of Filipin III. Cells were then subjected to cell surface protein biotinylation 

and biotinylated proteins were precipitated using Neutravidin beads. Samples were subsequently 

analyzed by Western blot using polyclonal antibodies directed against Cx43. As depicted in Figure 

43B, inhibition of CME led to the accumulation of Cx43 at the plasma membrane both in the 

presence and absence of Cx43-Ub. Interestingly, inhibition of clathrin-independent endocytosis 

only led to an accumulation of Cx43 at the cell surface when the Cx43-Ub chimera was present. 

Thus, although clathrin-dependent mechanisms appear to be involved in the internalization of both 

Cx43 and ubiquitinated Cx43, clathrin-independent mechanisms appear to be more specific 

towards the latter. 

 

Cx43 colocalizes with the ESCRT components Hrs and Tsg101 

  

Both the proteasome and the lysosome have been implicated in Cx43 degradation (Laing et al, 

1997). However, the effect of proteasome inhibition upon Cx43 stability is likely to result from the 

depletion of free ubiquitin, which would impede Cx43 ubiquitination and subsequent internalization, 

rather than any role of the proteasome in directly degrading the protein. Thus, the lysosome is the 

main site of Cx43 degradation. The bulk of internalized plasma membrane proteins are normally 

routed back to the plasma membrane after reaching the early endosome. For internalized 

membrane proteins to be directed to the lysosome, they must first be sorted away from the default 

recycling pathway. Furthermore, to enable specificity to this sorting mechanism, proteins require a 

sorting signal. Ubiquitination has been shown to function as one such signal, being recognized by 

the ESCRT sorting machinery, which directs ubiquitinated proteins to the interior of MVBs where 

they are eventually delivered to the lysosomal compartment. Given how we have shown that Cx43 

is ubiquitinated and that this modification functions as an internalization signal, we decided to 

investigate whether Cx43 interacts with subunits of the ESCRT machinery. Hrs is a component of 

ESCRT-0, while Tsg101 is a component of ESCRT-I; both proteins contain UBD domains and are 

thought to be involved in the recognition and binding to ubiquitinated substrates. As such, they are 

prime targets for interaction with Cx43. To evaluate the subcellular distribution of Cx43 and Hrs, 

Cos-7 cells were transfected with plasmids encoding FLAG tagged Hrs (Hrs-FLAG). Cells were 
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Figure 44 - Cx43 colocalizes with the ESCRT components Hrs and Tsg101. Cos-7 cells were transfected with Hrs-
FLAG alone (upper panels) or with GFP-Cx43Y286A (middle panels). Cells were fixed and stained either with 
monoclonal antibodies against Cx43 (upper and lower panels), polyclonal antibodies against FLAG (upper and middle 
panels) or polyclonal antibodies against Tsg101 (lower panels). Cx43 colocalizes with Hrs and Tsg101 in intracellular 
vesicles and also at the plasma membrane. Colocalization of Hrs with gap junction plaques is significantly increased in 
the presence of Cx43Y286A. Scale bars, 50µm.  
 

then fixed and stained with monoclonal antibodies directed against Cx43 and polyclonal antibodies 

directed against the FLAG tag. Cells were subsequently imaged by immunofluorescence confocal 

microscopy. Figure 44 (top panels) shows that Cx43 colocalizes with Hrs mainly in endocytic 

vesicles, presumably MVBs, with some colocalization in regions near the plasma membrane. The 

subcellular distribution of Hrs was also compared to that of Cx43Y286A using Cos-7 cells co-

transfected with both GFP-Cx43Y286A and Hrs-FLAG. As seen in Figure 44 (middle panels), Hrs 

colocalization with Cx43 at the plasma membrane is substantially increased in cells 

overexpressing the mutant Cx43 with impaired internalization. Furthermore, colocalization in 

intracellular vesicles is substantially decreased. Taken together with the data presented in Figure 

38, showing that expression of GFP-Cx43Y286A led to a substantial increase in the staining of 

ubiquitin at gap junction plaques, the increase in Hrs localization at gap junction plaques may be 
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due to the increased presence of ubiquitinated proteins at the plasma membrane. 

To evaluate the subcellular distribution of Cx43 and Tsg101, Cos-7 cells grown on glass coverslips 

were fixed and stained with monoclonal antibodies directed against Cx43 and polyclonal antibodies 

directed against Tsg101. Cells were then imaged by immunofluorescence confocal microscopy. As 

seen in Figure 44 (bottom panels), Tsg101 colocalizes with Cx43 both at the plasma membrane 

and in intracellular vesicles, presumably MVBs. 

Taken together, these results suggest that Cx43 may be sorted to the lysosome in early 

endosomes through interactions mediated by the ESCRT machinery. It should be noted that during 

the time in which this work was carried out, other authors have published studies demonstrating 

that Hrs and Tsg101 are important for the internalization and endosomal sorting of Cx43 to late 

endosomes and lysosomes (Auth et al, 2009; Leithe et al, 2009). 

 

The DUB UBPY modulates the intracellular sorting of Cx43 

 

Although several reports indicate that Cx43 can be ubiquitinated, as of yet, no studies have 

focused on the reversal of this modification carried out by DUBs. The DUB UBPY has been shown 

to interact with several components of the ESCRT machinery (Clague & Urbe, 2006; Raiborg & 

Stenmark, 2009), and as such we decided to investigate the importance of UBPY for Cx43 

intracellular trafficking. As a first approach, the subcellular distribution of both Cx43 and UBPY was 

evaluated using Cos-7 cells co-transfected with RFP-tagged Cx43 (RFP-Cx43) and V5-tagged 

UBPY (V5-UBPY). Cells were subsequently fixed and stained with monoclonal antibodies directed 

against the V5 tag. As shown in Figure 45A, Cx43 colocalizes with UBPY mainly in intracellular 

vesicles. 

Next, the effect of UBPY overexpression and depletion upon Cx43 levels and subcellular 

distribution was evaluated in immunoprecipitation and immunofluorescence experiments. Cos-7 

cells were co-transfected with Cx43 and either plasmids encoding UBPY, or shRNA directed 

against UBPY. Cell lysates were then precipitated with antibodies directed against Cx43 and the 

samples analyzed by Western blot using monoclonal antibodies directed against Cx43 or ubiquitin. 

Alternatively, cells were fixed and stained with monoclonal antibodies directed against Cx43 and 

polyclonal antibodies directed against ubiquitin. Data presented in Figure 45B shows that 

overexpression of UBPY slightly reduces the levels of both immunoprecipitated Cx43 and 

ubiquitinated Cx43 when compared to controls. Conversely, shRNA depletion of UBPY slightly 

increases the levels of both Cx43 and ubiquitinated Cx43. Furthermore, immunofluorescence data 

presented in Figure 46 shows that overexpression of UBPY leads to the disappearance of 

intracellular vesicles containing Cx43, while the shRNA depletion of UBPY induces the 

accumulation of Cx43 in intracellular vesicles that colocalize with ubiquitin. Taken together, this 

data suggests that UBPY is important for the intracellular sorting of Cx43 to the endolysosomal 
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Figure 45 - UBPY colocalizes with Cx43 and modulates its ubiquitinated state. (A) Cos-7 cells transfected with 
RFP-Cx43 and V5-UBPY were fixed and stained with monoclonal antibodies against V5. UBPY colocalizes with Cx43 in 
intracellular vesicles. Scale bars, 100 µm. (B) Lysates from Cos-7 cells transfected with Cx43 and either UBPY or shRNA 
against UBPY, were immunoprecipitated using polyclonal antibodies against Cx43. Precipitates were then analyzed by 
Western blot with monoclonal antibodies against Cx43 and ubiquitin (P4D1). UBPY overexpression leads to a decrease 
in both Cx43 and ubiquitinated Cx43 levels, conversely, shRNA depletion of UBPY leads to a slight increase in both 
Cx43 and ubiquitinated Cx43 levels. 
 

compartment. Although the UBPY overexpression data showing diminished levels of ubiquitinated 

Cx43 may suggest that UBPY directly deubiquitinates Cx43, taken together with the 

immunoprecipitation data showing a decrease in overall Cx43 levels and the immunofluorescence 

data showing a decrease in intracellular Cx43 levels without any apparent changes in surface 

expression, it is likely that UBPY promotes Cx43 sorting through the activation of 

monoubiquitinated ESCRT components. Nevertheless, the possibility that UBPY promotes Cx43 

sorting by deubiquitinating the protein at late stages of ESCRT sorting cannot be discarded. 

 
Cx43 interacts and colocalizes with markers of recycling endosomes 

 

Most plasma membrane proteins that are internalized through constitutive endocytic mechanisms 

are often recycled back to the plasma membrane due to the absence of sorting signals, such as 

ubiquitination, directing them to the endolysosomal pathway. As the majority of Cx43 gap junctions 

are internalized in a constitutive manner in the absence of ubiquitination, it is likely that gap 
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Figure 46 - UBPY modulates the intracellular trafficking of Cx43. Cos-7 cells transfected with either UBPY or shRNA 
against UBPY were fixed and stained with monoclonal antibodies against Cx43 (BD Transduction) or polyclonal 
antibodies against ubiquitin. Overexpression of UBPY leads to the disappearance of intracellular vesicles containing 
Cx43, while shRNA depletion of UBPY induces the accumulation of Cx43 in intracellular vesicles that colocalize with 
ubiquitin. Scale bars, 25 µm. 
 

junctions can also be recycled back to the plasma membrane following endocytosis. To investigate 

whether or not Cx43 is a substrate for endocytic recycling pathways, subcellular colocalization 

experiments were carried out using Rab4 and Rab11 as markers for recycling vesicles. Cos-7 cells 

were transfected with plasmids encoding either YFP-tagged Rab4 (YFP-Rab4) or GFP-tagged 

Rab11 (GFP-Rab11). Cells were subsequently fixed and stained with monoclonal antibodies 

directed against Cx43. As depicted in Figure 47, Cx43 present in intracellular vesicles colocalizes 

extensively with Rab4, showing a more moderate colocalization with Rab11, indicating that Cx43 

can be found in endocytic recycling vesicles, and thus, may be recycled back to the plasma 
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Figure 47 - Cx43 colocalizes with Rab4 and Rab11. Cos-7 cells transfected with either YFP-Rab4 or GFP-Rab11 were 
fixed and stained with monoclonal antibodies against Cx43 (BD Transduction). Cx43 can be found in intracellular 
vesicles positive for Rab4 or Rab11. Scale bars, 50 µm. 
 

membrane. 

To further characterize the presence of Cx43 in these vesicles, Cos-7 cells were co-transfected 

with Cx43 and either YFP-Rab4 or GFP-Rab11. Lysates were precipitated with polyclonal 

antibodies directed against Cx43 and the shuamples analyzed by Western blot using monoclonal 

antibodies directed against GFP. Alternatively, following transfection cells were subjected to cell 

surface protein biotinylation. Biotinylated proteins were then precipitated using Neutravidin beads 

and the samples analyzed by Western blot using polyclonal antibodies directed against Cx43. As 

seen in Figure 48, both Rab4 and Rab11 co-immunoprecipitate with Cx43 (Figure 48A). 

Furthermore, cells overexpressing either Rab protein display increased levels of Cx43 at the cell 

surface (Figure 48B). This data strongly suggests that Cx43 can be recycled back to the plasma 

membrane through both the rapid recycling pathway (Rab4) and the slow recycling pathway 

(Rab11). 

 

Discussion 

 

Although it was previously shown that Cx43 is ubiquitinated, the role of this post-translational 

modification on gap junction internalization and degradation has never been clearly demonstrated. 
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Figure 48 - Rab4 and Rab11 stabilize Cx43 at the plasma membrane. (A) Lysates of Cos-7 cells co-transfected with 
Cx43 and either YFP-Rab4 or GFP-Rab11 were immunoprecipitated with polyclonal antibodies against Cx43 and the 
precipitates analyzed by Western blot using monoclonal antibodies against GFP. Cx43 interacts with Rab4 and Rab11. 
(B) Cos-7 cells co-transfected with Cx43 and either YFP-Rab4 or GFP-Rab11 were subjected to cell surface protein 
biotinylation. The biotinylated fraction of the cell lysates was precipitated using Neutravidin beads and the precipitates 
analyzed by Western blot using monoclonal antibodies against Cx43. Overexpression of both Rab4 or Rab11 induces an 
accumulation of Cx43 at the cell surface. 
 

The results presented here show, for the first time, that the attachment of ubiquitin to Cx43 is 

sufficient to trigger its internalization and subsequent degradation. Moreover, we demonstrate that 

the internalization triggered by ubiquitin is independent of the endocytic YXXØ sorting signal 

present on the carboxyl-terminal of Cx43. Indeed, expression of a Cx43-Ub chimera is sufficient to 

drive the internalization and degradation of both wild type Cx43 and of Cx43Y286A, a mutant form 

of the protein that presents a defect in CME due to a mutation in the YXXØ sorting motif. Using 

CHX-chase assays we showed that expression of Cx43-Ub decreases the half-life of both Cx43 

and Cx43Y286A by about 50%. Consistently, the half-life of both forms of Cx43 at the plasma 

membrane surface also decreases in the presence of Cx43-Ub. Data obtained with the 

Cx43Y286A mutant is particularly important since the main internalization pathway of Cx43, that 

requires an intact YXXØ sorting motif, is impaired. In this particular situation, ubiquitination would 

constitute the main internalization signal able to trigger the internalization of mutant Cx43 present 

at gap junction plaques. We also demonstrate that clathrin-independent endocytosis of Cx43 is 

mainly involved in the internalization of ubiquitinated Cx43, although ubiquitinated Cx43 can also 

be internalized through clathrin-dependent mechanisms. Furthermore, we partially characterize the 

intracellular route followed by Cx43 following internalization, demonstrating that the protein can be 

found in intracellular vesicles that colocalize with Hrs and Tsg101. Moreover, it is also 

demonstrated that UBPY modulates the intracellular trafficking of Cx43. Lastly, Cx43 was shown to 

be present in intracellular vesicles positive for Rab4 and Rab11, which are common markers of 

rapid recycling endosomes and of the endocytic recycling compartment respectively. 

The monoubiquitination of plasma membrane proteins is suggested to target them for 

internalization, in a process mediated by endocytic adaptors containing ubiquitin-binding domains 
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(UBDs). However, recent studies have challenged this notion since it was shown that UBD 

domains have a rather low affinity for monoubiquitin (Barriere et al, 2006; Hawryluk et al, 2006). 

Instead, UBD domains were shown to have a higher affinity for Lys63-linked polyubiquitin chains. 

Additionally, Barriere et al. have shown that the monoubiquitination of several subunits in an 

oligomeric membrane protein, but not the monoubiquitination of a single monomeric protein, could 

also function as an internalization signal. It was suggested that multiple monoubiquitin moieties in 

close spatial proximity, either due to the multimonoubiquitination of a single protein or due to the 

monoubiquitination of several subunits in an oligomeric complex, would provide UBD domains with 

multiple interaction points, allowing them to bind to these signals with similar affinities as to the 

binding of polyubiquitin chains (Barriere et al, 2006). We hypothesized that the Cx43-Ub chimera 

induces the internalization of Cx43 by oligomerizing into the same connexon channels, directly 

increasing the ubiquitin internalization signal present at these channels. Indeed, 

immunoprecipitation experiments demonstrated that Cx43 oligomerizes into the same channels as 

the Cx43-Ub chimera, since the selective precipitation of one form of the protein also induced the 

co-precipitation of the other form. Further evidence supporting that both proteins can be found 

within the same hemichannels stems from the observation that Cx43-Ub colocalizes with both 

Cx43 and Cx43Y286A. Additionally, our data demonstrates that the presence of ubiquitin in Cx43-

containing hemichannels leads to an increased interaction with Eps15. Altogether, we suggest that 

the increased internalization and degradation of Cx43 induced by the Cx43-Ub chimera is due to 

the ubiquitin moiety. 

Plasma membrane proteins containing YXXØ sorting signals are recognized by endocytic adaptor 

proteins, such as AP2, and internalized through clathrin-mediated endocytosis (Doherty & 

McMahon, 2009). Accordingly, previous reports have demonstrated that the tyrosine-based motif 

present in Cx43 regulated the turnover and surface stability of the protein (Thomas et al, 2003). 

Moreover, the YXXØ sorting motif of Cx43 also overlaps with a PPXY-motif that is important for 

Cx43 interaction with Nedd4 and ubiquitination (Chapter 5). Indeed, we showed that mutation of 

Tyr286, a critical residue of both the PPXY- and YXXØ-motifs, impairs Cx43 ubiquitination and 

stabilizes the protein at the cell surface, leading to the formation of large gap junction plaques. 

Moreover, and similar to what happens with wild type Cx43, we also demonstrate that the 

overexpression of Cx43-Ub induces the destabilization of the large plaques formed by 

Cx43Y286A. Close analysis of the plaques formed by Cx43Y286A reveal that, following expression 

of Cx43-Ub, intracellular vesicles positive for both Cx43Y286A and Cx43-Ub can be found in close 

proximity to small holes present on the gap junction plaques. Presumably these vesicles 

correspond to sections of the gap junction plaque that have been recently internalized. 

Furthermore, treatment of cells with PMA, which is known to induce the ubiquitination and 

subsequent internalization of Cx43 gap junction plaques (Leithe & Rivedal, 2004b), was shown to 

dramatically increase the number of these holes on Cx43Y286A gap junction plaques, ultimately 
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leading to the reduction of gap junction plaque size. Interestingly, although the Y286A mutation 

significantly decreases Cx43 ubiquitination, the large gap junction plaques formed by Cx43Y286A 

show increased colocalization with ubiquitin when compared to plaques formed by wild type Cx43. 

If Cx43 ubiquitination indeed functions as an internalization signal, as the expression of Cx43-Ub 

seems to indicate, why is the internalization of Cx43Y286A compromised when its gap junctions 

seemingly present increased colocalization with ubiquitin? The immunofluorescence microscopy 

data does not rule out the possibility that the increased ubiquitin signal present at Cx43Y286A gap 

junction plaques is due to the accumulation of ubiquitinated proteins proximal to gap junction sites, 

rather than the direct conjugation of ubiquitin to gap junction channels. In this case, Cx43Y286A 

accumulated at the plasma membrane would act as a scaffold that sequesters ubiquitinated 

proteins at gap junction plaques. Known Cx43 binding partners that are substrates for 

ubiquitination include E-cadherin (Fujita et al, 2002), occludin (Traweger et al, 2002) and β-catenin 

(Aberle et al, 1997). 

Following endocytosis, plasma membrane proteins are usually delivered to early endosomes 

where protein sorting occurs. At early endosomes, ubiquitinated membrane proteins interact with 

the ESCRT machinery and are sorted to endolysosomal compartments, where they are eventually 

degraded (Raiborg & Stenmark, 2009; Williams & Urbe, 2007). While Cx43 gap junctions plaques 

are known to internalize as large double membrane vesicles termed annular gap junctions (Jordan 

et al, 2001), a more recent study demonstrated that these structures are broken down from double 

membrane structures to connexin-enriched multivesicular endosomes prior to reaching the 

lysosome (Leithe et al, 2006), indicating that internalized annular gap junctions follow the 

conventional sorting route to the lysosome. Through immunofluorescence imaging experiments, 

we show here that Cx43 can be found in intracellular vesicles that are positive for Hrs and Tsg101, 

which are important components of the ESCRT machinery. These results are in accordance with 

recently published reports that demonstrated that both Hrs and Tsg101 are important for the 

internalization and sorting of Cx43 to late endosomes and lysosomes (Auth et al, 2009; Leithe et 

al, 2009). As such, we hypothesized that the oligomerization of Cx43-Ub into Cx43 hemichannels 

would also increase the degradation rate of Cx43 by enhancing the interaction with sorting 

machinery. Indeed, CHX-chase experiments demonstrated that expression of the Cx43-Ub 

chimera reduced the half-life of both wild type and mutant Y286A forms of Cx43. We also show 

that the presence of lysosome inhibitors leads to the accumulation of Cx43, even in the presence 

of Cx43-Ub. Moreover, we show that the Cx43-Ub chimera colocalizes with the endosomal 

markers Rab5 and Rab7 in intracellular vesicles, further reinforcing that the increased 

internalization induced by ubiquitin results in Cx43 degradation. 

Several authors have already shown that Cx43 is a substrate for ubiquitination and that a small 

population of ubiquitinated Cx43 can be found at the plasma membrane within gap junction 

plaques (Laing & Beyer, 1995; Rutz & Hulser, 2001). Although for some receptors ubiquitin is not 
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required for internalization, but rather for signalling intracellular sorting to lysosomes, this does not 

appear to be the case for Cx43. Data obtained in this study with the Cx43Y286A mutant, together 

with those obtained by others (Thomas et al, 2003), show that constitutive internalization of Cx43 

occurs mainly through the canonical AP2 dependent clathrin-mediated endocytosis. However, the 

presence of ubiquitin in both wild type and mutant Cx43 hemichannels accelerates the 

internalization and degradation of the proteins, thus suggesting that ubiquitin is likely to be 

important in the internalization of Cx43. Leithe et al. have shown that phosphorylation of Cx43 

induced by EGF or PMA treatment leads to Cx43 ubiquitination and internalization (Leithe & 

Rivedal, 2004a; Leithe & Rivedal, 2004b). Furthermore, data from Leykauf et al. shows that 

phosphorylated Cx43 has a higher binding affinity for the ubiquitin ligase Nedd4 and that Nedd4 

depletion leads to the accumulation of Cx43 at the plasma membrane (Leykauf et al, 2006). In the 

previous chapter we demonstrated that Nedd4-mediated ubiquitination of Cx43 is important for the 

subsequent interaction of the protein with Eps15, and that this interaction occurred through the 

UIM domains of Eps15. Depletion of Eps15 also led to the accumulation of Cx43 at the cell 

surface. As such, depletion of Eps15, but not of Nedd4, was expected to prevent the 

destabilization effects of Cx43-Ub expression upon the surface expression of Cx43. Indeed, siRNA 

depletion of Eps15 was shown to stabilize both Cx43 and Cx43-Ub at the plasma membrane. 

Surprisingly, the same results were obtained when Nedd4 levels were depleted by siRNA. 

Although the expression of Cx43-Ub was expected to bypass the necessity of Nedd4-mediated 

Cx43 ubiquitination, it is possible that the single ubiquitin moiety present on Cx43-Ub is still 

insufficient to signal Cx43 for internalization, even when more than one Cx43-Ub monomer is 

present within the same hemichannel. As such, Nedd4 activity would be necessary to further 

ubiquitinate Cx43, in order to allow the protein to be recognized by endocytic adaptors. In this 

situation, expression of the Cx43-Ub chimera would increase Cx43 internalization by increasing 

the local concentration of ubiquitin signals, thus lowering the rounds of ubiquitination that must 

occur before Cx43 can be recognized by endocytic adaptors. However, we cannot exclude that 

Nedd4 activity may be necessary for Cx43 internalization, through a mechanism that is 

independent of Cx43 ubiquitination. Importantly, several endocytic proteins, including Eps15, are 

regulated by Nedd4-mediated ubiquitination (Hoeller et al, 2006). Thus, the observed effect of 

Nedd4 depletion may be due to an indirect effect upon Eps15 or other endocytic adaptors. 

Although the role of clathrin-mediated endocytosis in Cx43 internalization has been extensively 

characterized, data from several reports suggest that CME is only responsible for 55% of 

internalized annular gap junctions (Gumpert et al, 2008; Piehl et al, 2007). Additionally, Cx43 has 

been shown to interact with both Cav-1 and Cav-2 and to target to lipid raft domains, suggesting 

that the protein can be internalized through a clathrin-independent mechanism that may involve 

caveolae (Langlois et al, 2008; Schubert et al, 2002). As demonstrated in the previous chapter, 

Eps15 is involved in the internalization of ubiquitinated Cx43; and while Eps15 has been 
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traditionally linked to clathrin-dependent endocytosis, the endocytic adaptor has also been shown 

to mediate the clathrin-independent endocytosis of ubiquitinated EGFR (Sigismund et al, 2005). 

Thus, and in accordance with the model proposed for the internalization of ubiquitinated EGFR, we 

hypothesized that ubiquitinated Cx43 could be internalized through a clathrin-independent 

mechanism. Indeed, although inhibition of CME was shown to increase the surface expression of 

both Cx43 and Cx43-Ub, inhibition of CIE only led to the accumulation of Cx43 at the plasma 

membrane in the presence of the Cx43-Ub chimera, indicating that this pathway may have a role in 

the ubiquitin triggered internalization of Cx43. Thus, CME is involved in both the constitutive 

internalization of Cx43, via the YXXØ-motif, and in the ubiquitin-mediated internalization of the 

protein, while CIE is mainly involved in the internalization of ubiquitinated Cx43. 

Equally important in the regulation of cellular ubiquitination are deubiquitinating enzymes (DUBs), 

which are proteolytic enzymes that can cleave post-translationally formed branched peptide bonds 

in mono or multiubiquitinated conjugates, thus having the potential to regulate any ubiquitin-

mediated cellular process, including proteolysis and protein trafficking/endocytosis. However, their 

regulation and contribution to the control of endocytosis remains very vague. Recent reports 

suggest that ubiquitinating and deubiquitinating activities compete along the endocytic pathway. 

Additionally, it has been shown that different DUBs have crucial but distinct roles in the endocytic 

pathway, which most likely reflect their distinct specificities for different types of polyubiquitin 

chains (Clague & Urbe, 2006). As such, DUBs and Cx43 deubiquitination are likely to have 

different roles in modulating the intracellular trafficking of Cx43 depending on where the protein is 

deubiquitinated: 1) Cx43 deubiquitination at the plasma membrane would stabilize the protein at 

the cell surface, thus inhibiting its degradation; 2) Cx43 deubiquitination at early endosomes would 

rescue the protein from endolysomal sorting, redirecting the protein back to the plasma membrane; 

3) Cx43 deubiquitination at late steps of endolysomal sorting would direct the protein for lysomal 

degradation. The DUB UBPY has been shown to interact with components of both the ESCRT-0 

and the ESCRT-III complexes (Mizuno et al, 2006; Row et al, 2006), suggesting that it may be 

involved in the rescue of membrane proteins from being sorted into MVBs and directed for 

endolysosomal degradation. However, UBPY has also been shown to promote the endosomal 

sorting of EGFR, presumably by reversing the autoinhibitory monoubiquitination of the ESCRT-0 

components Hrs and STAM (Clague & Urbe, 2006; Raiborg & Stenmark, 2009). As mentioned 

above, Cx43 was found to colocalize with the ESCRT components Hrs and Tsg101 in intracellular 

vesicles. Ubiquitination of the protein was also found to be important for Cx43 internalization and 

sorting to the lysosome. Thus we decided to investigate whether UBPY was involved in rescuing 

Cx43 from endolysosomal sorting or rather if, and as suggested for EGFR, UBPY promoted Cx43 

sorting to the lysosome. Although Cx43 was shown to colocalize with UBPY and overexpression of 

the DUB led to diminished levels of ubiquitinated Cx43, suggesting that ubiquitinated Cx43 may be 

a substrate for UBPY, immunoprecipitation and immunofluorescence data suggest that UBPY 
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promotes the lysosomal sorting of Cx43. Indeed, overexpression of UBPY was shown to decrease 

the total levels of Cx43, while depletion of the protein led to a slight increase in Cx43 levels. 

Furthermore, immunofluorescence data showed that expression of UBPY decreased the number 

of intracellular vesicles positive for both Cx43 and ubiquitin. Conversely, shRNA depletion of UBPY 

led to the accumulation of intracellular vesicles positive for Cx43 and ubiquitin. As such, in this 

study we demonstrate for the first time that the DUB UBPY modulates the intracellular sorting of 

Cx43. 

The presence of a YXXØ sorting motif on the carboxyl-terminal of Cx43 suggests that the protein is 

constitutively internalized in a clathrin-dependent manner. This constitutive internalization is also 

most likely independent of Cx43 ubiquitination. Considering that proteins without any specific 

sorting signal are generally recycled back to the plasma membrane, this suggests that Cx43 is also 

likely to be directed to endocytic recycling pathways. Furthermore, it is also possible that even 

ubiquitinated Cx43 may be salvaged from endolysomal degradation pathways through the action of 

DUBs, similar to how AMSH-mediated deubiquitination rescues EGFR from being sorted to the 

lysosome (Bowers et al, 2006; McCullough et al, 2004). Indeed, immunofluorescence experiments 

show that Cx43 can be found in intracellular vesicles that are positive for Rab4, a marker of rapid 

recycling endosomes, and in vesicles positive for Rab11, a marker of the endocytic recycling 

compartment involved with slow recycling pathways. Furthermore, both Rab proteins were shown 

to co-precipitate with Cx43 and overexpression of both Rab proteins led to the accumulation of 

Cx43 at the cell surface. This data suggests that Cx43 can be recycled back to the plasma 

membrane through both the rapid and slow recycling routes. 

 

Conclusions 

 

Although the main constitutive internalization pathway of Cx43 occurs through the canonical AP2 

dependent clathrin-mediated endocytosis, ubiquitin may play an important role in regulated signal-

induced gap junction internalization. Therefore, we propose a model in which under basal 

conditions Cx43 internalization occurs through a pathway that does not depend on ubiquitin, while 

internalization of Cx43 in response to changes in the cellular environment may require the prior 

ubiquitination of the protein. Furthermore, ubiquitination of the protein is also suggested to signal 

its intracellular sorting to the endolysosomal compartment, through a mechanism involving the 

ESCRT machinery and the DUB UBPY. Lastly, we provide evidence that Cx43 can be recycled 

back to the plasma membrane through both rapid and slow recycling pathways. Although we 

partially characterize the internalization and intracellular trafficking routes followed by Cx43, many 

questions are still unresolved, such as the molecular mechanisms that determine the 

internalization pathway followed by ubiquitinated Cx43 or whether Cx43 is indeed a substrate for 

deubiquitination. 
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Chapter 7: General Conclusions 

 

Gap junction intercellular communication is critical to ensure the correct function of tissues and 

organs in mammals. The extent of gap junction intercellular communication is a direct result of the 

number and functionality of connexin-based pores. Therefore, processes that influence the stability 

of connexin at the plasma membrane are critical for regulating intercellular communication. Data 

presented in this study begins by assessing the critical role of some destabilizing factors, including 

cholesterol oxidation, in GJIC and proceeds by investigating in greater detail the molecular 

mechanisms involved in the regulation of GJIC. The results presented in this study provide new 

and important insights on the mechanisms and molecular players involved in regulating several 

aspects of Cx43 internalization and intracellular trafficking. 

The oxysterol 7-ketocholesterol was shown to stabilize Cx43 at the plasma membrane in lens 

epithelial cells, thus leading to an increase in gap junction channel assembly and gap junction 

intercellular communication. This observation is particularly important in the lens for several 

reasons: the lens is continuously exposed to oxidative insults; lens plasma membranes contain the 

highest cholesterol content of any biological membrane; and intercellular communication in the 

lens relies on an extensive network of gap junctions which is essential for the maintenance of lens 

transparency. Thus, upregulation of gap junction intercellular communication due to accumulation 

of 7-ketocholesterol, may disrupt a variety of highly regulated events, including the differentiation of 

lens epithelial cells into fibres, which may ultimately compromise lens transparency leading to 

cataract formation. 

The molecular mechanisms associated with Cx43 internalization and degradation has only recently 

begun to be investigated in some detail. In this manuscript we showed that Cx43 ubiquitination 

requires, at least in part, the activity of the E3 ligase Nedd4. Additionally, we showed that Cx43 

ubiquitination is important for the interaction of Cx43 with the endocytic adaptor Eps15, through a 

mechanism that requires the ubiquitin-interacting motifs present on Eps15. Eps15 was also shown 

to mediate the internalization of Cx43. Furthermore, we show that Cx43 ubiquitination leads to a 

decrease in the half-life of the protein at the plasma membrane and induces the internalization of 

Cx43. Significantly, data presented in this study shows that ubiquitination of some Cx43 subunits in 

a connexon is sufficient to trigger internalization of ubiquitinated as well as non-ubiquitinated Cx43. 

This mechanism was shown to be independent on the tyrosine sorting signal, YXXØ, present on 

Cx43, which mediates the constitutive internalization of the protein. Interestingly, the internalization 

of Cx43 was shown to be mediated both by clathrin-dependent and clathrin-independent 

mechanisms. These observations led us to propose a new model for Cx43 internalization (Figure 

49) in which Nedd4-mediated ubiquitination of Cx43 would recruit Eps15 to gap junction plaques, 

which would then direct Cx43 for internalization through both clathrin-mediated and clathrin-

independent endocytosis. 
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Figure 49 - Internalization of Cx43. Proposed model for the internalization of Cx43. Constitutive internalization of Cx43 
is mediated by the tyrosine sorting signal present on the protein, which recruits the endocytic adaptor AP2 complex. The 
AP2 complex in turn induces the formation of a clathrin coat, leading to the clathrin-mediated internalization of gap 
junctions. Alternatively, ubiquitin-mediated internalization is initiated through the conjugation of ubiquitin to Cx43 
catalyzed by the ubiquitin ligase Nedd4. Monoubiquitination of several Cx43 subunits, or multimonoubiquitination of a 
single subunit, would provide the polyubiquitin signal necessary to recruit Eps15 to gap junctions. The ubiquitin moieties 
present on Cx43 then bind to the UIM domains of Eps15, which in turn mediates the internalization of Cx43. 
Internalization of ubiquitinated Cx43 can then proceed through a clathrin-independent mechanism, or Eps15 can recruit 
components of the clathrin coat with internalization then proceeding through a clathrin-dependent mechanism. 
 

Once established that ubiquitin targets Cx43 for internalization, we further investigated whether 

ubiquitin would also be involved in directing the intracellular sorting of the protein. Cx43 

ubiquitination was shown to decrease the half-life of the protein, indicating a role for ubiquitin in 

directing the protein for lysosomal degradation. Consistently, Cx43 was shown to colocalize with 

the ESCRT components Hrs and Tsg101 in intracellular vesicles. As both Hrs and Tsg101 are 

involved in the intracellular sorting of ubiquitinated membrane proteins from early endosomes to 

the lysosome, this suggests that ubiquitin is involved in the intracellular sorting of Cx43. 

Additionally, the deubiquitinating enzyme UBPY, which is known to interact with components of the 

ESCRT machinery and is thought to deubiquitinate proteins before their sorting into multivesicular 

bodies, was shown to modulate the levels of ubiquitinated Cx43 and the endolysosomal sorting of 

the protein. Altogether, these results show, for the first time, that the levels of ubiquitin attached to 

Cx43, through a mechanism that involves the orchestrated activity of both the ubiquitin ligase 

Nedd4 and the deubiquitinating enzyme UBPY, provides an additional level of regulation of Cx43 

degradation, and consequently, of gap junction intercellular communication. Finally, Cx43 was also 
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Figure 50 - Intracellular sorting of Cx43. Proposed model for the intracellular trafficking of internalized Cx43. Following 
internalization, endocytic vesicles containing non-ubiquitinated or ubiquitinated Cx43 converge at the early endosome. 
Ubiquitinated Cx43 is recognized by the ESCRT machinery components Hrs and/or Tsg101, which then sorts the protein 
to the interior of multivesicular bodies, which eventually delivers the protein to the lysosome for degradation. The 
deubiquitinating enzyme UBPY promotes the endolysosomal sorting of Cx43, either through the activation of ESCRT 
components, by releasing them from their autoinhibitory monoubiquitination, or/and through the direct deubiquitination of 
Cx43 at the ESCRT-III complex, the last step before proteins are sorted into intralumenal vesicles. Non-ubiquitinated 
Cx43 present in the early endosome, is either sorted directly back to the plasma membrane in Rab4 positive recycling 
vesicles (rapid recycling pathway), or sorted to the Rab11 positive endocytic recycling compartment before being 
transported to the plasma membrane (slow recycling pathway). 
 

shown to colocalize and interact with Rab4, a marker of rapid recycling vesicles, and Rab11, a 

marker of the endocytic recycling compartment that is involved in slow recycling pathways. Results 

presented in this study further indicate that internalized Cx43 is recycled back to the plasma 

membrane through both rapid and slow recycling pathways. These observations led us to propose 

a new model for the intracellular trafficking of internalized Cx43 (Figure 50) in which endocytosed 

Cx43 is first delivered to early endosomes where the protein is sorted to the endolysosomal 

compartment through the interaction of ubiquitinated Cx43 with the ESCRT components Hrs and 

Tsg101. UBPY would also promote the lysosomal targeting of Cx43, either by releasing 
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components of the ESCRT machinery from their autoinhibitory monoubiquitination, or by 

deubiquitinating Cx43 at the ESCRT-III complex, allowing for the recycling of free ubiquitin and 

committing Cx43 to lysosomal degradation. Moreover, constitutively internalized Cx43, or 

ubiquitinated Cx43 that was rescued from endolysosomal sorting through deubiquitination, would 

be recycled back to the plasma membrane through both the rapid and slow recycling routes. 

The results obtained in this study provide new insights for the role of ubiquitin in modulating the 

internalization and intracellular trafficking of Cx43, providing a basis for future studies aiming at 

identifying the molecular players involved in Cx43 internalization, intracellular sorting, recycling and 

degradation. 
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