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Optimizing the profit from a complex cascade of hydroelectric

stations with recirculating water.
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Abstract. In modern reversible hydroelectric power stations it is possible
to reverse the turbine and pump water up from a downstream reservoir to an
upstream one. This allows the use of the same volume of water repeatedly
and was specifically developed for hydro-electric stations operating with in-
sufficient water supply. Pumping water upstream is usually done at times of
low demand for electricity, to build up reserves in order to be able to produce
energy during peak hours, thus balancing the load and making a profit on the
price difference.
In this paper, we consider a branched model for hydroelectric power stations
interacting in a complex cascade arrangement. The goal of this study is
to provide guidance in decision-making aimed at maximizing the profit. A
detailed analysis is made of a simpler reservoir configuration, which indicates
that even though the problem is nonlinear, a bang-bang type of control is
optimal, where the power stations are operated at maximum rates of flow.
Some simple relationships between price and timing of decisions are calculated
directly. A numerical algorithm is also developed.
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1 Introduction

In modern reversible hydroelectric power stations it is possible to reverse the turbine to pump water

up from a downstream reservoir to the upstream one. This is desirable when water supply is low

as it allows reuse of the water. Water is usually pumped up at times of low demand and low price,

to build up water reserves that can be used later to produce energy during times of high demand

and high price, thus balancing the load and making a profit on the price difference. This, however,

raises the question of when a turbine should be reversed to maximise profit. For a simple linear

cascade composed of two hydroelectric stations that use the same stream the answer is reasonably

straightforward. However, more complicated cascades, like the cascade depicted in Fig. 1, also

exist and operate. Then there is also the question of which upstream reservoir is best to pump to.

The cascade that is schematically depicted in Fig. 1 was presented as a case study by the

Portuguese electricity and gas transmission supply operator, Redes Energéticas Nacionais, S.A.

(REN), to the 69th European Study Group held at the University of Coimbra in Portugal in April

2009. The problem proposed was focussed on profit maximization when operating such a system,

and how to decide which upstream reservoir to pump to, when there is a choice.

This cascade is composed of four hydroelectric plants that are enumerated as shown in Fig. 1.

For this particular system, cascades are formed by plants 2&3, 1&2, and 2&4. In cascades 2&3 and

2&4, water from the reservoir of plant 2 can be pumped back to plants 3 and 4, as indicated by the

additional arrows in Figure. Pumping is done via reversible turbines at plants 3 and 4, respectively.

Figure 1: Schematic representation of a cascade of four
hydro-electric stations.

Relevant main parts of a typical hydroelectric plant, or a power station, depicted in Figure 2,

are: (i) the reservoir with its current water content (volume) V (t), measured in m3 and represented

by a triangle; and (ii) the turbine that produces electricity, represented by a rectangle. In a cascade

of plants some turbines can be capable of operating in reverse, pumping water upstream. The flow

112



Optimizing the profit from a complex cascade of hydroelectric stations with recirculating water

through a turbine at an instant t is denoted by q(t).

Figure 2: Representation of a hydroelectric plant.

In a full model of a hydroelectric system, the incoming flows influence the water volumes, which

determine the water levels, which in turn determine the heads, which influence the outgoing flows,

which influence the reservoir levels as well as the energy sales, and these together with the price

determine the profit. It is thus clear that in a full formulation the problem of optimizing the

profit is a complex nonlinear stochastic problem. Similar or related problems have been studied

for the past few decades. Even though various approaches to this problem have been developed,

in general, due to complexity of the problem, these are mathematically complex and are usually

perceived to be difficult to implement in practice. Very few operating hydroelectric sites actually

use optimization methods for controlling the flows. Furthermore, certain aspects of the problem,

like rain, evaporation, demand or pricing, are uncertain or stochastic by their nature. Thus, the

methods available in the literature focus on deterministic models, where those aspects are only

implicitly stochastic, as well as on stochastic models, where these uncertainties are explicitly taken

into account. Some of the techniques involved include linear and nonlinear programming, network

flow optimization, dynamic programming and stochastic optimal control. An extensive survey of

methods for optimal operation of multi-reservoir systems can be found in the paper by Labadie [3]

that was published in 2004.

A goal for this study was optimizing the profit from operating a complex cascade of hydroelectric

plants, by developing an optimal strategy for shifting a turbine from one mode of operation to the

other. This study focusses on the particular system of hydro-electric plants proposed by REN and

depicted in Fig. 1. However, where possible, we also consider a more general system aiming to

inform a general approach that may be applied to other systems.

2 Notation and Mathematical formulation

Here we define our notation and provide formulae for the specific case of a system of four hydoelectric

power stations as depicted in Fig. 1. Below we use the same generic notation for all four plants,

which are distinguished by subscripts i = 1, ..., 4.

Specified constants:

• initial and minimal water volumes in reservoirs, V in
i and V 0

i , respectively;

• nominal, minimal and maximal water levels (metres above sea level) in reservoirs, Z0
i , Z

min
i

and Zmax
i , respectively;
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• nominal flowrates and heads q0i , h
0
i ;

• other constants: αi, βi, ζi, ξ, µi, φi.

Specified functions of time:

• inflows from rivers Ii(t);

• the market price of 1 MWh price(t).

Calculated functions of time:

• water volumes in reservoirs Vi(t);

• water levels in reservoirs Zi(t);

• heads (differences in water levels) hi(t);

• head losses ∆hi(t).

Sought-for functions of time:

• flow rates qi(t).

Here we adopt the convention that pumping water upstream corresponds to qi(t) < 0, and

‘turbining’ (producing electricity) corresponds to qi(t) > 0. Where appropriate, we also use the

notation qP and qT for the rates of pumping and turbining, respectively; then our convention is

that qP and qT are non-negative.

The following expressions relate the elements of the system. They arise directly from the

physics of water flow and electricity generation, and simply state that water volume is conserved,

that water level varies according to flows in and out of a reservoir, that flowrate down a pipe varies

as the square root of the height difference (pressure difference) driving the flow, and that the power

produced is proportional to the height difference and flowrate (force times velocity).

The integrals
∫ t
0 f should be interpreted as

∫ t
0 f(u)du. Also, for the sake of simplicity, the

dependence of functions on t is not always explicitly shown.

Equations

V1(t) = V in
1 +

∫ t

0
(I1 − q1),

V2(t) = V in
2 +

∫ t

0
(I2 − q2 + q1 + q3 + q4),

V3(t) = V in
3 +

∫ t

0
(I3 − q3),

V4(t) = V in
4 +

∫ t

0
(I4 − q4)

(1)

describe the relationships of the water volumes in each reservoir, and follow from conservation of

water volume.
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For instance, the most complicated volume function V2 is obtained as follows. The water volume

in reservoir 2 as a function of time is determined by the initial volume V in
2 plus the cumulative

volumes (integrals) of all inwards and outwards fluxes from the moment t = 0 to the instant t. The

inflows to the reservoir are comprised of the influx from an ‘external river’ (due to precipitation,

for example) given by I2(t), and the outflows q1, q3, q4 from reservoirs 1, 3, and 4. The outflow from

reservoir 2 is q2. Note that q3, q4 can be both positive and negative (for turbining and pumping,

respectively), and that when negative these fluxes also cause reduction of water volume in reservoir

2. The formulae for volumes Vi, i = 1, 3, 4, are obtained analogously.

Water level is a function of reservoir volume, given by the formulae

Z1(t) = Z0
1 + α1(V1(t)− V 0

1 )β1 ,

Z2(t) = Z0
2 + α2(V2(t)− V 0

2 )β2 ,

Z3(t) = Z0
3 + α3(V3(t)− V 0

3 )β3 ,

Z4(t) = Z0
4 + α4(V4(t)− V 0

4 )β4

(2)

where the constants αi, βi, Z0
i , V

0
i are fitted to each reservoir.

The water head (the height difference) that drives each turbine is given by the difference in

reservoir heights above and below the turbine as follows:

h1(t) = Z1(t)− Z2(t),

h2(t) = Z2(t)− ξ,
h3(t) = Z3(t)− Z2(t),

h4(t) = Z4(t)− Z2(t).

(3)

The constant ξ for reservoir 2 is due to the fact that this reservoir is the lowest downstream in

the chain of the reservoirs, and hence the outflow from this particular reservoir goes to the sea at

atmospheric pressure rather than to another reservoir.

The water level Z of a reservoir has upper and lower limits that arise from technical or envi-

ronmental considerations — for example, an empty reservoir has no water in it, and a full reservoir

cannot go any higher in water level. These limits are given by the following formulae:

Zmin
1 ≤ Z1(t) ≤ Zmax

1 ,

Zmin
2 ≤ Z2(t) ≤ Zmax

2 ,

Zmin
3 ≤ Z3(t) ≤ Zmax

3 ,

Zmin
4 ≤ Z4(t) ≤ Zmax

4 .

(4)

The flow through a turbine is limited by its maximal value q0
√

h
h0 , where q0, h0 are constants

that are specific to a turbine. The maximum pumping rate is given by q0 − ζ(h − h0), where the

parameters are also machine dependent. The lower bounds for q3 and q4 are then obtained by
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recalling that, with our definition, q is negative when pumping:

0 ≤ q1(t) ≤ q01
(
h1(t)
h0
1

)1/2
,

0 ≤ q2(t) ≤ q02
(
h2(t)
h0
2

)1/2
,

−q03 + ζ3(h3(t)− h0
3) ≤ q3(t) ≤ q03

(
h3(t)
h0
3

)1/2
,

−q04 + ζ4(h4(t)− h0
3) ≤ q4(t) ≤ q04

(
h4(t)
h0
4

)1/2
.

(5)

Finally, by varying the control variables qi(t), we can change the net profit. At a given moment,

each plant either turbines producing revenue, or pumps water upstream originating expenses, or

the system is shut and there is zero flow. We combine the formulae for the value of power output

and the expense of pumping in the piecewise function r(t):

ri(t) :=

{
9.8qi(hi(t)−∆hTi (t))µTi (1− φi) if qi(t) ≥ 0,

9.8qi(hi(t) + ∆hPi (t)) 1
µP

i (1−φi)
if qi(t) < 0.

(6)

Here

∆hTi (t) = ∆h0T
i

(
qi(t)
q0Ti

)2

represents friction losses when turbining, and

∆hPi (t) = ∆h0P
i

(
qi(t)
q0Pi

)2

is due to frictional losses when pumping; both these values are expressed as a head loss. The

nominal values ∆h0T
i , q0Ti , ∆h0P

i and q0Pi are constants specific to each turbine; the parameters

µTi ≈ 0.95 and 1/µPi ≈ 1.1 represent efficiencies of turbines in electricity production mode (T ) and

pumping mode (P ), respectively.

The market price of energy per megawatt is price(t). The objective of the process is maximizing

the profit, defined as

Profit =
∫ 1

0
price(t) ·

4∑
i=1

ri(t) dt.

The profit is to be maximized subject to the constraints listed in equations (1)–(6).

3 Energy Considerations

A simple approach to the question of whether to pump to the higher (perhaps smaller) reservoir,

or to the lower (perhaps bigger) reservoir is to consider the cost benefit. Two cases are considered,

one that there is plenty of water but limited time to pump or turbine it, and the other that there

is limited water but plenty of time. Head losses are neglected.
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3.1 Limited Water

Here we consider the benefit of pumping a unit volume of water in unit time (so q = −1) up through

a head difference of h at a time when the cost is C, and then later turbining that unit volume (so

that q = 1) when the price of electricity is P . The profit is proportional to (P − C)h according

to the formulae above. In this case, it is clearly better to pump to the higher reservoir, if there

are no other considerations such as that reservoir being full. This corresponds to maximising the

potential energy of the unit of water.

3.2 Limited Time

Now consider the benefit of pumping at maximum flowrate qP (which depends on head) for a

fixed small time when costs are low at the value C, then turbining water at maximum flowrate

qT for the same fixed small time when values are high at P . Then the net profit takes the form

APqTh−BCqPh, with constant A, B. That is, net profit is

APh3/2 −BC(h−Dh2) ,

where D is a constant. This means the net profit depends on the difference between a curve varying

as h3/2 and a curve with the shape of an upside-down quadratic in h. Curves with these shapes are

sketched in Fig. 3, and again indicate that it is advantageous (for large enough heads) to pump to

the higher reservoir, if the choice has to be made and if other constraints do not prevent this.

Figure 3: A sketch of two curves, the solid line of h3/2, and
the dashed line of h−h2, to show the general shapes
taken. The dotted vertical line shows where the
maximum net loss is, to the right of which it is
better to pump to the higher reservoir.
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4 A Simple Model

We now focus on a simplified system by considering a linear cascade composed of a plant and

a reservoir downstream (see Fig. 4). The purpose of this is to reduce the system to one that is

amenable to some careful analysis, while still retaining interesting behaviour.

For the sake of simplicity, we assume there is no influx of water into the system from any external

source, that is I2 = I3 = 0. Furthermore, we assume that the downstream reservoir (reservoir 2 in

Fig. 4) has no turbine, and hence there is no flux from it. That is we assume that q2 = 0 always,

and we will use notation q for q3. We also prevent turbine 3 from pumping, so q ≥ 0.

Note that the formulae Z = Z0 + α(V − V 0)β, with α, β > 0, h = Z3 − Z2, imply that the

functions Zi are increasing with Vi, and hence bounds for Zi translate to bounds for Vi. Further,

h as a function of V2, V3 is continuous, decreasing with V2, and increasing with V3.

Figure 4: Scheme of hydroelectric cascade with two reser-
voirs.

Thus, our model is constrained as follows:

V3(t) = V in
3 +

∫ t

0
−q ≥ 0, (7)

V2(t) = V in
2 +

∫ t

0
q ≤ V max

2 . (8)

There exists a continuous function h(x, y), decreasing in x and increasing in y so that h(V2(t), V3(t))

gives the head. We use the notation h(t) = h(V2(t), V3(t)). The bounds on the flow are given by

0 ≤ q(t) ≤ q0

√
h(t)
h0

, (9)

and the simplified function to maximize is the profit

Profit =
∫ 1

0
p(t)q(t)h(t)dt .

Here p(t) is the price of electricity, and all functions are ultimately functions of time t, a parameter

often suppressed for the sake of simplicity.

To solve the problem we are interested in, namely how to choose q(t) in order to maximize the

profit, we consider how the profit changes when q is replaced by a new function q̂ = q+w. We say
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w is the change (from q to q̂). The change w is said to be feasible if the constraints (7)–(9) still

hold after its application. The volume functions associated with q̂ are

V̂3(t) = V3(t)−
∫ t

0
w, V̂2(t) = V2(t) +

∫ t

0
w.

Here we use the notation ĥ(t) = h(V̂2(t), V̂3(t)), and hereafter the expression ‘for small . . . ’ will

mean ‘there exists an ε > 0 such that for all . . . smaller than ε we have . . . ’.

Lemma 1 Assume q(t) is a continuous function, and t0 a point where conditions (7), (8) and (9)

are satisfied with strict inequalities. Then there exist small continuous feasible changes w(t) with

w(t0) 6= 0. Such changes can be chosen of arbitrarily small support and such that
∫ 1
0 w = 0.

Proof. Since by (9), q ≥ 0, then V3 is non increasing, and V2 is nondecreasing. Hence (7), (8)

are equivalent to V3(1) ≥ 0 and V2(1) ≤ V max
2 . By hypothesis, V3(t0) > 0, V2(t0) < V max

2 and

0 < q(t0) < q0

√
h
h0 . Continuity of the functions involved implies that there is an open t0-centered

interval I such that these inequalities still hold for all t ∈ I in place of t0. Scaling the sin function

(for which
∫ 2π
0 sin t dt = 0), we get a continuous function w of arbitrarily small | · |∞-norm, such

that supp(w) ⊆ I, and
∫
I w =

∫ 1
0 w = 0. The | · |∞-continuity of integrals implies that, for all

small enough w(t), V̂3(t), V̂2(t) satisfy inequalities (8) and (9), and that V̂i|Ic = Vi|Ic, i = 2, 3

holds. Therefore, we also have h|Ic = ĥ|Ic. The continuity of the head function in both variables

guarantees that for small w(t), the function ĥ(t) has only small deviation from h(t). �

Proposition 1 Assume we subject q(t) to a change w(t) with supp(w) ⊆ I and
∫
I w =

∫ 1
0 w = 0.

Then the change in profit is given by∫
I
p(t)(wĥ+ q(ĥ− h))dt.

Proof. We have q̂ĥ = (q + w)(h+ ĥ− h) = qh+ q(ĥ− h) + wĥ, and therefore

ˆProfit =
∫ 1

0
p(t)q̂ĥ

=
∫ 1

0
p(t)qh+

∫ 1

0
p(t)(q(ĥ− h) + wĥ)

= Profit +
∫
I
p(t)(wĥ+ q(ĥ− h))dt.

The justification for the shortening of the interval of integration is that supp(w) ⊆ I and h|Ic = ĥ|Ic
by a similar behaviour for the V̂ with regards to V (see proof of Lemma 1). �

We can take these calculations a step further. We recall an instance of Taylor’s theorem which

states that if f is a twice differentiable function on a x0 = (x0, y0)-centered open ball in IR2 of

radius larger than the norm of h = (h1, h2), then for some ϑ, 0 ≤ ϑ ≤ 1,

f(x0 + h) = f(x0) + ∂1f(x0)h1 + ∂2f(x0)h2 +
1
2

2∑
j,k=1

∂j∂kf(x0 + ϑh)hjhk .
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Here ∂j denotes the derivative with regards to the jth variable, j = 1, 2, and underlined letters

denote 2-tuples. Now, recalling that ĥ(t) = h(V2(t) +
∫ t
0 w, V3(t)−

∫ t
0 w), fixing t and applying the

Taylor formula to the 2-variable h, we get

ĥ(t) = h(t) + (∂1h− ∂2h)(V1, V2)
∫ t

0
w +

(∫ t

0
w

)2

R(t),

where

R(t) =
1
2

2∑
i,j=1

∂i∂jh(V2 + ϑ, V3 − ϑ)(−1)i+j .

Substituting this into the expression for ˆProfit, and using some simplification of the notation, we

find
ˆProfit = Profit +

∫
I p(t)

((
h+ (∂1h− ∂2h)

∫ t
0 w + (

∫ t
0 w)2R(t)

)
w+(

(∂1h− ∂2h)
∫ t
0 w + (

∫ t
0 w)2R(t)

)
q
)
.

Lemma 2 Let I be an interval such that the function s is strictly monotone in I. Then there exists

a differentiable function w : I → IR such that

1.
∫
I w = 0 and

2.
∫
I s · w > 0.

Proof. After rescaling we may take the interval to be [0, 2π]. Then function w(t) = sin t satisfies

(7). Furthermore,∫ 2π

0
s(t) sin t dt =

∫ π

0
s(t) sin t dt+

∫ π

0
s(t+ π) sin(t+ π) dt

=
∫ π

0
s(t) sin t− s(t+ π) sin t dt

=
∫ π

0
(s(t)− s(t+ π)) sin t dt

holds. Moreover, sin |[0, π] ≥ 0, and hence for strictly decreasing function s s(t) > s(t + π) holds,

and the integral is positive. If s is increasing, the same argument works by replacing sin with − sin.

�

If h is constant, we have (∂1h− ∂2h) ≡ 0 and R(t) ≡ 0, and then this formula simplifies to

ˆProfit = Profit +
∫
I
p(t)h(t)w(t).

In this case we can state the following corollary.

Corollary 1 If h is constant and there exists a moment t0 where all inequalities (7), (8), (9) are

strictly satisfied, and in a neighbourhood of which p(t) is strictly increasing or decreasing, then the

Profit can be increased.
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This corollary can be translated as follows: if q is the current flow, and there is a moment t0
such that at this moment

• the reservoir 3 is nonempty, and the reservoir 2 is not full;

• the price is strictly dropping or increasing in some neighbourhood of t0; and

• the turbining is neither zero nor maximal,

then the flow q can be changed to one with a larger Profit.

Note that up to this point we have not considered the optimal solution. In fact, in the class

of continuous functions there does not seem to exist an optimal solution; all solutions that can be

improved upon. This suggests that the optimal solutions may be piecewise continuous. Since for

a constant h, maximising
∫ 1
0 p(t)q(t)h(t) dt is equivalent to maximising

∫ 1
0 p(t)q(t) dt, we consider

now this latter problem in more detail. We replace the conservation law of the previous problem,

namely V2 + V3 = V in
2 + V in

3 , with
∫ 1
0 q = c. This can be interpreted, for example, as that in the

interval [0, 1] the difference between turbining and pumping leads to a (possibly negative) net excess

c in reservoir 3 without violating the volume inequality applying there. Therefore, the following

theorem applies to a more general situation where pumping is allowed. From the proof an optimal

method for choosing when to pump and when to turbine can be deduced.

Theorem 1 Let p : [0, 1]→ IR≥0 be a piecewise strictly monotone continuous function, representing

the price of electricity, price(t). Then, if in the family of piecewise continuous functions P̌ on [0, 1]

there is an optimal solution to the problem

max
∫ 1

0
p(t)q(t),

such that
∫ 1

0
q(t)dt = c and a ≤ q(t) ≤ b hold, then this solution can be found constructively.

Proof. Since p : [0, 1] → IR≥0 is continuous, it is measurable and bounded; that is, for each

e ∈ IR, the set E(e) = p−1([e,∞[) is a Lebesgue measurable set, and the real valued function

IR≥0 3 e
l7→ λ(E(e)) is decreasing, has l(0) = 1, and is of compact support. Piecewise monotonicity

guarantees furthermore that l is continuous. Assume now the existence of a q ∈ P̌ that is optimal

among the feasible functions in P̌ . If a = b, then q is necessarily constant and equal to a, and thus

the unique feasible and hence optimal function in P̌ . So we can henceforth assume a < b. Then

there exists a unique λ0 ∈]0, 1[ such that c = λ0b + (1 − λ0)a. By the properties of l, we find a

unique e. such that l(e.) = λ0 holds. From now on let E = E(e.). We claim that if there exists an

optimal function q, it is given by

q(t) =

{
b if t ∈ E,
a if t 6∈ E.
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To see this, note firstly that clearly q ∈ P̌ , q satisfies the bounds, and∫ 1

0
q(t)dt =

∫
E
q dt+

∫
Ec

q dt = λ(E)b+ (1− λ(E))a = λ0b+ (1− λ0)a = c

holds. Hence q is feasible. Next we show that every feasible function q̌ ∈ P̌ with q̌ 6= q is improvable

(and hence not optimal). Take such a function q̌, and assume that q̌|E = q|E holds. Then there

exists a t0 ∈ Ec such that q̌(t0) > q(t0) = a holds. By piecewise continuity of q̌, we get that∫
Ec q̌ dt >

∫
Ec q dt holds. From here we infer that

∫ 1
0 q̌ dt =

∫
Ec q̌ dt+

∫
E q̌ dt >

∫ 1
0 q dt = c, that is

a contradiction. Therefore, q̌|E 6= q|E must hold. Similarly one can show that q̌|Ec 6= q|Ec holds.

Consequently, there exist t0, t1 and intervals I0, I1 of the same length, satisfying

t0 ∈ Ī0, I0 ⊆ Ec, t1 ∈ Ī1, I1 ⊆ E,

and q̌|I0 > a, q̌|I2 < b. Now define the function

q̂(t) =


q̌ if t 6∈ I0 ∪ I1 ,

q̌ − δ if t ∈ I0 ,
q̌ + δ if t ∈ I1 .

For small enough δ > 0, q̂ ∈ P̌ is feasible, and observing that p|E > e. > p|Ec holds almost

everywhere (by strict monotonicity), we get∫ 1

0
pq̂ dt =

∫
[0,1]

pq̌ dt+ δ

(∫
I1

p dt−
∫
I0

p dt

)
>

∫ 1

0
pq̌ dt.

This shows that q̂ improves q̌ and completes the proof. �

This Theorem claims, in the Corollary above, that if there exists an optimal control q(t), then

this optimal control is necessarily a bang-bang process: in order to maximize the profit it requires

either pumping at the maximum possible rate, or turbining at the maximum flow. Note that

the assumption that p(t) is strictly monotone is not very restrictive: price may be sampled and

re-ordered to ensure that it is at least monotone if not strictly so.

Example 1 Assume that we have a price curve as shown in Fig. 5, and the constraints −1 ≤ q ≤ 2

and
∫ 1
0 q dt = 1. The problem is maximizing

∫ 1
0 pq dt under these constraints.

Solution: From the equation λ0 · 2 + (1− λ0) · (−1) = 1 we find that λ0 = 2/3. Draw a horizontal

line l so that the points (a union of the intervals) in [0, 1] obtained by projecting the part of the

curve lying above l has measure 2/3. Turbine in the intervals formed by that set of points at rate

2 and pump at rate 1 in the remaining intervals.

The discrete analogue to the above theorem reads as follows.

Theorem 2 Assume p1, p2, . . . , pn are positive real numbers. Then the problem

max
n∑
i

piqi
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Figure 5: The price curve used in our example, showing the
price of electricity during a winter’s day.

such that
∑n

i=1 qi = c and a ≤ qi ≤ b hold, has a solution such that all but at most one of the qi
are equal to a or b.

This theorem can be proved similarly to the previous theorem, or by using linear programming.

Here the existence of an optimal solution can be readily guaranteed. In Section 6 we give an

illustration of the theorem by means of a computational implementation.

5 More Complex Models

We now consider a complex cascade of n hydro-electric stations (Fig. 1). We assume that the

result of previous Section can be extended to this more general case, so that to maximize profit a

turbine must be operated at maximum flowrate for both regimes, turbining and pumping. That is,

we assume that the control of the turbine and shifting from turbining to pumping is a bang-bang

process.

This is a serious assumption, but is in the spirit of a heuristic approach to solving optimization

problems that cannot be solved in any other way, even numerically [3], since the parameter space

to be searched is prohibitively large. Note that bang-bang solutions are optimal when the objective

function is linear in the control variable (here the flowrate), according to Pontryagin’s minimum

principle [1]. This corresponds to linearizing our objective function in the flowrates.

We also assume that the price of electricity is known in advance for the operational time interval.

We consider separately three possible cases, namely:

1. There is enough water and spare reservoir volume for continuous operation of all stations

with water recirculation (Large reservoirs case).
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2. There is not enough water for continuous operation of the stations with water recirculation;

redistribution of water between these stations can be needed in this case (Small reservoirs

case).

3. There is not enough water for continuous operation in stations with water recirculation, but

there is a reserve of water in the reservoirs of “downstream only” stations; optimizing the

usage of this water (with possible redistribution of this reserve for continuous operation of

the stations with recirculation) is the question in this case (Not enough water case).

5.1 Case 1: Large Reservoirs

In this case, we assume that all reservoirs have enough water and enough empty space for continuous

operation, that is, that the bounds on reservoir size never act to limit electricity production or

pumping of water.

We consider operation of a system of n hydro-electric stations on the time interval [0, T ] (where

T may be 24 hours, or a week, or any other sensible period of time). We assume that for each of

these stations the operational time interval [0, T ] is divided into three operational states as follows:

1. on the interval T Ti = [ai, bi] the ith station produces electric energy with the power Pi(t)

releasing water downstream with the flow rate qTi (t);

2. on the interval TPi = [ci, di] the ith station produces a reserve of water that can be used

later, by pumping water upstream at the flow rate qPi (t), and consuming energy to operate

the turbine in pumping mode with the power C(t);

3. outside of these two intervals there is no flow. The intervals do not overlap, and without loss

of generality we will assume the second interval follows the first.

For each station, profit is ∫ bi

ai

p(t)Pi(t) dt−
∫ di

ci

p(t)Ci(t) dt,

and the total profit of the system of stations over the operational interval is

U(ai, bi, ci, di) =
∑
i

(∫ bi

ai

p(t)Pi(t) dt−
∫ di

ci

p(t)Ci(t) dt
)
.

Here, p(t) is the price of electricity that we assume known in advance, and the powers P (t) and

C(t) are (dropping the subscripts)

P (t) = gµT qT (t) · (h(t)−∆hT )(1− φ)

and

C(t) = g
1
µP

qP (t) · (h(t) + ∆hP ),
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respectively. Here g is gravitational acceleration, g = 9.8 m.s−2; h(t) is the head of a station (the

difference between the levels of the upper and lower reservoirs), ∆hP and ∆hT represent the losses

due to drag and friction, represented here as head losses, ∆hP,T = ∆hP,T0 (qP,T (t)/qP,T0 )2 and µP,T

and φ are constants.

In this subsection we assume that each station with water recirculation has sufficient reserve

of water for continuous operation, and that the ith reservoir has an excess of water ∆Vi over the

time period (perhaps from precipitation), that is to be discarded from recirculation; ∆Vi can be

negative when we decide to store some extra water into the reservoir. That is, for each station with

water recirculation we have the constraint∫ bi

ai

qTi (t) dt−
∫ di

ci

qPi (t) dt = ∆Vi. (10)

Guided in a heuristic manner by the results of the previous section, and noting Labadie’s comment

[3] that heuristic methods are usually required, we assume that for both modes, pumping water

and producing energy, operating the turbine at the maximum possible flow rate maximizes profit.

Then we can formulate the problem of maximizing profit as an extremum problem with Lagrange

multipliers and consider the functional

U(ai, bi, ci, di) =
∑
i

(∫ bi

ai

p(t)Pi(t) dt−
∫ di

ci

p(t)Ci(t) dt
)

+
∑
i

λi

(∫ bi

ai

qTi (t) dt−
∫ di

ci

qPi (t) dt−∆Vi

)
.

Extrema occur at critical points, which are either boundary values or obey the following set of

equations:

∂U

∂ai
= −p(ai)Pi(ai)− λiqTi (ai) = 0,

∂U

∂bi
= p(bi)Pi(bi) + λiq

T
i (bi) = 0,

∂U

∂ci
= p(ci)Ci(ci) + λiq

P
i (ci) = 0, (11)

∂U

∂di
= −p(di)Ci(di)− λiqPi (di) = 0.

It is remarkable that in this case these equations are independent for each of the stations. According

to (11), the equalities

p(ai)Pi(ai)
qTi (ai)

=
p(bi)Pi(bi)
qTi (bi)

=
p(ci)Ci(ci)
qPi (ci)

=
p(di)Ci(di)
qPi (di)

= −λi (12)

hold for each reservoir. The values QTi (t) = p(t)Pi(t)

qT
i (t)

and QPi (t) = p(t)Ci(t)

qP
i (t)

have transparent meaning:

the price of a unit volume of water that is flushed down or pumped up, respectively, for the ith

reservoir at the moment t. The equalities (12) emphasize the fact that the power company really
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trades in water. We further refer to the values QPi (t) and QTi (t) as effective prices of water, for

pumping and turbining respectively.

Note that for a given reservoir and at a given moment the prices of water will be different for

turbining and pumping, that is QTi (t) 6= QPi (t), and hence we apply the indexes T, P for turbining

and pumping, respectively. This difference is mostly due to the fact that energy production is not

a perfect process, and only a fraction of the potential energy that is stored by water can be turned

into electric energy. In general, QTi (t) < QPi (t) holds. Indeed, if

P (t) = gµT qT (t) · (h(t)−∆hT )(1− φ)

and

C(t) = g
1
µP

qP (t) · (h(t) + ∆hP ),

then the effective water prices are

QT (t) = gµT p(t) · (h(t)−∆hT )(1− φ)

and

QP (t) = g
1
µP

p(t) · (h(t) + ∆hP ),

respectively. It is easy to see that even in the case µT (1− φ) = 1
µP = µ, the price difference is

∆Q = QP (t)−QT (t) = g µ p(t) · (∆hP + ∆hT ) > 0,

which is due to the head loss terms. Furthermore, due to different heads and differences in operating

efficiencies, for two different stations the same volume of water can be turned into different amounts

of electric energy. Therefore, for a given moment of time the prices QTi (t) and QPi (t) for different

reservoirs are different.

The equalities (12) literally state that in order to maximize the profit, each process, turbining

or pumping, must start and end at the moments when the effective price of water is equal. That

is, the conditions

QTi (ai) = QTi (bi) = QPi (ci) = QPi (di) (13)

must hold for each reservoir.

The length of each regime, turbining, T Ti = bi − ai, and pumping, TPi = di − ci, can be found

from the water balance constraint. By the Lagrangian minimax principle, n equalities

∂U

∂λi
=
∫ bi

ai

qTi (t) dt−
∫ di

ci

qPi (t) dt−∆Vi = 0

must hold. These conditions are equivalent to the water balance constraints (10) that hold in

this case for each reservoir (and hence there are n constraints in total). These constraints are

particularly simple if we assume that the flow rates qT (t) and qP (t) are constant in time. (Such
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an assumption appears to be accurate for reasonably short time intervals that are of order of a few

hours.) Under this assumption,∫ bi

ai

qTi (t) dt = qTi (bi − ai),
∫ di

ci

qPi (t) dt = qPi (di − ci),

and hence qTi T
T
i −qPi TPi = ∆Vi. That is, when there is no excess of water to discard from circulation,

∆V = 0, and the lengths of these two regimes are simply inversely proportional to the flow rates:

qPi
qTi

=
T Ti
TPi

.

We have to comment, however, that, due to the fact that QTi (t) 6= QPi (t) (QTi (t) < QPi (t)),

we cannot put T T + TP = T even if shifting a turbine from energy producing to pumping and

back were possible. (Generally this shifting requires some time.) By (13), QTi (bi) = QPi (ci) must

hold at the moments of the end of turbining mode, t = bi, and the begin of pumping, t = ci. But

QTi (bi) < QPi (bi) and QTi (ci) < QPi (ci). That is, bi 6= ci, and there is a time lag between stopping

turbining at t = bi and beginning pumping at t = ci.

5.2 Case 2: Small Reservoirs

We assume now that the stock of water is not sufficient to maintain continuous operation of those

stations that can recycle water. In this case the available water must be re-distributed between the

reservoirs with the aim of maximizing profit. We assume that there is no excess of water, that is

∆V = 0, and hence the water balance constraint is∑
i

(∫ bi

ai

qTi (t) dt−
∫ di

ci

qPi (t) dt
)

= 0. (14)

The problem is re-formulated accordingly as

U(ai, bi, ci, di) =
∑
i

(∫ bi

ai

p(t)Pi(t) dt−
∫ di

ci

p(t)Ci(t) dt
)

+ λ
∑
i

(∫ bi

ai

qTi (t) dt−
∫ di

ci

qPi (t) dt
)
.

As before, we are looking for the values of ai, bi, ci, di that maximize this functional. Internal critical

points occur when

∂U

∂ai
= −p(ai)Pi(ai)− λqTi (ai) = 0,

∂U

∂bi
= p(bi)Pi(bi) + λqTi (bi) = 0,

∂U

∂ci
= p(ci)Ci(ci) + λqPi (ci) = 0, (15)

∂U

∂di
= −p(di)Ci(di)− λqPi (di) = 0.

127



Andrei Korobeinikov, Alexander Kovacec, Mark McGuinness, Marta Pascoal, Ana Pereira, Sonia
Vilela

Hence,
p(ai)Pi(ai)
qTi (ai)

=
p(bi)Pi(bi)
qTi (bi)

=
p(ci)Ci(ci)
qPi (ci)

=
p(di)Ci(di)
qPi (di)

= −λ (16)

hold for each reservoir.

Note that in contrast with the previous subsection, here λ is the same for all reservoirs with

water recirculation. Using the idea of effective price of water from the previous subsection, we can

rewrite (16) as

QTi (ai) = QTi (bi) = QPi (ci) = QPi (di) = −λ.

The major difference with the earlier case is the fact that here for all stations with water

recycling every mode of operating, that is turbining or pumping, should start at the same level of

the effective price of water. We note that same price for different reservoirs does not mean the same

moment of time, because the cost of pumping and the value of turbining may differ for different

reservoirs. For example, if we have just two reservoirs i = 1, 2 with water recycling, then

QT1 (a1) = QT2 (a2) = QT1 (b1) = QT2 (b2) = QP1 (c1) = QP2 (c2) = QP1 (d1) = QP2 (d2)

must hold. These equalities gives an idea how the total water stocks should be redistributed

between the stations with water recirculating in the case when water stocks are insufficient to

provide continuous operation of these stations. The condition

QT1 (a1) = QT2 (a2) = QT1 (b1) = QT2 (b2)

implies

µT1 p(a1) · (h1(a1)−∆hT1 ) = µT2 p(a2) · (h2(a2)−∆hT2 ) = (17)

= µT1 p(b1) · (h1(b1)−∆hT1 ) = µT2 p(b2) · (h2(b2)−∆hT2 ).

Assuming that both stations use the same technology and are similar in characteristics, and hence

µT1 ≈ µT2 , and neglecting by ∆hT1 ,∆h
T
2 , we obtain the conditions

p(a1) · h1(a1) = p(a2) · h2(a2)

and

p(b1) · h1(b1) = p(b2) · h2(b2).

That is, for two stations, switching between pumping and turbining should occur at times

a1, a2 (or c1, c2, respectively) such that the ratios of the energy prices at these times are inversely

proportional to the ratios of the heads:

p(a1)
p(a2)

=
h2(a2)
h1(a1)

,
p(b1)
p(b2)

=
h2(b2)
h1(b1)

.
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The assumption µT1 ≈ µT2 and the neglecting of ∆hT1 ,∆h
T
2 are not necessary here: it is easy to see

from (17) that optimal times to switch between pumping and turbining satisfy

p(a1)
p(a2)

=
µT2 · (h2(a2)−∆hT2 )
µT1 · (h1(a1)−∆hT1 )

,
p(b1)
p(b2)

=
µT2 · (h2(b2)−∆hT2 )
µT1 · (h1(b1)−∆hT1 )

.

If we have more that two stations with water recirculating in the system, then these conditions

must hold for every possible pair of stations.

These conditions also imply that a reservoir with a larger head should start producing electricity

at a lower price; this suggests that such a reservoir can start earlier in a rising market, and continue

longer in a falling price market, than a reservoir with a smaller head, echoing earlier simple analysis

of the relative value of water in different reservoirs in section (3).

As earlier, the water balance constraint

∑
i

∫ bi

ai

qTi (t) dt =
∑
i

∫ di

ci

qPi (t) dt

must also hold in this case. This constraint can be obtained from the condition ∂U
∂λ = 0.

5.3 Case 3: Not enough water

Let us assume now that the stations with water recirculation do not have sufficient reserve of water

to maintain continuous operation, and that there are a few stations that are unable to pump water

upwards. The latter have some reserve of water that can be used. The question is how this reserve

can be used optimally. That is, should we flush this reserve down as soon as possible to provide

enough water for continuous operation of a station with water recirculation, or should we apply a

different strategy.

In this case it appears that if this reserve or a part of it can be re-distributed for the stations with

water recirculation, then it makes sense to flush downstream the volume of water that is sufficient

to provide uninterrupted operation of the stations with recirculation: the profit that was missed

initially will be substantially replenished after a few recurrent operating cycles of the stations with

water recycling.

6 Numerical Solutions

The numerical procedure and solutions presented in this section are intended to illustrate the

theoretical ideas discussed in earlier sections.

The idea of reformulating the initial optimal control problem as a minimax problem can be

further developed to construct a numerical procedure. In such a procedure, we can divide the

whole time interval of a number of smaller discrete sub-intervals, assuming that the electricity

price, pj , is constant on each of these sub-intervals, and then consider a discrete-time minimax
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problem. In this Section we indicate a numerical method that utilizes a discretized model of the

problem.

We assume that the time period is divided into m subperiods, and that the electricity price is

constant on each of these periods. Then the objective function is given by

U =
m∑
j=1

pj

4∑
i=1

rij ,

where

• price pj is the market cost of electricity at the jth interval, j = 1, . . . ,m;

• power rij =

{
9.8qij(hij −∆hij)µi(1− φi), if qij ≥ 0, i = 1, . . . , 4 ;

9.8qij(hij + ∆hij)/µi, if qij < 0, i = 3, 4.

The nominal point of each reservoir, (qi0, hi0), is assumed to be given. Parameters µi and φi are

also known and are related to each power station’s efficiency. The power rij depends on the head

hij and the water flux qij in the ith reservoir on the jth time subinterval, where i = 1, . . . , 4,

j = 1, . . . ,m. (Please note that here we again assume that the flux q is positive when the plant

is turbining and negative when the plant is pumping water up, and hence we use the notation q

rather then qT and qP for both regimes of operating.)

The flow rates are subject to constraints. Thus, for the particular system depicted in Fig. 1,

the flow rates are limited by the following constraints:

0 ≤ qij ≤ qij−1

√
hij
hij−1

, i = 1, 2, j = 1, . . . ,m.

−qij−1 + ζi(hij − hi0) ≤ qij ≤ qij−1

√
hij
hij−1

, i = 3, 4, j = 1, . . . ,m.

For the discrete-time model, the relationships between the heads, water levels, water volumes

and the fluxes of the reservoirs for the particular cascade depicted in Fig. 1 are:

hij = Zij − Z2j , i = 1, 3, 4, j = 1, . . . ,m;

h2j = Z2j − ξ, j = 1, . . . ,m;

V2j = V2j−1 + I2j + q1j + q3j + q4j − q2j , j = 1, . . . ,m;

Vij = Vij−1 + Iij − qij , i = 1, 3, 4, j = 1, . . . ,m;

Zij = Zij−1 + αi(Vij − Vij−1)βi , i = 1, . . . , 4, j = 1, . . . ,m.

Here ξ denotes sea level; Iij denotes natural water influx into the ith reservoir on the jth

subinterval; Vij denotes the volume of water in the ith reservoir on the jth subinterval; αi and βi

are coefficients which depend on the characteristics of the reservoirs; i = 1, . . . , 4, and j = 1, . . . ,m.
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The initial volumes Vi0 are assumed to be known for each of the reservoirs. There are lower and

upper bounds on the volume of water each reservoir can store,

V min
i ≤ Vij ≤ V max

i , i = 1, . . . , 4, j = 1, . . . ,m,

where V min
i and V max

i denote the bounds given for the ith reservoir.

In this formulation, the problem can, in principle, be solved numerically by a solver for non-

linear optimization, or, if the objective function and the non-linear constraints are linearized, by a

solver for linear programming.

6.1 Computational experiments

For the particular case of a single hydro-electric plant, with linear objective function and constraints,

we have carried out numerical experiments using the numerical method that is described above. For

computation we use a 24-hour time interval, divided into 24 subintervals, and the price of electricity

given in Fig. 5. That is, we attempted to numerically find the set of constants qj (j = 1, . . . , 24)

which maximize the objective function

max
24∑
j=1

pjqj ,

subject of constraints
24∑
j=1

qj = θ, −2 ≤ qj ≤ 10.

Figure 6 shows the results of computations obtained for θ = 100 by a Matlab package for nonlinear

optimisation linprog (Fig. a), and by the simplex method with CPLEX [2] (Fig. b).
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(a) Package linprog of Matlab (b) Simplex method of CPLEX

Figure 6: Solution of the linear problem with θ = 100

When the simulation was repeated with θ = 180, both CPLEX and Matlab gave the same bang-

bang answer, with flow either fully pumping or fully turbining.
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These comparatively simple tests illustrate nicely the theoretical results, suggesting that bang-

bang values for q are optimal, with the exception of the Matlab optimization with θ = 100, which

did come up with a few intermediate flow values in its solution.

7 Conclusions

One of the key questions raised by REN at the Study Group was about deciding where to pump

spare water, when there is a choice of upstream reservoirs to pump to, with different heads. The

answer suggested by some simple analysis, as well as by a minimax approach, is that in general

spare water should be pumped to the higher reservoir if possible, given the other constraints that

may operate. This corresponds to maximizing the potential energy of the system of reservoirs.

Further analysis focussed on the question of how to decide what flowrates to use, to maximize

profit. A theoretical analysis of a simple cascade of two reservoirs with a linear dependence of

profit on flowrate indicates that all continuous solutions can be improved upon, suggesting that the

optimal solution will not be continuous. Furthermore, if pricing is strictly monotone, it is shown

for this simple cascade that any optimal solution if it exists can be constructed as a piecewise

continuous bang-bang solution, with full flowrates used in either pumping or turbining mode.

Further to this, a cascade of n reservoirs and turbines was considered, with flows assumed to

be bang-bang. Maximizing on the times at which pumping and turbining starts and stops, led to

an insight into the importance of the effective price or value of a unit volume of water. Switching

between pumping and turbining should occur at times when these effective prices match. This, in

combination with constraints on total flow volumes, can be used to determine the times to switch

a turbine from one mode to the other.

However, the modelling and analysis presented here is very simple, is heuristic, and is determin-

istic. Precipitation, and electricity price and demand, are stochastic processes. Hence in general a

nonlinear stochastic computer simulation approach is needed to provide definite scheduling of an

operating cascade in practice, no matter whether it is branched or linear in structure. The forward

problem, of determining the profit for a given schedule of flowrates and inputs and price/demand,

is straightforward to compute. More challenging is the inverse problem, of determining the optimal

set of flowrates to use.
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