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Abstract

All living organisms possess common attributes that distinguishes them

from the surrounding inorganic matter. A complex network of interacting

organic molecules are responsible for the existence and perpetual of life. Among

the most extraordinary biomolecules are proteins. Proteins are the workhorses

of life, they actively participate in all biological processes. This is accomplished

through an intrinsic conformational plasticity, a requisite in all biochemical

reactions inherently dynamic processes. For most proteins a correct three

dimensional structure is essential for its biological function. It is a fact that

many diseases can be traced back to malfunction of proteins. Understanding

the underlying connection between the biomolecule structure and its dynamics,

is thus essential for current day medicine.

Throughout this thesis, two proteins were the subject of study using both

experimental and computational techniques. Different biophysical aspects were

focused stressing the importance of the usage of different approaches to get

complementary views.

δ-lysin is a small peptide excreted by the bacteria Staphylococcus aureus,

responsible for the disruption of eukaryotic membranes in infection conditions.

On its way to the membrane, the peptide experience subtle chemical environ-

ment changes with consequences on peptide conformation. The amphyphatic

helical structure of this peptide was studied using nuclear magnetic resonance

(NMR), and its conformational plasticity and propensity for aggregation in

solution was assessed through molecular dynamics (MD) simulations and NMR.

The first stages of the lytic process were also modeled by analyzing MD trajec-

tories describing the interaction of the peptide with a zwiterionic membrane.

The results show that peptide aggregation may play a key role in the process.
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Transthyretin (TTR) is one of the many proteins known to be involved in

human amyloid diseases. Depending on the protein variant amyloidogenicity,

the native tetrameric complex dissociates into monomeric species with high

tendency for aggregation. Soluble aggregates and insoluble amyloid fibrils

are responsible for the morphological alterations and cell observed in these

pathologies. We developed a computational method using protein docking

driven by experimental data, to build a high resolution molecular model of the

elementary units that constitute the fibrils. We obtained a polymorphic set of

protofilament models, further characterized in terms of helical periodicities

and interface match. The overall stereochemical quality of the structures was

assessed. This models may be a valuable instrument in the rational design of

compounds with therapeutic potential to inhibit amyloid fibril formation.



Sumário

Os organismos vivos possuem atributos comuns que os distinguem do

mundo inorgânico. Uma rede complexa de interacções entre moléculas orgâni-

cas propicia a existência e a perpetuação da vida. As proteínas são uma das mais

extraordinárias classes de biomoléculas, participando activamente em todos

os processos biológicos. Esta ubiquidade das proteínas deve-se à sua relativa

plasticidade conformacional, um requisito importante nas reacções bioquímicas,

processos dinâmicos por definição. A maioria das proteínas tem uma estrutura

tridimensional bem definida, essencial para a sua função biológica. Muitas das

doenças hoje conhecidas têm a sua origem num incorrecto funcionamento das

proteínas. O estudo da relação existente entre a estrutura de uma dada biomolé-

cula e a sua dinâmica, é um dos tópicos mais importantes na compreensão dos

mecanismos moleculares de múltiplas patologias.

Relativamente a esta temática, duas proteínas foram o sujeito de estudo na

elaboração desta tese. Foram utilizadas técnicas experimentais bem como pro-

tocolos computacionais, onde diferentes aspectos biofísicos foram abordados.

A bactéria Staphylococcus aureus é responsável por inúmeros casos de sep-

ticémia. Umas das toxinas excretadas pela bactéria para o plasma, a δ-toxina, é

responsável pela desintegração membranar em organismos eucarióticos. Du-

rante o mecanismo infeccioso, o peptídeo experiencia a influência de diferen-

tes ambientes químicos, e por conseguinte com impacto na sua conformação

tridimensional. A estrutura anfipática helical do peptídeo foi estudada por

ressonância magnética nuclear (NMR). Simulações moleculares foram também

produzidas no estudo da plasticidade conformacional e propensão à agregação

do peptídeo em solução. A interacção do peptídeo com membranas foi também

estudado por dinâmica molecular. Os resultados evidenciam que o estado de
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agregação do peptídeo pode ser relevante para o processo lítico.

A transtirretina (TTR) humana é uma das muitas proteínas envolvidas em

doenças amilóides. Dependendo da amiloidogeneceidade da variante proteica,

a estabilidade do complexo tetramérico nativo é alterado, ocorrendo dissoci-

ação e formação de espécies monoméricas com tendência para agregar. Os

agregados solúveis e as fibras amilóides insolúveis são responsáveis pelas alte-

rações morfológicas e morte celular observadas nestas patologias. Um método

computacional baseado em acoplagem molecular (“docking”) utilizando dados

experimentais foi desenvolvido nesta tese. O objectivo do protocolo centrou-se

na modelação molecular de um modelo protofilamentar, a unidade elementar

das fibras amilóides. Os modelos polimórficos obtidos foram agrupados de

acordo com a sua periodicidade helical, para posterior análise das interfaces

proteicas e qualidade estereoquímica das estruturas. Os modelos produzidos

poderão ter um impacto significativo em estudos terapêuticos com o objectivo

de produzir fármacos que inibam a formação das fibras amilóides.



Outline of the thesis

The thesis consists of seven chapters, including a general introduction and

a final chapter containing some overall conclusions, and perspectives. A more

detailed description of the main chapters follows.

Chapter 1 aims to give a short glimpse on how proteins are truly complex

and important biological machines. The study of protein biophysics relies on

both experimental and computational techniques, and a general background

about the methodologies employed throughout the thesis is given. The goal of

the author is to introduce the reader to the main concepts used throughout the

next chapters, without going into too much detail.

Chapter 2 introduces the importance of the understanding and characteriza-

tion of protein interactions, as one of the major goals on modern biochemistry.

This chapter will focus the attention on the application of pulsed field gradient

nuclear magnetic resonance (PFG NMR) techniques to measure the transla-

tional diffusion of proteins, which can be correlated with the aggregation state

of the protein in solution. In addition, the chapter aims to give the theoretical

background of PFG NMR experiments, along with relevant methodological

issues on how to setup, perform and analyze PFG experiments. Two protein

systems were used to introduce these concepts, namely hen egg white lysozyme

and δ-toxin.

Chapter 3 is a classical NMR work on the determination of a peptide struc-

ture, namely δ-toxin, in membrane-mimetic environments. The mechanisms

of interaction between cytolytic peptides and target membranes are still under

strong scientific debate. The three-dimensional structure of these peptides in

different chemical environments is essential for the prosecution of such studies.

Chapter 4 introduces the reader to molecular dynamics (MD). It describes
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the performance of variants of the GROMOS96 force field on simulations of a

lipid bilayer system in water, namely dimyristoylphosphatidylcholine (DMPC),

for a set of generally used parameters. The major outcome was an equilibrated

system well characterized, ready to be used on more complex simulations.

Chapter 5 assesses the conformational stability of δ-toxin and its propensity

for aggregation, through molecular dynamics simulations at room temperature

in different chemical environments. A brief comparison between experimental

results and MD simulations show that they agree fairly well, and provide a

complementary view of the structure and dynamics behavior of the peptide in

solution. The initial steps of interaction between the peptide and a DMPC lipid

bilayer are also abridged by MD.

Chapter 6 is a protein docking study on the protein transthyretin (TTR),

one of the many proteins known to be involved in human amyloid diseases.

The chapter focuses on the modeling of amyloid protofilaments, based on

available experimental biochemical data for TTR. The models were built using

a docking-alignment procedure developed in the group.

Chapter 7 highlights the main conclusions from all previous chapters.

It also gives a brief overview about my perspectives on how grid enabled

computational sciences are a promising approach to delve further into the

intricacies of the protein world.



Estrutura da tese

Esta tese é composta por sete capítulos, incluindo uma introdução geral e

um capítulo final de conclusões e perspectivas futuras. Uma descrição mais

detalhada do conteúdo de cada capítulo segue abaixo.

O capítulo 1 pretende dar uma panorâmica muito geral e concisa da impor-

tância das proteínas no mundo biológico. No estudo da biofísica de proteínas,

diversas técnicas experimentais e computacionais são geralmente empregues.

Uma descrição breve e sumária das técnicas utilizadas nesta tese é apresentada.

O objectivo do autor neste capítulo é o de introduzir o leitor aos principais

conceitos relevantes para a compreensão dos capítulos que se seguem, sem

contudo entrar em grandes detalhes.

O capítulo 2 introduz um dos aspectos mais relevantes na bioquímica mo-

derna, a importância da compreensão e caracterização das interacções entre

proteínas. Estas interações podem ser estudadas por diversas técnicas, nomea-

damente por ressonância magnética nuclear (“NMR”), recorrendo a sequências

de impulsos com gradientes de campo. Esta técnica permite a determinação da

difusão translacional das moléculas em solução, sendo que os resultados podem

ser correlacionados com o estado de agregação das moléculas em estudo. Este

capítulo pretende fornecer alguns dos aspectos teóricos da técnica, bem como

aspectos a ter em conta aquando da preparação e execução das experiências.

Duas proteínas foram utilizadas como exemplos para introduzir os principais

conceitos da técnica, nomeadamente a lisozima da clara de ovo de galinha e a

δ-toxina.

O capítulo 3 é um trabalho clássico de “NMR” na determinação da estrutura

de um peptídeo (δ-toxina) em diferentes ambientes químicos. Os mecanismos

de interacção entre peptídeos citolíticos e membranas celulares, continua a
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ser um dos tópicos em debate pela comunidade científica. A estrutura tridi-

mensional destes peptídeos em diferentes ambientes químicos é de extrema

importância para a compreensão dos mecanismos infecciosos.

O capítulo 4 introduz o leitor ao método de dinâmica molecular (“MD”)

e descreve o desempenho de diferentes campos de força baseados em GRO-

MOS96. O sistema molecular simulado é constituído por uma bicamada lipídica

de dimiristoil fosfatidil colina (“DMPC”) em solução aquosa. O principal resul-

tado foi a obtenção de um sistema em equilíbrio bem caracterizado, podendo ser

utilizado como ponto de partida para simulações moleculares mais complexas.

No capítulo 5, a estabilidade conformacional e a propensão para agrega-

ção da δ-toxina em diversos ambientes químicos, são estudadas por dinâmica

molecular. Uma breve comparação entre os resultados obtidos anteriormente

por “NMR” e os resultados de modelação molecular, mostram que as técnicas

são complementares na interpretação do comportamento molecular. As etapas

iniciais da interacção entre o peptídeo e uma membrana de “DMPC” também

foram alvo de estudo.

O capítulo 6 aborda a temática das doenças amilóides. A transtirretina é

uma entre várias proteínas humanas, responsável pela etiologia desta classe de

patologias. A modelação molecular de protofilamentos, a unidade estrutural das

fibras amilóides, foi o objectivo principal deste capítulo. Auxilidados por dados

experimentais, um protocol computacional baseado em “docking” proteico foi

estabelecido.

E por último, o capítulo 7 é uma resenha das conclusões dos capítulos

anteriores. Adicionalmente, um comentário pessoal acerca das novas técnicas

computacionais baseadas em tecnologia grid, serve de mote para terminar esta

tese. Ao mesmo tempo, pretende lançar novas perspectivas para uma melhor

compreensão do mundo complexo das proteínas.
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Chapter 1
General introduction

“Beware of the idols of the mind, the fallacies into which
undisciplined thinkers most easily fall. They are the real distorting
prisms of human nature [. . .] Stay clear of these idols, observe the
world around you as it truly is, and reflect on the best means of
transmitting reality as you have experienced it; put into it every
fiber of your being.”

Wilson (1998)
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1.1 The wonder of life

The universe, as we now it today, was formed after a cataclysmic explosion

from a primordial hot and dense initial condition at some finite time in the

past, the “primeval atom” (Lemaître, 1931). Though the Big Bang theory

does not provide any explanation for such an initial condition, it describes

the general evolution of the universe since that instant, 14 billion years ago.

Within seconds, the simplest chemical elements were formed and as the universe

expanded and cooled, material condensed under the influence of gravity to form

stars. Elements heavier than hydrogen and helium were produced in the cores

of ancient and exploding stars, and spread throughout the universe. About four

billion years ago the planet Earth was formed, and as favorable conditions arose

a new journey was to begin.

There is no scientific consensus as to how life originated and all proposed

theories are highly speculative. However, most scientific models agree that

the availability of different chemical elements (trapped on Earth) under certain

abiotic conditions, was of primordial importance for life. As the basic molecules

of life were formed, a diverse array of living organisms started to populate

Earth’s biosphere.

All living organisms possess common attributes that distinguishes them

from the surrounding inorganic matter (Stryer, 1995). A complex network of

interacting molecules is all that is needed for the existence and perpetual of life.

These molecules are responsible for the microscopic organization; regulation

of the interaction between organism’s components; extraction, transformation

and storage of energy from the environment; adaptability to the surroundings;

fidelity of self-replication; and capacity to change over time by gradual evolu-

tion. Astonishingly, all living organisms have the same chemical background

thus sharing a common evolutionary origin.

1.2 Proteins - a biomolecular surprise

Life is built from the same set of biomolecules, which is a wonder by itself.

Nonetheless, one of the most striking surprises on living organisms is a class

of biomolecules named proteins. Proteins are the workhorses of life, and have
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evolved through selective pressure to perform specific functions. They regulate

a variety of activities in all known organisms, from replication of the genetic

code to oxygen transport, and are generally responsible for regulating the

cellular machinery and consequently, the phenotype of an organism (Branden

and Tooze, 1999).

Proteins are mainly built from a small basic repertoire of 20 building blocks,

the amino acids. The blueprint for each amino-acid is encoded on base triplets

found in the coding regions of genes. These base triplets are recognized by

protein building factories on the cell, which create and successively join the

amino acids together into a linear chain. The unique sequence of these building

units on the polypeptide chain gives each protein its individual characteristics.

The interaction between the amino acids on the polypeptide and their surround-

ings in the cell, produces a well-defined compact three dimensional shape, the

folded protein. Thus, the resulting three-dimensional structure is determined by

the sequence of the amino acids (Anfinsen, 1972).

For most proteins the correct three dimensional structure is essential to

function. Failure to fold into a functional intended shape usually produces mis-

folded proteins with different properties. In recent years, with the identification

of several neurodegenerative and other diseases as protein folding disorders,

the importance of the protein folding problem was highlighted (Dobson, 2004).

The answer to the puzzling question of how proteins are able to actively

participate in all biological processes, resides in their intrinsic conformational

plasticity. The conformational dynamics of proteins is encoded in their three-

dimensional structures, and the early view of such biomolecules as relatively

rigid bodies (Tanford, 1968) has been replaced by a dynamic model. The inter-

nal motions and resulting conformational changes play an essential role in their

physiological function, since all biochemical reactions are inherently dynamic

processes. A critical assessment of how these molecules work requires an under-

standing of the connection between the biomolecule structure, obtained mainly

from X-ray diffraction studies and nuclear magnetic resonance (NMR), and

the dynamics, which is much more difficult to probe experimentally (Karplus

and Kuriyan, 2005). Molecular simulations are becoming an extremely useful

tool for scientists, providing links between structure and dynamics. These



1.3 Section • Consilience 5

computational techniques enable the exploration of the conformational energy

landscape which is accessible to protein molecules.

1.3 Consilience

The exciting field of modeling molecular systems has been steadily drawing

increasing attention from scientists in a variety of disciplines. In particular, mod-

eling large biological polymers is a truly multidisciplinary enterprise (Schlick,

2002). Each branch of knowledge studies a subset of reality that depends

on factors studied in other branches. Atomic physics underlies the workings

of chemistry, which studies emergent properties that in turn are the basis of

biology.

An emerging belief on a unifying perspective for understanding our uni-

verse was revived in the 20th century by Wilson (1998). Wilson uses the term

consilience1 to describe the synthesis of knowledge from different specialized

fields of human endeavor. The sociobiologist advocates that the world is orderly

and can be explained by a set of natural laws that are fundamentally rooted in

biology.

If Wilson’s vision is correct, the interlocking web of scientific fields will suc-

ceed ultimately in explaining the connections between our biological makeup

and human behavior. Undoubtedly, an universal effort to integrate the knowl-

edge is needed to decode life as we know it.

1.4 Molecular modeling

A model is a simplified mathematical description of a system or process,

used to assist calculations and predictions. Molecular modeling is therefore

concerned with ways to mimic the behavior of molecules and molecular sys-

tems (Leach, 1998). The ultimate goal is to study molecular structure and

1Consilience, or the unity of knowledge, has its roots in the ancient Greek concept of an
intrinsic orderliness that governs our cosmos. With the rise of the modern sciences, the sense
of unity gradually was lost in the increasing fragmentation and specialization of knowledge
observed in the last two centuries.
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function through model building and computation. The model building can be

as simple as plastic beads and rods, or as sophisticated as three-dimensional

interactive space-filling representations.

The roots of molecular modeling began with the notion that various molec-

ular properties, such as molecular geometry and energy, can be calculated from

mechanical-like models when subjected to basic physical forces. Typically,

molecular models consist of spherical particles (atoms or group of atoms) con-

nected by springs which represent bonds. The molecule then rotates, vibrates,

and translates to assume favored conformations in space as a collective response

to the inter and intra-molecular forces acting upon it (Adcock and McCammon,

2006).

Since its first steps in the 1960’s, molecular modeling has witnessed a major

development with the advent of supercomputers. Several different well estab-

lished computer modeling procedures are nowadays being used as a partner to

experimental work. The computations encompass ab initio quantum mechanics,

molecular mechanics (MM), and many other established procedures. Often

forgotten by experimentalists, is the fact that refinement of experimental data,

such as from NMR, is also a component of molecular modeling. The main dif-

ference between all these computation techniques resides on the mathematical

treatment of the molecular model. Small systems can be studied using quantum

mechanics theory, while molecular mechanics is used for bigger systems such

as biomolecules (Schlick, 2002). The best computational approach is thus

determined by the biological problem under study and the computational power

available.

The key in modeling is to develop and apply models that are appropriate

for the questions being examined by them. A close connection between theory

and experiment is essential. Computational models evolve as experimental data

become available, and biological theories and new experiments are performed

as a result of computational insights. The questions being addressed by compu-

tational approaches are becoming more and more complex. They range from

understanding the equilibrium structure of small molecules, to the kinetics of

protein folding, and the complex functioning of supramolecular aggregates.

In this thesis, both experimental work using NMR and molecular model-
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ing techniques were applied to study different aspects of protein and peptide

conformational plasticity and aggregation. The next sections will introduce the

reader, in a rather general way, both to the biological systems studied and to the

techniques employed.

1.5 Case studies

1.5.1 δ-toxin

A large number of naturally occurring toxins are short peptides, of about

20 to 35 residues, generally with a significant number of polar and charged

residues. The distribution of charged and hydrophobic residues along the chain

is such that the peptide can adopt the conformation of an amphipathic α-helix,

having a hydrophobic and a hydrophilic face. Although length, composition

and structure of these peptides are similar in a broad sense, they have vastly

different specificities in their toxicity (Andreu and Rivas, 1998).

δ-toxin is a peptide secreted by Staphylococcus aureus (Kreger et al., 1971)

that efficiently lyses eukaryotic cells and does not require binding to cell surface

receptors to exert its action. It is soluble in water and it seems to associate with

phospholipid bilayers as an amphipathic α-helix (Lee et al., 1987; Thiaudière

et al., 1991).

On its way to the membrane, the peptide must experience subtle chemical

environment changes with consequences on peptide conformation. The study

of the conformational plasticity and aggregation behavior of the peptide should

give some clues for the understanding of the first stages of the lytic mechanism.

1.5.2 Transthyretin

A significant number of human diseases, including many neurodegenera-

tive disorders, originate from the formation and deposition of stable, ordered,

filamentous protein aggregates, known as amyloid fibrils. In these pathological

states, a specific protein (or protein fragment) changes from its natural soluble

form into insoluble fibrils, which accumulate in a variety of organs and tis-

sues (Chiti and Dobson, 2006). More than 40 distinct human proteins have been
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associated with amyloidoses, with the amyloidogenic potential being enhanced

by specific mutations (Pepys, 2006). The most frequent hereditary amyloidoses

are caused by the genetic variants of human transthyretin (TTR).

Transthyretin is a homo-tetrameric protein mostly found in the plasma and

the cerebral spinal fluid, which has been identified as the causative agent of

such diseases as familial amyloidotic polyneuropathy, familial amyloidotic

cardiomyopathy, and senile systemic amyloidosis. It is believed that, in the

process of amyloid formation, TTR dissociates to non-native monomeric units,

which may act as the building blocks of the amyloid fibrils (Brito et al.,

2003). The structural characterization of these fibrils and the identification

of the entities involved in fibril assembly are crucial for understanding of the

mechanisms of pathogenesis in amyloid diseases, and for the development of

appropriate therapeutic strategies.

1.6 NMR spectroscopy

Spin is a fundamental property of nature like electrical charge or mass,

and particles like protons, electrons, and neutrons do possess it. The world

of the nuclear spins is considered to be a true paradise both for theoretical

and experimental physicists, and several of them have been honored with No-

bel prizes (Ernst, 1997). Nuclear spin systems possess unique properties that

predestinate them for molecular studies. For instance, the nucleus can be con-

sidered to be a natural sensor, well localized in the atom center, thus providing

information about their immediate vicinity. This characteristic fascinated bi-

ological scientists, since it allows a non-invasive analysis of biomolecules in

their natural milieu.

Nuclear magnetic resonance spectroscopy is a manifestation of the nuclear

spin angular momentum, a quantum mechanical property2. Associated with the

spin angular momentum there is a nuclear spin magnetic moment µ, generating a

small magnetic dipole on each nuclei (Cavanagh et al., 1996). When the nucleus

2In order to fully understand the magnetic resonance concept and its applications, a quantum
mechanical description should be used, beyond the scope of this text.
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is placed in a external magnetic field of strength B0, there is an interaction

between µ and the applied field. The energy of the interaction depends on the

relative orientation between µ and B0, being the lowest energy arrangement

when both vector quantities are parallel (α-state). The highest energy is achieved

when the magnetic moment is anti-parallel to the field (β-state).

The number of nuclei in α and β-states is described by a Boltzmann distri-

bution. The thermal motion of the molecules randomizes the orientation of the

individual nuclear magnetic moments. However, there is a small preference for

alignment with the external field, giving rise to a bulk equilibrium magnetiza-

tion of the sample, parallel to the field direction. This magnetization can be

represented by a vector called the bulk magnetization vector. By convention

in the NMR coordinate system, the external magnetic field and the net magne-

tization vector at equilibrium are both along the z-axis. The vector model is

a classical way of describing how the bulk magnetization interacts with radio

frequency (RF) pulses and its time evolution (Keeler, 2006).

When a nucleus is irradiated with RF energy, the lower energy nuclei spin-

flip to a higher state through absorption of a photon having a specific frequency.

The equilibrium magnetization is thus disrupted and is tilted away from the

z-axis. It turns out that the magnetization vector rotates about the direction of

B0 at a frequency equal to the energy difference between the spin states. The

rotation of the magnetization about the applied field is called Larmor precession,

and its angular frequency is described by the following equation

ω0 =−γ
B0

2π
, in Hz (1.1)

where ω0 is the Larmor frequency, and γ is the gyromagnetic ratio.

The β-state is unfavorable, and the relaxation back to the Boltzmann dis-

tribution will occur after the initial RF pulse has disturbed the system. In a

pulsed NMR experiment, the precession of the magnetization vector is detected

in the transverse xy-plane of the spectrometer as a time-domain signal, the

free induction decay (FID). The FID is a sinusoidal function encoding all the

Larmor precession frequencies present in the sample under study. Usually, a

Fourier transform is applied to deconvolute the signal into a spectrum.

A general feature of NMR spectroscopy is that the observed resonance
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frequencies depend on the local environment of individual nuclei. The differ-

ences in resonance frequencies are referred to as chemical shifts, and are of

paramount importance on the process of assigning the spectrum.

The development of NMR as a powerful method in structural biology has

involved a number of critical steps: identification of NMR parameters use-

ful for determining molecular structure; development of methods for reliable

assignment of the many resonances in the spectrum, to their respective nu-

clei in the macromolecule; development of methods to measure a sufficient

number of structure-related parameters to give the information needed for struc-

ture determination; and finally, development of computational techniques that

could translate the structural parameters into the unique three-dimensional

structure (Wüthrich, 1986).

1H nuclei are particular important in NMR experiments on biomolecules

because of their natural abundance. On the other hand, even for small proteins

the number of 1H atoms can reach a few hundreds, typically resulting in a com-

plex NMR spectrum. Because many resonances are degenerated, the signals are

impossible to assign by using one-dimensional pulse-sequences. To effectively

utilize the information available from NMR spectroscopy of biological macro-

molecules, multi-dimensional methods were developed to improve resolution

in the frequency domain (Jeener et al., 1979). The introduction of multidi-

mensional NMR spectroscopy allowed the measurement of two important pair

interactions in nuclear spin systems, namely the scalar through-bond electron

mediated spin-spin interaction (J coupling), and the through-space magnetic

dipolar interaction (the nuclear Overhauser effect, NOE) (Ernst, 1997).

The process of translating a multi-dimensional NMR spectrum into a three-

dimensional structure is a laborious one. The NOE’s provide information about

the distance between individual nuclei, but for these constraints to be of any use,

the nuclei giving rise to each signal must be identified. For large proteins, it is

common to enrich these biomolecules with 13C and 15N isotopes. The coupling

of the signals produced by these NMR active nuclei with 1H signals, helps in the

assignment process of the spectra. After having the distance constraints between

different atoms of the protein under study, this information is coupled with other

geometrical constraints such as chirality, van der Waals radii and bond lengths.
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Robust algorithms are then applied to minimize an energy function describing

the mechanical model. The final result is a family of closely related structures

representing the range of conformations consistent with the experimental data

acquired from the NMR spectra (Wüthrich, 2003).

High-resolution NMR has become an important tool for studying the struc-

ture, dynamics and molecular interactions of biological macromolecules in

aqueous solution. At present, NMR stands besides single-crystal X-ray diffrac-

tion as the major method for determining the three-dimensional structures of

proteins and nucleic acids. Of the total 57133 atomic coordinate sets deposited

in the Protein Data Bank (Berman et al., 2000) by April 2009, about 12% had

been determined by NMR. Very significant developments have also emerged

in the past few decades in the techniques of solid-state NMR and magnetic

resonance imaging.

1.7 Molecular dynamics simulations

The various dynamic processes intrinsic to proteins have time scales rang-

ing from femtoseconds to hours, such as bond-length vibrations and protein

aggregation, respectively. They also cover an extensive range of amplitudes and

energies. Most of these motions have critical roles in biochemical functions,

such as enzymatic reactions and folding events (Berendsen and Hayward, 2000).

Molecular simulations are a very powerful toolbox in modern molecular

modeling, enabling us to follow and understand structure and dynamics. Molec-

ular dynamics (MD) is one of the methods that can be employed to simulate

the natural motion of biological macromolecules, by keeping track of the in-

dividual motion of the atoms on the simulated system (Lindahl, 2008). As

already pointed out in section 1.4, simulations can provide a way to test whether

theoretical models predict experimental observations. Furthermore, simulations

provide a level of detail not accessible through experiments, as well as, tools to

refine biomolecular structures.

The molecular dynamics simulations involve the calculation of instanta-

neous forces present in a molecular mechanics system and the consequential

movements on that system. The MM system consists of a set of particles that
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move in response to their interactions according to the classical equations of

motion (Adcock and McCammon, 2006). The position of the n particles as a

function of time, a trajectory, is calculated by numerically integrating Newton’s

equation of motion

Fi = mi
∂2ri

∂t2 i = 1,2, . . . ,n (1.2)

where ri is the position of a particle with mass mi at a specific time t. Fi is the

force acting on the particle i and depends on the potential energy of the system

V (r1,r2, . . . ,rn).
Given a set of initial coordinates and velocities for the particles in the

system, a trajectory can be computed based on the intermolecular interactions

of all the particles. From this trajectory many dynamic and thermodynamic

properties of the system can be evaluated assuming that the trajectory is an

effective representation of the phase space of the system.

The accuracy of any MD simulation will be primarily determined by the

accuracy of the potential energy function of the system. This energy function

is comprised of a collection of simple functions to represent a minimal set

of forces that describe the molecular structures, namely non-bonded (Van der

Waals and electrostatic) and bonded (stretching, bending and torsions) inter-

action terms. These terms are obtained both from experimental and quantum

mechanical studies of model compounds. The set of functions and parameters

used to describe the interactions of the atoms in a system is called a force

field (Mackerell, 2004).

The increasing quality of empirical force field based MD simulations on

biomolecules allowed a general acceptance of the method in the scientific com-

munity. This acceptance enhanced the atomic description of systems that are

currently not accessible to experiment. A wide range of simulations of proteins

in solution have been performed providing insights into structure function re-

lationships as well as helping to understand intrinsic dynamic processes such

as the mechanism of protein aggregation (Kelley et al., 2009). Simulations of

lipid molecules have also been the subject of extensive research over the last

decade, both in pure lipid bilayers as well as in more realistic systems such as

lipid rafts.
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1.8 High ambiguity driven biomolecular docking

Protein-protein interactions play a central role in biochemistry. This can

be seen in cell-signaling cascades, enzyme catalysis, the immune response

by means of antibody-antigen interactions, and misfolding diseases, just to

mention a few examples.

The structure of the macromolecular complex of two interacting proteins

provides insights on their functional mechanisms and roles in the cell. Informa-

tion about which specific residues are involved in the interaction and the degree

of conformational change undergone by proteins upon binding can be readily

retrieved (Wiehe et al., 2008). Although X-ray crystallography and NMR are

the experimental techniques of choice to determine the three-dimensional struc-

ture of proteins and protein complexes, in many instances, due to the size of the

macromolecular complexes and other experimental limitations, computational

methods are required to characterize protein-protein interactions.

In recent years, several methods based on docking emerged as new tools

to model biomolecular complexes, namely protein-protein complexes. Protein-

protein docking is defined as the prediction of the structure of two (or more)

proteins in a complex, given only the structure of the interacting proteins.

Most of the available docking methods are based on a two stage protocol.

The initial stage treats the proteins as rigid-bodies, while allowing for an

efficient search of the six-dimensional space. One protein is fixed in space

and the second one is rotated and translated around the first one. For each

protein-protein configuration, a score is calculated based on a combination of

energetics and shape complementarity terms. A final stage with refinement and

re-ranking of the complexes, increases the rank of near-native structures while

decreasing the rank of false-positives. This involves making small changes to

the highest-scoring predictions obtained on the rigid-body stage, like increasing

the flexibility of docking partners (Andrusier et al., 2008).

Biochemical and biophysical experiments are widely used to gain insight

into biomolecular interactions (fluorescence studies, resonance energy trans-

fer, etc.). Hence, there is a wealth of experimental sources that can provide

information about interfaces of biomolecular complexes. However, these data

are generally not used in the computational docking protocols. HADDOCK
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(High Ambiguity Driven biomolecular DOCKing) is a docking approach that

makes use of such interaction data to drive the docking (Dominguez et al.,

2003). The information is encoded as ambiguous interaction restraints (AIRs),

similar to the ambiguous restraints commonly used in NMR structure calcula-

tion (Wüthrich, 1986). These restraints are defined between any residue which,

based on experimental data, is believed to be at the interface (active residue),

and neighbor residues (passive residues) on the partner molecule.

The HADDOCK protocol consists of three stages during which increasing

amounts of flexibility are introduced. The AIRs are incorporated as an additional

energy term to the energy function minimized in all docking steps. In the

first stage, randomization of orientations (sampling) and rigid body energy

minimization is accomplished. In the next stage, a limited amount of flexibility

is introduced in docking partners using a semiflexible simulated annealing

schema. Flexibility is first introduced into the side chains and subsequently into

both side chains and backbones of predefined flexible segments encompassing

the active and passive residues. Finally, the solutions are refined in explicit

solvent, clustered, and scored using a combination of energy terms, mainly

intermolecular van der Waals and electrostatics energies, as well as restraints

energies (van Dijk et al., 2005).

The modeling of protein-protein complexes by means of docking has be-

come increasingly popular, as witnessed by the CAPRI (Critical Assessemnt of

PRedicted Interactions) experiment (Méndez et al., 2005). Stimulation of re-

search in biomolecular docking provides ground to evaluate prediction methods

and assess their reliability. Docking is a powerful tool which scientists can use

to predict interactions, and thus to assist in drug design protocols.
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2.1 Introduction

Proteins play key roles in virtually all biological processes, namely enzy-

matic catalysis, transport and storage, coordinated motions, mechanical support,

immune protection, excitability, integration of metabolism, and the control

of growth and differentiation (Stryer, 1995). All these actions are achieved

through an amazing ability proteins have to recognize and interact with highly

diverse molecules. This ability is ultimately determined by their conformational

plasticity allowing them to regulate complex cellular processes in vivo.

Protein association, i.e. protein-protein interactions, is of central importance

either under normal physiological conditions as well as in disease states. Recent

developments showed that protein aggregation into assemblies rich in β-sheet

structure is linked to a series of severe disorders, including Alzheimer’s and

Parkinson’s diseases. Additionally, an increasing interest in this phenomenon

comes from the possibility of using highly ordered cross-β protein aggregates,

known as amyloid fibrils1, as novel high-performance and versatile nanomateri-

als (Tartaglia and Vendruscolo, 2008). Hence, the understanding and characteri-

zation of protein interactions are one of the major goals on modern biochemistry,

with an enormous importance in industry, medicine and nanobiotechnology.

The first step toward protein structure determination using nuclear magnetic

resonance (NMR) is elucidation of appropriate solution conditions that obviate

any self-aggregation. Knowledge of the oligomerization state of a protein prior

to data collection is rather important, due to the complexity associated with

assigning and identifying long-range nuclear Overhauser contacts in the process

of determining the three-dimensional structure (Krishnan, 1997).

Biomolecular interactions are generally non-covalent and thus weak, thereby

limiting the techniques that can be used to probe molecule association. In gen-

eral, the oligomerization state of a protein of interest is characterized using

biophysical methods like equilibrium ultracentrifugation or dynamic light scat-

tering measurements. Even though the obtained results are reliable, these

measurements are done at a protein concentration about three orders of mag-

1This subject will be further discussed on chapter 6.
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nitude lower than the concentration used for the NMR experiments. Thus,

despite a long history of study, the extent, kinetics and mechanisms of protein

association remain poorly understood at NMR sample conditions (Price, 2006).

The meteoric rise in sophistication of NMR techniques in the last decade

and the availability of commercially good performance spectrometers, and their

concomitant ability to provide detailed information on binding of biomolecules,

augur well for rapid advances in our understanding of this area of science.

NMR, due to its non-invasive nature (most biological molecules are composed

of NMR sensitive nuclei), has special significance for measuring diffusion2

as it does not perturb the thermodynamics of the system or require labeled

probe molecules (Price, 1998a). In theory any NMR observable that is affected

by the association process can be used as a probe of the association kinetics.

Amongst the NMR observables, translational diffusion rates are quite sensitive

to structural changes and to binding and association phenomena (Stilbs, 1987).

Translational diffusion measurements by NMR have been utilized in nu-

merous studies ever since the discovery of spin echoes by Hahn (1950). In

that pioneering study, the author noticed that the formation of echoes could

be disrupted by diffusion in an inhomogeneous magnetic field. Normally we

take a great deal of effort to make sure that the applied magnetic field is as

homogeneous as possible across the sample. However, the ability nowadays to

make the magnetic field inhomogeneous through the usage of pulsed (magnetic)

field gradients (PFG), opened alternative ways to make science. Some appli-

cations include the determination of the aggregation state of proteins (Altieri

et al., 1995), the degree of ligand binding to proteins (Derrick et al., 2002),

the characterization of protein folding (Jones et al., 1997), the investigation of

polymer mixtures (Antalek et al., 2002), among others. As is often the case in

NMR, phenomena that at first sight seem to be only the cause of artifacts are

later found to have practical applications (Price, 1996).

This chapter will focus on the application of PFG NMR techniques to

2To avoid misunderstandings, whenever the word diffusion is employed (e.g. translational
diffusion), we are talking about self-diffusion, a umbrella term describing all of the diffusion
processes associated to a particular molecule (Lobo, unpublished).
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measure translational diffusion of proteins. A in depth explanation of the

theoretical background will be given, though far from complete, along with

relevant methodological issues on how to setup, perform and analyze PFG

experiments.

2.2 Theoretical synopsis

2.2.1 Diffusion

Molecules in solution are in constant motion and experience both rotational

and translational movements. The process of translational motion in solution is

commonly referred to as self-diffusion and is characterized by the self-diffusion

coefficient D. This random motion is driven by the internal kinetic energy

of the system and is the most fundamental form of transport responsible for

all biochemical reactions (Price, 1997). The molecular interpretation of the

diffusion coefficient was “first” put forward by Einstein (1905). He found the

simple relationship

D0 = KBT/ f (2.1)

where D0 is the diffusion constant at infinite dilution of the diffusing species, KB

is the Boltzmann constant, T is the temperature, and f is the friction constant

or frictional coefficient. For the simple case of a spherical particle with an

effective hydrodynamic radius r, in a solution of viscosity η, the friction factor

is given by the Stokes’s law

f = bπηr (2.2)

The dimensionless parameter b reflects the boundary condition between the

moving particle and the solvent. However, most macromolecules of biological

relevance have more complicated shapes and may include contributions from

factors such as hydration. The friction factor thus becomes a more complicated

mathematical function (Cantor and Schimmel, 1980).
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The Stokes-Einstein equation3, which results from the direct substitution of

equation 2.2 into the Einstein relation, does not include the effects of interpar-

ticle interactions. Nevertheless it provides a strongly intuitive framework for

analyzing diffusion data. In particular, it shows that the translational diffusion

relates directly to a molecule’s size, shape and environment. As a consequence,

measuring diffusion is a straightforward mean for probing association.

The relation between the diffusion coefficient D and the displacement z of

an ensemble of particles undergoing free isotropic diffusion is given by (Crank,

1975)

D = lim
t→∞

1
ndt

〈
z2(t)

〉
(2.3)

hence, for long enough times t

〈
z2(t)

〉
= nDt (2.4)

where n = 2, 4 or 6 for diffusion in one, two or three dimensions, respectively.

In order to measure the translational motion, enough time must be allowed

to pass in the experiment for z to be several times larger than the hydrodynamic

radius r. This point is particularly important for large molecules such as

proteins. If the interval of time used is too short, we may actually measure

the translation of a chain segment or the rotational diffusion rather than the

translational diffusion (Antalek, 2002).

Because of its non-invasive nature, NMR spectroscopy is a unique tool for

studying molecular dynamics in biological systems. There are two main ways

in which NMR may be used to study the system dynamics, namely by analysis

of relaxation data and by pulsed field gradient NMR (Price, 1997). The relax-

ation method is sensitive to motions occurring in the picosecond to nanosecond

time scale, thus it probes motions on the time scale of re-orientational corre-

lation of the nucleus (rotational diffusion). In the PFG measurements, motion

3It is not known why the Stokes-Einstein equation, D = KBT
6πηr , is not known today as the

Stokes-Einstein-Sutherland equation instead. In fact, Sutherland (1905) published a similar
relationship for the interpretation of the Brownian motion some months prior to Einstein.
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is measured over the millisecond to second time scale, characteristic of the

translational motion. Though a diffusion coefficient can be derived from both

methods, in the relaxation method a number of serious assumptions must be

taken into account, which makes the determination of D not straightforward

when compared with the PFG method.

2.2.2 Magnetic gradients

In a PFG NMR enabled machine, along with the static field B0 produced

by the superconducting magnet, a set of coils in the probe will be responsible

for generating a field gradient across the sample. The simplest commonly used

geometry for producing gradients along a given direction, is the Maxwell pair

of coils (Price, 1997). These coils are positioned coaxially outside the radio

frequency (RF) coil carrying current in opposite directions. If these coils are

z oriented with respect to B0, they will create a situation where the magnetic

field strength is added to the top of the sample volume and subtracted from the

bottom, or vice versa (see figure 2.1). In other words, along the length of the

sample during a gradient pulse there is a uniformly changing magnetic field Bz.

This magnetic field, due to the combination of the gradient and the applied field

B0, can be written as

Bz = B0 +Gzz (2.5)

where Gz is the magnetic field gradient strength, and z is the coordinate along

the field direction. Conceptually, the NMR sample can be envisaged as a column

of thin slices, called isochromats, along the z direction. The spins in a given

slice experience the same Bz magnetic field (Cavanagh et al., 1996).

Magnetic resonance imaging (MRI) usually makes use of magnetic gradi-

ents created on all three x, y, and z directions of the imaging volume (Callaghan,

1991). However, in normal NMR spectrometers it is more common to do one-

dimensional (1-D) studies, where the gradient is aligned along the z axis, i.e.

parallel to the main field B0.

There are several technical features designed into the gradient coils, namely

shielding and field linearity, which makes them suitable for PFG NMR ex-
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Figure 2.1: Diagrammatic representation of the magnetic field gradient felt by spin
isochromats in a standard NMR tube. (a) By convention, the NMR tube is oriented
along the spectrometer main field B0, i.e. parallel to the z-axis. Typically, only a small
region of the sample is actually excited and detected by the RF coil. This sensitive
volume (1–2 cm long), is shown in the diagram by a highlighted gray rectangle.
Depending on the probe being used, extra coils can create a magnetic field which varies
linearly (i.e., a gradient) along the direction of B0. The magnetic field Bz due to the
combination of the static field B0 and gradient field, can be written as Bz = B0 +Gzz.
(b) When the magnetic field applied to the sample sensitive volume is homogeneous,
all spin isochromats experience the same field Bz = B0 (for representation purposes,
isochromats at +z and−z have the same grayish color to indicate that B+z

z = B−z
z = B0).

If current is allowed to flow through the z-aligned gradient coils with a power strength
Gz, then Bz varies linearly throughout the sample, i.e. along z-axis. Depending on the
polarity of the current flow, (c) Bz increases as we go along the positive z-direction
(darker spin isochromats) or (d) along the negative z-direction. Usually the extra field
due to the gradient is zero in the middle of the sample, z = 0.

periments. Whenever an electrically conducting material, such as the probe,

experiences a changing magnetic field, an electrical current is set up in nearby

conducting surfaces (i.e. the probe body), creating a secondary field that op-

poses the change (Antalek, 2002). This is problematic because the secondary

field interferes with the acquisition of the free induction decay (FID). The

other design criterion is gradient field uniformity. The applied gradient must

be constant (uniform) along the z direction, that is, a constant change in the

magnetic field exists at all points in the z direction. The magnetic field changes

linearly, but the gradient is constant as it can be seen from equation 2.5. A more

detailed analysis of these problems will be discussed in section 2.4.
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2.2.3 Spatial-spin labeling through magnetic gradients

All of the NMR theory needed for understanding the effects of B0 gradients

on nuclear spins has the Larmor equation as the origin (see equation 1.1, page 9).

Since B0 is spatially homogeneous, the Larmor frequency ω is the same through

out the sample. However, if in addition to B0 there is a spatially dependent

magnetic field gradient Gz, and accounting for the possibility of more than

single quantum coherence transitions, ω becomes spatially dependent,

ωz(n) = n(ω0 + γGzz) (2.6)

where z is the position of the spin from the observed nucleus, and γ is the gyro-

magnetic ratio. The important point in this equation is that if a homogeneous

gradient of known magnitude is imposed throughout the sample, the Larmor

frequency becomes a spatial label with respect to the direction of the gradient.

In the case of a single quantum coherence (n = 1), we can see from equa-

tion 2.6 that for a single spin the cumulative phase shift is given by (Price, 1997)

φi(t) = γB0t + γ

∫ t

0
Gz(t ′)zi(t ′)dt ′ (2.7)

where the first term corresponds to the phase shift due to the static field, and the

second term represents the phase shift due to the effects of the gradient. Thus,

from the second term of equation 2.7 we can see that the degree of dephasing

due to the gradient is proportional to the type of nucleus (γ), the strength Gz of

the applied gradient, the duration t of the gradient, and the displacement z of

the spin along the direction of the gradient.

2.2.4 Measuring diffusion with magnetic field gradients

From equation 2.6 is apparent that a magnetic field can be used to label the

position of a spin, through the Larmor frequency. This is in fact the basis for

measuring diffusion.

Pulsed field gradient spin echo (PFGSE) NMR is a method devised by Ste-

jskal and Tanner (1965), and it is derived from the nuclear spin echo concept
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Figure 2.2: (a) The essential components of a PFGSE NMR diffusion experiment. (b)
The Stejskal and Tanner PFGSE pulse sequence.

of Hahn (1950) and Carr and Purcell (1954). This is the most common approach

to measure particle diffusion by NMR, and it is depicted in figure 2.2. Two

equal rectangular gradient pulses of duration δ are inserted into each τ period.

These gradient pulses, as explained before, are essential for interrogating the

effects of translational motion on the signal intensity.

An ensemble of diffusing spins at thermal equilibrium has a net magnetiza-

tion oriented along the z-axis. After exciting the sample with a π/2 RF pulse

the macroscopic magnetization is instantaneously rotated from the z-axis to the

xy plane, and the phase of the spins is coherent. During the first τ period of time,

at t = t1, a gradient pulse of duration δ and magnitude Gz is applied, labeling

the position of the spins by producing a spatially dependent phase angle. That

is to say, the Larmor frequency varies uniformly along the z direction during

the gradient pulse, and each plane of the sample perpendicular to the z direction

contain spins that will be affected by the gradient pulse in exactly the same

way. At the end of the first τ period, spin i experiences the following phase

shift (Price, 1997)

φi(τ) = γB0τ+ γGz

∫ t1+δ

t1
zi(t)dt (2.8)

During the evolution period and because the spins are always undergoing

random translational motion in solution, the extent of which is defined by the

self-diffusion coefficient, some will change position along the z direction. At the
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end of the first τ period, a π RF pulse is applied and has the effect of reversing

the sign of the phase angle. At time t1 +∆, the spin position is decoded with

an identical gradient pulse. The total phase shift of spin i relative to the z = 0

position, at the end of the echo sequence, is given by

φi(2τ) = γGz

{∫ t1+δ

t1
zi(t)dt−

∫ t1+∆+δ

t1+∆

zi(t ′)dt ′
}

(2.9)

If the spins have not undergone any translational motion with respect to

the z-axis, the effects of the two gradient pulses cancel and all spins refocus,

φi(2τ) = 0 . A maximum NMR signal is obtained at t = 2τ. However, if

diffusion takes place, some spins are not in the same position along the z-axis

during the second gradient pulse as during the first. Therefore, their phase

component imposed by the first gradient is not cancelled by the second gradient

and the signal diminishes. The degree of dephasing due to the applied gradient

is proportional to the displacement in the direction of the gradient in the period

∆, and thus φi(2τ) 6= 0.

From this qualitative description of the Stejskal and Tanner (1965) PFGSE

NMR sequence, it is clear that the gradient should be constant for the entire

excited region so that the same gradient strength is experienced no matter where

the spin is. Additionally, the gradient pulses must have exactly the same strength

and length for the sequence to correctly probe the translational motion of spin i.

The equation that is derived to represent the signal intensity generated by

the pulse sequence in figure 2.2b is

S(2τ) = S(2τ)Gz=0 exp
[
−Dγ

2G2
z δ

2(∆−δ/3)
]

(2.10)

where S(2τ)Gz=0 represents the attenuation of the echo signal due to relaxation

in the absence of a magnetic field gradient, which in the present case corre-

sponds to S(2τ)Gz=0 = S(0)exp[−2τ/T2]. S(0) is the signal without attenuation

due to relaxation4, that is, the signal that would be observed immediately after

4S(0) ∝ Mwn where Mw is the molar mass of the diffusing specie and n is the number of
such molecules present (Price, 2000).
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the π/2 pulse, 2τ is the total echo time, and T2 is the spin-spin relaxation time

of the species. It is assumed here that the observed signal results from one

population with a single relaxation time T2. To remove the effects of the signal

attenuation due to spin-spin relaxation, equation 2.10 is normalized with respect

to the signal obtained in the absence of the applied gradient and thereby the

echo attenuation is defined as

E(2τ) = exp
[
−Dγ

2G2
z δ

2(∆−δ/3)
]

(2.11)

By inspection of equation 2.11, it can be seen that to measure diffusion, a

series of experiments are performed in which either Gz, δ, or ∆ is varied while

τ is generally kept constant so that bulk relaxation effects may be factored out.

An obvious way to analyze the data is simply to plot ln
[
E(2τ)

]
versus

γ2G2
z δ2(∆−δ/3), in which case the diffusion coefficient can be obtained from

the slope −D.

2.2.5 PFGSE: considerations for proteins

Polydisperse systems are commonly encountered when studying both natu-

ral (e.g. proteins) and synthetic polymers (Zhou, 1995). For a discrete protein

system with i different aggregation species (i.e. monomer, dimer, . . . , i-mer)

undergoing isotropic free diffusion, at infinite dilution, the observed echo inten-

sity from the Stejskal and Tanner sequence would be given by the following

equation instead of equation 2.10 :

S(2τ) = ∑
i

(
S(0)i exp

[
−2τ/T2,i

]
exp
[
−Diγ

2G2
z δ

2(∆−δ/3)
])

(2.12)

where the subscript i refers to the aggregation state of the contributing species.

The identification of the other variables in this mathematical relation is the same

as the one introduced for equation 2.10. This equation is valid if the exchange

between the different species is slow on the PFGSE NMR timescale.

A closer inspection of equation 2.12 shows that the observed echo signal

S(2τ) is not weighted by the respective concentrations alone (i.e. S(0)i; see

footnote 4) (Price, 1996). The PFG signal attenuation is modulated by three
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contributions, namely a distribution of diffusion coefficients Di, the population

of each diffusing species S(0)i, and different relaxation rates T2,i.

A problem when performing diffusion measurements of macromolecular

systems is that of cross-relaxation (Peschier et al., 1996) . Severe problems with

the Stejskal and Tanner sequence arise from the fact that the magnetization

evolves entirely in the xy plane (see figure 2.2b). The longest value of diffusion

time ∆ allowed for the study of macromolecular diffusion is determined by the

rate of signal loss due to spin-spin relaxation T2 of the species over the echo time.

Generally, for macromolecules the spin-lattice relaxation time T1 is much longer

than T2 (Cavanagh et al., 1996), thus pulse sequences that minimize the time

spent by spins on the xy plane are preferred for macromolecules. Furthermore,

J-modulation effects can degrade the quality of the final spectrum. Because

the signal for coupled spins is modulated in the xy plane, the final spectrum

may contain dispersion peaks (i.e. with positive and negative components), thus

strongly affecting the S(2τ) measured (Keeler, 2006). These problems can be

minimized by prudent choice of the pulse sequence. A pulse sequence much

more reliable for the study of diffusing protein species will be discussed in

section 2.4.1.

If there is a negligible relaxation time difference between the different

i-mers in equation 2.12, then relaxation can be normalized out as discussed in

section 2.2.4:

E(2τ) =
∑i

(
Mw,ini exp

[
−Diγ

2G2
z δ2(∆−δ/3)

])
∑i Mw,ini

(2.13)

where Mw,i is the molar mass of the i-th aggregate species and ni is the number

of such molecules in solution. However, if the relaxation properties are sig-

nificantly different, the difference can be used to detect that the system is not

homogeneous (van Dusschoten et al., 1995). On the other hand, if exchange

is fast on the NMR timescale the multi-exponential equation 2.13 becomes a

single exponential (cf. with equation 2.11),

E(2τ) = exp
[
−〈D〉wγ

2G2
z δ

2(∆−δ/3)
]

(2.14)
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where 〈D〉w is the mass averaged diffusion coefficient defined by

〈D〉w = ∑i Mw,iniDi

∑i Mw,ini
(2.15)

Due to the large size of the molecules and thus a large number of nuclear

spins, the NMR spectra of proteins are densely crowded with resonance lines

(e.g., see figure 2.14). Additionally, peaks from several species present in

solution may also overlap, thus making peak assignment a conundrum. For well

resolved spectra or with partial signal frequency overlapping, peak deconvolu-

tion can be readily made (Antalek, 2007), but such strategy is not feasible for

proteins. Protein diffusion measurements are typically performed by integrating

over the aliphatic region (i.e. ∼ [0,4] ppm). The very small population of

exchangeable resonances in this region results in a nearly imperceptible dif-

ference in the measured diffusion coefficient. Nevertheless, the PFGSE signal

attenuation will have contributions for every i-mer species.

NMR protein solutions are also crowded systems, thus during the diffusion

period in a PFGSE measurement, protein molecules do collide with each other

often (see section 2.5.6). Obviously, even in the absence of aggregation, the

measured diffusion coefficient of any oligomeric species will decrease due to

self-obstruction as the protein concentration increases.

2.3 Experimental details

Sample preparation

δ-toxin was kindly provided by H. Birkbeck (University of Glasgow, UK)

and its purification was described previously (Birkbeck and Freer, 1988). An

NMR sample was prepared by dissolving lyophilized δ-toxin in methyl-d3

alcohol-d (CD3OD, 99.8 + atom % in D) to a final concentration of 1 mM.

A suitable amount of hen egg white lysozyme (HEWL; 95% ww pure,

balance primarily sodium acetate) was dissolved into dilute HCl (pH 3.0) and

dialyzed extensively against dilute HCl (pH 3), at 277 K, using 6000 molecular

weight cutoff dialysis tubing from Spectrum Medical Industries Inc., USA.

Dialyzed HEWL was quickly frozen at liquid N2 temperature (72 K) and
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lyophilized. Exchangeable hydrogens in HEWL were deuterated by dissolving

the lyophilised protein in deuterium oxide (D2O, 99.9 atom % in D) and the pH

was adjusted to 3.1 by addition of small amounts of DCl, without correction for

isotope effects. The protein solution was heated in a thermostat bath at 353 K

for 45 minutes. Deuterated lysozyme was lyophilized as before and then stored

at 253 K until used. A NMR sample was prepared by dissolving the stored

HEWL powder in D2O to a final concentration of 1.5 mM, pH 3.1, at 298 K.

Sample concentrations were measured by absorbance spectroscopy at 280

nm. An estimation for the molar absorption coefficient ε of δ-toxin was taken to

be 5500 M−1cm−1 (see Pace and Schmid, 1997, equation 2) whereas εHEWL =
37646 M−1cm−1.

Some of the tests described in this chapter, while setting up the spectrometer,

used D2O (99.9 atom % in D) or doped D2O (99.9 atom % in D + GdCl3)

samples. All reagents were purchased from Sigma Chemical Company, St.

Louis, USA.

Protein samples of 150 µL for the PFG experiments were transfered to 5-

mm susceptibility-matched microtubes (Cat. BMS-005 from Shigemi, Tokyo),

with 12-mm bottom matched glass against the respective solvent. Preparative

D2O samples of 500 µL were placed either in a standard 5-mm NMR tube

(Wilmad, USA) or Shigemi microtubes. The position of the tubes in the NMR

spinner turbines was adjusted so that the sample was in the most linear region

of the magnetic field gradient.

PFG NMR spectroscopy

1H NMR measurements were obtained at 298 K on a Varian UNITY INOVA

500 MHz spectrometer equipped with a 20 A Highland Model L700 gradient

amplifier (Performa II) and a dual-broadband 5-mm direct detection PFG probe.

The combination provides a z gradient strength Gz of up to 0.6 Tm−1. Either a

Stejskal and Tanner (1965) or a PFG longitudinal encode-decode pulse sequence

incorporating bipolar gradient pulse pairs (BPPLED) (Wu et al., 1995) were

used. Typically, a value of 12–100 ms is used for ∆, 3 ms is used for δ and τ,

and 1–500 ms is used for τe. Diffusion coefficients were measured by linearly

incrementing Gz, typically with an initial value of 0.019 Tm−1 up to 0.6 Tm−1
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in 20–32 steps. The combination of Gz, ∆, and δ was chosen to obtain 90%

total signal attenuation throughout the experiment.

The original Varian bipolar gradient pulse pairs sequence (bppste) was

edited in order to add a pre-saturation scheme. Low-power pre-saturation in the

last 1.5 s of the recycle delay was used in first trial acquisitions of HEWL on

90% H2O / 10% D2O samples, to suppress the water resonance, but baseline

distortion was evident. We also wrote a pulse sequence to determine a safe τe

delay prior to FID acquisition in order to avoid eddy currents, based on Price

(1998b, figure 5; see appendix A, page 195).

All FIDs were acquired using a spectral width of 4 or 8 KHz, digitized

into 16 or 32 K data points, and 64–256 transients were co-added to obtain

adequate signal-to-noise (S/N) ratios in the final spectra. A recycle delay of 10

s sufficient to allow for full relaxation, i.e. > 5×T1, was allowed between each

transient.

The FIDs were transfered to a Silicon Graphics Octane2 workstation and

processed using the Varian VNMR 6.1B software package. All FIDs were

zero filled to 132 K data points, apodized by multiplication with a 1 Hz line

broadening function, and Fourier transformed. The spectra were baseline

corrected by fitting selected baseline points to a 2nd order polynomial function.

All PFG NMR experiments were done on non-spinning conditions. Deu-

terium lock was used in every experiment. The temperature in the NMR probe

was calibrated using a 100% methanol sample (Raiford et al., 1979).

Calibration of B0 field gradient strength

The gradient coil constant, 1.890× 10−5 Tm−1DAC−1, was firstly cali-

brated generating a spatial profile of a doped D2O sample with the field gradient

on during acquisition (Gz = 0.15 Tm−1), according to the manufacturer’s in-

structions. A more accurate B0 field gradient strength was obtained by measur-

ing the self-diffusion coefficient of the residual HDO in a D2O (99.9%) sample

at 298 K. A diffusion coefficient of 1.90×10−9 m2s−1 (Longsworth, 1960) for

the HDO signal was used for back calculation of the gradient strength from a

single exponential decay fitting procedure.
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Self-diffusion calculation

Diffusion coefficients were obtained by fitting peak volumes to a single

exponential decay described by equations 2.11 (Stejskal and Tanner experi-

ments) and 2.16 (BPPLED experiments). To obtain a sufficient signal-to-noise

ratio, the diffusion coefficient of δ-toxin and HEWL were determined using an

integral of the aliphatic region, ≈ 0.5–1.8 ppm and −1.4–2.4 ppm respectively.

No significant differences on calculated diffusion coefficients were observed by

fitting peak volumes over aliphatic regions with slightly different limits.

Non-linear regression analysis was performed using the nonlinear least-

squares fitting routine of OriginPro v.7.0 (OriginLab Co., USA) which is based

on the Levenberg-Marquardt algorithm (Press et al., 1992).

The diffusion coefficients were measured as soon as possible after NMR

sample preparation to minimize errors associated with protein aggregation and

precipitation.

2.4 Magnetic gradients and associated problems

To achieve a reliable analysis from PFG NMR data, we must reduce or elim-

inate any experimental artifacts. The PFGSE NMR experiment is susceptible

to several artifacts, all of which are manageable with proper care and consid-

eration. There are essentially three problems that give rise to artifacts in the

acquired spectra (Antalek, 2002): eddy currents, gradient field non-uniformity,

and convection currents.

A brief discussion of these topics will be given in the next sections, along

with some general notes on how to minimize their effects. Their significance

should be perfectly understood by the NMR spectroscopist.

2.4.1 Eddy currents

An eddy current (also known as Foucault current) is an electrical phe-

nomenon caused when a conductor is exposed to a changing magnetic field.

This can cause a circulating flow of electrons within the conductor. These

circulating eddies of current create electromagnets, with magnetic fields that
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opposes the change of the magnetic field. The stronger the applied magnetic

field the greater the currents developed and the greater the opposing field. The

fast switching of the gradient pulses in a PFGSE NMR experiment is thus prone

to produce such eddy currents within any closely located conductor. The effect

produces a magnetic field that can be experienced by the sample and therefore

distortion may occur in the spectra5.

Modern coils are designed in a way to minimize this problem. Actively

shielded coils are manufactured placing several coils around and in series with

the primary Maxwell pair that produce the magnetic gradient. This way, an

equal but opposite field outside the main coils is produced. These two fields

cancel each other and the eddy currents that would normally form in the probe

body are minimized. Unfortunately no design is perfect and eddy currents,

although greatly reduced, are still present.

In addition to directly affecting the spectral quality, eddy currents can also

have an effect on the locking mechanism. The lock circuitry is designed to

compensate for small changes in the main B0 magnetic field. Depending upon

the time constants built into the circuitry, it may have a response to the applied

gradient pulse and even produce shifts in the resonances.

To measure the time that is required for the eddy currents to fully decay, a

simple pulse sequence can be devised such as the one shown in figure 2.3a. In

this sequence, a gradient pulse is first applied. After a delay τe, an RF pulse

is applied and a spectrum is acquired. Spectra are acquired with successively

shorter τe delays to determine the minimum time required for the eddy current

effects to decay. The result of this experiment is shown in figure 2.3b for a

doped water sample. Each spectrum in figure 2.3b is acquired with a different

delay time τe. All of the spectra were phased using the phasing parameters of

the last spectrum in the series. It is evident from the results that the impact of

the eddy currents for the specific probe used vanishes for τe ≥ 200 ms, with

recovery of the full signal strength. This means that one must wait a period of

5Though eddy currents are deleterious for PFGSE NMR experiments, they are not always
undesirable, as there are some practical applications. Among the most common applications are
the magnetic levitation, electrical generators and electromagnet brakes.
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Figure 2.3: (a) The checkeddy pulse sequence to determine the minimum time
necessary for the effects of eddy currents to dissipate. (b) Experimental spectra for a
sample of doped D2O at 298 k acquired using the checkeddy pulse sequence for te
values ranging from 1 to 500 ms. The gradient pulse used had a duration δ of 1.5 ms
and a strength Gz of 0.6 Tm−1.

time ≥ 200 ms after the application of the final gradient in the pulse sequence,

and before data acquisition. One must not forget that the results vary widely

depending on the particular probe used, since probes have different shielding

effectiveness.

Many articles have been published that discuss ways to minimize this ring

down time. All of them deal with either changing the shape of the applied

gradient pulse or using a composite RF gradient pulse. The advantage of chang-

ing the gradient shape is that a gentler rise and fall of the gradient magnitude

will lessen the intensity of the eddy currents. The disadvantage is that such a

gradient may be less effective than a square gradient pulse.

A better alternative for high resolution work is the use of composite pulses.

Figure 2.4 shows a sequence where a simple bipolar gradient composite pulse
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Figure 2.4: The bipolar pulse pair with a longitudinal eddy current delay (BPPLED)
pulse sequence.

is used. Placing two gradient pulses with opposite polarity, and a π RF pulse

between them, creates a self-compensated composite pulse. In general, the

disturbance created by the second gradient pulse in the pair offsets that of the

first gradient. The π RF pulse is present so that the magnetization continues to

dephase in the same direction during both gradients.

Similar to the Stejskal and Tanner (1965) sequence, the signal attenuation

due to diffusion is given by the following equation

E = exp
[
−Dγ

2G2
z δ

2(∆−δ/3− τ/2)
]

(2.16)

All the experimental determinations of D obtained in this chapter make use

of the BPPLED pulse sequence, unless stated otherwise.

2.4.2 Gradient field non-uniformity

For measuring accurate diffusion constants the quality of the gradient coil

plays a very important role. The gradients used for diffusion measurements

have to be linear across the sample volume, i.e. the field change has to be linear

and therefore the field-gradient has to be constant. This is a question of gradient

coil design (Kerssebaum and Salnikov, 2006).

The basic derivation of the signal decay function described in equation 2.11

only assumes that the gradient is uniform in the z direction across the entire

sample region. Deviations from a uniform gradient will cause systematic

deviations from the ideal decay behavior. Once again, this effect is probe

dependent and may vary widely. The problem is illustrated in figure 2.5 using

a doped water sample at 298 K. The signal attenuation is recorded and a
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Figure 2.5: (a) A plot of the logarithm of the signal attenuation of the HDO resonance
of a D2O (99.9%) doped sample at 298 K versus (G2

z γ2δ2(∆−δ/3). The acquisition
parameters for the Stejskal and Tanner experiment were : δ = 5 ms, ∆ = 15 ms, and Gz
was varied linearly for 20 values up to 0.37 Tm−1. The correlation coefficient for the
experimental attenuation curve is r2 = 0.9997. (b) The residuals plot (the difference
between the experimental data and the fitted data for each point).

linear least-squares fit is applied to the integrated signal of the HDO resonance

in figure 2.5a. The residuals obtained from the fitted curve are plotted in

figure 2.5b. Although at first glance the data appear to fit well, a close inspection

of the residuals reveals a systematic error in the data.

Most gradient coil designs have a “sweet spot” in the very middle of the coil

that provides the most uniform gradient (Antalek, 2002). As a consequence the

gradient strength may vary substantially as a function of the distance from the

coil center. Therefore, only a small portion of the sample actually experiences a

strong, uniform gradient. This explains why figure 2.5b presents a systematic

error, since some signal from the sample was acquired from outside the “sweet

spot”. Moreover, most RF coil designs generally excite a region beyond the

coil’s physical dimensions. This combination produces non-ideal signal decay

behavior.

Spin-echo 1-D image profile

One way to visualize the gradient field non-uniformity is to perform a shape

analysis on a spin-echo pulse sequence coupled with a 1-D imaging profile

experiment (Price, 1998b), as exemplified in figure 2.6d . Accordingly to sub-

section 2.2.3, if a field gradient is absent then there is no spatial dependence of
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Figure 2.6: Schematic representation of the effect of a magnetic field gradient on the
NMR spectrum. (a) The sample sensitive volume (gray highlighted) has a length l
and ideally a cylindrical shape. (b) When the magnetic field applied to the sample
sensitive volume is homogeneous, all spin isochromats have the same Larmor resonance
frequency (same grayish color). Therefore, the spectrum expected will have the usual
Lorentzian narrow line shape. (c) When a field gradient is applied, the spins in each
sample slice experience different magnetic fields and thus different Larmor resonance
frequencies. The resulting spectrum is a very broad line which results from the
inhomogeneous field felt by the sample sensitive volume. This spectrum is known as a
1-D image of the sensitive volume region. (d) Hahn spin-echo sequence incorporating
a read gradient of strength Gz used for obtaining a 1-D image of the sample sensitive
volume in the NMR tube.

the resonance frequency. On the other hand, in the presence of a field gradient

the observed frequency is position-dependent, according to equation 2.6. These

considerations suggest that the observed FID and resulting spectrum will reflect

both the gradient and the shape of the sample.

Before getting into the interpretation of the spin-echo 1-D sample imaging

experiment, as an aside, some brief considerations about NMR tube quality

will be given. The purpose of an NMR tube is to confine a liquid sample in

a perfectly cylindrical volume, in a magnetic field. This premise should be
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attained either for spinning and non-spinning tubes. The “perfectly” cylindrical

shape of the tube can be characterized by the following measures: camber,

inside/outside tube diameter, and concentricity (Glass, 1992). While the first

two measures can produce a diversity of undesirable performance characteristics

in NMR spectroscopy, such as sideband increasing modulation, a failure to

conform concentricity requirements can cause major artifacts on diffusion

experiments. Concentricity is a measure of the uniformity of the tubing wall

thickness. If the thickness of the wall is not maintained throughout the sample,

then portions of the sample fall outside the perfect cylindrical volume where

the magnetic field may not be homogeneous. That is to say, to rule out tube

concentricity problems from any possible non-homogeneity of field felt by the

sample, one must carefully choose good quality tubes.

Most NMR tubes have an internal cylindrical shape and by consequence

the sample also adopts that same shape (see figure 2.6a). If we arbitrarily take

the magnetic field at one end of the cylinder to be B0, the lowest resonance

frequency will be γB0 accordingly to equation 2.6. At a distance l in the

direction of the gradient, the magnetic field is B0 + Gzl, and thus the highest

resonance frequency will be γ(B0 +Gzl). Since the number of spins is constant

along the cylinder axis, the absolute value of the Fourier transform of the signal

must be rectangular with a line width ∆ν6, given by (Price, 1998b)

∆ν = γGzl/2π (2.17)

Though it is possible to determine the strength of the gradient by analyzing

the FID shape, this method is prone to a number of systematic errors as pointed

out by other authors (Lamb et al., 1987; Murday, 1973). A more informative

and intuitive method is to analyze the Fourier transformed spectrum and apply

equation 2.17. One-dimensional profiles of a D2O doped sample are shown in

6A modern high-resolution spectrometer can deliver a field gradient up to 0.6 Tm−1. If we
assume that the sensitive volume extends for about l = 10 mm, then from the top to the bottom
of the sample the magnetic field due to such gradient will vary by 0.006 T. From equation 2.17
and taking the observed nucleus to be proton, we find that the obtained profile has a width of
about 255 KHz.
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Figure 2.7: The 1-D profile experiment showing the effect of slice selection on a
NMR tube containing doped D2O at 298 K. (a) 1H images of the residual water along
the z-axis on a D2O susceptibility matched tube, with a sample height l of 10 mm
(solid line), and on a standard NMR tube containing a sample height of about 37 mm
(grey line). The data were all acquired with the same read gradient (0.154 Tm−1) and
with the same polarity. Both tubes were positioned in the spinner at about the same
position, in order to obtain centered profiles; (b) A plot of the profile image width
versus sample length for the D2O doped sample in the susceptibility matched microtube.
The image width was determined at 20% of the peak height. The correlation coefficient
is r2 = 0.998.

figure 2.7.

From the theoretical considerations previously presented, the expected 1-D

image profile should have a rectangle shape. However, from the profiles given

in figure 2.7a that shape is not observed (compare with figure 2.6c). We can

interpret the results considering the height of the NMR signal, as well as, the

shape of the profiles.

The uneven signal height along the z-axis of the sample is due to a combina-

tion of RF and applied gradient inhomogeneity as well as background gradients

(Price et al., 2001). Background gradients are due to the magnetic susceptibility

differences at sample interfaces, the so called “meniscus effect”. There is a

large difference in magnetic susceptibility across the interface of the sample

in a standard NMR tube due to the large difference in susceptibility between

the air and the sample. However, the glass in a susceptibility matched tube

is approximately matched to the magnetic susceptibility of the sample (see

figure 2.8). The results in figure 2.7a show that a plateau in signal height is

reached for the standard and susceptibility matched tubes. The active volume
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l

Figure 2.8: Schematic diagram of a susceptibility matched NMR tube. The sample is
contained in a cylinder of length l. The bottom of the tube and the glass plug at the top
of the sample have their magnetic susceptibility approximately matched to the solvent
used.

of the sample in the standard tube is such that the meniscus is out of the RF coil

active region. If the z position of the standard tube is changed in the probe, it is

readily seen that a plateau is not attained (not shown). This does not happen

as easily for a susceptibility matched tube. Even if a susceptibility matched

tube is not centered in the probe, and thus with a greater probability for the RF

coil to see the sample insert glass interface, the intrinsic characteristics of the

tube reduce the probability of having background gradients. This is still true

for relatively short samples. Nevertheless, even for these special NMR tubes, it

is advisable to center the sample in the RF uniform region, since most of these

tubes do allow a film of solvent between the plug and tube wall.

The applied gradient is more or less constant up to a sample length of 14

mm, since the image width increases linearly with sample length as shown in

figure 2.7b. Although the sample in the susceptibility matched tube has a very

precise cylindrical shape, the images of samples longer than 14 mm do not have

sharp cutoff frequencies (not shown), resembling the image of the sample in the

standard NMR tube given in figure 2.7a. The loss of vertical sides is probably

largely due to increasing RF inhomogeneity as the sample moves away from

the RF coil center (Price et al., 2001).

Typically, the physical extent of the RF sensitivity region is 15 mm (Welch,

1998a), whereas the region of constant gradient is at most 10 mm long. Antalek

(2002) showed how easily the gradient strength can vary by 30% across a 15

mm sample region, corresponding to a variation of about 50% in the diffusion

coefficient along the same direction. Clearly, to obtain the most accurate

diffusion coefficients, one must find a way to obtain a signal from only a small

region in the center of the sample, or to compensate for the non-homogeneity

of the gradient field.
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To deal with the non-uniformity of the z-gradient, several methods have

been suggested, namely constraining the sample, post-processing of data by

fitting a gradient strength distribution function, and sample slice selection.

Physically constraining the sample, as already explained above by the usage of

susceptibility matched tubes, is probably the most simple approach. Figure 2.7b

shows that we were able to constrict the sample to a length l of about 4.5

mm, without loosing gradient constancy for the probe used. Although this

is a good approach, constraining the sample to such small l sample lengths

brings another problem: extreme difficulties in shimming the sample, i.e., to

turn the B0 field homogeneous around the sample. Thus a compromise must

be met between using the smallest possible sample length in the active B1

homogeneity region, and at the same time to have a good set of shimming

parameters. Damberg et al. (2001) showed that the accuracy and precision

of measured diffusion coefficients by the Stejskal-Tanner spin-echo pulsed

field gradient experiment can be significantly improved using a parameterized

gradient distribution function. A better approach involves the selection of the

sample region to be excited through a slice selection, widely used in MRI. The

idea is to use the gradient in conjunction with a selective RF pulse to excite only

those spins in the middle of the sample region. As an example, a slice-selection

technique was applied to the BPPLED pulse sequence with good results for

chemical mixtures (Park and Lee, 2006).

2.4.3 Bénard convection

Most modern spectrometers have a variable temperature (VT) unit to control

the actual sample temperature. A thermocouple near the sample senses the

temperature, which the VT controller continuously compares with the user-

requested temperature, changing the heater current accordingly (Welch, 1998b).

The VT gas is introduced through the bottom of the sample region, travels

around the side of the tube and exits through a port near the top of the sample

region. Thus, it is quite possible that convection cells are produced along the
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long axis of the sample7, not excluding the possibility of transverse temperature

gradients be formed too.

If the temperature gradient is large enough, convective flow will be induced

along the z-axis. As convection results in the physical movement of the spins,

it interferes with the formation of gradient spin echoes. This adds a velocity

dependent phase term to the diffusion and will perturb the ideal decay in

a PFGSE NMR experiment by superimposing an oscillating behavior in the

signal decay (Mao and Kohlmann, 2001). In practice, the presence of convection

appears as an increase on the measured diffusion coefficient (Stilbs, 1987).

Convective flow only takes place when the temperature gradient exceeds

a critical value. Several factors contribute to it, namely, the shape of the

sample, the viscosity and thermal expansivity of the liquid, the acceleration

due to gravity, VT gas flow rate, among other things (Loening and Keeler,

1999). Several formal methods were presented to measure, visualize and

compensate for thermal convection (Jerschow and Müller, 1998; Nilsson and

Morris, 2005). A simple way to observe if a given NMR sample is being

affected by convective flows, is to allow the signal in a PFGSE NMR experiment

at the proper temperature to attenuate at least 95% and examine the decay

behavior (Antalek, 2002). If there is no effect from the temperature and effects

from gradient field non-uniformity are eliminated, the decay should be linear

on a semilogarithmic plot. Figure 2.9 demonstrates an experiment with a D2O

sample at 298 K.

If critical convection problems were present in the sample, resonances

should begin to exhibit phase distortion for the higher gradients, which was not

observed. The resulting signal decay plot for the HDO resonance in figure 2.9c

shows a very good correlation. If we compare the residuals plot in figure 2.9d

with the experiment described earlier on figure 2.5, it is readily seen that the

7A convection cell is a phenomenon of fluid dynamics that occurs in situations where there
are temperature differences within a fluid body. When a volume of fluid is heated, it expands
and becomes less dense and thus more buoyant than the surrounding fluid. The colder, denser
fluid settles underneath the warmer, less dense fluid and forces it to rise. Such movement is
called convection, and the moving body of liquid is referred to as a convection cell or Bénard
cell (Drazin, 2002).
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Figure 2.9: Evaluation of temperature gradients using a BPPLED experiment on a 10
mm length D2O sample at 298 K, using a D2O susceptibility matched tube. (a) Signal
attenuation of the HDO resonance. The acquisition parameters used were: δ

2 = 1.5
ms, τ = 1.5 ms, τe = 300 ms and ∆ = 12 ms. Each spectrum is the average of 64
scans. The gradient strength was linearly varied up to a maximum of 0.44 Tm−1 with
values increasing from left to right of the figure. (b) Corresponding normalized plots
to the spectrum at highest gradient strength. (c) A semilogarithmic plot of the signal
attenuation of the HDO resonance. The correlation coefficient for the experimental
attenuation curve is r2 = 0.99996. (d) The residuals plot.
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correlation coefficient between the signal attenuation and the applied gradient

has substantially improved. Therefore, evidence of convection currents caused

by temperature gradients is not found in our setup.

A common NMR technique to improve sample homogeneity, either regard-

ing the magnetic field or temperature, is to spin the sample tube. Theoretically,

it should be allowed to spin the sample in PFGSE NMR experiments since the

introduced velocity term is orthogonal to the z direction. In fact, some studies

showed the suppression of effects from convection currents using sample spin-

ning (e.g., see Esturau et al., 2001). Nevertheless, there is always the possibility

of introducing other problems such as vibrations in the system when spinning

the tube. It should also be emphasized that for a proper temperature control,

the VT gas flow rate should be high enough to allow for thorough heat transfer

along the tube but not so high as to introduce vibrations. Two other approaches

could also be used to minimize temperature induced convection: reduce sample

diameter and/or reduce sample height. As already pointed out earlier, reducing

too much the sample height is problematic since it compromises the line shape

(shimming problems). If instead we reduce the sample diameter by using a

smaller size tube such as 3 mm, the S/N ratio will decrease. Nevertheless, the

effect of reducing the sample diameter is much more important than reducing

the height (Antalek, 2002). Goux et al. (1990) describes the effects of all these

parameters on PFGSE NMR experiments.

For completeness, another solution is to use convection current compensated

pulse sequences (Sørland et al., 2000).

2.5 Setup, acquisition and PFGSE analysis

The PFGSE experiment is a powerful technique to obtain diffusion coeffi-

cients. Though D is calculated in a straightforward way from a curve fit to the

experimental data, the NMR spectroscopist should be extremely careful and

diligent concerning several sources of potential artifacts. Some clues on how to

minimize the most problematic ones were discussed in section 2.4.

Before proceeding to spectra acquisition, temperature and gradient fine

tuning should be done. Also, determination of the minimum time required for
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the eddy current effects to dissipate should be taken into consideration. Only

after this prerequisites are met, the spectrometer can be considered ready for

proper NMR acquisition of PFGSE data. The present section aims to be a

general guide to setup the spectrometer, such that meaningful D values can

be computed. Data acquisition and processing will be also discussed, and

particular attention is paid to the application of diffusion measurements to the

study of protein diffusion.

2.5.1 Temperature calibration

Modern spectrometers control the probe temperature through built-in hard-

ware, providing a coarse estimate of the actual sample temperature. More accu-

rate schemes have been developed making use of the temperature-dependence

of the chemical shifts of methanol and ethylene glycol to calibrate the actual

temperature of the sample in the probe (Raiford et al., 1979), or piezoelectric

thermometers (Wang and Leigh, 1994).

The most common method is the measurement of temperature-dependent

chemical shifts of standard compounds. Over the range 250–320 K, the differ-

ence in chemical shift ∆δ between the methyl and the hydroxyl resonance of a

100% methanol sample, is given by equation 2.18.

T = 403.0−29.53∆δ−23.87∆δ
2 , ∆δ in ppm (2.18)

Samples of ethylene glycol are used for high-temperature calibration (300–

370 K), and the difference in chemical shift (∆δ in ppm) between the methylene

and hydroxyl resonances of 100% ethylene glycol is given by equation 2.19

(Cavanagh et al., 1996).

T = 466.0−101.6∆δ , ∆δ in ppm (2.19)

An example of temperature calibration close to room temperature is given

in figure 2.10. The obtained temperature calibration curve shown in figure 2.10b

indicates that there is an offset of circa 1.84 degrees between the real sample

temperature and the VT temperature in the conditions of spectrometer operation

used.
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Figure 2.10: Temperature calibration close to room temperature for a 5-mm probe on
a Varian UnityINOVA 500 spectrometer, with a 100% methanol sample. (a) Spectra
were obtained as a function of VT temperature. The temperature-dependent chemical
shift change of methyl and hydroxyl resonances is clearly observed; (b) Temperature
calibration fitting curve. The fitting correlation parameter obtained expresses a good
confidence for experimental work performed within the temperature range studied.

Typically, when the probe temperature is changed one must allow at least

10 minutes for the probe and sample temperature to reach equilibrium. The

correlation between the actual and VT temperature can be improved, if the flow

rate of the cooling/heating gas is increased, or if the thermocouple is moved

closer to the sample. It should be noted however, that spectrometer systems

are designed and tested with a limited range of VT gas flow rates8. Sizable

deviations from this flow rate range may result in significant inaccuracy on

temperature calibration.

If, as is often the case, intramolecular or intermolecular exchange processes

are taking place in the sample, such as conformational equilibria, protein aggre-

gation, or ligand binding, the appearance of the spectrum may be particularly

sensitive to temperature (Lian and Roberts, 1993).

8The Varian VT unit is optimized for a gas flow rate of about 10 Lmin−1 (Welch, 1998a)
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2.5.2 Dissipation of eddy current effects

After setting up the correct VT temperature for your experiment, allow the

sample to reach thermal equilibrium. Usually 10 to 15 minutes is sufficient if

the temperature of the spectrometer room is controlled.

The next step should be the determination of the time required for the

complete dissipation of eddy current effects for the maximum gradient strength

to be used. From figure 2.3b it can be seen that a delay τe ≥ 200 ms is enough

for the eddy currents to dissipate for the probe used in the present study. A

τe = 300 ms was used in all subsequent PFGSE experiments.

2.5.3 Gradient calibration

Acquiring a PFGSE experiment to measure diffusion coefficients involves

the build-up of a gradient ramp (see section 2.2.4). The effective gradient output

delivered to the probe is a linear function of the input parameter controlling

the current amplitude. Every gradient probe will have its own characteristic

gradient strength for a given current value, thus the need for a proper calibration.

If the amount of current delivered to the probe is known, the gradient strength

is also known through a calibration constant gcal, in units of Tm−1A−1, given

by the following relation9

Gz = gzlvl1×gcal (2.20)

Usually, we do not concern ourselves with current values because the level

of current is controlled by a DAC (Digital-to-Analog Converter) value in the

software (gzlvl1 in VARIAN systems). Thus, gcal can be written in units of

Tm−1DAC−1.

There are a number of papers describing the most common gradient cali-

9 On VARIAN systems, the pulsed field gradient strength is specified by the gzlvl1 parameter.
It specifies the pulsed field gradient DAC value and ranges from −32767 to +32768 for a 16-bit
gradient module like the PerformaII. To convert this value to an absolute gradient strength, a
gradient calibration constant gcal must be calculated, such that Gz = gzlvl1×gcal. Therefore,
gcal stores the proportionality constant between the parameter values (DAC units) controlling
the desired gradient and the intensity of the gradient expressed in Tm−1 (Welch, 1998c)
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bration procedures (Price, 1998b; Yadav et al., 2008). Traditionally, gradient

calibration in PFGSE experiments is made either through one-dimensional

image analysis of the spin echo in a steady field gradient, or indirectly through

analysis of the echo decay of a PFGSE experiment on a single-component

solution with a known molecular self-diffusion rate (Stilbs, 1987). These two

methods were used in this work and will be further discussed below.

As an aside, it must be emphasized that most articles published using

PFGSE experiments, do calculate diffusion constants by a linear regression of

the attenuation data curves obtained. However, this approach gives unequal

weighting to the noise, particularly as the NMR signal intensity approaches

zero (Price, 1998b). When accuracy is needed, it is better to use nonlinear

regression of the attenuation equation onto the experimental data10.

1-D image analysis for gradient calibration

The line width of the Fourier transformed spectrum of a sample of known

geometry can be used to calculate the gradient strength (Lamb et al., 1987;

Murday, 1973). The methodology was described in sub-section 2.4.2. Briefly,

the presence of a read gradient during echo acquisition will result in a spatial

dependence of the resonance frequency. If the sample length l is known, the

line width from the 1-D sample profile can be measured and used to determine

the gradient strength.

In the case illustrated in figure 2.7a, a line width of 65.8 KHz was attained

for a sample length of 10 mm in the susceptibility matched tube. A DAC value

of 8000 out of a total of 32768 was used (see footnote 9). Using equation 2.17

we can estimate a gradient strength, Gz = 65.8 KHz/(4.26× 104 KHzT−1×
0.010 m) = 0.154 Tm−1. The gradient calibration constant is then gcal =
0.154/8000 = 1.925×10−5 Tm−1DAC−1.

The main virtue of the method is that calibration can be performed without

10Throughout this chapter, PFGSE experiments were acquired by linearly changing the
gradient strength Gz. All PFGSE attenuation curves are described by an exponential function
with the independent variable Gz being a squared parameter. As such, for a proper sampling of
the decaying curve, Gz should had been linearly incremented as G2

z .
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Table 2.1: Self-diffusion coefficients of reference compounds for
gradient calibration at 298 K

Compound Diffusion coefficient /10−9 m2s−1 Reference

H2O 2.30 (Mills, 1973)
D2O (99.9%) 1.902 (Longsworth, 1960)

C6H6 2.207 (Collings and Mills, 1970)

the knowledge of the sample diffusion coefficient. Major problems are that large

receiver bandwidths are required at even modest gradient strengths as shown

by the above Gz estimation. Also the gradient broadened spectrum makes it

difficult to obtain adequate S/N. Restricting the length of the sample or using

slice selective pulses, one can alleviate problems with spectrometer bandwidth

however restrictions due to S/N become more significant (Price, 1998b). A

priori this methodology gives an estimate of the gradient calibration constant

with an error ≤ 5%, if the sample dimensions are precisely controlled and not

temperature dependent (Holz and Weingärtner, 1991).

This 1-D imaging “projection” analysis can additionally be used for check-

ing the constancy of the gradient over a range of temperatures and over the

length of the sample (see figure 2.7b).

Reference sample for gradient calibration

Whereas the gradient calibration constant obtained from a 1-D image

method should be considered only as an estimate, one needs to go a step

further to obtain the proper gradient calibration value. The best way to fine

tune gcal is to use a suitable reference compound having a known diffusion

coefficient Dknown. The temperature, solvent conditions, and concentration need

to be controlled. Some commonly used standard samples and their diffusion

coefficients are listed in table 2.1. Systematic investigations of isotope effects

on water diffusion have yielded accurate values for the limiting self-diffusion

coefficient of HDO in D2O (Holz and Weingärtner, 1991; Longsworth, 1960).

A suitable primary standard sample to work at 298 K is thus residual water

(HDO).

The prime advantages of the H2O/D2O method of calibration are (Stilbs,

1987) :
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• accurately known and tabulated diffusion coefficients

• relatively low temperature dependence of D

• long T2 value and not strongly temperature dependent

• deuterons provide an excellent field lock signal

If the sample experimental conditions used for gradient calibration (i.e.

sample shape, delays, pulse lengths, gradient strengths, VT gas flow, etc.)

are also used in subsequent experiments, then non-ideal gradient behavior is

automatically canceled.

There are at least two approaches of getting an absolute calibration constant

for a specific probe using a sample compound as reference. We can simply

acquire a PFGSE NMR experiment with a D2O (99.9%) sample, and instead

of determining D (which is a known variable in this case) from the attenuation

curve fitting, the calibration constant is calculated. A gradient calibration curve

is shown in figure 2.11.

The obtained calibration constant value (gcal = 1.890×10−5 Tm−1DAC−1)

is within 2% of the initial value calculated using the 1-D imaging technique.

This new value should be more accurate due to the intrinsic problems of the

1-D image calibration technique.

A different mathematical approach to obtain the calibration constant was

proposed by Antalek (2002), taking into account an estimative of the gradient

constant, gcalest . Making use of the same HDO attenuation curve values in

figure 2.11, a diffusion coefficient Dmeas is calculated using equation 2.16. From

this equation it is readily seen that DG2
z is linearly proportional to ln(E). Thus,

for a single ln(E) value the following must be true

Dmeas(gzlvl1×gcalest)2 = Dknown(gzlvl1×gcal)2 (2.21)

After rearranging equation 2.21, the actual gradient calibration constant

gcal can be calculated from the following (Antalek, 2002)

gcal = gcalest

√
Dmeas

Dknown
(2.22)
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Figure 2.11: Gradient calibration using a D2O susceptibility matched tube with a
10 mm of D2O (99.9%) at 298 K. A nonlinear squares fit of the signal attenuation
of the HDO resonance versus (gzlvl1γδ)2(∆−δ/3− τ/2) is shown. The acquisition
parameters for the BPPLED experiment were : δ

2 = 1.5 ms, ∆ = 12 ms, τ = 1.5
ms, τe = 300 ms and gzlvl1 was varied linearly for 22 values up to 22000 DAC. 64
scans per spectrum were collected. The correlation coefficient for the experimental
attenuation curve is χ2 = 0.02, with a value for the calibration constant equal to
gcal = (1.890±0.001)×10−5 Tm−1DAC−1. The residuals plot is also shown below
the fitting curve.

Considering gcalest = 1.925× 10−5 Tm−1DAC−1 previously estimated

from 1-D image profile, a nonlinear fit of equation 2.16 to the experimental

data plotted in figure 2.11, Dmeas = 1.83× 10−9 m2s−1 is obtained. Making

use of equation 2.22 the same value for gcal, i.e. 1.890×10−5 Tm−1DAC−1,

is obtained.

2.5.4 Parameter optimization

Before going to the laboratory, it is extremely useful to simulate a diffusion

decaying curve for the compound under study, if the value of D is known or

estimated. Once the eddy current delay is determined for a specific probe,

it is necessary to optimize the parameters that determine the decay function

described by equation 2.16. To keep the timing constant throughout the whole

experiment and to factor out spin-spin relaxation (see sub-section 2.2.4), the

gradient strength Gz is chosen as the variable parameter, the τ delay is kept

constant as well as the diffusion time ∆, and the diffusion gradient length δ.
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Figure 2.12: Simulated diffusion decay curves for a D2O sample at 298 K, using
the BPPLED pulse sequence. The gradient strength Gz was varied in 24 steps, while
maintaining a constant diffusion gradient length δ

2 = 1.5 ms, a delay τ = 1.5 ms along
with an eddy delay τe = 300 ms. The sample molecules were allowed to diffuse for
∆ = 30,60 and 100 ms. The diffusion coefficient for residual HDO was considered to
be 1.90×10−9 m2s−1 (Longsworth, 1960).

The simulation curves for three different ∆ values are shown in figure 2.12.

The aim is to obtain a curve where data points are properly distributed

along the whole decay curve, such that proper data fitting can be made. If we

consider an attenuation of 90% on the signal intensity as the threshold to avoid

complications due to low S/N, it can be seen from figure 2.12 that for ∆ = 30

ms the decay provides a good data sampling to be adjusted to equation 2.16.

A set of BPPLED spectra for D2O (99.9%) at 298 K acquired with the same

acquisition parameters as in the above simulated decay curves is shown in figure

2.13.

Depending on the accuracy with which the diffusion constant is to be

determined, the signal decay should be allowed to attenuate to the lowest

possible value above the noise level. An apriori diffusion decay simulation

for a given NMR signal should always be stressed out, such that the right

acquisition parameter values, or at least a rough estimation, are readily known

for the setup of a real experiment.
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Figure 2.13: 1H-NMR spectra of a D2O sample, at 298 K, using the BPPLED sequence.
The acquisition parameters used were δ

2 = 1.5 ms, τ = 1.5 ms, τe = 300 ms and (a)
∆ = 30, (b) 60, (c) and 100 ms. Each spectrum is the average of 64 scans. The gradient
strength was varied linearly in 24 increments up to a maximum of 0.45 Tm−1, with
values increasing from front to back in the spectra of the figure.

2.5.5 Solvent signal suppression

Limited sample availability, often the case in protein NMR experiments,

limited solubility or other problems such as aggregation, strongly limit the

solute concentration to be used in diffusion measurements. Additionally, the

presence of large solvent resonances, such as the water resonance in biological

samples, present a big challenge to proper acquisition of NMR spectra. Water

molecules are typically present at concentrations more than three-orders of

magnitude greater than solute concentration. Such strong NMR signals prevent

optimal use of the analogue-to-digital (ADC) converter of the spectrometer11,

and obscure peaks near the solvent resonance. Efforts have been directed to

ensure that the solvent signal is greatly reduced in amplitude while the rest

of the spectrum remains, as far as possible, unchanged. Several methods of

solvent suppression have recently been reviewed by Price (1999).

Traditionally, selective irradiation of the solvent peak has been the most

common method since it is both simple and easily incorporated into multidimen-

sional experiments (Price, 1996). This method, often called pre-saturation, was

11Fourier spectroscopy requires a digitized free induction decay and hence an ADC converter.
There is has a practical limitation on the dynamic range handled by the ADC and no part of the
FID can be allowed to overflow that range (Freeman, 1988).
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incorporated in the BPPLED pulse sequence. Albeit its general usage, the first

try outs to suppress solvent peaks from protein solutions were not satisfactory

to pursue with this solvent suppression scheme. It suffers from the disadvantage

that signals close to the solvent signal are difficult to observe.

In addition to measure diffusion, gradients also provide the foundations of

highly efficient means for water suppression, particularly suited to the difficult

requirements set in protein NMR measurements (Price, 2000). A suppression

sequence may be designed to take advantage of an inherent difference between

the solute and solvent molecules, such as translational diffusion. The difference

in the translational diffusion coefficients between rapidly diffusing solvent

molecules and the generally much more slowly moving solute molecules, can

be used in combination with a PFGSE sequence to achieve solvent suppres-

sion (Stilbs, 1987). Accordingly to equation 2.16, a faster diffusion species

will be more strongly attenuated than a slower moving species. An example

of a diffusion measurement on hen-egg white lysozyme in D2O is given in

figure 2.14.

The water and the lysozyme peaks have quite different signal attenuation

by virtue of their very different diffusion coefficients. For example, at 298

K, residual water has a diffusion coefficient of about 1.9×10−9 m2s−1 (table

2.1) and a large protein such as lysozyme has a diffusion coefficient nearly

two orders of magnitude smaller. Thus, the solvent resonance will be greatly

attenuated compared to the protein resonances if a pulse sequence is used that

incorporates some form of gradient spin echo sequence, like the BPPLED.

2.5.6 Protein diffusion case studies

The relationship between protein structure and protein function is well

known and NMR has long been used to determine the three-dimensional struc-

tures of such biomolecules (Wüthrich, 1986). Due to the intrinsically low

sensibility of NMR to collect experimental data, often saturated protein solu-

tions must be used in the millimolar concentration range to produce meaningful

results. Such sample conditions may bring to the NMR spectra interpretation,

an extra difficulty while assigning it since self-aggregation is promoted by

such crowded solutions. Nevertheless, such macromolecular solution compli-
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Figure 2.14: (a) Typical set of BPPLED 1H NMR spectra for hen egg white lysozyme
1.5 mM in 99.9% D2O, at pH 3.1 and 298K. The experimental parameters used were
∆ = 100 ms, δ

2 = 1.5 ms, and τ = 1.5 ms. Each spectrum is the average of 256 scans.
In this experiment, a longitudinal eddy current delay τe of 300 ms is used to minimize
spectral artifacts resulting from residual eddy currents. The gradient strength Gz was
varied up to a maximum of 0.60 Tm−1 with values increasing from front to back in
the spectra of the figure. A sample length of 10 mm was used in D2O susceptibility-
matched micro tubes. A recycle delay of 10 s was allowed between scans. (b) Plot
of the normalized signal attenuation of the aliphatic region (∼ −1.4 to 2.4 ppm) of
the lysozyme spectra versus G2

z γ2δ2(∆− δ

3 −
τ

2 ). The solid line represents a nonlinear
least squares fit to the experimental data giving a diffusion coefficient for lysozyme of
D = (9.32±0.02)×10−11 m2s−1. The correlation coefficient for the fitting curve is
χ2 = 0.09. The residuals plot is also shown below the fitting curve.

cations are also present in biological systems. Because crowding influences

macromolecular association and conformation, it will play a role in all biologi-

cal processes that depend on noncovalent associations and/or conformational

changes, such as protein synthesis and protein oligomerization. Proteins in the

biological milieu are generally in some equilibria between different aggregation

states. Protein aggregation plays an important role under normal physiological

conditions, but it is also implicated in disease conditions, such as amyloid

related diseases (see chapter 6). Thus, a biochemist can not neglect crowding

effects when trying to mimic biological conditions in a in vitro study, since

living systems are ubiquitously crowded at the biochemical level (Ellis, 2001).

The advent of pulsed field gradients increased the range of available NMR

experiments. The usage of well-designed gradient sequences decreases the

experimental acquisition time and generally perform better than those using
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extensive phase cycling12, especially when suppressing extremely strong solvent

signals (Thomas et al., 1999). One of the most promising NMR experiments

making extensive usage of PFG are the PFGSE related pulse sequences. These

are being used to elucidate the complicated solution behavior of proteins such

as self-association and aggregation, nevertheless the technique is still in its

infancy (Price, 2000). The following sub-sections will show the application of

PFGSE to two protein systems.

Hen egg white lysozyme

After having calibrated the spectrometer with a sample of D2O it is conve-

nient to benchmark the current spectrometer setup with a well characterized

protein sample. Lysozyme serves as a widespread model system in various

fields of biochemical research, since it is one of the most studied proteins.

The lysozyme solution used in the experiment depicted in figure 2.14

is a crowded system. In other words, the average spacing between protein

molecules is much less than the mean-square displacement of the particles over

the time scale of the PFGSE diffusion experiment. For example, the average

spacing between lysozyme molecules in a 1.5 mM solution is about 13 nm13.

In the BPPLED experiment in this study the time interval allowed for molecule

diffusion was 100 ms, thus the mean-square displacement calculated from the

Einstein equation 2.4 is about 4.5 µm. Hence, during the diffusion measurement

there is a high probability for different lysozyme molecules to collide numerous

12A high-resolution NMR pulse sequence is defined by a sequence of radiofrequency pulses
and a procedure for selecting a required set of coherence transfer pathways. When a RF pulse is
applied it excites an enormous number of coherence transfer pathways, and not all give signals of
interest. Phase cycling is the most commonly applied approach to suppress unwanted coherence
transfer pathways.

13A rough estimation of the average distance between protein molecules can be calculated
using the excluded volume concept, which is determined by the distance between the center
of mass of a reference particle in relation to other macromolecules in solution upon closest
approach. The HEWL protein volume can be determined knowing that monomeric lysozyme is a
nearly spherical prolate ellipsoid with major and minor semi-axes ratio of 24 : 13 Å for the non-
hydrated molecule (Dubin et al., 1971); or, it can be determined knowing the molecular weight of
lysozyme (14.32 KDa) and from the tabulated partial specific volume of ∼ 0.7 cm3g−1 (Cantor
and Schimmel, 1980)
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times. Although there is considerable disagreement in the literature regarding

the limits of lysozyme solubility, a sample containing 1.5 mM lysozyme should

be unsaturated at pH 3 and it is likely that lysozyme remains monomeric (Price

et al., 1999). Consistent with this, the NMR spectra of lysozyme under these

conditions have sharp resonance lines.

The diffusion constant of a molecule will be a function of both the tem-

perature at which the measurement was performed and the solvent viscosity

(see equations 2.1 and 2.2). Solvent viscosities are themselves a function of

temperature. Rather than deal with all these variables, it is convenient to convert

the experimentally measured diffusion coefficients to what would be observed if

the measurements were carried out for example at 293 K in pure water (Cantor

and Schimmel, 1980) :

Dw,293 = Dobs,T

(
293
T

)(
ηw,T

ηw,293

)(
ηs

ηw

)
(2.23)

where Dw,293 is the diffusion constant in pure water at 293 K, Dobs,T is the

measured diffusion coefficient in the actual solvent at the experimental absolute

temperature T , ηw,T and ηw,293 are the viscosities of water at absolute temper-

atures T and 293 K, respectively. ηs and ηw are the viscosities of the actual

solvent used and water at a common temperature, respectively.

Using viscosity tabulated values (Cho et al., 1999) and the experimental

data (figure 2.14), a diffusion coefficient of Dw,293 = 1.01×10−10 m2s−1 was

obtained for lyzozyme using equation 2.23. The result is in line with published

results at similar experimental conditions (see Price et al., 1999, table 2). How-

ever, there is a wide range of values published. No systematic errors were

observed in the attenuation curve when fitted to equation 2.16.

δ-toxin

δ-toxin is a 26 residue peptide produced by Staphylococcus aureus which

lyses eukariotic cells in preference to bacterial cells in vivo (Dhople and Na-

garaj, 1993; Tappin et al., 1988). The peptide has a high propensity to aggregate

in solution due to its amphipatic character and zero net charge at neutral pH (Fit-

ton, 1981). Knowing the aggregation state of biomolecules, or at least not
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Figure 2.15: (a) Typical set of BPPLED 1H NMR spectra 1mM δ-toxin, at 298 K, in
CD3OD. The acquisition parameters used were δ

2 = 1.5 ms, ∆ = 40 ms and τ = 1.5
ms. Each spectrum is the average of 256 scans. In this experiment, a longitudinal eddy
current delay τe of 300 ms is used to minimize spectral artifacts resulting from residual
eddy currents. The gradient strength Gz was varied linearly up to a maximum of 0.47
Tm−1 with values increasing from front to back in the spectra of the figure. Samples
of ≈ 150 µL in CD3OD susceptibility matched micro tubes were used. (b) Spectral
expansion of the aliphatic region used to calculate the diffusion coefficient. The solvent
peaks are at ≈ 4.8 and 3.3 ppm.

underestimate the possibility of aggregation, is essential for NMR structure

determination. The wrong assumption that a protein is in a monomeric state

may lead to erroneous interpretation of the NOE connectivities which would

result in wrong assignments, and thus in non-meaningful 3-D structures. In

spite of the several studies previously performed on this peptide system, still

little is known about its aggregation state.

Figure 2.15 shows the signal attenuation in a PFGSE NMR experiment of

δ-toxin in CD3OD. As shown previously for HEWL (figure 2.14), it is readily

seen that due to a large difference in diffusion coefficient between the solvent

and the peptide, very different rates of peak attenuation are observed.

The integration of the signal intensity was done using the aliphatic region

[0.5−1.8] ppm to avoid the large contributions of the solvent peak resonances

and to discard the low upfield resonances with a small S/R. The signal atten-

uation data is plotted in figure 2.16 along with the curve fitting to a single

exponential equation.

Except for some cases of restricted diffusion, a plot of the natural logarithm
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Figure 2.16: Attenuation plots of the normalized (closed circles) and logarithm (open
circles) signal intensity of the aliphatic region (∼ 0.5 to 1.8 ppm) of the δ-toxin BP-
PLED spectra versus G2

z γ2δ2(∆− δ

3−
τ

2 ). The solid and dotted lines represent nonlinear
and linear least squares fits to the experimental data, giving diffusion coefficients of
(3.03±0.02)×10−10 and (2.94±0.02)×10−10 m2s−1, respectively, for the peptide.
The correlation coefficient for the nonlinear fitting curve is χ2 = 0.09 (r2 = 0.9993),
whereas for the linear fit is r2 = 0.9989. The residuals are also shown at the bottom of
the graph.

of the signal intensity versus the square of the gradient amplitude should be

a straight line for the diffusion of a single component in the case of free

diffusion (Price, 1997). Nevertheless, the straight line depicted in figure 2.16

only approximates the signal decay behavior. A closer look of the data, in

particular the analysis of the residuals plot, reveals that the experimental data

decay shows an upward curve trend, indicating polydispersity (Antalek et al.,

2002).

As briefly pointed out in sub-section 2.2.5, protein solutions are intrinsically

polydisperse systems. Nonetheless, any aggregate built of a large number of

monomers will be too large to give any significant contribution to a NMR

spectrum, owing to its short transverse relaxation time T2 (Keeler, 2006). Hence,

we can reasonable assume that low-weight molecular species give the major

contributions to the decay of the resonance intensity in the diffusion experiment.

Another important aspect is that chemical shifts of such low-weight aggregates

are usually overlapped, thus the resulting attenuation curve is the sum of the

contributing species. δ-toxin due to its physical-chemical properties is extremely
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prone to aggregation even at concentrations on the µM range (Thiaudière

et al., 1991). In the present experimental conditions (mM range) the peptide

is aggregated, albeit two-dimensional NMR spectra of δ-toxin do not show

segregation of peaks belonging to different oligomeric species in solution (see

chapter 3).

A rather obvious aspect to be taken in consideration when analyzing PFGSE

attenuation profiles is the lifetime of the oligomeric species. Though it is likely

to be very protein specific, the kinetics of formation/disruption of oligomeric

species is expected to be slow on the time-scale of the PFGSE experiment

(∆ = 100 ms) (Price, 2000). A monodisperse solution should give a single

exponential attenuation curve. If aggregation occurs, as it is the case, the

attenuation curve should have systematic errors relative to a single exponential,

if the exchange is slow (see equation 2.13). Danielsson et al. (2002) showed

that the trend of residuals obtained from the fitting curves to one-exponential

function may give information on the presence of slowly exchanging species

in the sample. The results shown in figure 2.16 have a systematic error on the

residuals, either in the linear and nonlinear curve fitting, consistent with the

presence of aggregates in a slow exchange regime.

To ensure that the sample was in equilibrium with respect to sample temper-

ature and state of self-association, diffusion measurements were taken spaced

in time. The results are shown in figure 2.17.

A time-dependent variation on the peptide diffusion coefficient is evident,

with a 5% increase on the D value on the first 6 days (144 hours) of sample

incubation. Though this variation is small, the results seem to suggest that the

solution is not in equilibrium and that slow exchange processes are occurring.

On the other hand, we noticed a deposition of peptide at the bottom of the NMR

tube at the end of the 6th day. Thus, though we can say that the oligomers are

in slow exchange on a timescale of hours to days, another factor is coming into

play. As time proceeds, more of the δ-toxin peptide is converted into very high

molecular weight oligomers and ultimately precipitates, which are undetectable

by liquid NMR. As more of the peptide comes out of solution, the remaining

pool of dissolved peptide will be effectively at lower concentration. As an

immediate consequence, such pool will be less obstructed and more likely to
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Figure 2.17: Apparent diffusion coefficient for δ-toxin in CD3OD as a function of
incubation time determined from PFGSE NMR experiments. The BPPLED parameters
used are the same as in figure 2.16. The acquisition of the first measurement started
about 1 hr after the sample was inserted into the probe. During the experiment, the
sample temperature was controlled at 298 K. The last 2 data points were obtained
after dilution of the sample to ≈ 0.4 mM with CD3OD. Diffusion coefficients were
calculated from nonlinear fits to the respective signal attenuation decays, with all
residual plots showing the same systematic error trend reported in figure 2.16 (not
shown). The error bars correspond to error associated with the calculation of D.

be monomeric (or in a lower molecular weight aggregate) and hence faster

diffusing.

Dilution of the sample was performed on the 6th day of incubation to a

final concentration of about 0.4 mM, to dissolve the peptide deposits. After

5 days of incubation, no peptide precipitates were observed at the naked eye,

and we measured again the apparent diffusion coefficient of δ-toxin. We

observed an increase of D of about 18%, which could be explained by the less

crowded surrounding environment. On the other hand, the variation trend on

the diffusion coefficient between the 11th day (264 hours) and the 14th day (336

hours) is now different from the one observed in the first 6 days. Again, a slow

exchange regime is observed but the equilibrium conditions have changed. The

decrease on the apparent diffusion coefficient indicates that high-molecular

weight species are being formed in solution. Hence we are in the presence of

a complex system, in which the high propensity of δ-toxin to self-assemble is
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evident.

2.6 Conclusions

This chapter does not claim to be exhaustive in its coverage of the theoretical

background of PFGSE NMR, nor on the experimental difficulties encountered

by a spectroscopist and available technical solutions to surpass them. It is

nevertheless an attempt to give a general overview of how the technique can be

used to infer information from NMR active diffusion species in solution, giving

a special emphasis to proteins and peptides. A number of good reviews can be

consulted for an in depth study of some tips and tricks such technique poses, as

well as, to the extensive applicability to bio-molecular systems (Antalek, 2002;

Brand et al., 2005; Johnson Jr., 1999; Price, 1997, 1998b, 2000; Söderman and

Stilbs, 1994; Stilbs, 1987; Waldeck et al., 1997).

Almost 60 years after Erwin Hahn’s paper (Hahn, 1950) about the spin

echo phenomenon, it is spectacular how an artifact on Hahn’s observations,

led to the development of techniques to map molecular displacements, to study

the motion of fluids in human bodies or to the development of magnetic reso-

nance imaging. The study of diffusion by NMR has made many contributions

over the years, establishing a new set of pulse field gradient based sequences.

The recognition that PFG can greatly improve speed and spectral quality of

multidimensional NMR is becoming a common place on modern routine high

resolution spectrometers (Morris, 2002).

PFG NMR is a very powerful alternative to traditional methods, such

as dynamic light scattering and analytical ultracentrifugation, for studying

the self-diffusion of proteins. It provides a convenient and quick way for

studying the translational motion of molecules non-invasively. For instance, the

concentration range used is exactly that used in NMR structure determination,

whereas the traditional methods of studying protein aggregation are generally

carried out at much lower concentrations.

To extract maximum information from PFGSE experiments, the effects of

obstruction and relaxation-weighting need to be better understood to enable

greater molecular weight selective information to be obtained (Price, 2006).
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Importantly, the reliability of the diffusion measurements depends on the spec-

trometer and gradient system being well characterized and calibrated. The

development of new multiple-quantum PFGSE sequences, more sophisticated

obstruction theories, theoretical modeling of association processes, as well

as hydrodynamic models (Aragon and Hahn, 2006), are needed for a proper

analysis of the resulting NMR data.
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3.1 Introduction

Despite their structural and functional diversity, living entities do possess

common features in their defense-and-surveillance systems against competing

or attacking organisms (Andreu and Rivas, 1998). Cytolytic peptides comprise

an important subset of the molecular armament protecting the host organ-

ism (Saberwal and Nagaraj, 1994), in both eukaryote and prokaryote kingdoms.

These naturally occurring toxins, usually short linear peptides not exceeding 40

residues, have received considerable attention in the last 30 years, as possible

alternatives for the conventional antibiotics. As resistance to commonly used

antibiotics increases, the scientific community is devoting an enormous effort

on research and development of new compounds. Characterization of structure-

function relationships in these toxins may allow the design of economically

viable and more efficient peptide analogues (Bechinger and Lohner, 2006).

The primary sequence of the peptide toxins vary widely, but generally have

a significant number of polar and charged residues. The distribution of charged

and hydrophobic residues along the polypeptide chain is such that the toxin

can adopt the conformation of an amphipatic α-helix, having a hydrophobic

and a hydrophilic face (Thiaudière et al., 1991). Although length, composition

and structure of these peptides are similar in a broad sense, they have vastly

different specificities and target the membranes of different cells.

The mechanisms of binding to membranes remain still elusive (Gregory

et al., 2008), nevertheless it seems relatively certain that no cell-surface recep-

tors are involved in the recognition mechanism (Wade et al., 1990). Hence,

some kind of molecular recognition mechanism appears to reside at the level of

the lipid bilayer (Nizet et al., 2001). Recent kinetic studies of peptide-membrane

interactions seem to point to a general mechanism in which membrane raft-

domains play a key major role (Pokorny and Almeida, 2005).

Lytic peptides can be classified into three major groups: those which are se-

lectively active against eukaryotic cells, those which are active against prokary-

otic cells and those active against both eukaryotic and prokaryotic cells. Some
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peptide toxins are secreted by bacteria, such as δ-toxin1 secreted by pathogenic

strains of Staphilococcus aureus, which lyse eukaryotic cells in preference

to bacterial cells (Kreger et al., 1971). Others, such as magainins (Zasloff,

1987) and dermaseptins (Mor et al., 1991), secreted by the African clawed frog

Xenopus lævis, and the cecropins (Steiner et al., 1981), isolated from insect

hemolymph and pig intestine, are targeted at prokaryotes and lower eukaryotes,

such as fungi and protozoa. A third category of toxins, which include melit-

tin (Habermann, 1972) and the mastoparans (Argiolas and Pisano, 1983), are

secreted as part of the venom of bees and wasps and affect prokaryotic and

eukaryotic cells alike.

In particular, Staphylococcal δ-toxin is a 26 amino acid residue peptide with

four basic and three acidic residues, a negative C-terminus, and a formylated

N-terminus, giving it a zero net charge at neutral pH. Such physicochemical

properties facilitates its aggregation in aqueous solution (Fitton, 1981). Due to

its amphipathicity, δ-toxin is soluble not only in aqueous solutions but also in

organic solvents such as chloroform/methanol (Fitton et al., 1980). The helical

wheel projection of the peptide is shown in figure 3.1, where it becomes evident

that the helix formed contains a hydrophobic face and a charge-rich hydrophilic

face. The available evidence, mainly from circular dichroism and nuclear

magnetic resonance (NMR), indicates that the peptide is largely unstructured at

low concentrations in aqueous solutions while adopting an amphipatic α-helical

conformation upon aggregation at higher concentrations in aqueous solution, in

organic solvents, and when bound to lipid membranes (Lee et al., 1987; Tappin

et al., 1988; Thiaudière et al., 1991). Bladon et al. (1992) argued that the extent

of helical character in δ-toxin is influenced by the solvent composition as well

as the polarity of the N-terminus.

Before binding to membranes most lytic peptides are present in an aqueous

solution as monomers in an unfolded state, or in equilibrium with oligomers

in which the peptides exist in an α-helical conformation (White and Wimley,

1Several names appear in the literature describing this peptide, such as δ-toxin (Bernheimer
and Rudy, 1986), δ-lysin (Freer and Birkbeck, 1982), and δ haemolysin (Fitton et al., 1980).
Through out this chapter we will use the term δ-toxin with no particular reason.
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Figure 3.1: Edmundson helical wheel projection of δ-toxin. Hydrophobic and hy-
drophilic residues are represented by shaded and open areas, respectively, according to
the whole-residue free-energy of transfer from water to n-octanol (White and Wimley,
1999).

1998). Lytic peptides are soluble in aqueous solution, but when interacting

with the target membrane conformational changes occur which allow them

to associate with and ultimately lyse the membrane (Shai, 1999). The con-

formational changes are due to the different chemical environment that the

peptide encounters upon interaction with the cell membrane. Using NMR

we will evaluate the conformation of δ-toxin, in aqueous solution and mem-

brane mimetic environments, such as methanol, methanol / H2O mixtures, and

dimethyl sulfoxide.

3.2 Materials and methods

3.2.1 Peptide synthesis and sample preparation

δ-toxin (formyl-MAGDIISTIGDLVKWIIDTVNKFTKK) was a gift from

Dr. Birkbeck (University of Glasgow, Scotland) and its purification protocol

was described previously (Birkbeck and Freer, 1988).

Deuterium oxide (D2O, 99.9 atom % in D), methyl-d3 alcohol (CD3OH, 99

atom % in D), methyl-d3 alcohol-d (CD3OD, 99.8 + atom % in D), chloroform-

d (CDCl3, 99.8 atom % in D), and dimethyl-d6 sulfoxide (DMSO, 99.9 atom
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% in D) were purchased from Sigma-Aldrich Chemical Company, St. Louis,

USA. DCl and NaOD used to adjust the solution pH were obtained from Merck,

Germany.

Samples for NMR were prepared by dissolving lyophilized δ-toxin in 500

µL of the chosen solvent to a final concentration of ∼ 3 mM. Preliminary

one-dimensional (1-D) 1H spectra were recorded in each of the solvents men-

tioned above to qualitatively assess the peptide aggregation state. Final results

were taken from spectra in the following solvents or solvent mixtures (v/v) :

CD3OH; 75%/25% CD3OH/H2O; 65%/35% CD3OH/H2O; and DMSO. The

pH? of protic solvents was measured with a glass electrode at room temperature,

without isotope effect correction (Glasoe and Long, 1960), and adjusted to ≈ 3

with the addition of a few microliters of NaOH/NaOD or HCl/DCl solutions.

The low pH imparts the peptide with a net positive charge, which minimizes

its aggregation. After peptide solubilization, samples were transfered to 5-mm

NMR tubes with Pasteur glass pipettes.

3.2.2 NMR spectroscopy

NMR spectra were acquired at a 1H resonance of 499.825 MHz on a

Varian UnityINOVA 500 spectrometer at a temperature of 298 K or 303 K. The

spectrometer is equipped with an Oxford Instruments Co. super-conducting

magnet and coupled to a Sun Ultra 30 workstation running VNMR 6.1B. A

dual-broadband 5-mm direct detection PFG probe, as well as, a 5-mm indirect

detection probe, both from VARIAN Inc., were used. The sample temperature

was calibrated against an ethylene glycol standard. Spectra were referenced to

the central component of the quintet due to the CD2H resonance of methanol at

3.315 ppm and 2.49 ppm for DMSO; D2O and CDCl3 spectra were referenced

to the singlet resonance at 4.75 and 7.24 ppm, respectively.

1-D NMR spectra and two-dimensional (2-D) double quantum filtered

(DQF) correlated spectroscopy (COSY) (Rance et al., 1983), total correlated

spectroscopy (TOCSY) (Bax and Davis, 1985; Griesinger et al., 1988) and

nuclear Overhauser enhancement spectroscopy (NOESY) (Jeener et al., 1979)

spectra were recorded. The sign of the frequency in the indirect dimension was

discriminated using the hyper-complex method (States et al., 1982).
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Typically, 1-D spectra were collected with 32 scans and 32k data points

in the time domain, with a spectral width of 8000 Hz, unless stated otherwise.

2-D spectra were collected with 256 increments (32 to 96 scans each) in t1
and 2k data points in t2, using a spectral width of 7000 Hz in both dimensions.

High resolution DQF COSY spectra were also recorded, typically with 1024

increments in t1 and 4k data points in t2. The water signal was suppressed by

low-power pre-saturation during the relaxation delay. TOCSY experiments

were performed with a mixing time of 40 and 80 ms using a clean MLEV-

17 pulse sequence (Bax and Davis, 1985; Griesinger et al., 1988). NOESY

experiments were collected with mixing times of 150 and 250 ms.

1-D free induction decays (FIDs) were apodized with a 3 Hz line broaden-

ing function and zero filled to 132k data points prior to Fourier transformation.

TOCSY and NOESY FID’s were apodized by a 80º phase shifted squared sine-

bell window function in both dimensions, whereas DQF COSY were apodized

by a 0º phase shifted squared sine-bell window function in t2 and a 0º sine-bell

function in the second dimension. Drift correction (DC) offset correction was

obtained using the last 20% of the FID prior to zero filling the time-domain

data. A Gibbs filter switch was applied in the case of TOCSY and NOESY

experiments before Fourier transform the data to yield data matrices of 2k x 2k

for TOCSY and NOESY spectra, and 4k x 4k for high-resolution DQF-COSY

spectra. Baselines were typically corrected using a fourth order polynomial

function in both dimensions. A FLATT baseline correction algorithm was fur-

ther applied to the t2 dimension in TOCSY experiments (Guntert and Wüthrich,

1992). The NMR data was processed using home-built Felix 95.0 macros on

a Silicon Graphics Octane workstation running the program Felix (Biosym

Molecular Simulations, USA). The assignment procedure and NMR restraints

generation was also accomplished with Felix.

3.2.3 Structure calculations

NOE-derived interproton distance restraints were classified into four ranges:

strong (1.8–2.8 Å), medium (1.8–3.8 Å), weak (1.8–5.0 Å), and very weak

(1.8–6.0 Å). 3JHNHα coupling constants were measured from a high-resolution

DQF COSY and converted to dihedral angle restraints (3JHNHα < 6 Hz, φ =
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−60± 30). χ1 torsion angle restraints for Val residues were assessed based

on analysis of 3JHαHβ coupling constants and NOE patterns (Barsukov and

Lian, 1993). Structures were calculated using the Xplor-NIH NMR molecular

structure determination package, version 2.16.0 (Schwieters et al., 2006). The

library files supplied with the Xplor-NIH program were modified to include a

formyl-methionine residue.

For structure calculation, the covalent structure of δ-toxin with random

φ, ψ, and χ angles, with trans planar peptide bonds, was used as starting

structure. A total of 100 structures were calculated using simulated annealing

in torsion angle space (Schwieters and Clore, 2001a) based on NMR data

recorded on δ-toxin in CD3OH at pH? 3 and 298 K. Structure calculation

included three main stages: high temperature dynamics (8000 steps at 3500 K),

followed by a slow cooling simulated annealing protocol for convergence (279

cooling steps of 0.2 ps each, from 3500 K to 25 K), and a final torsion angle

minimization. The target energy function comprises square well potential terms

for the NOE-derived interproton distance restraints and torsion angle restraints;

harmonic potentials for covalent geometry; quartic van der Waals repulsion

potentials (Nilges et al., 1988); and a torsion angle data base potential of mean

force (Clore and Kuszewski, 2002). A final set of 20 structures with the lowest

overall energy were selected for further analysis, based on stereochemistry

and energy considerations, using the programs PROCHECK-NMR (Laskowski

et al., 1996) and VMD-XPLOR (Schwieters and Clore, 2001b). Figures of the

structures were prepared using VMD (Humphrey et al., 1996).

3.2.4 Data deposition

1H NMR chemical shifts for δ-toxin in CD3OH have been deposited in

BioMagResBank (Ulrich et al., 2008). The three-dimensional (3-D) cartesian

coordinates for the ensemble of the 20 best structures have been deposited in

the Protein Data Bank (Berman et al., 2000) under accession number 2kam.
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3.3 Results and discussion

The lengthy process of solution structure determination of a protein by

NMR, justifies a prior assessment of the spectra quality (Cavanagh et al., 1996).

If basic attributes of the 1H NMR spectrum, such as signal-to-noise ratio

(S/N), linewidth, and chemical shift dispersion are not ideal for proper protein

characterization, then sample conditions should be changed to improve spectra

quality or alternative methods should be considered. Once the experimental

conditions are defined and the spectra acquired, each NMR signal must be

associated (assigned) to a nucleus in the molecule under study. The assignment

procedure is based on information gathered from the NMR spectra, such as the

chemical shift (reporting the chemical environment), scalar couplings (reporting

through-bond interactions), and dipolar couplings (reporting through-space

interactions).

The use of 2-D NMR techniques, such as DQF COSY, TOCSY, and NOESY,

dramatically increases the resolution of protein NMR spectra. Wüthrich

et al. (1982) introduced a systematic method for the full assignment of the

2D NMR spectra of proteins which relies only on information of the amino

acid sequence of the protein. This sequential assignment procedure consists of

two stages. The first stage involves the identification of the spin-spin coupling

pattern characteristic of a particular amino acid residue type, the spin system

identification. DQF-COSY and TOCSY spectra were used to identify the amino

acid residue spin systems in δ-toxin. The second stage involves the assignment

of each spin system to a particular residue in the polypeptide primary sequence.

This sequence-specific assignment is achieved by correlating one amino acid

spin system with the spin systems of its neighboring residues in the polypeptide

primary sequence. This stage of assignment relies on the short-range through-

space connectivities observed in NOESY spectra (Redfield, 1993).

Once the assignment of the NMR spectra has been completed, structural

data such as scalar couplings and dipolar effects, are translated into restraints

on dihedral angles and interproton distances, respectively. The pattern of these

constraints allows the identification of secondary structure elements (Wüthrich,

1986). A qualitative assessment of the secondary structure can thus be readily

made. The final stage of the structure determination process involves the use of
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computational methods, such as simulated annealing and molecular dynamics

calculations. These methods aim to sample the conformational space available

to the peptide or protein whilst satisfying a set of NMR constraints (Sutcliffe,

1993).

3.3.1 Assessment of the 1-D 1H NMR spectra

On its way to the cell membrane, peptide toxins do experience different

chemical environments. A simple way to study the conformational plasticity

of such polypeptides, is to determine the peptide 3-D structure on different

chemical environments with increasing degree of lipophilicity. Log P partition

coefficient is a common descriptor of lipophilicity or hydrophobicity (Thomp-

son et al., 2006). We have chosen four different solvents with increasing log

P values, namely water, dimethyl sulfoxide (-1.35), methanol (-0.74), and

chloroform (+1.97) (Lide, 1997).

Although the majority of spectroscopic analyses will rely on n-D (n > 1)

spectra, important preparatory work can be performed by using 1-D) 1H NMR

spectroscopy. Spectra of δ-toxin in different solvents are shown in figure 3.2.

One of the parameters that can be derived from 1-D NMR experiments

is the chemical shift, particularly for the HN and Hα from the backbone of

the peptide. Even without resonance assignments, the resonance dispersion

observed in a 1-D spectrum can be used as a crude estimate of the presence of

ordered structures (Wang and Morden, 1997). The chemical shifts for protons

in the 20 common amino acid residues in random coil polypeptides have been

extensively studied and well characterized (Bundi and Wüthrich, 1979; Wishart

et al., 1995). If the polypeptide is denatured, resonances from the amide

(random-coil shifts 8.5–8.0 ppm) and α-carbon protons (random-coil shifts

4.4–4.1 ppm) fall within a small range of chemical shifts, i.e. they present

reduced chemical shift dispersion. However, folded polypeptides will exhibit a

broad range of chemical shifts due to anisotropic magnetic fields of proximal

aromatic or carbonyl groups (Cavanagh et al., 1996).

Figure 3.2 shows that δ-toxin may present structure in DMSO and in

CD3OH solutions, since conformation-dependent secondary chemical shifts are

observed. On the other hand, in D2O and CD3Cl3 solutions, the peptide must
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Figure 3.2: 1-D 1H NMR spectra of 3 mM δ-toxin in different chemical environments
acquired at 500 MHz and 303 K: (a) deuterium oxide; (b) dimethyl-d6 sulfoxide; (c)
methyl-d3 alcohol; and (d) chloroform-d3. Spectra were acquired using a standard 1-D
two-pulse sequence whereas the spectrum in methanol was recorded using a BPPLED
sequence with a gradient pulse of 0.34 Tm−1 (see chapter2). All spectra were apodized
with a 3 Hz line broadening function prior to Fourier transformation, and referenced to
solvent signals (marked with an *).
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be in a conformationally disordered state (or with very little stable structure),

with a characteristic random-coil chemical shift distribution. As expected due

to the δ-toxin amphiphatic characteristics, solvents with intermediary log P

values (CD3OH and DMSO) and able to participate both in H-bonding and van

der Waals contacts, are the most suited for structure determination. Hence, we

collected 2-D NMR spectra for δ-toxin in both of these solvents as well as in

CD3OH/water mixtures, to assess the peptide structure.

3.3.2 Assignment of 1H resonances and secondary structure

δ-toxin in CD3OH

The structure of δ-toxin in methanol solution has already been studied by

Tappin et al. (1988), using high-resolution NMR in combination with molecular

dynamics simulations. Though a set of NMR constraints were determined by

the authors and a 3-D structure published, no structure deposition was made in

the RCSB Protein Data Bank2.

In the present work, it was possible to identify the complete spin systems

of all 26 residues for δ-toxin, with the exception of the Met1 Hε, Leu12 Hδ1/δ2

and Hγ, and Ile16 Hδ1 protons. The sequence specific resonance assignment

is illustrated in figure 3.3 and proton assignments are detailed in appendix

table A.1. The atom identifier nomenclature used throughout this chapter,

as well as any NMR related nomenclature, follow the guidelines described

elsewhere (Markley et al., 1998).

The sequence specific assignment of spin systems relies on the observa-

tion of a series of inter-residue NOEs, namely HN
i –HN

i+1, Hα
i –HN

i+1, and Hβ

i –

HN
i+1 (Wüthrich, 1986). Using the NOESY spectrum, we were able to trace

connectivities between sequential protons along the backbone (HN or Hα) from

the N-formyl proton to Asp4, from Ile5 to Lys22, and then from Phe23 to Lys26

HN . The connectivities were lost due to identical HN chemical shifts between

residues i, i+1 (i = 4,22). Figure 3.4 presents a survey of the experimental data

used for the secondary structure determination for δ-toxin in CD3OH. It can

2Moreover, the constraints are not available anymore (priv. comm.).
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Figure 3.3: 1HN–1Hα fingerprint region of δ-toxin in CD3OH at pH? 3 and 298
K. The cross-peaks are labeled by the one-letter amino acid code and the residue
number. (a) High-resolution phase-sensitive DQF COSY spectrum. The boxes indicate
cross-correlations with a low signal-to-noise ratio. (b) NOESY spectrum acquired
with a mixing time of 250 ms, showing the sequential NOE connectivities between
spin systems. Connectivities i, i+1 are not represented due to spectral overlap in the
following cases: I6/S7, I16/I17, T19/V20 and K25/K26.

be seen that, in addition to sequential NOEs extending along all the molecule,

there are a considerable number of Hα
i –HN

i+3 and Hα
i –Hβ

i+3 NOEs, which are

characteristic of a helical structure (Wüthrich, 1986). The number of Hα
i –HN

i+4

NOE connectivities are particularly significant, thus suggesting that δ-toxin is

an α-helix over most of its length.
1HN–1Hα vicinal spin-spin coupling constants (3JHNHα) can provide fur-

ther conformational information. These coupling constants are related to the

torsional angle φ by the Karplus equation (Karplus, 1959). 3JHNHα coupling

constants were measured from a high-resolution DQF-COSY spectrum. The

observed values are indicated in figure 3.4 as well as in appendix table A.4. It

can be seen that most of these 3J couplings are less than 6 Hz, consistent with

the existence of a helical structure for most of the molecule (Pardi et al., 1984).

Hence, the overall analysis of figure 3.4 indicates that δ-toxin in CD3OH at low

pH and 298 K, adopts an α-helical structure between residues Ala2 and Lys24.

A larger helical content was observed in this work when compared with
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Figure 3.4: Summary of the NMR data used to establish the secondary structure and
to calculate the three-dimensional structure of δ-toxin in CD3OH, at pH? 3 and 298
K. Sequential and medium-range NOE connectivities, as well as, 3JHNHα coupling
constants are presented, along with the amino acid sequence. The height of the bars
for NOE connectivities indicates the NOE intensity. Values of 3JHNHα are indicated
by filled (3JHNHα < 6 Hz) and crossed (6≤ 3JHNHα ≤ 8 Hz) circles. The absence of
non-glycine 3JHNHα coupling constants is due to spectral overlap.

previous NMR studies. Tappin et al. (1988) determined that δ-toxin in methanol

adopts a helical structure extending from Ala2 to Val20, whereas Bladon et al.

(1992) reported that δ-toxin adopts an α-helical structure between residues

Thr8 and Lys22. The main difference between those studies and this one,

relies on the initial peptide sample concentration, which was 6 mM on both of

them, whereas we used half of that peptide concentration. Our results are in

agreement with a recent circular dichroism (CD) study of δ-toxin in methanol

at a much lower concentration (20 µM, pH 3, room temperature) (Cruz, 2007).

After CD spectra deconvolution, the author reached the conclusion that 93%

of the peptide (i.e., about 24 amino acid residues) is in α-helix conformation.
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From these observations, we may conclude that on the NMR timescale, the

structural content of the peptide in methanolic solution is maintained from the

µM to the mM range, but at higher concentrations the peptide may loose some

structure. Such difference in peptide concentration among the different studies,

undoubtedly has a significant importance on the type of molecule ensembles

present in solution, since δ-toxin is prone to aggregation due to its amphipathic

character. Thus, we can speculate that different aggregation states in solution

may have different regular structure content.

From our data, it was also possible to stereospecific assign the methyl

groups of the two Val residues (Barsukov and Lian, 1993). In both cases, large
3JHαHβ coupling constants of about 12 Hz were observed in a high-resolution

DQF COSY experiment, together with strong Hα–Hγ NOE couplings and only

one strong HN–Hγ NOE. These NMR parameters are characteristic of a trans

rotamer around the Cα–Cβ bond, and thus stereospecific assignment of the

methyl groups is possible (Zuiderweg et al., 1985). We notice that the Val

stereospecific assignment determined from our data does not agree with the one

previously published (Tappin et al., 1988).

δ-toxin in CD3OH / D2O

The structure of δ-toxin was also assessed in two largely methanolic solu-

tions, namely 75% CD3OH / 25% D2O and 65% CD3OH / 35% D2O, at pH? 3

and 303 K.

The 1HN–1Hα fingerprint region of a DQF COSY experiment of δ-toxin

in 75% CD3OH / 25% D2O shows all expected correlations for a 26 residue

peptide (see figure 3.5a). However, additional cross correlations are observed

in the fingerprint region, indicating that δ-toxin does not exist in a single

NMR ensemble of conformers in such experimental conditions. Nevertheless,

though the assignment process becomes more difficult to accomplish, it was

possible to fully characterize the 26 spin systems, with the exception of some

sidechain protons of Ile, Asn, Met and Lys residues. We were also able to

stereospecifically assign the methyl groups of the two Val residues in the 75%

CD3OH / 25% D2O system. The sequence specific assignment is detailed in

the appendix table A.2. On the other hand, the 1HN–1Hα fingerprint region
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Figure 3.5: 1HN–1Hα fingerprint region of δ-toxin in CD3OH / D2O at pH? 3 and
298 K. (a) High-resolution phase-sensitive DQF COSY spectrum of δ-toxin in 75%
CD3OH / 25% D2O. (b) Phase-sensitive DQF COSY spectrum of δ-toxin in 65%
CD3OH / 35% D2O. Assigned cross-peaks are labeled by the one-letter amino acid
code and the residue number. Square boxes indicate cross-correlations with a weak
signal-to-noise ratio or partially overlapped.

of δ-toxin in 65% CD3OH / 35% D2O shows a very small number of cross

correlations (see figure 3.5b), suggesting that δ-toxin is less structured. Even

with a severe lack of 1HN–1Hα correlations, it was possible to identify four spin

systems, namely Met1, Ala2, Trp15 and Phe23, mainly based on the unique

patterns arising from the aromatic residues, and through identification of the
1H-formyl resonance. The N-terminal residues were sequentially assigned from

NOE connectivity analysis. The assigned proton resonances for δ-toxin in 65%

CD3OH / 35% D2O are detailed on the appendix table A.3.

Figure 3.6 summarizes the inter-residue NOEs observed for δ-toxin in 75%

CD3OH / 25% D2O. Connectivities between sequential HN or Hα protons were

observed along the backbone from the N-formyl proton to Asp4, from Ile6 to

Val13, and then from Trp15 to Lys26. Along with sequential NOEs, there are

also a considerable number of Hα
i –HN

i+3 and Hα
i –Hβ

i+3 NOEs, characteristic of a

helical structure. We also observe some sparse medium and strong Hα
i –HN

i+2

NOEs, which are characteristic of a tighter helical structure (310-helix), as well

as Hα
i –HN

i+4 NOEs which are only found in α-helices. If we compare the NMR
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Figure 3.6: Summary of the NMR data used to establish the secondary structure of
δ-toxin in 75% CD3OH / 25% D2O, at pH? 3 and 298 K. Sequential and medium-range
NOE connectivities, as well as 3JHNHα coupling constants are presented, along with
the amino acid sequence. The height of the bars for NOE connectivities indicates the
NOE intensity. Values of 3JHNHα are indicated by filled (3JHNHα < 6 Hz), crossed
(6≤ 3JHNHα ≤ 8 Hz) and open (3JHNHα > 8 Hz) circles. The absence of non-glycine
3JHNHα coupling constants is due to spectral overlap.

derived structural restraints, qualitatively depicted on figures 3.4 and 3.6, we

can conclude that the secondary structure of δ-toxin in both solvent systems is

mostly an helix. Furthermore, the helix seems to be more regular and stable

on neat methanol (α-helix), since we were able to observe NOE connectivities

and 3JHNHα coupling constants consistent with such secondary structure motif,

through out the peptide primary sequence. In 75% CD3OH / 25% D2O, the

NMR data is consistent with an helix from residues Ala2 to Ser7, and then from

Thr8 to Asn21. However, the data is characteristic of a less regular α-helix.

The structure of δ-toxin in a CD3OH/H2O (2:1) solution has been investi-

gated by Bladon et al. (1992) using a combination of two-dimensional NMR

experiments and molecular modeling techniques. Their work demonstrated that

δ-toxin assumes a well-ordered helical three-dimensional structure in methanol-

water solutions, extending from Ile5 to Thr24. As previously explained, the
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experimental conditions are not the same and, as pointed out by the authors,

due to the limited NMR data, further studies should be done.

Our data, in particular the presence of medium and strong Hα
i –HN

i+2 NOEs

in the regions Gln3–Thr8 and Lys14–Thr19, and the smaller number of Hα
i –

HN
i+4 NOEs, suggests an overall more mobile helical structure in 75% CD3OH,

undergoing significant conformational averaging. Moreover, the α-helix seems

to be less stable between residues Thr8 and Trp15.

δ-toxin in DMSO

The 1-D 1H-NMR spectrum of δ-toxin in dimethyl-d6 sulfoxide (DMSO)

shows a broad chemical shift distribution of resonances, characteristic of folded

proteins (see figure 3.2b). We can also observe that peptide resonance linewidths

are generally broader, when compared with the methanol system (figure 3.2c).

Nuclear spin relaxation is a consequence of coupling of the spin system to the

chemical surrounding environment (Keeler, 2006). DMSO has a high viscosity

which in turn increases the rotational time of the polypeptide in solution. Solute

molecules in this environment will have shorter relaxation times. This is

reflected on the NMR spectrum as line broadening, though other causes such as

aggregation or chemical exchange effects may also contribute to it (Cavanagh

et al., 1996). 1-D spectra were acquired with increasing sample temperatures to

a maximum of 323 K (data not shown). Qualitatively we do not noticed any

significant sharpening of the resonance lines.

The 1HN–1Hα fingerprint region of a DQF COSY experiment of δ-toxin

in dimethyl-d6 shows that only 21 spin systems were assigned unambiguously

(figure 3.7). Residues Ile6, Ser7, Gly10, Asp11, and Asp18 were not identified.

The difficulty to assign these residues can be explained from a large broadening

of the respective resonances, with a concomitant peak merging into the spectrum

baseline. The identified spin systems are characterized in the appendix table

A.5. A brief comparison of the fingerprint region of all DQF COSY spectra

acquired, shows that the chemical environment felt by the peptide protons in

DMSO is quite different from the chemical environment felt on methanolic

solutions. This suggests that the three-dimensional structure of the peptide may

be different in the studied solvents. It is to expect then, a quite different pattern
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Figure 3.7: High-resolution phase-sensitive DQF COSY spectrum of δ-toxin in DMSO
at 303 K. The region shown contains the 1HN–1Hα cross-peaks, labeled by the one-
letter amino acid code and the residue number. The boxes indicate cross-correlations
with a low signal-to-noise ratio.

of the NMR data used to establish the secondary structure.

Figure 3.8a summarizes the inter-residue NOEs observed for δ-toxin in

DMSO. Several gaps in the sequential connectivities are observed, thus impair-

ing a more in depth analysis of the peptide structure under such experimental

conditions. A small number of inter-residue NOEs was observed and for only

six residues we were able to determine 3JHNHα coupling constants (see appendix

table A.4). Nonetheless, these NMR restraints seem to indicate a structure more

closely related to β-structure than a helical structure, namely due to 3JHNHα > 8

Hz.

Due to the scarce data available we also assessed the chemical shift index

(CSI) for δ-toxin in this DMSO sample, in order to qualitatively check for any

secondary patterns. Briefly, since the chemical shift of a nucleus is sensitive to

the environment, it should also contain structural information. Wishart et al.

(1991) have demonstrated that 1H NMR chemical shifts are strongly dependent

on the character and nature of protein secondary structure . Wishart et al.

(1992) have produced a simple method for secondary structure determination

by analyzing the difference between the 1Hα chemical shift of each residue

in a protein and that reported for the same residue type in a random coil

conformation. Helical segments have groupings of 1Hα whose chemical shifts
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Figure 3.8: (a) Summary of the NMR data used to establish the secondary structure, of
δ-toxin in DMSO, at 303 K. The height of the bars for NOE connectivities indicates the
NOE intensity. Values of 3JHNHα are indicated by crossed (6≤ 3JHNHα ≤ 8 Hz) and
open (3JHNHα > 8 Hz) circles. The absence of non-glycine 3JHNHα coupling constants
is due to spectral overlap and ambiguous spin system assignment. (b) Chemical shift
index of 1Hα versus δ-toxin primary sequence in DMSO.

are consistently smaller than the random coil values (CSI = −1) whereas β-

strands have chemical shift values consistently larger (CSI = 1). In this way,

the location of helix and strand segments may be identified. Figure 3.8a shows

the CSI for δ-toxin in DMSO, and there is no strong indication of the presence

neither of α-helix or β-strand secondary motifs.

3.3.3 Three-dimensional solution structure

The quality of the final structure of a protein or peptide is determined to

a large extent by the number of constraints available for structure calculation.

With exception for the sample δ-toxin in CD3OH, it was not possible to gather

enough experimental constraints from the other solvent systems. The 3-D

structure of δ-toxin was thus only calculated from the spectral data collected

for δ-toxin in CD3OH, at pH? 3 and 298 K.

The solution structure of δ-toxin was calculated on the basis of 395 experi-

mental NMR restraints, including NOE derived inter-proton distance restraints

and torsional dihedral angle restraints. A slow cooling protocol in torsion angle

space was applied to a randomly generated extended structure with correct

covalent geometry. A final set of 20 structures with the lowest overall energy
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Table 3.1: Structural statistics for δ-toxin in CD3OH

NOE distance restraints
All 373
Intraresidue (i=j) 225
Sequential (|i− j|= 1) 79
Short-range (2≤ |i− j| ≤ 4) 69

Diehdral angle restraints
φ 20
χ 2

Average RMSD from ideal geometry*

Bonds (Å) 0.0036 ± 0.0005
Angles (°) 0.5340 ± 0.0083
Impropers (°) 0.3313 ± 0.0116

Average RMSD of atomic coordinates (Å)†

Residues 2−22
Backbone‡ 0.25 ± 0.07
Heavy atoms 0.67 ± 0.09

All residues
Backbone‡ 1.00 ± 0.41
Heavy atoms 1.82 ± 0.50

Ramachandran analysis¶

Residues in most favored region (%) 95.0
Residues in additional allowed regions (%) 4.6
Residues in generously allowed regions (%) 0.4
Residues in disallowed regions (%) 0.0

There was no NOE violations > 0.5 Å or dihedral angle violations > 5°;
* The values for the bonds, angles, and impropers show the deviations
from ideal values based on perfect stereochemistry; † RMSD of the 20
accepted structures, with respect to the structure with lowest energy;
‡ N, Cα and C atoms; ¶ As determined by the program PROCHECK-
NMR (Laskowski et al., 1996) for all residues except Gly10.

was selected, with no inter-proton distance restraint violations greater than

0.5 Å, and no angle violations greater than 5°. Statistical parameters for the

ensemble of 20 calculated structures are presented in table 3.1.

The ensemble of structures has a low root-mean square deviation (RMSD)

across the whole sequence. As expected, the lowest RMSD values are found in

the regions containing regular secondary structure; the backbone RMSD in such

regions is 0.25±0.07 Å, while that calculated over all residues is 1.00±0.41

Å. This observation of higher RMSD when fitting is done on all residues, agrees

well with the lack of secondary structure restraints on the C-terminus region of

the peptide. An overlay of the 20 lowest energy solution structures of δ-toxin

is shown in figure 3.9a. A Ramachandran analysis indicates that more than

95% of the residues are in the most favored regions of the conformational space

available for proteins.
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(a) (b)

Figure 3.9: Three-dimensional structure of δ-toxin in CD3OH. (a) Superimposed
backbone stereo-view of an ensemble of 20 structures. The structures were calculated
with Xplor-NIH (Schwieters et al., 2006) using NOE and dihedral derived restraints, at
pH? 3 and 298 K. The backbone heavy atoms (N,Cα,C) of residues Ala2 to Lys22 have
been superimposed using VMD (Humphrey et al., 1996). The letters N and C refer
to the amino and carboxy termini, respectively. (b) Stereo view of the lowest-energy
structure in the family shown in (a), with backbone atoms represented by a ribbon, and
side-chains of hydrophobic residues by thin solid lines.

A cartoon of the lowest-energy structure obtained from the final ensemble

of structures is shown in figure 3.9b. The side-chains of hydrophobic residues

are depicted, showing clear segregation on one side of the helical structure, with

the exception of Trp15 on the hydrophilic side. The structure is a well formed

α-helix between residues 2 and 23/24, while the first residue of N-terminus and

residues 25–26 in the C-terminus are in random coil.

3.4 Concluding remarks

We assessed the secondary structure content of δ-toxin in membrane-

mimetic environments by NMR. In neat methanol the peptide has an α-helical

content of about 93%, forming a well-ordered α-helical structure between

residues 2 and 24, at low pH. An increase of the water content in the methanolic

solution leads to a decrease in the peptide helical content. In methanol/water
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(75%:25%), at low pH?, the helical content of δ-toxin is about 77%, whereas in

methanol/water (65%:35%) resonances with random coil chemical shifts start

to predominate in the NMR spectra. In neat water, the 1H 1-D NMR spectrum

shows a poor resonance dispersion, indicating the absence of regular structure,

probably due to aggregation. The secondary structure of δ-toxin in dimethyl

sulfoxide was also assessed, but in spite of a broad resonance dispersion in 1H

1-D NMR spectra, the available NMR data is not enough to tell if there is a

well-formed secondary structure motifs. Nonetheless, the data seem to suggest

that no helical motifs are present in such experimental conditions. These obser-

vations demonstrate that the peptide conformation is strongly dependent on the

experimental conditions.

Once δ-toxin is excreted by Staphylococcus aureus to the plasma, on its

way to eukaryotic membranes a wealth of chemical environments are available

to the toxin. The conformational plasticity of such toxins ultimately depend

on the neighboring molecules. Thus, though the study of peptide structure in

membrane-mimetic environments is rather simplistic, it has interesting implica-

tions for the study of which conformational structures are available to toxins

when getting closer to a lipophilic environment. In that regard, we were able

to improve the NMR data available for δ-toxin in methanol, and to deposit in

the RCSB Protein data bank an ensemble of structures. Circular dichroism

studies are underway to further study how the δ-toxin structure, stability and

dynamics vary as a function of the solvent environment, and in association

with lipid vesicles. Though peptide-membrane interaction mechanisms are

still under strong scientific debate, it seems to be a consensus nowadays that

membrane permeation and/or disruption depends on a number of parameters

such as the nature of the toxin and the membrane lipids, peptide concentration

and environmental conditions (Bechinger and Lohner, 2006).

NMR and CD studies on peptide conformation in aqueous, membrane-

mimetic environments, and associated to lipid vesicles will provide important

structural information and help the interpretation of kinetic and equilibrium

studies (Pokorny and Almeida, 2004). These structural studies can also provide

guidance and a check for computer simulations (see chapter 5).
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4.1 Introduction

A fundamental precondition for life is the compartmentalization of cells

and organelles from the surrounding environment that is provided by biological

membranes. Beyond this basic role as a barrier, biomembranes facilitate a

number of other functions that are mainly determined by the type of proteins

associated with or embedded in the bilayer. Membranes are therefore of high

biological relevance.

Molecular dynamics (MD) simulations is a powerful technique for evalu-

ation of interactions on a system of discrete particles. The interactions of the

particles are empirically described by a potential energy function from which

the forces that act on each particle are derived. Thus the dynamic behavior of

the system may be studied using Newton’s classical equations of motion, for all

atoms in the system (Kandt et al., 2007).

Since their introduction in the late 1950s, MD simulations have become a

common tool to investigate structure-activity relationships in biological mem-

branes. Providing the element of dynamics at an atomic level of detail, these

simulations facilitate the interpretation of experimental data and give access to

information not directly accessible by experiments.

Force fields could be considered the primary assumption in MD simulations,

they characterize the interactions between particles. There are many force fields

described in the literature, but currently only four are widely used for simulating

biological macromolecules: Amber (Cornell et al., 1995), CHARMM (MacK-

erell et al., 1998), GROMOS (van Gunsteren et al., 1996) and OPLS (Jorgensen

and Tirado-Rives, 1988). All four force fields have different strengths and weak-

nesses, but most importantly they share a number of the same limitations due to

the simplifying assumptions necessary in large scale MD simulations (Kandt

et al., 2007). Though all of these force fields reproduce fairly well many protein

characteristics, the same is not true when simulating biomembranes.

The force field parameters used in biomolecular simulations are generally

obtained by a process of refinement against high-resolution experimental data

and ab initio quantum-mechanical data. Though significant progress has been

made in developing modern protein force fields, it has been quite challenging to

obtain accurate experimental data to validate and improve lipid models. In fact,
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only two phospholipid force fields are in common use today, namely CHARMM

and an older version which was built by combining both OPLS and AMBER

forcefields with some additional parameters from Berger et al. (1997). It is even

more complex to obtain a force field which is able to describe lipid-protein

interactions because structures of membrane proteins and peptides typically

have a significantly lower resolution than in soluble proteins. Nowadays, the

most straightforward approach to simulate membrane/protein systems involves

directly combining mathematically compatible protein and lipid force fields.

Though this approach has proven to yield useful insights into membrane protein

behavior, a re-parameterization of these mixed force fields is clearly needed to

provide a consistent force field.

A key difficulty with classical MD simulations of molecules that move

between two very different environments is that parameters used to describe

them have to be accurate in both environments, and typical biomolecular force

fields were parameterized for aqueous solution. Significant improvements are

being made in force field re-parameterization taking into account the free-

energies of transfer between water and hydrophobic environments as well

as the interfacial partitioning of model peptides. Thus, it is expected that a

better description of the thermodynamics of membrane proteins at the water

lipid interface will be accomplished. Moreover, the parameter sets are starting

to accommodate electronic polarizability effects, with the aim of improving

protein and lipid force fields (Davis et al., 2009).

The GROMOS force field has been successfully used over the years in

biomolecular simulations of a variety of molecules, such as peptides, proteins,

sugars and nucleic acids. Recently, this force field was re-parameterized for

a correct treatment of aliphatic chains (Schuler et al., 2001), such as the ones

composing the phospholipids. The relevance of the new force field is that, unlike

many other force fields for lipid simulations, it is consistent with the parameters

used for simulating other biomolecules such as peptides and nucleotides.

In the current chapter the force field GROMOS96 parameter set 45A3 is

tested on a bilayer of dimyristoylphosphatidylcholine (DMPC; see figure 4.1)

in the liquid-crystalline Lα phase in water. The performance of variants of

the force field parameters is evaluated in this system, for a set of generally
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Figure 4.1: DMPC molecule. The aliphatic carbon numbering used in the text is shown.
The structure data file used to produce this image was built with Lipid MAPS (Fahy
et al., 2007) and manipulated with Marvin (Marvin, 2007).

used parameters in protein simulations. This way, direct comparisons between

free protein dynamics in solution and lipid-protein interaction dynamics can

be readily made. Though a similar work was already done to benchmark

the consistency between a bilayer of dipalmitoylphosphatidylcholine (DPPC)

against this same force field (Chandrasekhar et al., 2003), the timescale used

by the authors in their simulations was merely demonstrative of the capabilities

of the new parameter set.

4.2 Methods

4.2.1 Simulated lipid model

We have simulated a DMPC lipid bilayer in the liquid-crystalline Lα phase,

consisting of two layers of 64 lipids each, separated in the z-direction by a layer

of 3655 water molecules1. The starting structure for the fully hydrated lipid

bilayer was downloaded from the web site of the Biocomputing Group at the

University of Calgary (http://moose.bio.ucalgary.ca), and is depicted in

figure 4.2.

4.2.2 Forcefield parameters

The force field parameters for bonded and nonbonded interactions were

taken from the recent GROMOS96 parameter set termed 45A3. This is a

1By default lipid molecules are modeled with the aliphatic chains towards the z-axis of the
simulation box, whereas the lipid “carpet” lies along the xy-plane.

http://moose.bio.ucalgary.ca
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(a) (b) (c)

Figure 4.2: (a) CPK representation of a single DMPC molecule. The carbon atoms
are represented by gray spheres, choline nitrogen in blue, phosphorus in green, and
oxygen atoms in red. (b) Perspective snapshot of the starting configuration of a
system containing 128 DMPC lipids (in gray lines) and 3655 water molecules (VDW
representation, with oxygens in red, and hydrogens in shadowed white). The boundaries
of the simulated box are shown in yellow. (c) Under periodic boundary conditions, the
system is “replicated” in space, allowing a continuous bilayer phase to be simulated.
In the center of the orthographic image, the replication box shown in (b) is omitted to
further stress out the periodicity of the system.

united-atom parameter set where the hydrogen atoms are included implicitly

by treating the carbons and their attached hydrogens as a single group centered

at the carbon. The re-parameterization of the aliphatic hydrocarbons yielded

excellent agreement with experimental values for free energy of hydration,

liquid densities and heat of vaporization (Schuler et al., 2001). Hence, the

new parameter set should be suitable for application to lipid aggregates and

bio-polymers.

Four variants of the 45A3 parameter set were tested (see table 4.1), and differ

in the van der Waals parameters for the planar ester carbon, which is known to

have a significant effect on the cross-section area per lipid (Chandrasekhar and

van Gunsteren, 2001). These force field variants have been previously presented

(Chandrasekhar et al., 2003). Briefly, the atom type describing the phospholipid

ester carbon was modeled as a GROMOS96 atom type 11 (sp2 carbon in planar

group), type 45 (tetrahedral sp3 carbon bound to four non-hydrogen atoms),

type 45x11 or type 45x12. In these last two cases, the geometric mean of the
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Table 4.1: The van der Waals parameters* of the phospholipid planar ester carbon

IAC† ε / KJ mol−1 σ / nm

11 0.4059 0.3361
45 0.006995 0.6639

45x11‡ 0.05328 0.4724
45x12¶ 0.02577 0.5773

* The van der Waals interaction is defined as 4ε
[
(σ/r)12− (σ/r)6

]
(see Ap-

pendix B); † van der Waals Integer Atom Code from the GROMOS96
force field to describe the ester carbon;
‡ The geometric mean of type number 45 and type number 11;
¶ The geometric mean of type number 45 and type number 12.

bare tetrahedral carbon (type number 45), and respectively, the planar carbon

(type number 11) or the united tetrahedral carbon (type number 12) are used.

For water, the simple point-charge (SPC) model was chosen (Berendsen et al.,

1981).

The topological description of the DMPC molecule, i.e. the combination

of the set of all DMPC atoms with their non-bonded and bonded interaction

parameters as well as the connectivity of those atoms in the molecule was built

de novo . Briefly, atom charges were taken from Chiu et al. (1995) work, charge

group boundaries from Chandrasekhar et al. (2003), and the planar ester carbon

modeled as “CH0” atom type (Schuler et al., 2001).

4.2.3 Simulation details

The simulations were performed under periodic boundary conditions with

the GROMACS package2, version 3.3 (Lindahl et al., 2001). Simulations were

carried out at a constant pressure of 1 bar and a constant temperature of 303

K. A weak pressure-coupling scheme was adopted using the Berendsen baro-

stat (Berendsen et al., 1984). The pressure was controlled semi-isotropically

(N pxy pzT ensemble), where the height of the box (z direction) and the cross-

2At the time the simulations were done, there was no compatible GROMACS force field.
See footnote on page 212, Appendix B.



94 A brief approach to lipid bilayer simulations • Chapter 4

section area (x,y plane) were allowed to vary independently of each other. The

lipids and water molecules were separately coupled to the heat bath using the

Berendsen thermostat (Berendsen et al., 1984). The coupling times for tem-

perature and pressure were set at 0.1 and 1 ps, respectively. All bond lengths

were constrained to their equilibrium values by the LINCS algorithm (Hess

et al., 1997), and the water geometry was maintained with the SETTLE rou-

tine (Miyamoto and Kollman, 1992). The efficiency and stability of both

algorithms allow the usage of a leap-frog integration scheme with a time step of

5 fs, as examined and validated in previous publications (Anézo et al., 2003). A

bilayer system was simulated with a time step of 2 fs (data not shown) without

any change in the equilibrium properties, further demonstrating that a time step

of 5 fs provides enough accuracy. Non bonded interactions were evaluated

using a twin range cut off of 1.0 and 1.4 nm. The long-range electrostatic forces

were treated by the particle-mesh Ewald (PME) summation algorithm (Darden

et al., 1993). Interactions within the shorter range cut off were evaluated at

every step whereas interactions within the longer range cut off were evaluated

every 4 steps.

The initial fully hydrated bilayer of DMPC molecules was firstly minimized

using the force field parameter set 45A3-11 (system label B_11) with a quasi-

Newtonian algorithm according to the low-memory Broyden-Fletcher-Goldfarb-

Shanno approach (Byrd et al., 1995). This configuration was then used as the

starting point for the bilayer simulations depicted on table 4.2, using the same

Maxwellian velocity distribution. The only difference between these four lipid

simulated systems is the force field used. Each of the systems was equilibrated

for 10 ps before starting production runs of 50 ns. Coordinates of the full system

were saved every 1 ps for further analysis.

A box of neat water (simulation label SPC, on table 4.2) was also run,

in order to calculate the water specific volume. The system consisted of a

dodecahedron box containing 3227 SPC molecules, simulated during 2 ns with

the same parameters described above, where applicable.

The simulations took ∼ 2000 CPU hours on a cluster of Sun Fire X4100

computing nodes.
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Table 4.2: Overview of MD simulations performed

Label System Water molecules Number of atoms

B_11 water + DMPC 3655 16853
B_45 water + DMPC 3655 16853
B_45x11 water + DMPC 3655 16853
B_45x12 water + DMPC 3655 16853
SPC water 3227 9681

4.2.4 Data analysis

In a molecular dynamics simulation, a description of the simulated system

is normally stored frequently at regular τ time intervals. Thus, the data points

for a given property P(τ) are usually not independent but highly correlated

with each other (Allen and Tildesley, 1996). The standard error in the average

of a correlated fluctuating quantity, such as P(τ), can be obtained using a

block average procedure (Hess, 2002). Briefly, the data acquired during the

simulation time τrun is divided in a number of n blocks of length τb, such that

n ∗ τb = τrun, and averages are calculated for each block b. The error for the

total average for all the blocks is calculated from the variance between averages

of the n blocks P̄b as follows

se(P̄b) =

√
1

n(n−1)

n

∑
b=1

(P̄b− P̄run)2 (4.1)

The standard error se(P̄b) as a function of data block size τb, assuming that

data blocks are independent, is then fitted to an exponential function. The best

estimate of the standard error of the average for correlated data is then given

by the limit at large block size of the fitted curve. All error estimates in this

chapter were calculated using block averaging unless stated otherwise.

Analysis of trajectories was done either with built-in Gromacs tools or home

built VMD scripts (Humphrey et al., 1996).
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4.3 Results and discussion

The lipid bilayer was characterized by analysis of complementary informa-

tion, collected from the description of both the spatial direction of the bilayer

normal (electron/mass density profiles and lipid tail order parameters) as well as

the lateral direction along the bilayer (area per lipid and lipid lateral diffusion).

Also, volume per lipid and water permeation through the bilayer is assessed.

4.3.1 Basic lipid properties

The area per lipid AL is one of the most important quantities characterizing

lipid bilayer systems and one of the most common ways to determine if a

simulation of a bilayer system has reached equilibrium. When the AL reaches a

stable value, most other structural properties of the lipid bilayer do not change

either. Importantly, AL can also be compared with experimental values available

from X-ray diffraction data (Högberg and Lyubartsev, 2006).

The area per lipid was computed using the following equation

AL = 2
Xbox Ybox

nL
(4.2)

where Xbox and Ybox are the box dimensions on the x-y plane respectively, and

nL is the total number of lipids in the system.

The time evolution of AL for all simulations is shown in figure 4.3a. After

20 ns, the initial decay of AL reaches an approximate plateau, allowing an

estimate of the average area per lipid 〈AL〉 taking into account the last 30 ns of

simulation and listed on table 4.3. In the subsequent analysis of all molecular

dynamics trajectories, the first 20 ns were discarded unless stated otherwise.

The effect of varying the planar carbon van der Waals parameters on the area

per lipid is readily seen. Thus, the AL is acutely sensitive to the change in size

of the ester carbon, in agreement with previous results (Chandrasekhar et al.,

2003). All variants of the force field parameter set 45A3 result in an AL within

an acceptable range of the experimental value for DMPC of 0.606 nm2 recently

determined by X-ray diffraction studies (Kučerka et al., 2005). Remarkably,

bilayer systems B_45 and B_45x12 show an error smaller than 1%.
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Figure 4.3: Time evolution of (a) the area and (b) volume per DMPC molecule for
variants of the force field parameter set 45A3.

The volume per lipid VL is another pivotal quantity, since it correlates the

bilayer lateral structure (described by AL for example) to the bilayer transverse

structure (Nagle and Tristram-Nagle, 2000b). VL was calculated for different

trajectories using the following equation

VL =
Vbox− (νspc nspc)

nL
(4.3)

where Vbox is the total volume of the system, νspc is the water specific volume,

and nspc is the total number of water molecules. The water specific volume was

calculated from a constant pressure simulation (system SPC; see table 4.2) of a

pure water box at the same temperature used for the lipid system. We obtained a

value νspc of 1.02910−3 m3Kg−1, in agreement within 2% of the experimental

value (Lide, 1997).

Table 4.3: Average Area and Volume per lipid for variants of the force field parameter
set 45A3

System 〈AL〉 / nm2 〈VL〉 / nm3

B_11 0.536±0.001 1.0620±0.0003
B_45 0.612±0.003 1.1184±0.0004
B_45x11 0.564±0.002 1.0819±0.0005
B_45x12 0.601±0.003 1.1050±0.0011
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A brief inspection of table 4.3 shows that all variants of the force field

parameter set 45A3 show also a good agreement of VL with the experimental

value. VL is within 4% of the published value (1.101 nm3; Kučerka et al., 2005).

Once again, bilayer systems B_45 and B_45x12 show the best agreement with

the experimental value, with system B_45x12 having almost a negligible error

(< 1%). The remaining results of the chapter aim to better characterize the

bilayer system simulated with the variant 45x12 GROMOS 45A3 force field.

The bilayer thickness DB is also a property related to the bilayer transverse

structure and can be defined using a relation like DB = 2 VL
AL

(Nagle and Tristram-

Nagle, 2000b). Using the average results listed on table 4.3 we obtain a value

of DB = 3.68 nm for the simulated DMPC trajectory. The result is within

2% of the experimental value (Kučerka et al., 2005). This parameter is of

extreme importance for protein/peptide - lipid systems, since the mechanism of

interaction between polypeptides and lipids seems to be coupled to DB.

4.3.2 Density profiles

Electron densities, defined as electronic charge per unit volume, also provide

information about the structure of bilayers, along the normal (z-axis) to the

bilayer plane. Electron density profiles can be determined from bilayer MD

simulations through assignment of the appropriate number of electrons3 to the

atomic nuclei sites, and then binning4 the transmembrane axis over the entire

simulation cell. Due to the inherent fluctuations in fully hydrated fluid phase

bilayers during simulations, the trajectory was manipulated through spatial

translations in order to center the xy-bilayer plane at z = 0 to reduce statistical

error, before further analysis.

The electron density is related to the structure factor measurable in X-

ray experiments and may serve as one of the basic criteria for validation of

molecular dynamics simulations (Benz et al., 2005). Figure 4.4 shows the

3The number of electrons per united atom group was assigned to the atomic number of the
corresponding united atom group.

4At least one z-slice per 0.1 nm of the xy-plane was used.
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Figure 4.4: Electron density profile of a simulated DMPC bilayer (sim). Contributions
from water and DMPC molecules for the total density profile are also shown. The
density profile obtained from experimental work (exp) is also depicted (Kučerka et al.,
2005).

electron density profile obtained for the DMPC system B_45x12, as well as the

individual contributions from lipids and water. The electron density curve show

the typical behavior for a lipid bilayer, namely a maximum associated with the

electron-dense areas in the headgroups of the phospholipids, and the minimum

at the bilayer center due to the lower electron density of methyl groups at the

ends of the lipid tails (Nagle and Tristram-Nagle, 2000b). The experimental

profile is also shown correlating very well with the DMPC simulation (Kučerka

et al., 2005).

From the electron density profile the bilayer head-to-head distance DHH ,

defined as the distance between the two maxima in the plot, can be estimated.

This yields a value of DHH = 3.4 nm, which is slightly less than the experimen-

tally observed of 3.5 nm (Kučerka et al., 2005). Notice that if one considers the

electron density profile formed by the lipids only, without the water contribution,

then the electron density maxima occur at a closer distance to the bilayer mid-

plane than the maxima coming from the total density. In this case, we obtain a

DHH = 3.0 nm. The difference in maxima positions comes from the strongly

varying water density in the headgroup region (Högberg and Lyubartsev, 2006).
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Figure 4.5: Mass density profiles across a DMPC bilayer obtained from the simulation
of system B_45x12. The lipid component is divided into the contributions from the
two separated leaflets, providing a measure of interdigitation.

Either way, the results from the simulation obtained in this work agree better

with experimental results than the results from a recent work (Högberg and

Lyubartsev, 2006).

A similar profile can be obtained if instead of considering electron density

we consider atomic mass per volume. Mass density profiles across a DMPC

bilayer are shown in figure 4.5. The masses of the hydrogen atoms were

accounted for in the calculation. Again, we can see that the density of the

lipid decreases near the center of the bilayer, a phenomenon known as lipid

trough (Nagle and Tristram-Nagle, 2000a). Furthermore, it is easily seen that

the tails of DMPC lipids can penetrate up to a value slightly higher than 0.5

nm into the other leaflet. A higher conformational entropy on the terminal

methylene groups of the lipid tails explains this trend.

4.3.3 Lipid tail order parameters

Deuterium NMR spectroscopy has provided a wealth of information regard-

ing the organization of membrane components (Petrache et al., 2000). Lipid

order parameters are a measure for the orientational mobility of the carbon-
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deuterium (C-D) bond and are defined as

Si =
1
2
〈
3cos2(θi)−1

〉
(4.4)

where θi is the angle between the ith C–D bond vector and the bilayer normal.

The angular brackets denote a time and ensemble average. The order param-

eters of the acyl lipid chains are often used to validate or calibrate molecular

simulations (Vermeer et al., 2007). The order parameters SCD for the DMPC

acyl chains were calculated from the DMPC simulation of system B_45x12.

Since our simulations employ a united-atom force field, no explicit informa-

tion about the acyl methylene hydrogen positions is available and they must be

reconstructed. It is common practice to assume that Ci–H vectors are perpendic-

ular to the vector connecting Ci−1–Ci+1 and that these carbons and methylene

hydrogens attached to Ci adopt a tetrahedral conformation. In practical terms,

this means that for the outermost carbon atoms of the chain, no order parameter

can be measured. A more detailed explanation about SCD calculation can be

found in Douliez et al. (1998) and Patra et al. (2006).

The results for the order parameters are shown in figure 4.6 and provide

a qualitative measure of the degree of order along the lipid acyl chains. The

agreement between experiment (filled symbols) and simulation (open symbols)

is best at the end of the acyl chains and acceptable for most of other carbon

positions in the middle of it. Furthermore, the order parameters presented in this

chapter are once more in better agreement with experimental data than recent

simulation studies on pure DMPC systems at the same temperature (Högberg

and Lyubartsev, 2006; Vermeer et al., 2007). The experimental SCD profiles of

the acyl chains show a broad plateau for the half of methylene groups closer to

the glycerol and headgroup region, followed by a reduction in ordering toward

the central region of the bilayer. This apparent plateau in the experimental data

is due to the unresolved splittings of 2H resonances near the glycerol. Obviously,

such degeneracy is not observed on the molecular simulation. The profiles also

show that on average, the SCD from the sn-2 chain is higher when compared

with the sn-1 chain. The sn-2 is tethered via the glycerol backbone closer to

the aqueous interface, and thus it is more stretched or ordered relatively to sn-1

chain, which starts deeper in the bilayer (personal communication by Michael



102 A brief approach to lipid bilayer simulations • Chapter 4

2 4 6 8 1 0 1 2 1 4
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

 s n - 1  ( e x p )
 s n - 2  ( e x p )
 s n - 1  ( s i m )
 s n - 2  ( s i m )

 

 

|S(i) CD
|

A c y l  c a r b o n  a t o m  i n d e x  ( i )

Figure 4.6: Deuterium order parameter S(i)
CD profiles as a function of carbon number

along the sn-1 and sn-2 acyl chains for DMPC. Experimental (exp) order parameters
were derived from the quadrupolar splittings of de-Packed 2H NMR spectra (Petrache
et al., 2000). The double resonances for the C2 carbon of the sn-2 chain are also shown.
Theoretical values were derived from our molecular dynamics simulation, using variant
45x12 GROMOS 45A3 force field, at 303 K.

Brown).

4.3.4 Lateral lipid dynamics

To gain information about the diffusion of the lipids in the simulated bilayer,

the diffusion coefficient was calculated from the Einstein relation (cf. with

equation 2.3)

Dxy = lim
t→∞

1
2n

d
dt

〈
|∆rxy(t)|2

〉
(4.5)

where
〈
|∆rxy(t)|2

〉
=
〈
|rxy(t0 + t)− rxy(t0)|2

〉
is the mean square displacement

(MSD) in the xy-plane during time t starting from initial time t0, n is the

dimensionality of the system, and Dxy is the lipid lateral diffusion coefficient.

The angular brackets denote an ensemble and time average over all initial time

moments t0 for the given time t. The MSD was calculated for the center of mass

(COM) of each DMPC molecule and averaged over time and over all the lipid
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Figure 4.7: DMPC mean square displacement (MSD) profile. The simulations was
performed at 303 K using the variant 45x12 GROMOS 45A3 force field. The diffusion
coefficient was calculated after fitting the MSD profile equation 4.5, and discarding the
first 5 ns of diffusion free-flight.

molecules. r represents the COM positions. To improve the statistics, the time

origin t0 was shifted every 10 ps.

Although the center of mass of the whole system is reset after each time step,

both lipid layers can acquire some drift velocity and develop an opposite COM

motion while the total COM motion for the system is still zero (Anézo et al.,

2003). The random relative motions of the two layers give rise to an apparent

supra-diffusivity that is purely artificial and needs to be removed (Lindahl and

Edholm, 2001). The COM of the upper and lower monolayers were separately

removed in all simulations performed, thus not needing further processing.

As can be seen from figure 4.7, the mean square displacement profile can be

fairly well fitted to a straight line for t > 5 ns yielding a diffusion coefficient of

5.3×10−8 cm2s−1. The obtained value is acceptable when compared with the

experimental result of 6×10−8 cm2s−1 obtained by fluorescence recovery after

photo-bleaching (Almeida et al., 1992) but somewhat below the experimental

NMR result of 9×10−8 cm2s−1 at the same temperature (Orädd et al., 2002).
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Figure 4.8: The z-coordinates of all water molecules (in black) are plotted as a function
of time for system B_45x12. Water is able to penetrate into the DMPC bilayer (mid-
plane located at z = 0).
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4.3.5 Bilayer water permeation

We also analyzed the penetration of water molecules into the bilayer. A

qualitative overview can be obtained by plotting the z component of the positions

of the water molecules on each frame along the trajectory, after centering the

bilayer at z = 0. The result is shown in figure 4.8. It is easily seen that the

density of water molecules is reduced in the center of the bilayer, nonetheless

from time to time water molecules are able to penetrate deeper into the bilayer.

Crossing events cannot be inferred directly from figure 4.8, since penetration

of water into the bilayer is not per se an indication that is going to cross it. To

have an estimate on the number of crossing events in the DMPC bilayer, we

have first to characterize the solvent molecules regarding their spatial position.

For each trajectory frame, we can assess the position of the water molecules in

relation to the bilayer molecules. Moreover, we can categorize molecules by

their vicinity to the upper leaflet or bottom leaflet. Since it is of little interest if

a water molecule is just scratching at the surface of the bilayer, it is important

to know if the water molecule reaches the part of the leaflet where it can form

a long lived hydrogen bond. This simple ideas give a functional definition to
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follow the bilayer crossing of the solvent. In practice, we calculated per each

frame which water molecules are near to the glycerol-moieties of the lipids,

thus more prone to cross the bilayer, and their z positions were assessed along

the trajectory.

Though we did not quantitatively calculated the lifetime of the hydrogen-

bonds between water molecules and DMPC lipids, we observed by visual

inspection that once a water molecule penetrates deeper in the bilayer, it can

stay there for tens to hundreds of ps. On average, 24 water molecules are found

between the middle of the bilayer and the average plane formed by the glycerol

oxygens. Also, we determined that only 3 water molecules were able to cross

the bilayer during the 30 ns of trajectory analyzed.

The initial goal for studying these crossing events was mainly to assess

bilayer stability along the simulation. On the other hand, from the literature it is

clear that water and solute permeability across lipid membranes are also a major

subject of study, nonetheless the mechanisms by which permeants cross bilayers

remain unclear. Mathai et al. (2008) proposed a new model for permeability,

establishing that the area occupied by the lipids is the major determinant and

the hydrocarbon thickness is a secondary determinant. Molecular dynamics

simulations provide a wealth of information not accessible from experimental

work. Thus, a more detailed study on the crossing events using MD on different

bilayers and strategies similar to the one devised above, should give a more

comprehensive knowledge about these mechanisms.

4.4 Conclusions

The goal of this chapter is two-fold. Though protein simulations are al-

ready becoming a standard protocol to provide further atomistic insight into

experimental work, biomembrane simulations are still a new field. This can be

understood by the diverse and central roles proteins play in biological systems,

and thus more scientific effort was put on a correct parameterization of proteins

and peptides. As such, our first goal was to tie together these two classes of

biomolecules in a force field able to treat them in a more realistic way than most

of the force fields available at the time this work was done. As an immediate



106 A brief approach to lipid bilayer simulations • Chapter 4

consequence, it will allow us to model more complex bio-systems such as the

interaction of proteins with bilayers (see chapter 5). The second goal was to

build a simple bilayer system often used by experimentalists, like the DMPC

bilayer. This will allow us to compute properties describing such bilayer sys-

tem, and compare them in a systematic way with experimentally determined

properties.

Research on membranes and protein/membrane interactions has been grow-

ing steadily. Lipid membranes in the liquid crystalline phase, also known as

the Lα phase, are generally considered to be relevant for models of biological

membranes. Lipids can influence the structure and function of membrane pro-

teins (intrinsic or not) and in turn membrane proteins have influence on the lipid

dynamics (Lee, 2005). Therefore, it is important to be able to characterize the

structure and dynamics of a lipid bilayer.

Simulations provide information on an atomic level, at a resolution that

still cannot be obtained experimentally. However, putting together parameters

into a force field that makes sense is a daunting task. Simulations can then

suffer both from uncertainties in the force field, though uncertainty is also

found in experimental data (Nagle and Tristram-Nagle, 2000b), and relatively

short simulation times due to the computational expensive task of calculating

interactions between the Newtonian bodies. As new force fields arise and

validation against experimental data shows promising results, new possibilities

emerge for computational scientists.

Most of the work published in the last decade on membrane simulations

using the GROMOS force field is based on the work of Berger et al. (1997).

Though this force field is still valid for lipid systems, it is not the best choice

to predict interactions between lipids and proteins. Newer force fields have

been published in the last years, which seem much more promising to simulate

complex bio-systems according to some authors (Schuler et al., 2001). In this

work, we used variants of the GROMOS96 45A3 parameter set to study a

DMPC system in the Lα phase, using a set of MD parameters consistent with

the ones used in protein simulations.

Analyzing both the area per lipid and volume per lipid on the obtained trajec-

tories, we could assess the best set of force field parameters. System B_45x12
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showed the best agreement of AL and VL properties with available experimental

data. The only difference among the variants of GROMOS96 45A3 employed

in this study, is the description of the phospholipid ester carbon. Several results

do point out that a careful choice of parameters to run MD simulations should

always be followed by a critical assessment of the results (Norberg and Nilsson,

2003).

Not only the parameters describing the molecules are an important issue,

but also important are the parameters describing the MD methodology. As

an example, nowadays most authors agree upon the use of PME to treat the

electrostatics because the properties of bilayers (namely AL and VL) are very

sensitive to the electrostatic cut-off distance (Anézo et al., 2003). As already

mentioned, we used methodological parameters throughout this work consistent

with both lipid and protein simulations and also in agreement with recent

literature (Vermeer et al., 2007). A much more detailed comparison between

different simulations conditions is underway, taking into consideration for

example into consideration different electrostatic treatments (PME, cut-off and

reaction field), number of charged groups on the topological description of the

lipid, time step employed to solve the Newton equations, among others.

Regarding the group of properties evaluated, results show good agreement

between the structural and dynamic properties of lipids and the available ex-

perimental data. Moreover, our results seem to be in better agreement with

experimental published data (at least for the properties computed) than that of

other simulations on a similar system (Högberg and Lyubartsev, 2006).

Though only one trajectory simulation per set of parameters studied was

analyzed in this chapter, in fact we did several simulations for each set. The

comparison between different simulations is not a trivial task (Wassenaar, 2006),

nevertheless, the average values of the computed properties are in agreement

between the simulation replicas.

It was not our goal to make an extensive study of the DMPC system, rather

to build and equilibrate a bilayer such that it could be used in forthcoming stud-

ies. This brief incursion into bilayer systems showed us that these multimeric

systems are not at all simple to simulate. The complexity of cellular mem-

branes and the dynamics of its components poses a difficult task, but rewarding
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advances are being made.
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Chapter 5
Plasticity and aggregation of δ-toxin

“Certainly no subject or field is making more progress on so
many fronts at the present moment, than biology, and if we were to
name the most powerful assumption of all, which leads one on and
on in an attempt to understand life, it is that all things are made of
atoms, and that everything that living things do can be understood
in terms of the jigglings and wigglings of atoms.”

Feynman et al. (1963)
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5.1 Introduction

Staphylococcus aureus, a Gram-positive bacterium, produces a number of

extra cellular toxins with diverse biological activities. One of such toxins is

δ-toxin, a 26 amino acid haemolytic peptide (Fitton et al., 1980). The peptide

has an unusually high content of hydrophobic amino acids, four basic and three

acidic residues, a negative C-terminus, and a formylated N-terminus, giving it a

zero net charge at neutral pH. The polar residues are regularly spaced between

hydrophobic patches, forming an amphipatic helix (Fitton, 1981).

δ-toxin lyses eukaryotic cells in preference to bacterial cells in vivo (Dho-

ple and Nagaraj, 1993; Kreger et al., 1971). Specificity of δ-toxin and other

cytolytic peptides towards certain cell types is still under investigation. Yet,

it seems certain that no cell-surface receptors are involved in the recognition

mechanism. Synthetic peptides with all-D-amino acid enantiomers show the

same activity as the natural, all-L-amino acid peptides (Wade et al., 1990).

The primary sequence of cytolytic peptides from different organisms vary

widely, but many are able to form amphipathic α-helices. The distribution of

charged amino acids along the helix axis varies among these cytotoxic peptides,

but most frequently they carry a positive net charge at neutral pH. Nevertheless,

it was shown that a net charge on these short peptides cannot be the sole cause

for their target cell specificity, and other factors may have to be considered,

such as the distribution of charge along the peptide axis (Dathe and Wieprecht,

1999).

Due to its charge characteristics, δ-toxin has a high propensity to aggregate

in aqueous solution. Furthermore, nuclear magnetic resonance (NMR) data

showed that the conformation of δ-toxin is highly solvent dependent. In water

the peptide aggregates, probably forming large oligomers, but in methanol these

oligomers are small enough to be studied by NMR (Tappin et al., 1988). In

methanolic solution, the peptide forms a rather well ordered amphiphatic helical

structure between residues 2 and 24 (see chapter 3).

On its way to the membrane, the peptide must experience subtle chemical

environment changes with consequences on peptide conformation. The study

of the conformational plasticity and aggregation behavior of the peptide should

give some clues for the understanding of the first stages of the lytic mechanism.
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Figure 5.1: Schematic representation of simulated model systems with the amphipathic
δ-toxin in bulk solvents and in a bilayer environment. (a) A monomeric peptide, (b)
an head-to-head peptide dimer, (c) a head-to-tail dimer, (d) a dimer in a perpendicular
arrangement, and (e) an anti-parallel tetramer, were simulated in neat solvents, namely
water, methanol, and DMSO. (f) A DMPC bilayer with one peptide per leaflet, and (g)
a peptide trimer in anti-parallel arrangement were also simulated. Circles represent a
top-view of δ-toxin in a α-helix conformation; the hydrophobic moiety of the peptide
is shown as a shaded area; peptide N and C terminus are also depicted. The bilayer is
represented by the shaded rectangle in panels (f) and (g).

In order to assess the conformational stability and plasticity of δ-toxin, we

performed molecular dynamics (MD) simulations, at room temperature, in

different membrane-mimetic solvents. A more realistic system composed by a

bilayer of zwitterionic dimyristoylphosphatidylcholine (DMPC) in the liquid-

crystalline Lα phase in water was also simulated, in the presence of one to three

δ-toxin peptides per leaflet.

5.2 Methods

5.2.1 Simulated systems

To study the propensity of δ-toxin to aggregate in solution, and the ad-

sorption of the peptide to a lipid bilayer, molecular dynamics simulations of

a number of peptides in different environments have been performed. Several
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Table 5.1: Overview of the molecular dynamics simulations performed

Label* Solvent Peptide molecules Solvent molecules Number of atoms

W_1M water 1 7806 23686
W_2Ma water 2 9533 29135
W_2Mb water 2 9533 29135
W_2Mc water 2 9533 29135
W_4M water 4 11571 35785

M_1M methanol 1 3503 10777
M_2Ma methanol 2 4186 13094
M_2Mb methanol 2 4186 13094
M_2Mc methanol 2 4186 13094
M_4M methanol 4 5172 16588

D_1M DMSO 1 1763 7320
D_2Ma DMSO 2 2104 8952
D_2Mb DMSO 2 2104 8952
D_2Mc DMSO 2 2104 8952
D_4M DMSO 4 2549 11268

B_2Md water + DMPC 2 8686 32482
B_3M water + DMPC 3 6384 25844

* Labeling of simulations throughout this chapter was based in the following rules: the first
capital letter denotes the solvent (W for water, M for methanol, D for DMSO, and B for a
bilayer in water phase); the following character strings denote the model system depicted in
figure 5.1.

molecular systems were built as shown in figure 5.1 and listed in table 5.1.

A canonical right handed α-helical δ-toxin was constructed using InsightII

(Biosym/MSI, 1995), and used as a starting structure for all relevant simulations.

The starting structure for a fully hydrated DMPC lipid bilayer was produced in

chapter 4.

Several models of δ-toxin were centered in a rhombic dodecahedron box

unit cell, and solvated with three solvents of different polarity, namely water,

methanol and dimethyl sulfoxide (DMSO). Briefly, the number of peptides

in the system ranged from one to four peptides (figures 5.1a–e). The peptide

multimeric models are arranged such that no van der Waals clashes exist, and

peptides can be fully solvated (approximately 1.7 nm separate peptide centers).

Moreover, the hydrophilic/hydrophobic interface between adjacent peptides

was oriented in a way such that no preferential contacts exist, with the exception

of model 4M (figure 5.1e) where the hydrophobic patches of the 4 peptides are

facing each other and away from the bulk solvent. The cell dimensions were

chosen to allow for at least 1.2 nm between any peptide atom and the nearest
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box edge. Thus, at least 2.4 nm separate the simulated model to its periodic

images. The final concentration of the peptides in solution is high (mM range)

in order to facilitate the aggregation of the monomers.

We also simulated the interaction between δ-toxin and a well-characterized

DMPC lipid bilayer in the liquid-crystalline Lα phase. The systems simulated

contained one, or three δ-toxin peptides, 128 DMPC lipids, and water molecules

(figures 5.1f–g). Because periodic boundary conditions were used in all sim-

ulations, we oriented the peptides with its long axis roughly parallel to the

membrane surface (xy-plane), such that the system is kept at a reasonable size.

Initially, the α-helical peptides are placed in the water phase close to one of

the monolayers of an equilibrated bilayer, approximately 1.7 nm separating

the peptide centers of mass (COM) and the average position of lipid head-

group nitrogen atoms on the xy-plane. No van der Waals clashes exist between

neighbor peptides and lipids, allowing full hydration of each biomolecule. In

model 2Md (figure 5.1f) one peptide per monolayer was placed either with the

hydrophobic or the hydrophilic moieties facing the lipids. In model 3M (figure

5.1g) the asymetric distribution of the peptides mimics the addition of peptide

to a solution containing cells or liposomes, in which peptides adsorb to one

monolayer only.

5.2.2 Simulation details

All MD simulations were performed with the Gromacs package version

3.3 (Lindahl et al., 2001). The GROMOS96 45A3 united atom force field

(Schuler et al., 2001), variant 45x12 (see chapter 4), was used to describe

peptide and lipids. DMSO was described by Geerke et al. (2004), and methanol

was described by the B3 three-site model (Walser et al., 2000). Water was

modeled explicitly using the simple point charge (SPC) model (Berendsen et al.,

1981). The isothermal compressibility was set to 12.06x10−5, 4.5x10−5, and

5.25x10−5 bar−1, for methanol, water, and DMSO, respectively (Easteal and

Woolf, 1985; Geerke et al., 2004). The protonation state of ionizable groups

was chosen to correspond to pH 7.0. No counter ions were added since all

systems are already electro neutral. The time step used for the integration of the

equations of motion was 2 fs. Non bonded interactions were evaluated using a
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twin range cutoff of 1.0 and 1.4 nm. Interactions within the shorter range cutoff

were evaluated at every step whereas interactions within the longer range cutoff

were evaluated every 10 steps. The long-range electrostatic forces were treated

by the particle-mesh Ewald (PME) summation algorithm (Darden et al., 1993).

All bond lengths were constrained to their equilibrium values by the LINCS

algorithm (Hess et al., 1997), whereas water geometry was maintained with the

SETTLE routine (Miyamoto and Kollman, 1992). Simulations were carried

out at a constant pressure of 1 bar and at constant temperature, 298.15 K for

peptide/solvent simulations and 303 K for peptide/lipid simulations. A weak

pressure-coupling scheme was adopted using the Berendsen barostat (Berendsen

et al., 1984), with a coupling time of 1 ps. Temperature was controlled using

the Berendsen thermostat (Berendsen et al., 1984), with a coupling time of 0.1

ps.

For the aggregation simulations of δ-toxin in the three different solvents,

peptide and solvent molecules were independently coupled to the heat bath.

Anisotropic pressure coupling was applied such that the three dimensions of

the box (x,y,z) are allowed to vary independently (N px py pzT ensemble).

For the peptide/bilayer simulations, lipids, peptide and water molecules

were separately coupled to the heat bath. A fine control of the temperature is

necessary to keep the DMPC lipid bilayer in the fluid phase. The pressure was

controlled semi-isotropically (N pxy pzT ensemble), where the height of the box

(z direction, i.e., along the lipid hydrocarbon chains) and the cross-sectional

area (xy plane) were allowed to vary independently of each other.

Starting velocities were randomly assigned from a Maxwellian distribution

with different random seeds for each of the simulations. For all simulations

energy minimization in vacuum was performed to remove bad contacts within

the protein. After solvation, energy minimization was performed again to re-

move bad contacts between solvent and protein/lipid atoms. Prior to production

runs, a short equilibration was performed with position restraints on all heavy

atoms. Production runs of 50 ns for solvent/peptide systems and 150 to 250 ns

for peptide/lipid systems were made. Coordinates of the full system were saved

every 1 ps for further analysis.

Display and analysis of trajectories was done either with built-in Gromacs
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tools or home built VMD scripts (Humphrey et al., 1996). The simulations took

∼ 37000 CPU hours and were run on two different clusters (Sun Fire X4100

computing nodes; dual Intel Xeon computing nodes) as well as in commodity

computers.

5.2.3 Data analysis

The first 20 ns of each simulation were discarded prior final analysis. All er-

ror estimates were calculated using block averaging (see chapter 4) unless stated

otherwise. Thermodynamic parameters characterizing the MD simulations, and

distance between periodic images, were assessed from Gromacs output files.

Comparison of peptide structures was done by measuring root mean square

distances (RMSD). The secondary structure content of the peptides was deter-

mined using the DSSP criteria (Kabsch and Sander, 1983). The aggregation

of peptides, both in solution and on the bilayer interface, was monitored by

clustering and visual inspection. Penetration of peptides on the bilayer was

monitored by measuring the distance to the bilayer midplane.

A more detailed description of the applied methodologies will be introduced

whenever necessary along the next sections. Time evolution of properties are

depicted through out this chapter with a time interval of 10 ps.

5.3 Results and discussion

We start by making some considerations about quality assurance of the MD

simulations, before proceeding to data analysis. The results from MD trajecto-

ries of δ-toxin in the different chemical environments will be discussed after.

Emphasis on the secondary structure of the peptide and aggregation state, both

in solution and in the lipid bilayer interface, will be given. Whenever possible,

the results presented in this chapter will be compared with experimental data.

5.3.1 Convergence of molecular dynamics simulations

After a MD simulation has been performed, a quality assessment of the

simulation should be performed. This quality assurance step involves the study

for convergence of thermodynamic parameters, such as system temperature and
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energy, towards equilibrium. We are particularly interested on studying the

behavior of a peptide in solution. And so, relaxation of the protein structure

should also be inspected, usually in terms of the Cartesian distance from a

reference structure. Peptides have an intrinsically high degree of conforma-

tional freedom, and thus a great care should be taken when simulating systems

with periodic boundary conditions. Solute molecules such as peptides must not

interact between adjacent periodic images, otherwise such interactions could

lead to unphysical effects. In short, prior to data analysis of molecular dynam-

ics simulations and final interpretation of the results, the overall MD system

evolution should be assessed in order to check if a set of properties describing

the system are in equilibrium. Nevertheless, it should be mentioned that conver-

gence for a given property is not always attained due to a high relaxation time

when compared with the simulated time.

Thermodynamic parameters

Figure 5.2 shows, as an example of the study of convergence, the evolution

of several properties during a molecular dynamics run on a system composed

of four δ-toxin monomers in water (simulation W_4M). As can be readily seen

from figures 5.2a–b, thermodynamic parameters such as potential and kinetic

energy, and temperature, are already in equilibrium. In fact, as explained in

the methods section, a minimization/equilibration stage on every simulation

is performed before the production run, in order to prepare the system to

evolve from a system in thermal equilibrium. The density of the W_4M system

is very close to the experimental value (1000 Kgm−3), further reinforcing

the equilibrium of the system and the quality of the data. A summary of the

average values for some thermodynamic properties and other physical properties

describing the simulation box for all simulations performed, is presented on

the appendix table A.6. Both thermodynamic and physical properties reach

equilibrium values almost at the beginning of the simulation. Average system

density values are in accordance with experimental data.
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Figure 5.2: Time evolution of properties characterizing the δ-toxin W_4M tetramer
model in water. (a) Potential energy V , kinetic energy Ekin, (b) temperature T , and
density d variations as a function of simulation time. (c) Backbone RMSD from the
trajectory average structure, for each peptide chain.

Root mean square distance

A widely used way to compare the structures of biomolecules is to translate

and rotate one structure with respect to the other. The most common measure of

the fit between the two structures is the RMSD between pairs of atoms, defined

as (Leach, 1998)

RMSD =

√
∑

n
i=1 d2

i
n

(5.1)

where n is the number of atoms over which the RMSD is measured and di is the

distance between the coordinates of atom i in the two structures, after a body

superposition.

A molecular dynamics simulation produces a range of structure snapshots.
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Convergence of the structure towards an equilibrium state can be computed by

calculating the RMSD for each snapshot from a reference structure, usually the

starting structure of the production simulation run. For a protein simulation,

the RMSD value from the starting structure will eventually level off, indicating

that the structure has reached a certain distance from the reference structure

and then keeps that distance more or less constant throughout the rest of the

simulation. Nonetheless, this does not guarantee that the structure as reached

an equilibrium state, since the number of conformations available also increase

as the simulation proceeds. A better way to check structure convergence is to

check the convergence towards an average structure.

Figure 5.2c shows the backbone RMSD from the average structure for each

δ-toxin chain in the W_4M system. While chains B and D have a RMSD value

which fluctuates throughout the simulation around a distance value of 0.2 nm

from the respective chain average structure, chains A and C do show a different

behavior with the RMSD values leveling off at around 15 ns. Thus, though

the thermodynamic parameters discussed above are already in equilibrium, the

structure of the peptides in solution take much longer time to equilibrate. This

is especially true if the starting conformation of the peptide unfolds during the

simulation. In this case longer simulation times are needed for the peptide to

probe all the conformational space available and reach an equilibrium structure.

Regarding all the other simulations of δ-toxin in neat solvents (water,

methanol, and DMSO) as well as in the bilayer system, RMSD from the average

structure for each peptide chain shows plateau regions starting at different times

on the simulation run, and of varying time length (data not shown). A summary

of backbone RMSD values from the respective average structures is given in

table 5.2. A low average RMSD value for a given simulation is indication

that structural relaxation was attained, whereas a high average RMSD value is

indicative of a higher propensity for structural plasticity. A brief analysis of

these RMSD values indicates that the δ-toxin structure is better defined in both

water and methanol solutions, when compared with DMSO systems. δ-toxin in

bilayer systems also show the convergence for an average structure. Based on

the obtained RMSD profiles for simulations, all the statistics presented hereafter

were made by discarding the first 20 ns of peptide simulations in neat solvents,
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whereas half of the trajectory was discarded when analyzing bilayer simulations,

unless stated otherwise.

Interactions between periodic images

Molecular dynamics simulations aim to provide information about the

properties of a macroscopic sample. Yet, the size of the system is limited by

the available storage space on the host computer, and more importantly, by the

execution speed of the MD algorithms (Allen and Tildesley, 1996). Thus, a MD

system has a finite number of N-particles, usually confined in a semi-regular

space-filling polyhedra, such as a rhombic dodecahedron or cubic box. To

simulate bulk phases, system boundary conditions should be treated in such

a way that mimic the presence of an infinite bulk surrounding the N-particle

system. This is usually achieved by employing periodic boundary conditions, in

which the motion of the N-particles in the bounding box is reproduced in each

of the neighboring boxes. This will create an infinite periodic boundless lattice

system. On such a system, we must assure that there is no direct interactions

between periodic images of a particle, otherwise artifacts will occur due to the

unphysical topology of the simulation. As an example, Weber et al. (2000)

showed that for a polyalanine peptide, the α-helical conformation is stabilized

by artificial periodicity relative to any other configuration sampled during

simulations. The authors demonstrated that this artificial stabilization is larger

for smaller unit cells, being responsible for the absence of peptide unfolding.

Another important factor to be taken into account is the box type used

during the simulation. The choice of box type can have a statistically sig-

nificant effect on the outcome of a simulation, acting as a constraint on the

dynamics behavior of the solute, restricting the conformational ensemble of

the system (Wassenaar, 2006). It was shown that the optimal box, without

introducing major artifacts, should have an approximate spherical symmetry

such as the rhombic dodecahedron. This box minimizes effects related to the

box shape or the resulting distribution of solvent. Nevertheless, Wassenaar also

points out that the nature and magnitude of such effects are strongly dependent

on the protein studied. δ-toxin in neat solvents was simulated using rhombic

dodecahedron boxes, whereas a cubic box was used for simulations of bilayer
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Table 5.2: Summary of the RMSD from the average structure, secondary structure,
and aggregation state for δ-toxin simulations in different solvents.

Secondary structure¶ Aggregation state||

label* chain† RMSD‡ structure§ coil α-helix 1M 2M 3M 4M

W_1M A 0.35±0.04 12.8±0.9 8.7±0.5 9.6±0.9 100

W_2Ma A 0.23±0.01 14.7±0.4 8.1±0.2 12.2±1.0 0 100
B 0.34±0.07 9.1±0.4 12.3±0.8 5.4±0.2

W_2Mb A 0.28±0.04 14.7±1.1 7.9±1.0 9.8±1.5 0 100
B 0.19±0.01 18.6±0.8 5.5±0.1 15.7±1.0

W_2Mc A 0.26±0.06 20.9±1.0 3.8±0.4 17.5±1.6 0 100
B 0.27±0.03 15.2±0.3 7.7±0.3 12.9±0.2

W_4M A 0.17±0.01 13.5±0.8 8.6±0.2 11.1±3.2 0 0 0 100
B 0.14±0.01 21.5±0.3 4.2±0.3 18.7±0.5
C 0.22±0.01 12.8±0.4 10.0±0.4 10.4±0.7
D 0.18±0.01 18.8±0.1 6.0±0.1 15.2±0.4

M_1M A 0.26±0.06 17.4±0.4 6.0±0.2 15.6±0.5 100

M_2Ma A 0.44±0.03 13.7±0.9 8.8±0.4 12.1±0.9 52.9 47.1
B 0.38±0.05 14.8±1.5 9.1±2.0 14.0±1.3

M_2Mb A 0.34±0.02 13.5±1.0 9.6±0.5 12.5±1.0 21.4 78.6
B 0.16±0.01 20.9±0.4 4.3±0.2 20.0±0.6

M_2Mc A 0.31±0.05 15.5±1.2 6.7±0.6 12.8±0.9 63.6 36.4
B 0.43±0.11 13.9±1.8 8.5±1.0 12.1±2.5

M_4M A 0.28±0.07 19.8±1.3 5.2±2.9 18.1±0.8 20.9 16.2 34.0 28.9
B 0.31±0.06 17.9±0.5 6.5±0.5 16.3±0.5
C 0.30±0.09 16.8±7.1 6.6±1.9 15.2±6.2
D 0.37±0.01 13.8±0.8 10.3±0.4 12.1±1.0

D_1M A 0.49±0.06 0.7±0.2 16.1±0.5 0.0±0.0 100

D_2Ma A 0.62±0.01 0.2±0.1 16.6±0.9 0.0±0.0 83.5 16.5
B 0.57±0.04 0.3±0.1 19.3±0.4 0.1±0.1

D_2Mb A 0.40±0.05 11.9±1.1 10.4±0.2 9.8±0.8 92.5 7.5
B 0.42±0.09 8.7±1.6 10.5±1.2 7.0±2.6

D_2Mc A 0.47±0.09 5.9±nan 13.9±3.9 4.6±nan 92.0 8.0
B 0.48±nan 7.3±nan 11.2±nan 5.1±5.9

D_4M A 0.49±0.06 3.3±2.5 14.1±1.8 1.9±1.4 59.0 26.7 14.0 0.3
B 0.49±0.05 4.5±2.1 14.2±0.9 3.0±1.8
C 0.69±0.09 11.7±0.3 16.6±0.4 1.2±0.6
D 0.53±0.22 5.3±nan 13.1±nan 4.1±9.8

B_2Md A 0.18±0.01 12.7±0.2 12.8±0.1 6.4±0.9 100
B 0.19±0.02 11.3±0.2 10.6±0.4 8.2±0.3

B_3M A 0.19±0.01 11.1±0.1 10.8±0.2 10.4±0.1 0 0 100
B 0.21±0.01 13.2±0.3 9.6±0.3 12.4±0.2
C 0.14±0.03 10.6±0.7 9.9±0.2 7.8±2.4

Analysis was performed in the time window 20 to 50 ns on neat solvent simulations whereas on bilayer systems we dis-
carded the first half of trajectory. When an invalid fit is attained during block averaging error estimation, a nan symbol
is reported. * Identification of molecular dynamics simulation. † Peptide chain identification. ‡ Root mean
square deviation (RMSD) of backbone atoms from average structure. ¶ Secondary structure analysis using the DSSP
algorithm (Kabsch and Sander, 1983); number of residues with structure, coil and α-helix patterns are reported.
§ Total number of residues belonging to non-coil patterns used in secondary structure definition. || Aggregation state
of peptides in the simulation boxes. Depending on the number of initial peptides, the aggregates can be composed by
monomers (1M), dimers (2M), trimers (3M) and/or tetramers (4M). Reported values are population percentages.
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systems.

Appendix table A.7 (see page 201) shows that the shortest minimum dis-

tance between periodic images dPBC
min of δ-toxin chains in water simulations is

2.8 nm, whereas for methanol, DMSO and bilayer boxes, dPBC
min is 1.7, 0.8, and

1.2 nm, respectively. The minimal size of the unit cell necessary to ensure a

negligible periodicity-induced perturbation will depend on the nature of the

system (i.e., on the range of the intermolecular potential) and on the properties

under study (Allen and Tildesley, 1996). Usually, the distance between protein

periodic images should be maintained slightly larger than the largest of the

cutoff thresholds used for van der Waals or Coulombic interactions. These

cutoffs thresholds are a necessary approximation scheme to compute the po-

tential energy of the system, and their definition is force field dependent. The

GROMOS force field (Schuler et al., 2001) was parameterized in such a way

that the largest cutoff used was 1.4 nm, thus a substantial interaction between

a particle and its own images in neighboring boxes will occur if dPBC
min ≤ 1.4

nm. The results in table A.7 indicate that this condition only happened on

trajectories D_1M, D_2Ma, D_2Mb, B_2Md, and B_3M. Nonetheless, such

short dPBC
min distances are transitory in the trajectory, as can be deduced from the

average shortest distance dPBC
min between peptide chain periodic images.

We can also state from dPBC
min results, that δ-toxin is structurally more flexible

in DMSO than in water or methanol, and that the initial α-helical conformation

of the peptide was lost during the simulation, at least for simulations D_1M,

D_2Ma, and D_2Mb. All δ-toxin systems in neat solvents were built with a

solvent layer of 1.2 nm, thus a minimum distance between peptide images of at

least dPBC
min = 2.4 nm in the first frames of each trajectory, should be expected.

If a peptide molecule sees its periodic image during a trajectory and the system

volume is constant (see appendix table A.6, page 200), means that a substantial

unfolding of the starting conformation must have occurred.

5.3.2 Secondary structure variation in different solvents

δ-toxin in a canonical α-helix conformation was placed at the center of a

dodecahedron truncated box and three periodic boundary systems were built,

in which the peptide was immersed in water, methanol, or DMSO. After the
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Figure 5.3: Secondary structure (SS) of δ-toxin in (a) water, (b) methanol, and (c)
DMSO as a function of simulation time.

initial equilibration of the system, trajectory runs of 50 ns were produced. The

secondary structure (SS) content of δ-toxin was computed based on a pattern-

recognition process of hydrogen bonds and geometrical features (Kabsch and

Sander, 1983). Figure 5.3 shows the secondary structure of δ-toxin as a function

of time in water (system W_1M), methanol (system M_1M), and DMSO

(system D_1M).

The initial α-helicity of δ-toxin is not maintained during W_1M simulation,

as can be seen in figure 5.3a. The N-terminus starts to unfold until approximately

the 10th residue, a few ns after the beginning of the simulation. Nevertheless,

the α-helical content stabilizes for the rest of the trajectory. The average peptide

secondary structure content for all simulations performed is shown in table 5.2.

Half of the residues have a well characterized structure, with 10 residues in the

C-terminal region maintaining an α-helix conformation. This relatively small
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0 ns                       10 ns                       20 ns                     30 ns                     40 ns                     50 ns

(a) System W_1M

0 ns                       10 ns                       20 ns                     30 ns                     40 ns                     50 ns

(b) System M_1M

0 ns                       10 ns                       20 ns                     30 ns                     40 ns                     50 ns

(c) System D_1M

Figure 5.4: Snapshots of δ-toxin taken at 10 ns intervals in (a) water (system W_1M),
(b) methanol (system M_1M), and (c) DMSO (system D_1M). The peptides are drawn
as ribbons and colored accordingly with secondary structure assigned by the DSSP
algorithm (see figure 5.3). The C-terminus is represented by a solid black sphere and
the N-terminus by a red sphere. The solvent molecules are not shown for clarity, and
all images are at the same scale for direct comparison.

α-helix fluctuates (unfolding-refolding) but is rather stable for the 50 ns of the

simulation. Figure 5.4a displays snapshots of the polypeptide backbone during

the course of the simulation.

δ-toxin simulated in a methanol box shows a quite different trend. On

average, 16 residues are maintained in an α-helix conformation (figures 5.3b,

5.4b). The α-helix starts at about the 3rd residue from the N-terminus of the

peptide, and continues until approximately the 20th residue in the sequence.

Notice also that the helix is not continuous, and from time to time it occurs a
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break on the helix on the 10th residue (e.g., time window between 2 and 12 ns).

On the other hand, the peptide in a DMSO box unfolds very rapidly (figures

5.3c, 5.4c). The unfolding starts again at the N-terminus, followed by a decrease

of α-helicity from the C-terminus. A small helix of 7 residues (from residue

9 to 15) is maintained until the 10th ns, where a complete loss of structure

occurs for the remaining of the D_1M simulation. On average, 16 residues are

in random-coil, thus suggesting low stability of regular secondary structure for

δ-toxin in DMSO.

The results suggest that the δ-toxin α-helix is more stable in methanol

then in water, and a complete absence of α-helix is observed in DMSO. A

comparison with the available experimental results will be given in the next

section, where systems closer related to the experimental conditions attained

inside a laboratory tube were simulated and analyzed.

5.3.3 Secondary structure vs aggregation state

Often, molecular dynamics simulation systems have a high concentration

of solute, like NMR samples, due to the small and finite simulation box. δ-

toxin monomeric systems discussed in the last subsection are at a protein

concentration of about 7-8 mM, reaching concentrations of about 18-21 mM in

the modeled systems with four peptide chains discussed in this section. In such

crowded systems, peptide chains influence each other and thus the structure of

the peptide should be strongly influenced by the presence of other peptides. To

get a better description of the secondary structure content of δ-toxin in solution,

aggregation systems were modeled in water, methanol, and DMSO. A brief

introduction to the systems simulated was already done in the methodological

section 5.2, still a more detailed description will be given below.

The starting configuration of δ-toxin in all models is an α-helix, the same

used for the monomeric systems. Employing rotations and translations in the

three-dimensional space four models were built, namely three dimers and one

tetrameric system. A parallel head-to-head system with respect to the peptide

terminus (system labels X_2Ma; figure 5.1b) will give us insights on the effects

electrostatic repulsion has on the secondary structure of both peptide chains. An

anti-parallel head-to-tail configuration (system labels X_2Mb; figure 5.1c) is a
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piori a more stable conformation due to peptide terminus charge attraction, and

will be compared directly to the head-to-head model. A perpendicular dimeric

model was also built, introducing randomness with respect to the starting

orientation between chains (system labels X_2Mc; figure 5.1d). An head-to-

tail tetrameric configuration was also build to model a more complex system

in solution (system labels X_4M; figure 5.1e). All chains were positioned

relative to each other at a distance of 1.7 nm, with no overlapping atoms. No

preferred orientation relative to δ-toxin amphipathicity was given between

adjacent chains, with exception of the tetrameric model where hydrophobic

residues are pointing to the center of the model, as can be seen in figure 5.1.

After solvent addition to each model system, at least two solvent layers are

present between peptide chains.

Multimeric models in water

Figure 5.5 shows the evolution of the secondary structure motifs on the

simulations of dimeric δ-toxin models in water. The head-to-head system model

W_2Ma shows that the two chains have different behaviors, as can be seen

from figure 5.5a. Whereas chain A shows a relatively well formed α-helix

between residues 10 to 24, chain B is much more unfolded throughout the

simulation time, maintaining an α-helix pattern between residues 13 to 18.

The repulsion between adjacent peptide chain termini leads to both peptides to

rotate relative to each other, such that electrostatic repulsion is minimized (data

not shown). On the other hand, the head-to-tail model (figure 5.5b) is more

stable with respect to α-helix content, due to the electrostatic attraction between

N and C termini. Notice that helices macro-dipoles may also play a role on

the interaction between the neighboring chains. The perpendicular dimeric

model W_2Mc has, on average, the highest content on structure between all

dimeric models studied here. At least 50% of the residues are in a α-helical

conformation. A more detailed overview of the secondary structure content per

peptide chain and studied model is reported in table 5.2.

Though the results on the secondary structure content of δ-toxin dimeric

models in water suggest a higher content on overall structure with respect to the

monomeric model W_1M, not much can be inferred about how the presence of
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DimerMonomerAG

Figure 5.5: Secondary structure (SS) of δ-toxin in bulk water for (a) a head-to-head
model (system W_2Ma), (b) a head-to-tail model (system W_2Mb), and (c) a perpen-
dicular model (system W_2Mc), as a function of simulation time. The aggregation
(AG) state is also depicted underneath the secondary structure stripes.
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other peptide chains in solution influence the structure contents of each modeled

system. A more detailed analysis can be envisaged if both the aggregation state

and the secondary structure are assessed simultaneously.

δ-toxin was considered to be aggregated if there was at least one atom of

one peptide chain at less than 0.5 nm from any atom of a neighboring chain.

This immediately gives a functional definition on the aggregation state of the

peptide in solution. Though this is a very generous definition for aggregation,

the results were qualitatively the same for different distance cutoffs. At any

time during a simulation, the peptide can be in different aggregation states,

depending on the initial number of chains on the simulation box. For all

simulations performed, we only considered the biggest peptide cluster present.

The chosen distance threshold value of 0.5 nm corresponds, on average, to two

layers of water molecules between peptides. Though at this distance atoms from

neighbor chains are still apart from each other (i.e., no van der Walls contacts),

electrostatic interactions between peptide charged groups are quite strong in

solution and felt several nanometers way. In fact, this is the main reason why

the computation of long range electrostatic forces in MD simulations using

cutoff schemes is being left aside.

The aggregation state for δ-toxin dimeric models in water is shown in figure

5.5, depicted as gray colored stripes beneath the secondary structure matrix

plots. In the first nanoseconds of simulation W_2Ma, the peptide has a tendency

to be in a monomeric state, which it can be understood due to the electrostatic

repulsion. As soon has peptide termini have rearranged themselves (as well

as the other charged residues) to a more stable conformation, δ-toxin forms a

dimer throughout the rest of the simulation. On the other hand, system W_2Mb

has a great tendency to collapse into a dimeric aggregate right from the first

instances, which is also maintained during the simulation. System W_2Mc

also shows a high tendency for aggregation, though in the first nanosecond

monomeric species are found. This is explained by the randomness of the

starting structure, where no peptide termini alignment preference was given.

Once peptide chains termini repulsion forces are minimized, a stable dimeric

aggregate is formed.

The simulation of a δ-toxin tetrameric model also presents a high content
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Dimer Trimer TetramerMonomerAG

Figure 5.6: Secondary structure (SS) of δ-toxin in bulk water for a tetrameric model
(system W_4M) as a function of simulation time. The aggregation (AG) state is also
depicted underneath the secondary structure stripes.

of regular structure (figure 5.6), with chains B and D with more than 50% of

the residues in an α-helix conformation. The peptide tetramer is formed rather

rapidly in the first nanosecond, and is stable throughout the simulation period.

Overall, these results seem to suggest that irrespective of the starting model,

δ-toxin has a high tendency for aggregation in water solutions (see table 5.2).

Nevertheless, structure content seems to be dependent on the starting model

structure.

Water is not at all a good solvent for amphiphatic peptides, since it lacks the

ability to interact favorably with hydrophobic patches on the peptide surface.

This mismatch leads to an inevitable aggregation of the peptides where these hy-

drophobic regions are clustered together away from the solvent. Remarkably, all

simulations of δ-toxin discussed above, collapse quickly into stable aggregates

which are maintained throughout trajectories. Regarding the structural content

present on the aggregates seen in solution, the way peptides aggregate should
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certainly play a major role. A δ-toxin peptide in solution is more prone to

structural rearrangements since energetically is a non-favorable system. Water

molecules will try to bend the peptide structure until an energetical minimum

compromise between enthalpic and entropic factors is attained. We have shown

from the simulation of the peptide monomer (system W_1M; figure 5.4a) that

most of the initial structural content is lost, namely only 10 residues (approx.

38% of all residues) maintain an α-helical structure on average. Whereas, in

the dimer and tetramer models, the α-helix content per peptide chain increases

on average, ranging from 20 to 70% of the total number of residues (table 5.2).

Experimental data regarding how δ-toxin behaves in simple solvents is

rather scarce. Cruz (2007) showed by circular dichroism that δ-toxin in water

at 20 µM (ambient temperature) has a residual content of α-helix of about

30%. Analytical ultracentrifuge and quasi-elastic light-scattering experiments

suggest aggregation of the peptide above 2 µM with formation of very large

asymmetrical species (Thiaudière et al., 1991). The self-associated species

are essentially in a alpha-helical conformation (70%), but once dissociation is

promoted in more diluted samples, the α-helix content severely decreases down

to 35%. Though the experimental conditions were not exactly the same as the

ones employed on the MD simulations performed in this chapter, the results

point to a fair agreement between experimental and theoretical techniques.

Furthermore, NMR results reported on chapter 3 (see figure 3.2a) also indicate

the presence of aggregation, and a low dispersion of peak resonances was

indicative of a random-coil structure in solution. The apparent discrepancy

of the results when comparing the structural secondary content from NMR

with MD can be due to several reasons, namely the solvent chemical-physical

characteristics as well as the time scale of the techniques.

Heavy water (D2O) is often used as a solvent (or co-solvent) in protein NMR

experiments instead of light water (H2O). The NMR experiment cited above

(figure 3.2a) was performed in D2O, and though we can state that aggregation is

visible from the spectra, we cannot rule out the presence of residual structure on

δ-toxin. It is known that deuterium oxide establishes stronger hydrogen bonds

with proteins thus stabilizing (in general) the overall protein structure (Loureiro-

Ferreira, 1997). On the other hand, deuterium oxide is a poorer solvent for
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nonpolar amino acids than water (Efimova et al., 2007) thus promoting a

stronger aggregation effect on proteins with exposed hydrophobic patches. It

is to expect that a more dramatic conformational change would happen on

an amphipathic α-helix in D2O, since hydrophobic patches will be even less

stable in this solvent than in normal water. A more pronounced unfolding of

the peptide leading to a high content of random coil is thus possible to occur in

such environment.

Another aspect to be taken into consideration is the time scale of experimen-

tal and MD techniques. MD is a computational expensive technique, both in

data collection and CPU time, hence the difficulty in producing long simulations.

Albeit extremely long simulations are already being produced (Freddolino et al.,

2008), current force fields still are inefficient in describing folding-unfolding

processes (Freddolino et al., 2009). In short, we cannot assert that the average

secondary structural content of δ-toxin peptide chain(s) after 50 ns of simulation

will change to a more random-coil like final structure/aggregate.

Multimeric models in methanol

The secondary structure content of δ-toxin dimer models in methanol is

shown in figure 5.7. Residues in the head-to-head system model M_2Ma (figure

5.7a) show a higher content in structure, particularly in α-helix conformation,

when compared with the same model in water. A relatively stable helix between

residues 10 and 20 is maintained in chain A, whereas in chain B the α-helix

conformation spans from residue 9 until residue 24. The head-to-tail model

M_2Mb (figure 5.7b) shows the highest α-helix content per chain from all

dimer simulations in methanol. Chain A has 50% of the residues in helix

conformations, with chain B having more than 90% of the residues in the same

conformation category. System model M_2Mc (figure 5.7c) has around 50% of

its residues in α-helix.

A rather different profile on the aggregation state is observed in the methanol

simulations of δ-toxin dimer models, when compared with the previous simula-

tion results in water. Depending on the starting model, most of the δ-toxin pop-

ulation is found in a monomeric form (models M_2Ma and M_2Mc), whereas

in the head-to-tail model M_2Mb, dimeric entities populate almost 80% of the
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Figure 5.7: Secondary structure (SS) of δ-toxin in bulk methanol for (a) a head-
to-head model (system M_2Ma), (b) a head-to-tail model (system M_2Mb), and
(c) a perpendicular model (system M_2Mc), as a function of simulation time. The
aggregation (AG) state is also depicted underneath the secondary structure stripes.
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Figure 5.8: Secondary structure (SS) of δ-toxin in bulk methanol for a tetrameric
model (system M_4M) as a function of simulation time. The aggregation (AG) state is
also depicted underneath the secondary structure stripes.

statistically relevant simulation time considered during analysis (table 5.2).

Secondary structure along simulated time for the tetrameric model of δ-

toxin in methanol is depicted on figure 5.8. All chains have more than 50%

of their residues in an α-helical conformation, spanning different regions of

the peptide primary sequence. Nevertheless, around residue 10 there is always

a break in the helix. Notice that residue 10 is a Gly, which may confer a

hinge point on the α-helix due to the lack of a bulky side-chain. During the

simulation there is no predominance of a specific aggregation state, though

higher aggregates of three and four peptide chains populate more than 60% of

simulation time.

Overall, the results for δ-toxin in methanolic solution, irrespective of the

aggregation model, show that the peptide is more prone to acquire an α-helix

conformation than in water. The chemical properties of methanol, namely

the fact that its molecule has both a hydrophilic and a hydrophobic moiety, a
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priori will be a good candidate solvent either for polar or less polar molecules.

Though we did not analyse in detail how the solvent is arranged around the

peptide during simulations, it is expected that the amphipathic characteristic

of this solvent will reveal itself. On average it should be expected to find

the methyl group of the solvent near the hydrophobic patches of the peptide,

and conversely the hydroxyl group in the first layer of hydration of peptide

charged/polar residues.

The experimental tertiary structure of δ-toxin in a methanolic solution at

298K was calculated in chapter 3, and is congruent with an α-helix extending

from the 2nd to the 24th residue. Deconvolution of CD spectra of δ-toxin also

showed that more than 90% of the residues are in a helix conformation (Cruz,

2007).

Multimeric models in DMSO

The secondary structure evolution for the three dimeric models of δ-toxin

in DMSO are shown in figure 5.9. Clearly, the head-to-head model D_2Ma is

the least stable whereas the head-to-tail model D_2Mb is the most stable, in

terms of structure content. After 20 ns of simulation, model D_2Ma has lost

all the initial secondary structure, and most of the residues are in random coil

(table 5.2). Model D_2Mb shows a higher content in structure, but folding and

unfolding fluctuations occur during all the trajectory. Model D_2Mc starts to

loose structure form the N-terminus, and eventually all α-helix content is lost

after 45 ns for both chains. In these three simulations, δ-toxin is almost always

found in a monomeric state, thus exposing all the residues to the surrounding

environment. The monomeric simulation discussed earlier in sub-section 5.3.2

gave already indications about a very low stability of the starting α-helical

model, and the same trend is seen on these multimeric system models.

The tetrameric model also shows the same characteristic loss of secondary

structure during the simulation (figure 5.10). The presence of tetrameric molec-

ular entities in solution is residual (< 1%), with the monomeric state populating

almost 60% of the simulation time (table 5.2).

DMSO molecules are stronger competitors to accept available hydrogen

bonds than water molecules (Vishnyakov et al., 2001). In practice, the use of
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Figure 5.9: Secondary structure (SS) of δ-toxin in bulk DMSO for (a) a head-to-head
model (system D_2Ma), (b) a head-to-tail model (system D_2Mb), and (c) a perpendic-
ular model (system D_2Mc), as a function of simulation time. The aggregation (AG)
state is also depicted underneath the secondary structure stripes.
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Figure 5.10: Secondary structure (SS) of δ-toxin in bulk DMSO for a tetrameric model
(system D_4M) as a function of simulation time. The aggregation (AG) state is also
depicted underneath the secondary structure stripes.

DMSO in aqueous protein solutions above a certain concentration can lead

to peptide unfolding or protein denaturation, due to a disruption of the in-

tramolecular backbone hydrogen bonds (Jackson and Mantsch, 1991). In the

above δ-toxin simulations in DMSO, it is clearly shown that once the solvent

disrupts the hydrogen-bonds which maintain the α-helix, the peptide will never

recover from a random-coil state. Furthermore, the high content on monomeric

species in solution is indicative of the strong solubilizing properties of DMSO

molecules.

The NMR data reported on chapter 3 is inconclusive about the secondary

structure of δ-toxin, but the obtained restraints do not indicate the presence of

helical structure.

In summary, the results presented in this sub-section show that δ-toxin

α-helix structure in methanol is both more stable and larger in its extent than in

water, while it has a high propensity to unfold in DMSO. In water, the content
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in α-helix increases when a more crowded solution is attained. On the other

hand, all methanolic systems do show a high content on α-helix, even for the

monomeric system.

Though the secondary structure of δ-toxin in water and methanol are similar

from the molecular dynamics results reported above, the aggregation dynamics

are quite different. Peptide chains in water tend to collapse quickly in very stable

aggregates. As soon as the aggregate is formed, it is maintained during the rest

of the simulation without disruption. This propensity for aggregation in water

was suggested to be a protective measure against proteases (Pokorny et al.,

2002). On the other hand, the aggregation state in methanol solution is rather

variable, with a constant formation and disruption of aggregated species, though

multimeric states have a higher propensity to form. We showed in chapter

2 using pulsed-field NMR studies that δ-toxin in methanol is polydisperse.

Though we were not able to discriminate an aggregation state from the NMR

data, results of molecular dynamics simulations on the present chapter suggest

also a polydisperse solution, with no predominance on the molecular species

present in solution.

Figure 5.11 shows ribbon representations of the peptide chains in the

tetrameric model in the three solvent systems studied, where the preserva-

tion of secondary structure and aggregation state as a function of time can be

inferred.

5.3.4 δ-toxin interaction with DMPC

A more complex assemblage composed of δ-toxin and a DMPC bilayer

was also simulated. Two system models were simulated, either in a symmet-

ric (system B_2Md, figure 5.1f) or asymmetric (system B_3M, figure 5.1g)

arrangement of peptides relatively to the bilayer leaflets.

In system B_2Md, one peptide per bilayer leaflet was simulated, positioned

in the bulky water phase in a parallel arrangement to the xy-bilayer plane . The

idea beyond this initial system setup was to study the interaction of the peptide

with the lipid bilayer from two different initial peptide orientations, in a single

simulation box. Due to its amphiphatic character, one of the peptides (chain A)

was placed with the hydrophobic patches facing the bilayer surface, whereas the
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0 ns                        10 ns                        20 ns                       30 ns                       40 ns                         50 ns

(a) System W_4M
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(b) System M_4M
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(c) System D_4M

Figure 5.11: Snapshots of four δ-toxin chains taken at 10 ns intervals in (a) water
(system W_4M), (b) methanol (system M_4M), and (c) DMSO (system D_4M). The
peptides are drawn as ribbons and colored by chain identification (A in blue, B in red,
C in green, and D in orange). The C-terminus is represented by a solid black sphere.
The solvent molecules are not shown for clarity, and all images are at the same scale
for direct comparison.

peptide on the other leaflet (chain B) was placed with the hydrophilic residues

facing towards the bilayer surface.

In system B_3M, three δ-toxin peptides were oriented with the long axis

parallel to the membrane surface. The peptide starting model was an head-to-

tail-to-head configuration, with the hydrophilic patches facing the membrane

surface. This model system was built based on several experimental documented

data. Most α-helical amphipathic peptides remain largely oriented parallel to

the membrane (Bechinger, 1999), and appear to associate side by side (Talbot

et al., 2001). Pokorny et al. (2002) investigated binding and insertion of δ-

toxin into phospholipid bilayer vesicles. Based on the results obtained, the

authors formulated a detailed kinetic mechanism, and concluded that the peptide

translocates across the bilayer as a small, transient aggregate, most likely a

trimer.
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Figure 5.12: Interaction of δ-toxin peptide chains and the DMPC bilayer surface,
for simulations with (a) one peptide (B_2Md) and (b) three peptides (B_3M) per
leaflet. The distance between peptides and the bilayer was measured between the
center-of-mass of each peptide and the average z component of both lipid nitrogen and
phosphorus atoms.

In order to assess the interaction of the peptides with the biomembrane,

the distance between each peptide in the system to the xy-bilayer plane was

measured as a function of time (figure 5.12). Briefly, for each time frame on the

simulation, the orthogonal distance between the center-of-mass (COM) of the

peptide and the bilayer plane formed by both nitrogen (N) and phosphorus (P)

lipid atoms, was measured. The lipid N atoms are the first bulky polar atoms at

the bilayer interface interacting with the peptide. Furthermore, due to bilayer

flexibility and to the bilayer headgroup tilt angle1, we further considered the

P atoms to assess an average polar plane at the bilayer surface per trajectory

frame analysed.

Figure 5.12a shows that both δ-toxin peptide chains on system B_2Md

gradually approach the bilayer surface in the first 25 ns. A plateau average

distance between peptide chains and bilayer surface of about 0.25-0.5 nm is

1The angle between the headgroup P-N vector, pointing from the phosphorus to the nitrogen
atom, and the bilayer normal was calculated for the DMPC system B_45x12 in chapter 4 (data not
shown). The average value taken from the angular distribution is 80.6±0.1 degrees, indicating
headgroups lying essentially flat down the bilayer plane. This behavior is in accordance with
previous published data on phosphocholine lipids (Bechinger and Seelig, 1991; Högberg and
Lyubartsev, 2006).
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0 ns                        30 ns                        60 ns                       90 ns                      120 ns                         150 ns

(a) System B_2Md

Figure 5.13: Snapshots of the binding process of a δ-toxin monomer to a DMPC
bilayer, from the trajectory system B_2Md. The nitrogen and phosphorous atoms of the
phosphocholine headgroups are shown as black spheres. The remaining lipid molecule
atoms are represented by black thin lines. The peptides are in a cartoon representation;
chain A in red, chain B in green. The Trp residues molecular surface is shown in cyan.
The water molecules soaking the system were removed for clarity, and the periodic box
image of the lower leaflet is partially shown.

then maintained for most of the simulation. In the last 50 ns it is clearly seen

that both chains do penetrate into the bilayer. Though the general behavior is

the same for both peptides, chain B seems to have a higher tendency to interact

with the bilayer than chain A. The same information is displayed qualitatively

as snapshots in figure 5.13.

Chain B was positioned in the bilayer box with the Trp residue pointing to

the bilayer surface, whereas chain A had the same hydrophobic residue pointing

away from the lipidic surface. Because both amphiphatic chains were placed

in the bulky water, they are free to rotate and translate, still, the presence of a

bilayer system is felt right from the beginning of the simulation. Moreover, it

seems that the initial orientation of the peptide regarding the bilayer surface is

not important, since both chains behave in the same way, i.e., the adsorption

kinetics is comparable. A closer look of the snapshot image taken at 30 ns

(figure 5.13, paying particular attention to δ-toxin Trp residue orientation),

show that chain A rotated along its long axis, exposing the hydrophilic peptide

residues towards the bilayer surface. The Coulomb interactions between the

lipid charged headgroups and the peptide charged groups, play certainly a major

role on this initial step. Since these are long range interactions, diffusion of the
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peptide will be conditioned by a pulling effect towards the bilayer, regardless

its orientation in solution.

Differences on the behavior of the peptides on the B_2Md system are

evident at a later stage of the simulation. Figure 5.12a shows that chain B is

closer to the bilayer than chain A after 25 ns of simulation. The orientation of

the Trp residue seems to play a major role here. As soon as the Trp residue is

able to accommodate itself among the lipid headgroups, it acts as an anchor

to the peptide. Moreover, its seems to be a driving force for the peptide to get

deeper into the membrane. After 150 ns, δ-toxin Trp in chain B reaches the

midplane of the bilayer, and the COM of the peptide is circa 0.5 nm below the

nitrogen/phosphorus atoms plane (NP-plane) of the bilayer leaflet. On the other

hand, the Trp in chain A does not cross this NP-plane, and the peptide remains

only adsorbed at the bilayer surface.

The results obtained for system B_2Md do suggest that the Trp residue is

important in the first stages of peptide/bilayer interaction. This is a common

trend found in many amphipathic peptides, like cecropins, where a hinge prone

region in the middle of the peptide seems to be essential for function (Marassi

et al., 1999). Chain A was not able to get deeper into the membrane surface,

and two plausible explanations arise. First, considering that the Trp residue of

chain A was not in an “ideal” position relative to the bilayer for interaction, it

will take time for the chain to rotate exposing the Trp to the bilayer surface.

The adsorption of the hydrophobic moiety of chain A to the membrane, which

was positioned toward the bilayer surface, would also impose a constraint in the

degrees of freedom available to all peptide residues, including the Trp. Slow

processes are thus extremely difficult to be studied by molecular dynamics

due to its finite simulation time. Secondly, the Trp of chain B was already

interacting deeply with the bilayer. The sequestering of lipid molecules by

δ-toxin impart a more ordered phase to the bilayer, which per se increases the

energetic barrier for a solute to permeate it. Furthermore, once both peptides are

at the bilayer interface, a mass equilibrium is attained, impairing further peptide

bilayer penetration. Pokorny and Almeida (2004) showed that at low P/L

(1/50), δ-toxin promotes a graded efflux of the contents of large POPC vesicles.

The authors suggested that the bilayer must be under curvature strain, which
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arises from an imbalance in the membrane-bound peptide concentration across

the bilayer. Once equilibrium is established, membrane curvature disappears,

and peptide translocation occurs at negligible rates.

The secondary structure average content of both peptide chains on system

B_2Md is mainly random coil (up to 50%; see table 5.2). The simulation results

show that the δ-toxin monomer in the presence of a DMPC bilayer is not very

stable as an α-helix. Actually, the results are very similar to the ones obtained

for the simulation of the monomer in a water box (system W_1M). Several

biophysical techniques were used to characterize the structure of δ-toxin in

aqueous solution as well as interaction with micelles and lipid membranes (Lee

et al., 1987; Thiaudière et al., 1991). Accordingly to the experimental data

available, the peptide is largely unstructured at low concentrations, while adopt-

ing an α-helical conformation at higher concentrations when bound to micelles

or lipid membranes. Nevertheless, such apparent discrepancy between peptide

secondary structural content between system B_2Md and published data, is

an indication of the intrinsic difficulty in building an initial meaningful model,

able to reproduce the experimental data.

It is certain that folding/unfolding are complex biological processes (Dill

et al., 2007; Levinthal, 1968). This poses problems on molecular dynamics

simulations, such that starting a simulation from a folded protein, or from an

extended conformation with the expectation of getting a refolded body, is not at

all comparable. The folding/unfolding landscape available to the protein has

several energy barriers in between, and molecular dynamics may not be able to

cross them under the conditions and on the time scales used. When it comes to

unfolding and refolding, the real question is “what causes it”2. If it is due to

instability of the folded structure given the conditions, then it is quite unlikely

that the secondary structure will reform. That may be an issue of force field, but

may also be intrinsic to the protein. On the other hand, it may just temporarily

unfold, and refold soon after, if it is in an equilibrium (Reif et al., 2009). δ-

toxin is not stable as an α-helix in aqueous solutions, unless high aggregates

protect exposed hydrophobic residues from the aqueous environment. In the

2Private communication from T. Wassenaar.
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(a) System B_3M

Figure 5.14: Snapshots of the binding process of a δ-toxin trimer to a DMPC bilayer,
from the trajectory system B_3M. The nitrogen and phosphorous atoms of the phospho-
choline headgroups are shown as black spheres. The remaining lipid molecule atoms
are represented by black thin lines. The peptides are in a cartoon representation; chain
A in red, chain B in green, and chain C in blue. The Trp residues molecular surface is
shown in cyan. The water molecules soaking the system were remove for clarity, and
the periodic box image of the lower leaflet is partially shown.

initial stages of simulation B_2Md, δ-toxin residues are completely exposed

to the solvent. The helices unfold as it would be expected for an amphipathic

peptide in aqueous solution. When δ-toxin finally interacts more tightly with

the membrane, most of the α-helical content was gone. In the simulated time it

was not possible to see the re-folding back of δ-toxin.

In the second peptide/bilayer system studied (system B_3M), the goal was

to study the interaction of several (three) δ-toxin peptides with a DMPC bilayer

in fluid phase. Figure 5.12b shows a quite different trend on the behavior

of peptide bilayer interaction when compared to system B_2Md. Though in

general terms the COM of all peptides is closer to the NP-plane by the end of

the simulation, only one peptide (chain C) strongly interacts with the bilayer

surface. The COM of the other two chains (A and B) stays on average between

1.0 to 1.5 nm from the NP-plane. However, we should stress that these results

based on the distances calculated using the peptide COM, should be taken

only as qualitative measures of the overall process. δ-toxin is prone to major

conformational changes, thus the COM of the peptide could be distant from the

target membrane, and still a large percentage of its residues could be adsorbed

to the bilayer surface.

Figure 5.14 depicts regular snapshots taken from system B_3M. The peptide

chains form an entangled aggregate, while interacting with the lipid surface.
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The α-helical secondary structure is also lost during simulation as it occurred

in system B_2Md, though a considerable number of residues (8 to 12, see table

5.2) are able to maintain this secondary structure pattern. The results from this

simulation indicate that the aggregation of the peptides, both in solution and at

the DMPC interface, impose a energy barrier for δ-toxin to adsorb strongly to

the bilayer. Moreover, without a proper anchoring of the aggregate to the lipid

bilayer, penetration of the peptide into deeper regions of the bilayer seems to be

impaired.

5.4 Conclusions

In order to assess the conformational stability of δ-toxin, we performed

molecular dynamics simulations at room temperature in different chemical

environments. To the authors knowledge, this is the first molecular dynamics

study on this amphipathic model. The starting structure for all simulations

was an ideal right handed α-helical molecular model3. Different models were

built with the aim of studying the secondary structure content of the peptide as

well as its propensity for aggregation in water, methanol, and DMSO solutions.

Likewise, the interaction of the peptide with a bilayer composed of DMPC

molecules was carried out.

Though reported results in this chapter have considered only a single trajec-

tory simulation per system model, up to five simulations are already produced

for a more in-depth comparative description of the overall peptide plasticity in

water, methanol, and DMSO solvents. Preliminary analysis show that the multi-

ple MD simulations show identical trends in the same chemical environment.

The simulations carried out in methanol systems showed that the α-helical

conformation of the peptide is largely maintained throughout the simulations,

whereas in water, larger conformational fluctuations lead to a loss of the sec-

ondary structure content. DMSO simulations show that the peptide completely

looses its structure. It was also shown that δ-toxin has a high propensity to ag-

3The experimental 3-D structure of δ-toxin was not available on the protein data bank when
the subject of this chapter was first addressed.
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gregate in water, whereas in methanol and DMSO, a complex dynamic behavior

of formation and disruption of aggregation species is observed.

When comparing the most recent experimental data obtained with the MD

results in the present chapter, we conclude that they agree fairly well and provide

a complementary view of the structure and dynamics behavior of δ-toxin in

different chemical environments.

Regarding the results from the peptide/bilayer simulations, it was shown in

system B_2Md that the Trp residue is very important for δ-toxin to penetrate

into the membrane. Furthermore, the aggregation of δ-toxin does not favor

the interaction of the peptides with the membrane (system B_3M). In fact, the

area per lipid AL of system B_3M, slightly decreased when compared to a pure

DMPC system (see chapter 4) to AL = 0.59 nm2, supporting the idea that only

adsorption to the surface bilayer occurred. A decrease on AL suggests a closer

contact between lipid molecules, in order to counterbalance the interaction

of the peptides with the lipid headgroups. On the other hand, AL increased

for system B_2Md (AL = 0.63 nm2), indicating that the peptide was able to

disorganize the lipid surface and insert itself into the bilayer. An increase on

AL suggests that lipid molecules are farther apart, thus lipid molecules were

pushed aside by the peptide while insertion occurred.

Several models concerning the molecular mechanism for peptide induced

membrane disruption have been proposed, namely the barrel-stave model (Ehren-

stein and Lecar, 1977), the toroidal hole model (Ludtke et al., 1996), the carpet

model (Shai, 2002), and more recently the sinking-raft model (Pokorny and

Almeida, 2004; Pokorny et al., 2002). The number of proposed models is con-

sistent with the present uncertainty on the overall mechanism on how peptides

interact with membranes. Furthermore, the crucial question about target cell

specificity of these peptides is still under strong scientific debate (Pokorny

and Almeida, 2005). Molecular dynamics simulations are a very promising

approach to tackle such questions, providing atomistic detail of the process

which is virtually impossible to get with experimental techniques alone.
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6.1 Introduction

Nowadays, the huge interest in amyloid fibrils within the biomedical re-

search community arises from their association with well known amyloid

diseases, such as Prion related pathologies (Bovine Spongiform Encephalopa-

thy, Kuru and Creutzfeldt-Jakob), Alzheimer’s, Parkinson’s and Huntington’s

diseases, as well as type 2 diabetes mellitus, Familial Amyloidotic Polyneu-

ropathy (FAP) and Senile Systemic Amyloidosis (SSA). Although amyloid

diseases are caused by different proteins, they seem to share common molec-

ular mechanisms, which ultimately result in the deposition of ordered protein

aggregates mostly in the extracellular environment, though in some pathologies

intracellular and intranuclei deposits have been reported.

These supramolecular structures are being a major target of study for the

biochemical and biophysical research community, which is trying to unravel

the nature of the interactions that make amyloid fibrils a stable structure and the

mechanisms by which amyloid fibrils form from monomeric and oligomeric

species (Tycko, 2004).

Transthyretin (TTR) is one of the many proteins known to be involved in

human amyloid diseases, and over the years was identified as the causative agent

of several amyloid pathologies, such as FAP and SSA. TTR is a homotetrameric

protein with 127 amino-acids per subunit, 55 KDa of total molecular mass, with

a high content of β-sheet, and it is mostly found in the plasma and the cerebral

spinal fluid. Each TTR monomer has a β-sandwich fold composed of two

four-stranded β-sheets labeled DAGH and CBEF, as shown in figure 6.1. In the

native protein, the β-sheets from two monomers associate edge-to-edge through

β-strands HH’ and FF’ to produce a dimer composed of two extended β-sheets

formed by strands DAGHH’G’A’D’ and CBEFF’E’B’C’. The association of two

of these dimers, mainly through hydrophobic interactions mediated by the AB

and GH loops, forms the functional homotetramer. The two known functions of

the protein are the transport of thyroxin and when complexed with the retinol

binding protein, it helps the carrying of vitamin A.

Current views on amyloid fibril formation by TTR state that, depending on

the protein variant or solution conditions, the native tetrameric protein might

dissociate to non-native or partially unfolded monomeric species with a high
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Figure 6.1: Secondary structure of the crystal structure of the wild type TTR sub-
unit (pdb code 1F41; Hörnberg et al., 2000), with the identification of β-strands. A
partially disrupted monomer was build by removing strands C and D and neighbor
loops of the native monomer (in red).

tendency for aggregation into soluble oligomers, which grow into insoluble

molecular species and eventually mature amyloid fibrils (Brito et al., 2003; Lai

et al., 1996; Quintas et al., 1999). Therefore, the structural characterization of

these fibrils and the identification of the entities involved in fibril assembly play

a crucial role in the understanding of the mechanisms of pathogenesis in amyloid

diseases, and in the development of appropriate therapeutic strategies. Though

the difficulty of achieving atomic resolution detail for fibrils is well known,

considerable progresses are being made toward a more detailed knowledge of

these supramolecular structures (Laidman et al., 2006; Nelson et al., 2005).

Proteolysis patterns both in vivo (Thylén et al., 1993) and in vitro (Gold-

steins et al., 1997; Gustavsson et al., 1991) of TTR amyloid fibrils, suggest

an increased exposure of strands C and D in the fibrillar form. Recent X-ray

spectroscopy data also demonstrated that residue cysteine 10, which is locate at

the start of strand A (figure 6.1), is more exposed and oxidized in the fibrils than

in the native tetrameric form of TTR (Gales et al., 2003). A conformational

change in the CD β-strands and DE loop regions must occur in order to expose

Cys10.

Yeates and collaborators (Serag et al., 2001, 2002) used a series of nitroxide

spin-labeled cysteine substituted TTR mutants, for the determination of inter-

nitroxide distances by electron paramagnetic resonance (EPR). The authors
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Figure 6.2: Docking-alignment protocol devised to assemble models of amyloid
protofilaments of TTR. The protein interfaces of TTR believed to mediate protein
aggregation were modeled by protein docking, using experimentally determined data.
The resulting complexes were aligned generating multiple protofilaments, and clustered.
The structural quality of the chosen structures is then assessed.

proposed an “anti-parallel head-to-head/tail-to-tail” arrangement of the TTR

subunits in the fibril, with the native inter-subunit contact between β-strands F

and F’ maintained. A new inter-subunit interface is formed between β-strands

B and B’, associated in an anti-parallel arrangement. The formation of this

new interface implies the displacement of strand C from the β-sheets edge, in

order to expose strand B. These results are consistent with the formation of a

continuous extended cross-β structure characteristic of amyloid and composed

by strands (BEFF’E’B’)n.

Hydrogen/deuterium exchange studies of TTR in the fibrillar state identified

a core region of the TTR subunit with large solvent protection factors . The data

indicates that strands B, E and F and strands A, G and H of the TTR subunit

are, if not totally, partially maintained in the fibrils. The presence of solvent

exposed residues in strands C and D, as well as in the connecting and following

loops, clearly shows that this region is not part of the fibrillar core.

Taken together, the experimental results support a protofilament structure

formed by a core of two three-stranded β-sheets, BEF and AGH. Moreover,

the interaction between these three-stranded β-sheet monomers in the amyloid

fibrils is mediated by two types of interfaces: a near-native interface (NearNI)

comprising strands FF’ and HH’ and a non-native interface (NonNI) constituted

by strands AA’ and BB’ of adjacent subunits.

The above experimental findings provided us with impetus to develop and

explore a methodology to build a high resolution molecular model of the ele-

mentary units that constitute the fibrils (figure 6.2), the so called protofilaments.

The methodology, briefly reported in a previous work (Correia et al., 2006),

was applied to TTR, but may also be useful for other proteins involved in the

formation of amyloid fibrils.
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6.2 Computational methods

6.2.1 TTR native monomer

The coordinates for the native monomer were taken from the chain A of

the TTR crystal structure deposited at the RCSB Protein Data Bank (Berman

et al., 2000) with the accession code 1F41 (Hörnberg et al., 2000). We have

opted for structure 1F41, given that it has the largest atomic resolution until

the moment, though terminus residues are not present on final structure. Some

residues have two well defined conformations with 0.5 of occupancy factor.

In these cases, the second conformation was discarded. Crystallization waters

were also discarded.

6.2.2 Modeling a TTR non-native monomer

In order to expose strands A and B, a partially disrupted non-native monomer

was built by removing strands C and D and adjacent loops (residues 36 to 65)

from the native monomer. After careful inspection of the resulting structure,

loop AB (residues 21 to 27) was also removed because it partially occluded the

non-native interface that is going to be modeled and it poses steric hindrance

problems during the protein-protein docking stage. The N-terminal residues

Cys10 and Pro11 form a kink on strand A, not allowing a correct approximation

of strands A and A’ during the docking procedure, and were also removed.

6.2.3 Protein-protein docking protocol

Docking calculations were performed using a high ambiguity data-driven

docking approach, implemented on HADDOCK 1.2 (Dominguez et al., 2003) in

combination with CNS (Brünger et al., 1998). The docking protocol consists of

three stages: randomization of orientations and rigid body energy minimization;

semi-flexible simulated annealing in torsion angle space; and a final refinement

in Cartesian space with explicit solvent. For details, see Dominguez et al. 2003.

Two native monomers were docked against each other at their native inter-

face (strands FF’ and HH’), generating near-native dimeric structures. Therein,

the interface FF’–HH’ obtained from the docking procedure will be called
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near-native interface, in order to distinguish it from the native dimeric crystal-

lographic interface. A second set of docking runs was performed, where two

non-native monomers were docked at their non-native interface (strands AA’

and BB’), generating non-native dimeric structures.

The docking is driven by ambiguous interaction restraints (AIRs), defined

between any atom of active residues of the ligand protein and all atoms of all

passive residues on the receptor protein (table 6.1). An upper-bound of 2 Å was

applied to AIRs, a compromise between hydrogen-hydrogen and heavy-atom

minimum van der Waals distances (Dominguez et al., 2003). Active and passive

residues were defined based on nuclear magnetic resonance (NMR)) H/D ex-

change data (Olofsson et al., 2004), and solvent accessibility calculations using

the program NACCESS (Hubbard and Argos, 1994). The active residues define

the ones experimentally identified to be involved in the interface interaction and

having a high solvent accessibility (> 45% relative accessibility) in the free

form of the protein. The passive residues are all solvent accessible neighbors of

active residues. Additional sets of restraints for the NearNI and NonNI were

defined based on EPR experimental data (Serag et al., 2001, 2002), and were

applied between the C atoms of the residues involved in the site-directed spin

labeling study. The interface amino-acid residues which constitute the flexible

segments in the last two stages of the docking procedure are defined from

the active and passive residues used in the definition of AIRs ± 2 sequential

residues.

The modeled non-native monomer is constituted by 3 protein fragments,

roughly corresponding to strands A (residues 12 to 20) and B (residues 28 to 35),

and a third fragment with residues 66 to 125. In order to maintain the overall

monomer structure, hydrogen bonds were defined as unambiguous restraints1 ,

on adjacent strands of each monomer β-sheet, for both partners involved in the

1 Hydrogen bonds were calculated for TTR native monomer using VMD (Humphrey et al.,
1996) builtin routines. A schematic representation of the main-chain hydrogen bonds is depicted
in appendix figure A.1, page 205. The unambiguous restraints were defined between adjacent
main-chain heavy atoms N and O. Example:
assign (segid A and resid 13 and name n) (segid A and resid 105 and name o) 2.88 0.50 0.50

assign (segid A and resid 13 and name o) (segid A and resid 107 and name n) 2.87 0.50 0.50
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modeling of the NonNI.

A total of 2,000 rigid body docking solutions was generated for each

docking run. In addition, for each of the rigid body starting conformations,

10 rigid body trials were performed and only the best solution based on the

intermolecular energy (Einterm; sum of van der Waals, electrostatic, AIRs and

unambiguous energy terms) was kept, bringing the total effective docking trials

to 20,000 per docking run. The 200 best solutions according to intermolecular

energies were subjected to semi-flexible simulated annealing followed by a

final refinement in explicit water. During the simulated annealing and the water

refinement stages, the amino-acids at the interface (side chains and backbone)

are allowed to move in order to optimize the interface packing. The final

refinement in explicit water is performed to improve the energetics of the

interface, which is important for a proper scoring of the resulting conformations.

The non.bonded energies were calculated with the OPLS parameters (Jorgensen

and Tirado-Rives, 1988) using an 8.5 Å cut-off.

The final complexes were clustered using a pairwise backbone root mean

squared deviation (RMSD) matrix. Structures were superimposed on backbone

atoms, and the RMSD was calculated on backbone atoms of both partners. Then

a clustering algorithm described in Daura et al. (1999) was employed . Briefly,

for each structure, the number of neighboring structures was counted using

a 1 Å cutoff. The structure with the largest number of neighbors constitutes

a cluster and is eliminated from the pool of structures. The procedure was

repeated for the remaining structures in the pool until the size of the newly

extracted cluster was smaller than 4 elements. Clusters were ranked according

to their average intermolecular energies.

The buried surface area (BSA) for the obtained docked dimers was calcu-

lated using CNS (Brünger et al., 1998), by taking the difference between the

sum of the solvent accessible surface area (SASA) for each partner separately

and the SASA of the complex. SASA was calculated using a 1.4 Å water

probe radius and an accuracy of 0.055 Å. The 10 lowest energy structures of

each cluster obtained were selected for further analysis. A broader analysis

on the lowest energy cluster was also done using the 100 best structures. The

lowest energy structure of the lowest energy cluster is considered to be the
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Figure 6.3: Schematic view of the alignment protocol of near-native and non-native
dimers, in order to build protofilament structures. The black and white arrows represent
the β-strands used to align the dimeric structures.

highest ranking solution, and is assumed to be the best structure generated by

HADDOCK.

6.2.4 Analysis of intermolecular contacts

Intermolecular contacts (hydrogen bonds and non-bonded contacts) were

analyzed with DIMPLOT, which is part of the LIGPLOT software (Wallace

et al., 1995), using the default settings: 3.9 Å heavy-atoms distance cut-off for

non-bonded contacts as well as 2.7 Å and 3.35 Å proton-acceptor and donor-

acceptor distance cut-offs, respectively, with minimum 90° angles (D-H-A,

H-A-AA, D-A-AA) for hydrogen bonds (McDonald and Thornton, 1994).

6.2.5 Protofilament alignment procedure

An alignment protocol was devised to build a protofilament from non-native

and near-native dimeric structures obtained in the protein-protein docking

scheme (figure 6.3). A Tcl (Ousterhout, 1994) script brings together all the

procedures required to build the TTR protofilaments and to perform subsequent

analysis. The script runs under VMD’s (Humphrey et al., 1996) Tcl interpreter,

making use of the major facilities provided for handling molecular structures.

The non-native dimer is used as a building block, and the near-native dimer
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as a template model to rebuild the interface between adjacent non-native dimers

at the protofilament level. β-strands E and G (backbone atoms) are used to align

the building blocks with the template models, since their relative coordinates

were approximately maintained through out the docking procedure. Briefly, two

steps are required to build a protofilament composed of two dimeric subunits,

for each pair of non-native/near-native docked structures. A superimposition is

done between chain B of the non-native dimer and chain A of the near-native

dimer. After this initial alignment, chain A of the near-native dimer is discarded

and the relative orientation of the resulting 3-mer is saved. This 3-mer will

be then subject to a new superimposition, between the left over chain B of

the near-native structure with chain A of a new non-native dimer, producing

a 4-mer. Once chain B of the last added near-native dimer is discarded, the

obtained protofilament is composed solely by four monomeric units coming

from non-native dimers. This two-step protocol is repeated until the growing

n-mer protofilament has the desired length.

Two sets of protofilaments were built. One of the sets uses non-native

and near-native dimers obtained from HADDOCK runs driven only by AIRs

(protofil-epr), while the other set of protofilaments was assembled from dimers

obtained with AIRs and EPR distance restraints (protofil+epr). The 100 best

solutions taken from the cluster with the lowest average intermolecular energy,

in each docking run, were used as protofilament building blocks in the alignment

scheme. We combined in a pairwise fashion each near-native dimer with each

non-native dimer, producing a total of 10,000 protofilament structures for each

set of docking conditions.

6.2.6 Protofilament polymorphism

The characterization of each protofilament was accomplished by measuring

two geometric properties: the linearity and the helical twist. The linearity of

the supramolecular structures was evaluated by measuring the distance between

the geometric centers of each dimer composing the protofilament. The twist of

the protofilaments was studied by calculating the angle between strand G of the

first monomer of the first dimer and the same β-strand of the first monomer of

the remaining protofilament dimers.
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From the two sets of 10,000 protofilament structures, protofil-epr and

protofil+epr, about 99.8% of them were selected based on the criteria of having

a r2 ≥ 0.95 in the linear fitting applied to the distance data. All selected

protofilaments present a helical twist. This type of structure implies a periodic

factor in the number of dimers. A discrete Fourier transform was applied to

the angle data of each protofilament to determine the periodic component. The

protofilament structures used for this analysis consisted of 128 dimers. The

protofilament structures were built with such a large number of subunits to gain

a greater frequency resolution, leading to a better period discrimination. The

approach allowed us to cluster the protofilaments based on their helical period.

The representative cluster of protofil-epr and protofil+epr was further char-

acterized. The hydrogen bonding pattern on the protofilaments was studied. We

only considered hydrogen bonds involving backbone atoms on both NearNI

and NonNI subunit interfaces. One protofilament from each initial set was

chosen, so as to maximize the number of hydrogen bonds on both interfaces.

These two supramolecular structures will be further refined in order to get a

full polypeptide chain for each protofilament subunit. Alongside, the angles

between adjacent β-sheet strands were determined as well as between each

strand and the protofilament major axis.

6.2.7 Protofilament refinement

In order to rebuild the full polypeptide chain in each protofilament subunit,

the previously removed peptide fragments in the non-native monomer and

the terminal residues were added (figure 6.4). The approach uses the colony

energy concept implemented on the loop prediction program Loopy (Xiang

et al., 2002). Though the program was designed to sample the space for correct

conformations of a given loop, we used it to predict the conformation of loops

and terminal residues missing in the protofilament subunits. For short protein

fragments of less than 7 residues, 500 fragment candidates were used, while for

longer fragments we used 2000 candidates. Energy minimization was performed

on candidate conformations and the best solution, after energy sorting, was

chosen.

The added protein fragments were then subjected to a short molecular
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Figure 6.4: Protofilament refinement methodology. The full peptide chain of the
partially disrupted monomers was rebuilt and the added fragments subjected to con-
formational refinement. The alignment protocol described previously was applied to
the obtained non-native dimer, and the NearNI modeled was also refined, in order to
remove any clashing interactions. The final non-native dimer was then used as the
building block in the TTR protofilament assemblage. See computational methods for
further details.

dynamics (MD) run in vacuum, while keeping the remaining protein atoms

fixed, i.e., without interfering with the NonNI. This non-native dimer with

refined loops was then subjected to an alignment scheme with a near-native

dimer, in order to reproduce the NearNI obtained with HADDOCK. The NearNI

was energy minimized and subjected to a short MD run. The resultant non-

native dimer, with refined terminal/loops and a relaxed NearNI, was then used

to generate a final protofilament with 20 monomers, using the protofilament

alignment procedure described above.

The protofilament was solvated using VMD, and NaCl ions were added to

a final ionic strength of 150 mM, resulting in a system of > 350,000 atoms.

All atoms were explicitly represented. After energy minimization, the system

was first heated for 40 ps under Langevin dynamics at constant volume to

the target temperature (298 K), with hard harmonic restraints placed at the

backbone atoms, followed by 40 ps at constant pressure. The pressure control

was achieved using the Langevin piston Nosé-Hoover method. Equilibration

continued for more 40 ps with soft harmonic restraints placed at the backbone

atoms and 15 ps without harmonic restraints. The volume was then fixed and
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the system was finally equilibrated using classical molecular dynamics in the

NVE ensemble for 15 ps. A production run of 100 ps was carried out and

coordinates for the whole system were saved every 1 ps.

The simulations were carried out using periodic boundary conditions and a

time step of 2 fs, with distances between hydrogen and heavy atoms constrained.

Short range non-bonded interactions were calculated with a 12 Å cut-off with the

pair list distances evaluated every 10 steps. Long range electrostatic interactions

were treated using the particle mesh Ewald summation algorithm and were

computed at every step. All energy minimizations and MD procedures were

performed with the program NAMD (Phillips et al., 2005), using version 27 of

the CHARMM force field (MacKerell et al., 1998).

The overall stereochemical quality of the final structure was assessed with

PROCHECK (Laskowski et al., 1993).

The Adaptative Poisson-Boltzmann Solver (Baker et al., 2001) software

package was used to describe qualitatively the electrostatic interactions between

the final protofilament model and a salty aqueous solution. A linearized Poisson-

Boltzmann equation was solved at 150 mM ionic strength with a solute dielectric

of 2 and a solvent dielectric of 78.5. The assignment of charges and radius per

atom was done with PDB2PQR (Dolinsky et al., 2004) using CHARMM-27

parameters.

All images were produced using VMD, unless stated otherwise.

6.3 Results and discussion

The knowledge of the architecture of amyloid fibrils is essential for un-

derstanding the pathological process in amyloidosis and to devise therapeutic

strategies. The rational design of drugs that might interfere with or reverse

amyloid formation is strongly dependent on the accuracy of target selection. A

docking-and-alignment protocol was devised in order to build amyloid protofil-

ament models of TTR (figure 6.2). Briefly, two sets of protein-protein docking

computations were performed, to recreate a near-native subunit interface and

to build a new non-native subunit interface. The docking procedure is driven

by ambiguous/unambiguous interaction restraints, defined accordingly to ex-
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perimental data. The protein complexes obtained are then subjected to an

alignment/refinement scheme, generating protofilaments with distinct character-

istics. A clustering analysis is performed based on the twist periodicity of the

protofilaments obtained, and the chosen protofilaments are subjected to a short

molecular dynamics run to relax the structures. The overall stereochemical

quality of the structures is then assessed.

6.3.1 Defining the protein docking sites

The mechanism by which the native globular fold of TTR may be converted

into elongated fibrillar assemblies has been investigated extensively, and nu-

merous studies have shown that dissociation of the native tetrameric structure

into partially unfolded monomeric species precedes amyloid formation (Lai

et al., 1996; Quintas et al., 2001). The re-association of these partially unfolded

species into filamentous protofibrils (Lashuel et al., 1998; Olofsson et al., 2001)

accompanied by partial refolding of the subunits, ultimately coalesces into

mature rod-like fibrils (Serpell et al., 2000, 1995). Several different models

of the TTR amyloid architecture have been proposed (Inouye et al., 1998;

Olofsson et al., 2001; Serag et al., 2001, 2002; Serpell et al., 1995). The most

recent model was derived from experimentally determined amide proton pro-

tection factors (Olofsson et al., 2001). The authors proposed a model of the

fibril core, in which the native conformation of the six β-strands A, B, E, F,

G, and H are essentially preserved and able to self-associate into a dimeric

(monomer-monomer) native-like conformation. The amide protection factors

further suggest an interface region formed by an anti-parallel arrangement of

strands FF’ and HH’ (NearNI), similar to the native dimeric crystallographic

interface. Furthermore, a number of experimental works (Goldsteins et al.,

1997; Gustavsson et al., 1991; Olofsson et al., 2004; Serag et al., 2002; Thylén

et al., 1993) supports the view that in the fibrils, strands C and D are displaced

from their native position at the edge of the β-sandwich, becoming loosely

structured and solvent exposed. Strands A and B are thus available to participate

in intermolecular interactions. Solvent protection of this novel edge region

(NonNI), as well as formation of a continuous β-sheet, is then achieved by

anti-parallel intermolecular association via strands AA’ and BB’. These observa-
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tions are of the utmost importance in the design and validation of our docking

approach.

The first goal of this work was to model the two types of interfaces (NearNI

and NonNI) suggested as taking part on the TTR protofibril assembly. This

was accomplished with two sets of protein-protein docking calculations, each

one modeling a different interface. The monomeric subunits that constitute the

modeled complexes are treated as semi-rigid bodies retaining a native like fold

through out the procedure, with allowed flexibility on the interfaces. Moreover,

the experimental data discussed above allows us to pinpoint which residues are

involved in the interface interactions, upon monomer stacking in the assemblage

of non-branched protofilaments.

In order to generate docked structures using HADDOCK (Dominguez

et al., 2003), the identification of the binding interfaces of both interacting

proteins is a prerequisite. For this purpose, we used solvent accessibility

data determined by solution NMR spectroscopy on TTR fibrils, of the variant

TTRY114C (Olofsson et al., 2004). According to the procedure described

in the methodological section, for the NearNI modeling the binding interface

was defined by 11 active residues (E89, E92, V94, T96 and T118 to N124),

since they show a significant solvent protection in the fibril and high solvent

accessibility in the monomeric form. Eight surface exposed amino-acids that

occur close to the active residues were defined as passive (P86, F87, D99, Y114

to S117 and P125). For the NonNI modeling, 9 active (D18, A19, V28-R34)

and 8 passive residues (L12-L17, V20, K35) were assigned in an analogous

way. This resulted in a total of 22 and 18 ambiguous interaction restraints,

respectively for NearNI and NonNI modeling. AIRs were defined as distance

restraints between each active residue of one partner to all active and passive

residues of the binding partner. The complete list of restraints as well as the

flexible segments for both docking runs are described on Table 6.1.

6.3.2 Modeling TTR near-native dimers

The crystallographic structure of wild type (WT) TTR was used as the

starting model in the docking procedure to create the NearNI. A native monomer

was docked against another native monomer at their native interfaces (strands
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FF’ and HH’), producing an ensemble of near-native complexes (figure 6.5).

The first approach we took to model the NearNI employed all experimen-

tally available data, namely H/D exchange data and EPR distance restraints.

Yeates and collaborators (Serag et al., 2001) determined five inter-spin dis-

tances, between spin-labels incorporated at the native interface region using

several TTR cysteine mutants, in the fibrillar state. Their study showed that

intermolecular residue distances remain largely unchanged from the native

tetrameric form for single cysteine mutants 94C, 96C and the double cysteine

mutant 89C/96C. On the other hand, two novel interactions are formed upon

fibril assembly in the case of mutants 85C and 89C. Several docking trials

incorporating different sets of these five EPR distances were run (data not

shown). HADDOCK was not able to satisfy all imposed EPR restraints, and the

produced interfaces were clearly not satisfactory in geometric terms, since the

β-sheets did not show a complementary edge-to-edge connection. The stacking

of TTR subunits at the β-sheet edges was previously proposed based on X-ray

fiber diffraction studies (Inouye et al., 1998). These preliminary results suggest

that if the subunits on the protofilament have a native-like conformation, then in

order for residues 85 and 89 to be closer enough between two adjacent subunits,

a larger rearrangement than the one allowed by the docking approach should

occur. Or, alternatively, the interactions between these two residues could come

from neighboring protofilaments, as already proposed by Yeates and collabora-

tors (Serag et al., 2001). In fact, the mechanism of protofilament association

into parallel fibrils, capable of a cooperative transformation into twisted super

helices, was anticipated to be a generalized scheme for amyloid (Jansen et al.,

2005).

Our initial results indicate that care must be taken on the definition of the

restraints driving the docking. Distance restraints calculated by EPR have a

high ambiguity associated with them, which is inherent to the technique itself,

since determined distances come from nitroxide groups attached to flexible side

chains of Cys residues. The distance bounds for these inter-nitroxide distances

are much larger than the ambiguous distance bounds. In order to account for

this data uncertainty, two docking runs were performed in order to check the

reliability of the available data, ultimately responsible for the docking driven
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Figure 6.5: Near-native dimers resulting from the docking procedure, using NMR H/D
exchange data (b, e and f) and additional EPR data included as unambiguous restraints
(a, c and d). (a) and (b) Intermolecular energies as a function of the backbone RMSD
from the lowest energy structure for the 200 docked structures. The 100 best dimers
are represented with filled circles. (c) and (e) Sausage representation of the 10 best
dimer complexes. The tube thickness is directly proportional to the RMS fluctuation
of the ensemble, after superimposing the structures on the backbone atoms of the
flexible interface. The average backbone structure is represented by lines. (d) and (f)
Schematic view of the dimer complex with the lowest intermolecular energy, with the
identification of β-strands. Figures c–f were produced with PyMOL (DeLano, 2002).
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protocol. We performed a HADDOCK run only with ambiguous interaction

restraints, NearNI-epr, and another with the same set of AIRs plus EPR distance

restraints, NearNI+epr, having discarded EPR distances from residues 85 and

89 (table 6.1).

For each docking run, 2000 rigid body docking structures were first gener-

ated and the best 200 structures in terms of intermolecular energy were subjected

to a semi-flexible simulated annealing procedure and final refinement in water.

Figures 6.5a and 6.5b show the intermolecular energy Eintermas a function of

the backbone root mean square deviation from the lowest energy structure for

the 200 structures obtained after water refinement. One single cluster with

198 structures could be identified based on pairwise backbone RMSD values

using a 1.0 Å cutoff, for both docking runs (with and without EPR distance

restraints). The ten lowest energy structures of these clusters were selected for

further analysis. Statistics on these structures are summarized in table 6.2.

The docking results between the two runs are similar, though a slightly

smaller structural dispersion on the RMSD values of the cluster solutions for

NearNI-epr is noticed (table 6.2). The introduction of EPR data should reduce

the degrees of freedom of the system, as it occurs when restraints are provided to

a NMR structure calculation. From figures 6.5a,b we observe that a faint higher

conformational freedom is given by EPR restraints to the NearNI+epr than to

NearNI-epr docking run. This is consistent with the fact that EPR distances

have, relatively to NMR H/D exchange data, larger distance boundaries. Since

the weight given by HADDOCK in this study for both types of restraints was

the same, instead of obtaining less structural dispersion we get just the opposite,

though is not very relevant when comparing NearNI+epr with NearNI-epr runs.

The average energy of the 10 lowest energy structures is −433 and −418 Kcal

mol−1 for NearNI+epr and NearNI-epr, respectively. For both docking runs,

the electrostatic contribution Eelect represents the major contribution to Einterm

being about the double than van der Waals contribution Evdw, as shown on

table 6.2. The restraints term Erestraints is negligible, consistent with a very low

number of restraint violations per structure (see appendix table A.8, page 202).

The structure of the complexes obtained are rather well defined, with an overall

backbone RMSD from the mean structure of about 0.4 Å (both NearNI+epr
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and NearNI-epr) and a good stereochemical quality with more than 99% of the

residues in the most favored and allowed regions of the Ramachandran plot (see

table 6.3). The ensemble of the 10 lowest energy structures for the obtained

cluster is depicted in figures 6.5c,e.

The average buried surface area of the 10 lowest energy structures is about

2500 Å2 for both clusters, indicating that residues on the dimeric interface are

closely packed. The BSA of the native TTR dimer is about 1770 Å2 and among

all protein-protein complexes available in the PDB, the average BSA is 1600

± 400 Å2 (Conte et al., 1999). A detailed view of the modeled dimer reveals

that the interface between two native monomers is predominantly stabilized by

an extended network of conserved intermolecular hydrogen bonds, involving

either hydrophobic and charged amino-acids, or hydrophobic and polar amino-

acids, as expected on the basis of a large electrostatic contribution to the overall

intermolecular energy. Intermolecular statistics calculated over the ensemble

of the 10 lowest energy structures on the cluster obtained is shown in table 6.4.

A salt bridge between Lys76 and Asp99 is formed, though present only on

the NearNI+epr run. Conserved non-bonded contacts are also present on the

interface as expected, since the Evdw energy term also strongly contributes to

the Einterm (data not shown).

The dimer topology obtained for both NearNI+epr and NearNI-epr dockings

is similar. Figures 6.5d,f illustrate the secondary structure for the dimer of

lowest intermolecular energy in each docking run. These near-native structures

have their near-native monomers in an anti-parallel edge-to-edge arrangement

on strands FF’ and HH’ which is in agreement with published data (Serag

et al., 2001, 2002). This result was expected since most of the applied restraints

were obeyed during the HADDOCK runs. A more careful analysis of the

hydrogen-bonding patterns on the NearNI indicates a slip in β-strands register

(table 6.4). The results show that the two F strands are centered about position

93 instead of 91/92 as in the native structure, and the H strands are centered

near residue 118, instead of residue 117 (see appendix figure A.1, page 205).

Olofsson et al. (Olofsson et al., 2004) pointed out that these results suggest

a strengthening in the subunit assembly, since there’s a more complementary

alignment between subunit β-sheets.
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Table 6.4: Intermolecular contacts statistics calculated over the ensemble of the 10
best docked structures of the cluster with lowest mean intermolecular energy

Interacting Residues

Donor Acceptor Hydrogen-Bonds

Residue Chain Residue Chain M-M M-S S-S

A. Common contacts between runs NearNI+epr and NearNI-epr∗

Glu 92 A Val 94 B 10/9
Val 94 A Glu 92 B 10/10

Arg 103 A Tyr 114 B 9/10
Thr 118 A Thr 118 B 10/10
Ala 120 A Tyr 116 B 10/10
Val 122 A Tyr 114 B 6/7
His 88 B Thr 96 A 6/7
Glu 92 B Val 94 A 10/10
Val 94 B Glu 92 A 10/10

Arg 103 B Tyr 114 A 10/10
Tyr 116 B Ala 120 A 6/5
Thr 118 B Thr 118 A 10/10
Ala 120 B Tyr 116 A 10/10

B. Specific contacts for NearNI+epr run
Lys 76 A Asp 99 B 5
His 88 A Thr 96 B 6
Lys 76 B Asp 99 A 5
Val 122 B Ser 115 A 5

C. Specific contacts for NearNI-epr run
Tyr 116 A Ala 120 B 5
Val 122 B Tyr 114 A 7

D. Common contacts between runs NonNI+epr and NonNI-epr∗∗

Arg 104 B Asp 18 A 9/5 10/6

E. Specific contacts for NonNI+epr run
Leu 12 A Val 16 B 7
Val 14 A Val 14 B 10
Val 16 A Leu 12 B 7
Val 32 A Val 30 B 10
Arg 34 A Asp 74 B 5

Arg 104 A Asp 18 B 9 9
Leu 12 B Val 16 A 6
Val 14 B Val 14 A 10
Lys 15 B Met 13 A 5
Val 16 B Leu 12 A 6
Val 32 B Val 30 A 10

Continued on Next Page. . .
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Table 6.4: (continued)

Interacting Residues

Donor Acceptor Hydrogen-Bonds

Residue Chain Residue Chain M-M M-S S-S

F. Specific contacts for NonNI-epr run
Leu 12 A Tyr 78 B 7
Val 16 A Val 14 B 9
Val 30 A Val 30 B 10
Val 32 A Val 28 B 7

Arg 104 A Ala 19 B 6
Leu 12 B Tyr 78 A 10
Val 16 B Val 14 A 9
Val 28 B Val 32 A 7
Val 30 B Val 30 A 9
Val 32 B Val 28 A 9

Arg 104 B Asp 18 A 5

Intermolecular contacts were analyzed with DIMPLOT (Wallace
et al., 1995) and are reported if present in at least 5 of the 10
best structures. The occurrence of main-chain/main-chain (M-M),
main-chain/side-chain (M-S), and side-chain/side-chain (S-S) hy-
drogen bonds is reported, over the ensemble of the 10 lowest en-
ergy structures (cluster 1). Chain A and B correspond to the two
monomers involved in the docking procedure; ∗The occurrence is
reported as NearNI+epr/NearNI-epr; ∗∗The occurrence is reported
as NonNI+epr/NonNI-epr.

While there is clearly a dominant hydrogen bond pattern between strands

HH’ on the ensemble of 10 near-native complexes (table 6.4), the interface

between strands FF’ has a reduced amount of hydrogen bonds. Though the

propensity for two atoms to form hydrogen bonds is strongly dependent on

geometric parameters, namely angles and distances between atoms, the hy-

drogen bond patterns observed indicate a better alignment between strands

HH’ than strands FF’. In native TTR, there are six main-chain to main-chain

intermolecular hydrogen bonds between the adjacent H strands and neighbor-

ing residues, whereas the two F strands are separated more widely, and as a

result, only two hydrogen bonds (between E89-V94’ and V94-E94’) are formed

directly through main-chain interactions. The remaining hydrogen bonding

interactions involve water bridges (figure A.1). Due to the slip in the strands

register in the NearNI, the E89-V94 single hydrogen bond is missing, being

substituted by a double hydrogen-bond between E92-V94. If we take into
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consideration that the stability of neighboring β-strands is mostly accomplished

by inter-strand hydrogen bonds, and hydrophobic complementarity on residue

side-chains, then the results suggest a more stable interface between FF’ on the

NearNI than the same interface in the native dimer. Furthermore, we cannot

rule out the presence of water molecules lying in between the FF’ strands on

the protofilaments, increasing the interface stability, as it happens in the native

protein.

6.3.3 Modeling TTR non-native dimers

The NonNI was modeled by docking two partially disrupted monomers,

as described in the methods section. These monomers were docked at their

NonNI (strands AA’ and BB’) producing an ensemble of non-native complexes

(figure 6.6). As in the case of the near-native dimers, a NonNI+epr run (with

EPR data) and NonNI-epr run (without EPR data) were performed (table 6.1).

Serag et al. (2002) built a total of 14 TTR single site cysteine mutants, 7 of

which could be satisfactorily modified with spin labels and still form amyloid

fibrils. The authors focused their attention on the strands near the edge of the

native intermolecular β-sheets (strands B and C), that upon self-assembly give

rise to an extended β-sheet. Ultimately, five of the mutants (29C, 31C and

33C on strand B; 40C located on the loop connecting strands B and C; and

46C on strand C) showed EPR changes upon fibril formation and, therefore,

were informative in the characterization of the NonNI. From these mutants, 5

EPR distances were determined but only 3 of them were used as restraints on

the HADDOCK runs. Preparatory HADDOCK runs were not successful in

terms of structure convergence when using 40C inter-strand distance restraint,

probably due to the highly ambiguity associated to it. In the case of mutant 46C,

because strand C was removed when building the partially disrupted non-native

monomer, we did not consider this distance restraint.

The same docking protocol used on the NearNI modeling was applied to

model the NonNI, in which 2000 rigid body docking structures were generated

and the best 200 in terms of intermolecular energy were further subjected to a

semi-flexible simulated annealing procedure followed by a final refinement in

a water shell. Figures 6.6a,b shows the intermolecular energy as a function of
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Figure 6.6: Non-native dimers resulting from the docking procedure, using NMR
H/D exchange data (b,e and f) and additional EPR data included as unambiguous
restraints (a,c and d). (a) and (b), Intermolecular energies as a function of the backbone
RMSD from the lowest energy structure for the 200 docked structures. The 100 best
dimers for the cluster with the lowest intermolecular energy average are represented
with filled circles. (c) and (e), Sausage representation of the 10 best dimer complexes
of the lowest energy cluster. The tube thickness is directly proportional to the RMS
fluctuation of the ensemble, after superimposing the structures on the backbone atoms
of the flexible interface. The average backbone structure is represented by lines. (d)
and (f), Schematic view of the dimer complex with the lowest intermolecular energy,
with the identification of β-strands. Figures c–f, were produced with PyMOL (DeLano,
2002).
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the backbone RMSD from the lowest energy structure for the 200 structures

obtained after water refinement.

In the case of the NonNI modeling using the EPR distance restraints, two

clusters could be identified based on the pairwise backbone RMSD values,

using a 1.0 Å cutoff. The lowest energy cluster (Einterm =−560 Kcal mol−1)

containing 108 structures, best satisfies the ambiguous (AIRs) and unambiguous

restraints initially imposed, and shows the largest average BSA at the interface

(table 6.2). The average RMSD values of the ten lowest energy structures of

clusters 1 and 2 are 0.46 and 9.99 Årespectively, indicating that the structures

in cluster 1 are remarkably different from those in cluster 2. Additionally, the

difference on the average values of intermolecular energies for clusters 1 and

2, −560 and −278 Kcal mol−1, indicates that the structures in cluster 1 have

the most favorable intermolecular contacts. The average values of BSA for

these two clusters are 2189 and 1572 Å2 respectively, indicating that structures

on cluster 1 have a better subunit interface. The ensemble of the ten lowest

energy structures for cluster 1 is depicted in figure 6.6c. The spatial distribution

of representative docking solutions is shown in appendix figure A.2, page

206, where the centers of mass of the docking moving partner (chain B) from

the lowest energy structure of each cluster are superimposed on the docking

static partner (chain A). It is evident that the interacting surface of non-native

monomers is confined to a single patch on strands A and B of the protein, in spite

of the statistical results suggesting a greater conformational change. In fact, the

major differences between the non-native interfaces modeled by HADDOCK

are in a rotation of one of the non-native monomers in respect to the other in

the dimer, along a direction perpendicular to the β-strands.

Regarding the NonNI-epr docking run, 3 clusters of structures were ob-

tained. The values of the intermolecular energies plotted as a function of the

backbone RMSD from the lowest energy structure calculated over the 10 best

structures of each cluster (figure 6.6b), show that the docking solutions have

nearly equal Einterm energies, about −500 Kcal mol−1 (table 6.2). Furthermore,

similar average values for BSA, 1836, 1832 and 1822 Å2, respectively for

cluster 1, 2 and 3, and comparable average RMSD values to the lowest energy

structure obtained indicate that the docking solutions display analogous con-
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formations. The spatial distribution of the representative docking solutions

is shown in figure A.2. There is again indication that there is only one main

patch site for the interface interaction between docked non-native monomers.

An ensemble of structures for the NonNI dimers modeled is depicted in fig-

ure 6.6e. The ten lowest energy structures for the most populated clusters of

both NonNI+epr and NonNI-epr runs (lowest average Einterm) were selected for

further analysis. When the 10 structures are superimposed on the backbone of

the mean structure, the RMSD values of all backbone atoms are 0.54 and 0.61 Å,

for NonNI+epr and NonNI-epr runs, respectively (table 6.3). The relative small

RMSD values indicate that the dimer structure is rather well defined. More-

over, about 99% of the residues are in the most favored and allowed regions

of the Ramachandran plot, suggesting a good quality of the structural models

(table 6.3). A more careful characterization of the modeled NonNI, indicates

that the interface between two non-native monomers is predominantly stabilized

by an extended network of intermolecular hydrogen bonds, as observed for

the NearNI (table 6.4). There are no conserved specific hydrogen bonds when

comparing both NonNI+epr and NonNI-epr runs, with the exception for a salt

bridge formed between R104 and D18. In both dockings the Eelect contribution

is around 6 times the Evdw (table 6.2), which is reflected on the larger number

of salt bridges established in the NonNI. The non-bonded contacts are also

poorly conserved on both NonNI runs, and contribute in a low extent to the

stabilization of the interface (data not shown).

The introduction of EPR data allows for a broader conformational space

search during the semi-rigid body docking step, as already explained for the

NearNI modeling. This explains why we observe a larger structural dispersion

on the NonNI+epr docking compexes relatively to NonNI-epr dimers. The

dimer topology obtained for both NonNI+epr and NonNI-epr NonNI docking

runs is illustrated in figures 6.6d,f. The non-native structures have their non-

native monomers in an anti-parallel edge-to-edge arrangement in strands AA′

and BB′. The hydrogen bonding patterns on the NonNI (table 6.4) indicate a

center of symmetry on strands A (position 14 for NonNI+epr, and position 15

for NonNI-epr) and B (position 31 for NonNI+epr and position 30 for NonNI-

epr) with a slip of strand register of one residue. Serag et al. (2002) proposed a
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model where two B strands align in an anti-parallel manner centered on position

31, nonetheless the data collected did not allowed the authors to make any

assumptions about the alignment of strands AA’ in the non-native dimer.

6.3.4 Protofilament Polymorphism

Accordingly to HADDOCK philosophy and most of the protein docking

software packages, the best produced dimer structure on a docking run typically

has the lowest energy and belongs to the lowest energy cluster found. Though

this is a general rule, a case by case study should be considered, since the

scoring algorithm functions are still evolving (Tame, 2005). Preliminary results

did showed us that in fact, the highest ranking solution for each docking run

performed in this work, is not per se the structure with the best complementarity

between the two docking partners (data not shown). The analysis of the 200

lowest energy dimer structures obtained after water refinement for each docking

run (figures 6.5a,b and 6.6a,b), do not show a great structural variability within

the same cluster (table 6.2). The 100 highest ranking solutions of the lowest

energy cluster (cluster 1) in each docking run were chosen to build two TTR

protofilaments sets, which allowed us to study the polymorphism of the obtained

protofilaments not biasing the results. One of the protofilament sets is produced

using NonNI+epr and NearNI+epr dimer structures (protofil+epr), while the

other set uses dimers obtained from NonNI-epr and NearNI-epr docking runs

(protofil-epr). The structural statistic analysis, the restraints violations and the

intermolecular contacts for the 100 best solutions on cluster 1 of each docking

run are presented has supplementary material (appendix tables A.9– A.11). The

overall conclusions taken from the tables analysis are the same as the ones

reported earlier for the analysis of the 10 best solutions.

An alignment scheme briefly reported elsewhere (Correia et al., 2006) was

devised to build the protofilaments (figure 6.3). This multi-step protocol super-

imposes through out the alignment procedure, the same set of two structures: a

non-native and a near-native dimer. Each pair of non-native/near-native dimers

will produce a unique protofilament, thus 10,000 (100 non-native structures ×
100 near-native structures) supramolecular structures were produced for each

protofilament set. The non-native dimers were used as seeds to start building
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the protofilaments, since the most recent experimental results support a protofil-

ament structure formed by a core of two three-stranded β-sheets (Olofsson

et al., 2004). The near-native dimers were used as template models to grow

the resulting protofilaments. The alignment between these two types of dimer

structures is done on the backbone of EG strands, because they have a lower con-

formational lability relatively to the interface regions, upon monomer-monomer

docking.

The major goal while building the protofilament models was to make

use of the gathered information from the docking runs, namely the relative

orientation of the monomers in the obtained docked dimeric structures. This

way, it is possible to build a supramolecular structure, in which the subunits

are arranged in the same way as they were in the complexes obtained during

the docking stage. Moreover, the new interfaces between the protofilament

subunits will concomitantly maintain the interface chemical features attained

on the dimer complexes. Notice that the interface NonNI in the protofilament,

is exactly the same as in the non-native dimer. In contrast, protofilament

NearNI interface is largely preserved relatively to the original NearNI in the

near-native dimer used as a template model (figure 6.3). Though the NonNI

in the protofilament is obtained immediately from the non-native dimer, the

NearNI is obtained indirectly (see Computational Methods). In addition to

that, the structural conformation of EG strands is slightly altered during the

protein docking, particularly during the semi-flexible and water refinement steps

(RMSDbackbone,EG = 0.6 Å). In spite of this, the similarity between the NearNI’s

is high if we compare the interface contacts, namely the hydrogen bonding

patterns and the hydrophobic interactions (see appendix figure A.3, page 207).

More than 60% of the protofilaments maintain all the main-chain/main-chain

hydrogen bonds as in the near-native dimers used to build the protofilaments,

whereas the hydrophobic contacts, at the residue level, have a mean similarity

value around 75% in both protofil-epr and protofil+epr sets.

The obtained protofilaments have elongated structures with a helical topol-

ogy, as previously reported (Correia et al., 2006). These structures were then

clustered using the helical periodicity, producing characteristic structural fami-

lies with different geometric properties (figure 6.7). The protofilaments from
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Figure 6.7: Histogram showing the distribution of the protofilaments according to
their helical period Tclass, for the two datasets protofil+epr and protofil-epr studied.

protofil-epr, have helical periods Tclass in the range of 7 to 9 dimers being

the most populated the Tclass = 7.5 . Protofilaments belonging to this Tclass

have around 15 monomers (45 β-sheets) per helical turn, with a subunit repeat-

ing distance of about 212 Å and a diameter of about 54 Å. The other set of

protofilaments assembled with dimers obtained with AIRs and EPR distance

restraints (protofil+epr), have helical periods in the range of 8 to 10 dimers,

with Tclass = 8.5 being the most populated one. Protofilaments in this Tclass

have around 17 monomers (51 β-sheets) per helical turn, a subunit repeating

distance of about 240 Å and an average diameter of about 45 Å. More than

50% of the protofilaments are in these most populated clusters. Both sets of

protofilaments show a Gaussian distribution in the helical periodicity clustering,

showing that subtle structural differences on the interfaces are of paramount

importance for the overall supramolecular geometry. Moreover, the initial

set of restraints imposed during HADDOCK runs on the same system, gives

slightly different results. This was expected, as the protofilament alignment

scheme relies heavily on the subunit interfaces conformation obtained during

the protein docking stage. Figure 6.8 depicts examples of protofilaments with

distinct helical periods and cross-section diameters.
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(a)

(b)

Figure 6.8: Schematic representation of TTR protofilament models obtained from the
alignment of HADDOCK dimers produced using (a) only AIR restraints or (b) with
additional EPR data, as a function of their helical periodicity Tclass. The size of half of
the repeating unit (λ1/2), and the protofilament cross-section dimension including only
the core β-strands are also shown. The protofilaments are colored by the secondary
structure assignment determined with STRIDE (Frishman and Argos, 1995) (yellow,
β-sheet; purple, α-helix; gray, coils), and are all at the same scale.

From the most representative Tclass cluster for each protofilament set, we set

out to choose the final protofilament structures. Since a correct β-sheet pairing

between protein interfaces is indicative of good geometrical complementarities,

we studied the number of hydrogen bonds in both near-native and non-native in-

terfaces in the protofilaments of the most representative cluster (figure 6.9). The

results are similar for both protofil+epr and protofil-epr protofilament groups,

with the number of hydrogen bonds on both NearNI and NonNI interfaces

ranging from 6 to 20. The Gaussian distribution of the number of hydrogen

bonds per interface, show that while the protofilaments belong to the same
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Figure 6.9: Characterization of intermolecular main-chain to main-chain hydrogen
bonds on protofilament interfaces NonNI and NearNI. (a) Shows the results for the
representative cluster of protofil+epr protofilament set (Tclass = 8.5), whereas (b) shows
the results for the representative cluster of protofil-epr set (Tclass = 7.5).

structural family in terms of helical periodicity, the complementarities between

the subunit interfaces are substantially different. The supramolecular struc-

ture with the largest number of hydrogen bonds on both interfaces, from the

representative clusters characterized above, was chosen for further refinement.

6.3.5 High resolution molecular models of TTR protofilaments

The peptide fragments initially removed to create the TTR partially dis-

rupted monomer (non-native monomer), were added to the two final protofila-

ments that maximize the number of hydrogen bonds established on protofila-

ment’s NearNI and NonNI (figure 6.4). These fragments, comprising β-strands

CD, loops AB and CD as well as the terminus residues, were energy minimized

and subjected to a short molecular dynamics run, without interfering with the

subunit interfaces or the subunit core. A NearNI refinement was applied as

soon as the fragments refinement was accomplished. This was necessary since

the NearNI on the protofilament is not the same as the NearNI on the near-

native dimer that was used to generate that specific protofilament, as explained

earlier. Hence, it will ensure that any clashing atoms on the NearNI will be

removed prior relaxation of the full protofilament structure. The non-native

dimer obtained at the end of the protocol has the same core conformation as in
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the beginning of the protofilament refinement scheme, plus the missing residues

added and minimized, and the edge strands AB optimized. This non-native

dimer was then used as the seed to produce a final protofilament with a full

polypeptide sequence. Finally, to relax the protofilament structure, we carried

out a short molecular dynamics simulation using the program NAMD (Phillips

et al., 2005) running on a cluster of 100 commodity computers (Centopeia at the

University of Coimbra). The aggregation state and global fold of the protofil-

ament were not affected during the simulation. The overall stereochemical

quality of the final structures was assessed with PROCHECK (Laskowski et al.,

1993), revealing that > 75% of the residues are in the most favourable regions

of the Ramachandran plot and the very few residues (< 1%) in disallowed

regions belong to exposed loops. See the computational methods for a more

comprehensive description of the protocol.

In general terms, the representative protofilament of protofil+epr and protofil-

epr sets is characterised by a linear fibrillar structure formed by two extended

continuous β-sheets, (BEFF’E’B’)n and (AGHH’G’A’)n, with β-strands more

or less perpendicular to the main protofilament axis (appendix figure A.4, page

208). This particular trend of the β-strands is generally accepted as a charac-

teristic of amyloid, the so-called cross-β structure (Eanes and Glenner, 1968).

The strand edges of each protofilament subunit are also arranged in an anti-

parallel manner, as previously reported by Serag et al. (2002) (figure A.4).

Both protofilaments show a diameter of about 50 Å, and present an average

helical twist of approximately 48 β-strands, i.e. 16 monomeric units per helical

turn. A recent fibril modeling on 2-microglobulin, combining sequence and

structure conservation analysis as well as protein docking techniques, suggest

a helical β-sheet consistent with the cross-β sheet model (Benyamini et al.,

2005). A full turn contains 18 monomer units or 52 β-strands, a noticeable

similarity between two proteins that have the same native fold.

It is interesting to note that, based on X-ray fibre diffraction studies, Blake

and Serpell (1996) proposed a model for TTR amyloid consisting of extended β-

sheets with a helical twist and a fibre repeating unit of ≈ 115 Å, corresponding

to 24 β-strands. It must be more than coincidental that our model, based on

experimental data as well as energetic and shape complementarity criteria, has a
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helical period roughly the double than Blake’s model. In fact, it is possible that

the X-ray diffraction pattern observed for the fibre could be the result of lateral

association of protofilaments shifted by half period. If this is not the case, to

build a protofilament with a period of 24 β-strands a much more twisted helical

structure is required and a large conformational rearrangement of the β-sheets

in the TTR subunit is necessary. Interestingly, our protofilament model shows

surface segregation of charged residues in a helical arrangement, which could

be responsible for the half-period pairing of protofilaments, in order to avoid

electrostatic repulsions. It is clear from figure 6.10 that the outer part of the

protofilament, mainly composed by loops of the former CD strands in the native

TTR monomer, being more readily available to other protofilaments/oligomers

present in solution, could have a great significance upon fibril assembly.

6.4 Conclusions

The protein-protein docking methodology employed in this work treats

proteins as rigid bodies at the first stage of the docking protocol. Since no

flexibility is allowed at this stage, no side-chain or loop rearrangements can

occur which might lead to wrong initial orientations of the dimers obtained.

Such orientations are generally not corrected during the subsequent HAD-

DOCK semi-flexible molecular dynamic refinement stages (Dominguez et al.,

2004). In order to overcome this problem, we could start from an ensemble

of structures instead of a single molecule, since an ensemble of structures

will reflect flexibility in loops and will show slight differences in side-chains

orientation especially for solvent exposed residues. The different side-chains

and/or backbone orientations allow a better sampling of all conformational

possibilities during the rigid body docking step. An ensemble of structures

could be generated applying a short molecular dynamics simulation, and extract

the different structures from the trajectory produced. Nevertheless, the docking

results obtained, solely based on the available experimental biochemical data in

the literature, were promising.

Methodological improvements on the docking and alignment procedure de-

scribed in this chapter can be envisaged with recent HADDOCK developments,
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(a)

(b)

Figure 6.10: Electrostatic properties of a representative protofilament. Potential
obtained by solution of the linearized Poisson-Boltzmann equation at 150 mM ionic
strength with a solute dielectric of 2 and a solvent dielectric of 78.5. (a) Protofilament
cartoon representation colored by the secondary structure assignment determined with
STRIDE (Frishman and Argos, 1995) (yellow, β-sheet; purple, α-helix; cyan, coils).
(b) Electrostatic potential mapped on the protofilament molecular surface; a blue color
indicates regions of positive potential (> 5 kT/e), whereas red depicts negative potential
values (<−5 kT/e ). Figures were produced with PyMOL (DeLano, 2002).

namely multi-body docking (de Vries et al., 2007).

Our results show that docking two TTR subunits to recreate a non-native

interface involving β-strands A and B requires full solvent exposure of these

strands, otherwise, steric occlusion will prevent an energetically favorable

interaction between docking partners. Though this is obvious, the non-native

dimers obtained do support Serag’s work with the non-native monomers in

an anti-parallel edge-to-edge arrangement in strands AA’ and BB’. Moreover,

the NonNI interface is energetically favorable with a high buried surface area,

stabilized by a network of hydrogen bonds and some salt bridges.
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The near-native dimer topology obtained from NearNI modeling, shows

also an anti-parallel edge-to-edge arrangement in strands FF’ and HH’. A slip in

β-strands register was observed on the NearNI, which suggests a strengthening

in the subunit assembly as already pointed out by Olofsson et al. (2004). In

fact, the NearNI has a higher average value of BSA than the observed for the

NonNI. Cordeiro et al. (2006) also suggested that the alignment of β-sheets

was altered upon fibrillization, though the native β-strands are preserved in the

amyloid fibril of TTR. On the other hand, there is clearly a dominant hydrogen

bonding pattern between strands HH’, and in a smaller extent on strands FF’.

The native TTR also shows this hydrogen bonding profile, where strands FF’

are stabilized by hydrogen bonding interactions involving water bridges. It is

possible that upon protofilament assembly, water bridges could also play an

important role on the stabilization of the interface between strand edges. This

results could also suggest, that a more pronounced conformational change must

occur in the TTR monomer, in order to get a better fitting between strands FF’.

The docking and alignment procedure generated a range of protofilament

structures, in agreement with the structural polymorphism observed for amyloid

fibrils and recently reported (Cardoso et al., 2002; Jansen et al., 2005). To date,

to the best of our knowledge, this is the first time an all atom protofilament

model is published for TTR. The protofilament structures proposed here have

geometric properties in close agreement with the known characteristics of

TTR amyloid. Several experimental studies have shown that TTR amyloid

fibrils are formed by continuous β−sheet helices (Blake and Serpell, 1996)

and protofilaments with diameters in the order of 40–60 Å, as revealed by

electron microscopy and Xray fiber diffraction (Serpell et al., 1995; Sunde

et al., 1997). Additionally, all the EPR distance restraints and NMR protection

factors initially imposed are observed in the final structures, and the generated

structures have good stereochemical properties.

Structural models have been built using information from a wide variety

of techniques, including X-ray diffraction, electron microscopy, solid state

NMR and EPR (Makin and Serpell, 2005). An early model of the protofila-

ment structure arose from analysis of X-ray fiber diffraction patterns from ex

vivo TTR-Met30 variant amyloid fibrils (Blake and Serpell, 1996), in which
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the β-strands were hydrogen bonded to form a continuous β-sheet structure.

In this model, four β-sheets are twisted around a central axis in a cross-β

structure, though an anti-parallel α-helix model have also been suggested for

amyloid formed from TTR . Models retaining largely the structure of the native

monomeric form have also been proposed. A double helical arrangement of

TTR monomers, where a three-residue β-slip is observed in one of the interface

strands, allows the construction of an infinite β-sheet model in which native

like β-strands are aligned (Eneqvist et al., 2000; Inouye et al., 1998). Distance

restraints from site-directed spin labeling of TTR fibrils permitted the building

of a head-to-head/tail-to-tail model, where the edge strands C and D are dis-

placed (Serag et al., 2002). Although the interfaces in one sheet were revealed,

the arrangement of the second sheet could not be studied. More recently, H/D

NMR exchange studies do suggest that the protofilament structure is formed

by a subunit core of two three-stranded β-sheets (Olofsson et al., 2004) in a

native like conformation. Our modeling results do seem to support a two-sheet

β-helix in a cross-β fold, based on the premise that the protofilament subunits

are in a native like fold.

These models may be refined in the future by the introduction of other

experimentally derived constraints, but at this stage may become a valuable

instrument in the rational design of compounds with therapeutic potential to

inhibit amyloid fibril formation by TTR.
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Tudo o que faço ou não faço

Outros fizeram assim

Daí este meu cansaço

De sentir que quanto faço

Não é feito só por mim.

Cansaço, Luis de Macedo
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The universe is a lonely space, we easily get lost. As far as we yet know,

there is only one place, an inconspicuous outpost of the Milky Way called Earth,

that sustains life, and even it can be pretty grudging (Bryson, 2004). With a

handful of spaced events forged by some mysterious force, atomic particles

were bring together giving rise to complex molecules. This molecular cauldron

does not have many different basic blocks, still the way they associate and work

with each other are responsible for the multitude of organisms populating Earth.

Among such complex molecules, proteins are really unique in the sense

that they play key roles in virtually all biological processes. These actions are

achieved through an innate ability proteins have to recognize and interact with

highly diverse molecules. This thesis is part of my naive journey through the

protein world. After all, the understanding of molecular biophysics is no less

a daunting task then to know what came out of the primeval atom. We can

chronically get lost.

7.1 In conclusion

The study of protein association is nowadays of central importance, since

protein-protein interactions are a common trend either under normal physiologi-

cal conditions as well as in disease states. Consequently, the understanding and

characterization of protein interactions are one of the major goals on modern

biochemistry. In the last decades, nuclear magnetic resonance (NMR) pro-

vided many advances in this field, particularly through its ability to provide

detailed information on binding of biomolecules, ranging from self-association

to small-ligand binding. Thus, NMR coupled with sophisticated molecular

modeling augur rapid advances in our understanding of this area of science. Not

only do NMR techniques obviate any exogenous labeling problem, since most

biological molecules are composed of NMR sensitive nuclei, but also have the

potential to measure association in vitro under normal physiological conditions.

Chapter 2 focused on the application of a NMR technique using pulsed-

field-gradients (PFG) to measure translational diffusion of proteins. PFG NMR

is a powerful technique for studying the self-diffusion of proteins. In order to

extract relevant information from PFG NMR experiments (as well as in any
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other technique), both the sample and the machine should be well characterized.

An introduction to the theoretical background was given, along with the experi-

mental difficulties and available technical solutions to surpass them. Overall,

the chapter is meant to be a primer on how the technique can be used to infer

information from NMR active diffusion protein species in solution. Also, the

idea of protein solutions being a complex polydisperse mixture is stressed out.

This fact as strong implications whenever one tries to understand what is going

on at the molecular level in a sample, for example when calculating the protein

structure or modeling a kinetic model.

We assessed the secondary structure content of a cytolytic toxin excreted

to the plasma by Staphylococcus aureus, in membrane-mimetic environments

using NMR. The results on chapter 3 show that the conformation of δ-toxin is

strongly dependent on experimental conditions. In fact, on its way to eukaryotic

membranes, a wealth of chemical environments are available to the toxin. It

it thus expected large conformational plasticity of such toxins, however the

aggregation state should also play a major role, as discussed in a later chapter.

The structure of δ-toxin in methanol was re-calculated and deposited in the

Protein Data Bank. The toxin forms an amphiphatic α-helix in methanol, which

is a characteristic trend of many lytic toxins. The authors do expect that the

newly calculated structure will increase the pool of available data to scientists,

such that new experiments can be devised to answer relevant questions, such as

the mechanism by which toxins interact and lyse membranes.

Among the techniques available to study protein-membrane interactions,

molecular dynamic (MD) simulations is becoming a standard protocol. A strong

advantage of MD over experimental techniques such as NMR, is its ability to

provide atomic detail on the system under study. A correct parameterization

of the molecules on the simulated system is a pre-requisite to obtain relevant

data. Chapter 4 aims to characterize a simple bilayer system often used by

experimentalists, namely dimyristoylphosphatidylcholine (DMPC). We em-

ployed a force field parameterized to correctly simulate both protein and lipid

molecules (Schuler et al., 2001). An immediate consequence is that it allow us

the modeling of complex bio-systems such as the interaction of proteins with

bilayers. The properties computed to characterize the DMPC bilayer show good
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agreement with the available experimental data, re-enforcing the quality of the

force field employed.

The conformational stability of δ-toxin and propensity for aggregation were

assessed by MD simulations in different chemical environments, in chapter

5. The interaction of the toxin with a bilayer composed of DMPC molecules

was also carried out. The simulations performed in methanol showed that the

α-helical conformation of the toxin is largely maintained during simulations,

whereas in water and dimethyl-sulfoxide (DMSO), there is loss of the initial

secondary structure. It was also shown that δ-toxin has a high propensity to

aggregate in water, whereas in methanol and DMSO, a complex dynamic behav-

ior of formation and disruption of aggregation species is observed. Moreover,

if the peptide in solution is aggregated, the α-helix is preserved for longer

periods in contrast to the monomeric species. Regarding simulations of the

toxin interaction with DMPC, it was shown that the bulky residue Trp plays a

major role in the process. Also, the amphiphaticity of the helix and aggregation

state seems to be important on the kinetics of peptide penetration.

Transthyretin (TTR) is a homotetrameric protein and is one of several pro-

teins known to be involved in human amyloid diseases. It is believed that, in

the process of amyloid formation, TTR dissociates to non-native monomeric

units, which may act as the building blocks of the amyloid fibrils (Brito et al.,

2003). A docking-and-alignment protocol was devised in chapter 6, in order

to build amyloid protofilaments of TTR. The docking approach is driven by

a combination of shape complementarity and energetic criteria, and uses con-

straints derived from experimental data obtained for the fibrillar state. Our

modeling results do seem to support a two-sheet β-helix in a cross-β fold, based

on the premise that the protofilament subunits are in a native like fold. This

models may be refined in the future by the introduction of other experimentally

derived constraints, but at this stage may become a valuable instrument in the

rational design of compounds with therapeutic potential to inhibit amyloid fibril

formation by TTR.
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7.2 Perspectives

This thesis embraces both experimental and computational techniques used

for studying protein biophysics. One approach without the other is meaningless

since each of them has its own pitfalls and advantages. The next few lines sum-

marize my perspectives regarding the goals of two projects, both with the aim

of strengthening cooperation between different scientific fields. Consilience.

•

Driven by increasingly complex problems and propelled by increasingly

powerful technology, today’s science is as much based on computation, data

analysis, and collaboration as on the efforts of individual experimentalists and

theorists. But even as computer power, data storage, and communications

continue to improve exponentially, computational resources are failing to keep

up with what scientists demand on them (Foster, 2004). The Grid concept

motivated by distributed computing infrastructures for advanced science is

emerging. Coordinated resource sharing and problem solving is becoming truly

a multi-institutional task.

NMR is a technique that allows determining three-dimensional (3-D) struc-

tures of biomacromolecules, and their complexes at atomic resolution. Knowl-

edge of their 3-D structures is vital for understanding functions and mechanisms

of action of macromolecules, and for rationalizing the effect of mutations. 3D

structures are also important as guides for the design of new experimental

studies and as starting point for rational drug design.

Processing data from NMR to obtain a 3D structure typically involves

several steps. Importantly, specialized computer programs are available for

each step, each with its own characteristics and often with its own data format.

Processing of NMR data has thus become a task for specialists, who understand

the data and the data formats, as well as the programs, their installation require-

ments and their proper usage. Furthermore, NMR data processing requires

considerable data storage and computational resources. These factors together

have thrown up a barrier for groups in life sciences to employ the full power

of NMR. The e-NMR project was started as an European initiative to facilitate

data processing, both to allow groups lacking the resources to add NMR to their
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toolbox, as well as to allow dedicated NMR groups to shift their attention from

standard tasks toward cutting-edge research (Loureiro-Ferreira et al., 2010;

Wassenaar et al., 2010).

Protein folding is one of the unsolved paradigms of molecular biology, the

understanding of which would provide essential insight into areas as diverse as

the therapeutics of neurogenerative diseases or bio-catalysis in organic solvents.

Protein folding simulations are time-consuming, data intensive and require

access to supercomputing facilities. Once completed, few simulations are

made publicly available hindering scientists from accessing data reported in

publications, performing detailed comparisons, and developing new analytical

approaches. The P-found project aims to create a distributed public repository

for storing molecular dynamics simulations, particularly those concerned with

protein folding and unfolding (Swain et al., 2010). It aims to provide the tools

needed to support the comparison and analysis of the simulations and thus

enable new scientific knowledge to be discovered and shared.

•

These perspectives on grid e-science almost conclude the thesis. The topic

was mentioned due to my collaboration with both projects. This is where I am,

and where I end.
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Source code A.1: Check-eddy pulse sequence
1 # i f n d e f LINT

s t a t i c char SCCSid [ ] = "@(#)checkeddy.c 1.0 2003" ;
# e n d i f

/ * *********************************************************************
6 checkeddy − W r i t t e n by NLF & RCR

Sequence t o d e t e r m i n e t h e minimum t i m e n e c e s s a r y f o r
eddy c u r r e n t s t o d i s s i p a t e .

11 Based on : P r i c e W. S . Concep t s Magn . Reson . ( 1 9 9 8 ) 10:197
**********************************************************************\

# i n c l u d e <s t a n d a r d . h>

16 p u l s e s e q u e n c e ( )
{

/ * d e c l a r e new v a r i a b l e s * /
double g1 , d2 , g z l v l 1 ;
e x t er n char g r a d t y p e [ ] ;

21
/ * g e t new v a r i a b l e s * /
g1= g e t v a l ( "g1" ) ;
d2= g e t v a l ( "d2" ) ;
g z l v l 1 = g e t v a l ( "gzlvl1" ) ;

26
/ * e q u i l i b r i u m p e r i o d * /
s t a t u s (A) ;
h s d e l a y ( d1 ) ;

31 / * −−− g r a d i e n t d e l a y ( d2 ) −−− * /
s t a t u s (B) ;

r g r a d i e n t ( ’Z’ , g z l v l 1 ) ; / * Turn g r a d i e n t on * /
d e l a y ( g1 ) ;

r g r a d i e n t ( ’Z’ , 0 . 0 ) ; / * Turn g r a d i e n t o f f * /
36 d e l a y ( d2 ) ;

/ * −−− o b s e r v e p e r i o d −−− * /
s t a t u s (C) ;
p u l s e ( pw , oph ) ;

41 }

/ * *********************************************************************
pw

46 . .
| |

Tx _______________ | | FID . acq
. . .

Gz _____ | | _______________
51

|−−−−|−−−−−−−−−|−−−−−−|
A B C

Usage :
56 1 − choose t h e b i g g e s t g z l v l 1 you w i l l use

2 − choose d2 s i m i l a r t o t h e one you w i l l use
3 − go
4 − choose t h e b e s t s p e c t r u m w i t h t h e minimum d2 v a l u e .

61 | | | | | | | | | | | | | | |
_______
\ _ / \ _ / ( o ) ( o )

o O
\ _ / \ _ /

66

********************************************************************* * /
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Table A.1: 1H NMR assignments* of δ-toxin in CD3OH at pH 3, 298 K

HN Hα Hβ others

N-formyl HCO 8.182
M1 8.599 4.431 Hβ2/β3 2.096 Hγ2/γ3 2.636/2.581
A2 8.718 4.102 Hβ 1.460
Q3 8.479 4.027 Hβ2/β3 2.171/2.085 Hγ2/γ3 2.451/2.369
D4 8.203 4.510 Hβ2/β3 3.084/ 2.919
I5 8.199 3.805 Hβ 2.051 Hγ12/γ13 1.808/1.203

Hγ2 0.964
Hδ1 0.911

I6 8.155 3.713 Hβ 1.981 Hγ12/γ13 1.754/1.251
Hγ2 0.963
Hδ1 0.879

S7 8.340 4.193 Hβ2/β3 4.058/3.914
T8 7.984 3.976 Hβ 4.376 Hγ2 1.244
I9 8.308 3.751 Hβ 2.037 Hγ12/γ13 1.851/1.210

Hγ2 0.967
Hδ1 0.865

G10 8.634 3.888/3.754†

D11 8.393 4.444 Hβ2/β3 3.204/2.759
L12 8.189 4.264 Hβ2/β3 1.956/1.907
V13 8.579 3.632 Hβ 2.319 Hγ1 (R) 1.004

Hγ2 (S) 1.143
K14 8.223 3.913 Hβ2/β3 2.024/2.001 Hγ2/γ3 1.466

Hδ2/δ3 1.720
Hε2/ε3 2.960
Hζ 7.764

W15 8.434 4.335 Hβ2/β3 3.633/3.441 Hδ1 7.106
Hε1 10.233
Hε3 7.547
Hζ2 7.342
Hζ3 6.985
Hη2 7.099

I16 8.743 3.542 Hβ 2.181 Hγ12/γ13 1.220
Hγ2 0.948

I17 8.575 3.590 Hβ 1.982 Hγ12/γ13 1.856/1.196
Hγ2 0.950
Hδ1 0.851

D18 8.780 4.394 Hβ2/β3 3.037/ 2.709
T19 8.103 3.732 Hβ 4.096 Hγ2 1.015
V20 8.486 3.696 Hβ 2.210 Hγ1 (R) 0.977

Hγ2 (S) 1.077
N21 8.367 4.533 Hβ2/β3 2.897/2.748 Hδ21/δ22 7.638/6.965
K22 7.970 3.990 Hβ2/β3 1.830/1.700 Hγ2/γ3 1.456

Hδ2/δ3 1.552
Hε2/ε3 2.807
Hζ 7.760

F23 7.994 4.524 Hβ2/β3 3.302/3.077 Hδ1/δ2 7.378
Hε1/ε2 7.250
Hζ 7.220

T24 7.792 4.308 Hβ 4.284 Hγ2 1.320
K25 8.108 4.253 Hβ2/β3 1.902 Hγ2/γ3 0.998/0.943

Hδ2/δ3 1.681/1.511
Hε2/ε3 2.960
Hζ 7.745

K26 8.124 4.414 Hβ2/β3 1.948/1.800 Hγ2/γ3 1.487
Hδ2/δ3 1.658
Hε2/ε3 2.957
Hζ 7.668

* Chemical shift values are in ppm. † Hα2/α3.
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Table A.2: 1H NMR assignments* of δ-toxin in 75% CD3OH / 25% D2O
at pH 3, 303 K

HN Hα Hβ others

N-formyl HCO 8.184
M1 8.541 4.475 Hβ2/β3 2.079 Hγ2/γ3 2.594
A2 8.623 4.147 Hβ 1.452
Q3 8.418 4.088 Hβ2/β3 2.108 Hγ2/γ3 2.401
D4 8.219 4.551 Hβ2/β3 3.022/ 2.958
I5 8.067 3.913 Hβ 1.997
I6 8.055 3.778
S7 8.248 4.264 Hβ2/β3 4.030/3.930
T8 7.961 4.036 Hβ 4.358 Hγ2 1.253
I9 8.284 3.790 Hβ 2.014 Hγ2 0.960

Hγ12/γ13 1.613
G10 8.477 3.930/3.766†

D11 8.254 4.469 Hβ2/β3 3.157/2.782
L12 8.102 4.276 Hβ2/β3 1.903 Hδ1/δ2 0.995/0.930
V13 8.483 3.631 Hβ 2.272 Hγ1 (R) 0.995

Hγ2 (S) 1.124
K14 8.166 3.877 Hβ2/β3 2.026
W15 8.254 4.346 Hβ2/β3 3.649/3.415 Hδ1 7.147

Hε1 10.129
Hε3 7.563
Hη2 7.118
Hζ2 7.387
Hζ3 6.989

I16 8.658 3.467 Hβ 2.149
I17 8.465 3.579 Hβ 1.962 Hγ2 0.936

Hγ12/γ13 1.801/1.198
D18 8.682 4.393 Hβ2/β3 2.969/2.706
T19 8.026 3.766 Hβ 4.001 Hγ2 0.971
V20 8.371 3.713 Hβ 2.290 Hγ1 (R) 0.971

Hγ2 (S) 1.048
N21 8.242 4.540 Hβ2/β3 2.881/2.764
K22 7.850 4.018 Hβ2/β3 1.792/1.669 Hγ2/γ3 1.364/1.194

Hδ2/δ3 1.551
Hε2/ε3 2.840

F23 7.926 4.569 Hβ2/β3 3.309/3.040
T24 7.739 4.317 Hβ 4.276 Hγ2 1.288
K25 8.055 4.299 Hβ2/β3 1.880 Hγ2/γ3 1.499

Hδ2/δ3 1.692
K26 8.155 4.393 Hβ2/β3 1.932/1.780 Hγ2/γ3 1.481

Hδ2/δ3 1.674
Hε2/ε3 2.975

* Chemical shift values are in ppm. † Hα2/α3.
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Table A.3: 1H NMR assignments* of δ-toxin in 65% CD3OH /
35% D2O at pH 3, 303 K

HN Hα Hβ others

N-formyl HCO 8.172
M1 8.511 4.480 Hβ2/β3 2.053 Hγ2/γ3 2.598
A2 8.562 4.153 Hβ 1.438
W15 8.184 4.348 Hβ2/β3 3.626/3.393 Hδ1 7.169

Hε1 10.106
Hε3 7.558
Hη2 7.123
Hζ2 7.390
Hζ3 6.981

F23 7.909 4.570 Hβ2/β3 3.028 Hδ1/δ2 7.341
Hε1/ε2 7.271

* Chemical shift values are in ppm.

Table A.4: Three-bond 3JHNHα coupling con-
stants for δ-toxin in methanolic and DMSO
solutions

3JHNHα / Hz

residue 100% CD3OH 75% CD3OH DMSO

M1
A2 4.2 4.7 6.5
Q3 5.2 5.4 7.0
D4 5.7 5.1 8.2
I5 5.8 5.8 11.4
I6 5.4 5.2
S7 4.8 5.7
T8 5.4 6.0
I9 5.4 5.5

G10
D11 5.6 5.3
L12 5.3 6.0 8.5
V13 4.8
K14 5.4 5.9
W15 5.1 7.2
I16 5.1
I17 4.6
D18 4.9 5.2
T19 6.0 4.4
V20 5.7 4.0
N21 5.3 4.6
K22 5.9 6.1 11.5
F23 7.4 7.8
T24 7.4 7.9
K25 6.9 7.0
K26 7.6 8.1
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Table A.5: 1H NMR assignments* of δ-toxin in DMSO at 303 K

HN Hα Hβ others

N-formyl HCO 8.009
M1 8.317 4.421 Hβ2/β3 1.904/1.769 Hγ2/γ3 2.431
A2 8.162 4.260 Hβ 1.227
Q3 8.050 4.198 Hβ2/β3 1.846/1.705 Hγ2/γ3 2.071
D4 7.957 4.550 Hβ2/β3 2.449/ 2.382
I5 8.288 4.169 Hβ 1.875
T8 8.130 3.691 Hβ 3.674 Hγ2 1.122
I9 7.804 4.450 Hβ 2.472
L12 7.585 3.888 Hβ2/β3 1.659/1.517 Hγ 1.289
V13 7.977 4.172 Hβ 1.617 Hγ1 (R) 1.356

Hγ2 (S) 0.808
K14 7.772 4.031 Hβ2/β3 1.804 Hγ2/γ3 1.116

Hδ2/δ3 1.500
Hε2/ε3 2.259

W15 8.003 4.421 Hβ2/β3 3.196/2.982 Hδ1 7.166
Hε1 10.925
Hε3 7.494
Hη2 7.020
Hζ2 7.292
Hζ3 6.940

I16 7.649 4.116 Hβ 1.763
I17 7.872 4.072 Hβ 1.734 Hγ2 1.069

Hγ12/γ13 1.465
T19 7.755 4.169 Hβ 4.098
V20 7.892 3.911 Hβ 2.092 Hγ1 (R) 0.858

Hγ2 (S) 0.797
N21 7.954 4.101 Hβ2/β3 1.586/1.488
K22 8.256 4.101 Hβ2/β3 1.863 Hγ2/γ3 1.172

Hδ2/δ3 1.451
Hε2/ε3 2.705

F23 8.276 4.482 Hβ2/β3 3.095/2.854 Hδ1/δ2 7.236
Hε1/ε2 7.157

T24 7.555 4.263 Hβ 4.084
K25 8.036 4.005 Hβ2/β3 2.033 Hγ2/γ3 0.826
K26 8.434 4.447 Hβ2/β3 2.525/2.461

* Chemical shift values are in ppm.
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Table A.6: Convergence of properties characterizing performed simulations

Label* Potential energy Kinetic energy Temperature Volume Density
104 V /KJmol−1 104 Ekin /KJmol−1 T /K Vbox /nm3 d /Kgm−3

W_1M −32.8762±3 5.8708±2 298.13±0.01 243.57±0.01 979.25±0.02

W_2Ma −40.4384±4 7.2213±2 298.14±0.01 300.46±0.01 982.40±0.02

W_2Mb −40.4365±4 7.2216±2 298.15±0.01 300.52±0.01 982.19±0.02

W_2Mc −40.4360±3 7.2217±2 298.15±0.01 300.55±0.01 982.11±0.02

W_4M −49.6662±4 8.8694±2 298.14±0.01 370.91±0.01 987.09±0.02

M_1M −12.8173±4 2.6685±1 297.87±0.01 241.51±0.01 792.40±0.02

M_2Ma −15.6265±4 3.2422±1 297.88±0.01 291.44±0.01 798.48±0.02

M_2Mb −15.6275±25 3.2422±1 297.88±0.01 291.54±0.05 798.20±0.13

M_2Mc −15.6267±5 3.2424±1 297.90±0.01 291.53±0.01 798.23±0.02

M_4M −19.8997±7 4.1072±1 297.89±0.01 365.63±0.01 807.25±0.02

D_1M −8.7111±3 2.0309±1 297.91±0.01 211.38±0.01 1105.70±0.03

D_2Ma −10.7149±7 2.4771±1 297.91±0.01 255.36±0.01 1108.06±0.02

D_2Mb −10.7049±12 24772±1 297.92±0.01 255.36±0.01 1108.05±0.03

D_2Mc −10.7103±41 24773±1 297.93±0.01 255.39±0.01 1107.94±0.03

D_4M −13.5932±6 31056±1 297.93±0.01 315.43±0.01 1111.71±0.02

B_2Md −51.9175±108 8.1960±2 302.95±0.01 418.82±0.06 988.31±0.14

B_3M −42.9489±64 6.5234±1 302.94±0.01 349.73±0.03 1000.93±0.08

Analysis was performed in the time window 20 to 50 ns on neat solvent simulations whereas on bilayer
systems we discarded the first half of the trajectory. * Identification of molecular dynamics simulation.
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Table A.7: Minimum distance between periodic images
of δ-toxin chains

Label* chain† dPBC
min /nm‡ dPBC

min /nm¶

W_1M A 3.40 4.40±0.06

W_2Ma A 3.94 4.78±0.11
B 4.35 5.13±0.05

W_2Mb A 3.59 4.66±0.05
B 2.93 3.99±0.03

W_2Mc A 2.79 4.26±0.18
B 3.42 4.54±0.17

W_4M A 4.28 4.96±0.02
B 3.46 4.44±0.06
C 4.13 5.08±0.04
D 3.13 4.26±0.05

M_1M A 2.55 3.63±0.15

M_2Ma A 2.10 4.06±0.14
B 1.68 3.77±0.15

M_2Mb A 2.10 3.54±0.05
B 2.27 3.53±0.06

M_2Mc A 2.57 3.97±0.14
B 2.66 3.96±0.21

M_4M A 2.69 4.53±0.09
B 3.37 4.68±0.13
C 2.89 4.02±0.07
D 2.22 4.07±0.09

D_1M A 0.81 2.43±0.14

D_2Ma A 1.74 3.39±0.27
B 0.81 2.87±0.86

D_2Mb A 1.77 3.36±0.11
B 1.05 2.93±0.22

D_2Mc A 1.84 3.01±0.09
B 2.30 3.50±0.11

D_4M A 1.89 3.43±0.15
B 1.53 3.72±0.25
C 2.37 3.90±0.10
D 2.40 4.05±0.14

B_2Md A 1.18 1.99±0.23
B 1.39 2.78±0.04

B_3M A 1.63 2.55±0.02
B 1.51 3.28±0.05
C 1.29 2.77±0.03

* Identification of molecular dynamics simulation.
† Peptide chain identification. ‡ Shortest periodic distance.
¶ Average image periodic distance; analysis was performed in the
time window 20 to 50 ns on neat solvent simulations whereas on bi-
layer systems we discarded the first half of trajectory.
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Table A.8: Analysis of distance restraints violations for the 10 best structures of each
cluster resulting from the docking runs

Unambiguous Restraints Ambiguous Restraints

Docking Run Cluster* Etot
† Eunambig

‡ Viol¶ Eambig
§ Viol||

NearNI+epr 1 0.03±0.02 0±0 0±0 0.03±0.02 0.8±0.9

NearNI-epr 1 0.03±0.02 0.03±0.02 1.1±0.5

NonNI+epr 1 5.07±0.14 0.005±0.005 0.2±0.4 5.06±0.14 2.3±0.6
2 7.57±1.30 0.020±0.007 0.8±0.7 7.55±1.30 4.7±0.6

NonNI-epr 1 4.65±0.75 0.004±0.005 0.1±0.3 4.64±0.75 4.4±0.5
2 5.57±1.97 0.025±0.017 0.8±0.4 5.55±2.55 4.7±0.6
3 6.32±1.60 0.015±0.011 0.5±0.5 6.31±1.60 4.6±0.5

* Cluster identification is in accordance with table 6.2, page 166; † Average total distance restraints
energy, Etot = Eunambig + Eambig. All energy terms in this table are in Kcal mol−1;
‡ Average energy contribution from unambiguous distance restrains;
¶ Number of unambiguous distance restraints violations averaged over the ensemble;
§ Average energy contribution from ambiguous distance restrains; || Number of ambiguous distance
restraints violations averaged over the ensemble. Violations > 0.3 Å are reported.

Table A.9: Analysis of distance restraints violations for the 100 best docked struc-
tures of the cluster with lowest mean intermolecular energy

Unambiguous Restraints Ambiguous Restraints

Docking Run Cluster* Etot
† Eunambig

‡ Viol¶ Eambig
§ Viol||

NearNI+epr 1 0.02±0.02 0±0 0±0 0.02±0.02 0±0

NearNI-epr 1 0.03±0.02 0.03±0.02 0±0

NonNI+epr 1 4.84±0.35 0.004±0.005 0±0 4.83±0.35 2.0±0.0

NonNI-epr 1 5.36±1.45 0.008±0.011 0±0 5.35±1.45 3.7±0.8

* Cluster identification is in accordance with table 6.2, page 166;
† Average total distance restraints energy, Etot = Eunambig +Eambig. All energy terms in this table are
in Kcal mol−1; ‡ Average energy contribution from unambiguous distance restrains;
¶ Number of unambiguous distance restraints violations averaged over the ensemble;
§ Average energy contribution from ambiguous distance restrains;
|| Number of ambiguous distance restraints violations averaged over the ensemble. Violations > 0.3
Å are reported.
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Table A.11: Intermolecular contacts statistics calculated over the
ensemble of the 100 best docked structures of the cluster with lowest
mean intermolecular energy

Interacting Residues

Donor Acceptor Hydrogen-Bonds

Residue Chain Residue Chain M-M M-S S-S

A. Common contacts between runs NearNI+epr and NearNI-epr*

Glu 92 A Val 94 B 97/94
Val 94 A Glu 92 B 89/89

Arg 103 A Tyr 114 B 94/97
Thr 118 A Thr 118 B 100/100
Ala 120 A Tyr 116 B 99/97
Val 122 A Tyr 114 B 63/69
Glu 92 B Val 94 A 91/95
Val 94 B Glu 92 A 90/88

Arg 103 B Tyr 114 A 100/100
Thr 118 B Thr 118 A 100/100
Ala 120 B Tyr 116 A 99/99
Val 122 B Tyr 114 A 63/65
B. Specific contacts for NearNI+epr run
Glu 89 A Thr 96 B 51
Thr 116 A Ala 120 B 56
C. Common contacts between runs NonNI+epr and NonNI-epr†

Arg 104 B Asp 18 A 51/50
D. Specific contacts for NonNI+epr run
Leu 12 A Val 16 B 51
Val 14 A Val 14 B 100
Val 32 A Val 30 B 100

Arg 104 A Asp 18 B 85 82
Leu 12 B Val 16 A 50
Val 14 B Val 14 A 100
Val 32 B Val 30 A 100

Arg 104 B Asp 18 A 88 86
E. Specific contacts for NonNI-epr run
Leu 12 A Tyr 78 B 85
Val 16 A Val 14 B 88
Val 30 A Val 30 B 92
Val 32 A Val 28 B 66
Leu 12 B Tyr 78 A 84
Val 16 B Val 14 A 94
Val 28 B Val 32 A 50
Val 30 B Val 30 A 93
Val 32 B Val 28 A 61

Intermolecular contacts were analyzed with DIMPLOT (Wallace et al., 1995)
and are reported if present in at least 50 of the 100 best structures. The oc-
currence of main-chain/main-chain (M-M), main-chain/side-chain (M-S), and
side-chain/side-chain (S-S) hydrogen bonds is reported, over the ensemble of
the 100 lowest energy structures (cluster 1). Chain A and B correspond to the
two monomers involved in the docking procedure;
* The occurrence is reported as NearNI+epr/NearNI-epr;
† The occurrence is reported as NonNI+epr/NonNI-epr.
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(a)

(b)

Figure A.1: (a) Three-dimensional structure of WT TTR (PDB entry, 1F41) in the
dimeric form. The eight β-strands are named from A to H. (b) Schematic representation
of the main-chain hydrogen bonds within the WT TTR monomer and at the monomer-
monomer interface. Arrows point from the hydrogen bond donor to the acceptor.
Double-headed arrows indicate two hydrogen bonds between the pair of residues. The
open circles symbolize water molecules involved in indirect hydrogen bonds between
strands FF ′. The identification of the water molecule in the crystallographic structure
is also represented.
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(a) (b)

Figure A.2: Centers of mass of the non-native monomer from each cluster super-
imposed onto the cartoon representation of the other non-native monomer for (a)
NonNI+epr and (b) NonNI-epr HADDOCK runs. The centroids were calculated for
the structure with the lowest intermolecular energy of each cluster. The numbering of
the clusters corresponds to that in table 6.2, chapter 6.
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Figure A.3: Statistical histograms showing the distribution of the similarity of inter-
molecular contacts for the NearNI. The hydrogen-bonds (a,b) and the hydrophobic
contacts (c,d) were calculated and compared, between the NearNI in the dimeric docked
structures and in the resulting protofilaments. More than 60% of the protofilaments
maintain all the main-chain/main-chain hydrogen bonds as in the near-native dimers
used to build the two protofilaments sets, namely (a) protofil-epr and (b) protofil+epr.
The hydrophobic contacts, at the residue level, have a gaussian distribution with a mean
similarity value of 75% in both (c) protofil-epr and (d) protofil+epr sets.
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Figure A.4: Geometric characterization of the representative protofilaments for
protofil+epr (a,c,e) and protofil-epr sets (b,d,f). (a),(b) The linearity and the heli-
cal twist of the chosen protofilament is shown. Both protofilaments show a helical
periodicity of about 8 dimers. (c),(d) The angles between adjacent β-strands were
determined as well as (e),(f) between each strand and the protofilament major axis. The
polar plots were made for protofilaments with 10 dimeric units.



Appendix B
van der Waals interactions

Electrostatic interactions cannot account for all of the non-bonded inter-
actions in a system. As an example, all of the multipole moments of a rare
gas atom are zero, thus there can be no dipole-dipole or dipole-induced dipole
interactions. Nevertheless, there clearly must be interactions between the atoms,
since rare gas atoms show deviations from ideal gas behavior. These deviations
were described by van der Waals, thus the forces that give rise to such deviations
are often referred to as van der Waals forces (Leach, 1998).

B.1 London dispersive interactions

All atoms attract each other if they are not too close. This attractive con-
tribution is due to dispersive forces. This type of interactions were explained
using quantum mechanics by London, and are sometimes referred to as the
London force. The dispersive force is due to instantaneous dipoles which arise
from fluctuations in the electrons clouds. An instantaneous dipole in a molecule
can in turn induce a dipole in neighboring atoms, giving rise to an attractive
inductive effect. This fluctuating dipole-induced dipole interaction energy be-
comes more negative as the distance r between the atoms decreases; the force
is always attractive.

A simple model to explain the dispersive interaction was proposed by
Drude (Leach, 1998). The Drude model predicts that the interaction energy
depends on the inverse sixth power of the distance between the two atoms, and
that the magnitude of the interaction is proportional to the polarizability of each
of the groups involved (Tinoco Jr. et al., 1995).
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B.2 van der Waals repulsive contribution

All atoms or molecules repel at short distances. The energy of two atoms
increase very rapidly if they are squeezed into the same space. The repulsion
has a quantum mechanical origin and can be understood in terms of the Pauli
principle, which formally prohibits any two electrons in a system from having
the same set of quantum numbers. The interaction is due to electrons with
the same spin. The short-range repulsive force comes from the electrostatic
repulsion between pairs of electrons by forbidding them to occupy the same
internuclear region. At very short internuclear r separations, the interaction
energy varies as 1/r due to this nuclear repulsion, but at large separations the
energy decays exponentially (Leach, 1998).

B.3 Modeling van der Waals interactions

Though van der Waals interactions can be determined from quantum me-
chanics, their large number in a bio-system has motivated scientists to use
simple empirical expressions to increase the calculation speed. Briefly, these
mathematical expressions sum up the attractive and repulsive energy compo-
nents to learn the net force on the interacting parts. The best known of the van
der Waals potential functions is the Lennard-Jones 12-6 function, which takes
the following form for the interaction between two atoms i and j

VLJ(ri j) = 4εi j

[(
σ

r

)12

i j
−
(

σ

r

)6

i j

]
(B.1)

The Lennard-Jones 12-6 potential contains two adjustable parameters: the
collision diameter σ, which is the separation for which the energy is zero, and
the well depth ε. This potential is characterized by an attractive tail at large
separations that varies as r−6, the same power-law relationship described by the
Drude model, and a steeply rising repulsive wall at distances less than r ∼ σ

of the form r−12. There is also a negative well, responsible for the cohesion in
condensed phases. All these components can be visualized in figure B.1. The
r−6 variation is of the same power-law relationship than the theoretical treatment
of the dispersive forces. Though there are no strong theoretical arguments in
favor of the repulsive term r−12, it has been widely used to describe the repulsive
van der Waals contribution.

The Lennard-Jones potential may also be written in the following form

VLJ =
C12i j

r12
i j
−

C6i j

r6
i j

(B.2)
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Figure B.1: Lennard-Jones potential VLJ for two C-ester atoms (CH0) in a lipid system.
The repulsive and attractive components of the potential function are also depicted.
The parameters used are σ = 0.5773 nm and ε = 0.02577 KJ mol−1 (Chandrasekhar
et al., 2003).

The van der Waals constants C6i j and C12i j depend on both atoms i and
j. In a polyatomic system it should be expected to have several interactions
between different types of atoms. Some of these cross interactions can be
defined explicitly in the force field, or computed according to combination
rules (van der Spoel et al., 2005). The GROMOS van der Waals parameters for
an atom pair i and j, are derived from single atom van der Waals parameters (van
Gunsteren et al., 1996) using the following relations

C6i j =
√

C6iiC6 j j (B.3)

C12i j =
√

C12iiC12 j j (B.4)

where C6xx is equal to 4εxσ6
x and C12xx is equal to 4εxσ12

x , with x = i or j. The
mathematical relationships B.3 and B.4 were used to build four variations of
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the GROMOS96 45A3 force field set1 used in chapter 4. The only difference
between them is the definition of the CH0 atom type used to model the ester-
carbon of lipid molecules.

1For the GROMOS force fields the non-bonded atom type information and the van der Waals
interaction parameters can be found in the interaction function parameter file (ifp). The following
changes have been made to the original version of ifp45a3.dat : Atom type 6 (Terminal nitrogen,
NH2) interacts with atom types 5 (Peptide nitrogen, NH), 6, 7 (Terminal nitrogen, NH3), 9 (Arg
NH, NH2), and 10 (Arg NE, NH) through polar interaction, i.e. the repulsive

√
C12 parameters

between these atom types are taken from column 5 in Table 2.5.6.2.2 (GROMOS 45A3 normal
van der Waals parameters Table, in force field documentation) instead of column 4 (see van
Gunsteren et al., 1996, pg. II-33). Chris Oostenbrink is acknowledged for sharing a debugged
version of ifp45a3.dat. The GROMOS to GROMACS parameters conversion was accomplished
with a home built script.
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