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Abstract

Low-Density Parity-Check (LDPC) codes have recaptured the attention of the scien-

tific community a few years after Turbo codes were invented in the early nineties. Origi-

nally proposed in the 1960s at MIT by R. Gallager, LDPC codes represent powerful error

correcting codes that allow working very close to the Shannon limit and achieve excel-

lent Bit Error Rate (BER) due to computationally intensive algorithms on the decoder

side of the system. Advances in microelectronics introduced small process technologies

that allowed developing complex designs incorporating a high number of transistors in

Very Large Scale Integration (VLSI) systems. Recently, these processes have been used

to develop architectures able of performing LDPC decoding in real-time and deliver-

ing considerably high throughputs. Mainly for these reasons and naturally because the

patent has expired, they have been adopted by modern communication standards which

triggered their popularity, showing how actual they are.

Due to the increase of transistor density in VLSI systems, and also to the fact that re-

cently processing speed has risen faster than bandwidth, power and memory walls have

created a new paradigm in computer architectures: rather than just increasing the fre-

quency of operation supported by smaller process designs, the introduction of multiple

cores on a single chip has become the new trend to provide augmented computational

power. This thesis proposes new approaches for these computationally intensive algo-

rithms, by performing parallel LDPC decoding based on ubiquitous multi-core architec-

tures and achieves efficient throughputs that compare well with dedicated VLSI systems.

We extensively address the challenges faced in the investigation and development of

these programmable solutions, with focus mainly given on flexibility and scalability of

the proposed algorithms, throughput and BER performance, and general efficiency of

the programmable solutions here presented, that also achieve results more than an or-

der of magnitude superior to those obtained with conventional CPUs. Furthermore, the

investigation herein described follows a methodology that analyzes in detail the compu-

tational complexity of these decoding algorithms in order to propose strategies to acceler-

ate their processing which, if conveniently transposed to other areas of computer science,

can demonstrate that in this new multi-core era we may be in the presence of valid al-
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ternatives to non-reprogrammable dedicated VLSI hardware that requires non-recurring

engineering.
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Resumo

Os códigos LDPC despertaram novamente a atenção da comunidade científica poucos

anos após a invenção dos Turbo códigos na década de 90. Inventados no MIT por R.

Gallager no início da década de 60, os códigos LDPC representam sistemas correctores

de erros poderosos que permitem trabalhar muito perto do limite de Shannon e obter

taxas de bits errados (BER) excelentes, através da exploração apropriada de algoritmos

computacionalmente intensivos no lado do descodificador do sistema. Avanços recentes

na área da microelectrónica introduziram tecnologias e processos capazes de suportar o

desenvolvimento de sistemas complexos que incorporam um número elevado de transís-

tores em sistemas VLSI. Recentemente, essas tecnologias permitiram o desenvolvimento

de arquitecturas capazes de processar a descodificação de códigos LDPC em tempo-real,

obtendo taxas de débito de saída consideravelmente elevadas. Principalmente por estes

motivos, e também devido ao facto do prazo de validade da patente ter expirado, estes

códigos têm sido adoptados por normas de comunicações recentes, o que comprova a

sua popularidade e actualidade.

Devido ao aumento da densidade de transístores em sistemas microelectrónicos (VLSI),

e uma vez que nos tempos mais recentes a velocidade de processamento tem sofrido uma

evolução mais rápida do que a velocidade de acesso à memória, os problemas associados

à dissipação de potência e a tempos de latência elevados criaram um novo paradigma

em arquitecturas de computadores: ao invés de apenas se privilegiar o aumento da fre-

quência de operação suportada pelo uso de tecnologias que garantem tempos de comu-

tação do transístor cada vez mais reduzidos, a introdução de múltiplas unidades de pro-

cessamento (cores) num único sistema microelectrónico (chip) tornou-se a nova tendên-

cia, mantendo como objectivo principal o contínuo aumento da capacidade de processa-

mento de dados em sistemas de computação. Esta tese propõe novas abordagens para

estes algoritmos de computação intensiva, que permitem realizar o processamento par-

alelo de descodificadores LDPC de forma eficiente baseada em arquitecturas multi-core,

e que conduzem à obtenção de taxas de débito de saída elevadas, comparáveis às obtidas

em sistemas microelectrónicos dedicados (VLSI). É feita a análise exaustiva dos desafios

que se colocam à investigação deste tipo de soluções programáveis, dando-se especial
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ênfase à flexibilidade e escalabilidade dos algoritmos propostos, aos níveis da taxa de

débito e taxa de erros (BER) alcançados, bem como à eficiência geral das soluções pro-

gramáveis apresentadas, que alcançam resultados acima de uma ordem de grandeza su-

periores aos obtidos usando CPUs convencionais. Além do mais, a investigação descrita

nesta tese segue uma metodologia que analisa com detalhe a complexidade computa-

cional destes algoritmos de descodificação de modo a propor estratégias de aceleração

do processamento que, se adequadamente transpostas para outros domínios das ciências

da computação, podem demonstrar que nesta nova era dos sistemas multi-core podemos

estar na presença de alternativas viáveis em relação a soluções de hardware dedicado

(VLSI) não reprogramáveis, cujo desenvolvimento envolve um consumo significativo de

recursos não reutilizáveis.
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1. Introduction

1.1 Motivation

Over the last 15 years we have seen Low-Density Parity-Check (LDPC) codes assum-

ing greater and greater importance in the channel coding arena, namely because they

have error correction capability to achieve efficient coding close to the Shannon limit.

They were invented by Robert Gallager (MIT) in the early sixties [46] and never been fully

exploited due to overwhelming computational requirements by that time. Naturally, the

fact that nowadays their patent has expired, has shifted the attention of the scientific com-

munity and industry away from Turbo codes [9,10] towards LDPC codes. Mainly for this

reason and also because advances in microelectronics allowed the development of hard-

ware solutions for real-time LDPC decoding, they have been adopted by modern commu-

nication standards. Important examples of these standards are: the WiMAX IEEE 802.16e

used in wireless communication systems in Metropolitan Area Networks (MAN) [64]; the

Digital Video Broadcasting – Satellite 2 (DVB-S2) used in long distance wireless com-

munications [29]; the WiFi 802.11n the ITU-T G.hn standard for wired home networking

technologies; the 10 Giga-Bit Ethernet IEEE 802.3an; or the 3GPP2 Ultra Mobile Broad-

band (UMB) under the evolution of the 3G mobile system, where the introduction of

LDPC codes in 4G systems has recently been proposed, as opposed to the use of Turbo

codes in 3G.

Until very recently, solutions for LDPC decoding were exclusively based on dedi-

cated hardware such as Application Specific Integrated Circuits (ASIC), which represent

non-flexible and non-reprogrammable approaches [18,70]. Also, the development of ASIC

solutions for LDPC decoding consumes significant resources, with high Non-Recurring

Engineering (NRE) penalty, and presents long development periods (penalizing time-

to-market). An additional restriction in currently developed ASICs for LDPC decoding

is the use of fixed-point arithmetic. This introduces limitations due to quantization ef-

fects [101] that impose restrictions on coding gains, error floors and Bit Error Rate (BER).

Also, the complexity of Very Large Scale Integration (VLSI) parallel LDPC decoders in-

creases significantly for long length codes, as those used, for example, in the DVB-S2

standard. In this case, the routing complexity assumes proportions that create great dif-

ficulties in the design of such architectures.

In recent years, we have seen processors scaling up to hundreds of millions of tran-

sistors. Memory and power walls have shifted the paradigm of computer architectures

into the multi-core era [59]. The integration of multiple cores into a single chip has be-

come the new trend to increase processor performance. Multi-core architectures [12] have

evolved from dual or quad-core to many-core systems, supporting multi-threading, a

powerful technique to hide memory latency, while at the same time provide larger Single
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1.1 Motivation

Instruction Multiple Data (SIMD) units for vector processing. The number of cores per

processor assumes significant proportions and is expected to increase even further in the

future [16,58]. This new context motivates the investigation of more flexible approaches

based on multi-cores to solve challenging computational problems that require intensive

processing, and that typically were only achieved in the past with VLSI dedicated accel-

erators.

Generally worldwide disseminated, many of the actual parallel computing [12] plat-

forms provide low-cost high-performance massive computation, supported by conve-

nient programming languages, interfaces, tools and libraries [71,89]. The advantages of us-

ing software- versus hardware-based approaches are essentially related with programma-

bility, reconfigurability, scalability and adjustable data-precision. The advantage is clear

if NRE is used as the figure of merit to compare both approaches. However, developing

programs for platforms with multiple cores is not trivial. Exploiting the full potential

of multi-core based computers many times involves expertise on parallel computation

and specific skills which, at the moment, still compel the software developer to deal with

low-level architectural/software details.

In the last decade we have seen a vast set of multi-core architectures emerging [12],

allowing processing performances unmatched before. The general-purpose multi-core

processors replicate a single core in a homogeneous way, typically with a x86 instruction

set, and provide shared memory hardware mechanisms. They support multi-threading

and share data at a certain level of the memory hierarchy, and can be programmed at a

high level by using different software technologies [71]. The popularity of these architec-

tures has made multi-core processing power generally available everywhere.

Mainly due to demands for visualization technology in the games industry, Graphics

Processing Units (GPU) have undergone increasing performances over the last decade.

Even in a commodity personal computer, we now have at disposal high quality graphics

created by real-time computing, mainly due to the high performance GPUs available in

personal computers. With many cores driven by a considerable memory bandwidth and

a shared memory architecture, recent GPUs are targeted for compute-intensive, multi-

threaded, highly-parallel computation, and researchers in high performance computing

fields are exploiting GPUs for General Purpose Computing on GPUs (GPGPU) [20,54,99].

Also pushed by audiovisual needs in the industry of games, emerged the Sony, Toshiba

and IBM (STI) Cell Broadband Engine (Cell/B.E.) Architecture (CBEA) [24] [60]. It is char-

acterized by an heterogeneous vectorized SIMD multi-core architecture composed by one

main PowerPC Processor that communicates efficiently with several Synergistic Proces-

sors. It is based on a distributed memory architecture where fast communications be-

tween processors are supported by high bandwidth dedicated buses.
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1. Introduction

Motivated by the evolution of these multi-core systems, programmable parallel ap-

proaches for the computationally intensive processing of LDPC decoding are desirable.

Multi-cores can allow a low level of NRE and the flexibility they introduce can be used

to exploit other levels of efficiency. However, many challenges have to be successfully

addressed fostering these approaches, namely the efficiency of data communications and

synchronization between cores, the reduction of latency and minimization of congestion

problems that may occur in parallel memory accesses, cache coherency and memory hi-

erarchy issues, and scalability of the algorithms, just to name a few. The investigation

of efficient parallel algorithms for LDPC decoding has to consider the characteristics of

the different architectures, such as homogeneity or heterogeneity of the parallel architec-

ture, and memory models that can support data sharing or be distributed (models that

exploit both types also exist). The diversity of architectures imposes different strategies

in order to exploit parallelism conveniently. Another important issue consists of adopt-

ing data representations suitable for parallel computing engines. All these aspects have

significant impact on the achieved performance.

The development of programs for the considered parallel computing architectures

allows assessing the performance of software-based solutions for LDPC decoding. The

difficulty of developing accurate models for predicting the computational performance of

these architectures is associated with the existence of a large variety of parameters which

can be manipulated within each architecture. Advances in this area can help understand-

ing how far parallel algorithms are from their theoretical peak performance. This infor-

mation can be used to tune an algorithm’s execution time targeting a certain multi-core

architecture. More importantly, it can be used to help perceiving how compilers and

parallel programming tools should evolve towards the massive exploitation of the full

potential of parallel computing architectures.

1.2 Objectives

Given the many challenges associated with the investigation of novel efficient forms

of performing parallel LDPC decoding, the main objectives of the research work herein

described consist of: i) researching new parallel architectures for VLSI-based LDPC de-

coders under the context of DVB-S2, pursuing the objective of reducing the routing com-

plexity of the design, occupying small die areas and consume low power, while guaran-

teeing high throughputs; ii) investigating novel parallel approaches, algorithms and data

structures for ubiquitous low-cost multi-core processors; iii) deriving parallel kernels for

a set of predefined multi-core architectures based on the proposed algorithms; and iv)

assessing their efficiency against state-of-the-art hardware-based VLSI solutions, namely
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1.2 Objectives

by comparing throughput and BER performance.

Common general-purpose processors have been used in the research of good LDPC

codes (searching low error floors, while guaranteeing sparsity) and other types of of-

fline processing necessary to investigate the coding gains of LDPC codes, but they have

never been considered for real-time decoding which, depending on the length of the

LDPC code, may produce very intensive workloads. Thus, with these processors it is not

possible to achieve the required throughput for real-time LDPC decoders, and hardware-

dedicated solutions have to be considered.

One of the main objectives of this thesis consisted of investigating more efficient

hardware-dedicated solutions (e. g. based on Field Programmable Gate Array (FPGA)

or ASIC) for DVB-S2 LDPC decoders. The length of codes adopted in this standard is

so large, that actually they represent the most complex challenge regarding the develop-

ment of efficient solutions for VLSI-based LDPC decoders. Under this context, perform-

ing LDPC decoding with a reduced number of light weight node processors, associated

with the possibility of reducing the routing complexity of the interconnection network

that connects processor nodes and memory blocks, is a target that aims to improve the

design in terms of cost and complexity.

While the development of hardware solutions for LDPC decoding was dependent

on VLSI technology, it imposed restrictions at the level of data representation, coding

gains, BER, etc. The advent of the multi-core era encourages the development of new

programmable, flexible and reconfigurable solutions that can represent data with a pro-

grammable number of bits. Under this context, the use of massively disseminated ar-

chitectures with many cores available to solve these computational challenges can be

exploited. In this sense, new parallel approaches and algorithms had to be investigated

and developed to achieve these goals, which represented another of the main objectives

of the thesis.

This led to the development of new forms of representing data to suit parallel com-

puting and stream-based architectures. Since in parallel systems there are multiple cores

performing concurrent accesses to data structures in memory, they may have to obey to

special constraints such as dimension and alignment in appropriate memory addresses

to minimize the problem of traffic congestion. The investigation of these data structures

was motivated by the development of appropriate parallel algorithms.

The variety and heterogeneity of programming models and parallel architectures

available represented a challenge in this research work. A set of parallel computing ma-

chines, selected based on properties such as computational power, popularity, worldwide

dissemination and cost, have been considered to solve the intensive computational prob-

lem of LDPC decoding. Special challenges have to be addressed, such as: irregular data
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representation of binary sparse matrices; intensive computation, which requires itera-

tive decoding but exhibits different levels of parallelism to target distinct architectures,

such as homogeneous and heterogeneous systems, with shared and distributed memory.

Also, the inclusion of models to predict the performance of the algorithms developed in

these types of parallel computing architectures represents a difficult problem which can

be tackled by testing separately (and independently) several case limit situations (e.g.

memory accesses, or arithmetic instructions). This thesis also assesses the efficiency of

the proposed software-based LDPC decoders and compares it with dedicated hardware

(e.g. VLSI).

The research carried out, the problems addressed and the solutions developed for the

case of LDPC decoding under the context of this thesis, should preferably be portable

and serve a variety of other types of computationally intensive problems.

1.3 Main contributions

The main contributions of this Ph.D. thesis are:

i) optimization of specific hardware components used in VLSI LDPC decoders for

DVB-S2; simplification of the interconnection network; optimization of synthesis

results for processing units and RAM memory blocks; development of new semi-

parallel, scalable and factorizable architectures; prototyping and testing in FPGA

and ASIC devices; this work has been communicated in:

[31] Falcão, G., Gomes, M., Gonçalves, J., Faia, P., and Silva, V. (2006). HDL Library

of Processing Units for an Automatic LDPC Decoder Design. In Proceedings

of the IEEE Ph.D. Research in Microelectronics and Electronics (PRIME’06), pages

349–352.

[49] Gomes, M., Falcão, G., Gonçalves, J., Faia, P., and Silva, V. (2006a). HDL Li-

brary of Processing Units for Generic and DVB-S2 LDPC Decoding. In Pro-

ceedings of the International Conference on Signal Processing and Multimedia Appli-

cations (SIGMAP’06).

[50] Gomes, M., Falcão, G., Silva, V., Ferreira, V., Sengo, A., and Falcão, M. (2007a).

Factorizable modulo M parallel architecture for DVB-S2 LDPC decoding. In

Proceedings of the 6th Conference on Telecommunications (CONFTELE’07).

[51] Gomes, M., Falcão, G., Silva, V., Ferreira, V., Sengo, A., and Falcão, M. (2007b).

Flexible Parallel Architecture for DVB-S2 LDPC Decoders. In Proceedings of the

IEEE Global Telecommunications Conf. (GLOBECOM’07), pages 3265–3269.

8



1.3 Main contributions

[52] Gomes, M., Falcão, G., Silva, V., Ferreira, V., Sengo, A., Silva, L., Marques, N.,

and Falcão, M. (2008). Scalable and Parallel Codec Architectures for the DVB-

S2 FEC System. In Proceedings of the IEEE Asia Pacific Conf. on Circuits and

Systems (APCCAS’08), pages 1506–1509.

ii) development of efficient data structures to represent the message-passing activ-

ity between processor nodes that support the iterative decoding of LDPC codes;

demonstration that the amount of data can be substantially reduced introducing

several advantages, namely in terms of bandwidth; this work has been communi-

cated in:

[32] Falcão, G., Silva, V., Gomes, M., and Sousa, L. (2008). Edge Stream Oriented

LDPC Decoding. In Proceedings of the 16th Euromicro International Conference

on Parallel, Distributed and network-based Processing (PDP’08), pages 237–244,

Toulouse, France.

iii) research of new parallel algorithms supported on the proposed compact data struc-

tures, for generic families of programmable GPU multi-core computing architec-

tures:

[40] Falcão, G., Yamagiwa, S., Silva, V., and Sousa, L. (2007). Stream-Based LDPC

Decoding on GPUs. In Proceedings of the First Workshop on General Purpose Pro-

cessing on Graphics Processing Units – GPGPU’07, pages 1–7.

[41] Falcão, G., Yamagiwa, S., Silva, V., and Sousa, L. (2009d). Parallel LDPC Decod-

ing on GPUs using a Stream-based Computing Approach. Journal of Computer

Science and Technology, 24(5):913–924.

iv) improvement of parallel algorithms for programmable shared memory architec-

tures, that support high-performance dedicated programming interfaces, which re-

sulted in the following communications:

[37] Falcão, G., Sousa, L., and Silva, V. (2008). Massive Parallel LDPC Decoding

on GPU. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

practice of parallel programming (PPoPP’08), pages 83–90, Salt Lake City, Utah,

USA. ACM.

[34] Falcão, G., Silva, V., and Sousa, L. (2009b). How GPUs can outperform ASICs

for fast LDPC decoding. In Proceedings of the 23rd ACM International Conference

on Supercomputing (ICS’09), pages 390–399. ACM.
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[35] Falcão, G., Silva, V., and Sousa, L. (2010a). GPU Computing Gems, chapter Par-

allel LDPC Decoding. ed. Wen-mei Hwu, vol. 1, NVIDIA, Morgan Kaufmann,

Elsevier.

v) development and investigation of the behavior of alternative parallel algorithms

for programmable distributed memory based architectures; development and anal-

ysis of models that allowed to assess the efficiency of the resulting solution; work

communicated in:

[36] Falcão, G., Silva, V., Sousa, L., and Marinho, J. (2008). High coded data rate and

multicodeword WiMAX LDPC decoding on the Cell/BE. Electronics Letters,

44(24):1415–1417.

[38] Falcão, G., Sousa, L., and Silva, V. (2009c). Parallel LDPC Decoding on the

Cell/B.E. Processor. In Proceedings of the 4th International Conference on High Per-

formance and Embedded Architectures and Compilers (HiPEAC’09), volume 5409 of

Lecture Notes in Computer Science, pages 389–403. Springer.

[33] Falcão, G., Silva, V., Marinho, J., and Sousa, L. (2009a). WIMAX, New Develop-

ments, chapter LDPC Decoders for the WiMAX (IEEE 802.16e) based on Multi-

core Architectures. In-Tech.

vi) analysis of distinct software-based solutions; comparison of advantages and disad-

vantages between them; comparison against hardware-dedicated VLSI solutions;

analysis of pros and cons of both novel approaches:

[114] Sousa, L., Momcilovic, S., Silva, V., and Falcão, G. (2009). Multi-core Platforms

for Signal Processing: Source and Channel Coding. In Proceedings of the 2009

IEEE International Conference on Multimedia and Expo (ICME’09).

[39] Falcão, G., Sousa, L., and Silva, V. (accepted in February 2010b). Massively

LDPC Decoding on Multicore Architectures. IEEE Transactions on Parallel and

Distributed Systems.

1.4 Outline

The remaining parts of the present dissertation are organized into five chapters. Chap-

ter 2 addresses belief propagation, and iterative LDPC decoding algorithms are described

with special attention given to quasi-cyclic properties of some of the codes used in pop-

ular data communication systems. The comprehension of the simplifications that these

properties may introduce in the design of efficient decoder processing mechanisms, ei-

ther being software- or hardware-based, is essential before we proceed to the following
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Parallel LDPC Decoding
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Multi-cores

Figure 1.1: Proposed approaches and technologies that support the LDPC decoders pre-
sented in this thesis.

chapters. Chapter 3 deeply analyzes in a considerable extent the computational modes

and properties of generic parallel programming models and architectures, necessary to

perform efficient parallel LDPC decoding. Chapters 4 and 5 describe the most relevant

aspects of the developed work. Chapter 4 presents novel scalable VLSI semi-parallel ar-

chitectures for DVB-S2 that exploit efficient processing units and new configurations of

RAM memory blocks that consume significantly less area on a die; and it assesses the

different obstacles at the hardware level which had to be overcome to achieve efficient

hardware LDPC decoders. The hardware technologies used to develop these solutions

are shown on the right side of figure 1.1. On the other hand, in Chapter 5 special atten-

tion is given to the compact representation of data structures that suit parallel memory

accesses and the corresponding processing on programmable parallel computing archi-

tectures; furthermore, it proposes parallel algorithms to accelerate the computation of

LDPC decoders to performances that approximate hardware-dedicated solutions; it also

proposes computational models to assess the efficiency of these software-based LDPC de-

11



1. Introduction

coders; and compares advantages and disadvantages of the different parallel approaches

proposed. The hardware/software that supports these approaches is based on the left

subtree in figure 1.1.

The experimental evaluation of the techniques developed in this thesis and the ex-

perimental results achieved for the resulting hardware- and software-based solutions are

presented, respectively, in chapters 4 and 5. Finally, chapter 6 closes the dissertation by

summarizing the main contributions of the thesis and by addressing future research di-

rections.
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2. Overview of Low-Density Parity-Check codes

In channel coding, error correcting codes assume increasing importance in data trans-

mission and storage systems, as the speed of communications, distance of transmission,

or amount of data to be transmitted are also increasing. Furthermore, over the last few

years, a very important facility has been added to everyday life commodities: mobility.

This feature nowadays supports a large variety of products ranging from mobile phones

to laptops and, most of the times, it requests the use of error prone data transmission

wireless systems. Naturally, data transmissions are not limited to wireless communica-

tions and many other systems that support, for example, cable or terrestrial transmissions

are also adopting these mechanisms. The capability of detecting (and in some cases even

correcting) errors by the recipient of a message, has made this type of systems popular

and used in many of today’s electronic equipment.

Among the different classes of error correcting codes, we focus this work on the study

of binary linear block codes, whose powerful characteristics have been widely addressed,

investigated and exploited by the information theory community [93,112]. More specifi-

cally, in this thesis we concentrate efforts in the particular case of binary Low-Density

Parity-Check (LDPC) codes [106,123,136].

2.1 Binary linear block codes

An error correcting code is said to be a block code, if for each message m of finite

length K composed by symbols belonging to the alphabet X, the channel encoder makes

corresponding, by means of a transformation G, a codeword c of length N, with N > K.

The addition of N − K symbols introduces redundancy and is used later to infer the

correction of errors on the decoder side. The amount of redundancy introduced usually

depends on the channel conditions (e.g. Signal-to-Noise Ratio (SNR)). This amount can

be related with the dimension of the code and is given by:

rate = K/N, (2.1)

where the ratio between the length of the message K and the length of the codeword N

defines the rate of a code.

The definition of a linear block code, as described in [79], shows that for the complete

set of codewords C that form a linear code, a code is linear if the sum of any number of

codewords is still a valid codeword ∈ C:

∀ c1, c2, ..., cn ∈ C, c = c1 + c2 + ...+ cn ⇒ c ∈ C. (2.2)

Under the context of this work, we use only binary codes with a corresponding alphabet

X = {0, 1}. This allows the use of arithmetic modulus 2 operations (such as sum modulus

16



2.2 Code generator matrix G

2 operations represented by ⊕). The rule in (2.2) can then be described as:

∀ c1, c2, ..., cn ∈ C, c = c1 ⊕ c2 ⊕ ...⊕ cn ⇒ c ∈ C. (2.3)

Considering the properties of the ⊕ operation, we realize that the sum modulus 2 of

any codeword c with itself produces the null vector. This shows another property of lin-

ear binary codes: one of the codewords c ∈ C has to be the null vector. The algebraic

properties of some linear codes allowed developing efficient encoding and decoding al-

gorithms [94]. This represents an important advantage and many of currently used error

correcting codes are sub-classes of linear block codes [79,112].

2.2 Code generator matrix G

Considering the message m of length K,

m = [m0 m1 ... mK−1], (2.4)

that we wish to transmit over a channel coded as vector c of length N,

c = [c0 c1 ... cN−1]. (2.5)

To generate c from m we can apply a binary matrix G of dimension K × N. Then, all

codewords can be generated by applying:

c = mG. (2.6)

In order to be able of correctly recovering the initial message on the decoder side of

the system, every different message from the set of vector messages {m0, m1, ..., m2K−1}

should originate a different codeword {c0, c1, ..., c2K−1} ∈ C. The inspection of (2.6)

shows that each element of C = {c0, c1, ..., c2K−1} is a linear combination of the rows

of G. For this reason, and to guarantee that all codeword vectors C = {c0, c1, ..., c2K−1}

are unique, all rows in G have to be linearly independent (i.e. G is full rank).

Systematic codes: In systematic codes, a different representation of the codeword c is

used that separates message bits (or information bits) from parity-check bits. Then, c can

also be represented by:

c = [c0 c1 ... cN−1] = [b0 b1 ... bN−K−1 m0 m1 ... mK−1], (2.7)

where bits b0 to bN−K−1 are parity-check bits obtained from message bits (independent

variables) as follows:

b = [b0 b1 ... bN−K−1] = mP. (2.8)
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2. Overview of Low-Density Parity-Check codes

The parity matrix P has size K × (N − K) and can be associated to an identity matrix IK

with dimension K× K, to represent the G matrix in the systematic form:

G = [P|IK]. (2.9)

2.3 Parity-check matrix H

If all the 2K codewords of a binary code satisfy (N − K) homogeneous independent

linear equations in ci bits, with i = 0, 1, ..., N− 1, then the binary code is linear [79,94]. This

is equivalent to say that we have a linear system with N binary variables and (N − K)

equations. Any linear system of homogeneous equations defines a linear code, and these

are called the parity-check equations. They can be represented by the parity-check H

matrix with size (N − K)× N, defined as:

HcT = 0(N−K)×1, (2.10)

where all the (N − K) rows in H should be linearly independent for the code to be con-

sidered a (N, K) code.

A binary linear code defined by a full rank H matrix can be also represented in the

systematic form. The manipulation of (2.6) and (2.10) can be decomposed into:

HcT = 0(N−K)×1⇔ cHT = 01×(N−K) ⇔ mGHT = 01×(N−K) ⇒ GHT = 0K×(N−K),

(2.11)

which shows that H and G are orthogonal. By applying elementary algebraic operations

and according to (2.9) and (2.11), H can be represented in the systematic form as:

H = [IN−K|PT], (2.12)

with IN−K being an identity matrix of size (N − K)× (N − K).

2.4 Low-Density Parity-Check codes

LDPC are linear block codes with excellent error correcting capabilities, which al-

low working very close to the Shannon limit capacity [23]. Moreover, as they have been

originally invented by Robert Gallager in the early 1960s [46] their patent has expired.

In 1996 a very famous paper from Mackay and Neal [84] recaptured the attention from

academia/scientific community to their potential and, as a consequence, the industry

has recently started to incorporate LDPC codes in modern communication standards. In

order to introduce this type of linear codes, a few important properties should be primar-

ily addressed, as they can impact the performance of LDPC codes.
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2.5 Codes on graphs

The main properties of an LDPC code are embedded in the parity-check H matrix.

The H matrix is sparse, which means that the number of ones is reduced when compared

with the total number of elements. The number of ones per row is defined as the row

weight wc and the number of ones per column as column weight wb. As it will be describe

in future sections of the text, the dimensions and weights of a code have great influence

in the workload of LDPC decoders. Also, if the weight wc is the same for all rows and

weight wb is the same for all columns, the code is said to be regular. But if the weight wc is

not constant on every row, or the equivalent happens for columns and wb, then the code

is defined as irregular, which introduces additional complexity to control the decoding

process of the algorithms.

The dimension of an LDPC code has implications in the coding gain [23,28]. Depending

on the application, in order to allow good coding gains, LDPC codes typically are based

on (N, K) codes with large dimensions [23] (e.g. 576 ≤ N ≤ 2304 bit in the WiMAX

standard [64], and N ≤ 16200 or N ≤ 64800 bit in the Digital Video Broadcasting – Satellite

2 (DVB-S2) standard [29]). As we increase the length of an LDPC code, we are able to

approach the channel limit capacity [23,28].

2.5 Codes on graphs

A linear binary block code (N, K) can be described by a binary H matrix with dimen-

sions (N − K)× N. Also, it can be elegantly represented by a Tanner graph [118] defined

by edges connecting two distinct types of nodes:

• Bit Nodes (BN), also called variable nodes with a BN for each one of the N variables

of the linear system of equations, and;

• Check Nodes (CN), also called restriction or test nodes with a CN for each one of

the (N − K) homogeneous independent linear system of equations represented by

H.

Figure 2.1 shows an example for a binary (8, 4) code with N = 8 BNs (or variable

nodes) and (N − K) = 4 CN equations. Each CN connects to all the BNs which have

a contribution in that restriction or test equation. For the other type of nodes, each BN

corresponding to a ci bit of the codeword, connects to all the CN equations where bit ci

participates in. The graph edges connect BNs with CNs, but never nodes of the same

type, which defines a bipartite graph. Every element in H where Hij = 1, represents a

connection between BNj and CNi. In the example of figure 2.1 BN0, BN1 and BN2 are

processed by CN0 as indicated in the first row of H. From the second until the fourth
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Figure 2.1: A (8, 4) linear block code example: parity-check equations, the equivalent H
matrix and corresponding Tanner graph [118] representation.

row, it can be seen that the subsequent BNs are processed by their neighboring CNs.

2.5.1 Belief propagation and iterative decoding

Graphical models, and in particular Tanner graphs as the one addressed in figure 2.1,

have often been proposed to perform approximate inference calculations [115,117]. They are

based on iterative intensive message-passing algorithms also known as belief propagation

(BP) which, under certain circumstances, can become computationally prohibitive. BP,

also known as the Sum-Product Algorithm (SPA)1, is an iterative algorithm [122] for the

computation of joint probabilities on graphs commonly used in information theory (e.g.

channel coding), artificial intelligence (AI) and computer vision (e.g. stereo vision) [19,117].

It has proved to be efficient and is used in numerous applications including LDPC codes [134],

Turbo codes [9,10], stereo vision applied to robotics [117], or in Bayesian networks such as

the QMR-DT (a decision-theoretic reformulation of the Quick Medical Reference (QMR))

model described in [77]).

1In the literature, the terms BP and SPA are commonly undistinguished. Both are used in this text without
differentiation.
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Encoder DecoderChannel
c y ĉm

Figure 2.2: Illustration of channel coding for a communication system.

LDPC decoding: In this text we are interested in the BP algorithm applied to LDPC de-

coding. In particular, we exploit the Min-Sum Algorithm (MSA), one of the most efficient

simplification of the SPA, which are very demanding from a computational perspective.

The SPA applied to LDPC decoding operates with probabilities [46], exchanging informa-

tion and updating messages between neighbors over successive iterations.

Considering a codeword that we wish to transmit over a noisy channel, the theory of

graphs applied to error correcting codes has fostered codes to performances extremely

close of the Shannon limit [23]. In bipartite graphs, particularly in those with large dimen-

sions (e.g. N > 1000 bit), the certainty on a bit can be spread over neighboring bits of

a codeword allowing, in certain circumstances, in the presence of noise, to recover the

correct bits on the decoder side of the system. In a graph representing a linear block error

correcting code, reasoning algorithms exploit probabilistic relationships between nodes

imposed by parity-check conditions that allow inferring the most likely transmitted code-

word. The BP mentioned before allows to find the maximum a posteriori probability (APP)

of vertices in a graph [122].

Soft decoding: Propagating probabilities across nodes of the Tanner graph, rather than

just flipping bits [46] which is considered hard decoding, is defined as soft decoding. This

iterative procedure accumulates evidence imposed by parity-check equations that try to

infer the true value for each bit of the received word. Considering in figure 2.2 the original

unmodulated codeword c at the encoder’s output and the received word y at the input

of the decoder, we seek the codeword ĉ ∈ C that maximizes the probability:

p(ĉ|y, HĉT = 0). (2.13)

However, this represents very intensive computation because all 2K codewords have to be

tested. An alternative that makes the decoder perform more localized processing consists

of testing only bit ĉn of all codewords and find a codeword that maximizes the probabil-

ity:

p(ĉn|y, all checks involving bit ĉn are satisfied). (2.14)

This represents the APP for that single bit, and only the parity-check equations that par-

ticipate in bit ĉn are satisfied. It defines one of two kinds of probabilities used in the
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Figure 2.3: Detail of a check node update by the bit node connected to it as defined in the
Tanner graph for the example shown in figure 2.5. It represents the calculation of qnm(x)
probabilities given by (2.16).

decoding algorithm [94] and can be denoted as:

qn(x) = p(ĉn = x|y, all checks involving bit ĉn are satisfied), x ∈ X. (2.15)

A variant from (2.15) isolates from this computation the parity-check m that participates

in bit n:

qnm(x) = p(ĉn = x|y, all checks, except check m, involving bit ĉn are satisfied), x ∈ X,

(2.16)

and is used to infer decisions on a decoded bit value. The computation of probabilities

qnm(x) are illustrated in figure 2.3, which represents the update of a q(i)nm message during

iteration i.

The second type of probabilities used in the decoding algorithm indicates the prob-

ability of parity-check m is satisfied, given only a single bit ĉn that participates in that

parity-check (and all the other observations associated with that parity-check), and it is

denoted as:

rmn(x) = p(Hm ĉT = 0, ĉn = x|y), x ∈ X, (2.17)

where the notation Hm ĉT = 0 represents the linear parity-check constraint m that satisfies

the codeword ĉ. Probabilities rmn(x) are calculated according to the illustration shown

in figure 2.4, which represents the update of a r(i)mn message during iteration i. The com-

putation of probabilities qnm(x) and rmn(x), with x ∈ X, is performed iteratively only for

non-null elements of Hmn, with 0 < m < N − K − 1 and 0 < n < N − 1, i.e. across the

Tanner graph edges. The decoder computes probabilities about parity-checks (rmn(x))

which are then used to compute information about the bits (qnm(x)), on an iterative basis.

This propagation of evidence through the tree generated by the Tanner graph, depicted

in figure 2.5, allows to infer the correct codeword after all parity-checks are satisfied, or

abort after a certain number of iterations is reached.
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defined in the Tanner graph for the example depicted in figure 2.5. It represents the
calculation of rmn(x) probabilities given by (2.17).

2.5.2 The Sum-Product algorithm

Given a (N, K) binary LDPC code, Binary Phase Shift Keying (BPSK) modulation is

assumed, which maps a codeword c = (c0, c1, c2, · · · , cn−1) into a sequence x = (x0, x1, x2,

· · · , xn−1), according to xi = (−1)ci . Then, x is transmitted over an additive white Gaus-

sian noise (AWGN) channel, producing a received sequence y = (y0, y1, y2, · · · , yn−1)

with yi = xi + ni, where ni represents AWGN with zero mean and variance σ2 = N0/2.

The SPA applied to LDPC decoding is illustrated in algorithm 2.1 and is mainly de-

scribed by two different horizontal and vertical intensive processing blocks defined, re-

spectively, by (2.18) to (2.19) and (2.20) to (2.21) [94]. The equations in (2.18) and (2.19)

calculate the message update from CNm to BNn, considering accesses to H in a row-

major basis – the horizontal processing – and indicate the probability of BNn being 0 or

1. For each iteration, r(i)mn values are updated according to (2.18) and (2.19), as defined by

the Tanner graph [79] illustrated in figure 2.5.

Similarly, the latter pair of equations (2.20) and (2.21) computes messages sent from

BNn to CNm, assuming accesses to H in a column-major basis – the vertical processing. In

this case, q(i)nm values are updated according to (2.20) and (2.21) and the edges connectivity

indicated by the Tanner graph.

Considering the message propagation from nodes CNm to BNn and vice-versa, the

set of bits that participate in check equation m, with bit n excluded, is represented by

N (m)\n and, similarly, the set of check equations in which bit n participates with check

m excluded isM(n)\m.

Finally, (2.22) and (2.23) compute the a posteriori pseudo-probabilities and in (2.24) the

hard decoding is performed at the end of an iteration. The iterative procedure is stopped

if the decoded word ĉ verifies all parity-check equations of the code (HĉT = 0), or if the

maximum number of iterations I is reached.
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Algorithm 2.1 Sum-Product Algorithm – SPA
1: /* Initialization */

pn = 1

1+e
2yn
σ2

; Eb
N0

= N
2Kσ2 ;

pn = p(yi = 1); q(0)mn(0) = 1− pn; q(0)mn(1) = pn;

2: while (HĉT 6= 0 ∧ i < I) /* c-decoded word; I-Max. no. of iterations. */
do

3: /* For all node pairs (BNn, CNm), corresponding to Hmn = 1 in the parity check matrix H of the code do:
*/

4: /* Compute the message sent from CNm to BNn, that indicates the probability of BNn being 0 or 1: */

(Kernel 1 – Horizontal Processing)

r(i)
mn (0) =

1
2
+

1
2 ∏

n′∈N (m)\n

(

1− 2q(i−1)
n′m (1)

)

(2.18)

r(i)
mn (1) = 1− r(i)

mn (0) (2.19)

/* where N (m)\n represents BN’s connected to CNm excluding BNn. */

5: /* Compute message from BNn to CNm: */

(Kernel 2 – Vertical Processing)

q(i)
nm (0) = knm (1− pn) ∏

m′∈M(n)\m

r(i)
m′n (0) (2.20)

q(i)
nm (1) = knm pn ∏

m′∈M(n)\m

r(i)
m′n (1) (2.21)

/* where knm are chosen to ensure q(i)
nm (0) + q(i)

nm (1) = 1, andM(n)\m is the set of CN’s connected to
BNn excluding CNm. */

6: /* Compute the a posteriori pseudo-probabilities: */

Q(i)
n (0) = kn (1− pn) ∏

m∈M(n)

r(i)
mn (0) (2.22)

Q(i)
n (1) = kn pn ∏

m∈M(n)

r(i)
mn (1) (2.23)

/* where kn are chosen to guarantee Q(i)
n (0) + Q(i)

n (1) = 1. */

7: /* Perform hard decoding: */
∀n,

ĉ(i)
n =

{

1 ⇐ Q(i)
n (1) > 0.5

0 ⇐ Q(i)
n (1) < 0.5

(2.24)

8: end while

2.5.3 The Min-Sum algorithm

A logarithmic version of the well known SPA [46,83] defined as Logarithmic Sum-Product

Algorithm (LSPA) can be derived to achieve a less computationally demanding LDPC
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2. Overview of Low-Density Parity-Check codes

decoding algorithm. Instead of the analysis of two complementary probabilities, this

simplification is based on the logarithm of their ratio, defined as the Log-likelihood

ratio (LLR). From a computational perspective the complexity of processing decreases as

it uses sum operations instead of multiplications, while subtractions replace divisions [63].

Log-likelihood ratio: Consider the complementary APP, p(cn = 0|y) and p(cn = 1|y)

which sum to 1. These two probabilities can be efficiently represented as a unique num-

ber by computing their ratio. Its logarithmic representation is given by:

LLR = log(
p(cn = 0|y)
p(cn = 1|y)

). (2.25)

The MSA [56] consists of a simplification of the LSPA [46,83] and is one of the most effi-

cient algorithms used to perform LDPC decoding [79]. Like the LSPA, the MSA is based

on the intensive belief propagation between nodes connected as indicated by the Tanner

graph edges (see example in figure 2.5), but only uses comparison and addition opera-

tions. Although its workload is lower than the one required by the SPA, it is still quite

significant. If the number of nodes is large (in the order of thousands) the MSA can still

demand very intensive processing.

The MSA is depicted in algorithm 2.2 [79]. Lpn designates the a priori LLR of BNn, de-

rived from the values received from the channel, and Lrmn is the message that is sent from

CNm to BNn, computed based on all received messages from BNs N (m)\n. Also, Lqnm

is the LLR of BNn, which is sent to CNm and calculated based on all messages received

from CNs M(n)\m and the channel information Lpn. For each node pair (BNn, CNm)

we initialize Lqnm with the probabilistic information received from the channel, and then

we proceed to the iterative body of the algorithm. Like the SPA, it is mainly described

by two horizontal and vertical intensive processing blocks, respectively defined by (2.26)

and (2.29). The former calculates the message updating procedure from each CNm to

BNn, considering accesses to H on a row basis. It indicates the likelihood of BNn being

0 or 1. The operations sign(.), min(.) (of any two given numbers), and abs(.) described

in (2.26), (2.27) and (2.28) represent a simplification of the computation defined in the

SPA, and can be performed quite efficiently both in hardware and software. The vertical

processing defined in kernel 2 and described in (2.29) computes messages sent from BNn

to CNm, assuming accesses to H on a column basis.

In (2.30) the a posteriori LLR are processed and stored into LQn, after which we per-

form the final hard decoding. Differently from the hard decoding decision performed for

the SPA in (2.24), here a decision on a bit value can be obtained simply by inspecting the

signal of LQn. The decision on ĉ is described in (2.31) and it can be performed by sim-

ple and efficient hardware (and also software) operations, which represents an important
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2.5 Codes on graphs

Algorithm 2.2 Min-Sum Algorithm – MSA
1: /* Initialization */

Lpn =
2yn

σ2 ;

Lq(0)nm = Lpn;

2: while (HĉT 6= 0 ∧ i < I) /* c-decoded word; I-Max. no. of iterations. */
do

3: /* For all node pairs (BNn, CNm), corresponding to Hmn = 1 in the parity check matrix H of the code do:
*/

4: /* Compute the LLR of messages sent from CNm to BNn: */

(Kernel 1 – Horizontal Processing)

Lr(i)
mn = ∏

n′∈N (m)\n
αn′m min

n′∈N (m)\n
βn′m, (2.26)

with
αnm

∆
= sign

(

Lq(i−1)
nm

)

, (2.27)

and
βnm

∆
=

∣
∣
∣Lq(i−1)

nm

∣
∣
∣ . (2.28)

/* where N (m)\n represents BN’s connected to CNm excluding BNn. */

5: /* Compute the LLR of messages sent from BNn to CNm: */

(Kernel 2 – Vertical Processing)

Lq(i)
nm = Lpn + ∑

m′∈M(n)\m

Lr(i)
m′n. (2.29)

/* whereM(n)\m represents the set of CN’s connected to BNn excluding CNm. */

3. Finally, we compute the a posteriori LLRs:

LQn
(i) = Lpn + ∑

m′∈M(n)

Lr(i)
m′n. (2.30)

6: /* Perform hard decoding: */

ĉ(i)
n = −sign(LQ(i)

n ) (2.31)

7: end while

advantage for any architecture that performs intensive LDPC decoding.

Once again the iterative procedure is stopped if the decoded word ĉ verifies all parity

check equations of the code (HĉT = 0), or a predefined maximum number of iterations is

reached, in which case the processing can terminate without obtaining a valid codeword.
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2. Overview of Low-Density Parity-Check codes

2.6 Challenging LDPC codes for developing efficient LDPC de-
coding solutions

Following the recognition of their potential, LDPC codes have been recently adopted

by the DVB-S2 [29], DVB-C2, DVB-T2, WiMAX (802.16e), Wifi (802.11n), 10Gbit Ethernet

(802.3an), and other new standards for communication and storage applications. Such

communication standards use their powerful coding gains, obtained at the expense of

computational power, to achieve good performances under adverse channel conditions.

Some of the LDPC codes adopted in those standards have a periodic nature, which al-

lows exploiting suitable representations of data structures for attenuating the computa-

tional requirements. These periodic properties are described next for WiMAX and DVB-

S2 codes, in order to allow understanding how architectures can take advantage of them.

2.6.1 LDPC codes for WiMAX (IEEE 802.16e)

The WiMAX standard (IEEE 802.16e), which is used in communications for distances

typically below the 10 Km range [36], adopts LDPC codes. The Forward Error Correcting

(FEC) system of the WiMAX standard is based on a special class of LDPC codes [64] char-

acterized by a sparse binary block parity-check matrix H which can be partitioned in two

block-matrices H1 and H2 of the form:

H(N−K)×N =
[

H1(N−K)×(K) H2(N−K)×(N−K)

]

=

=
















P0,0 · · · P0,K/z−1 Pb0 I 0 · · · · · · 0

P1,0 · · · P1,K/z−1
... I I

...
...

...
... 0 I

. . .
...

...
. . .

...
...

. . . . . . . . . I 0

PN−K/z−2,0 · · · PN−K/z−2,K/z−1
...

. . . I I

PN−K/z−1,0 · · · PN−K/z−1,K/z−1 PbN−K/z−1 0 · · · 0 I
















,

(2.32)

where H1 is sparse and adopts special periodicity constraints in the pseudo-random

generation of the matrix [17,64], and H2 is a sparse lower triangular block matrix with a

staircase profile. The periodic nature of these codes defines H1 based on permutation

sub-matrices Pi,j, which are: i) quasi-random circularly shifted right identity matrices I

(as depicted in (2.32) and in figure 2.6), with dimensions z × z ranging from 24× 24 to

96× 96 and incremental granularity of 4 (as shown in table 2.1); or ii) z × z null matri-

ces. The periodic nature of such codes allows simplifying the FEC system and storage

requirements without code performance loss [64]. Also, the block-matrix H2 is formed by

identity: i) I matrices of dimension z× z; or by ii) null matrices of dimension z× z.

The LDPC codes adopted by the WiMAX standard (IEEE 802.16e) support 19 different
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Figure 2.6: Periodicity z× z = 96× 96 for an H matrix with N = 2304, rate = 1/2 and
{3, 6} CNs per column.

Table 2.1: Properties of LDPC codes used in the WiMAX IEEE 802.16e standard [64].
Code Codeword bits (N) z × z factor Information bits (K)

(rate) (rate) (rate) (rate)
1/2 2/3 3/4 5/6

1 576 24 × 24 288 384 432 480
2 672 28 × 28 336 448 504 560
3 768 32 × 32 384 512 576 640
4 864 36 × 36 432 576 648 720
5 960 40 × 40 480 640 720 800
6 1056 44 × 44 528 704 792 880
7 1152 48 × 48 576 768 864 960
8 1248 52 × 52 624 832 936 1040
9 1344 56 × 56 672 896 1008 1120

10 1440 60 × 60 720 960 1080 1200
11 1536 64 × 64 768 1024 1152 1280
12 1632 68 × 68 816 1088 1224 1360
13 1728 72 × 72 864 1152 1296 1440
14 1824 76 × 76 912 1216 1368 1520
15 1920 80 × 80 960 1280 1440 1600
16 2016 84 × 84 1008 1344 1512 1680
17 2112 88 × 88 1056 1408 1584 1760
18 2208 92 × 92 1104 1472 1656 1840
19 2304 96 × 96 1152 1536 1728 1920
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2. Overview of Low-Density Parity-Check codes

codeword sizes with 4 distinct code rates and 6 different class codes (distinct distributions

of the number of BNs per column or CNs per row). They are depicted in table 2.1. Class

2/3A defines codes having {2, 3, 6} BNs per row and {10} CNs per column, while in

class 2/3B codes have {2, 3, 4} BNs and {10, 11} CNs. Also, class 3/4A has {2, 3, 4} BNs

and {14, 15} CNs, and class 3/4B has {2, 3, 6} BNs per row and {14, 15} CNs per column.

To illustrate the periodic nature introduced in the design of H, the matrix structure for

N = 2304 bit and rate = 1/2, is depicted in figure 2.6.

2.6.2 LDPC codes for DVB-S2

The FEC system of the recent DVB-S2 standard [29] incorporates a special class of

LDPC codes based on Irregular Repeat Accumulate (IRA) codes [30,67]. The parity-check

matrix H is of the form:

H(N−K)×N =
[

A(N−K)×K B(N−K)×(N−K)

]

=

=
















a0,0 · · · a0,K−1 1 0 · · · · · · · · · 0

a1,0 · · · a1,K−1 1 1 0
...

...
... 0 1 1

. . .
...

...
. . .

...
...

. . . . . . . . . 0
...

aN−K−2,0 · · · aN−K−2,K−1
...

. . . 1 1 0
aN−K−1,0 · · · aN−K−1,K−1 0 · · · · · · 0 1 1
















, (2.33)

where A is sparse and has periodic properties and B is a staircase lower triangular matrix.

The periodicity constraints put on the pseudo-random generation of A matrices allow a

significant reduction on the storage requirements without code performance loss. As-

sume that the N bits of a codeword are represented in the systematic form, divided in

information bits (IN) and parity-check bits (PN). The construction technique used to

generate the A matrix consists of splitting the IN nodes in disjoint groups of M = 360

consecutive 1’s. All the IN nodes of a group l should have the same weight wl and it

is only necessary to choose the CNm nodes that connect to the first IN of the group, in

order to specify the CNm nodes that connect to each one of the remaining (N − K− 1) IN

nodes. The connection choice for the first elements of group l is pseudo-random but it

guarantees that in the resulting LDPC code all the CNm nodes must connect to the same

number of IN nodes. Denoting by r1, r2, ..., rwl , the indices of the CNm nodes that con-

nect to the first IN of group l, the indices of the CNm nodes that connect to INi, with

0 < i < N − K− 1, of group l can be obtained by:

(r1 + i× q)mod(N − K), (r2 + i× q)mod(N − K), ..., (rwl + i× q)mod(N − K), (2.34)

with

q = (N − K)/M. (2.35)
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2.6 Challenging LDPC codes for developing efficient LDPC decoding solutions

Table 2.2: Properties of LDPC codes2 used in the DVB-S2 standard [29] for the short frame
length.

rate Codew. bits (N) Inf. bits (K) Col. weight (wb) Row weight (wc) # Edges

1/4 16200 4050 {3, 12} {4}* 48600
1/3 16200 5400 {3, 12} {5} 54000
2/5 16200 6480 {3, 12} {6} 58320
1/2 16200 8100 {3, 8} {6}* 48600
3/5 16200 9720 {3, 12} {11} 71280
2/3 16200 10800 {3, 13} {10} 54000
3/4 16200 12150 {3, 12} {12}* 48600
4/5 16200 12960 {3} {14}* 45360
5/6 16200 13500 {3, 13} {19}* 51300
8/9 16200 14400 {3, 4} {27} 48600

The factor M = 360 is constant for all codes used in the DVB-S2 standard. For each

code, A has groups of IN nodes with constant weights wc > 3, and also groups with

weights wc = 3. Matrix B has a lower triangle staircase profile as shown in (2.33). The

LDPC codes adopted by the DVB-S2 standard support two different frame lengths, one

for short frames (N = 16200 bit) and the other for normal frames (N = 64800 bit). The

short frame mode supports 10 distinct code rates as depicted in table 2.2, while the latter

supports 11 rates as shown in table 2.3. The column and row weights are also depicted

in tables 2.2 and 2.3 for all rates in the standard. For short frame lengths, all codes have

constant weight wc, with the exception of five of them2 as indicated in table 2.2, while

BNs have two types of weights wb, except for code with rate = 4/5 which has constant

weight wb = 3. For normal frame length codes, all CNs have a constant weight wc, while

BNs have two types of weights wb for each rate, as indicated in table 2.3.

Both tables show the number of edges for each code adopted in the DVB-S2 standard.

In each edge circulates a message that is used to update the corresponding node it con-

nects to. A closer inspection, for example, of code with rate = 3/5 for normal frames,

shows that the total number of edges of the Tanner graph is 285120. If we consider that

communications occur in both directions (from CNs to BNs, and then from BNs to CNs),

570240 > 512K messages are exchanged per iteration, which imposes huge computa-

tional demands (at several levels) for the development of LDPC decoders. In order to

perform efficiently these data communications and associated computations, the analy-

sis of LDPC decoding algorithms is performed in the next chapter, paving the way for

the analysis of programming models and architectures that suit such types of extremely

2The five short frame codes marked with the symbol * don’t have a constant weight per row wc, since
they have been shortened has defined in the standard [29]. Consequently, they have rates which are an ap-
proximation to those mentioned in this table, but not exactly the same.
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2. Overview of Low-Density Parity-Check codes

Table 2.3: Properties of LDPC codes used in the DVB-S2 standard [29] for the normal frame
length.

rate Codew. bits (N) Inf. bits (K) Col. weight (wb) Row weight (wc) # Edges

1/4 64800 16200 {3, 12} {4} 194400
1/3 64800 21600 {3, 12} {5} 216000
2/5 64800 25920 {3, 12} {6} 233280
1/2 64800 32400 {3, 8} {7} 226800
3/5 64800 38880 {3, 12} {11} 285120
2/3 64800 43200 {3, 13} {10} 216000
3/4 64800 48600 {3, 12} {14} 226800
4/5 64800 51840 {3, 11} {18} 233280
5/6 64800 54000 {3, 13} {22} 237600
8/9 64800 57600 {3, 4} {27} 194400
9/10 64800 58320 {3, 4} {30} 194400

demanding processing systems in the following chapters.

2.7 Summary

The properties of a particular family of linear block codes – LDPC codes –, based

on intensive belief propagation algorithms and their simplified variants, are introduced.

Although LDPC codes have been discovered almost half a century ago, due to huge com-

putational requirements only recently they have recaptured the attention of the scientific

community.

In this chapter it is given a brief introduction to belief propagation. The iterative

decoding representation based on bipartite or Tanner graphs of two main classes of al-

gorithms used in LDPC decoding is described, with particular focus given on the type of

processing required, and on the intensive nature of communications. Also, an overview

of the periodic nature of LDPC codes adopted in two important and recent standards

is introduced. In this overview, the mechanisms adopted for the generation of matrices

used in LDPC decoding are equally described.

In the next chapter, the complexity of these algorithms and corresponding computa-

tional requirements will be addressed, namely concerning the adoption of computational

models and parallelization approaches to accelerate this type of intensive processing.
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3. Computational analysis of LDPC decoding

In this chapter we analyze the computational properties of Low-Density Parity-Check

(LDPC) code decoders introduced in chapter 2, and propose strategies to achieve efficient

processing. To obtain high throughputs as required by communication standards, LDPC

decoders can demand very intensive computation. A huge number of arithmetic opera-

tions and memory accesses per second is necessary to support high throughputs related

with multimedia/storage system requirements. These applications typically impose se-

vere constraints in the processing of video, audio, and data communications to provide

services in real-time within a targeted quality. Such demanding for real-time processing

imposes the analysis of computational properties of LDPC decoding and the exploitation

of parallelism. We study the dependencies that may prevent such achievement, analyze

task-parallelism, data-parallelism and also the memory access requirements for perform-

ing LDPC decoding in parallel. Finally, we address the importance of selecting a proper

message-passing schedule mechanism within the family of LDPC decoding algorithms,

when targeting parallel computing architectures. A discussion about the scalability of

LDPC decoders in parallel architectures concludes the chapter.

3.1 Computational properties of LDPC decoding algorithms

To reduce the high number of arithmetic operations and memory accesses required by

the Sum-Product Algorithm (SPA) and Min-Sum Algorithm (MSA) we exploit a simplifi-

cation based in the Forward-and-Backward optimization [63]. We also use the MSA with

λ-min= 2 [56], which is a simplification of the SPA in order to reduce even further the

number of operations. Like the SPA, the MSA is based on the belief propagation between

connected nodes, as defined by the Tanner graph edges (and shown in the example of

figure 2.5), but only uses comparison and addition operations. The workload produced

is still quite intensive, but lower than the one demanded by the SPA.

3.1.1 Analysis of memory accesses and computational complexity

The SPA applied to LDPC decoding is illustrated in algorithm 2.1 and is mainly de-

scribed by two different horizontal and vertical intensive processing blocks defined, re-

spectively, by the pair of equations (2.18), (2.19) and (2.20), (2.21). In (2.18) and (2.19)

the message updating from CNm to BNn is calculated, considering accesses to H in a

row-major basis – the horizontal processing – obtaining the r(i)mn values that indicate the

probability of BNn being 0 or 1. Similarly, the latter pair of equations (2.20) and (2.21)

computes messages sent from BNn to CNm, assuming accesses to H in a column-major

basis – the vertical processing. In this case, q(i)nm values are updated according to (2.20)

and (2.21), and the edges connectivity indicated by the Tanner graph.
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3.1 Computational properties of LDPC decoding algorithms

Table 3.1: Number of arithmetic and memory access operations per iteration for the SPA.
SPA - Horizontal Processing

Number of operations

Multiplications 2(wc − 1)wcM
Additions (wc + 1)wc M
Divisions 0

Memory Accesses (wc − 1)wc M + 2wcM

SPA - Vertical Processing
Number of operations

Multiplications 2(wb + 1)wbN
Additions N + wbN
Divisions wbN

Memory Accesses ((wb − 1)wb + 1)2N + 2wbN

Decoding complexity of the SPA: Assuming a H matrix with M = (N − K) CNs

(rows) and N BNs (columns), a mean row weight wc and a mean column weight wb,

with wc, wb ≥ 2, table 3.1 presents the computational complexity in terms of the number

of floating-point add, multiply and division operations required for both the horizon-

tal and vertical steps in the SPA LDPC decoding algorithm. The table also presents the

number of memory accesses required and it can be seen that for both cases the com-

plexity expressed as a function of wc and wb is quadratic. Depending on the size of the

codeword and channel conditions (Signal-to-Noise Ratio (SNR)), the minimal through-

put necessary for an LDPC decoder to accommodate an application’s requirements can

imply a substantial number of (arithmetic and memory access) operations per second,

which justifies the investigation of new parallelism strategies for LDPC decoding.

The decoding complexity can, however, be reduced by using the efficient Forward-

and-Backward algorithm [63] that minimizes the number of memory accesses and opera-

tions necessary to update (2.18) to (2.21) in algorithm 2.1. In table 3.2, the number of op-

erations required by the Forward-and-Backward algorithm adopted in this work shows

linear complexity (as a function of wc and wb). This represents a reduction in the number

of arithmetic operations, and an even more significant decrease in memory access oper-

ations, which contributes to increase the arithmetic intensity, here defined as the ratio of

arithmetic operations per memory access. This property (a higher arithmetic intensity)

suits multi-core architectures conveniently, which often have their performance limited

by memory accesses [82]. For a regular code with rate = 1
2 , where N = 2M, wc = 2wb and

wb ≥ 2, the arithmetic intensity αSPA for the SPA is:

αSPA =
(3w2

c − wc)M + (2w2
b + 4wb + 1)N

(w2
c + wc)M + (2w2

b + 2)N
≈ 2, (3.1)
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Table 3.2: Number of arithmetic and memory access operations per iteration for the opti-
mized Forward-and-Backward algorithm [63].

Forward and Backward - Horizontal Processing
Number of operations

Multiplications (5wc − 6)M
Additions (4wc − 2)M
Divisions 0

Memory Accesses 3wc M

Forward and Backward - Vertical Processing
Number of operations

Multiplications (6wb − 4)N
Additions 2wbN
Divisions wbN

Memory Accesses (3wb + 1)N

while the arithmetic intensity αFBA for the optimized Forward-and-Backward algorithm

can be obtained by:

αFBA =
(9wc − 8)M + (9wb − 4)N

3wcM + (3wb + 1)N
≈ 3. (3.2)

Decoding complexity of the MSA: Table 3.3 presents the number of compare, abs (ab-

solute value calculations), min (the smallest of two given numbers), and xor (for signal

calculation) operations per iteration of the MSA algorithm. It also shows the number of

memory accesses per iteration necessary to update (2.26) to (2.29). They exhibit linear

complexity as a function of wc and wb. Here, the arithmetic intensity can be described by

(3.3) for a regular code with rate = 1
2 , where N = 2M, wc = 2wb and wb ≥ 2.

αMin−Sum =
(4wc − 1)M + 2wbN
2wc M + (2wb + 1)N

≈ 1.5. (3.3)

The value αMin−Sum shows that when applying the λ-min algorithm, memory accesses

should be optimized in order to maximize performance. Moreover, the type of opera-

tions is simpler than in the case of the SPA due to the optimized Forward-and-Backward

algorithm [63,134,136].

Figure 3.1 shows the number of arithmetic and logic operations (ALO) and memory

access operations (MAO) per iteration – the total is indicated in the figure as mega opera-

tions (MOP) – performed by the previously mentioned three LDPC decoding algorithms,

for two different situations: a) wc = 6 and wb = 3; and b) wc = 14 and wb = 6. LDPC

codes A to E have (N, K) equal to (504, 252), (1024, 512), (4896, 2448), (8000, 4000) and

(20000, 10000), respectively. It can be seen that for a code of medium to large dimensions
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Table 3.3: Number of arithmetic and memory access operations per iteration for the opti-
mized MSA.

Min-Sum - Horizontal Processing
Number of operations

Comparisons wc M
abs wc M
min (wc − 1)M
xor wc M

Memory Accesses 2wcM

Min-Sum - Vertical Processing
Number of operations

Additions/Subtractions 2wbN
Memory Accesses (2wb + 1)N

such as code D, a total of 3 MOP is required for the SPA – arithmetic and logic operations

(ALO) and memory accesses (MAO) – per iteration, using wc and wb as depicted in 3.1 b).

Considering code E and using a typical value of 10 iterations for the same algorithm, we

nearly achieve 80 MOP. The workload of intensive LDPC decoding algorithms grows lin-

early with the number of iterations. The number of iterations typically ranges from 5 to
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Figure 3.1: Mega operations (MOP) per iteration for 5 distinct H matrices (A to E), with
a) wc = 6 and wb = 3; and b) wc = 14 and wb = 6.

20 (a pessimistic assumption) [81,88]. The number of operations necessary to decode 1000

codewords is depicted in figure 3.2 for the 3 algorithms mentioned before, each running

15 iterations. In this figure, the total number of operations is indicated as giga operations

(GOP).
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Figure 3.2: Giga operations (GOP) for the parallel decoding of 1000 codewords running
15 iterations each, for the same H matrices referred in figure 3.1, with a) wc = 6 and
wb = 3; and b) wc = 14 and wb = 6.

3.1.2 Analysis of data precision in LDPC decoding

The average number of iterations naturally influences the decoding time. For a low

SNR the number of iterations necessary for a codeword to converge is greater than for

higher SNRs. Figure 3.3 shows that the average number of iterations in the LDPC decod-

ing process depends on the SNR (represented by Eb/N0) of data received at the input of

the decoder. As shown in the figure, if we decode for example 108 bits using the WiMAX

LDPC code (576, 288) [64], for a maximum number of iterations equal to 50 and an SNR

of 1 dB, we can observe that the average number of iterations nearly reaches its maxi-

mum (50 in this case). On the other hand, if the SNR rises to 4 dB, the average number of

iterations drops below 4. Depending on the adopted code, LDPC decoders can achieve

very good performances (low Bit Error Rate (BER)) even for low SNRs, at the expense of

computational power.

Solutions that dedicate more bits to represent data (messages) can compare favorably

in terms of the number of iterations needed for the algorithm to converge, when we look

at state-of-the-art Application Specific Integrated Circuits (ASIC) LDPC decoders in the

literature [17,81,108,111] that use low precision architectures to represent data (e.g. 5 to 6-

bits). An additional advantage is observed in the BER curves for typical ASIC solutions.

A minimal data precision representation is fundamental in ASIC solutions in order to

achieve acceptable die area and power consumption. Figure 3.4 shows the BER curves

obtained for two different codes used in the WiMAX standard [64], namely (576,288) and

(1248,624) with either 6 or 8-bit precision. A MSA implementation, based on an 8-bit data
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Figure 3.3: Average number of iterations per SNR, comparing 8-bit and 6-bit data preci-
sion representations for WiMAX LDPC codes (576,288) and (1248,624) [64] running a max-
imum of 50 iterations.

precision solution, achieves improved BER compared with ASIC solutions [17,81,108,111].

The programmable solutions proposed in this thesis and described later in future sec-

tions of the text, use either 32-bit floating-point single precision, or 8-bit integer precision

to represent data, which helps to improve the BER performance.

3.1.3 Analysis of data-dependencies and data-locality in LDPC decoding

The wcM messages involved per iteration in the horizontal step and the wbN mes-

sages required per iteration for the vertical step, are depicted in the two columns of ta-

ble 3.4, for the Tanner graph example shown in figure 2.5. The Fh(.) and Fv(.) functions

represent, respectively, the horizontal and vertical kernels described in algorithms 2.1

(for the SPA) and 2.2 (for the MSA), while mi
Z0→W0

denotes a message m passed from

node Z0 to node W0 during iteration i. In the vertical kernel, p0 represents the channel

information associated to BN0 and p7 the channel information for BN7.

Data-dependencies: The operations referred before can be parallelized by adopting a

suitable message-passing schedule that supports the updating corresponding to different

vertices or/and different messages, simultaneously, in distinct parts of the Tanner graph.

The main data-dependency constraints arise from the fact that all messages used in the

calculation of a new message in any iteration were obtained during the previous iteration.
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Figure 3.4: BER curves comparing 8-bit and 6-bit data precision for WiMAX LDPC codes
(576,288) and (1248,624) [64].

Analyzing the example illustrated in figure 2.5 for the horizontal processing, the update

of the 3 BNs associated with the first CN equation (first row of H shown in figure 2.1)

can be performed in parallel with the update of other CN equations in the same iteration,

without any kind of conflict between nodes. The remaining messages on the Tanner

graph show that the same principle applies to the other CN equations of the example.

Table 3.4: Message computations for one iteration of the example shown in figures 2.1
and 2.5.

Horizontal kernel Vertical kernel

mi
CN0→BN0

= Fh(m
i−1
BN1→CN0

, mi−1
BN2→CN0

) mi
BN0→CN0

= Fv(p0 , mi−1
CN2→BN0

)

mi
CN0→BN1

= Fh(m
i−1
BN0→CN0

, mi−1
BN2→CN0

) mi
BN0→CN2

= Fv(p0 , mi−1
CN0→BN0

)

mi
CN0→BN2

= Fh(m
i−1
BN0→CN0

, mi−1
BN1→CN0

) mi
BN1→CN0

= Fv(p1 , mi−1
CN3→BN1

)

mi
CN1→BN3

= Fh(m
i−1
BN4→CN1

, mi−1
BN5→CN1

) mi
BN1→CN3

= Fv(p1 , mi−1
CN0→BN1

)

mi
CN1→BN4

= Fh(m
i−1
BN3→CN1

, mi−1
BN5→CN1

) mi
BN2→CN0

= Fv(p2)

mi
CN1→BN5

= Fh(m
i−1
BN3→CN1

, mi−1
BN4→CN1

) mi
BN3→CN1

= Fv(p3 , mi−1
CN2→BN3

)

mi
CN2→BN0

= Fh(m
i−1
BN3→CN2

, mi−1
BN6→CN2

) mi
BN3→CN2

= Fv(p3 , mi−1
CN1→BN3

)

mi
CN2→BN3

= Fh(m
i−1
BN0→CN2

, mi−1
BN6→CN2

) mi
BN4→CN1

= Fv(p4 , mi−1
CN3→BN4

)

mi
CN2→BN6

= Fh(m
i−1
BN0→CN2

, mi−1
BN3→CN2

) mi
BN4→CN3

= Fv(p4 , mi−1
CN1→BN4

)

mi
CN3→BN1

= Fh(m
i−1
BN4→CN3

, mi−1
BN7→CN3

) mi
BN5→CN1

= Fv(p5)

mi
CN3→BN4

= Fh(m
i−1
BN1→CN3

, mi−1
BN7→CN3

) mi
BN6→CN2

= Fv(p6)

mi
CN3→BN7

= Fh(m
i−1
BN1→CN3

, mi−1
BN4→CN3

) mi
BN7→CN3

= Fv(p7)

A similar conclusion can be drawn when analyzing the vertical processing. In spite
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of the irregular memory access pattern, in this case too it is possible to parallelize the

processing of the wbN new messages, as it is the case of mi
BN0→CN0

and mi
BN0→CN2

, that

exemplify the update of the two messages associated to BN0 (first column of H shown in

figure 2.1) and that can be performed in parallel with other messages.

Exploiting spatial locality: To permit the simultaneous update of messages, code and

data structures that allow exposing parallel properties of the algorithm for data read/write

operations should be considered. To efficiently exploit spatial locality it is also important

to consider the characteristics of the computational systems architecture. If this is not

the case, the impact of memory accesses may rise and, depending on the level of dis-

arrangement, have a significant weight in the processing efficiency. For example, the

memory hierarchy which typically has larger but slower memories as we move away

from the processor, may lead to poor speedups if the locality is not properly exploited

(e.g. caches).

In the context of LDPC decoding we group blocks of data associated to CNs and

BNs, with sizes that depend on the length of the code and the architecture being used. By

varying the granularity of data blocks, different results can be obtained [32,39], and a trade-

off between time spent performing communications and data size must be pursued in

order to achieve optimal results. Another aspect equally important for exploiting locality

consists of placing each one of these groups of data located together in memory. Runtime

data realignment techniques were developed [34] to tackle the problem that sometimes

arises from such procedure, due to the fact that data cannot be aligned at compile time.

They will be described in future sections of the text, for both horizontal and vertical

processing steps.

Exploiting temporal locality: Another aspect that assumes great importance for achiev-

ing efficient LDPC decoding is the proper exploitation of temporal locality. Temporal lo-

cality exists when a certain computation accesses the same group of data several times in

a short period of time. To exploit temporal locality in parallel systems, the computation

that accesses the same data should be assigned to the same processing unit. The main

goal here is to organize the processing so that those accesses to the same group of data

can be scheduled to execute close in time one to another. To achieve this, the program-

mer needs to organize the algorithm so that working sets are kept small enough to map

well on the sizes of the different levels of memory hierarchy, but not too small to cause

inefficiency.

The kernels developed for LDPC decoding in this thesis are structured to process

groups of BNs associated to the same CN for the horizontal processing. In the vertical
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processing, groups of CNs associated to the same BN can also be processed by the same

kernel. The advantage obtained here is clear: inside each kernel, common accesses to

data are repeated in very short periods of time for these groups of BNs and CNs, which

serves the purpose of special memory structures dedicated to exploit this property (e.g.

cache memory).

Either exploiting spatial or temporal locality, the message-passing schedule mecha-

nism assumes high importance regarding to data-dependencies, as it will be mentioned

later in section 3.3.2.

3.2 Parallel processing

The influence of parallel computing approaches and models in the performance of a

parallel application can be analyzed from different perspectives.

3.2.1 Parallel computational approaches

Although several sub-categories of parallel computational approaches can be consid-

ered, they mainly belong to one of two classes: task parallelism and data parallelism.

More detailed sub-classes of parallel computational approaches and models can be iden-

tified to target actual parallel systems.

Task parallelism: A task defines the smallest unit of concurrency that a program can

exploit. In parallel architectures, the granularity adopted when determining the size

of tasks (i.e. the number of instructions) should preferably use fine-grained or smaller

tasks, in order to stimulate workload balancing. On the other hand, it shouldn’t be too

small because in that case interprocessor communications and management overheads

would relatively rise, introducing penalties that may have a negative impact on the per-

formance.

Some parallel computing machines have a Multiple Instruction Multiple Data (MIMD)

stream architecture, where at any given instant, multiple processors can be executing, in-

dependently and asynchronously, different tasks or instructions on different blocks of

data.

Data parallelism: A simple way of exploiting algorithmic intrinsic parallelism consists

in using Single Instruction Multiple Data (SIMD), where programming resembles more

the serial programming style but the same instruction is applied to a collection of data,

all in parallel and at the same time. This model is usually supported on the SIMD stream

type of architectures, where several data elements can be kept and operated in parallel,
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3.2 Parallel processing

namely inside special registers (SIMD within-a-register (SWAR), typically ranging from

128-bit to a 512-bit width).

In vector processing approaches, SIMD parallelism is used for processing regular data

structures. Stream processing is another example of data parallel programming where

kernels are applied in parallel rather than single instructions to a collection of data. The

input streaming data is gathered before processing, and results are scattered after finish-

ing it. A kernel can have many instructions and perform a large number of operations

per memory access. As the evolution of processing speed has been much superior than

the increase of memory bandwidth, the stream programming model suits better modern

multi-core architectures.

With Single Program Multiple Data (SPMD) parallelism, the kernels additionally sup-

port flow control. With the introduction of branches, the kernels can execute different

operations depending on conditions defined in run-time and still be efficient, as long

as workload balancing is properly considered. In this model, multiple threads are al-

lowed, however they can be executed as different sequential operations belonging to the

same program. For example, modern Graphics Processing Units (GPU), namely those

from NVIDIA which are conveniently supported by the recent Compute Unified Device

Architecture (CUDA) [97], adopted the SPMD computational model.

Shared memory versus distributed memory: In a parallel system, it is fundamental

to establish mechanisms that allow processors to communicate in order to cooperatively

complete a task (or set of tasks). Mainly two distinct memory models can be adopted in

parallel computing models and machines: shared memory and distributed memory1.

In a shared memory model, memory can be shared by all processors or, at least, dis-

tinct groups of processors can access common banks of memory. For example, with hi-

erarchical shared memory, faster memory can be accessed and shared inside subsets of

processors, while slower global memory is accessible to all processors. Furthermore, by

sharing memory within a limited number of processors (the dimension of the group of

processors is architecture dependent), we also decrease the potential for access conflicts.

Moreover, modern architectures support automatic mechanisms for efficient data trans-

fers between distinct levels of memory hierarchy (e.g. cache memory, or some compilers

ability to automatically place data in fast local/shared memory). However, this model

introduces an extra level of complexity necessary to guarantee data integrity.

On the opposite side we have architectures that only support distributed memory

models. In this case, each processor only has direct access to its own local memory.

1Although distributed shared memory systems exist with Non-Uniform Memory Architecture (NUMA),
they will not be addressed under the context of this work.
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Different processors communicate with each other over high bandwidth networks us-

ing efficient mechanisms such as, for example, Direct Memory Access (DMA) that can

overlap data transfers with computation. Architectures based on the distributed mem-

ory model are scalable and easier to construct, but harder to program/debug than those

based on shared memory models. On a distributed memory model, inter-processor com-

munications have to be efficiently managed in order to allow a task (or set of tasks) to be

computed cooperatively by multiple processors.

As we will see in chapter 5, GPUs consist of parallel computing machines based on

shared memory models, where groups of processing units share common fast memory

blocks. The Cell Broadband Engine (Cell/B.E.) is an example of a distributed memory

architecture exploited in this thesis. A few standards already exist and can be used

to program parallel machines based on the different memory models. OpenMP [21], or

CUDA [97] are usually adopted to program general-purpose multi-core systems and GPUs,

which have shared memory architectures. They are based on a set of compiler directives,

library functions, or environment variables for developing parallel programs. On the

distributed model we can use the Message Passing Interface (MPI). Typically, a set of

library functions are provided, compliant with the MPI, that programmers can use to

communicate between processors.

In future versions-to-come of current parallel architectures, the number of processors

will expectedly rise. Assuming a shared memory architecture, a limit will arrive where

the bus occupancy and data collisions will have a significant impact on the global pro-

cessing time, causing performance to degrade. For this reason, usually this type of archi-

tecture has poor scalability when compared with distributed architectures, where each

processor can perform non-conflicting independent accesses to its own memory space.

However, we should be aware that to obtain short execution times in distributed systems,

we must have efficient schedulers and inter-processor communication mechanisms.

3.2.2 Algorithm parallelization

The job of translating a sequential algorithm into an efficient parallel version of its

own aims at the increase of performance and can be hard depending on the peculiar-

ities of the algorithm and restrictions imposed by the architecture. In many cases, the

best sequential algorithm indicated to solve a problem is not the best candidate for par-

allelization and a significantly different algorithm may be required [25].

Developing a good parallel algorithm involves identifying the amount of workload

that can be parallelized, creating appropriate parallel structures to represent data, decid-

ing how to distribute work and data among the several processing elements, as well as

managing the fundamental data accesses and data transfers maintaining data coherence,
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3.2 Parallel processing

Table 3.5: Steps in the parallelization process and their goals [25].
Step Architecture Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency

Assignment Mostly no Balance workload

Reduce communication volume

Orchestration Yes Reduce non inherent

communication via data locality

Reduce communication and

synchronization as seen by

the processor

Reduce serialization as shared

resources

Schedule tasks to satisfy

dependencies early

Mapping Yes Put related processes on the

same processor if necessary

Exploit locality in network topology

by controlling communications and synchronization. Another important aspect we have

to deal with is understanding the trade-offs between hardware and software. Not only

the architecture influences the performance of the algorithm and programming decisions,

but also programming decisions have an impact on the run-time characteristics of the al-

gorithm over an architecture. The following steps can be considered for designing and

implementing efficient parallel algorithms:

• decomposition of both computation into tasks and data into structures suitable for

parallel accesses;

• assignment of tasks to processes or threads2;

• orchestration of data (scheduling, transfers, accesses, communications and syn-

chronizations) among processes/threads;

• mapping processes/threads to processing units.

Table 3.5 illustrates the architecture dependencies and how these steps in the paral-

lelization procedure can influence the major performance goals. This procedure is per-

formed both by the programmer and by software tools/compilers/libraries designed to

support the architectures.

2Typically, processes contain their own state information and represent independent execution units.
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Figure 3.5: Finding concurrency design space adapted from [25] to incorporate scheduling.

Decomposition: Decomposition can be understood as splitting the computation into

different tasks in order to expose concurrency. The order messages are passed (message-

passing scheduling) between adjacent nodes of the graph has a significant impact on the

decisions of breaking up the computation into blocks of tasks. Also, data can be split,

concatenated or reordered into new collections of data to suit concurrency. Figure 3.5

shows that the analysis of data-dependencies influences (task and data) decomposition.

Assignment: Deciding which tasks are distributed over which threads is accomplished

on the assignment step. The primary objective of assignment is to balance the workload

and minimize inter-process communication. The assignment can be statically predeter-

mined in the beginning of computation or dynamically reallocated during run-time. To-

gether, decomposition and assignment define the partitioning of the algorithm and usu-

ally they are the steps that less depend on the architecture.

Orchestration: In order to best orchestrate the run-time behavior of the algorithm, we

must understand the architecture and programming model in detail. This important step

Each process uses its own program counter, address space, and only interacts with other processes via inter-
process communication mechanisms (which are usually managed by the operating system). Processes can
be defined as architectural constructs, while threads can be more adequately considered coding constructs.
A single process might contain multiple threads, and all threads inside the process can communicate directly
with each other because they share common resources (e.g. memory space). Under the context of this text,
although their differences remain clear, from now on the term thread will be used because it addresses more
appropriately the properties (at both algorithmic and architectural levels) of this work.
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uses all the available mechanisms to allow tasks inside threads accessing data, transfer-

ring it by communicating with other threads, or even synchronizing with one another.

Also, the orchestration can define the organization of data structures, the optimal size of

block data transfers between threads (enough to avoid starvation on the computation),

or the temporal scheduling of a task to minimize the impact of communication time in

the overall processing time.

Mapping: This last step maps threads into processors and naturally depends on the

architecture. The program can control this process, or the operating system may do it dy-

namically in its turn, not allowing control over the mapping procedure usually to achieve

effective aggregate resource sharing. Ideally, related threads should be mapped into the

same processor to allow fast data communication and synchronization. Mapping and or-

chestration are tightly coupled, so many times these parallelization steps are performed

together, to improve processing efficiency.

3.2.3 Evaluation metrics

The main goal of parallelizing an algorithm aims at an increase in performance, here

defined as speedup which compares the performance of sequential and parallel versions

of the algorithm. Although the number of cores (P) naturally influences speedup, typi-

cally the global increase in performance does not vary linearly with the number of cores.

The speedup is a metric to evaluate the level of success achieved with the parallelization

of an algorithm on an architecture with P processors, by comparing with a sequential

version of its own [25]:

Speedupalgorithm(P) =
Sequential Time

Maximum Time on Any Processor
. (3.4)

In (3.4) the term Time represents time spent performing the task, including computa-

tion, memory accesses, and data communications with the system’s main memory as

well. It gives a more approximate value of the real speedup achieved, by including the

limitations of the architecture (bandwidth, concurrency accessing global memory, data

collisions, multi-pipeline influences, etc.). Another usual metric for assessing the success

of parallelization on P cores is defined by efficiency (E f ), which normalizes the speedup

by the number of cores:

E f =
Sequential Time

P×Maximum Time on Any Processor
× 100% . (3.5)

49



3. Computational analysis of LDPC decoding

3.3 Parallel algorithms for LDPC decoding

In this section we apply the parallel computational models and the parallelization

approaches for LDPC decoding. It is also discussed the influence that the different types

of message-passing schedules can have in the performance of the parallel algorithms

used in LDPC decoding.

3.3.1 Exploiting task and data parallelism for LDPC decoding

Task parallelism in LDPCs: In the context of LDPC decoding, the smallest task that can

be defined should be responsible for updating a single edge of the Tanner graph. This ap-

proach would be efficient if the number of processors were large, and if memory accesses

did not impose restrictions. Different approaches can be more efficient, for example by

completely assigning a node of the Tanner graph to a task. In this case, depending on the

message-passing scheduling, redundant memory accesses and extra computation can be

saved [134,136], increasing performance.

Definition 3.1. Intra-codeword parallelism denotes the simultaneous processing of differ-

ent nodes of the Tanner graph within the same codeword, by different tasks or processing

units.

The concept associated to Definition 3.1 is illustrated in figure 3.6. It shows how

intra-codeword parallelism can be exploited to achieve LDPC decoding for the example

described in figure 2.1. It is based on the fact that the Tanner graph can be partitioned into

distinct subsets. Each one of those subsets can then be processed by a different task or

processing unit, in parallel, where tasks t0 to t3 are used to describe parallelism applied to

the horizontal kernel of algorithms 2.1 or 2.2, and tasks t0 to t7 represent the parallelism

applied to the vertical kernel.

Data parallelism in LDPCs: Data parallelism can be applied to exploit multi-codeword

LDPC decoding, as defined as follows:

Definition 3.2. Multi-codeword parallelism denotes the simultaneous decoding of different

codewords using distinct processing units, sharing the same Tanner graph information.

To exploit data parallelism in the context of LDPC decoding, the SIMD and SPMD ap-

proaches can be used. SIMD can be used directly for multi-codeword LDPC decoding [36],

where multiple codewords are decoded simultaneously according to Definition 3.2. Multi-

codeword decoding exploits the fact that the Tanner graph is common to all codewords

under simultaneous decoding. This allows to apply the same instruction to different data.
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Figure 3.6: Exploiting task (intra-codeword3) parallelism and data (multi-codeword) par-
allelism for the a) horizontal and b) vertical kernels in the example of figure 2.1.

The 3D illustration in figure 3.6 represents this type of parallelism, by showing parallel

decoding of distinct codewords.

A clear advantage of data parallelism over the traditional task parallelism model is

the required control of the processing, which is unique. Exploiting data-parallelism, sev-

eral codewords can be packed and processed together in parallel. The kernels 1 and 2

described in algorithm 2.1, were properly developed to support very intensive arith-

metic computations and minimize memory accesses, by gathering and scattering data

as defined by the stream-based computing model. To show how the adopted SPA can be

computed according to this approach, equation (2.18) in algorithm 2.1 can be rewritten

as:

r(i)mn (0) =
1
2
+

1
2 ∏

n′∈N (m)\n

(

q(i−1)
n′m (0)− q(i−1)

n′m (1)
)

. (3.6)

The inspection of (3.6) shows less arithmetic calculations than (2.18) at the expense of

executing more memory accesses (it introduces the read of element q(i−1)
n′m (0)), which typ-

ically penalizes the performance of the algorithm on multi-core devices [82]. To optimize

execution in parallel computing systems, the operations initially performed in (3.6) were

3It can also be considered data-parallelism, but in a wider sense and under the context of this work we
consider it task-parallelism, because it processes subsets of the Tanner graph simultaneously.
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mathematically manipulated and are preferably represented as indicated in (2.18), in or-

der to maximize the use of arithmetic operations regarding the number of memory ac-

cesses.

When developing code for an architecture that supports the SPMD computing model,

a programmer should concentrate efforts to use the same program and to minimize test

conditions. Sometimes, redesigning the algorithm may be necessary to eliminate unnec-

essary branches, which allows the hardware scheduler (i.e. task scheduler) to adopt a

more balanced workload distribution among processors. Although under certain condi-

tions the scheduler’s behavior can be very efficient, as it will be discussed later on the

text, the nature of LDPC decoders implies that each node establishes communications

with other nodes. To minimize the effect of overheads introduced by redundant commu-

nications and to allow the efficient Forward-and-Backward recursion [63] to be adopted,

the size of a task should not be set too small. For LDPC decoders under this model the

most efficient approach experimented under this thesis computes one complete set of

nodes per task. Typically, this set is composed by all the BNs associated to a CN for

horizontal processing, or by all CNs associated to a BN for vertical processing.

3.3.2 Message-passing schedule for parallelizing LDPC decoding

Chapter 2 shows that LDPC decoding algorithms are based on iterative procedures

with heavy computation and data communications associated to intensive message pass-

ing between adjacent nodes of the Tanner graph. For each type of node and iteration, the

update can be performed serially (one node at a time) or in parallel (several nodes si-

multaneously), that the output messages at the end of an iteration will be the same. The

order in which messages are propagated in the graph is relevant due to implications in

the efficiency of computation and on speed of convergence, influencing the overall per-

formance and coding gain of the algorithm [109]. The order of propagation can be defined

by the message-passing schedule mechanism.

Although in ideal cycle-free codes the message-passing schedule mechanism has no

influence on the convergence of the algorithm, in practice cycle-free codes are hard to

achieve and high-girth codes are acceptable and used in most applications. Thus, for

implementation purposes on parallel architectures, the adopted message-passing sched-

ule procedure is fundamental to achieve efficiency. We adopted fixed message-passing

schedule approaches as they allow fair trade-offs between hardware and algorithmic

costs.

Flooding schedule: In LDPC decoding algorithms, the complete processing of one it-

eration is divided in two different kernels, being one responsible for updating all the
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Figure 3.7: Flooding schedule approach.

BNs and the other for updating the CNs in the Tanner graph. Figure 3.7 shows that the

flooding approach operates over this structure in parallel, simultaneously updating all

the BNs first, and then CNs after. For each type of node, the number of nodes being

simultaneously updated does not change the output results or the coding gain of the

algorithm.

Horizontal schedule: Figure 3.8 depicts an organization of processing that updates

each CN at a time. Each CNm processor collects data from the BNs connected to it, that

were either produced in the previous iteration, or in the present one by CNm′ proces-

sors, with m′ < m, that already updated their corresponding BNs. This latter approach

that uses data already updated in the current iteration, accelerates the convergence of the

algorithm as proposed in [86,109,131].

Algorithm 3.1 Algorithm for the horizontal schedule (sequential).
1: /* Initializes data structures by reading a binary M× N matrix H */
2: for all CNm (rows in Hmn) : do
3: CNm ← BNn; /* BNn updates CNm... */
4: for all BNn (columns in Hmn) : do
5: if Hmn == 1 then
6: /* CNm updates BNn, for all n ∈ N (m) previously updated by CNm′ , m′ < m */
7: BNn ← CNm;
8: end if
9: end for

10: end for

Horizontal block schedule: To accelerate the previous type of serial processing, some

authors have proposed to simultaneously process blocks of P CN processors in parallel.
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The message-passing schedule inside each of these blocks can be considered flooding for

the P nodes under parallel processing. Figure 3.9 shows the update of P = 2 CNs in

parallel, and then the processing of all the BNs connected to them also in parallel. The

sequential approach depicted in figure 3.8 is presented in algorithm 3.1. As mentioned

before, to perform the updating procedure each CNm collects data from all connected BNn

that might have been already updated in the same iteration, allowing faster convergence

of the algorithm. The main disadvantage lies in processing sequentiality imposed by

such approach. The horizontal block schedule depicted in figure 3.9 is expanded into

algorithm 3.2, where groups of CNs specified by Φ{.} are processed in parallel. It shows

the semi-parallel nature of the approach, which allows shorter execution times at the

expense of convergence speed. In this case, it is important to eliminate data dependencies

inside the block under parallel processing defined by Φ{.} (inside the block the schedule

is flooding). Also, bandwidth limitations may create conflicts accessing data in memory,
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Figure 3.9: Horizontal block schedule approach.
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which can impose a decrease of the speedup to values considerably below P according

to (3.4). Nevertheless, if the level of parallelism is high enough, as it is expectable, the

global processing time necessary to conclude the process can be significantly reduced

regarding the one obtained with the sequential approach.
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Figure 3.10: Vertical scheduling approach.

Vertical schedule: A similar solution has been proposed for the vertical schedule. Hav-

ing in mind the intent of accelerating convergence when comparing against the tradi-

tional Belief Propagation (BP) algorithm, some authors [134–136] propose the serial process-

ing of BN processors, where newly updated information is used as soon as it is computed

Algorithm 3.2 Algorithm for the horizontal block schedule (semi-parallel). The archi-
tecture supports P processing units and the subset defining the CNs to be processed in
parallel is specified by Φ{.}.
1: /* Initializes data structures by reading a binary M× N matrix H */
2: for all CNΦ{m} (rows in Hmn) ∈ Φ{m} : do
3: /* Parallel processing */
4: CNm ← BNn; /* BNn performs the semi-parallel update of CNm... */
5: for all BNn (columns in Hmn) : do
6: if Hmn == 1 then
7: /* All CNm inside subset Φ{.} update corresponding BNn, for all n ∈ N (m0, m1, m2, ...), with

mi ∈ Φ{.} */
8: BNn ← CNm;
9: end if

10: Synchronize();
11: end for
12: end for
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(in the same iteration). Figure 3.10 depicts an example for this type of message-passing

schedule: the step 1 shows the CNs associated to BN0 being updated and step 2 updates

the corresponding BN0. Then, in step 3 another set of CNs connect to BN1 update it, after

which BN1 is also updated in step 4. The process repeats until all the BNs are updated

for that iteration.

Vertical block schedule: Again, so the decoding speed can be accelerated by group-

ing blocks of P BNs in parallel. Within this type of message-passing schedule, a good

compromise between convergence and decoding time can be achieved. The algorithms

for sequential and semi-parallel vertical schedules are similar to those shown in algo-

rithms 3.1 and 3.2 adapted to suit schedules for vertical processing.

The different types of scheduling can impose restrictions in some cases and suit the

introduction of parallelism in others. The herein adopted message-passing schedule ap-

proaches are described next for each type of parallelism that we were trying to exploit in

the context of LDPC decoding. From the previous discussion, where the different types of

scheduling for LDPC decoding were analyzed, it can be assumed that three main classes

of message-passing scheduling have been distinguished:

• serial-oriented scheduling;

• semi-parallel block scheduling;

• full-parallel flooding schedule.

The most natural approach consists in serial scheduling. Processing one node at a

time wastes precious processing time and supplies no efficiency at all, which makes this
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kind of scheduling uninteresting for parallel processing targeting high throughput appli-

cations.

Semi-parallel block scheduling [85], also called staggered [131,132], layered, or shuffled

decoding, or even known as turbo LDPC decoding, exploits some level of parallelism

while at the same time uses new information (from nodes already updated) to update

data in the same iteration. The main problem in this approach is imposed by data de-

pendencies. It represents, however, a good compromise for parallel computing architec-

tures, and does not neglect the speed of convergence [104]. In the context of this thesis we

adopted this scheduling when developing LDPC decoders for Digital Video Broadcasting

– Satellite 2 (DVB-S2) targeted to Field Programmable Gate Array (FPGA) or ASIC [51,52]

devices. For the CN’s update, this particular scheduling allowed to perform the simul-

taneous processing of nodes associated both with information bits and parity bits [51,52],

introducing a good level of parallelism and high throughputs [51,52].

The flooding schedule allows to exploit full parallelism and is therefore the algorithm

that supports the maximum number of operations in parallel. In this approach, how-

ever, the coding gains are inferior when compared against serial scheduling [109], because

data updated during the execution of an iteration will only be used in the next itera-

tion. It does not contribute to update other data in the current iteration. This type of

scheduling allowed to exploit two different approaches: i) the edge approach, which is

ideal for programmable architectures having a large number of cores [16,107]; and ii) the

node approach, which avoids redundant accesses to memory. In the edge approach, each

processing unit is responsible for updating a single message and if we assume an archi-

tecture with a significant number of cores (e.g. thousands of cores) and limited memory

access conflicts, the level of parallelism obtained with such approach is optimal. In this

work, several tentatives were made and interesting results were obtained [32,37,40,41]. The

node approach was applied with the Forward-and-Backward strategy [63,134,136], which

allowed to identify and eliminate redundant computation to achieve even better results.

This approach was followed in this thesis and has shown superior results which can be

found in [34,36,38,39].

3.3.3 Memory access constraints

To achieve the goal of obtaining efficient parallel algorithms for software LDPC de-

coders, we have also developed compact data structures to represent the sparse binary

H matrices that describe the Tanner graph. They adequately allow representing data

as streams to suit the parallel processing of the SPA and MSA in stream-based archi-

tectures. Also, they represent a different solution from the conventional compress row

storage (CRS) and compress column storage (CCS) formats [78,92] used to represent sparse
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Figure 3.12: Data structures illustrating the Tanner graph’s irregular memory access pat-
terns for the example shown in figures 2.1 and 2.5.

matrices in a compact format. In the context of parallel processing based on hardware

that supports data streams, the edges of the Tanner graph are represented using a proper

addressing mechanism, which facilitates the simultaneous access to different data ele-

ments required by the SPA and MSA algorithms. The compact data structures herein pro-

posed also suit parallel architectures, which can impose restrictions associated to the size

and alignment of data. Furthermore, the simultaneous decoding of several codewords

has been made possible thanks to the new stream-based data structures developed.

Memory access patterns: The H matrix of an LDPC code defines a Tanner graph, whose

edges represent the bidirectional flow of messages being exchanged between BNs and

CNs. We propose to represent the H matrix in two distinct data structures, namely HBN

and HCN . These two structures are useful for the horizontal and vertical processing steps

described previously, respectively in kernel 1 and kernel 2, of algorithms 2.1 and 2.2.

HBN defines the data structure used in the horizontal step. It is generated by scanning

the H matrix in a row-major order and by sequentially mapping into HBN only the BN

edges represented by non-null elements in H, for each CN equation (in the same row).

Algorithm 3.3 describes this procedure in detail for a matrix having M = (N − K) rows

and N columns. Steps 5 and 6 show that only edges representing non-null elements are

collected and stored in consecutive positions inside HBN, for each row associated with

a given CN. The vector wb(k) holds the number of ones per column k, supporting the

two distinct types of regular or irregular codes. This data structure is collected from the
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Algorithm 3.3 Generating the compact HBN structure from the original H matrix.
1: Reading a binary M× N matrix H
2: idx ← 0;
3: for all CNm (rows in Hmn) : do
4: for all BNn (columns in Hmn) : do
5: if Hmn == 1 then

6: HBN [idx ++]← n +
m−1

∑
k=0

wb(k);

︸ ︷︷ ︸

mwb (regular codes)

7: end if
8: end for
9: end for

original H matrix scanned in a column-major order:

wb(k) =
M−1

∑
m=0

Hmk, 0 ≤ k ≤ N − 1. (3.7)

The HCN data structure is used in the vertical processing step, and it can be defined

as a sequential representation of the edges associated with non-null elements in H con-

necting every BN to all its neighboring CNs (in the same column). As presented in algo-

rithm 3.4, HCN is generated by scanning the H matrix in a column-major order. Both data

structures are depicted in figure 3.12, where the example shown in figures 2.1 and 2.5

is mapped into the corresponding edge connections that form such a Tanner graph. In

Algorithm 3.4 Generating the compact HCN structure from the original H matrix.
1: Reading a binary M× N matrix H
2: idx ← 0;
3: for all BNn (columns in Hmn) : do
4: for all CNm (rows in Hmn) : do
5: if Hmn == 1 then

6: HCN[idx ++]← m +
n−1

∑
k=0

wc(k);

︸ ︷︷ ︸

nwc (regular codes)

7: end if
8: end for
9: end for

order to allow generating the HCN data structure, wc(k) should hold the number of ones

per row k, which again can be constant for regular codes. The vector wc(k) is collected

by scanning the original H matrix in a row-major order, to obtain:

wc(k) =
N−1

∑
n=0

Hkn, 0 ≤ k ≤ M− 1. (3.8)

Data structures HBN and HCN are also depicted in figure 3.13 to illustrate the generic

irregular case. It can be seen that they represent addresses (or indices) of elements to

update. HBN contains row weights in vector wc and the corresponding addresses of rmn
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Figure 3.13: a) HCN and b) HBN generic data structures developed, illustrating the Tanner
graph’s irregular memory access patterns.

data elements to be updated by corresponding qnm messages arriving from nodes they

connect to. The structure HCN performs the dual operation: it contains column weights

in vector wb and the corresponding addresses of qnm elements which have to be updated

by incoming rmn messages from connected neighboring nodes.

For regular codes, the summations indicated in algorithms 3.3 and 3.4 can be sim-

plified, respectively into mwb and nwc. In those cases, the number of ones per row or

column is fixed, and all the elements of vectors wb(k) and wc(k) are equal and can be

represented by a constant scalar avalue.

Parallelizing memory accesses: Multi-core architectures provide resources that allow

to achieve parallel/low latency accesses to memory, typically by masking data trans-

fers with computation [24,36,38], or by using efficient data alignment/resizing strategies,

that facilitate parallel accesses to memory [34,39,97]. To better suit these mechanisms, data

blocks to be accessed in memory (for example, sub-blocks of HBN and HCN) should obey

to specific size and address requirements, which may not be directly achievable from the

data structures in some cases. As it will be described later in the text, we propose runtime

data realignment mechanisms [34] to allow data to be accessed more efficiently, since it is

not possible to align it at compile time in those cases. Also, as the nature of LDPC codes

is irregular and memory access patterns are random (figure 3.14 illustrates this problem),

they do not admit the simultaneous use of aligned memory accesses for both read and

write operations of the decoding process. To overcome this difficulty we have devel-

oped data mapping transformations which allow multiple addresses to be contiguously

accessed for one of the mentioned memory access types [34] (we adopted contiguous read

accesses and non-contiguous write accesses in this case). These transformations will be

discussed in more detail in the next chapters.
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Figure 3.14: Irregular memory access patterns for BN0 and CN0.

3.4 Analysis of the main features of parallel LDPC algorithms

Problem-constrained scaling exists when we want to solve the same sized problem

on a larger machine. In time-constrained scaling, the time to perform the execution is

fixed, and we want to do as much work as possible in that same period of time. It is not

the case in LDPC decoding. The target of LDPC decoders is to achieve a certain level of

throughput (decoded bits-per-second), which should remain approximately constant in-

dependently of the length of the LDPC code (problem size). If larger codes (with a higher

number of edges and, consequently, with more data to be processed) have to be decoded,

there will be more time available to perform that processing (maintaining throughput

constant, and keeping in mind that latency should remain low, under a certain maximum

limit set by the corresponding communication’s standard using the LDPC decoder). Very

often, scaling is mainly constrained in memory, which means that the problem in scaling

lies in the accesses to memory. This is the problem that arises in practice when the prob-

lem is scaled. The memory wall constraint is expected to be maintained in the next years

with processing capacity increasing much faster than the memory technology.

3.4.1 Memory-constrained scaling

In order to be able of making adequate choices when selecting the appropriate archi-

tecture for an application (and more importantly, to be able of correctly predicting how

architectures and application characteristics and demands will evolve in the future to stay

ahead of imminent trends), it is fundamental to analyze the evolution of scaling perfor-
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mance. One interesting metric for evaluating scalability is to identify the largest possible

problem size that will not cause memory accesses on a machine to become the bottle-

neck of the application. Ideally, we would like to find the optimal size of the problem

after which collateral overheads due to data communications will mainly dominate the

overall execution time. By doing so, we expect to take advantage of favorable arithmetic

intensity (typical in problems with large sizes) and to abundantly exploit concurrency for

parallel computation. As discussed in [38,39] multi-core and many-core machines, such as

the GPU and the Cell/B.E. can decode large LDPC codes efficiently. In fact, for processors

with hundreds of cores, the limit has not yet been reached for codes with size N = 20000,

or even for DVB-S2 codes which have N = 64800, as it will be described later in the text.

However, as we increase the size of the codes, memory accesses can represent a key factor

for achieving scalability.

3.4.2 Scalability of parallel LDPC decoders

For analyzing scalability, both the size of the problem and characteristics of the archi-

tecture must be considered. Assuming we have a fixed size problem to be computed on

an architecture with multiple cores, if we increase the number of cores the overhead in

communications and management may also increase until a point were it will dominate

the overall processing time, producing uninterestingly small speedups. Eventually, after

a certain number of processors the problem may become too small to properly exploit

the potential parallelism allowed by the architecture. On the opposite situation, reverse

problems may also occur. If a certain large problem scales well on large machines, if

we decrease the number of processors, for example, until the case-limit of having only a

single processor, the size of local memory may not be large enough to accommodate the

entire problem. Therefore, the overhead of data movements between the different levels

of memory hierarchy may significantly decrease the processing efficiency. Consequently,

to pursue well-defined scaling models we must adopt problems with varying sizes on

machines with varying capacities.

Under the context of LDPC decoding, the scaling approaches can manipulate two dis-

tinct features: the length of the LDPC code; and the support of multi-codeword decoding.

The length of an LDPC code impacts the granularity level adopted in the partitioning of

the algorithm across the processing units. Interestingly, if the number of processors is

large enough (i.e. in the order of hundreds [37]), codes with superior lengths can be de-

coded with performances (throughput) superior to those obtained with smaller length

codes, as described in [34,37]. Another interesting property that suits scalability when the

size of the problem is not large enough to fully exploit the parallel resources supplied

by the architecture, is associated to the new concept of multi-codeword decoding that
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we introduce and exploit for parallel architectures [34,36]. In fact, if the number of cores

is larger than the size of the problem would ideally request, other than we put different

processors decoding different parts of the Tanner graph for the same codeword, we can

additionally decode multiple distinct codewords in simultaneous. This introduces dif-

ferent levels of parallelism, all well supported by the convenient SPMD programming

model, which allows an efficient adaptation of the size of the problem to the dimension

of the architecture. Thus, the number of codewords simultaneously under decoding may

expectedly rise with the number of cores in the future.

3.5 Summary

This chapter analyzes the computational complexity associated with LDPC decoding

and describes basic strategies for finding concurrency. The identification of these strate-

gies is of great importance to design efficient parallel algorithms. Task parallelism can

be adopted when the architecture supports multiple cores decoding different parts of the

Tanner graph. Data parallelism is mainly exploited by the SIMD and SPMD approaches,

where typically the same instruction or kernel is applied to multiple data allowing the

simultaneous decoding of distinct codewords.

We also analyze the serious restrictions that result in some parallel architectures when

LDPC decoders try to perform parallel accesses to non-contiguous locations of data in

memory. Also, message-passing scheduling mechanisms used in LDPC decoding are

addressed with the objective of analyzing data-dependencies and the performance of

these algorithms when used in parallel computing architectures.

The analysis of scalable LDPC decoding solutions is performed at the end of this

chapter, which represents an important aspect for the next generations of multi-core ar-

chitectures that expectedly will have a higher number of cores.
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4. LDPC decoding on VLSI architectures

In the previous chapter we have seen how the use of parallelism can be exploited in

the iterative message-passing algorithms used in Low-Density Parity-Check (LDPC) de-

coding. Some applications can impose challenges which typically have to be addressed

by using hardware-dedicated solutions. It is, for example, the case of mobile equipment

which demands System-on-Chip (SoC) hardware providing good performance at low-

cost, consuming low power and occupying small die areas. In the last years, we have seen

LDPC codes considered for adoption in many communication systems, as they became a

consistent alternative to their natural competitors – Turbo codes. As a consequence, they

have been adopted by important standards, namely those mentioned in chapter 1, where

a natural emphasis has been given to solutions addressing the recent Digital Video Broad-

casting – Satellite 2 (DVB-S2) standard for satellite communications [29] and the WiMAX

standard for local and metropolitan area networks [64]. They have also been incorporated

in other types of communication systems, namely in advanced magnetic storage and

recording systems [62,113,138] or even in optical communications [120].

LDPC codes with good coding performances demand very long lengths [79,84], as those

adopted in the DVB-S2 standard. In order to achieve high-throughput decoding, in this

chapter we develop a novel partial parallel Very Large Scale Integration (VLSI) architec-

ture that competes with state-of-the-art hardware solutions for the challenging DVB-S2

LDPC decoders [27,70,95,133]. The solution exploits the periodic properties of the codes ad-

dressed in chapter 2 of this thesis. The architecture is supported in either Field Pro-

grammable Gate Array (FPGA) or Application Specific Integrated Circuits (ASIC) based

devices and synthesis results are presented for both solutions. While FPGAs can offer a

significant number of reconfigurable gates at low-cost, ASIC solutions achieve high per-

formance with low power consumption and within a small area context. We also present

synthesis results for an optimized ASIC architecture which prove to be competitive with

existing state-of-the-art solutions.

4.1 Parallel LDPC decoder VLSI architectures

The two types of nodes in the Tanner graph that perform the computation described

in algorithms 2.1 and 2.2, impose the need of distinct BN and CN processing. There-

fore, processor nodes able of performing these two types of calculations are fundamental

components of LDPC decoding architectures. Also, it is necessary to incorporate mem-

ory to store messages associated with each processor node, and the decoder requires an

efficient switching mechanism to allow each processor node in the graph to access differ-

ent memory banks. Ideally, this should be performed in parallel to increase throughput.

In order to achieve such an efficient solution, a parallel LDPC decoder can be mapped
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4.1 Parallel LDPC decoder VLSI architectures

into a generic architecture [1] like the one depicted in figure 4.1. The message-passing

scheduling mechanism controls the overall execution of the algorithm. According to sub-

section 3.3.2, it defines the order messages are updated (controlling the order memory is

addressed by each node processor), this way defining which nodes communicate with

each other and in what order. The switching selector in figure 4.1, equally dependent

on scheduling, controls the interconnection network that performs this task. It connects

Q = N BN and P = (N − K) CN processors to corresponding memory blocks, in order

to allow read/write operations (to be performed in parallel) into different subsections of

the graph. The interconnection network should be designed in order to allow conflict-free

accesses to memory banks. As before, the update of messages is performed iteratively,

with BN processing alternating with CN processing. Both types of node processors de-

picted in figure 4.1 should be prepared to support the processing of BN or CN nodes with

different weights wb and wc, respectively.
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Figure 4.1: Generic parallel LDPC decoder architecture [1] based on node processors with
associated memory banks and interconnection network (usually, P = Q).

The complex nature of such a VLSI architecture presents several challenges. To per-

form fast LDPC decoding, it requires a certain level of parallelism, which should have

some significance in order to allow achieving the minimal necessary throughput that can

be very demanding (90 Mbps in the DVB-S2 [29] case). On the other hand, above some

level of parallelism the requirements for routing, area and power consumption cannot be

achieved for practical reasons. Presently, there are LDPC decoder architectures ranging

from serial [102] to fully parallel [13,61], targeting different objectives. Serial decoders trade

throughput with architectural simplicity, obtaining reduced die areas. Although limita-

tions at the processing level can make them targeted mainly for low-throughput appli-

cations, they can exploit hardware simplifications, such as reducing the storage size of

messages [102], and still achieve coding gains without noticeable loss in performance [102].
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4. LDPC decoding on VLSI architectures

Parallel approaches offer superior throughput at the expense of architectural complex-

ity. On a fully parallel system, the complexity increases significantly as the code length

grows. The dimension and complexity of this type of architectures are only acceptable for

short to medium length LDPC codes. One of the first ASIC publications in the area [13,61]

proposes a fully parallel architecture for a 1024-bit, rate = 1/2 LDPC decoder processing

64 iterations, that obtains a throughput of 1Gbps. The excellent performance achieved is

only possible due to the complex routing established to connect all Q = N BN processors

with corresponding P = (N − K) CN processors, as depicted for a generic architecture

in figure 4.1. Consequently, the complex wiring of the circuit created the extra need of

carefully managing the floor planning and routing of the design, which alerted for the

prohibitive complexity involved in the design of architectures that support block codes

with higher lengths (N > 1024-bit).

In recent years, LDPC scalable decoder architectures targeting FPGA devices have

also been proposed [11,121,124]. FPGAs combine the advantages of scalable hardware with

reprogrammable architectures, increasing therefore flexibility at the expense of area ca-

pabilities. However, the memory available in those platforms can impose restrains in

the design [124], or because the total number of codes supported within a single archi-

tecture is reduced [11,124]. Flexible architectures that support long length codes and that

can decode any structured or unstructured LDPC code, have also been proposed for

FPGA devices [11,121] at the expense of hardware complexity. Alternative interconnec-

tion networks that allow implementing simpler routing have also been designed [121] for

hardware-constrained LDPC decoders in FPGAs.

Naturally, the size of the architecture is influenced by the length of the largest code

supported and also by the level of parallelism adopted. This has direct implications in

the number of node processors necessary to perform computation and, most importantly,

in the complexity of the interconnection network of figure 4.1 which allows all processors

to establish communications with each other. The complexity of this network decreases

by reducing the level of parallelism of the architecture. For a fixed code, permutation

laws are known and the indices/addresses that indicate which nodes connect with each

other are usually computed offline. In these cases, Benes networks [7] can provide full

connectivity requiring reduced complexity of O(N log2N) when compared to crossbar

switching architectures [100].

Flexible interconnection structures for full-parallel or partially parallel LDPC decoders

with reduced communication complexity have been suggested [44], although they do not

address large LDPC codes used in demanding applications such as DVB-S2. Because

parallel hardware-dedicated systems usually achieve very high throughputs, recently

partial-parallel architectures [18,27,70,95,133] have been proposed to tackle the complexity
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4.1 Parallel LDPC decoder VLSI architectures

of the interconnection network, and still achieve high throughputs. They reduce the

number of node processors required to perform LDPC decoding, by following an effi-

cient time multiplexing strategy that processes alternatively sub-sets of the Tanner graph.

Compared with full-parallel decoders, the complexity of an interconnection network in

a partial-parallel architecture decreases abruptly, which eliminates important restrictions

from the routing process (in the place & route phase of the design).

Efficient processor units to perform computation in this type of architectures have also

been developed [27,95,133]. Although they do not occupy the largest part of the circuit area,

they also impact power consumption. Hardware solutions based on VLSI technology

usually apply the algorithm based on fixed-point arithmetic operations [101]. The level of

quantization adopted naturally influences the performance of a code, namely its coding

gains, but it also affects the datapath with direct consequences in the area of processor

nodes. The Sum-Product Algorithm (SPA) used in LDPC decoding is sensitive to the

quantization level and variants to the SPA less sensitive to quantization effects have been

proposed [101]. Nevertheless, the development of efficient hardware LDPC decoders most

exclusively adopts solutions based on the Min-Sum Algorithm (MSA). They demand

simpler processing units with gains in area and power consumption, without a significant

performance loss [63].

Over the last years, a diversity of new architectural approaches has been proposed.

A joint partially parallel LDPC low-complexity encoder/high-speed decoder design for

regular codes has been proposed [137], as well as modifications to the architecture that al-

low trading hardware complexity for speed on the decoder side. Other partial-parallel

architectures for high-throughput LDPC decoding have been proposed [87,88], where the

concept of architecture-aware LDPC codes was firstly introduced. Architecture-aware

codes decouple the architectural dependence of the decoder from the LDPC code prop-

erties. They achieve a faster convergence rate, which allows obtaining higher through-

puts [87]. In this case the interconnection network can be efficiently implemented by using

programmable multi-stage networks [88]. A comparison between serial, partly-parallel

and full-parallel architectures has been performed in [43] for a regular code with N = 2048

bits, wc = 6 and wb = 3. However, these architectures are dedicated to particular cases

and other solutions were necessary to tackle the general problem, which should be able

of supporting other types of more demanding LDPC codes (e.g. irregular and higher

block length codes).

Typically, more than 70% of the circuit’s area in VLSI LDPC decoders is occupied by

memory units [27,95], which are essential to support the iterative message-passing mech-

anism. They are extensively addressed in the context of this work. Memory require-

ments for parallel architectures able of supporting long length codes are feasible, but

71



4. LDPC decoding on VLSI architectures

hard to achieve for practical purposes within a VLSI context. The complexity and amount

of memory necessary to store messages exchanged between hundreds or thousands of

nodes is extremely high, which imposes restrictions in die area and power consumption.

Although the global amount of memory necessary to store messages between connected

nodes of the graph remains unchanged for any number of processors, by varying the

number of processor nodes in a partial-parallel approach, the height and width of mem-

ory blocks change, which can be exploited to achieve more efficient architectures.

4.2 A parallel M-kernel LDPC decoder architecture for DVB-S2§

The development of LDPC decoders for the DVB-S2 standard can be considered to

be among the most demanding applications that support this type of processing, mainly

due to the high length of codes adopted [29]. As shown in subsection 2.6.2, LDPC codes

used in this standard are Irregular Repeat Accumulate (IRA) codes, where the sparse

parity-check H matrix has periodic properties that can be exploited to achieve hardware

parallelism [30].

The utilization of scalable parallelism to obtain chips with small areas for DVB-S2 has

been proposed for technologies ranging from 0.13µm down to 65nm [18,27,70,95,133] based

on the processing of sub-sets of the Tanner graph, which guarantee the minimum neces-

sary throughput of 90Mbps required by the standard [29]. The design of partial-parallel so-

lutions generates systems with lower areas, but also implies lower throughputs, compar-

ing to full-parallel architectures in a SoC. One of the initially proposed architectures [70] is

based on figure 4.2 with M = 360 processor nodes, also referred in this text as Functional

Units (FU). They work in parallel and share control signals, that process both CN nodes

(in CN mode) and IN nodes (in BN mode) according to a flooding schedule approach.

Attending to the zigzag connectivity between parity nodes (PN) and CNs [70], they are

§The results presented in this and the following sections have been partially presented in:

[31] Falcão, G., Gomes, M., Gonçalves, J., Faia, P., and Silva, V. (2006). HDL Library of Processing Units
for an Automatic LDPC Decoder Design. In Proceedings of the IEEE Ph.D. Research in Microelectronics
and Electronics (PRIME’06), pages 349–352.

[49] Gomes, M., Falcão, G., Gonçalves, J., Faia, P., and Silva, V. (2006a). HDL Library of Processing Units for
Generic and DVB-S2 LDPC Decoding. In Proceedings of the International Conference on Signal Processing
and Multimedia Applications (SIGMAP’06).

[50] Gomes, M., Falcão, G., Silva, V., Ferreira, V., Sengo, A., and Falcão, M. (2007a). Factorizable modulo
M parallel architecture for DVB-S2 LDPC decoding. In Proceedings of the 6th Conference on Telecommu-
nications (CONFTELE’07).

[51] Gomes, M., Falcão, G., Silva, V., Ferreira, V., Sengo, A., and Falcão, M. (2007b). Flexible Parallel
Architecture for DVB-S2 LDPC Decoders. In Proceedings of the IEEE Global Telecommunications Conf.
(GLOBECOM’07), pages 3265–3269.

[52] Gomes, M., Falcão, G., Silva, V., Ferreira, V., Sengo, A., Silva, L., Marques, N., and Falcão, M. (2008).
Scalable and Parallel Codec Architectures for the DVB-S2 FEC System. In Proceedings of the IEEE Asia
Pacific Conf. on Circuits and Systems (APCCAS’08), pages 1506–1509.
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Figure 4.2: Parallel architecture with M functional units (FU) [51,70].

updated jointly in check mode following an horizontal schedule approach [49,51,109] as

shown in subsection 3.3.2. All 360 FUs process one message per cycle. In IN mode,

all 360 messages are read from the same address (sequentially incremented, for this type

of processing) in corresponding memory blocks as depicted in figure 4.3. The new mes-

sages resulting from this computation are then stored in the same address cyclicly shifted

right (controlled by the values in the SHIFTS memory block of figure 4.2) through the

interconnection network, which is implemented by a barrel shifter. The periodic prop-

erties of LDPC codes used in DVB-S2 allow to replace the complex interconnection net-

work by a common barrel shifter. In CN mode, messages have to be read from specific

addresses (present in the ADDRESSES memory bank) and stored back in the same ad-

dresses cyclicly shifted left to conclude the execution of an iteration. Once again, the

access is performed in parallel for all 360 messages. The barrel shifter mechanism and

the efficient memory mapping scheme from figure 4.3, constitute the major strengths of

the architecture described in [70].

Memory requirements for a partially parallel architecture capable of supporting long

length codes used in DVB-S2 are demanding for practical purposes. The appropriate Con-

trol of ADDRESSES and SHIFTS memory banks indicated in figure 4.2 guarantees that

every time the address of a memory block changes, it changes accordingly and without

conflicts for all M = 360 processors in parallel. The barrel shifter, which has a switch-

ing activity controlled by the SHIFTS memory bank, can be properly managed together
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Figure 4.3: Memory organization for the computation of Lrmn and Lqnm messages using
M = 360 functional units for a DVB-S2 LDPC code with q = (N − K)/M (see table 2.3).

with the ADDRESSES memory block that defines memory accesses, to simulate the con-

nectivity of the Tanner graph. Figure 4.3 illustrates the memory mapping mechanisms

used in BN processing as a function of q (a parameter defined by the standard) and pre-

sented in (2.35). In CN processing, a similar scheme applies. For each different code we

use different SHIFTS and ADDRESSES data values, which can be easily obtained from

annexes B and C of the DVB-S2 standard [29]. In figure 4.2 mainly three distinct types

of memory are depicted: i) Channel memory which initially receives data (IN+PN) from

the input of the LDPC decoder; ii) Message memory, where all messages associated with

information bits are stored (the FU supports both types of BN and CN processing, which

perform alternately during the same iteration); and iii) PN Message memory that holds

parity bits, which are computed in CN mode and have all weight 2 (zigzag connectivity).

In PN Message memory each FU only needs to store the message which is passed during

the backward update of CNs [49].

However, the large number of FUs used still implies a long width of the barrel shifter

which requires a significant die area and imposes routing problems: figure 4.2 shows

that the architecture will have to support a Very Long Data Word (VLDW) bus in order to
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4.3 M-factorizable LDPC decoder for DVB-S2

accommodate the simultaneous accesses of all FUs to corresponding messages in mem-

ory. Since this architecture is able to provide a throughput far above from the minimum

mandatory rate of 90 Mbps, we may reduce the number of necessary FUs even further.

In fact, we show in this chapter that this can be done by an integer factor of M = 360 [51]

with the corresponding beneficial reduction of the size of the barrel shifter.

4.3 M-factorizable LDPC decoder for DVB-S2

Under this context we propose a novel hardware approach [31,51,52] which is based

on a partial-parallel architecture that simplifies the barrel shifter and imposes accept-

able complexity and memory requirements. We address the generalization of the well

known M-kernel parallel hardware structure [70] and propose their partitioning by any

integer factor L of M [51], without memory addressing/reconfiguration overheads and

keeping unchanged the efficient message-passing mechanism. The proposed method [51]

provides an efficient way of reducing the number of FUs and the overall complexity of

the decoder. This approach does not only surpass some disadvantages of the architecture

described in [70], such as die area occupied or routing congestion, as it also adds flexibility
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and reconfigurability to the system according to the decoder and device constraints. This

type of sub-sampling approach [51] preserves the key modulo M properties of the archi-

tecture described in figure 4.2 [70], with only P processing units as shown in figure 4.4.

This strategy [51] allows a linear reduction of the hardware resources occupied by the P

FU blocks (which can be obtained from the decomposition of M = 23 × 32 × 5), and re-

duces significantly the complexity (2 × O(P logP)) of the interconnection network (or

barrel shifter), which simplifies the routing problem. This strategy does not imply an

increase by L in the size of ROM memories (that hold SHIFTS and ADDRESSES values).

In fact, as the properties of the first subgroups of CNs/BNs to process are known, the pe-

riodic properties of DVB-S2 codes allow to automatically calculate the properties of the

remaining subgroups [51]. For the architecture to support only P processing units, mem-

ory blocks have to be reorganized according to figure 4.4. We can reshape these memory

358q

359q-1

359q

360q-14q-1

3q

3q-1

2q0

2q-1

q-1

q

FU
0

FU
179

FU
1

Barrel

Shifter

Message mapping CNs

Message mapping INs

0

360

1

361

360q-359

2

362

3

363

360q-357

358

718

360q-2

719

358q+1

358q+2

2q+1

2q+2

1

2

1rst group

2nd group

Legend:

359

360q-1

359q+1

359q+23q+2

3q+1

q+2

q+1

360q-358360(q-1)

B
N
 w
e
ig
h
t 
w
b

C
N
 w
e
ig
h
t 
w
c

Figure 4.5: Memory organization for the computation of Lrmn and Lqnm messages, au-
tomatically adapted for a L = 2 factorizable architecture with corresponding P = 180
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blocks [51] and keep unchanged the size of the system ROM, by computing on the fly the

new SHIFTS values as a function of those initially stored in the ROM of figure 4.2 [51] for

a level of parallelism corresponding to M = 360. In the configuration [51] shown in fig-

ure 4.4, each FUi, with 0 < i < P− 1, is now responsible for processing information (IN),

parity (PN) and check nodes (CN) according to a proper memory mapping and shuffling

mechanism conveniently detailed in Appendix A. As we increase L, the smaller are the

sub-sets of the Tanner graph processed in parallel. Figure 4.5 describes the addressing

mechanisms used in the factorizable architecture for L = 2, or 180 FUs. The amount of

memory is exactly the same as in the previous architecture, but the structure is different.

There are less FUs and the corresponding memory word size decreases. But memories

have to become higher and thinner in order to hold the same information as before. This

new memory configuration will introduce benefits in area occupied by the architecture,

as it will be shown later.
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4.3.1 Functional units

The type of processing performed by each FU is based on the MSA defined in (2.26) to

(2.31) of algorithm 2.2. Figure 4.6 shows a FU that supports both BN and CN serial pro-

cessors and figure 4.7 expands the boxplus and boxminus blocks depicted in figure 4.6.

Figure 4.8 depicts a parallel version of the FU. Considering a BN of weight wb, the BN

processor can be seen as a black box with wb + 1 inputs, from where it receives the chan-

nel information plus wb CN messages Lrmn, sent from the CNs connected to it, and with

wb + 1 outputs, through where it communicates the hard decoding decisions and sends

the wb messages Lqnm, to the CNs connected to it. The inputs are added on a recursive

manner as shown in figure 4.6. The Reg SUM register is initialized with the received

channel information. The output messages can be obtained in a parallel manner as in

figure 4.8, or using a full serial approach as shown in figure 4.6, with a new message

being obtained at each clock cycle. This implementation minimizes the hardware com-
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Figure 4.7: Boxplus and boxminus sub-architectures of figure 4.6 [31,49].

plexity (measured in terms of number of logic gates) at the cost of a significant increase in

processing time (time restrictions could require an increase in the clock frequency). The

serial implementation has also the advantage of supporting the processing of a BN of any

weight, at the expense of little additional control. In a parallel version, inputs are added
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all together, producing the value of the a posteriori LLRs Lqnm. The message outputs can

them be computed simultaneously by just subtracting all entries from the output of the

referred adder. This type of implementation (shown in figure 4.8) requires an adder capa-

ble of adding wb + 1 inputs, as well as wb output adders in order to be able of performing

the wb necessary final subtractions. This means that a high number of gates is required

to implement just a single processing unit, but presents the advantage of a minimum de-

lay system (able of providing high throughput) that allows lowering the clock frequency,

which implies a reduction in power consumption. For the CN serial and parallel proces-

sors similar conclusions are achieved and the serial architecture naturally requires less

hardware resources than its parallel counterpart [31,49]. The difference is more notorious
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Figure 4.8: Parallel architecture for a functional unit that supports both CN and BN pro-
cessing types [31,49] for the MSA.

for CN processing units, even for those supporting a small weight wc as it is the case of

this one. Thus, differences in hardware resources required by serial or parallel versions

of the FU should be more significant for CNs with higher wc. Boxplus and boxminus

operations can both be implemented at the cost of four additions and one comparison, as
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shown in figure 4.7. Based on the proposed boxplus and boxminus hardware modules,

it is possible to adopt a serial or parallel configuration for the CN processor (similar to

the described for BN processor units). Nevertheless, the complexity of the boxplus oper-

ation on a parallel implementation requires a boxplus sum chain of all inputs according

to the figure 4.8. The advantages of one configuration compared with the other are sim-

ilar to those mentioned for the BN processor. Nevertheless, it should be noted that the

proportion of silicon area occupied by a parallel implementation with respect to a serial

implementation, in this case is significantly higher than the one for the BN processor, due

to the number of operations involved in the boxplus and boxminus processing. In fact,

the number of gates required by the boxplus and boxminus processing units is superior

to common add and subtract arithmetic operations.

The fact that only Lrmn messages represented in (2.26) are used in the processing of

CNs and, at the same time, only Lqnm messages represented in (2.29) are used in the

processing of BNs, allows simplifying the architecture, since memory can be shared by

both types of processing (one overlaps the following), as data is discarded at the end of a

computation and posterior storing in memory. During the execution of an iteration, the

decision of performing BN or CN processing should be performed by the Control unit

depicted in figures 4.2 and 4.4. The FUs proposed can be efficiently described by using a

Hardware Description Language (HDL) library tool developed [31] to automatically gen-

erate Register Transfer Level (RTL) code that produces either fully serial or fully parallel

synthesizable FU processing blocks [31,49].

The architecture proposed in this section [51] uses functional units based on the full

serial approach depicted in figure 4.6, which requires a lower number of gates (and area)

at acceptable clock frequency. Also, it supports all different code rates and frame lengths

making it fully compliant with the DVB-S2 standard [29]. This solution allows a good

compromise between throughput, algorithm complexity and hardware resources. In the

next sub-sections we present the obtained experimental results for both FPGA and ASIC

devices.

4.3.2 Synthesis for FPGA

The architecture of figure 4.4 was synthesized for Virtex-II Pro FPGAs (XC2VPxx)

from Xilinx for validation purposes. In all solutions 5 bits are used to represent data

(input values and inner messages). Table 4.1 reports the hardware resources used in

FPGAs XC2VP30, XC2VP50 and XC2VP100 for 3 different factorization levels, namely

L = {2, 4, 8}, and also the maximum frequency of operation, which can be obtained

from:

fclk_max =
1

(Logic Delay + Routing Delay)
, (4.1)
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Table 4.1: Synthesis results1 for P={45, 90, 180} parallel functional units.
FPGA XC2VP30 XC2VP50 XC2VP100
FUs 45 90 180 45 90 180 45 90 180

L 8 4 2 8 4 2 8 4 2

Slices (%) 87 154† 292† 50 88 169† 27 50 88
Flip-Flops (%) 19 38 75 11 22 43 6 11 23

LUTs (%) 81 142† 265† 46 80 153† 25 46 80
BRAM (%)

(18 Kbit blocks) 132† 144† 163† 77 84 95 40 44 50
Maximum Frequency
of Operation (MHz) 70.8 – – 70.8 64.1 – 70.8 74.0 73.2

Logic Delay (ns) 8.36 – – 8.36 8.68 – 8.36 7.74 5.99
Routing Delay (ns) 5.77 – – 5.77 6.93 – 5.77 5.77 7.67

where Logic Delay and Routing Delay indicate maximum obtained values. Synthesis

results show that it is necessary to use at least the FPGA XC2VP50 in order to guaran-

tee the minimum memory resources required to implement all code rates and lengths

adopted in DVB-S2. However, this particular choice uses nearly only 50% of the FPGA

available slices for a 45 FU architecture. From table 4.1 we observe that it is also possible

to implement this same architecture on the lower cost FPGA XC2VP30 if we use external

memory. For a given frequency of operation fop < fclk_max, the expected throughput is

given by:

Throughput ≥
f rame_length × fop

(
2×W + wj − 3

)
×max_iter × L

, (4.2)

where W represents the number of elements of H in the compact form as it is represented

in annexes B and C of the DVB-S2 standard [29], and wj is the weight of the IN nodes of

the code with weight j 6= 3 (see table 2.3 in chapter 2). In the architecture of figure 4.2,

a fully serial FU computes a new message per clock cycle and only stops (in bit mode)

wj− 3 cycles when switching the processing of IN nodes of weight wj to nodes of weight

w = 3. In the architecture of figure 4.4 the number of wasted clock cycles per iteration

increases by L. The XC2VP100 FPGA allows the implementation of the architecture of

figure 4.4 with 180 FUs (a factor L = 2), which multiplies the throughput approximately

by 4 times when compared to a 45 FU architecture (a factor L = 8). Figure 4.9 presents a

comparison of the maximum number of decoding iterations for each DVB-S2 LDPC code,

that can be performed on a XC2VP100 FPGA, operated at maximum clock frequency

fclk_max, and that guarantees the minimum throughput of 90 Mbps for each configuration

of the architecture, with P = {45, 90, 180} FUs. For example, the normal frame rate = 1/4

1The symbol † indicates that more than 100% of the device resources are required.
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code supports more than 10 iterations for P = 45 FUs, nearly 25 iterations for P = 90

FUs, and more than 45 iterations for P = 180 FUs. By limiting the maximum number of

iterations to 15, we can observe in figure 4.10 that the minimum throughput achievable

for the 180 FUs architecture is far above the 90 Mbps. This limit is nearly achieved and in

some cases even surpassed for DVB-S2 LDPC codes in the architecture based on 90 FUs.
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Figure 4.9: Maximum number of iterations [51] that can be performed with P =
{45, 90, 180} functional units2, for a throughput of 90 Mbps on a XC2VP100 FPGA.

Comparing throughput for both frame lengths in figure 4.10, we realize that they

resemble similar, which on a first analysis may seem incorrect due to the fact that normal

frame (64800 bits) codes have a length 4× longer than short frame (16200 bits) ones. The

reason for this lies in the fact that throughput represents a relation between the number

of decoded bits and the time necessary to perform that operation. As the number of bits

is 4× higher, the time spent doing that processing is equally higher because the number

of edges to process increases approximately by the same amount. Although processing

time is not exactly 4× higher, its value is very close to that number. This is the reason
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4.3 M-factorizable LDPC decoder for DVB-S2

why both throughputs approximate that much.

In the last couple of years, FPGA technology evolved and the density of new devices

is now superior to the one supported by Virtex-II Pro FPGAs. Also, new FPGA tech-

nologies support reduced internal delays which allows to achieve higher frequencies of

operation. Any of the 3 architectures proposed based on figure 4.4 can be easily sup-

ported, for example, by a recent Virtex-6 family device.
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Figure 4.10: Minimum throughput achievable [51] on a XC2VP100 FPGA for P =
{45, 90, 180} functional units2. The maximum number of iterations is 15.

4.3.3 Synthesis for ASIC

Synthesizing in ASIC technology the architecture with P = {45, 90, 180, 360} FUs

aims at finding the one which produces better power consumption and area results, while

simultaneously supporting the minimum throughput requirements. Any of the solutions

here reported supports short and normal frame lengths, even though the architecture is

2As mentioned in 2.6.2 regarding table 2.2, five DVB-S2 short frame codes don’t have constant wc weights.
For this reason, five short frame rates in figures 4.9 and 4.10 are approximations of those mentioned in
table 2.2 (for example, rate = 4/9 in the figures represents code with rate = 1/2 in the table).
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dimensioned for the worst case. The architecture was synthesized for a 90nm 8 Metal

CMOS process. All solutions use 5-bit precision to represent data messages.

The assessment of synthesis results for the proposed architecture presented in fig-

ure 4.11 shows that it is extremely competitive, when compared with state-of-the-art

solutions [18,27,70,95,133]. Figure 4.11 shows that the total area of the circuit is equal to

21.2mm2 for a 360 FU solution, while the architecture with 45 FUs can be obtained with

only 7.7mm2. A 90nm technology is used in [27,133], producing, respectively, an area of

4.1mm2 [27] and 9.6mm2 [133]. Results for similar architectures but for other technologies

have been presented: for example, for a 0.13µm technology, an area of 22.7mm2 has been

achieved [70], while [18] presents 3.9mm2 for a 65nm technology, and [95] achieves 6.03mm2

for the same technology.

Although some of them claim to occupy smaller die areas [18,27], our solution [51] sup-

ports both frame lengths, while they only support the normal frame mode. Also, consid-

ering that our design is based on a 90nm process, it compares favorably in terms of area

against [18,95] which have similar areas but use a 65nm technology. The new architecture

here proposed based on 45 FU shows an LDPC decoder circuit with smaller area occu-

pied than those reported in [70] and [133]. For power consumption purposes, perhaps most

important is the fact that our architectures work with an inferior maximum frequency

of operation (100 and 200MHz) than those just reported above in state-of-the-art solu-

tions [18,70,133] (the maximum frequency of operation is not indicated in [27], only area and

throughput are mentioned as described in the previous paragraph). In the new approach

here proposed 45% of the circuit works at 200 MHz, while the remaining 55% work at

360 FU 180 FU 90 FU 45 FU
0

5

10

15

20

25

m
m

2

21.2

13.6

9.7

7.7

Figure 4.11: Area results for ASIC architectures with P = {360, 180, 90, 45} functional
units.
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100 MHz. Final circuit validation has been performed by place & route using 8 metal

layers. No time, physical or routing violations were reported, so in this stage the 45 FUs

architecture is physically validated.

At this point and due to the configurable nature of the architecture, we found room

to perform some extra optimizations. For practical purposes, and since it presented good

results for throughput and area, we adopted the configuration based on the 45 FUs as

the basis solution to be optimized. The next section shows where there is still room to

perform optimizations and how to achieve that.

4.4 Optimizing RAM memory design for ASIC

The presented architecture has been described in RTL, for P = {45, 90, 180, 360}

FUs. Figure 4.4 shows that all 4 configurations use exactly the same amount of memory,

though rearranged with different widths and heights (memory positions). The smaller

the number of P functional units adopted, the higher and thicker block memories be-

come. The complete type and amount of memories necessary for such design are [51]:

• Message memory holds internal messages calculated during each iteration of the

decoding process for all information nodes (IN). Message memory width (word

length) is given by wa = number o f FU × message precision which in this case

is wa = M× 5/L bits. The height hmm can be obtained for the worst case scenario

(code with rate = 3/5 obtained from table 2.3, where the number of edges is maxi-

mum and (N − K) = 25920). In this case, hmm = L× q× (wc − 2);

• Channel memory stores IN and PN data incoming from the channel. This memory

has the same word length as Message memory (wch = wa), and the height is given

by hch = L× 64800/M, representing the worst case (normal frame);

• PN message memory holds messages calculated during each iteration, which are

associated only with parity bits. It has the same width as Channel memory and the

height hPN is obtained for worst case scenario (code with rate = 1/4) from table 2.3,

which turns hPN = q = 135 (only one 5-bit message per each parity bit has to be

stored);

• Hard decoding memory holds IN and PN data obtained in the hard decoding phase

of processing (1-bit per FU), described by (2.30) and (2.31). The width of this mem-

ory is given by the number M of FUs of the architecture. The height hHD is obtained

from hHD = L× 64800/M.

Table 4.2 summarizes the required width and height (mem. pos.) of all memories used

in the 4 synthesized configurations. Unfortunately, sometimes RAM memory libraries of
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Table 4.2: Required RAM memory size for each configuration.
Type of RAM 360 FU 180 FU 90 FU 45 FU

memory (mem. pos. (mem. pos. (mem. pos. (mem. pos.
× width) × width) × width) × width)

Message 648× 1800 1296× 900 2592× 450 5184× 225
Channel (IN+PN) 180× 1800 360× 900 710× 450 1440× 225

PN message 135× 1800 270× 900 540× 450 1080× 225
Hard decoding (IN+PN) 180× 360 360× 180 720× 90 1440× 45

Table 4.3: Physical (real) RAM memory size for each configuration.
Type of RAM 360 FU 180 FU 90 FU 45 FU

memory (mem. pos. (mem. pos. (mem. pos. (mem. pos.
× width) × width) × width) × width)

Message 210 × 1800 211 × 900 212 × 450 213 × 225
Channel (IN+PN) 28 × 1800 29 × 900 210 × 450 211 × 225

PN message 28 × 1800 29 × 900 210 × 450 211 × 225
Hard decoding (IN+PN) 28 × 360 29 × 180 210 × 90 211 × 45

standard cells do not exactly support the specified heights (memory positions) requested

in table 4.2, but rather standard dimensions which are usually a power of 2, as shown

in table 4.3. The area results obtained in the synthesis process and shown in figure 4.11,

allowed other interesting conclusions. Memories occupy nearly 97% of the circuits’ total

area. The remaining part of the circuit is occupied by the barrel shifter, functional units

and control logic. The fact that in the 4 configurations the areas are different was also a

surprise. Figure 4.11 shows these differences. As mentioned before and depicted from

figure 4.4, the total amount of memory is the same for all designs. If we realize that

they occupy a significant area of the design, we conclude that their differences should

be minimal. To analyze these differences, we first need to understand how memories

are generated and the RAM generator limitations. The architecture implemented in RTL

uses memories with large width (word length) and height (number of words, or memory

positions).

The RAM generator used can create memories that support the requested number of

words, but the maximum word width is limited to 64 bits, which is far bellow from archi-

tectural needs. To overcome this problem, B RAMs were concatenated until the required

memory width has been achieved, as shown in figure 4.12. Each RAM memory has its

own internal control logic which can address data in the working clock cycle, with its

own antenna diode protection, testing mechanisms, power rings, etc. As represented in

figure 4.12, for large words more memories are necessary, which replicates control hard-
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ware and increases silicon area. A practical example with real areas can be addressed for

the Message RAMs for 360 and 45 FU, to give a better perspective of the problem. In the

first configuration, the Message RAM width is 1800 bits (5 bits per message × 360 FU) by

210 addresses (height). For the second configuration, the RAM width is 225 bits (5 bits per
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Figure 4.12: Tiling of an y (height) by x (width) RAM memory layout.

message× 45 FU) by 213 addresses. Both Message memory blocks have the same capacity

(210× 1800 bits), however the area used by the wider 360 FU Message memory is 6.2mm2,

while the thiner 45 FU memory occupies only 3.2mm2. These memories were created by

concatenating B banks of 45 bit RAMs, as illustrated in figure 4.12. For 360 FUs, 40 in-

stantiations are necessary (40× 45 bits = 1800 bits) while for 45 FUs only 5 instantiations

are needed (5× 45 bits = 225 bits). Whatever the factorization level L adopted, the ar-

chitecture will still have to support a Very Long Data Word (VLDW) bus. This property

is illustrated in detail in figure 4.13, where the VLDW bus implies a complex routing of

the wiring associated with it. This introduces additional complexity managing the floor

planning and routing process (in the place & route phase of the design). Nevertheless, the

architecture with 45 FUs minimizes this problem, moving its complexity to a dimension

where it can be more easily tractable.

As described before, the configuration with 45 FUs occupies less area than the other

three, but time closure can still become a real problem in this case. To prove that this

architecture can be a valid solution, synthesis was performed for 100 MHz without any

timing violations.

4.4.1 Minimal RAM memory configuration

From all the designs, in figure 4.11 the 45 FU’s architecture occupies the smallest area.

Comparing tables 4.2 and 4.3, we notice that due to hardware restrictions, there is a por-

tion of the RAM which is never used. For instance, in the 45 FU architecture Message
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RAM needs 225× 5184 = 1166400 bits. But physically, we need 225× 213 = 1843200 bits,

resulting in 1843200 − 1166400 = 676800 unused bits, about 37%. This fact occurs in all

memories and for all architectures and it can be minimized using decompositions in pow-

ers of 2. From the previous example, we notice that the RAM height can be decomposed

into 5184 = 212 + 210 + 26. To minimize the unused area, we can use the concatenation

of smaller RAMs, obtaining a RAM depth near the specific architecture needs. Unfor-

tunately, after generating and concatenating the decomposed RAMs, we realize that the

area increases nearly 30% (instead of decreasing), which can be justified by the additional

number of internal RAM hardware controllers incorporated into the design. This factor is

the major responsible for increasing the area. Therefore, decomposing RAMs in powers

of 2 is not an interesting solution. However, joining together several blocks of memory

that operate in different time slots into one bigger common block of memory can become

a more efficient solution. First, we need to understand in more detail the decoder archi-

tecture with 45 FUs as depicted in figure 4.13. In Message memory of figure 4.13, each

5 bits of the word are directly connected to each FU, and consequently only one main

memory block is used. This way, only one (read or write) address is needed to transfer
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data to/from all FUs. This memory must be a dual port RAM, in order to allow reading

and writing during the same clock cycle. However, due to memory generator limitations

in the tools used, this type of memory was not possible to achieve. The solution adopted

consists of creating a memory operating at twice the circuit’s frequency: in the first cycle

it performs read operations; and in the second one it writes data to memory. The LDPC

decoder input data comes from an external de-interleaver module that does not work

at the same clock frequency as the LDPC decoder. To guarantee that no information is

lost, all messages delivered to the decoder must be stored in Channel memory. The PN

message memory is equally stored on a dual port RAM which, as before, due to memory

generator limitations was converted into a single RAM working at twice of the initial

frequency. In the beginning, this memory is loaded with zeros, and then it will hold data

associated with parity bits necessary in each iteration of the decoding process. Shift and

address data are loaded from an outside source into SHIFTS and ADDRESSES memories.

The values stored into these memories depend on the code rate and must be previously

calculated.

4.4.2 ASIC synthesis results for an optimized 45 FUs architecture

The floorplan with placed std cells, RAM memory and pins is presented in figure 4.15

for the optimized 45 FUs design. To translate the mentioned optimizations into area re-

quirements, the new circuit has been synthesized for the same 90nm technology used in

the original synthesis. The optimizations reduce the area of the smallest original architec-

ture nearly 20%. Synthesis results for the optimized 45 FUs version and also for the previ-

Figure 4.14: Layout of a memory with 10-bit width ×10 lines of bus address.

ously mentioned P = {360, 180, 90, 45} FUs based architectures, are listed in table 4.4 and

the areas are also compared in figure 4.16. They range from 21.2mm2 to 6.2mm2, with cor-

responding levels of power consumption of, respectively, 290mW down to 85mW. The 45

FU’s architecture optimized with an efficient RAM memory reshape presents a total area
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Figure 4.15: Floorplan with placed std cells, RAM and pins for the optimized 45 func-
tional units design.

of 6.2mm2 and 85mW of power consumed at a typical voltage of 1.1V (and maximum

1.32V). The estimation of power consumption was performed by considering typical val-

ues for current, voltage and temperature. This approach was followed because extreme

working conditions usually do not occur, or if they do, it is during small periods of time

which does not negatively affect the design.
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Figure 4.16: Area results comparing the optimized 45 FUs design.
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Table 4.4: ASIC synthesis results for P = {45, 90, 180, 360} parallel functional units and
for an optimized 45 functional units architecture.

360 180 90 45 45-optim.

Technology 90nm 90nm 90nm 90nm 90nm
Max. voltage 1.32 v 1.32 v 1.32 v 1.32 v 1.32 v
Typ. voltage 1.1 v 1.1 v 1.1 v 1.1 v 1.1 v
Min. voltage 1.08 v 1.08 v 1.08 v 1.08 v 1.08 v

Max. temperature 125°C 125°C 125°C 125°C 125°C
Typ. temperature 25°C 25°C 25°C 25°C 25°C
Min. temperature -40°C -40°C -40°C -40°C -40°C
Max. frequency 100MHz 100MHz 100MHz 100MHz 100MHz

Power 290mW 185mW 130mW 105mW 85mW
Current 260mA 170mA 120mA 95mA 75mA

Gate count 9.6 Mgates 6.2 Mgates 4.4 Mgates 3.5 Mgates 2.8 Mgates
Area 21.2mm2 13.6mm2 9.7mm2 7.7mm2 6.2mm2

Figure 4.17 facilitates assessing the dimension and complexity of this design (designs

developed for common applications in the industry of semiconductors are typically much

smaller). For example, the size of the circuit for 360 FU is comparable, in terms of the

number of gates, with an Intel® Pentium® 4 processor that requires approximately 55

millions of transistors [66] or the equivalent 14 millions of gates [73]. This LDPC decoder

design produces a chip with 9.6 millions of gates, as it is also described in table 4.4. Even

the optimized architecture with 45 FU requests 2.8 millions of gates, a value which is very
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Figure 4.17: Reference designs for gate count comparison of the ASIC based architectures
proposed, with 360, 180, 90, 45 and 45-optimized functional units.
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inferior to the former but still quite significant, and very close to an architecture described

in the literature [27] that presents the minimal number of 2 millions of gates for an LDPC

decoder (for the best of our knowledge). This architecture [27] uses a 90nm CMOS tech-

nology where each NAND2 gate occupies approximately 2.1µm2. To estimate the total

number of gates of this design, we divided the total area of 4.1mm2 [27] per NAND2 gate

area to obtain an approximate value of 1.95 millions of gates. This value is also presented

as the rightest most element of figure 4.17.

Again, final circuit validation has been performed by place & route, using 8 metal

layers. No time, physical or routing violations were reported, so in this stage the 45 FU

optimized architecture is physically validated and ready to be implemented in silicon.

To accommodate place & route, it should be noted that, based on previous design ex-

perience, we estimated an increase of area equivalent to 20% (after final validation, we

realized that it could have been approximately 19%), which corresponds to a global area

of 7.4mm2 for the optimized 45 FUs architecture.

4.5 Summary

This chapter addresses the generalization of a state-of-the-art M-kernel parallel struc-

ture for LDPC-IRA DVB-S2 decoding, for any integer factor of M = 360. The proposed

method adopts a partitioned processing of sub-blocks of the Tanner graph, that keeps

unchanged the efficient message memory mapping structure without addressing unnec-

essary overheads. This architecture proves to be flexible and easily configurable accord-

ing to the decoder constraints and represents a trade-off between silicon area and de-

coder throughput. Synthesis results for FPGA devices show that a complete LDPC-IRA

decoder for DVB-S2 based on an 180 FUs architecture can be configured on a low-cost

XC2VP100 FPGA from Xilinx.

When synthesizing for ASIC technology the limitations in terms of number of gates

naturally no longer become important, and larger architectures could be tested. Never-

theless, this approach aims at finding microcircuits with the smallest possible die area

and lower power consumption, that still ensure minimum throughput requirements for

all DVB-S2 codes. Under this context, 5 configuration designs with different number of

processing units have been implemented. They range from 360 to 45 FUs which repre-

sents, respectively, an equivalent area occupied of 21.2 and 7.7mm2. Although the process

of generating RAM memories imposes constraints, the investigation carried out under

this thesis allowed achieving several interesting conclusions, that were applied into the

design of the LDPC decoder circuit. Re-dimensioning and rearrangements in the order

how memory blocks are grouped together allowed reducing the global area of the circuit
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to a value as low as 6.2mm2. This shows the competitiveness of the architecture when

compared with state-of-the-art solutions. Moreover, the maximum frequency of opera-

tion of the design here proposed is smaller than those reported by competitors, which

justifies the low levels of power consumption achieved.
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"If you were plowing a field, which would you rather use? Two strong oxen or 1024
chickens?"

Seymour Cray
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5.1 Multi-core architectures and parallel programming technologies

In chapter 3 we analyzed the decoding complexity of the Sum-Product Algorithm

(SPA) and Min-Sum Algorithm (MSA). The required number of operations depicted in

figures 3.1 and 3.2 shows that high performance parallel computing should be considered

to execute such intensive processing. To achieve real-time computation they can be per-

formed by using dedicated Very Large Scale Integration (VLSI) processors based on Field

Programmable Gate Array (FPGA) or Application Specific Integrated Circuits (ASIC),

as described in chapter 4. However, hardware represents non-flexible and non-scalable

dedicated solutions [137] [27], that require many resources and long development times.

More flexible solutions for Low-Density Parity-Check (LDPC) decoding using Digital

Signal Processor (DSP)s [53] or Software Defined Radio (SDR) programmable hardware

platforms [108] have already been proposed.

In this chapter we exploit the advances in powerful low-cost and widespread paral-

lel computing architectures for achieving high performance LDPC decoding. Although

general-purpose x86 multi-cores show modest performances for achieving real-time LDPC

decoding for most of the applications, they allowed to show that the solutions here pro-

posed are scalable. From the set of multi-core based architectures analyzed in this thesis,

the Cell Broadband Engine (Cell/B.E.) and Graphics Processing Units (GPU) emerge as

flexible highly parallel architectures. Because they represent programmable solutions,

they offer the possibility of increased productivity at low-cost, namely to impact the per-

formance of demanding algorithms such as the LDPC decoders analyzed in this thesis.

5.1 Multi-core architectures and parallel programming technolo-
gies

Until a few years ago, general-purpose single-core based processors were unable

to handle the computational complexity of LDPC codes in real-time. The throughputs

achieved using this type of processors were below the hundreds of Kbps [32], which does

not represent a solution powerful enough to be considered as a consistent alternative for

LDPC decoding. But the evolution of processor architectures supported on the scaling

up of the technology according to Moore’s Law has lead to the actual multi-core super-

scalar processors. Mainly due to frequency of operation, power consumption and heat

dissipation constraints, the trade-off speed/power, a fundamental relation of multi-core

processors, showed that it would be more efficient to use two or more processing cores

on a single processor, rather than to continue increasing the frequency of operation. The

integration of multiple cores into a single chip has become the new trend to increase

processor performance. These architectures [12] require the exploitation of parallelism to

achieve high performance.
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5. LDPC decoding on multi- and many-core architectures

Table 5.1: Overview of recent multi-core platforms1.
Platform # cores Performance Mem. band. Homog.

Intel 6-core Dunnington [65] 6 < 51 GFLOPS2 1.07 GT/s3 Yes

Intel Xeon Nehalem 2x-Quad 8 – – Yes

Tilera 64-core Tile64 [119] 64 443 GOPS 4TB/s Yes

STI Cell/B.E. [24] 9 > 200 GFLOPS 204.8 GB/s No

NVIDIA 8800 GTX [96] 128 350 GFLOPS 86.4 GB/s Yes

ATI/AMD Radeon HD 2900 XT [5] 320 475 GFLOPS 105.6 GB/s Yes

Multi-core architectures have evolved from dual or quad-core to tera-scale systems,

supporting multi-threading, a powerful technique to hide memory latency, while at the

same time provide larger Single Instruction Multiple Data (SIMD) units for vector pro-

cessing [48]. New parallel programming models and programming tools have been de-

veloped for multi-core architectures, namely common programming models that allow

the user to program once and execute on multiple platforms, such as RapidMind [105].

Common general-purpose multi-core processors replicate a single core in a homogeneous

way, typically with a x86 instruction set, and provide shared memory hardware mech-

anisms. They support multi-threading and share data at a certain level of the memory

hierarchy, and can be programmed at a high level by using different software technolo-

gies [71], such as OpenMP [21] which provides an effective and relatively straightforward

approach for programming general-purpose multi-cores.

Presently, companies like Intel, Tilera, IBM, NVIDIA or ATI/AMD are manufacturing

systems based on multi-core processors with typically from 2 superscalar cores up to a

few hundreds of simple cores. Table 5.1 presents some examples of architectures that

incorporate multiple cores. The Dunnington processor [65] is a variant of the Intel Xeon

family (also known as Penryn processor) with a peak performance that does not allow

to achieve real-time LDPC decoding for the most demanding cases (see figure 3.2). The

distributed nature of the Tilera 64-cores processor Tile64 [119] is supported by multiple

x-y orthogonal buses, an efficient mesh that allows each core to communicate in parallel

along four different directions thus producing a very interesting aggregate bandwidth of

4 TB/s. Nonetheless, it represents an expensive solution where important parameters,

such as the number of sustained floating-point operations per second, remain unknown.

1All information indicated in table 5.1 represents peak performance values. The values indicated in
GFLOPS (floating-point operations) refer to single-precision operations. The omitted values were unavail-
able.

2The performance value for the Intel 6-core Dunnington processor indicated in table 5.1 represents an
upper bound estimate. The peak performance values were not available.

3GT/s represents Giga Transfer (GT) per second; the value is provided by the manufacturer.
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On the other hand, GPUs from NVIDIA [96] or ATI/AMD [5] have hundreds of cores and a

shared memory hierarchy which provide high computational power that can be exploited

efficiently to other types of processing not only limited to graphics processing.

Mainly due to demands for visualization technology in the industry of games, the

performance of GPUs has undergone increasing performances over the last decade. With

many cores driven by a considerable memory bandwidth, recent GPUs are targeted for

compute-intensive, multi-threaded, highly-parallel computation. Researchers in high

performance computing fields are applying their huge computational power to general

purpose applications (General Purpose Computing on GPUs (GPGPU)) [15,37,45,54,98], al-

lowing higher levels of performance in Personal Computer (PC) systems [4,72]. Moreover,

a cluster-based approach using PCs with high performance GPUs has been already re-

ported [42]. Owens et al. summarize the state-of-the-art and describe the latest advances

performed by the scientific community in GPGPU [99]. At the compiler level, Buck et al.

introduced important improvements, such as the extensions to the C language known

as Brook for GPUs [20], which allows to perform general purpose computation on pro-

grammable graphics hardware. However, to apply GPUs to general purpose applica-

tions, we need to manage very detailed code to control the GPU’s hardware. To hide this

complexity from the programmer, several programming interfaces and tools [89], such as

the Compute Unified Device Architecture (CUDA) from NVIDIA [97], the Close to the

metal (CTM) interface (replaced by the ATI Stream SDK) from AMD/ATI [6], or the Car-

avela platform [126] have been developed. CUDA and CTM represent dedicated program-

ming tools for specific GPUs with a strong potential to improve the computational ef-

ficiency [47]. CUDA provides a new hardware and software architecture for managing

computations on GPUs [22,57,80,130] with the Tesla architecture from NVIDIA. The Caravela

platform [125,126] holds the interesting property of being the first generalist and powerful

programming tool that operates independently of the operating system and GPU manu-

facturer. Recently standardized, the OpenCL framework [55] allows to write parallel pro-

grams for execution across heterogenous platforms that include CPUs, GPUs and other

types of processors.

Also pushed by audiovisual needs in the industry of games, emerged the Sony, Toshiba

and IBM (STI) Cell/B.E. [24] listed in table 5.1. It is characterized by a heterogeneous vec-

torized Single Instruction Multiple Data (SIMD) multi-core architecture composed by one

main PowerPC Processor Element (PPE) that communicates very efficiently [2] with eight

Synergistic Processor Element (SPE)s that operate without sharing memory. Each SPE

holds a small amount of local memory for data and code, which is conveniently exploited

by a vectorized SIMD oriented architecture [60]. Data transfers between PPE and SPE

are performed efficiently by using Direct Memory Access (DMA) mechanisms. Driven

101



5. LDPC decoding on multi- and many-core architectures

Table 5.2: Overview of software technologies for multi-cores [71].
Software Corporation Target Language/

Technology architecture Library

CUDA NVIDIA NVIDIA GPU Language (C)

BROOK+ AMD/ATI AMD/ATI GPU Language (C)

Cell SDK IBM Cell/B.E. Library (C)

OpenMP ARB Group multi-core CPU Library (C, FORTRAN)

OpenCL Stand. Khronos Group GPU, CPU, FPGA Language (C)

PCT MATHWORKS multi-core CPU Language (Matlab)

by a considerable memory bandwidth, the Cell/B.E. processor powers IBM Cell Blade

servers, and supports also the PlayStation3 (PS3) platform. The PS3 can be operated with

Linux-based operating systems, thus it can be used beyond gaming [103], providing low-

cost high-performance professional computing platforms very attractive for demanding

scientific applications [3,76].

Table 5.2 presents a subset of the most important technologies used in the program-

ming of multi-core platforms [71]. It shows some of their main properties, namely the

programming language that each parallel platform supports. The C language emerges

as a commonly supported language. Other programming languages such as C++, FOR-

TRAN, PYTHON or JAVA are also supported by some multi-core architectures and paral-

lel programming models. At the same time, these architectures support data-parallelism

and most of them also support task-parallelism.

From the set of architectures based on multi-core processors presented in table 5.1,

the low-cost and worldwide disseminated Cell/B.E. and GPUs supported by CUDA are

flexible highly parallel architectures which support data and thread levels of parallelism,

and can be efficiently programmed using the conventional C language (see table 5.2)

to perform LDPC decoding. Also, common general-purpose x86 multi-core processors,

supported by an increasing number of cores, can address scalable implementations of

parallel algorithms in future versions of the architectures. For all these reasons, they

were selected in this thesis as the processing platforms to develop and implement pro-

grammable LDPC decoders.

The GPU is not an autonomous processing system. A very important aspect is re-

lated with the need of transferring data from the host (Central Processing Unit (CPU)) to

the device (GPU), and in the opposite direction at the end of processing. The comput-

ing platforms used in this test are PCs that showed peak data transfers of approximately

1.2 GByte/s, experimentally measured between the host and the device connected to the
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workstation through a Peripheral Component Interconnect Express (PCIe) bus.

5.2 Parallel programming strategies and platforms

The two types of intra-codeword (Definition 3.1) and multi-codeword (Definition 3.2)

parallelism, defined in subsection 3.3, can be applied differently to distinct parallel com-

puting architectures. In this thesis we exploit both concepts and show how they can

be efficiently applied, depending on the target architecture. General-purpose x86 multi-

cores can make use of them separately, while they can be combined to achieve better

performance in other architectures, such as in GPUs and the Cell/B.E., as described in

the next subsections.

5.2.1 General-purpose x86 multi-cores

The number of cores of general-purpose x86 multi-cores typically ranges from 2 to

16 and includes different levels of hardware-managed cache memory [74]. In these ar-

chitectures memory cache coherency mechanisms are provided to support the shared-

memory parallel programming model. Moreover, the internal cache shared by all cores

allows efficient data transfers and synchronization between them. These processors can

be programmed by using POSIX Threads (pthreads) or, at a higher level, the OpenMP

programming interface [21].

Applications that exploit the parallel processing of matrices in general-purpose x86

multi-cores using OpenMP can be found in the literature [8,22]. For example, they de-

scribe the multiplication of matrices [8] and, in particular, of sparse-matrices [110]. Also,

several digital signal processing algorithms such as the Fast Fourier Transform (FFT), or

LU matrix decomposition4 have been parallelized using OpenMP directives [14]. How-

ever, research for performing parallel LDPC decoding in this type of architectures has

not been reported yet.

5.2.2 The Cell/B.E. from Sony/Toshiba/IBM

The Cell/B.E. is an heterogeneous processor [24,60] composed by one main 64-bit PPE

that communicates with eight SPEs each having 256 KByte of local storage (LS) memory

for data and program, and a 128-bit wide vectorized SIMD within-a-register (SWAR)

oriented architecture as depicted in figure 5.1. Data transfers between the PPE (that

accesses main memory) and SPE are performed by using efficient DMA that offload

4In linear algebra, the LU matrix decomposition [14] represents a matrix as the product of a lower triangu-
lar matrix and an upper triangular matrix. This product sometimes involves a permutation matrix as well,
and is used in numerical analysis to calculate the determinant or solve systems of linear equations.

103



5. LDPC decoding on multi- and many-core architectures

Synergistic
Processor
Element

Element Interconnect Bus

SPE SPE SPE

SPE SPE SPE SPE

SPE

PPE Memory Interface Controller

Broadband Engine Interface

PowerPC
Processor
Element

Instruction pool

Data
pool

32-bit

128-bit

{

Figure 5.1: The Cell/B.E. architecture.

the processors from the time consuming task of moving data. The Memory Interface

Controller (MIC) controls the access to the main memory, with a bandwidth that nearly

reaches 4.2 GByte/s [2].

Differently from shared memory based architectures such as x86 multi-cores or GPUs,

in the Cell/B.E. data is loaded from the main memory into the LS of a SPE and vice-versa.

Data locality has to be individually exploited in each SPE, releasing to the programmer

the burden of developing strategies to avoid contention due to memory accesses. An
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Figure 5.2: Double buffering showing the use of the two pipelines (for computation and
DMA).

important restriction in such architectures is related with the limited amount of local

memory [24], which in practice may lead to situations where data and code do not fit com-

pletely into the LS of a single SPE. In that case, the processing has to be performed by

successively partitioning the algorithm, which increases the number of data communica-

tions between the PPE and SPEs. The DMA latency can have a critical role in the perfor-

mance, but its impact can be reduced by using double-buffering techniques as depicted

in figure 5.2.

Parallel computing on the Cell/B.E. has been mostly investigated for video applica-
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5.2 Parallel programming strategies and platforms

tions, such as motion estimation [91], MPEG decoders [26], or feature extraction for tracking

purposes in computer vision [116]. Also, there are approaches to solve systems of linear

equations by exploiting single- and double-precision accuracy using appropriate refine-

ment techniques on the Cell/B.E. [75]. In this work we open a novel frontier by developing

parallel LDPC decoders in this type of distributed memory architecture.

5.2.3 Generic processing on GPUs with Caravela

Among the programming tools and environments developed for GPGPU are the Car-

avela interface tool [126], a general programming interface, based on a stream-based com-

puting model [68] that can use any GPU as co-processor. Caravela does not directly in-

teract with the GPU hardware, but it has a software layer that operates on the top of the

GPU driver, which makes it a generic programming interface tool independent of the

operating system and GPU manufacturer. The graphics pipeline of a GPU consists of

several stages as depicted in figures 5.3 and 5.4. A graphics runtime such as DirectX or

Rasterizer

(Interoperation of vertices)

Display to screen

Pixel processor

(Coloring objects with

textures)

Textures for objects

Vertex processor

(Mapping vertices to a

global virtual world)

Figure 5.3: Vertex and pixel processing pipeline for GPU computation [126].

OpenGL is used to control GPU hardware. The CPU sends a data stream of vertices of

graphics objects to a vertex processor that computes resizing or perspective of the objects

calculating rotations and transformations of the coordinates, and generates new vertices.

A rasterizer receives the new vertices, interpolates it, and generates data corresponding

to the pixels to be displayed. Then, a pixel processor receives this data and computes the

color applying texture data received from the CPU side. Finally, an image with graph-

ics objects is ready to be displayed on a video screen. Because in GPUs, namely the old

ones, there is no access to output data data of the vertex processor and the rasterizer is

not programmable but directly implemented in hardware, general-purpose applications

generally only use pixel processors, mapping the I/O data streams to textures.

Caravela has been developed [126] to allow the parallelization of computationally de-
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5. LDPC decoding on multi- and many-core architectures

manding kernels based on flow-models and apply them to accelerators such as generic

GPUs. Moreover, a meta-pipeline execution mechanism has been developed, which al-

lows to set up a pipeline of flow-models to be executed in parallel [128]. Also, the Car-

avelaMPI [127], which consists of a message passing interface targeted for GPU cluster

computing, has been developed to allow the efficient programming of GPU-based clus-

ters, providing a unified and transparent tool to manage both communications and GPU

execution. Some applications such as FIR and IIR filtering [129] have been developed for

Caravela and tested successfully reporting real speedups, regarding to the execution time

on CPUs.

Mapping flow-models on the Caravela platform: On a GPU, the color data is written

into the frame buffer, which outputs it to the screen as depicted in figure 5.3. Vertex and

pixel processors compute four floating-point values (XYZW for vertex, ARGB for pixel)

in parallel. Moreover, the coloring operation in the pixel processor is also parallelized be-

cause the output colors are generated independently as data streams, and each element

of a stream is also independently processed. GPUs therefore include several pixel pro-

cessor cores that generate output colors concurrently. These processors perform SIMD

computation in four data units, and also concurrent calculations for the resulting output

data streams. They can be programmed in standard languages such as the DirectX As-

sembly Language, the High Level Shader Language (HLSL) [90] and the OpenGL Shading

Language (GLSL) [69]. The programs are called shader programs.

For GPGPU, programmers need specific knowledge for controlling GPU hardware

via a graphics runtime environment. Moreover, there are different runtime environments,

depending on the GPU vendor and the programming language. This is an overhead for

programmers who have to concentrate their best efforts on implementing efficient paral-
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Figure 5.4: A GPU processing pipeline with Caravela.
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Figure 5.5: Structure of Caravela’s flow-model.

lel algorithms in a shader program. To solve this disparity in programming GPU-based

applications, the Caravela platform [126] has been developed for GPGPU, and is publicly

available at the web site [125]. The Caravela platform mainly consists of a library that sup-

ports an Application Programming Interface (API) for GPGPU. The execution unit of the

Caravela platform is based on the flow-model. As figure 5.5 shows, the flow-model is

composed of input/output data streams, constant parameter inputs and a pixel shader

program or kernel, which fetches the input data streams and processes them to generate

the output data streams. The application program in Caravela is executed as stream-

based computation. Although input data streams of the flow-model can be accessed

randomly because they are based on memory buffers accessible to the program that uses

the data, output data streams are sequences of data elements. The designation "pixel" for

a unit of the I/O buffer is used because the pixel processor processes input data for every

pixel color. A flow-model unit has defined the number of pixels for the I/O data streams,

the number of constant parameters, the data type of the I/O data streams, the pixel shader

program and the requirements for the targeted GPU. The "memory effect" is not available

in hardware, which means that we cannot store temporary results during the processing,

for example, of successive operations. To overcome this dificulty, data copy or pointer

manipulation techniques have been implemented in Caravela [129]. To give portability

to the flow-model, these items are packed into an Extensible Markup Language (XML)

file. This mechanism allows the use of a flow-model unit located in a remote computer,

simply by fetching the XML file.
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5.2.4 NVIDIA graphics processing units with CUDA

Recent Tesla GPUs from NVIDIA are based on a unified architecture, which repre-

sents an evolution from previous streaming architectures, where geometry, pixel and ver-

tex programs share common stream processing resources. The two GPUs from NVIDIA

herein adopted have 16 or 30 multiprocessors, each one consisting of 8 cores as depicted

in figure 5.6, which makes a total of 128 stream processors available in one case and 240

in the other, with 8192 or 16384 dedicated registers per multiprocessor [97], respectively.

These GPUs provide shared memory on each multiprocessor that allows to efficiently

exploit data parallelism. Each multiprocessor holds a 16 KByte shared memory block.

Data-parallel processing is exploited by executing a kernel in parallel through mul-

tiple threads in the available cores. CUDA [97] defines an API and provides a runtime

environment and libraries to easily program these more recent GPUs from NVIDIA [97].

The execution of a kernel on a GPU is distributed across a grid of thread blocks with

adjustable dimensions. Each multiprocessor, as depicted in figure 5.6, has several cores

that can control more than one block of threads. Each block is composed by a maxi-

mum of 512 threads that execute the kernel synchronously with threads organized in

groups of warps, and following a Single Instruction Multiple Thread (SIMT) approach:

the warp size is 32 threads and each of the multiprocessors time-slices the threads in a

warp among its 8 stream processors. However, allowing the existence of inconvenient
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Figure 5.6: A compute unified Tesla GPU architecture with 8 stream processors (SP) per
multiprocessor.
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divergent threads inside a warp, or using a number of threads smaller than 32, can cause

a wasting of resources or making them temporarily idle. Understanding how threads

are grouped into warps is fundamental to choose the best block size configuration. Also,

the number of threads per block has to be programmed according to the specificities of

the algorithm and the number of registers available on the GPU, in order to guarantee

that enough physical registers are allocated to each thread. All threads inside the same

block can share data through the fast shared memory block, which minimizes the need

for expensive accesses to global memory. They can also synchronize execution at specific

synchronization barriers inside the kernel, where threads in a block are suspended until

they all reach that point.

CUDA became very popular among the scientific community in the last couple of

years, fostering more efficient processing of algorithms based on intensive computation.

The literature already presents cases of applications accelerated more than an order of

magnitude [4] using this type of architecture [15,45,54,99], as compared to processing times

obtained with conventional CPUs or even with CPUs using OpenMP [22]. Regarding the

processing related with LDPC decoding, i.e. that involves calculations over matrices, and

more specifically considering large data sets which can benefit most from parallelization,

we can find parallel algorithms ranging from sparse matrix solvers [15] to belief propaga-

tion for stereo vision [19] implemented on GPUs. CUDA has fostered this increase of per-

formance even further [22], allowing new parallel computing experiences [47], where video

and image research [91,130] naturally have quickly assumed an important role. Neverthe-

less, the expected rise of the number of cores may also produce side effects [89], namely

the traffic congestion caused by intensive accesses to memory, which represents a limiting

factor in achieving performance or the scalability of algorithms.

5.3 Stream computing LDPC kernels

The Synchronous Data Flow (SDF) graph in figure 5.7 represents the computation of

an LDPC decoder. The complete updating of CNs is performed by kernel 1 and alter-

nates with the updating of BNs in kernel 2. Kernel 1 receives at the input data stream p0

representing the initial probabilities pn (algorithms 2.1 and 2.2) and another stream rep-

resenting HBN data structures (section 3.3.3), to perform the SPA/MSA horizontal pro-

cessing as indicated in (2.18) to (2.19), or (2.26) to (2.28)). It produces the output stream

r0 which is one of the input streams feeding kernel 2, that also receives the HCN data

structure (section 3.3.3) and produces the output stream q0. HCN is necessary to perform

the SPA/MSA vertical processing as indicated in (2.20) to (2.21), or in (2.29). The pair ker-

nel 1 and kernel 2 completes one iteration and is repeated i times for an LDPC decoder
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performing i iterations. After the final iteration, the last kernel conveys the codeword.
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Figure 5.7: SDF graph for a stream-based LDPC decoder: the pair kernel 1 and kernel 2
is repeated i times for an LDPC decoder performing i iterations.

In each kernel, data elements can be read sequentially but have to be stored in non-

contiguous positions (or vice-versa), which defines expensive random memory accesses.

These costly write operations demand special efforts from the programmer in order to

efficiently accommodate them in parallel architectures with distinct levels of memory

hierarchy. Applied to kernel 1 and kernel 2, the stream-based compact data structures

shown in figure 3.12 make the SPA/MSA suitable to run on a parallel processing plat-

form. The analysis of figure 5.7 shows a message-passing schedule based on flooding

schedule. This approach was detailed in subsection 3.3.2 and is adopted for the imple-

mentations described in this chapter.

Table 5.3: Types of parallelism on multi-core platforms5.
Platform SIMD SPMD Multi/Intra-codeword

Intel Xeon Nehalem 2x-Quad Y Y Y/Y

STI Cell/B.E. [24] Y N Y/N6

NVIDIA 8800 GTX [96] Y7 Y Y/Y

Table 5.3 shows the stream-based parallel approaches exploited for LDPC decoding

on the considered platforms. The parallelization approaches for LDPC decoding ex-

ploit the properties of each architecture, and are proposed for a heterogeneous Cell/B.E.

SIMD vectorized distributed memory architecture, that exploits data locality, and also

for shared memory multi-core based GPU architectures using CUDA that support multi-

threading, or alternatively use the Caravela interface. Moreover, the general-purpose

parallel approaches here proposed can be applied to other multi-core architectures such

as, for example, x86 general-purpose CPUs.

5These platforms were selected under the scope of this thesis.
6The Cell/B.E. exploits intra-codeword parallelism only in the large memory model.
7In this case it is called SIMT.
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5.4 LDPC decoding on general-purpose x86 multi-cores§

The general-purpose multi-core processors replicate a single core in a homogeneous

way, typically with a x86 instruction set, and provide shared memory hardware mech-

anisms. They support multi-threading and share data at a certain level of the memory

hierarchy, and can be programmed at a high level by using different software technolo-

gies [71]. OpenMP [21] provides an effective and relatively straightforward approach for

parallel programming general-purpose multi-cores.

Under this context, we developed LDPC decoders based on the computationally in-

tensive SPA to test the viability of this solution based on general-purpose x86 multi-cores

and supported by OpenMP.

Algorithm 5.1 LDPC kernels executing on general-purpose x86 multi-cores using
OpenMP
1: /* Initialization. */
2: while (ĉ HT 6= 0 ∧ it < I) /* c-decoded word; I-Max. number of iterations. */

do
3: /* Compute all the messages associated to all CNs. */
4: #pragma omp parallel for
5: shared(...) private(...)
6: Processing kernel 1
7: /* Compute all the messages associated to all BNs. */
8: #pragma omp parallel for
9: shared(...) private(...)

10: Processing kernel 2
11: end while

Parallelizing an application by using OpenMP resources often consists in identifying

the most costly loops and, provided that the loop iterations are independent, parallelize

them via the #pragma omp parallel for directive. Based on a profile analysis, it is rela-

tively straight-forward to parallelize algorithms 2.1 and 2.2, since LDPC decoding uses

the intensive loop-based kernels depicted in figure 5.7. Another possibility for OpenMP

consists of using the #pragma omp parallel section launching the execution of independent

kernels into distinct cores. This different approach suits simultaneous multi-codeword

decoding in distinct cores.

5.4.1 OpenMP parallelism on general-purpose CPUs

For programming general-purpose x86 multi-cores, we exploit OpenMP directives.

Both horizontal and vertical kernels are based on nested loops. Considering the paral-

lel resources allowed in the OpenMP execution, the selected approach consists of paral-

§Some portions of this section appear in:

[39] Falcão, G., Sousa, L., and Silva, V. (accepted in February 2010b). Massively LDPC Decoding on Mul-
ticore Architectures. IEEE Transactions on Parallel and Distributed Systems.
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lelizing the outer-most loop of the costly operations defined in (2.18) to (2.21) or (2.26) to

(2.29), thus reducing the parallelization overheads, as depicted in algorithm 5.1. The loop

data accesses were analyzed in order to identify shared and private variables. This ap-

proach uses the #pragma omp parallel for directive to separately parallelize the processing

of kernels 1 and 2 in algorithms 2.1 or 2.2.

Algorithm 5.2 Multi-codeword LDPC decoding on general-purpose x86 multi-cores us-
ing OpenMP
1: /* launch decoder #1. */
2: #pragma omp parallel section
3: LDPC_decoder#1();
4: ...
5: /* launch decoder #N. */
6: #pragma omp parallel section
7: LDPC_decoder#N();

An alternative approach uses the #pragma omp parallel section directive to launch sev-

eral decoders in parallel, which allows to achieve multi-codeword LDPC decoding, as

represented in algorithm 5.2. In this case, the different cores do not need to share data,

neither must be synchronized upon completion of the execution of all kernels. Here, each

LDPC decoder executes at its own speed and it does not depend on the other kernels.

5.4.2 Experimental results with OpenMP

Experimental setup: To evaluate the performance of the proposed parallel stream-based

LDPC decoder, an 8 core Intel Xeon Nehalem 2x-Quad E5530 multiprocessor running at

2.4 GHz with 8 MByte of L2 cache memory was selected. The general-purpose x86 multi-

cores were programmed using OpenMP 3.0 directives and compiled with the Intel C++

Compiler (version 11.0). The experimental setup is depicted in table 5.4 and matrices

under test are presented in table 5.5.

Table 5.4: Experimental setup
x86 CPU

Platform Intel Xeon Nehalem 2x-Quad
Language C + OpenMP 3.0

OS Linux (Suse) kernel 2.6.25
Number of cores 8

Clock freq. 2.4GHz
Memory 8MB (L2 cache)

Experimental results with general-purpose x86 multi-cores using OpenMP: The re-

sults presented in table 5.6 were achieved using algorithms 2.1 and 5.1. However, it

112



5.4 LDPC decoding on general-purpose x86 multi-cores

Table 5.5: Parity-check matrices H under test for the general-purpose x86 multi-cores
Matrix Size Edges Edges/row Edges/col.)

(M× N) (wc ×M) (wc) (wb)

o1 512× 1024 3072 {6} {3}
o2 4000× 8000 24000 {6} {3}

should be noticed that using algorithm 5.2 for multi-codeword decoding only improves

the results in average 20%. From the analysis of the results, it can be concluded that low

throughputs are achieved regarding those required for real-time LDPC decoding. As it

will be seen later in this chapter, they are also relatively low regarding the obtained for

the Cell/B.E. and GPUs. The complex superscalar architecture of the individual cores is

not suitable to exploit conveniently the data parallelism presented in the LDPC decoder.

Table 5.6: Decoding throughputs running the SPA with regular LDPC codes on x86 multi-
cores programming algorithm 5.1 with OpenMP (Mbps)

Number of iterations Matrix o1 Matrix o2
Number of cores used

2 4 6 8 2 4 6 8

10 0.69 1.27 1.73 2.08 0.88 1.50 2.15 2.55
25 0.30 0.54 0.73 0.87 0.47 0.77 1.03 1.15
50 0.16 0.29 0.41 0.46 0.26 0.46 0.59 0.61

However, it can be noticed that the proposed parallel approach for implementing

LDPC decoders on general-purpose multi-cores with OpenMP, shows to be scalable. For

example for Matrix o2 shown in table 5.6, by varying the number of used cores in the

range 2, 4, 6 and 8, we see the speedups raising consistently. Changing the parallel exe-

cution of the LDPC decoder in 2 cores to a different level of parallelism that uses 4 cores

shows a speedup of 1.7. Compared with the same 2 cores execution, the parallelization

with 8 cores shows a speedup of approximately 3, but providing throughputs lower than

a modest 2.6 Mbps value executing 10 iterations.
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5.5 LDPC decoding on the Cell/B.E. architecture§

The strategy followed to develop an LDPC decoder on the Cell/B.E. consists of defin-

ing different tasks for the PPE and SPEs. The PPE controls the main tasks, offloading

the intensive processing to the SPEs. The processing is distributed over several threads

and each SPE runs independently of the other SPEs by reading and writing data, respec-

tively, from and to the main memory, via DMA units controlled by the Memory Flow

Controller (MFC). Synchronization between the PPE and the SPEs of the Cell/B.E. is per-

formed using mailboxes. Data-parallelism and data locality are exploited by performing

the partitioning and mapping of the algorithm and data structures over the architecture,

while at the same time delays caused by latency and synchronization are minimized.

The proposed parallel LDPC decoder explores SIMD data-parallelism also by apply-

ing the same algorithm to different codewords on each SPE. The data structures that

define the Tanner graph are also loaded into the LS of the respective SPEs where the

processing is performed. Since the Tanner graph is common to all codewords under

decoding, these data structures can be shared allowing distributed multi-codeword de-

coding simultaneously in all SPEs as figure 5.8 depicts (in the figure, each SPE processes

4 codewords in parallel, and each codeword is represented with 32-bit precision). Fi-

nally, the parallel algorithm herein presented exploits the double buffering property by

overlapping computation and memory accesses, as shown in figure 5.2.

Depending on the LDPC code length, and more specifically if the corresponding data

structures plus program fit the LS of the SPE or not, the processing can be performed

following two distinct approaches: using i) the small memory model; or ii) the large

memory model. In this context, we proposed to investigate the following scenarios: SPA-

based LDPC decoders for regular codes, and MSA-based decoders for irregular LDPC

codes, namely those used in the WiMAX standard.

§Some portions of this section appear in:

[36] Falcão, G., Silva, V., Sousa, L., and Marinho, J. (2008). High coded data rate and multicodeword
WiMAX LDPC decoding on the Cell/BE. Electronics Letters, 44(24):1415–1417.

[38] Falcão, G., Sousa, L., and Silva, V. (2009c). Parallel LDPC Decoding on the Cell/B.E. Processor. In Pro-
ceedings of the 4th International Conference on High Performance and Embedded Architectures and Compilers
(HiPEAC’09), volume 5409 of Lecture Notes in Computer Science, pages 389–403. Springer.

[114] Sousa, L., Momcilovic, S., Silva, V., and Falcão, G. (2009). Multi-core Platforms for Signal Processing:
Source and Channel Coding. In Proceedings of the 2009 IEEE International Conference on Multimedia and
Expo (ICME’09).

[33] Falcão, G., Silva, V., Marinho, J., and Sousa, L. (2009a). WIMAX, New Developments, chapter LDPC
Decoders for the WiMAX (IEEE 802.16e) based on Multicore Architectures. In-Tech.

[39] Falcão, G., Sousa, L., and Silva, V. (accepted in February 2010b). Massively LDPC Decoding on Mul-
ticore Architectures. IEEE Transactions on Parallel and Distributed Systems.
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Figure 5.8: Detail of the parallelization model developed for the simultaneous decoding
of several codewords using SIMD instructions.

5.5.1 The small memory model

Depending on the algorithm and the size of data to be processed, some tasks are

small enough to fit into the 256 KByte LS of a single SPE. Concerning LDPC decoding, the

single task environment described next and here denominated by "small model" supports

workloads capable of decoding LDPC codes with lengths N < 2000. In this case, DMA

data transfers shown in figure 5.9 will take place only twice during the entire processing:

the first transfer is issued at the beginning before the processing starts, and the last one

after data processing is completed. The number of communication points between the

PPE and the SPEs in the small model is low, and synchronization is performed through

mailboxes.

PPE program: Algorithm 5.3 is executed on the PPE and it communicates with only

one SPE, which is called the MASTER SPE that controls the operations on the remaining

SPEs. This is more efficient than putting the PPE controlling all the SPEs in this model.

The PPE receives the yn information from the channel and calculates pn (or Lpn) data

that is placed in main memory to be sent to the SPEs, after which it sends a NEW_WORD

message to the MASTER SPE. Then, it waits for the SPEs to download all pn (Lpn) data,

and for the processing to be completed in each one of them (SPEs). Finally, when all the
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Figure 5.9: Parallel LDPC decoder on the Cell/B.E. architecture running the small mem-
ory model.

iterations are completed, the MASTER SPE issues an END_DECODE message to the PPE

to conclude the current decoding process. The PPE gets ready to start processing a new

word.

Algorithm 5.3 PPE algorithm in the small memory model
1: for th_ctr = 1 to N_SPEs: do
2: Create th_ctr thread
3: end for
4: repeat
5: Receives yn from the channel and calculates pn (Lpn)
6: Send msg NEW_WORD to MASTER SPE

Ensure: Wait until mail is received (SPE[i].mailboxcount > 0) from MASTER SPE
7: msg = SPE[i].mailbox (received msg END_DECODE from MASTER SPE)
8: until true

SPE program: The SPEs are used to perform intensive processing executing kernels 1

and 2 (see figure 5.7) on each decoding iteration. Each thread running on a SPE accesses

the main memory by using DMA and computes data according to the Tanner graph, as

defined by the H matrix of the code. The procedure in the MASTER SPE is described

in algorithm 5.4, while the SLAVE SPE procedure is described in algorithm 5.5. The Get

operation is adopted to represent a communication PPE→ SPE, while the Put operation

is used for communications in the opposite direction.
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Algorithm 5.4 MASTER SPE algorithm in the small memory model
1: repeat

Ensure: Read mailbox (waiting a NEW_WORD mail from PPE)
2: Broadcast msg NEW_WORD to all other SPEs
3: Get pn (Lpn)
4: for i = 1 to N_Iter: do
5: Compute rmn (Lrmn)
6: Compute qnm (Lqnm)
7: end for
8: Put final Qn (LQn) values on the PPE

Ensure: Read mailbox (waiting an END_DECODE mail from all other SPEs)
9: Send msg END_DECODE to PPE

10: until true

We initialize the process and start an infinite loop, waiting for communications to

arrive from the PPE (in the case of the MASTER SPE), or from the MASTER SPE (for all

other SPEs). In the MASTER SPE, the only kind of message expected from the PPE is

a NEW_WORD message. When a NEW_WORD message is received, the MASTER SPE

broadcasts a NEW_WORD message to all other SPEs and loads pn (Lpn) data associated to

itself. After receiving these messages, each one of the other SPEs also gets its own pn (Lpn)

values. The processing terminates when the number of iterations is reached. Then, the

results are transferred to the main memory associated to the PPE, and an END_DECODE

mail is sent by all SPEs to the MASTER SPE, which immediately notifies the PPE with an

END_DECODE message.

Algorithm 5.5 SLAVE SPE algorithm in the small memory model
1: repeat

Ensure: Read mailbox (waiting a NEW_WORD mail from MASTER SPE)
2: Get pn (Lpn)
3: for i = 1 to N_Iter: do
4: Compute rmn (Lrmn)
5: Compute qnm (Lqnm)
6: end for
7: Put final Qn (LQn) values on the PPE
8: Send msg END_DECODE to MASTER SPE
9: until true

The intensive part of the computation in LDPC decoding on the Cell/B.E. architecture

takes advantage of the processing power and SIMD instruction set available on the SPEs,

which means that several codewords are decoded simultaneously in each SPE as depicted

in figure 5.8.

5.5.2 The large memory model

In some situations, however, data and program do not fit completely into the 256

KByte LS of a single SPE. This is the case of LDPC codes with length N > 2000, which

have to be decoded using a model here denominated as "large model". The approach
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followed in this case is described in algorithms 5.6 and 5.7 and consists of having the PPE

control process orchestrating the kernels execution on the SPEs and also data transfers.

The number of data transfers between the PPE and the SPEs is substantially higher in the

large model, because a complete iteration has to be processed sequentially on K partitions

of the Tanner graph. Synchronization is performed through mailboxes.

PPE program: One of the main tasks of the PPE is to execute a waiting loop, listening

for mailbox communications arriving from the SPEs. The Cell/B.E. hardware supports

a dual thread execution mode, where two threads perform the following tasks: one lis-

tens communications from SPEs 0 to N_SPEs/2 − 1 and the other from N_SPEs/2 to

N_SPEs− 1.

Algorithm 5.6 is executed in the PPE. It mainly orchestrates the overall execution

mechanism on the SPEs, as well as data sorting of the buffers to be transmitted to each

SPE. In the main memory several buffers are dedicated to each SPE. They are used to

manage data during the K steps of an iteration of the decoding algorithm. Some of these

buffers are represented in figure 5.10 as Unsorted buffer 1 to Unsorted buffer N_SPEs, and

Sorted buffer 1 to Sorted buffer N_SPEs. These buffers are used to manage the yn data

initially received from the channel at the input of the LDPC decoder, which is processed

to generate pn (Lpn) data that is sent to each SPE. They also represent the place where the

results received from each SPE are accommodated and reorganized. The Unsorted buffers

hold data arriving from each SPE, which is then sorted and placed into Sorted buffers

before being sent again to each SPE to continue the computation of an iteration. The

sorting procedure is depicted in figure 5.10 and it consists of organizing groups of CNs

(or BNs, depending if we are processing, respectively, the horizontal or vertical kernels)

in contiguous data blocks of memory to accelerate DMA transfers. When the buffers

are created, a number of threads equal to the number of SPEs is also created and the

addresses of the different locations to be copied are passed to them. All the buffers to

be transferred by DMA are aligned in memory on a 128-bit boundary and the SPEs use

these addresses to perform DMA data transfers.

On every iteration, two different kinds of actions must be completed K times: i) a

sub-block of the rmn (Lrmn) or qnm (Lqnm) data is sorted and placed in the buffers to be

transmitted to the SPE; and ii) the processed data (BNs or CNs alternately updated) is

sent from the SPE back to the main memory. The actions are synchronized on both sides

of the PPE and SPE. After completing the first action, confirmation mails are sent to

the SPEs, while after concluding the last action, confirmation mails are awaited from the

SPEs. When data is loaded into the buffers in main memory, confirmation mails inform

the SPEs that the DMA transfers can start: for the first sub-block of data to compute, a
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Figure 5.10: Parallel LDPC decoder on the Cell/B.E. architecture running the large mem-
ory model.

NEW_WORD mail is sent to the SPE to make it start loading data from the buffer in main

memory and, when this transfer completes, to initiate the load of the next data buffer.

For the sake of simplicity of representation, the inner loop in algorithm 5.6 omits the

synchronization on the PPE side in steps ranging from 12 to 14, for indicating that old

information present in the SPE buffers has already been replaced and that the PPE needs

to sort a new sub-block with rmn (Lrmn) or qnm (Lqnm) data. Here, the PPE would expect

mails from the SPEs notifying that there is new data available in the Unsorted buffers

waiting to be sorted.

Finally, when all the iterations are completed, the SPEs send END_DECODE messages

to the PPE to conclude the current decoding process and get ready to start processing new

words.
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Algorithm 5.6 PPE algorithm in the large memory model
1: Allocate Sorted buffers and Unsorted buffers
2: for th_ctr = 1 to N_SPEs: do
3: Create th_ctr thread
4: Send Sorted buffers and Unsorted buffers addresses to the thread
5: end for
6: repeat
7: Receives yn from the channel and calculates pn (Lpn)
8: Send msg NEW_WORD to all SPEs
9: for i = 1 to N_SPEs: do

10: for i = 1 to N_Iter: do
11: for block = 1 to K: do
12: Get data1 block to SPE[i]
13: Put data2 block from SPE[i] /* data1 and data2 will be alternately rmn (Lrmn) and qnm (Lqnm)

*/
14: Sorted buffers← Unsorted buffers /* Sort data blocks on the PPE side */
15: end for
16: end for
17: end for
Ensure: Wait until mail is received (SPE[i].mailboxcount > 0)
18: msg = SPE[i].mailbox (received msg END_DECODE from all SPEs?)
19: until msg != END_DECODE

SPE program: In the large model, the SPEs are also dedicated to the computationally

intensive updating of all CNs and BNs by executing sub-blocks of kernel 1 and kernel 2

alternately, during each iteration of the LDPC decoder. The SPE procedure is described

in algorithm 5.7.

The process is initialized and starts an infinite loop, waiting for communications

to arrive from the PPE. At this point, the communication expected from the PPE is a

NEW_WORD message. At first, when a NEW_WORD message is received, the SPE loads

the pn (Lpn) data. After that, the first horizontal sub-block of qnm (Lqnm) data is read into

the buffer on the SPE. As soon as the DMA transfer completes, a new one is immediately

started, so that the next transfer of a vertical sub-block of rmn (Lrmn), or an horizontal

sub-block of qnm (Lqnm), is performed in parallel with the execution of data previously

loaded on the SPE. This way, data transfers are masked by calculations using the double

buffering technique. When a new mail is received, the SPE starts a new computation

to perform either CN or BN updating. When it completes, the SPE updates the buffers

with the new processed data and then starts a new transfer. It should be noticed that

time spent performing communications should balance the computation time, which is

important to achieve efficiency within the architecture.

After completing the processing of a kernel, it waits for the previous DMA transfer

to complete and then performs a new DMA transfer to send processed data back to main

memory. When the transfer is concluded, a confirmation mail is sent to the PPE indicating

that the new data in the Unsorted buffer is available and can be sorted by the PPE in order

to proceed with the following processing. The computation terminates when the number
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of iterations is reached and an END_DECODE mail is sent by all SPEs to the PPE.

Algorithm 5.7 SPE algorithm in the large memory model
1: repeat

Ensure: Read mailbox (waiting a NEW_WORD mail from PPE)
2: Get pn (Lpn)
3: for i = 1 to N_Iter: do
4: for block = 1 to K: do
5: /* The processing of one iteration is partitioned into K steps */
6: Get qnm (Lqnm) partial data from PPE
7: Compute rmn(Lrmn)← qnm(Lqnm)
8: Put processed rmn (Lrmn) values on the PPE
9: end for

10: for block = 1 to K: do
11: /* The processing of one iteration is partitioned into K steps */
12: Get rmn (Lrmn) partial data from PPE
13: Compute qnm(Lqnm)← rmn(Lrmn)
14: Put processed qnm (Lqnm) values on the PPE
15: end for
16: end for
17: Put final Qn (LQn) values on the PPE
18: Send msg END_DECODE to PPE
19: until true

5.5.3 Experimental results for regular codes with the Cell/B.E.

Experimental setup: The parallel processing platform selected at this time to perform

LDPC decoding was a Cell/B.E. from STI, where the PPE and each SPE run at 3.2 GHz.

The Cell/B.E. has a total of 256 MByte of main memory and each SPE has 256 KByte

of fast local memory. The system is included in a PlayStation 3 (PS3) platform, which

restricts the number of SPEs available to 6 from a total of 8. The LDPC decoder uses the

compact structures defined in figure 3.13 to represent the Tanner graph. Programs were

written in C and use single precision floating-point arithmetic operations. A sequential

implementation was considered in the present work. It was programmed using only the

PPE of the Cell/B.E. architecture with SIMD and dual thread execution. This sequential

approach was adopted as the reference algorithm with the purpose of evaluating against

Table 5.7: Experimental setup for the Cell/B.E.
Serial mode Parallel mode

Processing mode PPE PPE + SPEs
Platform STI PlayStation3 (PS3)

Language C C
OS Linux (Fedora) kernel 2.6.16

PPE SPE
Clock frequency 3.2GHz 3.2GHz 3.2GHz

Memory 256MB 256MB 256KB
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Table 5.8: Parity-check matrices H under test for the Cell/B.E.
Matrix Size Edges Edges/row Edges/col.)

(M× N) (wc ×M) (wc) (wb)

p1 128× 256 768 {6} {3}
p2 252× 504 1512 {6} {3}
p3 512× 1024 3072 {6} {3}
p4 2448× 4896 14688 {6} {3}
p5 288× 576 1824 {2,3,6} {6,7}
p6 480× 576 – {2,3,4} {20}
p7 560× 672 – {2,3,4} {20}
p8 480× 960 – {2,3,6} {6,7}
p9 800× 960 3200 {2,3,4} {20}

p10 576× 1152 – {2,3,6} {6,7}
p11 960× 1152 – {2,3,4} {20}
p12 624× 1248 3952 {2,3,6} {6,7}
p13 1040× 1248 – {2,3,4} {20}

parallel solutions. The experimental setup is depicted in table 5.7, and matrices under

test are presented in table 5.8.

To evaluate the performance of the proposed stream-based LDPC decoder, the Cell/B.E.

was programmed using both small and large models. In the small model, a complete ma-

trix fits the SPE LS memory and the processing is efficiently completed using few data

transactions between the PPE and the SPEs. In the large model, the decoding of a code-

word is performed by decomposing the Tanner graph (i.e., the rmn (Lrmn), qnm (Lqnm) and

corresponding data structures) into different sub-blocks and applying the SPE to process

them on a sequential basis. Matrices for LDPC codes p1 to p3 and p5 to p7 fit into the

LS of a single SPE and were programmed using the small model, while matrix p4 is too

large to fit into a single SPE and has to be processed on a sub-block by sub-block basis,

using the large model described in subsection 5.5.2. Matrix p3 was also implemented

in the large model to allow a comparison between the two computational models. All

processing times were obtained for decoders performing a number of iterations ranging

from 10 to 50.

Experimental results with the small model: Figure 5.11 presents the decoding times

for matrices p1 to p3 under the small model running the SPA. They relate the execution

time needed for the Cell/B.E. to decode a codeword with the processing time required

to decode a codeword on the sequential version. The Cell/B.E. performs concurrent pro-

cessing on the 6 SPEs, each using SIMD to process 4 codewords simultaneously. The

decoding time for matrix p3 shows that the Cell/B.E. takes approximately 353.6µs to de-

122
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Table 5.9: Decoding throughputs for a Cell/B.E. programming environment in the small
model running the SPA with regular LDPC codes (Mbps)

Number of iterations Matrix p1 Matrix p2 Matrix p3

10 68.5 69.1 69.5
25 28.0 28.3 28.4
50 14.2 14.2 14.3

Data structures size (KByte) 35.8 70.6 143.4

code 24× 1024-bit codewords on the 6 SPEs (an average value of 14.7µs per codeword)

in 10 iterations, against 244.9µs per codeword on the serial version that concurrently de-

codes 8 codewords (dual thread decoding using SIMD) for the same number of iterations.

It achieves a throughput of 69.5 Mbps which compares well against VLSI LDPC decoders.

Observing table 5.9, we conclude that the decoding capacity per bit is high and approxi-

mately constant for all the regular codes under test (matrices p1, p2 and p3). Comparing

this throughput with that obtained on the serial approach, the speedup achieved with

the Cell/B.E. surpasses 16. In the serial mode, the PPE accesses the main memory that is

slower than the LS on the SPEs which, as a consequence, has an influence on the reported

speedup [38].

Experimental evaluation also shows that regarding the same algorithm applied only

to one SPE, decoding 4 codewords, the full version that uses 6 SPEs decoding 24 code-

words, achieves a speedup only 14% below the maximum (6), or equivalently an effi-
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Figure 5.11: LDPC decoding times per codeword for sequential and parallel modes on
the Cell/B.E., running the SPA with regular codes in the small model (ms)
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ciency E f = 86%. In fact, the number of data transfers is low in this model, which

means that the overhead in communications introduced by using a higher number of

SPEs would be marginal. This allows to conclude that the solution is scalable under the

small memory model.

Experimental results with the large model: In this case, the 256 KByte of LS memory

in the SPE are not enough to fit the complete data structures necessary to decode 4 code-

words and also the program. The maximum regular code allowed is limited by the LS

size, and for a rate = 1/2 code it can be described according to (wc represents Edges per

row and N the codeword size):

N × wb × 36 + 32× N + Program_Size ≤ 256KByte. (5.1)

The processing is then performed in successive partitions of the Tanner graph and the

number of data transfers and synchronization operations degrades the performance of

the decoder. In the large model a single iteration has to be performed using several

data transactions. Data transfers between each SPE and the main memory become the

most significant part of the global processing time. Also, the intensive sorting procedure

performed by the PPE and the large number of data transactions involve concurrent ac-

cesses to the slow main memory that can cause some processors to temporarily idle in

this model. This is the main reason why the throughput decreases significantly in this

model. Matrix p3 was also tested in the large model to allow relatively assessing the two

computational models, and the reported throughput running the SPA for 10 iterations,

decreases to 9 Mbps which represents a throughput more than 7 times lower than the one

obtained using the small model. Matrices with lengths equivalent or superior to p4 are

too large to fit into a single SPE and have to be processed on a sub-block by sub-block ba-

sis, using the large model. They all achieve throughputs inferior to 9 Mbps, which led to

the conclusion that the Cell/B.E. processor is not efficient for LDPC decoding with large

H matrices.

Increasing the number of SPEs used in the architecture would cause the throughput

to rise, but not by the same percentage as in the small model. This is explained by the fact

that the use of more SPEs further increases data communications and the effect of data

sorting, which clearly become the bottleneck in the large model.

Analyzing the performance on the Cell/B.E.: The N_SPEs number of SPEs available

and the number of instructions per iteration Nop/iter have a major impact in the over-

all performance of the decoder on the Cell/B.E. This performance also depends on the

number of iterations Niter and frequency of operation fop. Here, the throughput perfor-

mance (T) can be estimated for the small model according to (5.2). Differently from what
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Figure 5.12: Model bounds for execution times obtained on the Cell/B.E.

happens in other parallel architectures, where a task is responsible for decoding only a

part of the Tanner graph, in this approach and processing model each SPE performs the

complete processing of the Tanner graph as described in algorithms 2.1 and 2.2, indepen-

dently from the other SPEs. The LDPC decoder supports peak data transfers between the

SPE and main memory of approximately 4GByte/s [2] and, consequently, its performance

is mainly limited by the number of SPEs that are simultaneously trying to access the main

memory. Tppe→spe and Tspe→ppe represent data transfer times between PPE and SPE.

T =
N_SPEs× 4× N

Tppe→spe +
Nop/iter×Niter

fop
+ Tspe→ppe

[bps]. (5.2)

The proposed LDPC decoder suits scalability, and it could be easily adopted by other gen-

erations of this family of processors having a higher number of SPEs available. In that

case, it would be able to decode more codewords simultaneously, increasing even more

the speedup and throughput of the decoder. The model proposed in (5.2) makes it dificult

to predict the execution time, not because the number of instructions Nop/iter generated

by the Cell SDK 2.1 compiler is unknown, but rather due to the parallel pipeline that per-

forms data transfers independently from arithmetic operations and whose behavior can-

not be predicted due to branch misprediction penalties that force emptying the pipeline.

Nevertheless, the model can be used to establish the limits of performance. We decided to

adopt upper and lower bounds representing processing times, respectively, for worst and

best case working conditions. The worst case condition (upper bound) assumes process-
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ing and memory accesses are performed without any level of parallelism and a branch

misprediction occurs after every instruction (a very unrealistic condition). The best case

condition (lower bound) assumes that no branch mispredictions occur and that there is

full parallelism (overlap) between memory accesses and computation. Figure 5.12 shows

that the parallelism supported by the dual-pipelined Cell/B.E. architecture exploits the

LDPC decoder near the optimal case. The measured experimental results are only 6%

worst than those estimated for the best case working conditions, here defined by the

lower bound, and the algorithm executes very close to the maximum performance the

Cell/B.E. can provide. Measured values and lower bounds almost overlap in figure 5.12.

5.5.4 Experimental results for irregular codes with the Cell/B.E.

To increase the efficiency of the LDPC decoder we implemented the MSA on the

Cell/B.E.. It requires less computation, based essentially in addition and comparison

operations. Additionally, we also adopted the Forward-and-Backward simplification of

the algorithm [83] that avoids redundant computation and eliminates repeated accesses to

memory. In the MSA, data elements have 8-bit integer precision, which allows packing

16 data elements per 128-bit memory access. This increases the arithmetic intensity of the

algorithm, which favors the global performance of the LDPC decoder. The instruction

set of the Cell/B.E. architecture supports intrinsic instructions to deal efficiently with

these parallel 128-bit data types. Moreover, because there are 6 SPEs available, in this

implementation the algorithm supports the simultaneous decoding of 96 codewords in

parallel. However, the set of 8-bit integer intrinsic parallel instructions of the Cell/B.E. is

more limited than those of the 32-bit floating-point family of instructions. This explains

that the speedup obtained when changing from the SPA to the MSA is lower than we

would expect.

Running LDPC WiMAX codes on the Cell/B.E.: Table 5.10 shows the throughputs ob-

tained decoding a subset of WiMAX IEEE 802.16e standard [64] irregular codes, consid-

ering 10 iterations. A more vast set of results can be found in [33]. In some cases they

approach quite well, while in others they even surpass the 75 Mbps required by the stan-

dard to work in (theoretical) worst case conditions. For the two codes with N = 576

represented by matrices p5 and p6, when running 10 iterations we obtain throughputs

of 79.8 and 79.3 Mbps. For codes p12 and p13, with N = 1248 and for the same number

of iterations, they range from 79.6 to 78.4 Mbps. All codes in table 5.10 were tested for

the MSA and approach quite well the maximum theoretical limit of 75 Mbps. They all

show better performances than those obtained with the SPA. Furthermore, if we consider

a lower number of iterations, the decoder’s throughputs may rise significantly. For ex-
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Table 5.10: Decoding throughputs for a Cell/B.E. programming environment in the small
model running the MSA with irregular WiMAX LDPC codes (Mbps)

Number of iterations p5 p6 p7 p8 p9 p10 p11 p12 p13

10 79.8 79.3 78.5 79.6 78.4 79.6 78.4 79.6 78.4
25 32.7 32.5 32.2 32.6 32.1 32.6 32.1 32.6 32.1
50 16.5 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2

ample, for 5 iterations instead of 10, the throughput is approximately the double (above

145 Mbps).

5.6 LDPC decoding on GPU-based architectures§

Following an alternative parallel approach, the design of software LDPC decoders

on GPUs is proposed in the next sections. The algorithms were implemented by us-

ing the programming interfaces presented in the previous sections, namely the CUDA

from NVIDIA [97] and the Caravela [125], which are nowadays massively disseminated

and provide efficient tools to exploit low-cost computational power and achieve flexi-

bility/reprogrammability for LDPC decoding.

The development of flow-models to perform LDPC decoding and apply them to

GPUs under the context of Caravela hadn’t been tried before. It was the first time that

this type of complex and irregular LDPC decoding algorithms were parallelized and ac-

celerated in the scope of this thesis [40,41]. Under this context, Caravela flow-models were

developed to perform LDPC decoding based on the SPA to test the viability of the so-

lution with a demanding computational workload. Although it hasn’t been tested, ap-

plying the MSA (computationally less demanding) to GPUs using the Caravela is also

possible using a similar approach. In the CUDA context, we also proposed to investi-

§Some portions of this section appear in:

[32] Falcão, G., Silva, V., Gomes, M., and Sousa, L. (2008). Edge Stream Oriented LDPC Decoding. In Pro-
ceedings of the 16th Euromicro International Conference on Parallel, Distributed and network-based Processing
(PDP’08), pages 237–244, Toulouse, France.

[34] Falcão, G., Silva, V., and Sousa, L. (2009b). How GPUs can outperform ASICs for fast LDPC decod-
ing. In Proceedings of the 23rd ACM International Conference on Supercomputing (ICS’09), pages 390–399.
ACM.

[37] Falcão, G., Sousa, L., and Silva, V. (2008). Massive Parallel LDPC Decoding on GPU. In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming (PPoPP’08), pages
83–90, Salt Lake City, Utah, USA. ACM.

[40] Falcão, G., Yamagiwa, S., Silva, V., and Sousa, L. (2007). Stream-Based LDPC Decoding on GPUs. In
Proceedings of the First Workshop on General Purpose Processing on Graphics Processing Units – GPGPU’07,
pages 1–7.

[41] Falcão, G., Yamagiwa, S., Silva, V., and Sousa, L. (2009d). Parallel LDPC Decoding on GPUs using a
Stream-based Computing Approach. Journal of Computer Science and Technology, 24(5):913–924.

[39] Falcão, G., Sousa, L., and Silva, V. (accepted in February 2010b). Massively LDPC Decoding on Mul-
ticore Architectures. IEEE Transactions on Parallel and Distributed Systems.
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gate SPA and MSA-based LDPC decoders for regular codes, and MSA-based decoders

for irregular LDPC codes, namely those applied to the DVB-S2 standard.

5.6.1 LDPC decoding on the Caravela platform

Under the Caravela context, the pixel processors are the only programmable proces-

sors and the processing is based on square 2D textures, with dimensions power of 2,

as depicted in figure 5.13. As shown in the same figure, the Caravela’s computational

model is based on a bijective application between pixel processors and pixel textures,

which means that there is only one entry point for each pixel processor. This character-

istic poses difficult challenges in the development of kernels 1 and 2 of algorithm 2.1.

Under this context, the processing of each individual edge is associated to a single pixel

processor. For each pixel processor to be able of accessing several data elements from

a unique entry point, we developed a circular addressing mechanism dedicated to Car-

avela that suits well the irregular data accesses imposed by the algorithm, as described

next.
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Figure 5.13: 2D textures Tn associated to pixel processors Pn in Caravela.

The tenths of pixel processors available allow exposing parallelism, but impose a type

of processing based on textures, where each pixel texture represents an edge of the Tanner

graph. This solution imposes redundant computation because it does not allow the re-

utilization of data. Nevertheless, the level of parallelism achieved is consistent [40,41] and

the approach effectively allowed to develop parallel LDPC decoding algorithms based

on the simultaneous update of several BNs or CNs processed by distinct pixel processors

(following an edge approach, where each pixel processor only updates an edge). In order

to implement such an approach, dedicated data structures were developed to support

the texture based processing of the SPA (described in algorithm 2.1).

Stream-based data structures for the Caravela: To take advantage of the processing

performance of GPUs, efficient data structures adapted for 2D textures and for stream
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computing were derived from those presented in section 3.3.3. A stream-based LDPC

decoder needs different computation and memory access patterns when executing con-

secutive kernels to update BNs and CNs, respectively. In order to support the execution

of kernels 1 and 2 (see figure 5.7) on the GPU based on the Caravela platform, we propose

two stream-based data structures adapted from HBN and HCN presented in section 3.3.3.

These data structures are suitable for stream computing both regular and irregular LDPC

codes on the GPU grid based on 2D textures with dimensions that are a power of 2. Al-

gorithm 5.8 details this procedure for the case of HBN , depicted in figure 5.14 for the H

matrix shown in figure 2.1. In step 5, it can be seen that all edges associated with the same

CN are collected and stored in consecutive positions inside HBN . The addressing in each

row of H becomes circular. The pixel element corresponding to the last non-null element

Algorithm 5.8 Generating compact 2D HBN textures from original H matrix
1: /* Reading a binary M× N matrix H */
2: for all CNm (rows in Hmn) : do
3: for all BNn (columns in Hmn) : do
4: if Hmn == 1 then
5: ptrnext = j : Hmj == 1, with n + 1 ≤ j < (n + N) mod N;

/* Finding circularly the right neighbor on the current row */
6: HBN = ptrnext;

/* Store ptrnext into the HBN structure, using a square texture of dimension 2D × 2D , with

D =

⌈

1
2 × log2(

M
∑

m=1

N
∑

n=1
Hmn)

⌉

*/

7: end if
8: end for
9: end for

of each row points to the first element of this row, implementing a circular addressing

that is used to update all associated messages in that row. The circular addressing allows

to introduce a high level of parallelism. In the limit, for a multi-processor platform, a

different pixel processor can be allocated to every single edge, i.e. to the computation

of each individual message. Each element of the data structure, here represented by a

pixel texture, records the address of the next entry pointer and the corresponding value

of rmn. Although the pixel elements in figure 5.14 are represented by their row and col-

umn addresses, the structures can be easily vectorized by convenient 1D or 2D reshaping

according to the target stream-based architecture they apply to. The 3D representation

in figure 5.14 shows that the same matrix information can be used to simultaneously de-

code several codewords (multi-codeword decoding), by applying SIMD processing, for

example.

In the upper left corner of figure 5.14, it can be seen that the pixel processor allo-

cated to compute the message mi
CN0→BN0

(identified as message r0,0) depends on mes-

sages mi−1
BN1→CN0

and mi−1
BN2→CN0

coming from BN1 and BN2. This is equivalent to saying

that to update BN0 (upper left pixel), we have to read the information from BN1 (BN0
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Figure 5.14: HBN structure. A 2D texture representing Bit Node edges with circular ad-
dressing for the example in figure 2.1. Also, the pixel processors entry points are shown.

holds the address of BN1) and BN2 (BN1 holds the address of BN2) circularly, and then

update BN0 (BN2 knows the address of BN0). This mechanism is used to update all the

other BNs in parallel.

Algorithm 5.9 Generating compact 2D HCN textures from original H matrix and HBN

1: /* Reading a binary M× N matrix H */
2: for all BNn (columns in Hmn) : do
3: for all CNm (rows in Hmn) : do
4: if Hmn == 1 then
5: ptrtmp = i : Hin == 1, with m + 1 ≤ i < (m + M) mod M;

/* Finding circularly the neighbor below on the current column */
6: ptrnext =search(HBN, ptrtmp, n);

/* Finding in HBN the pixel with indices (ptrtmp, n) */
7: HCN = ptrnext;

/* Store ptrnext into the HCN structure, with addresses compatible with HBN , using a square texture

of dimension 2D × 2D , with D =

⌈

1
2 × log2(

M
∑

m=1

N
∑

n=1
Hmn)

⌉

*/

8: end if
9: end for

10: end for

For the vertical processing, HCN is a sequential representation of the edges associ-

ated with non-null elements in H connecting every BN to all its neighboring CNs (in the

same column). This data structure is generated by scanning the H matrix in a column

major order. Once again, the access between adjacent elements is circular, as described
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Figure 5.15: HCN structure. A 2D texture representing Check Node edges with circu-
lar addressing for the example in figure 2.1. Also, the pixel processors entry points are
shown.

in algorithm 5.9 and illustrated in figure 5.15 for the H matrix given in figure 2.1. In

this case, a careful construction of the 2D addresses in HCN is required, because every

pixel texture representing a graph edge must be in exactly the same position as it is in

HBN. This meticulous positioning of the pixel elements in HCN allows the processing to

be performed alternately for both kernels, using the same input textures. Step 6 shows

that ptrnext is placed in the same pixel texture (or n, m edge) that it occupies in HBN.

Figure 5.15 describes how the HCN data structure is organized for the same example in

figure 2.1, under kernel 2. The message mi
BN0→CN0

(identified as message q0,0) is a function

of p0, mi−1
CN2→BN0

and should update the upper left pixel representing CN0, which holds

the address of CN2. This is another way of saying that CN2 updates CN0, and vice-versa.

This mechanism works in the same way for all the other CNs in the grid.

LDPC decoders on the Caravela platform: We developed a flow-model to support the

LDPC decoder based on Caravela tools, which uses efficient mechanisms provided for re-

cursive computation [129]. The SDF graph in figure 5.7 represents the stream-based LDPC

decoder and figure 5.16 graphically describes the corresponding flow-model unit con-

taining a shader program that supports the stream-based computation of kernels 1 and 2,

where the input and output data streams are 2D textures. In the first iteration, the input

data stream 0 represents data channel probabilities. The first output stream is produced
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Figure 5.16: Organization of the LDPC decoder flow-model.

by performing kernel 1. After the first execution, this stream directly feeds the input of

the next flow-model unit that executes kernel 2. Data streams can be multiplexed through

a simple and efficient swapping mechanism [129]. The output data stream can be feedback

as an input stream of the next flow-model unit execution, and the process is repeated for

each iteration. Also, the input H matrix is placed into an input stream and kernel 1 and

kernel 2 are processed in pixel processors, according to figures 5.14, 5.15 and 5.16. At the

end, the last output stream conveys the decoded codeword.

5.6.2 Experimental results with Caravela

Experimental setup: The proposed algorithm was programmed in recent GPUs and its

performance is analyzed for different workloads (i.e. H matrices with distinct character-

istics). The experimental setup is presented in table 5.11. It includes an 8800 GTX GPU

from NVIDIA, with stream processors (SPs) running at 1.35 GHz. The used GPU sup-

ports single precision floating-point arithmetic. The LDPC decoders are programmed on

the GPU using version 2.0 of the OpenGL Shading Language and the Caravela library.

The experiments were carried out by using five matrices of different sizes and with vary-

ing number of edges, matrices c1 to c5 in table 5.12. Their properties were chosen to
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Table 5.11: Experimental setup for Caravela
GPU

Platform NVIDIA 8800 GTX
Clock frequency 1.35 GHz (SP)

Memory 768 MB
Language OpenGL (GLSL)

Table 5.12: Parity-check matrices H under test for Caravela
Matrix Size Edges Edges/row Texture Dim. Unused pixel textures8

c1 111× 999 2997 {27} 64× 64 1099
c2 408× 816 4080 {10} 64× 64 16
c3 212× 1908 7632 {36} 128× 128 8752
c4 2448× 4896 14688 {6} 128× 128 1696
c5 2000× 4000 16000 {8} 128× 128 384

simulate a full set of computational workloads with code sizes typically ranging from

small to medium and large (all sizes covered), and approximately similar to those used

in recent communication standards. The pixel processors of the GPU were used with

data inputted as textures and the output data stream assuming the usual place of the

pixel color components’ output in a graphical application. However, all programming

details are hidden from the programmer by using the Caravela interface tool.

Experimental results programming the flow-model on the GPU using Caravela: The

experimental results in figure 5.17 show the processing times obtained to decode the

LDPC codes from table 5.12. The performance of the GPU increases as the intensity

of processing also increases, but not necessarily just depending on it. Comparing ma-

trix c1 with matrix c2, it can be shown that even though the latter has fewer unused

pixel textures that represent no edges in the Tanner graph, the former has a better ratio

decoding time/Edge executing 25 iterations. Although matrix c1 has more edges per row

than c2 (27 against 10), GPUs perform better for algorithms demanding intensive com-

putation and small amount of data communications. Experimental results in figure 5.17

show that the GPU performs better for large matrices. Although matrix c5 has a number

of edges almost four times superior to c2, and even with a similar number of edges per

row (8 against 10), the ratio decoding time/Edge is favorable in matrix c5. It performs

more than two times better than the latter (3µs against 7.3µs).

The GPU-based approach shows better results for the LDPC decoding algorithm with

8These are the pixels showing empty coordinates (x, x) in figures 5.14 and 5.15, imposed by the GPU
Caravela interface that only supports 2D data textures with square dimensions D× D, where D is a power
of 2.
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Figure 5.17: Decoding times running the SPA on an 8800 GTX GPU from NVIDIA pro-
grammed with Caravela.

intensive computation on huge quantities of data, due to parallelism features and pro-

cessing power.

5.6.3 LDPC decoding on CUDA-based platforms

A different approach consists of exploiting a many-core system with a programming

model based on multi-threads, as the one supported by the NVIDIA Tesla series’ GPUs

using the CUDA [80]. Differently from previous GPU families which could only program

pixel processors, the CUDA provides a more efficient exploitation of the computational

resources of a GPU. Here, geometry, pixel and vertex programs share common stream

processing resources, and the GPUs used in this new approach are based on this unified

architecture (CUDA).

In order to achieve LDPC decoding supported by CUDA, algorithms 2.1 and 2.2 were

applied to these parallel programmable devices as described next. The initial approach

followed on CUDA-based GPUs was similar to the one described previously under the

Caravela context in section 5.6.1. The processing adopted was also based on a thread-

per-edge approach [32,37]. This solution presents the same penalties as those mentioned in

section 5.6.1, because it does not use the efficient forward-and-backward method that al-

low data reutilization and save memory accesses. Furthermore, the algorithms presented

in [32,37] are based on the SPA. Better results are achieved using the more efficient MSA,
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that only has to perform add and compare operations. To overcome these difficulties we

adopted a different approach based on a thread-per-node approach (thread-per-CN and

thread-per-BN based processing) [34].

Algorithm 5.10 GPU algorithm (host side)
1: Allocate buffers in the host and buffers on device (cudamalloc)
2: Read HBN and HCN data structures (edges’ addresses) from file to the host buffers
3: Send HBN and HCN data structures to buffers on the GPU device
4: Configure the grid on device (number of blocks and number of threads per block)
5: repeat
6: Receives yn from the channel and calculate pn (Lpn)
7: Send pn (Lpn) data to buffers on the GPU device
8: for i = 1 to N_Iter: do
9: Launch kernel 1 (horizontal processing) for the calculation of rmn (Lrmn) data on the GPU

10: Launch kernel 2 (vertical processing) for the calculation of qnm (Lqnm) data on the GPU
11: end for
12: Transfer final Qn (LQn) values to the host
13: until true

Multi-thread based programming on the CUDA: Unlike the Caravela solution, the

CUDA-based approach recovers data structures HBN and HCN originally presented in

subsection 3.3.3. Algorithm 5.10 illustrates how processing is performed in this approach.

In the beginning of a new processing, after the necessary data buffers are allocated both

on host and device, data to be computed (HBN, HCN, rmn (Lrmn) and qnm (Lqnm) data struc-

tures) is distributed over a predefined number of blocks on the grid of multi-threads.

Each block contains tx × ty elements that represent threads. Threads are grouped in

warps and dispatched by one of the 128 stream processors according to the thread-per-

CN or thread-per-BN structure of the algorithm and the thread scheduler, as mentioned

before. In the horizontal processing step, each thread updates all the BNs associated to

a CN (an entire row of H). Rather than moving data from global to fast (but complex)

shared memory, an equally efficient processing strategy can be achieved by moving data

directly to the registers of the core. The number of registers available per multiproces-

sor on the GPU is high enough to accommodate the input data and corresponding data

structures. Increasing the number of threads per block often allows hiding latency and

achieving better performance, as long as we guarantee that there are enough registers

per thread on the GPU to compile. For every different application we need to estimate

the best fitting number of threads per block. The minimum consists of 64, but 128 or 256

threads per block can be used until a maximum of 512. Figure 5.18 depicts the internal

processing inside a block, where the update of every BN message represented by rmn

(Lrmn) is calculated according to the structure previously identified in HBN.

A similar principle applies to the update of qnm (Lqnm) messages, or vertical process-

ing. Here, each thread updates all the CNs associated to a BN (an entire column of H).
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Figure 5.18: Detail of tx× ty threads executing on the GPU grid inside a block for kernel 1
(the example refers to figure 3.12 and shows BNs associated to CN0, CN1 and CN2 being
updated).

Coalesced memory accesses: In the 8 series’ GPU from NVIDIA the global memory is

not cached. The latency can be up to 400-600 cycles and is likely to become a performance

bottleneck. One way to turn around this problem and increase performance significantly

consists in using coalescence. Instead of performing 16 individual memory accesses, all

the 16 threads of a half-warp (maximum fine-grain level of parallelism on the G80x fam-

ily) can access the global memory of the GPU in a single coalesced read or write access.

But the elements have to lie on a contiguous memory block, where the kth thread accesses

the kth data element, and data and addresses must obey, respectively, to specific size and

alignment requirements [34]. Figure 5.19 shows the activity of half-warps 0 and 1 captured

at two different instants, where 16 threads (t0 to t15) read data in a single coalesced mem-

ory transaction from the GPU’s slow global memory. However, HBN, HCN, rmn (Lrmn)

and qnm (Lqnm) data structures have to be properly disposed in a contiguous mode (from

a thread perspective) in order to allow the coalesced accesses to be performed in a sin-

gle operation. This data realignment action is stated in Proposition 1 and depicted in

figure 5.19 which shows the simultaneous access of groups of 16 threads to memory.

Proposition 1. For decoding regular LDPC codes using the proposed stream-based data

structures shown in figure 3.12, it is possible to compute each kernel of algorithms 2.1

and 2.2 using full coalesced memory accesses for either read or write operations, but not for

both.

Proposition 1 is fulfilled by applying the following transformations to the data struc-

tures. Equations (5.3) to (5.6) represent the permutations necessary for kernel 1, where:

newAddr = j ∗ p + k div wc + (k mod wc) ∗ 16, (5.3)
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with p = wc ∗ 16, j = i div p, k = i mod p and 0 ≤ i ≤ Edges− 1. Then,

q̆c
nm(i) = qnm(newAddr), (5.4)

and the new memory addresses become:

e = HCN(newAddr), (5.5)

H̆c
CN(i) = j ∗ p + k div wb + (k mod wb) ∗ 16, (5.6)

with p = wb ∗ 16, j = e div p, and k = e mod p. The permutations necessary for kernel 2

are described from (5.7) to (5.10), where:

newAddr = j ∗ p + k div wb + (k mod wb) ∗ 16, (5.7)

with p = wb ∗ 16, j = i div p, k = i mod p, and

r̆c
mn(i) = rmn(newAddr). (5.8)

The new permuted memory addresses become:

e = HBN(newAddr), (5.9)

H̆c
BN(i) = j ∗ p + k div wc + (k mod wc) ∗ 16, (5.10)

where p = wc ∗ 16, j = e div p and k = e mod p.

Although the number of read and write operations is similar, the solution here pro-

posed adopts coalesced memory read accesses. Unfortunately, due to the pseudo-random

nature of LDPC codes, it is not possible to perform coalesced accesses for both operations.
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Figure 5.19: Transformations applied to data structures to support coalesced memory
read operations performed by the 16 threads of a half-warp on a single memory access.
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The recent GT200 GPUs from NVIDIA have less demanding requirements for coales-

cence than those just discussed for the G80x family. Nevertheless, hand tuned code for

coalesced memory accesses on the G80x series family scales well on a GT200 device.

5.6.4 Experimental results for regular codes with CUDA

Experimental setup: The parallel processing platforms selected to perform LDPC de-

coding are two NVIDIA Tesla GPUs, respectively with 128 and 240 stream processors

(SP), each running at 1.35 GHz and 1.296 GHz and having 768 MByte and 4GByte of

video RAM (VRAM) memory. The experimental setups are depicted in table 5.13. Ma-

trices under test are presented in table 5.14 and range from matrix t1 to matrix t6: the

regular codes t1 to t4 have wc = 6 edges per row and wb = 3 edges per column, while

matrices t5 and t6 represent irregular codes used in Digital Video Broadcasting – Satellite

2 (DVB-S2) [29]. Once again, we considered the compact data structures presented in fig-

ures 3.12 and 3.13 to represent the Tanner graph. The program is written in C and uses

single precision floating-point arithmetic operations. The GPU under Setup 1 was pro-

grammed using the CUDA interface (version 2.0b), while the more recent GPU in Setup 2

already uses CUDA version 2.3.

Table 5.13: Experimental setups for the Tesla GPUs with CUDA
Setup 1 Setup 2

Platform NVIDIA 8800 GTX NVIDIA C1060
Language C + CUDA

OS MS Windows XP Linux (Ubuntu) kernel 2.6.28
# Multiprocessors 16 30

# Stream processors 128 240
# Registers per multiprocessor 8192 16384

Clock speed 1.35 GHz (SP) 1.296 GHz (SP)
VRAM Memory 768 MB 4 GB

Table 5.14: Parity-check matrices H under test for the CUDA
Matrix Size Edges Edges/row Edges/col.)

(M× N) (wc ×M) (wc) (wb)

t1 512× 1024 3072 {6} {3}
t2 2448× 4896 14688 {6} {3}
t3 4000× 8000 24000 {6} {3}
t4 10000× 20000 60000 {6} {3}
t5 48600× 64800 194400 {4} {3,12}
t6 32400× 64800 226800 {7} {3,8}
t7 25920× 64800 285120 {11} {3,12}
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Experimental results on the GPU using CUDA: All regular matrices under test were

run for Setup 1, on blocks with a varying number of threads ranging from 64 to 128. Only

the best results achieved are reported in tables 5.15 and 5.16. Matrix t1 was programmed

to use 16 blocks of the grid and 64 threads per block. Using more threads per block would

have been possible, but it would decrease the number of simultaneous active blocks to

a value below 16 which would cause the 16 multiprocessors not to be fully occupied,

reducing parallelism and performance. Matrix t2 occupies 128 threads per block and 39

blocks. Matrix t3 uses 63 blocks and 128 threads per block and matrix t4 157 blocks and

also 128 threads per block. The higher level of parallelism expectedly supported by the

next GPU generations, advises the use of at least 100 blocks in order to exploit full poten-

tial and make the solution scalable to future devices with more stream processors. In this

case, the number of blocks used is imposed by the size of the LDPC code. At the same

time it also depends on the number of threads per block, which in the LDPC decoder for

Setup 1 are limited to 128 due to the high number of registers used per multiprocessor.

Table 5.15 presents the overall measured decoding throughputs running the SPA on

an 8800 GTX GPU from NVIDIA, considering 32 and 8-bit precision data elements. Ex-

perimental results in the table show that the GPU-based solution can be faster than the

Cell/B.E.-based one for LDPC codes with dimensions above matrix t1. The GPU-based

implementation shows significantly higher throughputs for intensive computation on

large quantities of data. A throughput above 18.3 Mbps is achieved for matrix t3 with

24000 edges and executing 10 iterations, while it decreases to 11.3 Mbps for significantly

larger codes (60000 edges and above). In the latter, the size of the data structures to rep-

Table 5.15: LDPC decoding throughputs for a CUDA programming environment running
the SPA with regular codes (Mbps)

Number of iterations Matrix t1 Matrix t2 Matrix t3 Matrix t4
32-bit 8-bit 32-bit 8-bit 32-bit 8-bit 32-it 8-bit

10 10.0 14.6 17.9 31.9 18.3 40.4 11.3 40.1
25 5.3 6.5 10.1 14.6 10.0 18.9 5.1 18.1
50 2.4 3.3 5.9 7.7 5.7 10.1 2.7 9.5

resent the matrix is so large that they do not fit into the 64 KByte of constant memory

used in smaller codes (t3 and below), which degrades the performance because con-

stant memory on the GPU uses a different bus from global memory. For small codes

and with a small number of iterations, better results are achieved with fewer threads

per block, although the decoding time differences are minimal if we vary the number

of threads per block. However, when decoding larger codes with a higher number of

iterations, the reported speedups are higher when a larger number of threads per block
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is used. Figure 5.20 shows the importance of memory accesses in the overall processing
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Figure 5.20: Thread execution times for LDPC decoding on the GPU running the SPA.

time as the size of the LDPC code increases. Reports obtained for matrices t1 to t4 run-

ning on the GPU show that the time spent in coalesced memory reads is approximately

constant (in percentage) for all matrices, while the more expensive and often conflicting

non-coalesced memory write operations can represent a bottleneck after a certain dimen-

sion of the LDPC code. Figure 5.20 shows that because we use coalescence to read data,

if the number of edges changes, the percentage of the overall processing time remains

approximately constant at around 20%. For matrix t4 (60000 edges), non-coalesced write

accesses occupy nearly 50% of the total processing time, against 39% for matrix t3 (24000

edges), and only 24% in matrix t1 (3072 edges). This shows that using coalescence as

described in Proposition 1, is extremely important not only because parallel accesses to

memory can be performed by multiple threads concurrently, but also because the number

of data collisions decreases.

Data precision that best fits the arithmetic intensity on the GPU: We also tested the

LDPC decoder for the SPA using data with only 8-bit precision, instead of the original

32-bit precision, which allowed us to pack 16 elements into 128-bit data elements. In

this case, using the 8-bit precision solution, the throughputs obtained for 10 iterations in

matrices t1 to t4 range from 14.6 up to 40.1 Mbps. The reason for this improvement is

mainly related with the reduction of memory accesses performed per arithmetic opera-

tion. On the GPU side, data is unpacked and processed, causing one memory access to
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Table 5.16: LDPC decoding times on the GPU (ms) and corresponding throughputs
(Mbps) for an 8-bit data precision solution decoding 16 codewords in parallel running
the MSA with regular codes.

Time (ms) Throughput (Mbps)
Number of iterations 10 20 30 50 10 20 30 50

Matrix t1 0.393 0.597 0.765 1.102 41.7 27.4 21.4 14.9
Matrix t3 1.331 1.589 1.812 2.261 96.2 80.6 70.6 56.6
Matrix t4 2.932 3.176 3.425 3.841 109.1 100.8 93.4 83.3

read/write 16 elements at a time. Even considering the increase in arithmetic operations,

the GPU still performs faster. The limitation in performance is imposed mainly by mem-

ory accesses. The highest throughputs are achieved for matrices t3 and t4, which provide

results superior to 40 Mbps. Due to the use of the efficient forward and backward al-

gorithm [83] that minimizes the number of memory accesses and also the number of add

and multiply operations, the experimental results here reported are much superior to the

ones obtained in [37].

Another approach based on CUDA exploits the MSA. The results achieved with the

MSA are reported in table 5.16 and are superior to those obtained with the SPA. The ma-

trices under test are t1, t3 and t4. As referred before, matrix t1 uses 64 threads per block

and a total of 16 blocks. Matrices t3 and t4 use 128 threads per block and 63 and 157

blocks, respectively. The decoding times reported in table 5.16 define global processing

times, which include data transfers according to the denominator of (5.12), to simulta-

neously decode 16 codewords with length depending on the matrix. Data elements are

represented and processed using 8-bit precision, causing 16 data elements to be read in

each 128-bit memory access. The GPU seems to perform better for larger codes. If we

consider throughput, it is interesting to see that the GPU achieves a higher coded data

rate for matrix t4, which has 60000 edges to compute. In this case, a very significant

throughput of 109.1 Mbps is achieved running 10 iterations. It decodes 16 codewords

simultaneously, each of length 20000-bit, in 2.932 ms.

Analyzing the performance on the GPU with CUDA: A model to predict the through-

put T of the parallel LDPC decoder on the GPU is presented in (5.12), where Th denotes

the total number of threads running on the GPU, MP the number of multiprocessors and

SP the corresponding number of stream processors per multiprocessor. Each thread is

expected to access memory with latency L per memory access, with a total of Mop mem-

ory accesses. NDop/iter represents the number of cycles for non-divergent instructions

performed per iteration within a kernel, while Dop/iter represents divergent instructions.

Finally, Niter defines the number of iterations, N is the size of the codeword, and fop the
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frequency of operation of a stream processor. The processing Tproc time is:

Tproc = Niter

Th
MP × (

NDop/iter

SP + Dop/iter) + Th×Mop× L

fop
. (5.11)

Then, the global throughput can be obtained by:

T =
P× N

Thost→gpu + Tproc + Tgpu→host
[bps], (5.12)

where P defines the parallelism (number of codewords being simultaneously decoded).

Thost→gpu and Tgpu→host represent data transfer times between host and device.

The model defined in (5.11) can be further detailed in order to allow the prediction

of numerical bounds that can help describing the computational behavior of the LDPC

decoder on the CUDA. One iteration executes kernel 1 and kernel 2, while memory ac-

cesses can be decomposed into coalesced and non-coalesced read and write operations,

each one imposing different workloads. The CUDA Visual Profiler tool was used in or-

der to obtain the number of instructions and memory accesses per kernel. Considering

for example the code for matrix t4, which has a workload large enough to fully occupy

157 blocks of the grid with a maximum of 128 threads per block (#Th = 157× 128), an

average number of cycles per kernel (excluding load and store operations) similar in both

kernels and equal to NDop/iter = 3867, and having less than 0.5% of divergent threads

which allow us to approximate Dop/iter ≈ 0, (5.11) can be rewritten as:

Tproc =
2Niter ×

Th
MP ×

NDop/iter

SP

fop
+

Th×Mop× L
fop

︸ ︷︷ ︸

TMemAccess

. (5.13)

TMemAccess defines all memory access operations and can be decomposed in memory ac-

cesses to CNs and BNs, respectively:

TMemAccess = TMemAccBNs + TMemAccCNs. (5.14)

TMemAccBNs defines time spent doing memory access to update CNs (accessing BNs):

TMemAccBNs = Niter
M× wc × L + M× 2wc × L/16

fop
, (5.15)

and TMemAccCNs represents the time necessary to update BNs (accessing CNs):

TMemAccCNs = Niter
N × wb × L + N × (2wb + 1)× L/16

fop
. (5.16)

The last partials in (5.15) and (5.16) show memory read operations, which are divided

by 16 to model the parallelism obtained with the introduction of coalesced reading op-

erations. In spite of the latency L can be up to 400-600 cycles, we believe that the thread
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scheduler operates very efficiently, producing effectively faster memory accesses. Ap-

parently, the scheduler is good enough maintaining the cores occupied and hiding the

memory latency. For code t4 our model predicts the processing time quite well, with an

error inferior to 13% assuming L = 4. Transferring data structures between host and

device at a bandwidth of 1.2 GB/s (an experimentally measured value) represents an

increase in 8.9% on the global processing time.

5.6.5 Experimental results for irregular codes with CUDA

The number of edges of LDPC codes used, for example, in DVB-S2 assumes signifi-

cant proportions, as depicted from table 2.3. For every iteration, the number of messages

to be updated is twice the value shown in field #Edges. For example, when running 10

iterations of the decoder for code t7, which has rate = 3/5, a total of 2× 285120 × 10 =

5702400 > 5.7M messages have to be processed in a short period of time in order to guar-

antee minimum acceptable throughput. Until very recently, such performances were only

possible to achieve using dedicated VLSI, as it is the case of the hardware solution pro-

posed in chapter 4 of this thesis. However, considering the high processing power and

bandwidth of GPUs, in this chapter we show that with these programmable devices it is

possible to achieve performances similar to those obtained with VLSI hardware.

Running LDPC DVB-S2 codes on the GPU with CUDA: Codes t5, t6 and t7 from ta-

ble 5.14 are a subset of DVB-S2 codes. They represent long length irregular codes with

maximal and minimal number of edges (see table 2.3 in chapter 2) used in the standard,

and for these reasons were selected to be decoded on a platform based on Setup 2, which

has more multiprocessors available than Setup 1. They represent, respectively, B1, B4 and

B5 irregular LDPC codes which can be found in annexes B and C of the standard [29]. Al-

though Setup 2 has more registers per multiprocessor than Setup 1, the number of threads

allowed per block still has limitations. In this case, the LDPC decoder is limited to 256

threads per block due to the high number of registers that each kernel uses per multipro-

cessor. The GPU from Setup 2 has 240 stream processors and 30 multiprocessors and the

horizontal and vertical kernels demand less than 76 registers per thread. In this case this

is acceptable because the C1060 GPU allows to use up until 16384 registers per multipro-

cessor as shown in table 5.13, and the quantity of threads used per block keep the total

number of registers bellow that value. Each block of the GPU was tested with a varying

number of threads ranging from 64 to 256, and the best results were achieved with 128

threads per block for codes t5 and t6, while 192 threads per block produce better results

for code t7. As for the solutions based on Setup 1, so does the number of blocks used here

is imposed by the size of the LDPC code and number of threads per block adopted. Ma-
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Table 5.17: LDPC decoding times on the GPU (ms) and corresponding throughputs
(Mbps) for an 8-bit data precision solution decoding 16 codewords in parallel running
the MSA with irregular DVB-S2 codes.

Matrix Iter. Thost→gpu + Tgpu→host (ms) Tproc (ms) Throughput (Mbps)

t5

1

3.1

1.99 205.7
2 3.97 147.6
5 9.90 80.1

10 19.85 45.3
20 39.66 24.3
50 99.00 10.2

t6

1

3.4

2.30 180.7
2 4.58 129.4
5 11.40 69.9

10 22.85 39.4
20 45.72 21.1
50 114.12 8.8

t7

1

4.1

3.87 129.7
2 7.68 88.0
5 19.20 44.5

10 38.5 24.3
20 76.72 12.8
50 192.09 5.3

trices t5 and t6 were programmed to use 507 blocks of the grid, while matrix t7 occupies

338 blocks. Table 5.17 presents the decoding times and throughputs obtained running the

MSA on a C1060 GPU (described in Setup 2, table 5.13). Experimental results reported

in the table show that the GPU-based solution here proposed supports the intensive pro-

cessing of LDPC codes with very high dimensions within acceptable decoding times. By

executing 1 iteration of the decoder for matrix t5 (which has 194400 edges), the solution

achieves a processing time of 1.99 ms and a throughput of 205.7 Mbps, which respectively

change to 19.85 ms and 45.3 Mbps when executing 10 iterations. The increase in process-

ing time is not linear because for small Tproc processing times, Thost→gpu + Tgpu→host data

transfer times still have a significant weight in the overall processing time. Matrix t6 has

a higher number of edges (226800), which allows obtaining 180.7 Mbps executing 1 it-

eration and 39.9 Mbps for 10 iterations. Matrix t7 represents the DVB-S2 code with the

highest number of edges (285120) and in this case throughput decreases to 129.7 Mbps

for 1 iteration and to 24.3 Mbps executing 10 iterations of the algorithm.

Additionally, this programmable solution proposed for GPUs also considers different

data representations, namely by using 8 or 16-bit precision. Table 5.18 presents through-

puts for both cases running code t6, where the 8-bit solution decodes 16 codewords in
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Table 5.18: Comparing LDPC decoding throughputs for DVB-S2 code t6 running the
MSA with 8- and 16-bit data precision solutions (Mbps)

Number of iterations Matrix t6
Throughput (Mbps)
8-bit 16-bit

1 180.7 86.5
2 129.4 60.6
3 100.7 48.7
4 82.6 38.2
5 69.9 32.2

10 39.4 17.9
20 21.1 9.6
50 8.8 4.0

parallel, and the 16-bit solution only decodes 8, producing lower coded data rates. It is

interesting to observe that even using the 16-bit solution we still achieve high through-

puts for this class of computationally demanding DVB-S2 codes. Recently, platforms

that cooperatively allow running multiple GPUs in simultaneous have been introduced.

Applying the LDPC decoder kernels developed under the scope of this thesis to such

platforms (some solutions incorporate 4 GPUs, supplying a total of 960 cores), most cer-

tainly would allow to increase the aggregate throughput even further. The 16-bit solution

here reported shows that as GPUs’ processing power and bandwidth increase, additional

coding gains can be exploited, namely regarding Bit Error Rate (BER), by adopting higher

resolution to represent data.

5.7 Discussion of architectures and models for parallel LDPC
decoding

The different approaches presented in this chapter for several parallel computing ar-

chitectures reflect the complexity of LDPC decoders associated with restrictions imposed

by parallel computing architectures. Some of them proved to be able of competing with

hardware-dedicated solutions that typically need allocating high resources to develop

this kind of projects and use Non-Recurring Engineering (NRE).

Even by exploiting fast cache memory shared by multiple cores in parallel algorithms

specifically developed for computation on general-purpose x86 multi-cores, the through-

puts achieved are far from those requested by real-time applications. Nevertheless, the

general-purpose approach on x86 multi-cores allowed to conclude that the solutions pro-

posed under the context of this work are scalable.

By exploiting data locality that minimizes memory access conflicts, and by using
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Table 5.19: Comparison with state-of-the-art ASIC LDPC decoders using the MSA.
Rate Code length Precision Iterations Throughput

(K/N) (N) (bits) (Mbps)
[108] 5/6 2304 8 10 30.4
[81] 1/2 2304 6 20 63

[111] 1/2 2304 8 8 60
Matrix t3 1/2 8000 8 10 96.2

[GPU proposed solution]

several SPE cores that support SIMD and a dual pipelined architecture, the Cell/B.E.

achieves throughputs between 70 and 80 Mbps for small to medium LDPC codes. The

limitation in performance for larger codes is imposed by the size of the LS memory on

the SPEs. The adoption of specific parallelization techniques for the Cell/B.E. platform

here described produced throughputs that approach well hardware solutions [81,108]. For

the SPA, it nearly achieves 70 Mbps [38] running 10 iterations of the algorithm. Moreover,

we also implemented LDPC decoders based on the MSA for the Cell/B.E., using codes

adopted in the WiMAX standard (IEEE 802.16e) [64], which have lengths inferior to 2304

bits. We achieved throughputs near 80 Mbps running 10 iterations [33,36] of the decoder,

which approaches throughputs that until recently were only achievable using dedicated

hardware (e.g. VLSI). Furthermore, this solution can provide a lower BER regarding

VLSI-based architectures.

GPUs, which are shared memory based multiprocessors, can also be programmed

with Caravela and CUDA. The former is a general, while the latter is an efficient pro-

gramming framework developed for NVIDIA devices. These GPUs are more efficient

than Cell/B.E. for LDPC decoding medium and large length codes. We tested a vast

set of codes where we included LDPC codes used in the DVB-S2 standard and report

throughputs ranging from dozens of Mbps to over 100 Mbps, depending on the length

of the code or number of multiprocessors of the GPU adopted. Here, the constraints

are imposed by bandwidth limitations between host and device, and also by conflicting

memory accesses to the global memory of the GPU, which can be minimized by using

coalesced read/write operations that significantly improve the performance of the algo-

rithm. The adoption of specific parallelization strategies for the GPU platform here de-

scribed, produced throughputs that approach well hardware-based solutions. Table 5.19

presents some comparisons with recently published work. The throughputs obtained

compare well with those reported in recent publications [17,81,108,111] that describe dedi-

cated hardware solutions (ASIC and others) to implement LDPC decoders.

Figure 3.3 shows that the average number of iterations depends on the Signal-to-
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5.8 Summary

Noise Ratio (SNR) of input data, which naturally influences the decoding time. It can be

seen that the 8-bit precision solution here developed for the CUDA compares favorably

in terms of the number of iterations needed for the algorithm to converge. Again, as in

the case of Cell/B.E.-based LDPC decoders, this programmable solution also presents

superior performance in terms of BER, when compared with ASIC architectures that use

5 to 6-bit precision to represent data.

5.8 Summary

Changes in technical computing now provide massive computational power at low-

cost. The advent of high-value graphics computing offers the possibility of increased pro-

ductivity and flexibility on a variety of intensive algorithms used in real-time demanding

applications.

This chapter presents the most relevant results obtained for LDPC decoding on multi-

and many-core platforms. These platforms can be divided into three distinct classes:

general-purpose multi-cores based on the x86 shared memory architecture; the Cell/B.E.

from the STI consortium which is based on a distributed memory model; and GPUs, also

based on a shared memory model and here exploited under the Caravela and CUDA con-

texts. They allow exposing distinct parallel properties of an LDPC code. We developed

LDPC decoding algorithms and data structures appropriate for parallel computing. They

are used to measure the performance under these parallel computing platforms. The dis-

similarities between the architectures and the comparison of performances are presented

in this chapter. We conclude that some of them offer performances that approach well

hardware-dedicated (e. g. VLSI) solutions. We also present in this chapter models that

try to estimate their behavior under controlled parameters. These estimates allow to

conclude that both architectures can be programmed to work very close from their peak

performance.
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We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

T.S. Eliot, in "Four Quartets"
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6. Closure

Due to the computationally intensive nature of Low-Density Parity-Check (LDPC)

decoders, hardware approaches have been developed over the last years. They mainly

use Very Large Scale Integration (VLSI) technology, which is able to efficiently handle the

complex processing required by LDPC decoding in order to provide high throughputs.

The purposes of the research work developed under the scope of this thesis were

threefold. The first consisted of developing and optimizing VLSI parallel LDPC decoder

systems with a reduced number of processors. The second objective was to investigate

new paradigms, parallel algorithms and suitable stream-based data structures able of

performing LDPC decoding efficiently. The third and last purpose of this research was

to derive parallel kernels for a set of predefined multi-core architectures and assess their

performance against state-of-the-art VLSI solutions.

In this thesis it has been shown that such hardware solutions for LDPC decoding can

be implemented with a reduced number of processors supported by a minor reconfigura-

tion of the memory blocks of the system. Using a small number of processors significantly

simplifies the routing complexity of the design, allowing savings in terms of area, devel-

opment costs and complexity. Small process design technologies used in Application

Specific Integrated Circuits (ASIC) (90nm and below) allow to operate this architecture

at frequencies high enough to guarantee throughputs able of supporting the demanding

Digital Video Broadcasting – Satellite 2 (DVB-S2) requirements. The smallest area result

achieved in this work is approximately 7 mm2. This research has also been conducted to

Field Programmable Gate Array (FPGA) based solutions that are equally able of provid-

ing real-time processing for the same requirements, and led to the following publications:

[31] Falcão, G., Gomes, M., Gonçalves, J., Faia, P., and Silva, V. (2006). HDL Library of Process-

ing Units for an Automatic LDPC Decoder Design. In Proceedings of the IEEE Ph.D. Research

in Microelectronics and Electronics (PRIME’06), pages 349–352.

[51] Gomes, M., Falcão, G., Silva, V., Ferreira, V., Sengo, A., and Falcão, M. (2007b). Flexible

Parallel Architecture for DVB-S2 LDPC Decoders. In Proceedings of the IEEE Global Telecom-

munications Conf. (GLOBECOM’07), pages 3265–3269.

While dedicated hardware still imposes some restrictions, the advent of the multi-

core era encouraged the development of flexible and programmable approaches towards

the computation of LDPC decoding. Presently, a set of parallel architectures exist that

are worldwide disseminated and generally available at low-cost. The Cell Broadband

Engine (Cell/B.E.) architecture suits ideally the decoding of codes with small to medium

lengths, while Graphics Processing Units (GPU) can be used more efficiently for medium

to large length codes. Parallel algorithms were proposed for performing LDPC decoding

by exploiting data parallelism and task parallelism. The results herein reported show that
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the former can be used to decode efficiently WiMAX LDPC codes achieving throughputs

near 80 Mbps, while the latter can be adopted to decode larger codes, namely those used

in the DVB-S2 standard. Both support decoding either regular or irregular codes. This

work was presented internationally in journals and conferences:

[36] Falcão, G., Silva, V., Sousa, L., and Marinho, J. (2008). High coded data rate and multicode-

word WiMAX LDPC decoding on the Cell/BE. Electronics Letters, 44(24):1415–1417.

[38] Falcão, G., Sousa, L., and Silva, V. (2009c). Parallel LDPC Decoding on the Cell/B.E. Pro-

cessor. In Proceedings of the 4th International Conference on High Performance and Embedded

Architectures and Compilers (HiPEAC’09), volume 5409 of Lecture Notes in Computer Science,

pages 389–403. Springer.

GPUs can be used under different contexts and by using different programming tools.

They can use the Caravela interface, a generic tool for programming kernels on GPUs,

which allows the programmer to use any GPU existing on the market, as reported in the

following journal paper:

[41] Falcão, G., Yamagiwa, S., Silva, V., and Sousa, L. (2009d). Parallel LDPC Decoding on GPUs

using a Stream-based Computing Approach. Journal of Computer Science and Technology,

24(5):913–924.

Or, to achieve superior performance and lower execution times, GPUs from NVIDIA can

also be programmed using the Compute Unified Device Architecture (CUDA) interface,

which supports kernels running under a multi-threaded environment with multiple lev-

els of efficient memory hierarchy. This part of the work performed with CUDA produced

throughputs in the order of hundreds of Mbps and has been presented in some of the best

conferences in the area:

[37] Falcão, G., Sousa, L., and Silva, V. (2008). Massive Parallel LDPC Decoding on GPU. In

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel pro-

gramming (PPoPP’08), pages 83–90, Salt Lake City, Utah, USA. ACM.

[34] Falcão, G., Silva, V., and Sousa, L. (2009b). How GPUs can outperform ASICs for fast

LDPC decoding. In Proceedings of the 23rd ACM International Conference on Supercomputing

(ICS’09), pages 390–399. ACM.

Also, power consumption plays an important role in nowadays autonomous systems.

The more efficient is the exploitation of the parallel computational resources, the better

the ratio Watt-per-bit-decoded can be, which implies that the number of codewords de-

coded in parallel should be the highest. However, to achieve high aggregate throughput,

the execution on GPUs can impose significant latency, which may become unacceptable
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for some communications. However, other important areas of research can adopt GPUs

as convenient solutions for the intensive problem of LDPC decoding. One example is

related with the study and simulation of new LDPC codes and error floors in the range

of 10−11 to 10−12 (or even further), which typically is not adequate to be achieved by us-

ing dedicated hardware (e.g. VLSI), because it demands flexibility and programmability.

This type of research is based on the massive simulation of LDPC codes and it can be

efficiently achieved on programmable processors such as GPUs, which can accelerate the

computation on CPUs. The GPU-based solutions also support floating-point arithmetic,

which can introduce advantages in terms of Bit Error Rate (BER) regarding to VLSI ap-

proaches:

[39] Falcão, G., Sousa, L., and Silva, V. (accepted in February 2010b). Massively LDPC Decoding

on Multicore Architectures. IEEE Transactions on Parallel and Distributed Systems.

Furthermore, by developing models that try to estimate the behavior of these architec-

tures, we also show that if programmed according to specific and appropriate strategies

targeting high levels of parallelism, LDPC decoding algorithms can perform very close

to the theoretical maximum performance of those architectures. The assessment of their

performances, namely BER and throughput, shows that they can be competitive with

VLSI hardware.

The impact of the research work developed under the scope of this thesis can be mea-

sured not only by the publications that arose from it but also from the high number of

citations to this very recent work. Recently, a chapter has been accepted for publication

at the GPU Computing Gems from NVIDIA, and the source code has been made publicly

available at the gpucomputing.net website:

[35] Falcão, G., Silva, V., and Sousa, L. (2010a). GPU Computing Gems, chapter Parallel LDPC

Decoding. ed. Wen-mei Hwu, vol. 1, NVIDIA, Morgan Kaufmann, Elsevier.

This allows other researchers/engineers to continue this work. By making the source

code publicly available, people with practical interests in LDPC decoders can develop

their own systems and research. Another purpose of this strategy aims at encourag-

ing the scientific/engineering community to develop other types of parallel algorithms,

namely by applying adequate strategies inspired in this work for obtaining high levels of

parallelism able of producing more efficient and faster programs.

6.1 Future work

Although all optimizations performed in the VLSI architecture proposed in chapter 4

of this thesis, there is still room for improvement. Using smaller technologies in the pro-

cess design, such as 65, 45, or even 32 nm, can minimize area and power consumption.
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Taking advantage of higher frequencies of operation (possible with the use of smaller

process technologies) and with a significantly higher effort, deeper changes can be intro-

duced into the architecture by grouping more memories into common blocks of higher

and thinner RAMs, using a more complex time multiplexing strategy. As described in

chapter 4, this can lead to considerable area improvements. Additional improvements

can also be projected to the near future by exploiting the use of memristors, a recent

technology of HP that is expected to revolutionize the manufacturing of RAM memories,

namely by introducing important changes in area and volatility constraints.

CUDA has been proposed to perform LDPC decoding under the context of this the-

sis, but another Application Programming Interface (API) has recently emerged with the

arrival of OpenCL [55], and consequently it should be exploited. OpenCL allows writing

parallel programs once for execution across several heterogeneous platforms that include

CPUs, GPUs and other types of processors (in practice, OpenCL code has minor change

requirements as we move the execution from platform to platform).

Another area potentially exploitable consists of using GPU clusters for the massive

processing of LDPC decoding essentially based on data-parallelism. Here, the main chal-

lenges should be imposed by the shared use of the bus for communications with the host

system. In fact, preliminary tests showed that when performing such iterative computa-

tions in multi-GPU systems, the communication time dominates.

Finally, the utilization of heterogeneous systems that may incorporate, for example,

CPUs, GPUs and FPGAs to cooperatively compute LDPC decoding can also be consid-

ered. Expectedly, it may allow obtaining interesting results, if we successfully try to

overcome the limitations of an architecture with the facilities provided by another.

It should be noticed that, although the work here reported was mainly devoted to the

study of computational models and development of a novel concept for LDPC decoding

based on newly proposed parallel algorithms, it can be applied in the development of

improved and faster algorithms that support other types of computationally demanding

applications. Examples are inference calculation algorithms, such as those used in Turbo

codes, stereo vision applied to robotics, or in Bayesian networks just to name a few. The

methods and solutions proposed in this thesis show that the use of distinct forms of

parallelism to deal with the intensive nature of these computational problems appears to

be tractable.
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A. Factorizable LDPC Decoder Architecture for DVB-S2

The architecture here described surpasses some limitations of [70], and adds flexibility

and easy reconfiguration, according with the decoder constraints [51].

The design of Irregular Repeat Accumulate (IRA) Low-Density Parity-Check (LDPC)

codes used in the Digital Video Broadcasting – Satellite 2 (DVB-S2) standard has been

addresses in chapter 2. The pseudo-random generation of the sparse A matrix described

in (2.33) allows a significant reduction on the storage requirements without a significant

code performance loss. The two types of nodes that form the bipartite Tanner graph are

check nodes (νC), one per each code constraint, and bit nodes, one per each codeword

bit (information and parity, respectively, νI and νP). The construction technique used to

generate matrix A is based on the separation of the νI nodes into disjoint groups of M

consecutive ones, with M = 360. All the νI nodes of a group l should have the same

weight wl, and it is only necessary to choose the νC nodes that connect to the first νI of

the group, in order to specify the νC nodes that connect to each one of the remaining

M − 1 νI nodes. The choice of the first element of group l to connect is pseudo-random

and has the following restrictions: the resulting LDPC code is cycle-4 free; the number

of length 6 cycles is the shortest possible; and all the νC nodes must connect to the same

number of νI nodes. Denoting by r1, r2, ..., rwl , the indices of the νC nodes that connect to

the first νI of group l, the indices of the νC nodes that connect to νI
i , with 0 ≤ i ≤ M− 1,

of group l can be obtained by (2.34), with q given by (2.35). The factor M is constant for

all codes used in the DVB-S2 standard. For each code, A has groups of νI nodes with

constant weights wc > 3, and also groups with weights wc = 3. Matrix B has a lower

triangle staircase profile as shown in (2.33).

A.1 M parallel processing units

This turns possible the simultaneous processing of νI and νC node sets, whose indices

are given by:

C(c) = {c, c + 1, · · · , c + M− 1}, with c mod M = 0 (A.1)

and

R(r) = {r, r + q, r + 2q, · · · , r + (M− 1)q}, with 0 ≤ r ≤ q− 1, (A.2)

respectively, (the superscript is the index of the first element of the set and, r and c mean

row and column of H), which significantly simplifies the decoder control. In fact, accord-

ing to (2.34), if νI
c̃ is connected to νC

r , then νC
r+i×q, with 0 ≤ i ≤ M − 1, will be connected

to νI
c+(c̃−c+i) mod M, where c = M × (c̃ div M) represents the index of the first νI of the

group C(c) to which νI
c̃ belongs.

The architecture shown in figure 4.2 is based on M = 360 Functional Units (FU) work-

ing in parallel with shared control signals [49], that process both νC (in check mode) and νI
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A.1 M parallel processing units

nodes (in bit mode) in a flooding schedule manner. νC and νP nodes are updated jointly

in check mode following an horizontal schedule approach, according to the zigzag con-

nectivity [49] established between these two different type of nodes.

A.1.1 Memory mapping and shuffling mechanism

As mentioned before, a single FU unit is shared by a constant number of νI, νC and νP

nodes (the last two are processed jointly), which depend on the code length and rate.

More specifically, for a (n, k) DVB-S2 LDPC-IRA code (due to notation particularities

and for a question of style, in chapter 2 variables n, k are represented by N, K), the FUi,

with 0 ≤ i ≤ M − 1, updates sequentially in bit mode the νI
{i,i+M,i+2×M,··· ,i+(α−1)×M}

nodes, with α = k/M. In check mode, the same FU updates the νC
{j,j+1,··· ,j+q−1} and

νP
{j,j+1,··· ,j+q−1} nodes, with j = i × q. This guarantees that when processing simultane-

ously group C(c), the computed messages have as destination a set R(r), where each one

of them will be processed by a different FU. According to (2.34), the new computed mes-

sages only need to be right rotated to be handled by the correct νC nodes. The same

happens when processing each R(r) set, where as considered in (2.34), the right rotation

must be reversed in order to the new computed messages have as destination the exact

νI nodes. The shuffling network (barrel shifter) is responsible for the correct exchange

of messages between νI and νC nodes, emulating the Tanner graph. The SHIFTS values

stored in the ROM memory of figure 4.2 can be easily obtained from the annexes B and

C of DVB-S2 standard tables [29]. The messages sent along the Tanner graph’s edges are

stored in RAM memories of figure 4.2. If we adopt a sequential RAM access in bit mode,

then the access in check mode must be indexed, or vice-versa. Both options are valid and

consequently, without loss of generalization, we assume sequential access in bit mode.

Denoting by ri = [ri1 ri2 · · · riwi ]
T the vector of νC node indices connected to the νI

i node

of weight wi, the message memory mapping can be obtained using the following matrix:

R =









r0 r1 · · · rM−1

rM rM+1 · · · r2M−1
...

...
...

...
r
(α−1)×M r

(α−1)×M+1 · · · r
α×M−1









(q×wC)×M

, (A.3)

where wC is a code related parameter (νC weight is wC + 2, except for the first row as

shown in (2.33)). In order to process each R(r) set in check mode, the required memory

addresses can be obtained by finding the rows in matrix R where the index r appears.
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A.2 Decoding decomposition by a factor of M

The simplicity of the shuffling mechanism and the efficient memory mapping scheme

represent the major strengths of the architecture in [70]. However, the high number of

FUs and the long width of the barrel shifter require a significant silicon area. Since this

architecture can provide a throughput far above the minimum mandatory rate of 90 Mbps

for DVB-S2, the number of FUs can be reduced. In fact, this can be accomplished by any

factor of M.

Let L, N ∈ N be factors of M , with M = L× N, and consider a C(c) set as in (A.1).

This group can be decomposed by subsampling in L subgroups, according to:

C(c)
0 = {c, c + L, c + 2L, · · · , c + (N − 1)× L} (A.4)

and

C(c)
1 = {c + 1, c + 1 + L, c + 1 + 2L, · · · , c + 1 + (N − 1)× L} , (A.5)

until the last subgroup

C(c)
L−1 = {c + L− 1, c + 2L− 1, c + 3L− 1, · · · , c + N × L− 1} . (A.6)

Each sub-group C(c), with 0 ≤ γ ≤ L− 1, can be described in terms of the first node of

the subgroup νI
c+γ, according to (2.34). If νC

r is connected to the first information node of

the subgroup C(c)
γ , then νC

(r+i×L×q) mod (n−k) is connected to the i-th νI node of the referred

subgroup, with 0 ≤ i ≤ N − 1.

Again, the same subsampling process by L can be performed on each R(r) group,

according to:

R(r)
0

= {r, r + L× q, r + 2L× q, · · · , r + (N − 1)× L× q} (A.7)

and

R(r)
1 = {r + q, r + (L + 1)× q, r + (2L + 1)× q, · · · , r + ((N − 1)× L + 1)× q} ,

(A.8)

until

R(r)
L−1 = {r + (L− 1)× q, r + (2L− 1)× q, r + (3L− 1)× q, · · · , r + (N × L− 1)× q} .

(A.9)

Similarly, each subgroup R(r)
β , with 0 ≤ β ≤ L− 1, can be described in terms of the first

element νC
r+β×q. If νI

c̃ is connected to the first node of subset R(r)
β , then νI

c+((c̃−c+i×L) mod M),

with c = M × (c̃ div M), is connected to the i-th νC node, with 0 ≤ i ≤ N − 1, of the

considered subgroup.
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From the analysis of (A.4) to (A.9), we conclude that the subsampling approach pre-

serves the key modulo M properties and, thus, we can process individually each C(c)
γ and

R(r)
β subgroup, and the same architecture in [70] can be used with only N processing units

as shown in figure 4.4 (in figure 4.4 the variable N is represented by P). In fact, when

processing simultaneously a C(c)
γ group, the computed messages have as destination a

set R(r)
β , and vice-versa.

A.2.1 Memory mapping and shuffling mechanism

The subsampling strategy allows a linear reduction (by a factor of L) of the hardware

resources occupied by the FUs blocks, reduces significantly the complexity of the bar-

rel shifter (O(N log2 N)) and simplifies the routing problem. Yet, at first glance, it may

seem that this strategy implies an increase by L in the size of the system ROM (SHIFTS

and ADDRESSES in figures 4.2 and 4.4). Fortunately, if we know the properties of the

subgroups C(c)
0 and R(r)

0 , we can automatically find the properties of the remaining sub-

groups C(c)
γ and R(r)

β , respectively, with 0 ≤ α, β ≤ N − 1. By using a proper message

memory mapping based on a convenient reshape by L of matrix R in (A.3), of the form:

R =


































r0 rL · · · r(N−1)×L

rM rM+L · · · rM+(N−1)×L
...

...
...

r(α−1)×M r(α−1)×M+L · · · r(α−1)×M+(N−1)×L

r1 rL+1 · · · r(N−1)×L+1

rM+1 rM+L+1 · · · rM+(N−1)×L+1
...

...
...

r(α−1)×M+1 r(α−1)×M+L+1 · · · r(α−1)×M+(N−1)×L+1
...

...
...

rL−1 r2L−1 · · · rM−1

rM+L−1 rM+2L−1 · · · r2M−1
...

...
...

r(α−1)×M+L−1 r(α−1)×M+2L−1 · · · rα×M−1


































(L×q×wC)×N

(A.10)

we can keep unchanged the size of the system ROM and compute on the fly the new

SHIFTS values as a function of those previously stored in the ROM memory of figures 4.2

and 4.4 for all C(c)
0 groups, as:

shi f t(c)
γ

= (shi f t(c)
0

+ γ) div L, (A.11)

and, similarly, the new addresses are given by:

address(r)β = (address(r)0 + q× wC × β) mod (q× wC × L), (A.12)
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where address(r)0 represent the ADDRESSES’ values stored in ROM for all R(r)
0 groups.

The shift addresses stored in ROM are the same for both architectures of figures 4.2

and 4.4. Yet, due to reshaping of matrix R, memory addresses contained in R(r)
0 change,

but they can be easily obtained following the procedure described in the previous sub-

section, i. e., by finding in matrix R the rows where index r appears.

For the configuration shown in figure 4.4, each FUi, with 0 ≤ i ≤ N − 1, is now

responsible for processing L× α information nodes in the following order:

{i, i + M, i + 2M, · · · , i + (α− 1)M ;
i + 1, i + 1 + M, · · · , i + 1 + (α− 1)M ;

· · · ;
i + L− 1, i + L− 1 + M, · · · , i + L− 1 + (α− 1)M}

, (A.13)

and L× q check and parity nodes {j, j + 1, · · · , j + L× q− 1}, with j = i× L× q.
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