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Human thinking and probability theory:

Probability theory is nothing but common sense reduced to calculation.

Laplace, 1819.

Dreaming the future of Artificial Intelligence and
Robotics against all scepticism:

You insist that there is something a machine cannot do. If you tell me precisely

what it is that a machine cannot do, then I can always make a machine which will do

just that!

J. von Neumann in a famous 1948 talk on computers as a reply to the canonical

question from the audience: “But a mere machine can’t really think, can it?”

The cross-disciplinary conundrum:

What am I supposed to publish?

L.J. Savage (1962, The Foundations of Statistical Inference, a Discussion, Methuen,

London) asked this question to express his bemusement at the fact that, no matter

what topic he chose to discuss, and no matter what style of writing he chose to

adopt, he was sure to be criticised for not making a different choice.

He was not alone [Jaynes 2003].
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Santos, for the realtime BVM viewer software in C++/OpenGL, Pedro Trindade for

putting his friendship at my service through his always kind, reassuring and wise sug-

gestions, while also helping me by implementing an upgraded Blender-based version of

the BVM viewer software, João Quintas for his inestimable help with the concluding

experimental work, and finally Alex Malhão and Hugo Faria for their help with the

robotic head; at the Institute of Biomedical Research in Light and Image (IBILI/UC),

xi
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Abstract

Humans use various sensory cues to extract crucial information from the environ-

ment. With a view of having robots as human companions, we are motivated towards

helping to develop a knowledge representation system along the lines of what we know

about us. While recent research has shown interesting results, we are still far from

having concepts and algorithms that interpret space, coping with the complexity of

the environment.

By understanding how animals (humans) navigate and build their own spatial rep-

resentation, the observed phenomena can be applied in robotics. In order to have a

robust and reliable framework for navigation (i.e. in order to move within an environ-

ment, manipulate objects in it, avoid undesirable mishaps — e.g. collisions — etc.)

space representation, localisation, mapping and perception are all needed.

The goal of this work was to research Bayesian models to deal with fusion, multi-

modality, conflicts, and ambiguities in perception, while simultaneously drawing inspi-

ration upon human perceptual processes and respective behaviours.

We will present a Bayesian framework for active multimodal perception of 3D

structure and motion which, while not strictly neuromimetic, finds its roots in the role

of the dorsal perceptual pathway of the human brain. Its composing models build

upon a common egocentric spatial configuration that is naturally fitting for the in-

tegration of readings from multiple sensors using a Bayesian approach. At its most

basic level, these models present efficient and robust probabilistic solutions for cy-

clopean geometry-based stereovision and auditory perception based only on binaural

cues, defined using a consistent formalisation that allows their use as building blocks

for the multimodal sensor fusion framework, both explicitly or implicitly addressing the

most important challenges of sensor fusion, for vision, audition and proprioception (in-

cluding vestibular sensing). Parallely, baseline research on human multimodal motion

perception presented in this text provides the support for future work in new sensor

models for the framework. This framework is then extended in a hierarchical fashion

by incrementally implementing active perception strategies, such as active exploration
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based on entropy of the perceptual map that constitutes the basis of the framework

and sensory saliency-based behaviours.

The computational models described herewith support a real-time robotic imple-

mentation of multimodal active perception to be used in real-world applications, such

as human-machine interaction or mobile robot navigation.

With this work, we also hope to be able to address questions such as: Where are

the limits on optimal sensory integration behaviour? What are the temporal aspects

of sensory integration? How do we solve the “correspondence problem” for sensory

integration? How to answer the combination versus integration debate? How to an-

swer the switching versus weighing controversy? What are the limits of crossmodal

plasticity?

xiv



Sumário

Para extrair informação crucial do meio circundante, os seres humanos recorrem a

pistas provenientes de múltiplas fontes sensoriais. Tendo como objectivo a utilização de

robôs como companheiros, somos motivados no sentido de desenvolver um sistema de

representação de conhecimento inspirado no que sabemos sobre o Homem. Apesar dos

últimos desenvolvimentos, sem dúvida importantes, resultantes da investigação mais

recente nesta área, estamos ainda longe de ter chegado a conceitos e algoritmos que

interpretem o espaço e que sejam simultaneamente capazes de lidar com a complexidade

do meio ambiente.

Através da compreensão de como os animais (mais concretamente, o Homem) nave-

gam e constroem as suas próprias representações do espaço circundante, os fenómenos

observados podem ser aplicados em robótica. De forma a obter-se um sistema ro-

busto e fiável para navegação (isto é, para coordenar o movimento do robô no seu

ambiente, manipular objectos nesse ambiente, evitar contratempos indesejados, como

colisões, etc.), representação e localização espacial, mapeamento e percepção são todos

essenciais.

O objectivo deste trabalho consistiu na investigação de modelos probabiĺısticos

baseados na regra de Bayes, capazes de lidar com fusão multissensorial, e conflitos e

ambiguidades perceptuais, inspirados na percepção humana e comportamentos respec-

tivos.

Iremos apresentar um sistema probabiĺıstico para percepção multimodal activa de

estrutura e movimento tridimensionais que, apesar de não ser neuromimética no sentido

estrito, encontra as suas ráızes no papel desempenhado pelo sistema perceptual dor-

sal do cérebro humano. Os seus modelos constituintes baseiam-se numa representação

espacial egocêntrica comum, representação esta que se adequa de forma natural à inte-

gração de leituras provenientes de diferentes sensores, usando uma abordagem proba-

biĺıstica baseada na regra de Bayes. No seu ńıvel mais básico, este modelos constituem

soluções eficientes e robustas para estereovisão e percepção auditiva baseada unica-

mente em grandezas binaurais, e são definidos usando um formalismo matemático
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consistente, que permite o seu uso como blocos de construção para um sistema de

fusão multissensorial; por sua vez, este sistema pretende ajudar a resolver desafios

importantes em termos de fusão de sensações visuais, auditivas e resultantes de propri-

ocepção (incluindo percepção vestibular). Paralelamente, a investigação base em per-

cepção multissensorial humana de movimento apresentada nesta dissertação suportará

trabalho futuro em novos modelos de sensor. O sistema multissensorial é depois com-

plementado de uma forma hierárquica através da modelação incremental de estratégias

de percepção activa, tal como a exploração activa baseada na entropia do mapa per-

ceptual que constitui a base do sistema e também os comportamentos resultantes de

saliência sensorial. Os modelos computacionais descritos neste texto suportam um sis-

tema robótico com capacidade de funcionamento em tempo-real, a ser utilizado em

aplicações práticas, tal como na interacção homem-máquina ou na navegação de robôs

móveis.

Com este trabalho, queremos também tentar responder a perguntas como: Quais

os limites para a integração multissensorial óptima? Quais os aspectos temporais dessa

integração? Como resolver o “problema da correspondência”? Como responder à

polémica “combinação versus integração”? Como responder à controvérsia “comutação

versus pesagem”? Quais os limites da plasticidade intermodal?
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Chapter 1

Introduction

1.1 General Motivations

Consider the following scenario (Fig. 1.1) — a moving observer is presented with

a non-static 3D scene containing several moving entities, probably generating some

kind of sound: how does this observer perceive the 3D structure, motion trajectory

and velocity of all entities in the scene, while taking into account the ambiguities and

conflicts inherent to the perceptual process?

Both humans and robots alike operate in a world of sensory uncertainty. Robotics

researchers are used to having to deal with perceptual error propagation from sensor

accuracy and precision ratings, discretisation due to analogue-to-digital transforma-

tions, approximation truncations, and round-off effects from numeric representation

limitations (i.e., finite number of digits used by digital memories and processing units).

When considering biological perception systems, introspection fools us into thinking

that perception is deterministic and certain; however, many factors contribute to lim-

iting the reliability of information about the world taken using biological sensors —

ambiguity due to physical constraints (e.g. the mapping of 3D objects into 2D images,

or the “aperture problem” in local motion detection), neural noise introduced in the

early stages of sensory coding, and structural constraints on neural representations

and computations (e.g. the density of receptors in the retina — see, for example,

Silva, Maia-Lopes, Mateus, Guerreiro, Sampaio, Faria, and Castelo-Branco [2008] —

the biological counterpart of discretisation) [Knill and Pouget 2004].

Indeed, any model of a real phenomenon is incomplete — hidden variables, not

taken into account in the model, influence it. The effect of these hidden variables is

that the model and the phenomenon never behave exactly alike. Uncertainty is the

direct and unavoidable consequence of incompleteness. No model may foresee exactly



2 Introduction

Artificial Observer 
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Figure 1.1: Setting for the perception of 3D structure, ego- and independent motion (human

observer image courtesy of 3DScience.com).

future observations, as these observations are biased by the hidden variables. No model

may either predict exactly the consequences of its decisions [Colas, Diard, and Bessière

2010].

Within the various currents attempting to solve this problem, including the so-

called logicists (traditional logic), calculists (fuzzy logic, Dempster-Shafer calculus,

etc.) and probabilists as defined by Pearl [1988], the often partially improperly called

“Bayesian approach” proposes probability theory as an alternative to symbolic logic

(i.e. Boolean logic) for rational reasoning in presence of incompleteness and uncertainty

[Jaynes 2003, Colas et al. 2010].

This approach deals with incompleteness and uncertainty with a two-step pro-

cess: learning and inference [Colas et al. 2010]. Learning transforms the irreducible

incompleteness into quantified uncertainty (i.e. probability distributions). These dis-

tributions result from both the preliminary knowledge of the reasoning subject and the

experimental data coming from the observation of the phenomenon [Colas et al. 2010,

Pearl 1988]. Inference is performed with the probability distributions obtained by the

first step [Colas et al. 2010]. To do so, we only require the two basic rules of Bayesian

inference (Bayes theorem and the normalisation rule).

On the other hand, ambiguity occurs when there is a possibility to be interpreted

in multiple ways. Often, an ambiguity arises in the case of an ill-posed and inverse

problem [Colas et al. 2010].

Sensation is commonly defined as the effect of some phenomenon on the senses.
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Perception, on the other hand, is recovering information on the phenomenon, given the

sensation. Indeed, it is often easy to predict what are the sensations corresponding to a

particular phenomenon. In this case, the direct function yields the sensation given the

phenomenon, whereas perception is the inverse problem of extracting the phenomenon

given the sensation [Poggio 1984, Yuille and Bülthoff 1996, Pizlo 2001]. In the Bayesian

framework, an inverse problem such as this is addressed using the symmetry of Bayes’

rule [Colas et al. 2010]. Moreover, perception is very often an ill-posed problem —

this is the case for most multistable percepts, where a given stimulus can be perceived

consistently in different ways [Colas et al. 2010, Castelo-Branco et al. 2002, Kozak and

Castelo-Branco 2008].

Perception has thus, unsurprisingly, as of recently been regarded as a computational

process of unconscious, probabilistic inference (although in the nineteenth century Her-

man von Helmholtz had already suggested this to be true for visual perception). Aided

by developments in statistics and artificial intelligence, researchers have begun to apply

the concepts of probability theory rigorously to problems in biological perception and

action [Knill and Pouget 2004]. One striking observation from this work is the myriad

ways in which human observers behave as near-optimal Bayesian observers. This ob-

servation, along with the behavioural and computational work on which it is based, has

fundamental implications for neuroscience, particularly in how we conceive of neural

computations and the nature of neural representations of perceptual variables [Knill

and Pouget 2004].

Humans are clearly not optimal in the sense that they achieve the level of perfor-

mance afforded by the uncertainty in the physical stimulus [Kozak and Castelo-Branco

2008]. Absolute efficiencies (a measure of performance relative to a Bayesian opti-

mal observer) for performing high-level perceptual tasks are generally low and vary

widely across tasks [Silva et al. 2008]. In some cases, this inefficiency is entirely due

to uncertainty in the coding of sensory primitives that serve as inputs to perceptual

computations; in others, it is due to a combination of sensory, perceptual and cognitive

factors. The real test of the Bayesian coding hypothesis is in whether the neural com-

putations that result in perceptual judgements or motor behaviour take into account

the uncertainty in the information available at each stage of processing. Psychophysical

work in several areas suggests that this is the case [Knill and Pouget 2004], being par-

ticularly evident in clinical models [Castelo-Branco, Mendes, Sebastião, Reis, Soares,

Saraiva, Bernardes, Flores, Pérez-Jurado, and Silva 2007].

Several authors argue that these data strongly suggest that the brain codes complex

patterns of sensory uncertainty in its internal representations and computations — see
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for example Knill and Pouget [2004], Pouget, Dayan, and Zemel [2000], Jacobs [2002],

Rao [2004; 2005], Zemel, Dayan, and Pouget [1997], Denève, Latham, and Pouget

[1999], Denève and Pouget [2004], Barber, Clark, and Anderson [2003].

On another perspective, the fact that there is strong evidence for a probabilistic

computational framework in the human brain for perception, also brings forth the

notion of optimal percept, or, in other words, that our percepts are our best guess as to

what is in the world, given both sensory data and prior experience [Weiss, Simoncelli,

and Adelson 2002, Geisler and Kersten 2002]. Such an “optimal guess” based on priors

also suggests an explanation to why biological perception systems, when faced with

perceptual scenarios which do not comply to the statistics of natural environments

or when impaired due to disease or cerebral lesions, often fail to perceive the world

as it is, substituting its exact description by the erroneous percepts called perceptual

illusions — these are a direct result of perceptual ill-posed problems [Colas et al. 2010,

Castelo-Branco 2005].

On the other hand, interaction and navigation requires maximal awareness of spa-

tial surroundings, which in turn is readily obtained through active attentional and

behavioural exploration of the environment. In animals with perception mainly based

on visual sensing, visual, auditory and even tactile stimuli elicit gaze shifts (head and

eye movements) to drive this active exploration.

For more than 20 years now, evidence has been accumulating from studies involv-

ing healthy human subjects that suggests parallel streams for visual processing for

perception versus visual processing for the control of action [Dyde and Milner 2002].

In fact, in the human brain, mainly two pathways or streams, anatomically separate

albeit interconnected in a complex fashion, have been found to be involved in sensory

processing: the dorsal pathway and the ventral pathway.

Two main theories have arisen over the exact nature of the function of these two

pathways, depending on whether emphasis is placed on the input distinctions or on

output requirements. Over 20 years ago, Ungerleider and Mishkin [Ungerleider and

Mishkin 1982, Mishkin, Ungerleider, and Macko 1983] described the functions of the two

cortical systems based on the former, as a distinction between “object” versus “spatial”

vision. Based on the latter, on the other hand, circa 10 years later, Goodale and Milner

[1992] advanced the argument that the distinction is perhaps more parsimoniously

described as one between visual “perception” and the visual control of “action”. In this

more recent account, the ventral stream of visual projections mediates the perception

of objects and their relations, whereas the dorsal stream mediates the visual control of

actions directed to these objects [Murphy, Carey, and Goodale 1998].
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In either case, it is consensual that the dorsal stream, commonly called the “Where”

or “How Pathway” depending on the theory, is associated with motion, representation

of object locations, and control of the eyes and arms, especially when visual information

is used to guide saccades or reaching, and that the ventral stream, commonly called

the “What Pathway”, is associated with form recognition and object representation.

The latter is additionally believed to be associated with storage of long-term memory.

It is also consensual nowadays that the widespread interconnections between the two

pathways imply that their performances are strongly correlated in the undamaged brain

(see, for example, Farivar [2009], Silver and Kastner [2009], Dyde and Milner [2002]),

while decorrelation is more evident in clinical models of dorsal stream dysfunction (see

Castelo-Branco et al. [2007]).

It is believed that there are multimodal perceptual feedback loops stemming from

other sensory cortices and processing regions in the brain to the visual pathways. On

the other hand, it is known that an additional phylogenetically older sensory processing

site is heavily permeated by multimodal signals: the superior colliculus (SC).

In humans, the superior colliculus is involved in the generation of saccadic eye move-

ments and eye-head coordination [Sparks 1999, Crawford, Ceylan, Klier, and Guitton

1999]. As with most larger vertebrates, sensory information that goes to the mesen-

cephalon will be relayed via the thalamus to the cerebral cortex for interpretation,

which, as has been mentioned previously, may be used to control the eyes in the dorsal

stream. On the other hand, the SC can also mediate involuntary oculomotor move-

ments without cortical involvement [Sparks 1999, Crawford et al. 1999]. However, when

voluntary control is operating, then the frontal eye fields (FEF — the cortical analogue

of the SC) mediate oculomotor behaviour.

The superior colliculus, also referred to as the optic tectum in other classes of

vertebrates besides mammals, contains a map of visual space. The superficial layers

of the SC receive a direct topographic projection from the contralateral retina. In

addition, both superficial and deep layers of the SC receive indirect retinotopic maps

from descending cortical projections and possibly from intrinsic SC connections. As

a result of these connections, SC units are excited by visual stimuli in a restricted

region of the visual field (receptive field) and are inhibited by stimuli located outside

of this region. The receptive fields are organized systematically across the surface of

the SC to form a visual map that represents contralateral space only and stops at

the representation of the vertical meridian (as opposed to the optic tectum, which

represents the entire visual field of the contralateral retina) [Knudsen and Brainard

1995].
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In the deep layers of the SC (and also in the superficial layers of the tectum in

the barn owl), units respond to auditory stimuli as well. Auditory units also exhibit

excitatory receptive fields that are surrounded by inhibitory regions, just like visual

neurons. Auditory receptive fields are larger than visual receptive fields. In the barn

owl, a nocturnal predator that relies heavily on sound localisation to capture prey,

auditory receptive fields average approximately 30
◦

in azimuth and 50
◦

in elevation

compared with visual receptive fields, which average only about 12
◦

in diameter. In

other species, such as cats and monkeys, auditory receptive fields are generally even

larger and for many neurons responses can be elicited by sounds located within an

entire hemifield [Knudsen and Brainard 1995].

However, even for neurons with large receptive fields, the strength of response

usually varies with the location of auditory stimuli so that strong responses are only

elicited when sounds arise from a much more restricted region of space, the auditory

best area. Just as with visual receptive fields, auditory best areas are systematically

organised across the SC, thereby creating a map of auditory space. The map of au-

ditory space (i.e. tonotopic representation), which is based on the tuning of neurons

to sound localisation cues, is approximately aligned with the map of visual space in

the SC. A close correspondence exists between the centres of auditory best areas and

visual receptive fields of neurons encountered in penetrations perpendicular to the SC

surface. Moreover, many neurons in the intermediate and deep layers of the SC re-

ceive convergent auditory and visual information. These neurons have closely aligned

auditory and visual receptive fields and thus form a bimodal space map [Knudsen and

Brainard 1995].

In summary, the SC receives visual, as well as auditory, inputs in its superficial

layers, and the deeper layers of the colliculus are connected to many sensorimotor areas

of the brain [Knudsen and Brainard 1995, Wallace, Meredith, and Stein 1998]. The

colliculus as a whole is thought to help orient the head and eyes towards salient stimuli

[Sparks 1999, Crawford et al. 1999]. It contains a retinotopic visuoauditory spatial

map with polar configuration.

The spatial location of an object may be, in principle, represented with reference

to two fundamental classes of spatial coordinate frames: egocentric and allocentric. In

the egocentric frames, the position of objects is encoded with reference to the body

of the observer or, more specifically, to relevant body parts, such as the head, trunk,

and/or arm. Egocentric representations of objects may be used for the organization of

goal-directed movements, such as reaching a target or avoiding a dangerous stimulus.

In the allocentric coordinate frames, by contrast, objects are primarily represented
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with reference to their spatial and configurational properties, such as the relationships

among their different component parts and among different objects in the environment.

Representations encoding the configurational properties of objects may be useful for

their identification. Objects, in ecological conditions, are typically seen from a variety of

egocentric (observer-based) perspectives, suggesting a close interaction between body-

and object-based reference frames [Galati, Lobel, Vallar, Berthoz, Pizzamiglio, and

Bihan 2000].

In contrast to the perception of spatial layout, provided by the ventral stream, the

computation of spatial location, carried out by the dorsal stream, is entirely related

to the guidance of specific visuomotor actions, such as grasping an object, locomoting

around obstacles, or gazing at different objects in a scene. As a consequence, the dorsal

stream mechanisms, as with the superior colliculus, do not compute the allocentric

location of a target object, i.e. its location relative to other objects in the scene,

but rather the egocentric coordinates of the location of the object with respect to the

observer [Murphy et al. 1998].

In short, both dorsal and ventral visual systems compute information about spatial

location, but in very different ways: allocentric spatial information about the layout

of objects in the visual scene is computed by the ventral stream mechanisms, which

mediate perception, while precise egocentric spatial information about the location

of an object in a body-centred frame of reference is computed by the dorsal stream

mechanisms, which mediate the visual control of action [Murphy et al. 1998]. On the

other hand, direction and distance in egocentric representations are believed to be

separately specified by the brain [Gordon, Ghilardi, and Ghez 1994, McIntyre, Stratta,

and Lacquaniti 1998].

The question of error in visual perception of egocentric distance (i.e. depth away

from the observer) has been a hot topic of discussion for several years now [Cutting

and Vishton 1995]. An important fact about results from distance judging experiments

is that mean egocentric depth (distance away from the observer) is systematically

foreshortened when compared to frontal depth (distances extended laterally in front of

the observer, orthogonal to a given line of sight); indeed, many would suggest that such

judgements would be foreshortened still further. Direct scaling and related methods

are often criticized as being open to “cognitive correction;” most adults know that

distances foreshorten as they increase and could easily compensate judgements with

this knowledge [Cutting and Vishton 1995].

In any case, it is reasonably consensual that the shortcomings of absolute or quasi-

absolute visual depth cues can be compensated, either by top-down influences, as stated
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above, or even by other visual depth cues, in both the so-called “personal space” (the

zone immediately surrounding the observer’s head, generally within arm’s reach and

slightly beyond, within 2 m range) and “action space” (circular region just beyond

personal space, which may be acted upon reasonably quickly, directly or indirectly, by

the observer — the utility of disparity and motion perspective decline to an effective

threshold value of 10% at about 30 m, and thus Cutting and Vishton [1995] claim this

effectively provides the outer boundary of this space), or perhaps even a bit farther,

while the foreshortenings become virtually unavoidable beyond this point (the so-called

“vista space” [Cutting and Vishton 1995]). Distance or depth errors are apt to occur in

distance portions of the visual field because cues of depth are attentuated or are below

threshold and therefore are unable to support the perception of depth between distant

objects at different positions [Cutting and Vishton 1995]. So, even more important

than the actual perceptual underestimation of depth become just-discriminable depth

thresholds, which have been usually plotted as a function of the log of distance from

the observer, with analogy to contrast sensitivity functions based on Weber’s fraction

[Cutting and Vishton 1995].

These findings support the construction of a framework that allows fast processing

of perceptual inputs to build a perceptual map of space so as to promote immediate

action on the environment (as in the dorsal stream and superior colliculus), effectively

postponing data association such as object segmentation and recognition (as in the

ventral stream) to other stages of processing — this would be analogous to a tennis

player being required to hit a ball regardless of perception of its texture properties.

This framework might be considered as bearing the spherical (i.e. coding 3D distance

and direction) spatial configuration counterpart of the dorsal stream/superior colliculus

egocentric representations in the brain. Moreover, the idea of constructing a short-term

perceptual memory performing efficient, lossless compression through log-partitioning

of depth seems to be reasonably supported by human depth perception and the just-

discriminable depth thresholds phenomenon.

In conclusion, in this text we propose a bioinspired perceptual model with focus on

Bayesian visuoauditory integration supported by proprioception (including vestibular

sensing) that serves as a short-term spatial memory framework for active perception

and also sensory control of action, with no immediate interest in object perception.

The computational models described herewith will support the construction of a si-

multaneously flexible and powerful robotic implementation to be used in real-world

applications, such as human-machine interaction or mobile robot navigation.
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1.2 Related Work

Our goals, stated in the last sentence of the previous text, imply: the use of an

accurate representation of metric space for multisensory-based perception, with support

for the analysis of the temporal evolution of the occupation of that space; the use of

that representation with the purpose of linking perception to action (both in the sense

on acting upon the environment itself, but also on acting to redirect the sensors so as

to make perception a dynamic process).

Fusing computer vision, binaural sensing and vestibular sensing using a unified

framework, to the author’s knowledge, has never been addressed. In fact, the extension

of the well-known probabilistic occupancy grid model to an egocentric, log-spherical

configuration as a solution to problems remotely similar to the ones presented in this

text is also unprecedented, as far as is known by the author.

Metric maps are very intuitive, yield a rigorous model of the environment and

help to register measurements taken from different locations. Grid-based maps — the

most popular metric maps in mobile robotics applications — have been widely used

to represent the environments’ geometry through sets of polyhedra. Although metric

maps allow for the storage of a high level of detail of the environment, their main

shortcoming is that they are not particularly not well suited for exploration, since

they do not scale gracefully as the surveying region increases in size [Rocha 2005].

They are, on the other hand, of extreme usefulness to promote direct action, such as

in manipulation or obstacle avoidance tasks, where precise size and time-to-collision

estimates are needed.

One of the most popular grid-based maps is the occupancy grid, which is a dis-

cretised random field where the probability of occupancy of each cell is kept, and the

probability values of occupancy of all cells are independent between each other [Moravec

and Elfes 1985, Moravec 1988, Elfes 1989, Pagac, Nebot, and Durrant-Whyte 1998].

This geometric model has been extensively used in robotics mainly due to its simplic-

ity and suitability for decision-theoretic approaches. The absence of an object based

representation permits the ease of fusing low level descriptive sensory information onto

the grids without necessarily implicating data association.

The main hypothesis of occupancy grids is that the state of each cell is considered

independent of the states of the remaining cells on the grid. This assumption effectively

breaks down the complexity of state estimation — as a matter of fact, complete esti-

mation of the state of the grid resumes to applying N times the cell state estimation

process, N being the total number of cells that compose the grid.

This assumption, however advantageous it may be to achieve close-to-real-time
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performances, is not without its drawbacks: more specifically, there may be a trade-off

in precision, specially when considering sensor readings that affect several adjacent

cells. Nevertheless, this trade-off has been found in practice to be mostly irrelevant

given the requirements of the majority of applications.

Rocha, Dias, and Carvalho [2005a], Rocha [2005] introduced an upgraded version

of the occupancy map first introduced by Stachniss and Burgard [2003], wherein the

notion of occupancy grid was augmented in order to avoid a strictly binary representa-

tion of each cell’s occupancy (i.e., free or occupied) through the replacement of these

representations with continuous random variables encoding the percentage of occupancy

of that cell (dubbed “cell coverage” by the authors), refining it even further through

the use of probability distributions over the occupancy percentage values. They inte-

grated a simple implementation of Bayesian filtering to address scene dynamics and

implement temporal consistency.

More recently, Coué, Pradalier, Laugier, Fraichard, and Bessière [2006] and Tay,

Mekhnacha, Chen, Yguel, and Laugier [2007] expanded on the occupancy grid by ex-

plicitly introducing Bayesian filtering. These versions of the occupancy grid inherit the

advantages of the original, adding to it a further advantage, by modelling the dynamics

of the environment and by enforcing robustness relative to object occlusions through

the use a novel two-step mechanism which permits taking the sensor observations his-

tory and the temporal consistency of the scene into account.

This approach is derived from the Bayesian filtering approach, which explains why

these operations together with the occupancy maps are called by the authors Bayesian

Occupancy Filters (BOF). The differences between the model by Coué et al. and by

Tay et al. rely on the fact that the former use a compact 4D formulation to store

the information regarding 2D position and 2D velocity estimates which allows the

representation of overlapping objects, while the latter use a 2D formulation which

allows for the inference of velocity distributions.

Bayes filters [Jazwinsky 1970] address the general problem of estimating the state

sequence xk, k ∈ N of a system given by:

xk = fk(xk−1, uk−1, wk) (1.1)

where fk is a possibly nonlinear transition function, uk−1 is a “control” variable (e.g.

speed or acceleration) for the sensor which allows to estimate its egomotion between

time k − 1 and time k, and wk is the process noise. This equation describes a Markov

process of order one.

Let zk be the sensor observation of the system at time k. The objective of the
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Figure 1.2: The Bayesian Occupancy Filter as a recursive loop.

filtering is to recursively estimate xk from the sensor measurements:

zk = hk(xk, vk) (1.2)

where hk is a possibly nonlinear function and vk is the measurement noise. This

function models the uncertainty of the measurement zk of the system’s state xk.

In other words, the goal of the filtering is to recursively estimate the probability

distribution P (Xk|Zk), known as the posterior distribution. In general, this estimation

is done in two stages: prediction and estimation. The goal of the prediction stage is

to compute an a priori estimate of the target’s state known as the prior distribution.

The goal of the estimation stage is to compute the posterior distribution, using this a

priori estimate and the current measurement reading of the sensor.

Exact solutions to this recursive propagation of the posterior density do exist in

a restrictive set of cases. In particular, the Kalman filter [Kalman 1960, as cited by

Welch and Bishop 2006] is an optimal solution when functions fk and hk are linear

and the noise terms wk and vk are Gaussian. But, in general, solutions cannot be

determined analytically and an approximate solution has to be computed.

In this case, the state of the system is given by the occupancy state of each cell

of the grid, and the required conditions for being able to apply an exact solution

such as the Kalman filter are not always verified. Moreover, the particular structure

of the model (occupancy grid) and the real-time constraint coming from most robotic

applications, leads to the development of the concept of the Bayesian Occupancy Filter.

This filter consists of estimating the occupancy state using the Bayesian filter two-step

mechanism, as depicted in Fig. 1.2.

In our specific application domain, where a 3D metric and egocentric representation
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is required, common occupancy grid configurations which assume regularly partitioned

Euclidean space to build the cell lattice are not appropriate:

1. Most sensors, vision and audition being notable examples, are based on a process

of energy projection onto transducers, ideally yielding a pencil of projection lines

that converge at the egocentric reference origin; consequently, they are naturally

disposed to be directly modelled in polar or spherical coordinates. The only ex-

ample of the use of such a configuration known to the author was presented by

Zapata, Jouvencel, and Lépinay [1990] — the advantages of using such a repre-

sentation directly in robot navigation are clearly stated therewith, in particular

in motion planning for fast mobile robots.

2. Implementation-wise, regular partitioning in Euclidean space, while still manage-

able in 2D, renders temporal performances impratical in 3D when fully updating

a panoramic grid (i.e. performing both prediction/estimation for all cells on the

grid) with satisfactory size and resolution (typically grids with much more than

a million cells). There are, in fact, two solutions for this problem: either non-

regular partitioning of space (e.g. octree compression), or regular partitioning

of log-distance space. Interestingly enough, as mentioned above, the latter also

accounts for just-discriminable depth thresholds found in human visual percep-

tion — an example of an Euclidean solution following a similar rationale was

presented by Dankers, Barnes, and Zelinsky [2005].

Active perception has been an object of study in robotics for decades now, specially

active vision, which was first introduced by Bajcsy [1985] and later explored by Aloi-

monos, Weiss, and Bandyopadhyay [1987]. Many perceptual tasks tend to be simpler if

the observer is active and controls its sensors [Aloimonos et al. 1987]. Active perception

is thus an intelligent data acquisition process driven by the measured, partially inter-

preted scene parameters and their errors from the scene. The active approach has the

important advantage of making most ill-posed perception tasks tractable [Aloimonos

et al. 1987].

Recent work in active vision by Tsotsos and Shubina [2007] and Bohg, Barck-

holst, Huebner, Ralph, Rasolzadeh, Song, and Kragic [2009], the former for target

search and the latter for object grasping, contrary to our solution use an explicit

representation for objects to implement active perception. On the other hand, several

solutions for target applications similar to ours avoid explicit object representation by

resorting to a bottom-up saliency approach such as defined by Itti, Koch, and Niebur

[1998] — examples of these would be Shibata, Vijayakumar, Conradt, and Schaal
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[2001], Breazeal, Edsinger, Fitzpatrick, and Scassellati [2001] and Dankers, Barnes,

and Zelinsky [2007]. Finally, Dankers, Barnes, and Zelinsky [2005] use an approach

similar to ours, with an egocentric three-dimensional occupancy grid for integrating

range information using active stereo and a Bayesian approach, also detecting 3D mass

flow. However, this solution suffers from the downside of using an Euclidean tesselation

of space, which complicates sensor models for map updating and fixation computation

due to the compulsory use of ray-tracing methods. These works, as most solutions in

active perception, use a behavioural approach; an alternative is a probabilistic approach

that attempts to reduce uncertainty on a part of the world state, modelled as belief

[de Croon, Sprinkhuizen-Kuyper, and Postma 2009]. Our work intends to combine

both variants into a coherent, albeit more powerful approach.

Active multisensory perception using spatial maps has, contrastingly, been the ob-

ject of study since only much recently. Few other explicit models exist, although many

artificial perception systems include some kind of simple attention module that drives

gaze towards salient auditory features. As an example of a full-fledged multisensory

attention model, Koene, Morén, Trifa, and Cheng [2007] present a general architecture

for the perceptual system of a humanoid robot featuring multisensory (audiovisual)

integration, bottom-up salience detection, top-down attentional feature gating and re-

flexive gaze shifting, which is of particular relevance to our work. The complete system

focuses on the multisensory integration and desired gaze shift computation performed

in the “Superior Colliculus (SC)” module [Koene et al. 2007]. This allows the robot to

orient its head and eyes so that it can focus its attention on audio and/or visual stimuli.

The system includes mechanisms for bottom-up stimulus salience based gaze/attention

shifts (where salience is a function of feature contrast) as well as top-down guided search

for stimuli that match certain object properties. In order to facilitate interaction with

dynamic environments the complete perceptual-motor system functions in real-time

[Koene et al. 2007].

As with Koene et al. [2007], our solution implements active visuoauditory percep-

tion, adding to it vestibular sensing/proprioception so as to allow for sensor fusion

given a rotational egomotion. However our solution differs from purely saliency-based

approaches in that it also implements an active exploration behaviour based on the

entropy of the occupancy grid, so as to promote gaze shifts to regions of high uncer-

tainty.
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1.3 Contributions of This Work and Structure of

the Dissertation

Our work will contribute in providing a rather complete framework for active multi-

modal perception — introducing an approach which, while not strictly neuromimetic,

finds its roots in the role of the dorsal perceptual pathway of the human brain —

that, as mentioned above, will support the construction of a simultaneously flexible

and powerful robotic implementation to be used in real-world applications, such as

human-machine interaction or mobile robot navigation.

Its main strength lies on the fact that it offers a solution which is naturally fitting

for acting upon the environment and also for the integration of readings from multiple

sensors, since both processes inherently depend on egocentric reference frames.

After presenting our general motivations in this chapter, we mainly expect to

demonstrate our contributions in the remainder of this dissertation (which were also

reported in the publications listed in Appendix C and referred to in the items below),

comprising:

• The development of a Bayesian framework to support active multimodal per-

ception research (chapter 2 and Ferreira, Bessière, Mekhnacha, Lobo, Dias, and

Laugier [2008a], Ferreira, Pinho, and Dias [2008c], Pinho, Ferreira, Bessière, and

Dias [2008], Ferreira, Pinho, and Dias [2008b]) which:

– Allowed the definition of a coherent experimental paradigm.

– Promoted a batch of preliminary baseline studies of human visuoauditory

motion perception.

– Spurred the construction of a robotic experimental platform for active mul-

timodal perception.

– Deals with perceptual uncertainty and ambiguity using a novel spatial con-

figuration for an occupancy grid representation, offering some adaptive in-

gredients that would form a reasonable bioinspired basis for a full-fledged

robotic perception system.

– Offers efficient, robust and novel probabilistic solutions for cyclopean

geometry-based stereovision and auditory perception based only on binaural

cues.

– Deals with sensor fusion in a natural way, consistent with most of the in-

herent properties of sensation.
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– Allows for fast processing of perceptual inputs to build a spatial represen-

tation that promotes immediate action on the environment, both for active

perception, and for manipulation and navigation purposes.

• The design and execution of baseline experiments of human multimodal motion

perception (chapter 3), namely:

– A baseline experiment to determine the influence of horizontal-vertical

anisotropies on visual motion perception.

– A baseline experiment to determine the influence of visual and auditory con-

text when the auditory and visual modalities are attended to, respectively.

• The development of a GPU-based implementation of a real-time solution for

active exploration using the aforementioned framework, capitalising on the po-

tential for parallel computing of most of its algorithms (chapter 4 and Ferreira

et al. [2008b; 2009a], Lobo et al. [2009], Ferreira et al. [2009b; 2010]).

• The implementation of a hierarchical Bayesian active perception system that

simulates several bottom-up-driven human behaviours (chapter 5 and Ferreira

and Dias [2010]), exhibiting the following desirable properties:

Emergence — High-level behaviour results from low-level interaction of simpler

building blocks.

Scalability — Seamless integration of additional inputs is allowed by the

Bayesian Programming formalism used to state the models of the frame-

work.

Adaptivity — Initial “genetic imprint” of distribution parameters may be

changed “on the fly” through parameter manipulation, thus allowing for the

implementation of goal-dependent behaviours (i.e. top-down influences).

A supporting website — http://paloma.isr.uc.pt/~jfilipe/

BayesianMultimodalPerception — was developed as a companion to this text,

for dissemination purposes. Due to the dynamical nature of the phenomena studied

herewith and of the perceptual framework developed throughout this work, referral to

the animations and videos available online at this site is recommended.

http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception
http://paloma.isr.uc.pt/~jfilipe/BayesianMultimodalPerception
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Chapter 2

A Bayesian Framework for Active

Multimodal Perception Research

2.1 An Experimental Paradigm for Multimodal

Perception Research

As depicted on Fig. 2.1 on the following page, the objectives of our work are,

in general terms, to experimentally study biological (human) models of integrated

visual, auditory and vestibular perception, apply them to artificial platforms with

artificial sensors performing the same tasks, test them, and ultimately revise the initial

models in a feedback fashion, all this under a Bayesian modelling framework, ultimately

following a process inspired by the Bayesian ideal observer analysis as defined by

Geisler [1989a;b; 2003] and applied to perceptual model development by Schrater and

Kersten [2001].

To support the attainment of this objective, we believe that the availability of a

unified framework for experimental procedures is essential. A way of achieving this con-

sistency is to carefully delineate the interactions between the experimental techniques,

the models, the inputs to the system and the outputs provided by the techniques,

ultimately relating them within a timeline, as shown on Figure 2.2.

Given its input→ system→ output nature, this framework can be easily extended

to experiments involving artificial observers (in fact, the ideal observer is already an

artificial observer), thus providing a unified solution for the experiments to be con-

ducted.
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Figure 2.1: Experimental paradigm for multimodal perception research.
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Figure 2.2: A unified framework for experimental procedures. The ideal observer (i.e., the

tentative model) is interchangeable with a human observer (i.e., the subject under study)

and performances can thus be compared. As can be seen in the schematic, experimental

techniques may include, but are not limited to, psychophysics, electrophysiology, fMRI, body

tracking, etc.
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Figure 2.3: View of the first version of the Integrated Multimodal Perception Experimental

Platform (IMPEP), on the left, and current version on the right. The latter added vergence

capabilities to the stereovision system besides improved motor control and conditioning. The

active perception head mounting hardware and motors were designed by the Perception on

Purpose (POP - EC project number FP6-IST-2004-027268) team of the ISR/FCT-UC, and

the sensor systems mounted at the Mobile Robotics Laboratory of the same institute, within

the scope of the Bayesian Approach to Cognitive Systems project (BACS - EC project number

FP6-IST-027140).

2.2 The Integrated Multimodal Perception Exper-

imental Platform

2.2.1 Platform description

To support our research work, an artificial multimodal perception system (IMPEP

— Integrated Multimodal Perception Experimental Platform) has been constructed at

the ISR/FCT-UC consisting of a stereovision, binaural and Inertial Measuring Unit

(IMU) setup mounted on a motorised head, with gaze control capabilities for image

stabilisation and perceptual attention purposes — see Fig. 2.3.

In the current version of the platform, the stereovision system is implemented using

a pair of Guppy IEEE 1394 digital cameras from Allied Vision Technologies (http:

//www.alliedvisiontec.com), the binaural setup using two AKG Acoustics C417

linear microphones (http://www.akg.com/) and an FA-66 Firewire Audio Capture

interface from Edirol (http://www.edirol.com/), and the miniature inertial sensor,

Xsens MTi (http://www.xsens.com/), provides digital output of 3D acceleration, 3D

rate of turn (rate gyro) and 3D earth-magnetic field data for the IMU. Initial pitch

and roll position are taken from the initial moment with the sensor at rest using the

gravity acceleration.

http://www.alliedvisiontec.com
http://www.alliedvisiontec.com
http://www.akg.com/
http://www.edirol.com/
http://www.xsens.com/
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Figure 2.4: Cyclopean geometry for stereovision. The use of cyclopean geometry (pictured

on the left for an assumed frontoparallel configuration) allows direct use of the egocentric

reference frame for depth maps taken from the disparity maps yielded by the stereovision

system (of which an example is shown on the right).

2.2.2 Sensory processing

Vision system

As mentioned in the introductory chapter, several authors argue that current evi-

dence strongly suggests that the brain codes complex patterns of sensory uncertainty

in its internal representations and computations. One such representation is believed

to be neural population coding (e.g., average firing rate) — see for example Knill and

Pouget [2004], Pouget et al. [2000], Jacobs [2002], Rao [2005], Zemel et al. [1997],

Denève et al. [1999], Barber et al. [2003].

Our motivations suggest a tentative data structure analogous to neuronal popula-

tion activity patterns to represent uncertainty in the form of probability distributions

[Pouget et al. 2000]. Thus, a spatially organised 2D grid may have each cell (corre-

sponding to a virtual photoreceptor in the cyclopean view — see Fig. 2.4) associated to

a “population code” extending to additional dimensions, yielding a set of probability

values encoding a N -dimensional probability distribution function or pdf (see Fig. 2.5).

The stereovision algorithm used with the first version of the IMPEP head was

an adaptation of the fast and simple coherence detection approach by Henkel [1998;

2000], which is easily converted from its deterministic nature into a probabilistic im-

plementation simulating the population code-type data structure. The workings of the

algorithm and our own adaptation are described in the following lines.

Disparity estimators in real biological networks can and will vary in various prop-

erties, notably in the separation of the centre of their receptive fields in the left and
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Figure 2.5: Population code data structure. On the left, a spatially organised 2D grid has

each cell (which might correspond, for example, to a specific area on the retina or a pixel on

a digital image) associated to a population code simulation extending to a third dimension,

represented on the right — i.e. a set of probability values of a neuronal population encoding

a pdf (in this example, for preferred directions). Note that this map does not precisely mimic

the cortical columnar architecture, and is just an approximation, and that the pdf can in fact

extend to more than a single dimension (e.g., if the encoded property would be local velocity,

two dimensions would be necessary so as to represent speed and direction).

right eye. Other possible parameters of interest are the spatial orientation, the scale

or the phase of the Gabor filter patches.

In the simplified network by Henkel, any type of disparity estimator can be used

in different spatial scales1. At a single scale, image data is fed diagonally into layers

of identical disparity units. This creates layers of units having a common and fixed

separation of receptive fields in the left and right eye. Disparity units stacked vertically

above each other sample space in a common view direction, and it is here where the

coherence detection scheme sets in. Disparity units operating at different scales are

simply included in the appropriate disparity stacks — all disparity units i in a stack

will have different, but slightly overlapping, working ranges Di = [δmini , δmaxi ] for valid

disparity estimates. An object with true disparity δ, seen in the common view direction

of the stack, will therefore split the stack into two disjunct classes: the class C of

estimators with δ ∈ Di for all i ∈ C, and the rest of the stack, C̄, with δ /∈ Di.

All disparity estimators. All disparity estimators ∈ C will code more or less the true

1The stereovision setup is assumed to be in frontoparallel configuration, or the stereo images
rectified to simulate such a configuration.
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disparity δ̂i ≈ δ, but the estimates of units belonging to C̄ will be subject to random

aliasing effects, depending in a complicated way on image content and disparity range

Di of the unit.

We will thus have δ̂i ≈ δ ≈ δ̂j whenever units i and j belong to C, and random

relationships otherwise. A simple coherence detection within each stack, i.e., searching

for the largest cluster of units within |δ̂i− δ̂j| < ε similarity measure2, will be sufficient

to single out C. The true disparity δ in the view direction of the stack can be simply

estimated as an average over all coherent coding units

δ̂ =
〈
δ̂i

〉
i∈C

(2.1)

which can be then used to construct a disparity map that can then be used to estimate

depth (i.e., 3D structure) by using the camera’s extrinsic parameters estimated during

calibration. Coherence maps are also constructed by calculating a simple verification

count derived from the relative number of coherently acting disparity units in each

stack n, i.e. by calculating the ratio

λ(k, i) = cn =
|C|
|C ∪ C̄|

(2.2)

where |•| denotes set cardinality (i.e. it is, in fact, an element count operator); collecting

all cn and ordering them by projection line, a coherence map composed of confidence

values λ(k, i) for each pixel (k, i) of the left image can be constructed. Probability

distribution functions corresponding to each projection line are then assembled using

values within this coherence map (their inverses are effectively uncertainty measures

that can be used to derive distribution standard deviations/variances) together with

the disparity estimates (used as expected values in the distributions) so as to build

the population code-type data structure with pdfs defined as likelihood functions; no

further assumption on the actual type of distributions is made at this stage.

The immediate advantage of such an implementation would be the availability

of confidence measures per depth measurement taken from the variance of the corre-

sponding pdf. A further advantage would be the possibility of future use of powerful

probabilistic/belief propagation methods to allow for temporal integration of several

frames. Finally, the probabilistic nature of such an algorithm would allow effortless

seeming with higher-level Bayesian cue integration modules.

To conclude, the cyclopean view of the stereovision system can also be easily derived

using this algorithm. Let ILi and IRi be the left and right input data of disparity unit

2The actual threshold value ε is chosen by the authors empirically as being between the 0.3 and
0.5, although they claim that the exact value is not critical for performance.
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Figure 2.6: The IMPEP Bayesian binaural system.

i, respectively. A simple average over the coherently coding disparity units

IC =
〈
ILi + IRi

〉
i∈C (2.3)

gives the image intensities of the cyclopean view.

Auditory system

The Bayesian binaural system presented herewith is composed of three distinct

and consecutive processors (Fig. 2.6): the monaural cochlear unit, which processes the

pair of monaural signals {x1, x2} coming from the binaural audio transducer system

by simulating the human cochlea, so as to achieve a tonotopic representation (i.e.

a frequency band decomposition) of the left and right audio streams; the binaural

unit, which correlates these signals and consequently estimates the binaural cues and

segments each sound-source; and, finally, the Bayesian 3D sound-source localisation

unit, which applies a Bayesian sensor model so as to perform localisation of sound-

sources in 3D space.

The first stages of auditory processing consist of cochlear and auditory periphery

processing, which produces what is called an auditory image model (AIM) [Patterson

et al. 1995]. The AIM processor implements a functional model of a cochlea that

simulates the phase-locked activity that complex sounds produce in the auditory nerve.

Spectral analysis, the first stage of the AIM, is performed by a bank of auditory

filters which converts each digitised wave that composes the stereo signal into an array
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of filtered waves. This processing is done using gammatone filters [de Boer 1975,

Immerseel and Peeters 2003], linearly distributed along a frequency scale measured

in equivalent rectangular bandwidths (ERBs), as defined by [Patterson, Holdsworth,

Nimmo-Smith, and Rice 1988] for simulating the cochlea, obtaining a model of basilar

membrane motion (BMM) through frequency band decomposition.

The second stage of the AIM simulates the mechanical/neural transduction process

performed by the inner haircells. It converts the BMM into a neural activity pattern

(NAP), which is the AIM’s representation of the afferent activity in the auditory nerve

[Patterson, Allerhand, and Giguère 1995]. In this stage the envelopes of the signals are

first compressed, and then subjected to halfwave rectification followed by a squaring

and lowpass filtering, resulting in m stereo audio signal pairs corresponding to m

frequency channels with respective frequency centre fkc ,
{
x′1(n), x′2(n)

}
fkc
, k = 1 · · ·m.

Sound waves arising from a source on our left will arrive at the left ear first. This

small, but perceptible, difference in arrival time (known as an ITD, interaural time

difference) is an important localisation cue and is detected by the inferior colliculus in

primates, which acts as a temporal correlation detector array, after the auditory signals

have been processed by the cochlea. Similarly, for intensity, the far ear lies in the head’s

“sound shadow”, giving rise to interaural level differences (ILDs) [King, Schnupp, and

Doubell 2001, Kapralos, Jenkin, and Milios 2003]. ITDs vary systematically with the

angle of incidence of the sound wave relative to the interaural axis, and are virtually

independent of frequency, representing the most important localisation cue for low

frequency signals (< 1500 Hz in humans). ILDs are more complex than ITDs in that

they vary much more with sound frequency. Low-frequency sounds travel easily around

the head, producing negligible ILDs. ILD values produced at higher frequencies are

larger, and are increasingly influenced by the filter properties of each external ear,

which imposes peaks and notches on the sound spectrum reaching the eardrum.

Moreover, when considering sound sources within 1 − 2 meters of the listener,

binaural cues alone can even be used to fully localise the source in 3D space (i.e.

azimuth, elevation and distance). Iso-ITD surfaces form hollow cones of confusion with

a specific thickness extending from each ear in a symmetrical configuration relatively

to the medial plane. On the contrary, iso-ILD surfaces, which are spherical surfaces,

delimit hollow spherical volumes, symmetrically placed about the medial plane and

centred on a point on the interaural axis [Shinn-Cunningham, Santarelli, and Kopco

2000]. Thus, for sources within 2 meters range, the intersection of the ILD and ITD

volumes is a torus-shaped volume [Shinn-Cunningham et al. 2000]. If the source is

more than 2 meters away, the change in ILD with source position is too gradual to
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provide spatial information (at least for an acoustically transparent head), and the

source can only be localised inside a volume within the cone of confusion delimited by

the respective iso-ITD surfaces [Shinn-Cunningham et al. 2000].

Given this background, we have decided to adapt the solution by Faller and Meri-

maa [Faller and Merimaa 2004a] to implement the binaural processor. Using this algo-

rithm, interaural time difference and interaural level difference cues are only considered

at time instants when only the direct sound of a specific source has nonnegligible energy

in the critical band and, thus, when the evoked ITD and ILD represent the direction of

that source (corresponding to the process involving the superior olivary complex (SOC)

and the central nucleus of the inferior colliculus (ICc) in mammals). They show how

to identify such time instants as a function of the interaural coherence (IC). The source

localisation suggested by the selected ITD and ILD cues are shown to imply the results

of a number of published psychophysical studies related to source localisation in the

presence of distractors, as well as in precedence effect conditions [Zurek 1987]. This

algorithm thus amplifies the signal-to-noise ratio and facilitates auditory scene anal-

ysis for multiple auditory object tracking, and is briefly summarised in the following

paragraphs — for more details, please refer to [Faller and Merimaa 2004a].

The ITD and IC, denoted respectively by τ(n) and c12(n), where n indexes the

sample currently being processed, are estimated from the normalised cross-correlation

functions of the signals from left and right ear for each centre frequency fc, respectively

x′1 and x′2. The normalisation of the cross-correlation function is introduced in order

to get an estimate of the IC, defined as the maximum value of the instantaneous

normalised cross-correlation function. This estimate describes the coherence of the left

and right ear input signals. In principle, it has a range of [0; 1], where 1 occurs for

perfectly coherent x′1 and x′2. However, due to the DC offset of the halfwave rectified

signals, the values of c12 are typically higher than 0 even for independent (nonzero) x′1

and x′2. Thus, the effective range of the interaural coherence c12 is compressed to [a; 1]

by the neural transduction. The compression is more pronounced (larger a) at high

frequencies, where the low pass filtering of the half-wave rectified critical band signals

yields signal envelopes with a higher DC offset than in the signal wave forms [Faller

and Merimaa 2004a].

The ILD, denoted as ∆L(n), is then computed using the signal levels at the corre-

sponding offsets [Faller and Merimaa 2004a]. Note that due to the envelope compression

the resulting ILD estimates will be smaller than the level differences between the ear

input signals. For coherent ear input signals with a constant level difference, the esti-

mated ILD (in dB) will be 0.23 times that of the physical signals [Faller and Merimaa
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2004a].

When several independent sources are concurrently active in free field, the resulting

cue triplets {∆L(n), τ(n), c12(n)} can be classified into two groups [Faller and Merimaa

2004a]: (1) Cues arising at time instants when only one of the sources has power in that

critical band. These cues are similar to the free-field cues — localisation is represented

in {∆L(n), τ(n)}, and c12(n) ≈ 1. (2) Cues arising when multiple sources have non-

negligible power in a critical band. In such a case, the pair {∆L(n), τ(n)} does not

represent the direction of any single source, unless the superposition of the source

signals at the ears of the listener incidentally produces similar cues. Furthermore,

when the two sources are assumed to be independent, the cues are fluctuating and

c12(n) < 1. These considerations motivate the following method for selecting ITD and

ILD cues. Given the set of all cue pairs, {∆L(n), τ(n)}, only the subset of pairs is

considered which occurs simultaneously with an IC larger than a certain threshold,

c12(n) > c0. This subset is denoted

{∆L(n), τ(n)|c12(n) > c0} (2.4)

The same cue selection method is applicable for deriving the direction of a source

while suppressing the directions of one or more reflections. When the “first wave front”

arrives at the ears of a listener, the evoked ITD and ILD cues are similar to the free-

field cues of the source, and c12(n) ≈ 1. As soon as the first reflection from a different

direction arrives, the superposition of the source signal and the reflection results in

cues that do not resemble the free-field cues of either the source or the reflection. At

the same time IC reduces to c12(n) < 1, since the direct sound and the reflection

superimpose as two signal pairs with different ITD and ILD. Thus, IC can be used as

an indicator for whether ITD and ILD cues are similar to free-field cues of sources or

not, while ignoring cues related to reflections.

Faller and Merimaa’s cue selection method, as the authors point out, can be seen

as a “multiple looks” approach for localisation. Multiple looks have been previously

proposed to explain monaural detection and discrimination performance with increas-

ing signal duration [Viemeister and Wakefield 1991]. The idea is that the auditory

system has a short-term memory of “looks” at the signal, which can be accessed and

processed selectively. In the context of localisation, the looks would consist of momen-

tary ITD, ILD, and IC cues. With an overview of a set of recent cues, ITDs and ILDs

corresponding to high IC values are adaptively selected and used to build a histogram

that provides a statistical description of gathered cues (see Fig. 2.7).

Finally, the binaural processor capitalises on the multiple looks configuration and
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Figure 2.7: Example of the use of an adaptation of the cue selection method proposed by

[Faller and Merimaa 2004a] using a 1 s “multiple looks” buffer. Represented in the figure is a

histogram of collected ITD cues (τ) corresponding to high IC levels (c12 > c0) for a particular

frequency channel of a 1 s audio snippet. This histogram is interpreted as a distribution

corresponding to the probability of the occurrence of ITD readings, which is then used as a

conspicuity map in order to perform a summary cross-correlogram over all frequencies (see

main text for more details).

implements a simple auditory scene analysis algorithm for detection and extraction of

important auditory features to build conspicuity maps and ultimately a saliency map,

thus providing a functionality similar to the role of the external nucleus of the inferior

colliculus (ICx) in the mammalian brain. The first stage of this algorithm deals with

figure-ground (i.e. foreground-background) segregation and signal-to-noise ratio. In

signal processing, the energy of a discrete-time signal x(n) is given by [Oppenheim and

Schafer 1989]

E =
∞∑
−∞

|x(n)|2

Using this notion, a simple strategy can be followed to selectively apply the multiple

looks approach to a binaural audio signal buffer so that only relevant audio snippets

are analysed. This strategy goes as follows: given a binaural signal buffer of N samples

represented by the tuple {x′1(n), x′2(n)}, the average of the energies of the component

signals x′1(n) and x′2(n) is

Eavg =

∑N
1 |x′1(n)|2 +

∑N
1 |x′2(n)|2

2
(2.5)

and can be used as a noise gate so that only when Eavg > E0 ITDs, ILDs and ICs triplets

are collected for the buffer, yielding multiple looks values only for relevant signals (just

the ITD-ILD pairs corresponding to high IC values are kept in conspicuity maps per

frequency channel), while every other buffer instantiation is labelled as irrelevant noise.

E0 can be fixed to a reasonable empirical value or be adaptive, as seems to happen with

human hearing. A set of results exemplifying this algorithm is presented on Fig 2.8.
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Figure 2.8: Binaural processing results of an approximately 30 second-long audio snippet of

a typical “cocktail party” scenario, with the main voice repeatidely calling out “Nicole, look

at me” approximately every 3 s, while other voices can be heard coming from sites close to

the robotic head, elsewhere in the lab. The active perception head was moved while the main

speaker was kept still, first keeping the speaker to the right and slowly travelling towards the

centre, then keeping the speaker to the left and again slowly moving towards the centre. Top

— the effect of the signal power-based figure-ground segregation noise gate is shown (dashed

line represents gate threshold); Middle — ITD estimates for the most salient sound; Bottom

— corresponding azimuth estimates. These results show the performance of the binaural

processor under difficult conditions, the only “failure” being the estimates corresponding to

the 14 s instant: for a signal power above the interest threshold, the background noise (i.e.,

some other voice in the lab) was more salient than the main voice.

Once the multiple looks information is gathered, since ITDs are proven to be stable

across frequencies for a specific sound source at a given azimuth regardless of range or

elevation, the ITD conspicuity maps may be summed over all frequencies, in a process

similar to what is believed to occur in the ICx, in computational terms known as a

summary cross-correlogram (again see Fig. 2.7). From the resulting one-dimensional

signal, the largest peaks may be taken as having been effected by the most important

sound-sources represented in the auditory image. Then, a search is made across each

frequency band to find the closest ITD and its ILD pair, for each reference ITD, thus

building n-sized vectors (for m = n − 1 frequency channels) for each relevant sound

source of the form
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Z = [τ,∆L(f 1
c ) · · ·∆L(fmc )] (2.6)

Inertial sensing system

To process the inertial data, we follow the Bayesian model proposed by Laurens

and Droulez [2006; 2005] of the human vestibular system, adapted here to the use of

inertial sensors. The aim is to provide an estimate for the current angular position and

angular velocity of the system, that mimics the human vestibular perception.

In this model, X, Y and Z refer to the three axes of the robotic vision head in

egocentric coordinates. The orientation of the system in space is encoded using a

rotation matrix Θ. Angular velocity of the head is encoded using the yaw y, pitch p

and roll r conventions. Yaw rotations are rotations around the Z axis; pitch around

the Y axis and roll around X. When a rotation consists of a combination of yaw, pitch

and roll rotation, the three rotations are applied successively and in this order.

Considering a small time increment δt the rotation update can be approximated

by

Θt+δt = Θt.R(δy, δp, δr) (2.7)

with R(δy, δp, δr) =

 c(δy).c(δp) c(δy).s(δp).s(δr)− s(δy).c(δr) c(δy).s(δp).c(δr) + s(δy).s(δr)

s(δy).c(δp) c(δy).c(δr) + s(δy).s(δp).s(δr) −c(δy).s(δr) + s(δy).s(δp).c(δr)

−s(δp) c(δp).s(δr) c(δp).c(δr)


where c(•) and s(•) are shorthand notations for cos(•) and sin(•), respectively, and

the instantaneous angular velocity is defined as the vector:

Ω =


δy/δt

δp/δt

δr/δt


Linear motion of the head is described by the position of the centre of the head in

a geocentric reference frame, defined as a position vector M . The linear acceleration

A is the second derivative of M over time. In our case we are only concerned with the

linear acceleration, since gravity will provide an absolute reference for orientation only

when A = 0. The state of our system at time t is therefore defined by (Θt,Ωt,At).
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The calibrated inertial sensors in the IMU provide direct egocentric measurements

of body angular velocity and linear acceleration (including gravity G). Given the

motion of the system, we can define the probability distribution of the sensory inputs.

The gyros will measure Ωt with added Gaussian noise, i.e. Φt = Ωt + ηtΦ, where

ηtΦ is a three-dimensional vector, the elements of which follow independent Gaussian

distributions with mean 0 and standard deviation σΦ.

The accelerometers will measure the gravito-inertial acceleration F with added

Gaussian noise, i.e. Υt = F t+ηtΥ, where ηtΥ is a three-dimensional vector, the elements

of which follow independent Gaussian distributions with mean 0 and standard deviation

σΥ. F is the resultant acceleration due to linear acceleration and gravity. Given the

geocentric body linear acceleration A and the system orientation Θ, we can compute

F . In a geocentric frame of reference gravity is a vector G = (0, 0,−9.81), and the

gravito-inertial acceleration is given by G −A, transforming to the egocentric frame

of reference we have

F = Θ−1.(G−A) (2.8)

The sensor data at time t is therefore defined by (Φt,Υt).

As suggested in [Laurens and Droulez 2006], even in the absence of any sensory

information, motion estimates for which the rotational velocity and acceleration are low

are more probable. This can be described in a simple way using a Gaussian distribution.

Having

N (x, µ, σ) =
e−(x−µ)2/(2.σ2)

√
2.π.σ2

the probability distribution for acceleration is given by P (At) ∝ N (|At|, 0, σA); simi-

larly for angular velocity Ω we have P (Ωt) ∝ N (|Ωt|, 0, σΩ).

2.3 Bayesian Models for Multimodal Perception of

3D Structure and Motion

2.3.1 Background and definitions

Taking into account the goals stated in the introductory section, the framework

for spatial representation that will be presented in the rest of this section satisfies the

following criteria:

• It is egocentric and metric in nature;
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log

Figure 2.9: Egocentric, log-spherical configuration of the Bayesian Volumetric Maps.

• It is an occupancy grid, allowing for a probabilistic representation of dynamical

spatial occupation of the environment, thus encompassing positioning, structure

and motion of objects, avoiding any need for any assumptions on the nature of

those objects, or in other words, for data association. Data association is thus

effectively postponed to higher-level processing.

Given these requirements, we chose a log-spherical coordinate system spatial con-

figuration (see Figure 2.9) for the occupancy grid that we have developed and will

refer to as Bayesian Volumetric Map (BVM), thus promoting an egocentric trait in

agreement with biological perception.

The BVM is primarily defined by its range of azimuth and elevation angles, and

by its maximum reach in distance ρMax, which in turn determines its log-distance base

through b = a
loga(ρMax−ρMin)

N ,∀a ∈ R, where ρMin defines the egocentric gap, for a given

number of partitions N , chosen according to application requirements. The BVM space

is therefore effectively defined by

Y ≡ ] logb ρMin; logb ρMax]× ]θMin; θMax]× ]φMin;φMax] (2.9)

In practice, the BVM is parametrised so as to cover the full angular range for

azimuth and elevation. This configuration virtually delimits a horopter for sensor

fusion.

Each BVM cell is defined by two limiting log-distances, logb ρmin and logb ρmax, two

limiting azimuth angles, θmin and θmax, and two limiting elevation angles, φmin and
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φmax, through:

Y ⊃ C ≡ ] logb ρmin; logb ρmax]× ]θmin; θmax]× ]φmin;φmax] (2.10)

where constant values for log-distance base b, and angular ranges ∆θ = θmax − θmin

and ∆φ = φmax−φmin, chosen according to application resolution requirements, ensure

BVM grid regularity. Finally, each BVM cell is formally indexed by the coordinates of

its far corner, defined as C = (logb ρmax, θmax, φmax).

To compute the probability distributions for the current states of each cell, the

Bayesian Program (BP) formalism, as first defined by Lebeltel [1999] and later consol-

idated by Bessière, Laugier, and Siegwart [2008], will be used throughout this text —

for more details on this formalism, please refer to Appendix A on page 121.

2.3.2 Multimodal sensor fusion using log-spherical Bayesian

Volumetric Maps

Sensor fusion advantages and challenges

The use of more than one sensor promotes a robustness increase on the observation

and characterisation of a physical phenomenon. In fact, using different types of sensors

allows for the dilution of each sensor’s individual weaknesses through the use of the

strengths of the remainder.

There is evidence that humans fuse perceptual cue information following mainly

two general strategies [Ernst and Bülthoff 2004]: combination, that expresses interac-

tions between sensory signals that are not redundant, and integration, that expresses

interactions between sensory signals that are redundant. Combination has the purpose

of maximising information coming from different cues, whilst the goal of integration is

to minimise variance in the sensory estimate to increase its reliability. For several esti-

mates resulting from combination to be integrated into a single estimate, they must be

in the same units and referred to the same coordinate system, and hence must undergo

a process called promotion [Ernst and Bülthoff 2004].

We will try to explicitly or implicitly address each of the challenges of sensor fusion

as described in [Ernst and Bülthoff 2004] using the BVM, for vision, audition and

proprioception (e.g. vestibular sensing). We propose to use proprioception as ancillary

information to promote visual and auditory sensing to satisfy the requirements for

integration, enumerated above.
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Using Bayesian filtering for visuoauditory integration

The independency hypothesis postulated earlier allows for the independent pro-

cessing of each cell, and hence the Bayesian Program should be able to perform the

evaluation of the state of a cell knowing an observation of a particular sensor.

The Bayesian Program presented in Fig. 2.10 is based on the solution presented

by Tay et al. [Tay et al. 2007], adapted so as to conform to the BVM egocentric, three-

dimensional and log-spherical nature — we will now describe the underlying model in

detail. In the spirit of Bayesian programming, we start by stating and defining the

relevant variables:

• C ≡ (logb ρmax, θmax, φmax) ∈ Y is random variable denoting a log-spherical index

which simultaneously localises and identifies the reference BVM cell, as has been

defined in section 2.3.1. It is used as a subscript of most of the random variables

defined in this text, so as to explicitly state their relation to cells in the grid.

• AC ≡ (logb ρmax, θmax, φmax) ∈ AC ⊂ Y is a random variable that denotes a

hypothetical antecedent cell of reference cell C. The set of allowed antecedents

AC of cell C is composed by the N + 1 cells on the BVM grid from which

occupancy of the reference cell at the current time instant is allowed by the model

to originate at the previous time instant, caused by the possible movement of an

object from one instant to the other, from a specific AC to C. The number of

possible antecedents of any cell is arbitrary; in the case of the present work, we

considered N + 1 = 7 antecedents: two immediate neighbours in distance, two

immediate neighbours in azimuth, and two immediate neighbours in elevation,

and cell C itself.

• OC is a binary variable denoting the occupancy [OC = 1] or emptiness [OC = 0]

of cell C; O−1
C denotes the occupancy state that is considered in the prior distri-

bution for occupancy for cell C if its effective antecedent is assumed to be known,

in other words, considering that an object occupying a specific AC was moved to

C.

• VC denotes the dynamics of the occupancy of cell C as a vector signalling local

motion between this cell and its antecedents, discretised into N+1 possible cases

for velocities ∈ V ≡ {v0, · · · , vN}, with v0 signalling that the most probable

antecedent of AC is C, i.e. no motion between two consecutive time instants.

• Z1, · · · , ZS ∈ {“No Detection”} ∪ Z are independent measurements taken by S

sensors.
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Relevant variables:

C ∈ Y: indexes a cell on the BVM;

AC : identifier of the antecedents of cell C (stored as with C);

Z1, · · · , ZS ∈ {“No Detection”} ∪ Z: independent measurements taken by S sensors;

OC , O
−1
C : binary values describing the occupancy of cell C,

for current and preceding instants, respectively;

VC : velocity of cell C,

discretised into N + 1 possible cases ∈ V ≡ {v0, · · · , vN}.

Decomposition:

P (C AC OC O
−1
C VC Z1 · · ·ZS) =

P (AC)P (VC |AC)P (C|VC AC)P (O
−1
C |AC)P (OC |O

−1
C )

S∏
i=1

P (Zi|VC OC C)

Parametric forms:

P (AC): uniform;

P (VC |AC): histogram;

P (C|VC AC): Dirac, 1 iff clogb ρ
= alogb ρ

+ vlogb ρ
δt, cθ = aθ + vθδt and cφ = aφ + vφδt

(constant velocity assumption);

P (O
−1
C |AC): probability of preceding state of occupancy given set of antecedents;

P (OC |O
−1
C ): defined through transition matrix T =

[ 1−ε ε
ε 1−ε

]
,

where ε represents the probability of non-constant velocity;

P (Zi|VC OC C): direct measurement model for each sensor i, given by respective sub-BP.

Identification:

None.

Questions:

P (Oc Vc|z1 · · · zS c)→

P (Oc|z1 · · · zS c)

P (Vc|z1 · · · zS c)

Estimation (Joint Distribution)︷ ︸︸ ︷
P (VC OC Z1 · · ·ZS C) =

Observation︷ ︸︸ ︷
S∏
i=1

P (Zi|VC OC C)

Prediction︷ ︸︸ ︷∑
AC ,O

−1
C

P (AC)P (VC |AC)P (C|VC AC)P (O−1
C |AC)P (OC |O−1

C )

Estimation︷ ︸︸ ︷
P (VC OC |Z1 · · ·ZS C) =

Observation︷ ︸︸ ︷
S∏
i=1

P (Zi|VC OC C)

Prediction︷ ︸︸ ︷∑
AC ,O

−1
C

P (AC)P (VC |AC)P (C|VC AC)P (O−1
C |AC)P (OC |O−1

C )

∑
AC ,O

−1
C
,OC ,VC

P (AC)P (VC |AC)P (C|VC AC)P (O−1
C |AC)P (OC |O−1

C )

S∏
i=1

P (Zi|VC OC C)

︸ ︷︷ ︸
Normalisation

Figure 2.10: Bayesian Program for the estimation of Bayesian Volumetric Map current cell

state (far top), and corresponding Bayesian filter diagram (top middle — it considers only a

single measurement Z for simpler reading, with no loss of generality) and respective equation,

using two different formulations (bottom middle and far bottom).
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The parametric form and semantics of each component of the joint decomposition

are as follows:

• P (AC) is the distribution over all possible antecedents of cell [C = c]. In order to

represent the fact that cell [C = c] is a priori equally reachable from all possible

antecedent cells AC on the map, this probability distribution is chosen to be

uniform.

• P (VC |AC) is the distribution over all the possible velocities of a certain antecedent

of cell [C = c]; its parametric form is a histogram.

• P (C|VC AC) is a distribution that takes into account the probability of [C = c]

being reachable from its antecedent [AC = ac] with velocity [VC = vc]. In discrete

spaces, this distribution is a Dirac that is equal to one iff clogb ρ = alogb ρ+vlogb ρδt,

cθ = aθ + vθδt and cφ = aφ + vφδt, thus implying a constant velocity assumption

for the dynamic model.

• P (O−1
C |AC) is a conditional distribution that gives the probability of a preceding

occupancy state of cell [C = c], given a set of antecedent cells from which state

probabilities might propagate. In other words, for each antecedent [Ac = ac]

given the current cell [C = c], this probability is equal to P (Oac|ac) taken from

the BVM at the preceding time instant.

• P (OC |O−1
C ) is the conditional distribution over the current occupancy of cell

[C = c] given its preceding occupancy state. If ε is the probability of this cell

not following the constant velocity hypothesis, it is defined as a transition matrix

given by

T =

[
1− ε ε

ε 1− ε

]

• P (Zi|VC OC C) is the direct model for sensor i. It yields the probability of a mea-

surement given the occupancy OC and the velocity VC of cell C. Measurements

for all sensors are assumed to have been taken independently from each other 3.

The estimation of the joint state of occupancy and velocity of a cell is answered

through Bayesian inference on the decomposition equation given in Fig. 2.10. This

3This is a relatively safe assumption: in theory, readings from different photoreceptors follow
parallel processing pathways, as does audio in respect to the imaging system.
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inference effectively leads to the Bayesian filtering formulation as used in the BOF

grids. The discrete case of the Bayesian filter can formulated according to the question

to be answered through

P (VC OC Z1 · · ·ZS C) = P (VC OC |Z1 · · ·ZS C)P (C Z1 · · ·ZS)

P (VC OC |Z1 · · ·ZS C) =
P (VC OC Z1 · · ·ZS C)

P (C Z1 · · ·ZS)

P (VC OC |Z1 · · ·ZS C) =∑
AC ,O

−1
C
P (C AC OC O

−1
C VC Z1 · · ·ZS)∑

AC ,O
−1
C ,OC ,VC

P (C AC OC O
−1
C VC Z1 · · ·ZS)

(2.11)

Using the decomposition equation given in Fig. 2.10, we also have a more fa-

miliar formulation of the Bayesian filter on the same figure (middle), given that∏S
i=1 P (Zi|VC OC C) does not depend either on AC or O−1

C . Finally, substituting (2.11)

on this formulation, we get the answer to the Bayesian Program question, the global

filtering equation (bottom of Fig. 2.10).

The process of solving the global filtering equation can actually be separated into

three stages, in practice. The first stage consists on the prediction of the probabilities

of each occupancy and velocity state for cell [C = c], ∀k ∈ N, 1 ≤ k ≤ N ,

αc([OC = 1], [VC = vk]) =∑
AC ,O

−1
C

P (AC)P (vk|AC)P (C|vk AC)P (O−1
C |AC)P ([OC = 1]|O−1

C ) (2.12a)

αc([OC = 0], [VC = vk]) =∑
AC ,O

−1
C

P (AC)P (vk|AC)P (C|vk AC)P (O−1
C |AC)P ([OC = 0]|O−1

C ) (2.12b)

The prediction step thus consists on performing the computations represented by

(2.12) for each cell, essentially by taking into account the velocity probability P ([VC =

vk]|AC) and the occupation probability of the set of antecedent cells represented by

P (O−1
C |AC), therefore propagating occupancy states as a function of the velocities of

each cell.

The second stage of the BVM Bayesian filter estimation process is multiplying the

results given by the previous step with the observation from the sensor model, yielding,

∀k ∈ N, 1 ≤ k ≤ N ,
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βc([OC = 1], [VC = vk]) =

S∏
i=1

(
P (Zi|vk [OC = 1]C)

)
αc([OC = 1], vk) (2.13a)

βc([OC = 0], [VC = vk]) =

S∏
i=1

(
P (Zi|vk [OC = 0]C)

)
αc([OC = 0], vk) (2.13b)

Performing these computations for each cell [C = c] gives a non-normalised estimate

for velocity and occupancy for each cell. The marginalisation over occupancy values

gives the likelihood of each velocity, ∀k ∈ N, 1 ≤ k ≤ N ,

lc(vk) = βc([OC = 1], [VC = vk]) + βc([OC = 0], [VC = vk]) (2.14)

The final normalised estimate for the joint state of occupancy and velocity for cell

[C = c] is given by

P (OC [VC = vk]|Z1 · · ·ZS C) =
βc(OC , [VC = vk])∑

VC

lc(VC)
(2.15)

The related remaining questions of the BP for the BVM cell states, the estimation

of the probability of occupancy and the estimation of the probability of a given velocity,

are given through marginalisation of the free variable by

P (OC |Z1 · · ·ZS C) =
∑
VC

P (VC OC |Z1 · · ·ZS C) (2.16a)

P (VC |Z1 · · ·ZS C) =
∑
OC

P (VC OC |Z1 · · ·ZS C) (2.16b)

In summary, prediction propagates cell occupancy probabilities for each velocity

and cell in the grid — P (OC VC |C). During estimation, P (OC VC |C) is updated by

taking into account the observations yielded by the sensors
∏S

i=1 P (Zi|VC OC C) to

obtain the final state estimate P (OC VC |Z1 · · ·ZS C). The result from the Bayesian

filter estimation will then be used for the prediction step in the next iteration.

Using the BVM for sensory combination of vision and audition with vestibu-

lar sensing

Consider the simplest case, where the sensors may only rotate around the egocentric

axis and the whole perceptual system is not allowed to perform any translation. In
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this case, the vestibular sensor models, described ahead, integrated with other types

of proprioception such as what might be emulated by the motor encoders of a robotic

active head, will yield measurements of angular velocity and position, that can then be

easily used to manipulate the BVM, which is, by definition, in spherical coordinates.

Therefore, to compensate for this kind of egomotion, instead of rotating the whole

map, the most effective solution is to perform the equivalent index shift. This process

is described by redefining C: C ∈ Y indexes a cell in the BVM by its far corner, defined

as C = (logb ρmax, θmax − θinertial, φmax − φinertial) ∈ Y.

This process relies on the uncontroversial assumption that the precision of mo-

tor encoders and inertial sensors on angular measurements is greater than the chosen

resolution parameters for the BVM.

Dealing with sensory synchronisation

The BVM model presented earlier assumes that the state of a cell C, given by

(OC , VC), and the observation by any sensor i, given by Zi, correspond to the same

time instant t.

In accordance with the wide multisensory integration temporal window theory for

human perception reviewed in [Spence and Squire 2003], the BVM may be used safely

to integrate auditory and vision measurements as soon they become available; local

motion estimation using the BVM enforces a periodical state update with constant rate

to ensure temporal consistency. Consequently, the modality of highest measurement

rate is forced to set the update pace (i.e. by means measurement buffers) in order to

satisfy the constant update requirement. The velocity estimates for the local motion

states of the BVM are thus a function of this update rate.

Preliminary tests using the BVM update model showed that this, in fact, promotes

an effect similar to the well-known temporal ventriloquism (also known as auditory cap-

ture of visual perception), given the inherently higher auditory measurement frequency

as opposed to vision. Spatial ventriloquism (i.e. visual capture of auditory perception),

on the other hand, is implicitly ensured due to the inherent properties of the Bayesian

formulation of visuoauditory integration (i.e. modality reliability expressed in terms

of uncertainty). Promotion through vestibular sensing is also perfectly feasible, since

inertial readings are available at a much faster rate than visuoauditory perception.
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2.3.3 Bayesian sensor models

Next, the sensor models that are used as observations for the Bayesian filter of the

BVM will be presented. C as a random variable and P (C), although redundant in this

context, will be used in the following models to maintain consistency with the Bayesian

filter formulation and also with cited work.

Vision sensor model

We have decided to model these sensors in terms of their contribution to the es-

timation of cell occupancy in a similar fashion to the solution proposed by Yguel,

Aycard, and Laugier [2007]. This solution incorporates a complete formal definition

of the physical phenomenon of occlusion (i.e. in the case of visual occlusion, light

reflecting from surfaces occluded by opaque objects do not reach the vision sensor’s

photoreceptors).

In the spirit of Bayesian programming, we again start by defining the relevant

variables:

• C ≡ (logb ρmax, θmax, φmax), OC and Z have the same meaning as before. However,

once a projection line (θ, φ), with θmin ≤ θ ≤ θmax ∧ φmin ≤ φ ≤ φmax, is

established for a sensor, only logb ρmax varies throughout the respective line-of-

sight, thus effectively indexing each cell. Therefore, by abuse of notation and in

order to simplify references to cells in the line-of-sight, these will be referred to

using the abstraction C ∈ N, 1 ≤ C ≤ N , where N = logb(ρMax − ρMin) denotes

the total number of cells in the line-of-sight.

• GC ∈ GC ≡ ON−1 represents the state of all cells in the line-of-sight except

for C. Each gC is, thus, an (N − 1)-tuple of the form ([O1 = o1], · · · , [Oc−1 =

oc−1], [Oc+1 = oc+1], · · · , [ON = oN ]) given a specific cell [C = c].

The following expression gives the decomposition of the joint distribution of the

relevant variables according to Bayes’ rule and dependency assumptions:

P (Z C OC GC) =

P (C)P (OC |C)P (GC |OC C)P (Z|GC OC C) (2.17)

The parametric form and semantics of each component of the joint decomposition

are then as follows:
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• P (C) and P (OC |C) represent a priori information on the environment. The

probability of a cell being empty is PEmpty = P ([OC = 0]|C).

• P (GC |OC C) ≡ P (GC |C) represents the probability that, knowing a state of a

cell, the whole line-of-sight is in a particular state [Yguel et al. 2007].

• P (Z|GC OC C) is sensor-dependent but, in any case, for all (OC , GC) ∈ O ×
GC , the probability distribution over Z depends only on the first occupied cell.

Knowing the position of the first occupied cell in the projection line, which will be

denoted as [C = k], P (Z|GC OC [C = k]) gives the probability of a measurement

if [C = k] would be the only occupied cell in the line-of-sight. This particular

distribution over Z is called the elementary sensor model, denoted by Pk(Z).

Given the first occupied cell [C = k] on the line-of-sight, the likelihood functions

yielded by the population code data structure presented generically in the description

of the vision system can be finally formalised as

Pk(Z) = Lk(Z, µρ(k), σρ(k)),

µρ(k) = ρ̂(δ̂)

σρ(k) = 1
λ
σmin

(2.18)

with σmin and ρ̂(δ̂) taken from calibration, the former as the estimate of the small-

est error in depth yielded by the stereovision system and the latter from the intrinsic

camera geometry (see Equation (4.6) later in this text). The likelihood function con-

stitutes, in fact, the elementary sensor model as defined above for each vision sensor,

and formally represents soft evidence, or “Jeffrey’s evidence” in reference to Jeffrey’s

rule [Pearl 1988] concerning the relation between vision sensor measurements denoted

generically by Z and the corresponding readings δ and λ, described by the calibrated

expected value ρ̂(δ̂) and standard deviation σρ(λ) for each sensor.

Equation (2.18) only partially defines the resulting probability distribution by spec-

ifying the random variable over which it is defined and an expected value plus a stan-

dard deviation/variance — a full definition requires the choice of a type of distribution

that best fits the noisy pdfs taken from the population code data structure. The

traditional choice, mainly due to the central limit theorem, favours normal distribu-

tions N (Z, µρ(k), σρ(k)). Considering what happens in the mammalian brain, this

choice appears to be naturally justified — biological population codes often yield bell-

shaped distributions around a preferred reading [Treue, Hol, and Rauber 2000, Born

and Bradley 2005, Knill and Pouget 2004, Pouget, Dayan, and Zemel 2000].
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However, the fact that depth sensors always yield positive readings may be con-

tradicted by the circumstance that normal distributions assign non-zero probabilities

to negative depth values; even worse, close to the origin (Z = 0) this distribution as-

signs a high probability to negative depth values! With this purpose, we have adapted

Yguel et al.’s Gaussian elementary sensor model so as to additionally perform the

transformation to distance log-space, as follows

Pk([Z = z]) =
∫

]−∞;0]
N (µ(k − 0.5), σ(σρ))(u)du, z ∈ [0; 1]∫ dze

dze−1
N (µ(k − 0.5), σ(σρ))(u)du, z ∈ ]1;N ]∫

]N ;+∞]
N (µ(k − 0.5), σ(σρ))(u)du, z = “No Detection”

(2.19)

where µ(•) and σ(•) are the operators that perform the required spatial coordinate

transformations, and k = dµρe is assumed to be the log-space index of the only occupied

cell in the line-of-sight, which represents the coordinate interval ]k−1; k] (see Fig. 2.15

in the Results section for simulation examples).

The answer to the Bayesian Program question in order to determine the sensor

model P (Z|OC C) for vision, which is in fact related to the decomposition of interest

P (OC Z C) = P (C)P (OC |C)P (Z|OC C), is answered through Bayesian inference on

the decomposition equation given in (2.17); the inference process will dilute the effect

of the unknown probability distribution P (GC |OC C) through marginalisation over all

possible states of GC . In other words, the resulting direct model for vision sensors

is based solely on knowing which is the first occupied cell on the line-of-sight and

its relative position to a given cell of interest C (results of inference simulations are

presented in Fig. 2.15 in the Results section).

To correctly formalise the Bayesian inference process, a formal auxiliary definition

with respective properties follow.

Definition 1. T kc ∈ GC is the set of all tuples for which the first occupied cell is

[C = k]. Formally, it denotes tuples such as (o1, · · · , oc−1, oc+1, · · · , oN) ∈ {0, 1}N−1,

yielding [Oi = 0] ∧ [Ok = 1],∀i < k.

Property 1.1. ∀(i, j), i 6= j, T ic
⋂
T jc = ∅

Property 1.2.
⋃
T kc = Gc \ G∅, with

G∅ = {(op)p|∀p ∈ N \ {c}, 1 ≤ p ≤ N, [Op = 0]}
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Property 1.3. If k < c there are k determined cells: the k−1 first cells, (o1, · · · , ok−1),

which are empty, and the kth, (ok), which is occupied. Then, P (T kc ) = P k−1
Empty(1 −

PEmpty).

Property 1.4. If k > c there are k − 1 determined cells: the k − 2 first cells,

(o1, · · · , oc−1, oc+1, · · · , ok−1), which are empty, and the (k − 1)th, (ok), which is occu-

pied. Then, P (T kc ) = P k−2
Empty(1− PEmpty).

It now becomes possible to determine P (Z|OC C) in order to express the desired

joint distribution P (Z OC C). This process leads to four distinct possible cases, that

will be described next (see Fig. 2.14 in the Results section for corresponding simulation

results).

In the case of detection given an occupied cell [C = c], the sensor measurement

can only be due to the occupancy of this cell or a cell before it in terms of visibility.

Thus [Yguel et al. 2007],

∀Z 6= “No Detection”,

P (Z|[OC = 1]C) =

=
∑
gc∈GC

P ([Gc = gc])P (Z|[OC = 1] [Gc = gc]C)

=
c−1∑
k=1

P (T kc )Pk(Z) + (1−
c−1∑
k=1

P (T kc ))Pc(Z)

=
c−1∑
k=1

P k−1
Empty(1− PEmpty)Pk(Z) + P c−1

EmptyPc(Z) (2.20)

Equation (2.20) has two terms: the left term that represents the case where [C = c]

is occupied and the right term that comes from the aggregation of all the remaining

probabilities around the last possible cell that might produce a detection: [C = c]

itself. The “No Detection” case ensures that the distribution is normalised.

In the case of no detection given an occupied cell [C = c], which would correspond

most probably to the effects of occlusion from earlier cells,

Z = “No Detection”,

P (Z|[OC = 1]C) =

= 1−
∑

r 6=“No Det.”

P ([Z = r]|[OC = 1]C) (2.21)
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Relevant variables:

C: cell identifier,

stored as a 3-tuple of cell coordinates (logb ρC , θ, φ);

Z ∈ {“No Detection”} ∪ ZVisDepth: sensor depth measurement along line-of-sight (θ, φ);

OC : binary value describing the occupancy of cell C;

GC ∈ GC ≡ ON−1: state of all cells in the line-of-sight except for C.

Decomposition:

P (Z C OC GC) =

P (C)P (OC |C) · P (GC |OC C)P (Z|GC OC C)︸ ︷︷ ︸
Gives P (Z|OC C) through

∑
GC

.

Parametric forms:

P (C): uniform;

P (OC |C): uniform or prior estimate;

P (GC |OC C): unknown, apart from dependency on number of occupied cells;

P (Z|GC OC C): probability of a measurement by sensor,

knowing first occupied cell is [C = k] ≡ elementary sensor model Pk(Z), equation (2.19).

Identification:

Calibration for Pk(Z)⇒ P (Z|GC OC C).

Question (given cell velocity vc):

P (Z|vc oc c) ≡ P (Z|oc c)

Figure 2.11: Bayesian Program for vision sensor model of occupancy.

In the case of a measurement from detection knowing that [C = c] is empty, where

a erroneous detection is yielded by the sensor (the so-called false alarm),

∀Z 6= “No Detection”,

P (Z|[OC = 0]C) =

=
∑
gc∈GC

P ([Gc = gc])P (Z|[OC = 0] [Gc = gc]C)

=
N∑

k=1,k 6=c

P (T kc )Pk(Z) + P (G∅)δZ=“No Detection”

=
c−1∑
k=1

P k−1
Empty(1− PEmpty)Pk(Z)+

+
N∑

k=c+1

P k−2
Empty(1− PEmpty)Pk(Z) + PN−1

EmptyδZ=“No Det.” (2.22)

There are three terms in the empty cell, from left to right, corresponding respec-

tively to before the detection, after the detection and no detection at all. Again, the
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“No Detection” case ensures that the distribution is normalised.

In the case of no detection knowing that [C = c] is empty, which will either be due

to a miss-detection or a completely empty line-of-sight corresponding to G∅,

Z = “No Detection”,

P (Z|[OC = 0]C) =

= 1− (
N∑
r

P ([Z = r]|[OC = 0]C)) + PN−1
EmptyδZ=“No Det.” (2.23)

The Bayesian Program that summarises this model is presented on Fig. 2.11.

Audition sensor model

The direct audition sensor model is formulated as the first question of the Bayesian

Program in Fig. 2.12, where all relevant variables and distributions and the decompo-

sition of the corresponding joint distribution, according to Bayes’ rule and dependency

assumptions, are defined. The use of the auxiliary binary random variable SC , which

signals the presence or absence of a sound-source in cell C, and the corresponding fam-

ily of probability distributions P (SC |OC C) ≡ P (SC |OC) promotes the assignment of

probabilities of occupancy close to 1 for cells for which the binaural cue readings seem

to indicate a presence of a sound-source and close to .5 otherwise (i.e. the absence of

a detected sound-source in a cell doesn’t mean that the cell is empty).

The second question corresponds to the estimation of the position of cells most

probably occupied by sound sources, through the inversion of the direct model through

Bayesian inference on the joint distribution decomposition equation. The former is

used as a sub-BP for the BVM, while the answer to the latter yields a gaze direction

of interest in terms of auditory features which can be used by a multimodal attention

system, through a maximum a posteriori (MAP) method.

Vestibular sensor model

At time t the Bayesian program of Fig. 2.13 computes the probability distribution

of the current state ξt given all the previous sensory inputs the initial distribution ξt

— to simplify notation, state variables are grouped in a vector ξt = (Θt,Ωt,At) and

sensor variables in a vector St = (Φt,Υt). The inference of current state is done by

applying the conjunction and marginalisation rule, applying a summation over state

variables at the previous time step so that no decision is taken about these values,
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Relevant variables:

C ≡ (logb ρmax, θmax, φmax) ∈ C: cell identifier;

Z ∈ ZBinauralMeasurements: sensor measurement vectors [τ,∆L(f
1
c ) · · ·∆L(f

m
c )];

(see equation (2.6): τ ≡ ITD and ∆L(f
k
c ) ≡ ILD;

f
k
c denotes each k ∈ N, 1 ≤ k ≤ m frequency band in m frequency channels).

SC : binary value describing the presence of a sound-source in cell C,

[SC = 1] if a sound-source is present at C, [SC = 0] otherwise;

OC : binary value describing the occupancy of cell C,

[OC = 1] if cell C is occupied by an object, [OC = 0] otherwise;

Decomposition:

P (Z C SC OC) =

P (C)P (OC |C)P (SC |OC C)P (τ |SC OC θmax)
m∏
k=1

P (∆L(f
k
c )|τ SC OC C)

︸ ︷︷ ︸
Gives P (Z|OC C) through

∑
SC

Parametric forms:

P (C): uniform;

P (OC |C): uniform or prior estimate;

P (SC |OC C) ≡ P (SC |OC): probability table, empirically chosen or learned from scene statistics;

P (Z|OC C): probability of a measurement [τ,∆L(f
1
c ) · · ·∆L(f

m
c )] by sensor;

P (τ |SC OC θmax) ≡ P (τ |SC θmax): normal distribution, yielding the probability of a measurement τ by sensor for cell C,

given its azimuth θmax and presence or absence of a sound-source SC in that cell;

P (∆L(f
k
c )|τ SC OC C) ≡ P (∆L(f

k
c )|τ SC C): normal distribution, yielding the probability of a measurement ∆L(f

k
c )

by sensor for cell C, given the presence or absence of a sound-source SC in that cell.

Identification:

Calibration for P (τ |SC OC θmax).

Calibration for P (∆L(f
k
c )|τ SC OC C) ≈ P (∆L(f

k
c )|SC OC C).

Questions:

P (Z|oc c)

max, arg max
C

P ([SC = 1]|z C)

P (SC |OC) [OC = 0] [OC = 1]

[SC = 0] 1 .5

[SC = 1] 0 .5∑
P (sc|OC) 1 1

Figure 2.12: Bayesian Program for binaural sensor model. On the right is presented the

probability table which was used for P (SC |OC C) ≡ P (SC |OC), empirically chosen so as to

reflect the indisputable fact that there is no sound source in a cell that is not occupied (left

column), and the safe assumption that when a cell is known to be occupied there is little way

of telling from this information alone if it is in this condition due to a sonorous object or

not (right column).
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Relevant variables:

ξt = (Θt,Ωt,At): state variables,

St = (Φt,Υt): sensor variables.

Decomposition:

P (ξt ξt−δt St...S0) =

P (St|ξt)

.P (Ωt).P (At).P (Θt|Θt−δtΩt)

.P (ξt−δt St−δt...S0)

Parametric forms:

P (St|ξt) = P (Φt|Ωt).P (Υt|F t).P (F t|ΘtAt): sensor model, Gaussians and dirac;

P (Ωt), P (At): a priori for state, Gaussians;

P (Θt|Θt−δtΩt): state dynamic model, diracs;

P (ξt−δt St−δt...S0): previous iteration, distribution computed at last time step.

Identification:

Parameters of the Gaussians: σΦ, σΥ, σA and σΩ .

Question:

P (ξt|St ...S0)

Figure 2.13: Bayesian Program for processing of inertial data.

summarising all the past in the answer to the estimation question in the previous time

step, and can be formulated by:

P (ξt|St ...S0) =

1

K

∑
ξt−δt

P (St|ξt)P (Ωt)P (At)P (Θt|Θt−δt Ωt)P (ξt−δt St−δt...S0)

where:

• K is a normalisation constant;

• P (St|ξt) = P (Φt|Ωt)P (Υt|F t)P (F t|ΘtAt) is the sensor model, i.e., the proba-

bility distribution of sensor inputs given the sate. P (Φt|Ωt) and P (Υt|F t) are

Gaussians and P (F t|ΘtAt) a dirac, equal to 1 if and only if equation 2.8 is

verified;

• P (Ωt), P (At) represent a priori knowledge about state variables, both Gaus-

sians;

• P (Θt|Θt−δt Ωt) is the system dynamic model for state variable Θ, i.e., the prob-

ability distribution of rotation Θ given the previous rotation and current angular
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velocity. P (Θt|Θt−δt Ωt) is a dirac, equal to 1 if and only if equation 2.7 is

verified;

• P (ξt−δt St−δt...S0) is the probability distribution computed at the last time step,

i.e., from the previous iteration of the Bayesian filter.

We can see also that the first-order Markov assumption is present in both the state

dynamic model and sensor model: time dependence has a depth of one time step. The

stationarity assumption is also implicit: models do not change with time. The filter

iterates for each new time step, but the relationships between these variables remain

the same for all time steps. This greatly reduces the complexity.

For the implementation the space of ξt−δt that needs to be scanned has 3 dimen-

sions: Θt−δt. For a given ξt−δt, the space of possible ξt has 3 dimensions, so the total

search space has 6 dimensions. Following the Bayesian model implementation proposed

by Laurens and Droulez [2006], we used a Particle Filter to perform the inference. A

set of N particles, ξi,t, sample the state search space, and each one has an associ-

ated weight wi,t = P (ξi,t). Starting from ξi,t−δt, we draw values for the Gaussians

and apply equations (2.7) and (2.8) to obtain ξi,t. The weighing factor is updated to

wi,t = wi,t−δt.P (ξi,t). Resampling is applied, so that unlikely particles are deleted and

likely ones are duplicated, in order to avoid having all particles drift towards improba-

ble states. At each iteration a new set of N samples is drawn from the previous set of

particles. Each particle of the previous set has a probability wi to be chosen for each

new particle. The weights in the new set are levelled to 1/N .

2.4 Results and Conclusions

In this section, results concerning the models described herewith, yielded both

from simulation and from preacquired experimental sensor data, are presented, and

conclusions are drawn.

More specifically, on Figs. 2.14 and 2.15, results for simulations using the direct

vision sensor model to process an idealised projection line extending from a pixel on

the cyclopean view knowing the first occupied cell on the BVM along that line, and in-

ference applying the vision sensor model on synthetic visual observations, respectively,

are shown. Effects of visual occlusion can clearly be seen: for a given depth estimate

ρ̂, inference assumes all cells much closer to the observer than the estimate to be most

probably empty, while no relevant evidence regarding the probability of occupancy is
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Figure 2.14: Simulation results for direct vision sensor model for [C = 14], given

PEmpty = .9, N = 40, ρMin = 1000 mm and ρMax = 11000 mm, considering both occu-

pied and unoccupied states. Top: ideal sensor model (Dirac). Bottom: Gaussian elementary

sensor model with σρ = 1 mm. Note that for the ideal sensor model, precision is maximal and

aggregation is complete at P ([Z = 14]|[OC = 1][C = 14]); additionally, note that for either

of the presented cases, for Z << 14, P (Z|[OC = 1][C = 14]) = P (Z|[OC = 0][C = 14]),

for Z = 14, P (Z|[OC = 1][C = 14]) >> P (Z|[OC = 0][C = 14]), and for Z >> 14,

P (Z|[OC = 1][C = 14]) ≈ 0, while P (Z|[OC = 0][C = 14]) > 0. This reflects the assumption

coded in the model that, when C is known to be occupied (i.e. [OC = 1]), cells farther from

the origin than [C = 14] are occluded, and hence do not yield visual readings.

assumed to be collected for cells much farther than the estimate, and therefore prior

knowledge gathered from previous inference steps becomes preponderant for these cells.

On Figs. 2.16 and 2.17, on the other hand, two examples of results of a single step of

inference (i.e. no local motion is estimated, since all velocities are equally probable at

startup) using the binaural sensor model on the BVM are presented. Full 3D auditory

localisation has rarely been explored in robotic applications (see, for example, [Calamia

1998] for a review on this subject); as can be seen in these results, this work contributes

with a novel probabilistic solution that produces these localisation estimates based on

binaural cues alone yielded by a robust binaural processing unit.

Results for the Bayesian vestibular sensor model are presented on Fig 2.18. For

comparison with our Bayesian implementation, the Xsens IMU firmware MotionTracker

was used to provide attitude estimation. The Motion Tracker implements a weighed fil-

tering of the accelerometer, gyro and magnetic data to provide sensor angular position,

including an adaptive filter used to correct for magnetic disturbances. The added data

from the magnetic sensor enables the firmware estimation filter to provide a relative
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Figure 2.15: Simulation results of inference using vision sensor model. For all cases, N =

40, and ρMin = 1000 mm and ρMax = 11000 mm (delimited by full vertical lines), which

results in b ≈ 1.2589 mm; each cell C is delimited by black, dashed vertical lines. In any of

the graphs, the full red traces correspond to the result of inference (the horizontal axis in

this case represents positions in depth throughout the line-of-sight and k the vision sensor

measurement) and the full blue traces correspond to the Gaussian elementary sensor models

(the horizontal axis in this case represents depth readings from the vision sensor and k the only

occupied cell in the line-of-sight). Top: results for σρ = 20 mm, with bk + ρMin = 1200 mm.

Middle and bottom: results for σρ = 100 mm, with bk + ρMin = 2000 mm for the former

and bk + ρMin = 5000 mm for the latter. To note: the fact that Bayesian inference correctly

yields the effects described originally by Elfes [1989; 1992], and the effects of the logarithmic

partitioning of depth and of the soft evidence conveyed by the elementary sensor model.
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Figure 2.16: Inference results for the processing of an audio snippet of a human speaker

placed in front of the binaural perception system — these results correspond to a single

inference step using the BVM Bayesian filter. Cells within the log-spherical sensor-space with

probabilities of occupancy greater than .75 are depicted in red, and the egocentric referential

in blue (X-axis, Y -axis and Z-axis indicate right-to-left, upward and forward directions,

respectively). On the left, result of inference using ITDs only; on the right, result of adding

ILDs: note the effects on distance and elevation.

Figure 2.17: Inference results for the processing of an audio snippet of a sound-source placed

at ρ = 1320 mm, θ = 36o, φ = 20o. All that is depicted has the same meaning as in Fig. 2.16;

two dashed directional lines at (θ, φ) and (180o − θ, φ) have been additionally plotted to

demonstrate the effect of front-to-back confusion. This phenomenon can be countered in two

different ways: either by rotating the perceptual system or by using artificial pinnae. The

fact that θ >> 0o means that precision in elevation and distance is improved as compared to

Fig. 2.16.



2.4 Results and Conclusions 51

samples

ya
w

 a
ng

le

prob.

0 100 200 300 400 500 600 700 800 900 1000

−200

−150

−100

−50

0

50

100

0.05

0.1

0.15

0.2

0.25

0.3Bayesian Filter
Xsens Filter

0 50 100 150 200 250 300 350
0

1

2

3

samples

pi
tc

h 
an

gl
e 

(r
ad

ia
ns

)

Bayesian Filter
Xsens Filter

Figure 2.18: Results of Bayesian processing of inertial data. Top: result for yaw angle at

100 Hz sample rate. The magnetic data enables the Xsens filter to slightly outperform the

Bayesian filter, as seen in the plot the probabilistic value accumulates some drift. Bottom:

result for pitch where gravity is taken into account to bound accumulated drift. Here a

particle filter with just 200 particles was used, using σA = 0.3 m/s2 and σΩ = 1 rad/s1.

ground truth for our experimental work. These results show that the Bayesian model

satisfactorily reproduces human vestibular perception using inertial sensors.

Finally, results of multimodal perception of 3D structure and motion using the

BVM, yielded after several steps of inference using the Bayesian filter, are presented

on Fig. 2.19 — the set of possible local motion cases used in this example and all

other experiments presented in this dissertation correspond to the set of antecedents

corresponding to the 6 adjacent cells AC aligned with the 3 spherical directions (i.e.

distance, azimuth and elevation) and the cell of reference C itself (i.e. corresponding to

absence of motion). Objects within the horopter are reasonably detected, showcasing

the advantages of the BVM-BOF framework in terms of the goals presented on the

introductory section. Moreover, belief over 3D structure and motion of the objects

of the environment and the observers own (rotational) egomotion are conveniently

represented using the BVM framework, which has been conceptually designed to be

the most appropriate solution for active perception. This can be fully realised in the

following chapter.
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Figure 2.19: Results of multimodal perception of 3D structure and motion using the BVM.

A scene consisting of a female speaker talking in a cluttered lab, where several other people

(outside the visual field of the IMPEP) were working as usual, thus promoting a typical

“cocktail party” effect, is observed by IMPEP V.1 (the scene is shown on the left) and

afterwards processed offline by the BVM Bayesian filter. Centre: result of 20 steps of filtering;

right: result of 22 steps of filtering, corresponding to the instant where the spotlight on the

left of the scene was moved further to the left (in a non-controlled fashion). These results

show a projection of the log-spherical configuration onto Euclidean space; the parameters for

the BVM are as follows: N = 40, ρMin = 1000 mm and ρMax = 11000 mm, θ ∈ [−180o, 180o],

with ∆θ = 1o, and φ ∈ [−90o, 90o], with ∆φ = 2o, corresponding to 40×360×90 = 1, 296, 000

cells. All BVM cells with probability of occupancy greater than 60% are painted using an

average of grayscale levels taken from the cyclopean view, with the respective alpha-channels

manipulated so as to obtain a degree of transparency proportional to uncertainty (i.e. 60%

probability corresponds to maximum transparency, while 100% probability corresponds to

maximum opacity); of these cells, all which have non-uniform probability distributions for

local motion are associated to velocity vector fields depicted in red (vectors depict directions

corresponding to velocities with highest probability), following the same transparency rule as

occupancy. In both BVMs, two of the closest objects to the IMPEP are visible in the results:

the speaker and the spotlight. As expected, cells corresponding to the moving spotlight on

the second BVM exhibit high probability of local motion — since there seems to be some

approximation of the spotlight to the perception system during its translation, some local

motion directions are consistent with an expansion effect.



Chapter 3

Baseline Research on Multimodal

Motion Perception

3.1 Introduction

Historically, the majority of the research on multimodal perception has focussed

on interactions in the perception of stationary stimuli, but given that the majority

of stimuli in the world move, an important question concerns the extent to which

principles derived from stationary stimuli also apply to moving stimuli. A key finding

emerging from recent work with moving stimuli is that our perception of stimulus

movement in one modality is frequently, and unavoidably, modulated by the concurrent

movement of stimuli in other sensory modalities. Visual motion has a particularly

strong influence on the perception of auditory and tactile motion [Soto-Faraco et al.

2004].

Given such extensive interactions between the senses in the perception of motion,

it is interesting to speculate on their neural bases. According to the traditional view

of multisensory integration, information regarding motion in each sense is initially

processed independently in modality-specific (or unimodal) brain areas. It is only

at later stages of processing that information from different modalities converges in

higher-order association areas. In accordance with this idea visual motion processing

has repeatedly been shown to involve visual area V5/MT+. Moreover, lesions in this

part of the brain appear to impair just visual motion processing, while leaving auditory

and tactile motion processing intact. Similarly, researchers have also demonstrated the

selective involvement of certain areas (such as the planum temporale, the inferior and

superior parietal cortices, and the right insula) in the processing of auditory motion,

whereas the primary and secondary somatosensory areas (SI and SII), located in the
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postcentral gyrus, play a major role in the perception of tactile motion [Soto-Faraco

et al. 2004].

Recent studies have demonstrated that, in addition to these putatively modality-

specific motion-processing areas, there are a number of brain areas that appear to

be responsive to motion signals in more than one sensory modality. Using functional

magnetic resonance imaging (fMRI), these studies have shown that areas of the intra-

parietal sulcus, as well as the precentral gyrus (ventral premotor cortex, or PMv), can

be activated by auditory, visual, or tactile motion signals. These findings converge with

the results of animal studies using single-cell recording techniques, as such studies have

found neurons that are responsive to both visual and somatosensory motion. More-

over, these neurons are found in brain regions that are homologous to the regions in the

human brain that neuroimaging studies have indicated are responsive to multisensory

motion signals. It should be noted, though, that these recent fMRI studies failed to

control for certain variables, such as non-motion-related activation (i.e., the baselines

used were very different across the different modalities) and attentional factors (i.e.,

moving stimuli might simply capture attention more than stationary stimuli, and this

might account for the differences in neural activity reported). However, when taken

together, the evidence increasingly supports the idea that a network of brain areas

is critically involved in processing motion information from more than one sensory

modality [Soto-Faraco et al. 2004].

The challenge for the future will be to develop novel experimental paradigms that

can integrate behavioural and neuroscientific approaches in order to refine our under-

standing of multisensory contributions to the perception of movement (for an in-depth

review on this particular subject, refer to Soto-Faraco, Spence, Lloyd, and Kingstone

[2004]).

3.2 Baseline Studies of Human Visuoauditory Mo-

tion Perception

3.2.1 Coherence of visual motion cues is stronger along the

horizontal than the vertical meridian: a new light on

the ecology of human vision

The nature of ecological constraints on motion integration remains largely unex-

plored in which concerns perceptual decision rules. The most interesting features of the
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mammalian world lie either along the line of horizon or below it, leading to differences

in psychophysical performance when stimuli are presented across vertical/horizontal

meridians [Previc 1990, Rubin et al. 1996, Carrasco et al. 2001, Liu et al. 2006, Silva

et al. 2008]. However, deciding on the real nature of ambiguous dynamic stimuli may

be crucial for survival and the relevant rules may well go beyond psychophysical asym-

metries in visual performance.

Here we chose to investigate horizontal-vertical anisotropies on perceptual grouping

of visual dynamic cues. These were either discontinuous moving gratings seen through

multiple spatially distributed apertures [Alais et al. 1998] (Fig. 3.1, Experiment 1 and

2) or 2 continuous gratings (plaid stimuli) overlapping in a single aperture [Castelo-

Branco et al. 2000; 2002, Castelo-Branco et al. 2006, Schmidt et al. 2006, Kozak and

Castelo-Branco 2008] (Fig. 3.2). In the former case, stimuli could be seen either as

containing one coherent motion signal or several component incoherent motion signals.

When motion integration occurred it was based on independent, distributed local mo-

tion signals. In the latter case, requiring integration of contiguous contours, either a

single coherent direction could be perceived or, alternatively, the direction of the two

component gratings (incoherent motion).

The first two experiments required integration of discrete moving contours across

space, essentially mimicking the situation encountered by the visual system when con-

tours of moving objects are discontinuous and partially occluded. We have compared

coherence of stimuli moving either to the left or to the right with upward/downward

moving stimuli. We hypothesised that if known ecological constraints are relevant,

subjects should perceive more coherent motion for grating stimuli moving horizontally

than vertically and (if visual experience is also determinant) to the right than for their

equivalents moving to the left. In the third experiment, whereby perceptual coherence

was achieved by integration of spatially contiguous cues, predictions were identical.

In the first two experiments, (see Fig. 3.1(a), n = 11 subjects) grating mo-

tions could be directed along multiple global visual movement directions (“left”,

“right”, “up” and “down”). The local grating orientations were either symmetrical

(±0o,±23o,±45o,±68o and ±90o with respect to the vertical or horizontal axis) or

asymmetrical (−23o/+ 45o,−68o/− 45o and −45o/− 23o with respect to the vertical

or horizontal axis), thus providing a total of 8 different local orientation/motion con-

ditions. Experiment 1 used left, right and upward conditions and Experiment 2 was

identical except that it used all cardinal directions. These experiments tested subjects’

ability to group the independent motions of two gratings seen through 16 apertures

into a single coherent motion while varying the overall motion direction of the gratings
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(a) (b)

(c)

Figure 3.1: Description of baseline Experiments 1 and 2 of visual motion perception.

(a) Illustration of sequence and timing of stimulus presentation. The array of apertures

could either be perceived as independently moving gratings or as one globally moving pat-

tern. (b) Global motion coherence percepts as a function of local grating orientation. (c) Bar

graphs displaying the percent time of reportedly perceived coherence for motion along the

vertical and horizontal axes.

Figure 3.2: Description of baseline Experiment 3 of visual motion perception. Overlapped

local motion cues (top inset) cause vertical-horizontal motion coherence asymmetries, in

contrast to right-left and up down asymmetries.
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(left, right, and upward motion) and the angular separation between the gratings (grat-

ing angles 0o,±23o,±45o,±68o and ±90o,−23o/+ 45o,−68o/− 45o and −45o/− 23o).

The percentage of coherent responses for each condition was recorded and data were

analyzed using a GLM repeated measures analysis.

Results indicate a significant main effect of grating angle (F = 47.250;P < .001),

with global coherence reported more often for small angular separations (Fig. 3.1(b)).

We found that the greater the angular separation between the two independent grat-

ings, the less coherence subjects perceived (except the asymmetrical -68/45 condition),

thereby replicating the findings by Alais et al. [1998].

On the basis of the percentages coherence for the different grating angles in all

subjects, we then selected the most “ambiguous” conditions (−45/23o and + − 45o).

This choice was based on the fact that only ambiguous conditions challenge perceptual

decision mechanisms, and also to prevent floor/ceiling effects. Overall motion direction

to the right was found to be perceived as the most coherent, followed by leftward motion

and upward visual motion yielded the least number of key presses for both ambiguous

angles. GLM indicated a significant main effect of overall visual motion direction (F =

11.7;P < .002). Within-subject contrasts revealed that right and left visual movement

direction yielded significantly different coherence percepts (F = 5.537;P = .04) with

more coherence reported for rightward than leftward moving stimuli. However the

more robust effects were found when contrasting horizontal directions with upward

motion coherence. Accordingly, and concerning right and left vs up visual movement

directions we found significant and robust direction effects (F = 14.293;P = .004 and

F = 9.975;P = .01, respectively).

Experiment 2 confirmed a significant main effect for grating angle on stimulus

ambiguity (F = 19.692, P << .001). After pooling data of the two ambiguous angles

(−45/23o and ±45o), a repeated-measures analysis replicated also a significant effect of

visual movement direction (F = 6.179;P < .006). The within-subject contrasts, again,

indicate a bias for rightward compared to leftward moving stimuli (F = 9.275;P =

.029). As expected, Coherence of up and down visual movement directions was lower

than for stimuli moving to the right (F = 22.237;P = .005 and F = 11.179, P =

.020, respectively), but not from the leftward moving stimuli (P = .205;P = .189).

When comparing horizontal (left and right) versus vertical motion directions (up and

down), we have found a significant difference (P < 0.05) between these axes. Subjects

perceived more coherence for stimuli moving along the horizontal axis than along the

vertical axis, confirming the horizontal-vertical bias for the grouping of our stimuli

(Fig. 3.1(c)).
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Fifteen subjects participated in Experiment 3 (testing coherence of contiguous

cues), all with normal or corrected-to-normal visual acuity. Observers were asked to

give continuous report whether they perceived non-coherence or coherence within a 5o

central circular region. Coherent plaid motion directions were randomized across the

four cardinal directions. Repeated measures GLM analysis showed a significant main

effect of direction of motion (F = 22.4, p << 0.001, n = 15, Fig. 3.2). Both vertical

axes of motion (upward and downward) showed significantly lower motion coherence

than horizontal axes (rightward and downward; p << 0.001 for up vs right; p = 0.001

for up vs left; p = 0.008 for down vs right; p = 0.001 for down vs left, Bonferroni post

hoc analyses). Interestingly, left/right asymmetries were not present under contiguity

conditions.

3.2.2 Visual direction of bistable coherent motion biases audi-

tory motion perception: evidence for asymmetric dom-

inance of visual vs auditory context in perceptual deci-

sion

Multisensory perception of motion is of great ecological relevance given the noisy,

ambiguous and even incomplete descriptions coming from each sensory modality and

the need to achieve an integrated and coherent perception of the environment.

In particular, crossmodal interactions between vision and audition are paramount

in their importance concerning fast perceptual assessment of the surroundings and de-

cision. In fact, while vision may provide the most salient information with regard to

stimulus motion, audition can also provide important cues, particularly when stim-

uli are occluded, or else move outside the current field of view, such as when objects

move behind the head [Soto-Faraco, Kingstone, and Spence 2003]. Numerous be-

havioural studies of multisensory interactions have been conducted for several years

now, namely on how the presentation of stimuli in one modality (either moving or

stationary) affect the perception of motion of stimuli presented in another modality

(also either moving or stationary) — see, for example, Bertelson, Vroomen, de Gelder,

and Driver [2000], Vroomen and de Gelder [2000], Meyer and Wuerger [2001], Alais

and Burr [2004], Meyer, Wuerger, Rohrbein, and Zetzsche [2005], López-Moliner and

Soto-Faraco [2007], Zhou, Wong, and Sekuler [2007], Mozolic, Hugenschmidt, and Peif-

fer [2008], Jain, Sally, and Papathomas [2008]. These studies have addressed multiple

specific issues concerning crossmodal interactions, such as spatiotemporal modulation,

level of processing, the role of dynamic information (e.g, stimulus onset asynchronies),
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the role of perceptual grouping, and modality dominance - for a comprehensive review

see Soto-Faraco et al. [2003].

As Soto-Faraco et al. point out, an important aspect in the interpretation of per-

ceptual asymmetries is the relative distribution of attention across the different sensory

modalities (see also Mozolic et al. [2008]); in fact, several researchers have postulated

that visual input may often dominate over input from other modalities because of a

pervasive bias to attend preferentially toward the visual modality, rather than any of

the remaining modalities [Soto-Faraco et al. 2003]. Even within modality, perceptual

and neural responses reflect the way featural attention is distributed [Castelo-Branco

et al. 2007].

To understand crossmodal interactions, an effort must therefore be made in design-

ing dual experimental tasks in order to force focus either on one or the other sense with

concomitant contextual influence from the other sense (through endogenous attention;

see Bertelson et al. [2000], Spence and Driver [1997].

Given that humans operate in a world of sensory uncertainty and that introspection

fools us into thinking that perception is deterministic and certain cognitive biases may

arise. These are undesirable in the experimental setting, because they may obscure the

elucidation of other factors that influence the extraction of information about the world

using biological sensors. These factors include ambiguity due to physical constraints

(e.g. the mapping of 3D objects into 2D images, or the “aperture problem” in local

motion detection [Castelo-Branco et al. 2000; 2002; 2007]), neural noise introduced in

the early stages of sensory coding, and structural constraints on neural representations

and computations [Knill and Pouget 2004]. It is therefore essential that psychophysical

investigations of crossmodal interactions and perceptual decision take into account

baseline uncertainty in contextual modulations. This has the important advantage of

eliminating baseline perceptual bias.

Therefore, in the particular case of the interaction between vision and audition,

we investigated crossmodal influences by requiring subjects to report only on motion

perception conveyed either by audition (to test for visual contextual influences) or by

vision (to test for auditory contextual influences), while receiving simultaneous input

from both modalities. In this way the degree of perceptual uncertainty conveyed by

the contextual stimuli and its importance on the final multisensory perception outcome

is taken into account. Moreover, since it is commonly held that there is a tendency to

attend preferentially toward vision, we specifically manipulated the visual contextual

stimulus so as to maximise its ambiguity/unpredictability. This improved its compara-

bility to the auditory contexts, in the sense that it would increase the detectability of
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any pattern of dominance of auditory context and also enable the isolation of contextual

effects regardless of baseline perceptual bias.

Subjects were seated at about 36 cm viewing distance from a monitor flanked by

two loudspeakers lying in the same plane as the monitor screen and at a distance of

56 cm from each other. Head position was stabilised using a chin/forehead rest. The

experiment took place in a light- and sound-attenuated room in which the monitor and

the loudspeakers were the only sources of light and sound, respectively. MATLAB and

the purpose-built Psychophysical Software Toolbox Cogent 2000 were used for stimulus

presentation and data collection.

As mentioned above, these experiments were designed either to force attentional

focus on audition by requiring subjects to report only on motion direction of the au-

dio stimulus while being presented a visual stimulus simultaneously, thus investigating

the influence of the unattended (and ambiguous) visual stimulus on auditory motion

perception, or vice-versa. Since the generalised belief is that spatially vision captures

audition due to sensor reliability, visual stimuli were purposely designed to be am-

biguous in terms of perceived motion coherence; more specifically, bistable grating

(spatially coherent or incoherent) stimuli based on Alais et al. [1998] were used (see

previous section and also below). This way, any visual or auditory capture phenomena

would be clearly linked to crossmodal influences, and baseline perceptual bias factors

could be ruled out.

The overall procedure (see Fig 3.3) was thus sequenced in three steps: (1) a pre-run

with the purpose of establishing the most ambiguous visual condition (local grating

angles yielding ambiguous coherent vs. incoherent percepts) for each subject and to

quantify this ambiguity; (2) an experiment designed to test visual context induced

biasing of auditory motion perception (global coherent motion, which emergence was

unpredictable); (3) an experiment designed to test auditory (left or rightward motion)

contextual influences on visual motion perception.

In any of the three steps, subjects had to report either answer A, answer B (the

content of which — direction of auditory or visual motion — depended on the experi-

ment, with A and B being mutually exclusive) or no answer when uncertain. Subjects

were instructed to respond dynamically and interactively all throughout each trial, with

key “Q” or key “P” kept pressed while answer A or answer B was valid, respectively,

and no key pressed while subject would feel uncertain of what to respond. A timeline

consisting of “A answered”, “B answered” and “no answer” periods would be saved on

a log file, along with the percentages of total “A answered” time and “B answered”

time relative to full trial length, per trial. A summary file consisting of a log of the
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Figure 3.3: Illustration of sequence and timing of (visual and/or auditory) stimulus presen-

tation for each trial. Local gratings may either be perceived as incoherent, or alternatively

cohere into global leftward/rightward motion. Auditory motion was either leftward, rightward

or absent.

total averages for each experiment of total “A answered” time and “B answered” time

relative to full trial length would also be generated.

12 subjects were tested, 5 males and 7 females with ages comprehended between

20 and 59 years-old, with normal or corrected-to-normal visual acuity and normal

auditory acuity. Informed consent was obtained following the guidelines of our local

ethics committee.

In all experiments, stimuli were presented by a Dell Precision 380 computer on

a 22-inch Mitsubushi monitor with 1024 × 768 resolution (see Fig. 1). The visual

stimulus area size (95% of the screen) covered 24.7o visual angle and consisted of

luminance-defined square wave gratings (grating period 1.1o) that could be manipulated

independently in terms of orientation/direction; high luminance regions were measured

as being 8.58 cd/m2, while low luminance regions were measured as being 5.85 cd/m2,

hence Michelson contrast for these gratings was fixed to around 20%. Gratings were

seen through 16 small circular apertures of 2.6o visual angle, arranged in a 4× 4 array,

with each aperture equally spaced from its vertical and horizontal neighbour. A fixation

point was located at the centre of the display. The distance between aperture centres

was 6.5o visual angle. Visual displays consisted of 31 frames displayed at a frame rate

of 31.25 frames/s for 30 s. The two independently moving gratings could be seen through

the apertures with each grating occupying alternate diagonals of the array. Grating
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motions could be directed along 2 overall visual movement directions (“left”, “right”).

The grating directions/orientations might be symmetrical (±23o,±45o and ±68o with

respect to the vertical or horizontal axis) and asymmetrical (−23o/+ 45o with respect

to the vertical or horizontal axis), thus providing a total of 4 different orientation

conditions. The gratings were always matched and differed only in orientation and

direction.

As described by Alais et al. [1998], these stimuli resulted in bistable perception:

a) when the gratings in the 16 apertures were reported as being seen to move co-

herently by the subject, a grouping process occurred, whereby they were perceived

as four sets of complete (but partially occluded), concentric diamonds moving as if

on a single surface behind the apertures; b) when incoherent motion was reported to

be seen, the gratings appeared to move separately in orthogonal incoherent diagonal

streams. Thus, an experimental pre-run was conducted, in order to determine optimal

ambiguity levels prior to the contextual experiments — each trial lasted approximately

31 s, composed by 1 s of fixation/cueing and 30 s of stimulus presentation, throughout

which the subjects were required to respond (see Fig. 3.3). Given the presentation

of 4 orientation × 2 context types (8 trial types), total experimental time was about

4 mins. The pre-run experiment helped establish a high — ≈ 50% — ambiguity of

visual stimuli (see below). Motion of auditory stimuli were relatively less ambiguous

and all included subjects could in fact easily determine is direction of motion in the

absence of a context.

Subjects were required to report on visual motion, by pressing “Q” only when they

perceived coherent motion and “P” only when they perceived more than one motion

signal, and were asked to refrain from responding when unsure. This experiment

enabled determination of single subject optimal ambiguity settings.

Then, the first contextual experiment consisted of investigating the crossmodal

influence of a moving visual stimulus, based on the local grating orientations which

elicited the most ambiguous perception from the subject (i.e. the most balanced

coherent-incoherent motion response times, as determined in the pre-run experiment,

which aimed to define an ambiguous context, with uncertain/unpredictable presence

of coherent visual motion), on the perception of motion of a non-stationary auditory

stimulus.

Visual stimuli were the same as in the prerun (defining optimal ambiguity1 set-

tings), but this time using only the chosen grating orientation consistent with the two

possible coherent global motion horizontal directions (left/right), resulting in 2 differ-

1i.e. local aperture grating orientation.
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ent visual conditions plus a “no visual stimuli” control condition. Auditory stimuli

were presented at around 60 dB SPL (sound pressure level) at listening distance. They

consisted of 30 s of mono broadband noise processed in stereo. Sound was generated so

as to simulate two different motions, left-to-right or right-to-left, so that the auditory

motion signal direction could be consistent or inconsistent with the visually defined mo-

tion signal in any particular instant - two mirrored audio conditions were created, with

the simulated sound-source alternating between 5 s-duration left-to-right and right-to-

left motions so that each direction would encompass 50% of trial run-time. Auditory

and visual motion speeds were designed to be approximately coincident, moving at 2o

visual angle per second.

Sound-source motion was simulated using an amplitude panning technique, ad-

justing the amplitude of the signal being delivered to each loudspeaker to simulate the

directional properties of interaural level difference (ILD) cues (refer to section 2.2.2 for

complete definition). The sound files were presented binaurally using the tangent law

introduced by Bennett [Pulkki 1998]

tanφ

tan θ0

=
gl − gr
gl + gr

(3.1)

with gl and gr being the gain factors scaling the amplitude of the signal applied to the

right and left loudspeaker, respectively. The equation can be manipulated by assuming

a constant virtual volume level C = 1. This can be accomplished by ensuring that

gl + gr = 1, since keeping the virtual source volume level constant approximates a

constant distance from the sound-source.

Two runs of 30 trials, separated by a resting period to avoid subject fatigue, were

run for each visual-auditory stimulus combination (visual motion direction * auditory

motion direction), resulting in 5 + 5 random sequences of 2 ∗ 3 conditions = 6 trials of

30 s + 1 s each (with the same presentation sequence and timing of the prerun, shown

on Fig. 3.3), resulting in approximately 31 min total running time of the experiment.

Subjects were required to report on auditory motion, by pressing “Q” only when they

perceived right-to-left motion and “P” only when they perceived left-to-right motion,

and were asked to refrain from responding when unsure.

The second experiment consisted of investigating the crossmodal influence of a

moving auditory stimulus on the perception of motion of a non-stationary ambiguous

visual stimulus, based on the grating local orientation which elicited the most ambigu-

ous perception from the subject (i.e. the most balanced coherent-incoherent motion

perception) as the outcome of the prerun.

Visual stimuli were the same as in experiment 1; auditory stimuli were created
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using the same techniques described above; for this experiment, however, the 2 auditory

conditions were designed using only one audio motion direction per condition. Since

the presentation time is 30 s-long, and a complete (back and forth) motion path takes

10s, the audio streams were designed so as to restart the sound-source motion path

twice. An additional “no audio” control condition was also designed.

Again, two runs of 30 trials, separated by a resting period to avoid subject fa-

tigue, were run for each visual-auditory stimulus combination (visual motion direction

* auditory motion direction), resulting in 5 + 5 random sequences of 3 conditions *

2 conditions = 6 trials of 30 s + 1 s each (with the same presentation sequence and

timing of the prerun and experiment 1, shown on Fig. 3.3), resulting in approximately

31 min total running time of the experiment. Subjects were required to report on visual

motion presence or absence of global directional coherence as on the prerun.

Statistical analysis of experimental data was performed resorting to repeated mea-

sures General Linear model analyses, after verifying normality and homogeneity of

measures, using SPSS 16. It was found that global visual context did significantly

modulate perceived direction of auditory signals in spite of their relatively low ambigu-

ity. Repeated measures GLM analysis did indeed reveal a main effect of visual context

(p << 0.0001).

Post hoc analyses of the sources of these effects showed that these effects were

significant both for rightward coherence in visual contexts (p < 0.001) and leftward co-

herence (p < 0.002). Interestingly, this post hoc analysis also revealed that the sources

of these effects were mainly due to congruent vs incongruent visual contexts (p = 0.003

for leftward visual coherence and p = 0.001 for rightward visual coherence contex-

tual conditions). Fig. 3.4 summarises the main effects of visual context on auditory

perception.

To prove that the effect of visual context was due to global motion perception

and not significantly influenced by the local orientation features of the stimuli we

run a control analysis to probe whether local orientation changed perceived auditory

direction. No significant effects of local visual properties on mean perceived auditory

direction were found Fig. 3.5.

Surprisingly, we have found that auditory context did not significantly modulate

perceive coherence of spatially distributed visual signals (p = 0.5, ns), suggesting that

even when auditory signals have relatively lower ambiguity they may not be sufficient

to modulate visual motion integration of local/global bistable stimuli (Fig. 3.6). This

was further confirmed by post hoc analysis that did not reveal any auditory contextual

effect on perceived coherent visual global motion.
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Figure 3.4: Effect of visual context on auditory motion perception. When attention is

focused on auditory attributes and visual stimuli play a significant contextual modulation

is observed. Ordinate: % Left - % Right Audio Normalised = (% Left Audio - % Right

Audio)/(% Left Audio + % Right Audio). Abscissa: contextual visual motion conditions.

Figure 3.5: Effect of local orientation differences in visual stimuli on perceived auditory

motion — local orientation differences do not significantly change perceived auditory motion.

Ordinate measures calculated as in Fig. 3.4.
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Figure 3.6: When attention is focussed on visual attributes and auditory stimuli play a

contextual role no significant modulation is observed, in spite of the lower ambiguity of

auditory stimuli as compared to visual stimuli (note the high — 50% — ambiguity of visual

stimuli).

3.3 Conclusions

In the first baseline study, concerning visual motion, we have shown that humans

show processing bias for grouping of ambiguous moving stimuli in the horizontal di-

rection as opposed to the vertical direction. Right-left asymmetries were specifically

present only for discontinuous cues. Our results do thereby suggest an important

Bayesian prior in human perception, namely that horizontally moving cues are more

likely to belong to a single coherent object, in particular a potential predator.

Subjects perceive spatially distributed stimuli moving from left to right as more

coherent than vice versa, indicating a functional asymmetry that is presumably due

to our frequent exposure to spatially distributed letter strings in reading. The most

remarkable finding of this study was however that significantly more perceived coher-

ence is observed for horizontally moving stimuli (right and left) compared to vertically

moving stimuli (up and down). This indicates that humans divide the world into axes

of symmetry in which stimuli along the horizontal plane are grouped more often than

stimuli in the vertical plane. These findings extend the notion of “psychophysical per-

formance fields” proposed by Carrasco et al. [2001], to a novel concept of “perceptual

decision field”.

We conclude that a simple Bayesian-like rule for perceptual decision is at work,
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based on the fact that most animate objects in human philo- and ontogenetic experience

move along the horizon: horizontally moving cues are more likely to belong to a single

coherent object, namely a potential predator.

In the second baseline study, concerning visual- and auditory-based motion per-

ception given auditory and visual context, respectively, we have shown that even when

visual motion is unpredictably bistable (see also Alais et al. [1998]) it still contextually

dominates auditory motion perception in an asymmetric manner. This evidence for

asymmetric dominance of visual vs auditory context in perceptual decision is relevant

to understand a current discussion on the neural weights across modalities that deter-

mine perceptual decision [Soto-Faraco et al. 2003, Knill and Pouget 2004, Burr and

Alais 2006].

Although one cannot exclude that symmetric weights may still be present at the

sensory level, our paradigm, whereby sensory stimulation was identical but the role of

the context varied according to task instruction an attentional focus on each modality,

clearly shows that the visual modality dominates when the higher level perceptual

decision domain is involved The fact that our subjects could not predict a priori when

moments of motion coherence would emerge provides evidence that baseline decision

biases are not explaining the observed visual contextual dominance on auditory motion

perception.

It is quite surprising that in spite of the fact that auditory motion was relatively

less ambiguous and more predictable to our subjects, it still yielded non significant

modulation under these physically matched conditions of visual and auditory motion.

Absent effects were documented even under congruent conditions, in stark contrast

with visual modulatory effects, which were particularly strong when congruent vs in-

congruent conditions were contrasted.

In conclusion, perceptual decision under contextual modulation is dominated by the

visual over the auditory modality even when visual global motion signals are ambiguous

or unpredictable. Future studies on the neural mechanisms of perceptual decision

should address the implications of these findings for high level Bayesian models, such

as the one proposed in chapter 2, of crossmodal interactions in motion perception, by

applying the experimental paradigm presented on Fig. 2.1.
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Chapter 4

Implementation of Active

Exploration Using Bayesian Models

for Multimodal Perception

4.1 Active Exploration Using the Bayesian Volu-

metric Map

The availability of a probabilistic framework to implement spatial mapping of the

environment substantiated by the BVM allows the use of the concept of information

entropy, which can be used to promote an exploratory behaviour of areas of the envi-

ronment corresponding to cells on the volumetric map associated to high uncertainty,

an idea explored by Rocha, Dias, and Carvalho [2005a;b].

Information in the BVM is stored as the probability of each cell being in a certain

state, defined in the BP of Fig. 2.10 as P (VcOc|z c). The state of each cell thus belongs

to the state-space O × V . The joint entropy of the random variables VC and OC that

compose the state of each BVM cell [C = c] is defined as follows:

H(c) ≡ H(Vc, Oc) = −
∑
oc∈O
vc∈V

P (vc oc|z c) logP (vc oc|z c) (4.1)

The joint entropy value H(c) is a sample of a continuous joint entropy field H :

Y → R, taken at log-spherical positions [C = c] ∈ Y . Let cα− denote the contiguous cell

to C along the negative direction of the generic log-spherical axis α, and consider the

edge of cells to be of unit length in log-spherical space, without any loss of generality.

A reasonable first order approximation to the joint entropy gradient at [C = c] would
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be

−→
∇H(c) ≈ [H(c)−H(cρ−), H(c)−H(cθ−), H(c)−H(cφ−)]T (4.2)

with magnitude ‖
−→
∇H(c)‖.

A great advantage of the BVM over implementations of occupancy maps using

regular partitioning of Euclidean space is the fact that the log-spherical configuration

avoids the need for time-consuming ray-casting techniques when computing a gaze

direction for active exploration, since the log-spherical space is already defined based on

directions (θ, φ). Hence, the active exploration algorithm is simplified to the completion

of the following steps (see Fig. 4.1):

1. Find the last non-occluded, close-to-empty (i.e. P ([OC = 1]|[C = c]) < .5) cell

for the whole span of directions (θmax, φmax) in the BVM — these are considered

to be the so-called frontier cells as defined by Rocha et al. [2005a]; the set of all

frontier cells will be denoted here as F ∈ Y .

2. Compute the joint entropy gradient for each of the frontier cells and select

cs = arg maxc∈F

[
(1− P ([OC = 1]|[C = c]))‖

−→
∇H(c)‖

]
as the best candidate cell

to direct gaze to. In case there is more than one global maximum, choose the

cell corresponding to the direction closest to the current heading, so as to ensure

minimum gaze shift rotation effort.

3. Compute gaze direction as being (θC , φC), where θC and φC are the angles that

bisect cell [C = cs] (i.e. which pass through the geometric centre of cell cs).

The full BVM entropy-based active perception system is described by the block

diagram presented in Fig. 4.2.

The BVM is extendible in such a way that other properties, characterised by ad-

ditional random variables and corresponding probabilities might be represented, other

than the already implemented occupancy and local motion properties OC and VC ,

by augmenting the hierarchy of operators through Bayesian subprogramming — see

Appendix A on page 121.

Therefore, we introduce a new random variable UC , which takes the algorithm

presented above and expresses it in a compact mathematical form:

UC =

(1− P ([OC = 1]|C)) ‖~∇H(C)‖
max ‖~∇H(C)‖

C ∈ F ,

0 C /∈ F .
(4.3)
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frontier cell

Next gaze direction

Previous gaze direction

Figure 4.1: Illustration of the entropy-based active exploration process using the Bayesian

Volumetric Map. The result of applying the algorithm steps described in the main text is

depicted. When there exists more than one maximum for (1−P ([OC = 1]|[C = c]))‖
−→
∇H(c)‖,

the frontier cell corresponding to the direction closest to the current heading is chosen, so as

to ensure minimum gaze shift rotation effort.

C C

Motor Commands

Perceptual Scene

Z
1
...Z

S

H(c)

Figure 4.2: Active multimodal perception using entropy-based exploration. The “Gaze

Control” module has been described elsewhere — see list of publications in Appendix C —

and is beyond the scope of this text.
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Perceptual System

Motor

Commands

(time t+1)

Hardware

Stereo Images

Stereo Audio

Angular Velocity

Lin. Acceleration

(time t)

Robotic Platform
(IMPEP)

Figure 4.3: Integration layout for the active multimodal perception system.

4.2 System Implementation and Calibration

4.2.1 Overall implementation details

The real-time active multimodal perception system integrates the Bayesian frame-

work described in chapter 2 and computes a stabilised gaze shift towards a site on the

environment to be explored in the subsequent time step — Fig. 4.3 shows an overview

of the system’s layout and integration.

The BVM-IMPEP real-time system was developed using the following software:

• Vision sensor system: With the OpenCV toolbox and the implementation

by Gallup [2009] of a basic binocular stereo algorithm on GPU using CUDA.

The algorithm reportedly runs at 40 Hz on 640 × 480 images at 50 disparities,

computing left and right disparity maps and performing left-right consistency

validation (which in our adaptation is used to produce the stereovision confidence

maps).

• Binaural sensor system: Using an adaptation of the real-time software kindly

made available by the Speech and Hearing Group at the University of Shefield

[Lu et al. 2007] to implement binaural cue analysis as described on chapter 2.

• Bayesian Volumetric Map, Bayesian sensor models and active explo-

ration: using our proprietary, parallel processing, single-precision GPU imple-
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DualCore Intel Pentium D 950, 3.40GHz
Cache L1 (32KB) and L2 (2048KB)
1 GB RAM
80GB, 7200 rpm hard-disk
PCI-Express NVIDIA GeForce 9800 GTX (512MB)

Mobile DualCore Intel Pentium M, 1666MHz
Cache L1 (32KB) and L2 (2048KB)
1024 MB RAM
74GB hard-disk
Integrated graphics card

Figure 4.4: BVM-IMPEP system network diagram.

mentation developed with NVIDIA’s CUDA, described on section 4.2.2.

The BVM-IMPEP system is composed of a local Ethernet network comprised of two

PCs communicating and synchronising via Carmen messaging [Montemerlo et al. 2007],

one for all the sensory and BVM framework processing (including CUDA processing on

a NVIDIA GeForce 9800 GTX, compute capability 1.1), and the other for controlling

the IMPEP head motors, designed for portability (i.e. low-consumption and light-

weight) in order to be mounted on mobile robotic platforms in the future — see Fig. 4.4.

Both are equipped with Ubuntu Linux v9.04.

4.2.2 Bayesian Volumetric Map implementation on GPU us-

ing CUDA

The activity diagram for the BVM Bayesian framework is presented on Fig. 4.5, de-

picting an inference step corresponding to time t and respective timeline. In the follow-

ing lines, our GPU implementation of the BVM algorithms developed with NVIDIA’s

CUDA that exectute this timeline will be described in more detail.

Bayesian Volumetric Map filter

The BVM filter, which comprises the processing lane on the right of Fig. 4.5,

launches kernels based on a single three-dimensional grid corresponding to the log-

spherical configuration — see Fig. 4.6. In fact, both input matrices (i.e. observations

and previous system state matrices) and output matrices (i.e. current state matrices)

have the same indexing system. Blocks on this grid were arranged in such a way that

their 2D indices would coincide with azimuth θ and elevation φ indices on the grid,
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Binaural
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Figure 4.5: Activity diagram for an inference time-step at time t. Each vertical lane

represents a processing thread of the module labelled in the corresponding title. Maximum

processing times (for N = 10,∆θ = 1o,∆φ = 2o) are also presented in the timeline for

reference.
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N

BLOCK_SIZE_Z = N 180/
BLOCK_SIZE_X

BLOCK_SIZE_Y

360/

idx-1 idx idx+1

idx-1
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idx-1
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Figure 4.6: BVM filter CUDA implementation. On the right, the overall 3D BVM grid

is shown. On the left, a zoom in on the 9 adjacent cells needed to update a central cell of

the BVM are shown — this means that shared memory is required. As mentioned before,

CUDA allows reference to each thread using a three-dimensional index; however, it only

allows two-dimensional indexing for thread blocks. For this reason, we decided to assign

the smallest dimension to the third axis (from now on referred to as “depth” — with size

N), and by making all blocks the same depth as the global grid — this ensures that the

block two-dimensional index corresponds to the remaining axes, simplifying memory indexing

computations. Each thread loads its cell’s previous state into shared memory and the log-

probabilities for sensor measurements. The need for access to the previous states of adjacent

cells further complicates the implementation by forcing the use of aprons, depicted in yellow

within the thread blocks (see Fig. 4.8(a) for further details on kernel implementation using

aprons).
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Figure 4.7: Stereovision sensor model CUDA implementation. Each thread independently

processes one pixel of the egocentric-referred depth map and confidence images (no use of

shared memory required), computes the corresponding cell C on the BVM log-spherical spa-

tial configuration using the equation shown, and updates two data structures in global device

memory with that configuration storing log-probabilities corresponding to P (Z|[OC = 1]C)

and P (Z|[OC = 0]C) (independent of velocity VC), respectively. The update is performed

using atomic summation operations provided by CUDA compute capability 1.1 and higher

[NVIDIA 2007]. Atomic operations are needed due to the many-to-one correspondence be-

tween pixels and cells on the BVM; however, the order of summation is, obviously, non-

important. Finally, since all atomic operations except “exchange” only accept integers as ar-

guments, log-probabilities are converted from to floating-point to integer through a truncated

multiplication by 10n, with n corresponding to the desired precision (in our implementation,

we used n = 4).
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All Threads Non-Apron Threads

No

(a) BVM filter CUDA kernel flowchart. Aprons

are the limiting cells of the block, to which corre-

spond threads that cannot access adjacent states,

and therefore with the sole mission of loading

their respective states into shared memory —

thus, blocks must overlap as their indices change,

so that all cells have the chance to be non-apron.

After all threads, apron or non-apron, load their

respective previous states into shared memory,

all non-apron threads then perform Bayesian fil-

ter estimation and update the states, as depicted.

The “Observation” box here denotes the compu-

tation of β by multiplying all available outputs

from the stereovision and binaural Bayesian sen-

sor models denoted as the “Observation” box of

Fig. 4.5.

"Maximum Entropy-Based Factor" Kernel

"Minimum Distance from Current Fixation" Kernel

"Get Gaze Computation 'Winner Take All'" Kernel

"Compute next fixation point" Kernel

CUDA stream

No

No

No

(b) Active exploration CUDA stream flowchart.

Four consecutive kernels in a sequential CUDA

stream were used to implement the active explo-

ration algorithm. The division of the process-

ing workload into separate kernels was necessary

due to the fact that the only way to enforce

synchronisation between all concurrent CUDA

threads in a grid (as opposed to all threads

in a block, which is only a subset of the for-

mer) is to wait for all kernels running on that

grid to exit — this is only possible at CUDA

stream level (see main text for the definition of

CUDA stream). CUDA atomic operations (re-

fer to Fig. 4.7 for more information) and global

memory were used to pass on data from one ker-

nel to the next without the need for additional

memory operations.

Figure 4.8: BVM CUDA implementation flowcharts.
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assuming that the full N -depth of the log-distance index is always copied to shared

memory.

By trial-and-error we arrived at the conclusion that block size was limited by shared

memory resources to 5 × 5 × N for N ≤ 10 and 3 × 3 × N for N = 11, which would

therefore be the top limit for depth using this rationale of a single grid for the whole

BVM space. In fact, for N < 11, there were 250 threads and 8000 bytes of shared

memory per block, thus limiting the maximum number of blocks per multiprocessor to

2 for the compute capability 1.1 of the GeForce 9800 GTX; for N = 11, on the other

hand, there were 90 threads and 2880 bytes of shared memory per block, increasing

the limit of blocks per multiprocessor to 5.

The flowchart for the BVM filter kernel is shown on Fig. 4.8(a).

Bayesian processing of stereovision and binaural data

The stererovision sensor model, which comprises the second processing lane from

the left and the “Observation” box of Fig. 4.5, launches kernels based on two-

dimensional grids corresponding to image configuration — see Fig. 4.7. In fact, its

input matrices (left and right images, and disparity and confidence maps) have the

same indexing system, while its output matrices (visual observation matrices) have the

same indexing as the BVM grid of Fig. 4.6.

By trial-and-error we arrived at the conclusion that block size was limited by

register memory resources to 16 × 16 for 640 × 480 images. This also ensured that it

was a multiple of the warp size so as to achieve maximum efficiency.

The implementation of the binaural sensor model, corresponding to the processing

lane on the left and the “Observation” box of Fig. 4.5, contrastingly, is very simple

— a vector of binaural readings is used as an input and a grid as shown on Fig. 4.6,

but without resorting to aprons (i.e. shared memory; see Figs. 4.6 and 4.8(a) for a

detailed explanation of this notion), was used to update sensor model measurement

data structures analogous to those of the stereovision sensor model, by referring to

a lookup table with normal distribution parameters taken from the auditory system

calibration procedure (see section 4.2.3).

When there are visual and binaural measurements available simultaneously, two

CUDA streams1 are created (i.e. forked), one for each sensor model, and then destroyed

(i.e. merged).

1CUDA streams are concurrent lanes of execution that allow parallel execution of multiple kernels
on the GPU.
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Active exploration

The active exploration algorithm was implemented resorting to CUDA atomic op-

erations, global memory and four consecutive kernels in a sequential CUDA stream.

This implementation is detailed on Fig. 4.8(b).

To avoid the adverse effects of motion blur on stereoscopic measurements, a strategy

similar to what is adopted by the human brain is implemented for fixations and gaze

shifts — fixation is accomplished by processing data coming from the stereovision

system for a few hundred milliseconds [Carpenter 2004; 2000, Caspi et al. 2004], followed

by a process similar to the so-called saccadic suppresion, in which the magnocellular

visual pathway (mainly supplying data to the dorsal pathway, which we intend to

model) is actively suppressed during saccades [Burr et al. 1994, Watson and Krekelberg

2009]. In our parallel of this process, we simply halt gaze shift generation for a few

iterations of the vision sensor model updates (thus simulating fixation), and then stop

the updates during gaze shifts (thus simulating saccadic suppresion), without stopping

the low-level processing of the stereovision system, which might be used in the future

for other purposes.

4.2.3 System calibration

Visuoinertial calibration

Accurate camera calibration can greatly simplify solutions to many important vi-

sion problems such as the stereo vision problem, the three-dimensional visual tracking

problem, the mobile-robot visual guidance problem, the 3D reconstruction problem,

the 3D visual information registration problem, etc. For example, it is well known

that a well-calibrated stereo vision system would not only dramatically reduce the

complexity of the stereo correspondence problem but also significantly reduce the 3D

estimation error [Shih, Hung, and Lin 1998].

Camera calibration can be performed using a standard stereovision calibration

software to estimate left and right camera intrisic parameters (i.e. focal length and

distortion parameters for undistorting images for processing) and extrinsic parameters

(i.e. transformation between camera local coordinate systems — in the case of an

ideal frontoparallel setup, the estimation of baseline b) that allow the application of

the reprojection equation:
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where ul is the horizontal coordinate and vl is the vertical coordinate of a point on the

left camera, and δ̂ is the disparity estimate for that point, all of which in pixels, f and

b are the estimated focal length and baseline, respectively, both of which in metric dis-

tance, and X, Y and Z are 3D point coordinates respective to the egocentric/cyclopean

referential system {E}.
Using reprojection error measurements given by the calibration procedure, param-

eter σmin of equation (2.19) is defined as being equal to the maximum error exhibited

by the stereovision system.

Finally, to determine (θi,k, φi,k) and ρ̂i,k(δ̂) (i.e. to perform the cartesian-to-

spherical transformation) for each projection line (i, k) to use with the vision sensor

model given in Figure 2.11, the following relations are built from equation (4.4),
θi,k = 2 arctan

(
X
2f

)
φi,k = 2 arctan

(
Y
2f

)
ρ̂i,k(δ̂) =

√
X2(δ̂) + Y 2(δ̂) + Z2(δ̂)

(4.5)

Given θi,k and φi,k, it becomes possible at any moment to compute depth from a

given disparity estimate by substitution of the two first expressions onto the last in

Equation 4.5, yielding

ρ̂i,k(δ̂) = f

√
4

(
tan2 θi,k

2
+ tan2 φi,k

2

)
+

(
b

δ̂

)2

(4.6)

In order to determine the rigid rotation between the INS frame of reference {I}
and the right camera frame of reference {CR}, both sensors are used to measure the

vertical direction2. When the IMU sensed acceleration is equal in magnitude to gravity,

the sensed direction is the vertical. For the camera, using a specific calibration target

such as a chessboard target placed vertically, the vertical direction can be taken from

the corresponding vanishing point [Lobo and Dias 2007].

2The right camera was arbitrarily chosen as the dominant eye throughout this work — knowing
the geometry of the stereovision system through calibration, relating {CR} to {E} is trivial.
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Rotation Calibration Summary

• N static observations at distinct positions:

– vertical chessboard target;

– save image and corresponding inertial data.

• Perform standard camera calibration for image set.

• Compute rotation quaternion:

– use target vertical vanishing points Cvi detected for

camera calibration;

– inertial data from accelerometers provide Ivi ;

– rotation quaternion q̊ given by (4.8).

Figure 4.9: Summary of required steps to perform calibration of rotation between camera

and IMU using the proposed algorithm.

Let Ivi be a measurement of the vertical by the inertial sensors, and CRvi the

corresponding measurement made by the camera derived from some scene vanishing

point. We want to determine the unit quaternion q̊ that rotates inertial measurements

in the inertial sensor frame of reference {I} to the camera frame of reference {CR}; in

other words, we want to find the unit quaternion q̊ that maximises [Lobo and Dias

2007]

n∑
i=1

(̊q Ivi q̊
∗) · CRvi (4.7)

Using Ivi = (Ixi,
I yi,

I zi)
T and CRvi = (CRxi,

CR yi,
CR zi)

T , according to Lobo and

Dias [2007], this quaternion product can be expressed in matrix form, being equivalent

to

max q̊T N q̊ (4.8)

where

N =
n∑
i=1

IVT
i · CRVi

with
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Figure 4.10: Outcome of visuoinertial calibration of the IMPEP V2.0 platform. Top left:

unit sphere projection with vanishing point and reprojected verticals from rotation calibra-

tion. Top right: reconstructed target positions relative to the camera. Bottom: reprojection

alignment errors for verticals in each of the 20 frames used for camera calibration and rotation

estimation.

Vi =


0 −CRxi −CRyi −CRzi
CRxi 0 −CRzi CRyi
CRyi

CRzi 0 −CRxi
CRzi −CRyi CRxi 0


This boresight static approach can be easily performed, not requiring any addi-

tional equipment, apart from the chessboard target, obtained using a standard printer,

already used for camera calibration [Lobo and Dias 2007]. Fig. 4.9 provides a sum-

mary of required steps to perform calibration of rotation between camera and IMU as

described in Lobo and Dias [2007].

Visuoinertial calibration was performed using the InerVis toolbox [Lobo 2006], that



4.2 System Implementation and Calibration 83

adds on to the Camera Calibration Toolbox by Bouguet [2006]. An overview of the

outcome of the visuoinertial calibration process of the IMPEP V.2 platform is shown

in Fig. 4.10.

Binaural system calibration

As can be seen on the BP in Fig. 2.12, calibration of the binaural system in-

volves the characterisation of the families of normal distributions P (τ |SC OC θmax) and

P (∆L(fkc )|τ SC OC C) ≈ P (∆L(fkc )|SC OC C) through descriptive statistical learning

of their central tendency and statistical variability. This is done in an equivalent man-

ner as with commonly used head-related transfer function (HRTF) calibration processes

(see, for example, [Calamia 1998]) and is described in the following paragraphs.

A set Mc of n-dimensional measurement vectors such as defined on chapter 2 is

collected per cell c ∈ C. The full set of collected measurement vectors for all cells in

auditory sensor space Y is expressed as M =
⋃
Mc. Denoting Mc̄ = M \Mc as the

set of measurements for all cells other than c, the statistical characterisation process

of each family of distributions is effected for each cell c through

P (τ |[Sc = 1]Oc θmax) ≡ N (τ, µτ (Mc), στ (Mc)) (4.9a)

P (τ |[Sc = 0]Oc θmax) ≡ N (τ, µτ (Mc̄), στ (Mc̄)) (4.9b)

P (∆L(fkc )|[Sc = 1]Oc c) ≡

N (∆L(fkc ), µ∆L(fkc )(Mc), σ∆L(fkc )(Mc)) (4.9c)

P (∆L(fkc )|[Sc = 0]Oc c) ≡

N (∆L(fkc ), µ∆L(fkc )(Mc̄), σ∆L(fkc )(Mc̄)) (4.9d)

Auditory calibration is performed by presenting a broadband audio stimulus

through a loudspeaker positioned in well-known spatial coordinates corresponding to

the geometric centre of each cell c ∈ C so as to sample space according to the auditory

sensor space Y .

The acquisition method may be simplified by a factor of 4 by taking into account

the spatial redundancies of auditory sensing, namely the symmetry enforced by the

back-to-front ambiguity and the left-to-right antisymmetry for both ITDs and ILDs,

to reduce calibration space to the front-left quadrant.

A further simplification of the procedure consists in positioning the loudspeaker,

for each of the Nd considered distances from the binaural system, precisely in front of

the active perception head (i.e. (θ, φ) = (0, 0)) and to rotate the active head so that
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Figure 4.11: Experimental setup for the binaural system calibration procedure.

the whole range of azimuths and elevations of the auditory sensor space is covered.

This replaces the several minutes taken to reposition the loudspeaker by hand (now

only happening Nd times) by a few seconds of head motions for each cell. The full

procedure is depicted in Fig. 4.11.

4.3 Results and Conclusions

The real-time implementation of all the processes of the framework was subjected

to performance testing for each individual module. Processing times and rates for the

sensory systems are as follows:

• Stereovision unit 15 Hz, including image grabbing and preprocessing (using

CPU), stereovision processing itself (i.e. disparity and confidence map generation,

using GPU), and postprocessing and numerical conditioning (using CPU).

• Binaural processing unit Maximum rate of 40 Hz and 20 to 70 ms latency

(using CPU) for 44 KHz, 16-bit audio, with 16 frequency channels and 50 ms

buffer for cue computation.

• Inertial processing unit 100 Hz using GPU.

Processing times for the BVM modules are shown in Fig. 4.12. As can be seen, the

full active exploration system runs from 6 to 10 Hz, depending on system parameters.
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(b) Average processing times for ∆φ = 1o.

Figure 4.12: BVM framework average processing times. Both graphs are for ∆θ = 1o, and

show the average of processing times in ms for each activity depicted on Fig. 4.5, taken for a

random set of 500 runs of each module in the processing of 5 dynamic real-world scenarios,

with sensory horopter occupation varying roughly from 10 to 40% (although with no appar-

ent effect on performance). These times are plotted against the number N of divisions in

distance, which is the most crucial of system parameters (for N > 11, the GPU resources

become depleted, and for N < 5 resolution arguably becomes unsatisfactory), and for two

different reasonable resolutions in φ. Note that BVM filter performance degrades approxi-

mately exponentially with increasing resolution in distance, while the performance of all other

activities degrades approximately linearly — the sole exception is the vision sensor model for

N = 11, where it actually improves its performance. The reason for this is that the ratio of

the effect of the influence of resolution on CUDA grid size vs the effect of the influence of

resolution on the number of atomic operations required is reversed. (The * denotes that for

N = 11 the block size is smaller for the BVM filter CUDA implementation — refer to main

text for further details.)
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This is ensured by forcing the main BVM thread to pause for each time-step when no

visual measurement is available (e.g. during 40 ms for N = 10,∆φ = 2o — see Fig. 4.5).

This guarantees that BVM time-steps are regularly spaced, which is a very important

requirement for correct implementation of prediction/dynamics, and also ensures that

processing and memory resources are freed and unlocked regularly.

Running times for the Bayesian Volumetric Map update process decreased for each

processing cycle from 5 to 30 minutes of serial processing on a Pentium Core 2 Quad

CPU at 2.40 GHz, depending on BVM parameters, to a corresponding few hundredths

of a second to a tenth of a second of parallel computing on an NVIDIA 9800 GTX

graphics card, thus yielding a 18, 000 to 30, 000-times faster performance.

An exemplification of the active exploration algorithm performing in real-time is

presented on Fig 4.13. Results consist of offline rendering of BVMs computed on-

line at time-instants in which gaze shifts took place, together with a corresponding

representation of relevant values of the entropy-based variable UC for each BVM cell.

Online results of processing three disparate scenarios testing different aspects of

the full system are presented on Figs. 4.14, 4.15 and 4.16. Scenes consisting of one or

more speakers talking in a cluttered lab are observed by the IMPEP active perception

system and processed online by the BVM Bayesian filter, using entropy-based active

exploration as described earlier, in order to scan the surrounding environment.

More specifically, on Fig. 4.14 a comparison is made between the outcome of using

each sensory modality individually, and also with the result of multimodal fusion, using

a single speaker scenario, showcasing the advantages of visuoauditory integration in the

effective use of both the spatial precision of visual sensing, and the temporal precision

and panoramic capabilities of auditory sensing. Figs. 4.15 and 4.16 show the effec-

tiveness of active exploration when having to deal with the ambiguity and uncertainty

caused by multiple sensory targets and complex noise, in a two-speaker scenario and

three-speaker scenario, respectively, since in both cases the BVM successively generates

a reconstruction of each of the speakers.

These results show a projection of the log-spherical configuration onto Euclidean

space of a volume approximately delimiting the so-called “personal space” (the zone

immediately surrounding the observer’s head, generally within arm’s reach and slightly

beyond, within 2 m range [Cutting and Vishton 1995]) and the evolution of the explo-

ration process through time.

The active exploration algorithm thus successfully drives the IMPEP-BVM frame-

work to explore areas of the environment mapped with high uncertainty in real-time,

with an intelligent heuristic that minimises the effects of local minima by attending to
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(a) BVM results corresponding to a scenario composed of one male speaker calling out at approx-

imately 30o azimuth relatively to the Z axis, which defines the frontal heading respective to the

IMPEP “neck”. The reconstruction of the speaker can be clearly seen on the left of each represen-

tation of the BVM. From left to right, respectively 19, 212 and 556 cells (corresponding to 0, 003%,

0, 032% and 0, 085% of the total number of cells in the map) for each representation have been

estimated as most likely being occupied (probability greater than 70%).

(b) Relevant values for entropy-based variable UC corresponding to each of the time-instants in (a).

Represented values range from .5 to 1, depicted using a smoothly gradated red-to-green colour-code

(red corresponds to lower values, green corresponds to higher values). Chronologically ordered in-

terpretation of these results goes as follows: at first, relevant cells have their relative importance for

sensory exploration scattered throughout the visible area, and there is a separate light yellow region on

the left corresponding to an auditory object (i.e the speaker) that becomes the focus of interest (816

cells — 0.126% of the total number of cells in the map — were considered as minimally relevant); then,

at the boundaries of the speaker’s silhouette, bright green cells show high relevance of this area for

exploration, which then becomes the next focus of interest (1, 710 cells — 0.264% — were considered

as minimally relevant); finally, after a few cycles of BVM processing, uncertainty lowers, which clearly

shows as the number of green cells diminishes (1, 901 cells — 0.293% — were considered as minimally

relevant).

Figure 4.13: Results corresponding, from left to right, to time-instants in which gaze shifts

were generated, 17.080 s, 26.664 s and 36.411 s, respectively, for the real-time prototype for

multimodal perception of 3D structure and motion using the BVM, exemplifying the use of

the entropy-based variable UC to elicit gaze shifts, using the active exploration heuristics

described in the main text, in order to scan the surrounding environment. A scene consisting

of a male speaker talking in a cluttered lab is observed by the IMPEP active perception

system and processed online by the BVM Bayesian filter. An oriented 3D avatar of the

IMPEP perception system depicted in each map denotes the current gaze orientation. All

results depict frontal views, with Z pointing outward. The parameters for the BVM are as

follows: N = 10, ρMin = 1000 mm and ρMax = 2500 mm, θ ∈ [−180o, 180o], with ∆θ = 1o,

and φ ∈ [−90o, 90o], with ∆φ = 1o, corresponding to 10 × 360 × 180 = 648, 000 cells,

approximately delimiting the so-called “personal space” (the zone immediately surrounding

the observer’s head, generally within arm’s reach and slightly beyond, within 2 m range

[Cutting and Vishton 1995]).
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(a) Left camera snapshot of a male

speaker, at 41o azimuth relatively to the

Z axis, which defines the frontal heading

respective to the IMPEP “neck”.

(b) BVM results for binaural processing only. Inter-

pretation, from left to right: 1) sound coming from

speaker triggers an estimate for occupancy from the

binaural sensor model, and a consecutive exploratory

gaze shift at approximately 1.6 seconds; 2) At approx-

imately 10 seconds, noise coming from the background

introduce a false positive, that is never again removed

from the map (i.e. no sound does not mean no object,

only no audible sound-source).

(c) BVM results for stereovision processing only.

Notice the clean cut-out of speaker silhouette, as

comparing to results in (b). On the other hand,

active exploration using vision sensing alone took

approximately 15 seconds longer to start scan-

ning the speaker’s position in space, while using

binaural processing the speaker was fixated a cou-

ple of seconds into the experiment.

(d) BVM results for visuoauditory fusion. In this

case, the advantages of both binaural (immediacy

from panoramic scope) and stereovision (greater

spatial resolution and the ability to clean empty

regions in space) influence the final outcome of

this particular instantiation of the BVM, taken

at 1.5 seconds.

Figure 4.14: Results for the real-time prototype for multimodal perception of 3D structure

and motion using the BVM — three reenactments (binaural sensing only, stereovision sensing

only and visuoauditory sensing) of a single speaker scenario. A scene consisting of a male

speaker talking in a cluttered lab is observed by the IMPEP active perception system and

processed online by the BVM Bayesian filter, using the active exploration heuristics described

in the main text, in order to scan the surrounding environment. The blue arrow together

with an oriented 3D sketch of the IMPEP perception system depicted in each map denote

the current gaze orientation. All results depict frontal views, with Z pointing outward. The

parameters for the BVM are as follows: N = 10, ρMin = 1000 mm and ρMax = 2500 mm,

θ ∈ [−180o, 180o], with ∆θ = 1o, and φ ∈ [−90o, 90o], with ∆φ = 2o, corresponding to

10 × 360 × 90 = 324, 000 cells, approximately delimiting the so-called “personal space” (the

zone immediately surrounding the observer’s head, generally within arm’s reach and slightly

beyond, within 2 m range [Cutting and Vishton 1995]).
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(a) Left camera snapshots corresponding to chronologically ordered time-instants. Two male speak-

ers are maintaining a dialogue, at 22o and −14o azimuth respectively relatively to the Z axis, which

defines the frontal heading respective to the IMPEP “neck”. As can be seen on the first frame, both

speakers are initially outside the stereovision region-of-interest for processing, being consecutively

scanned as a result of active exploration-driven gaze-shifts.

(b) BVM results corresponding to each of the snapshots in (a). Interpretation, from left to right

(chronological evolution): 1) initial non-informative map; 2) sound coming from the speaker on the

right triggers an estimate for occupancy from the binaural sensor model, and a consecutive exploratory

gaze shift; 3) a few frames from the stereovision system trigger further evidence accumulation for

occupancy by the vision sensor model at the gaze direction site, fusing readings from both sensory

systems — higher spatial resolution from vision carves out the right speaker’s silhouette from the

first rough estimate from audition —, while sound coming from the speaker on the left triggers an

estimate for occupancy from the binaural sensor model, and a consecutive exploratory gaze shift in

the speaker’s direction; 4) after turning to new gaze direction site, the stereovision system triggers

further evidence accumulation for occupancy at the left speaker’s location, fusing readings from both

sensory modalities.

Figure 4.15: Results for the real-time prototype for multimodal perception of 3D structure

and motion using the BVM — two speakers scenario. A scene consisting of two male speakers

talking to each other (left and right speakers both pinpointed for clarity) in a cluttered lab is

observed by the IMPEP active perception system and processed online by the BVM Bayesian

filter, using the active exploration heuristics described in the main text, in order to scan the

surrounding environment. All parameters and labelling are as in Fig. 4.14, unless where

otherwise noted.
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(a) Left camera snapshots corresponding to chronologically ordered time-instants. Three male speak-

ers are maintaining a dialogue, at 18o, −2o and −35o azimuth respectively relatively to the Z axis,

which defines the frontal heading respective to the IMPEP “neck”. As can be seen on the first frame,

only the centre speaker is initially inside the stereovision region-of-interest for processing, being the

remainder two speakers consecutively scanned as a result of active exploration-driven gaze-shifts.

(b) BVM results corresponding to each of the snapshots in (a). Interpretation, from left to right

(chronological evolution): 1) while central speaker within sight, sound coming from the speaker

on the right (out of sight) triggers an estimate for occupancy from the binaural sensor model, and

a consecutive exploratory gaze shift; 2) a few frames from the stereovision system trigger further

evidence accumulation for occupancy by the vision sensor model at the gaze direction site, fusing

readings from both sensory systems; 3) sound coming from the speaker on the left triggers an

estimate for occupancy from the binaural sensor model, and a consecutive exploratory gaze shift

in the speaker’s direction; after turning to new gaze direction site, the stereovision system triggers

further evidence accumulation for occupancy at the left speaker’s location, fusing readings from

both sensory modalities.

Figure 4.16: Results for the real-time prototype for multimodal perception of 3D structure

and motion using the BVM — three speakers scenario. A scene consisting of three male

speakers talking to each other in a cluttered lab is observed by the IMPEP active perception

system and processed online by the BVM Bayesian filter, using the active exploration heuris-

tics described in the main text, in order to scan the surrounding environment. All parameters

and labelling are as in Figs. 4.14 and 4.15, unless where otherwise noted.
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the closest regions of high entropy first. Moreover, since the human saccade-generation

system promotes fixation periods (i.e. time intervals between gaze shifts) of a few hun-

dred milliseconds on average [Carpenter 2004, Caspi et al. 2004], the overall rates of 6

to 10 Hz achieved with our CUDA implementation, in our opinion, back up the claim

that our system does, in fact, achieve satisfactory real-time performance.
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Chapter 5

A Bayesian Hierarchical Framework

for Multimodal Active Perception

5.1 Motivations

Kopp and Gärdenfors [2002] posit that the capacity of attention is a minimal cri-

terion of intentionality for robots. Since humans are prevalently social beings, their

attentional system is inherently socially driven; this becomes particularly important

when considering human-machine interaction, where robots are expected to engage

with humans while displaying attentional behaviours that resemble those of their in-

terlocutors [Shic and Scassellati 2007].

In any case, even when dealing with unknown environments with no social intent,

humans use their attentional system to its full — a random exploratory strategy alone

would not take into account potential dangers that our evolution has imprinted in our

prior knowledge to most probably be due to predators or caused by competitors of our

own species.

Given our bioinspired motivations presented in the introductory chapter, we set

off to develop a hierarchical artificial active perception system that follows human-like

bottom-up driven behaviours based on vision, audition and proprioception, using the

framework presented on chapters 2 and 4. In the process, we will demonstrate the

following properties which are intrinsic to the framework: emergence, scalability and

adaptivity.
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5.2 A Bayesian Hierarchy as a Model of Active Vi-

suoauditory Perception

5.2.1 Background and definitions

A saccade is a fast movement of an eye, head or other part of an animal’s body or

device. For example, eye saccades are quick, simultaneous movements of both eyes in

the same direction. Saccades serve several purposes, such as a mechanism for fixation

or rapid eye movement [Ferreira and Castelo-Branco 2007].

Humans and other animals do not look at a scene in a steady way. Instead, sensors

are directed to interesting parts of the scene, so as to build up a mental map of the

surrounding environment. One reason for saccades is to move the senses so that redun-

dant evidence can be accumulated about a scene (i.e. active perception), lowering the

overall uncertainty of individual sensor measurements and using limited-scope sensorial

resources more efficiently.

Visual saccades, the most thoroughly investigated type of saccade, are measured

or investigated in four ways (which can be generalised to multisensory-driven saccades)

[Rommelsea et al. 2008]:

• In a visually guided saccade, an observer performs a gaze shift towards a visual

onset, or stimulus. This is typically included as a baseline when measuring other

types of saccades.

• In an antisaccade, an observer moves eyes away from the visual onset. They are

more delayed than visually guided saccades, and observers often make erroneous

saccades in the wrong direction. A successful antisaccade requires inhibiting a

reflexive saccade to the onset location, and voluntarily moving the eye in the

other direction.

• In a memory guided saccade, an observer shifts its gaze towards a remembered

point, with no sensory onset involved.

• In smooth pursuit eye movements, an observer tracks a small object moving with

a constant slow speed. They emphasise basic eye control, not cognitive processes.

See Fig. 5.1 for an overview of visual saccadic and smooth pursuit circuits of the

Macaque monkey brain, which have analogous counterparts in the human brain.

Sensory guided and memory guided saccades involve gaze computation, the object

of the models presented herewith, followed by gaze control, which translates desired
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2

potheses to decompose the joint distribution in a simpler
product of smaller distributions.

In the end, a Bayesian programmer specifies a set of
variables, a decomposition of the joint probability dis-
tribution and a mathematical expression for each factor
that appears in this decomposition. At that point, any
distribution on the variables can be computed. The pro-
grammer is usually interested on one particular distribu-
tion, which is called a question. The inference can be au-
tomatically computed through the use of both marginal-
ization and Bayes rules.

Eye movement circuitry

Even if we do not have the pretension to build a com-
plete model of the neurophysiology of the eye move-
ment selection related brain regions, the structure of our
model is inspired by their anatomy and electrophysiol-
ogy. Saccadic and smooth pursuit circuitry share a large

BG

TH

FEF

SC

Verm

BON

SEF

LIP

Extraocular

Muscles

Fig. 1 Premotor and motor circuitry shared by saccade and
smooth pursuit movement (Macaque monkey). BG: basal
ganglia, BON: brainstem oculomotor nuclei, FEF: frontal eye
fields, LIP: lateral bank of the intraparietal sulcus, SC: supe-
rior colliculus, SEF: supplementary eye fields, TH: thalamus,
Verm: cerebellar vermis. In red: regions using retinotopic ref-
erence frames to encode visual, memory and motor activity,
refer to text for more details. Adapted from (Krauzlis 2004).

part of their functional architecture (Krauzlis 2004).
Among those regions containing saccadic and smooth
pursuit subcircuits (Fig. 1), the superior colliculus (SC),
the frontal eye fields (FEF) and the lateral bank in the
intraparietal sulcus (LIP) in the posterior parietal cor-
tex have a number of common points. They all receive
information concerning the position of points of interest
in the visual field (visual activity), memorize these posi-
tions (delay activity) and are implied in the selection of
the gaze targets among these points (presaccadic activ-
ity) (Moschovakis et al 1996; Wurtz et al 2001; Scudder
et al 2002). These positions are encoded by cells with
receptive/motor fields defined in a retinotopic reference

frame. Our model is based on retinotopic probability
distributions encoding similar information (observations,
memory of target positions, motor decision).

In the SC, these cells are clearly organized in topo-
graphic maps, in various species (Robinson 1972; McIl-
wain 1976, 1983; Siminoff et al 1966; Herrero et al
1998). In primates, these maps have a complex loga-
rithmic mapping (Fig. 2) (Robinson 1972; Ottes et al
1986), similar to the mapping found in the striate cortex
(Schwarz 1980). Concerning the FEF, mapping studies
clearly show a logarithmic encoding of the eccentricity of
the position vector (Sommer and Wurtz 2000), however
complementary studies are necessary to understand how
its orientation is encoded. Finally, the structure of the
LIP maps is still to be deciphered, even if a continuous
topographical organization seems to exist, with an over
representation of the central visual field (Ben Hamed
et al 2001). Given the lack of quantitatively defined FEF
and LIP mappings, we assume that they share similar
properties with the SC one and thus use the log complex
mapping of the SC for all the position encoding variables
of our model.
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Fig. 2 Macaque collicular mapping. The angular position of
targets in the visual field (right) are mapped onto the SC
surface (left) using a logarithmic mapping. The grey areas
represent the same part of the visual field in both represen-
tations.

The neurons related to the spatial working memory in
SC (Mays and Sparks 1980), FEF (Goldberg and Bruce
1990) and LIP (Gnadt and Andersen 1988; Barash et al
1991a,b) – also called quasi-visual cells or QV – are capa-
ble of dynamic remapping. These cells can be activated
by a memory of the position of a target, even if the tar-
get was not in the cell’s receptive field at the time of
presentation. They behave as if they were included in a
retinotopic memory map, integrating a remapping mech-
anism allowing the displacement of the memorized activ-
ity when an eye movement is performed. Neural network
models of that type of maps, either in the SC or the FEF,
have already been proposed (Droulez and Berthoz 1991;

Figure 5.1: Premotor and motor circuitry shared by saccade and smooth pursuit movement

(Macaque monkey). BG: basal ganglia, BON: brainstem oculomotor nuclei, FEF: frontal eye

fields, LIP: lateral bank of the intraparietal sulcus, SC: superior colliculus, SEF: supplemen-

tary eye fields, TH: thalamus, Verm: cerebellar vermis. In red: regions using retinotopic

reference frames to encode visual, memory and motor activity. Reproduced with kind per-

mission from Colas et al. [2009].

fixation points to sequences of commands to the eye and head (i.e. motor commands)

and is beyond the scope of this text. Gaze computation is typically broken up into two

phases: an attention model that identifies relevant features in the scene, selects one

of these features and maintains focus on it, and a gaze policy, that operates over the

feature map to determine the actual fixation point [Shic and Scassellati 2007, Kopp

and Gärdenfors 2002].

There are many ways that can be used to classify an attention system according

to its various aspects. In a subject’s point of view, the subject can actually switch the

gaze fixation point to the point being attended to (i.e., overt attention). On the other

hand, it can also shift the attentional processing without any a fixation shift or motor

action (i.e., covert attention). We will be focusing our attention on the former.

On the other hand, in order that behaviourally relevant perceptual information is

appropriately selected, efficient mechanisms must be in place. Two major attentional

mechanisms are known to control this selection process [Parkhurst et al. 2002]. First,

bottom-up attentional selection is a fast, and often compulsory, stimulus-driven mech-

anism (related to the so-called exogenous attention). There is now clear evidence indi-

cating that attention can be captured under the right stimulus conditions. For example,

highly salient feature singletons or abrupt onsets of new perceptual objects automat-
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ically attract attention (pop-up effects). The other mechanism, top-down attentional

selection, is a slower, goal-directed mechanism where the observer’s expectations or

intentions influence the allocation of attention (related to the so-called endogenous

attention). Observers can volitionally select regions of space or individual objects to

attend. The degree to which these two mechanisms play a role in determining atten-

tional selection under natural viewing conditions has been for a long time under debate

[Parkhurst et al. 2002].

A great deal of research has been dedicated to developing models of visual attention

in the past few years. These computational models are just rough approximations to

the human visual attention system and typically operate by identifying, within an

incoming visual stream, spatial points of interest. This computational formulation of

perceptual attention is very limiting, in terms of the capabilities and complexities of

the biological reality [Shic and Scassellati 2007]. These models serve to reduce the

scene to several points of particular interest, and to emulate the scan-path behaviour

of human subjects. In this fashion, it is possible to control the combinatorial explosion

that results from the consideration of all possible image relationships and provide a

naturalistic interface to behaviours such as joint attention [Shic and Scassellati 2007].

However, even in visual animals multisensory stimuli (e.g. visual, auditory or

tactile) elicit gaze shifts to aid visual perception of stimuli. Such gaze shifts can either

be top-down attention driven (e.g. visual search) or they can be reflex movements

triggered by unexpected changes in the surroundings triggered by the collective result

of multimodal perception [Koene et al. 2007].

Several representative models addressing most of these issues will be briefly re-

viewed in the following lines.

One of the most popular computational models serving as a basis for robotic im-

plementations of visual attention is the model by Itti et al. [1998]. This model has

roots at least as far back as [Niebur et al. 1995] and its most recent developments are

described in [Carmi and Itti 2006].

Itti et al.’s model is a feed-forward bottom-up computational model of visual at-

tention, employing, at its most basic level, decompositions into purely preattentive

features. This gives advantages in both speed and transparency. It is a model that is

not only simple but also rigorously and specifically defined, a strong advantage for im-

plementation, extension, and reproducibility of results [Shic and Scassellati 2007]. The

model extracts the preattentive modalities of color, intensity, and orientation from an

image. These modalities are assembled into a multiscale representation using Gaussian

and Laplacian pyramids. Within each modality, centre-surround operators are applied
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in order to generate multiscale feature maps. An approximation to lateral inhibition

is then employed to transform these multiscale feature maps into conspicuity maps,

which represent the saliency of each modality. Finally, conspicuity maps are linearly

combined to determine the saliency of the scene. Although this model did not origi-

nally attend to visual motion, known to be a major modality in visual attention, it has

been extended to include it in later work, such as [Shic and Scassellati 2007].

Parkhurst, Law, and Niebur [2002] show that the saliency maps of images, as com-

puted by the Itti model, display higher values in locations fixated upon by human

subjects than would have been expected by chance alone. The fact that the saliency

maps generated by the same computational attention model can be correlated to ap-

proximate probability density maps of humans is shown by Ouerhani et al. [2004]. The

model by Itti et al. is not uncontroversial, as can be seen in the completely different

evaluations by Parkhurst et al. [2002], who generally validate the model, and Turano,

Geruschat, and Baker [2003], who attempt to detract from it by claiming that the

predicted gaze locations are no better than random, or Tatler et al. [2005a], who claim

that the model is not scale or rotation invariant, thus questioning the appropriateness

of using it as the basis of computational object recognition systems1. In any case, Itti

and coworkers have shown that interesting objects seem to be visually salient, indi-

cating that selecting interesting objects in the scene is largely constrained by low-level

visual properties rather than solely determined by higher cognitive processes [Elazary

and Itti 2008]. Shic and Scassellati [2007] build upon the Itti model to apply a frame-

work, based on dimensionality-reduction over the features of human gaze trajectories,

that can simultaneously be used for both optimising a particular computational model

of visual attention and for evaluating its performance in terms of similarity to human

behaviour.

Alternative computational models of visual attention both with and without motion

besides the model presented above exist, such as the work of Tsotsos et al. [1995] or

Breazeal and Scassellati [1999] and many others.

The gaze computation process takes, as an input, the saliency map, and returns, as

an output, a point of fixation. One of the simplest gaze policies that can by employed

is to simply index the location in the saliency map corresponding to the highest peak

[Shic and Scassellati 2007].

On the other hand, regarding the temporal dimension of attention, a commonly

used complementary model is the Inhibition of Return (IoR) mechanism [Niebur, Itti,

and Koch 1995]. The IoR, in simple terms, is the mechanism where the saccade gener-

1For a deeper insight, please refer to [Shic and Scassellati 2007].
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Figure 5.2: Active perception model hierarchy.

ating system in the brain avoids fixation sites which have just been a focus of attention,

therefore preventing deadlocks. Recently, a more complex model has been devised, us-

ing Bayesian surprise as a factor related to the attentional changes in the time domain,

by Itti and Baldi [2009].

5.2.2 Models

To achieve our goal of designing Bayesian models for visuoauditory-driven saccade

generation following human active perception behaviours, a hierarchical framework,

inspired on what was proposed by Colas, Flacher, Tanner, Bessière, and Girard [2009],

has been developed and is presented in the following text.

We will specify three decision models2: πA, that implements entropy-based active

exploration based on the BVM (chapter 2) and the heuristics presented on chapter 4,

πB, that uses entropy and saliency together for active perception, and finally πC which

adds a simple Inhibition of Return mechanism based on the fixation point of the previ-

ous time-step. In other words, each model πk incorporates its predecessor πk−1 through

2Refer to Appendix A for a formal definition of πk within the Bayesian Programming formalism.
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Relevant variables:

OtC : binary value describing the occupancy of cell C at time t, [OC = 1] if cell C is occupied

by an object, [OC = 0] otherwise (related variable: Ot =
∧
C

OtC);

V tC : velocity of cell C at time t, discretised into n+ 1 possible cases ∈ V ≡ {v0, · · · , vn}

(related variable: V t =
∧
C

V tC);

Gt ≡ (logb ρmax, θmax, φmax) ∈ Y: fixation point for next gaze-shift, computed at time t,

with related variable G =
∧

t∈[1,tmax]

Gt;

UtC ≡ f(V 1→t, O1→t) ∈ [0, 1]: joint entropy gradient-based variable at time t,

with related variables Ut =
∧
C

UtC and U =
∧

t∈[1,tmax]

Ut

(see equation (4.3): close to 1 when uncertainty is high and C is a frontier cell,

and UC → 0 when uncertainty is low or C is not a frontier cell).

Decomposition:

P (GU |πA) =

tmax∏
t=1

[
P (Gt|πA)

∏
C

P (UtC |G
t πA)

]
Parametric forms:

P (Gt|πA): uniform prior;

P (UtC |G
t πA): is a beta distribution B(αU , βU ) for [Gt = C] that expresses that,

for a given point of fixation proposal for the next gaze shift, UtC is more likely near 1,

or a uniform distribution on UtC for [Gt 6= C].

Identification:

Empirical values for free parameters αU and βU .

Questions:

P (Gt|V 1→tO1→t πA) = P (Gt|Ut πA)

Figure 5.3: Bayesian Program for entropy-based active exploration model πA.

Bayesian fusion, therefore constituting a model hierarchy — see Fig. 5.2.

The hierarchy is extensible in such a way that other properties characterised by ad-

ditional random variables and corresponding probabilities might be represented, other

than the already implemented occupancy and local motion properties of the BVM,

by augmenting the hierarchy of operators through Bayesian subprogramming [Bessière

et al. 2008, Lebeltel 1999]. This ensures that the framework is scalable. On the other

hand, the combination of these strategies to produce a coherent behaviour ensures that

the framework is emergent.

Furthermore, each model will infer a probability distribution on the next point

of fixation for the next desired gaze shift represented by a random variable Gt ∈ Y
at each time t ∈ [1, tmax] : P (Gt|V 1→tO1→t πk), where V 1→t =

∧
t∈[1,tmax]

∧
C V

t
C and

O1→t =
∧
t∈[1,tmax]

∧
C O

t
C represent the conjunction of BVM local motion and occu-

pancy estimate states for all cells C ∈ Y at from system startup to time t.
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Relevant variables:

OtC : binary value describing the occupancy of cell C at time t, [OC = 1] if cell C is occupied

by an object, [OC = 0] otherwise (related variables: O =
∧

t∈[1,tmax]

OtC and Ot =
∧
C

OtC);

V tC : velocity of cell C at time t, discretised into n+ 1 possible cases ∈ V ≡ {v0, · · · , vn}

(related variables: V =
∧

t∈[1,tmax]

V tC and V t =
∧
C

V tC);

Gt ≡ (logb ρmax, θmax, φmax) ∈ Y: fixation point for next gaze-shift, computed at time t,

with related variable G =
∧

t∈[1,tmax]

Gt;

Si,tC : binary value describing the ith of N sensory saliency properties of cell C at time t,

[Si,tC = 0] when non-salient and [Si,tC = 1] when salient

(related variables: Si =
∧

t∈[1,tmax]

Si,t, St =
N∧
i=1

Si,t and S =

N∧
i=1

Si);

Zi,tj ∈ Z: sensor measurements at time t (j = 1..Mi total independent measurements for

each saliency property at time t, Si,t)

(related variables: Zi =
∧

t∈[0,tmax]

Zi,t and Z =

N∧
i=1

Zi);

Qi,tC = P ([Si,tC = 1]|Zi,tj C) ∈ [0, 1]: probability of a perceptually salient object occupying cell C

(related variables: Qi =
∧

t∈[1,tmax]

Qi,t, Qt =
N∧
i=1

Qi,t and Q =
N∧
i=1

Qi).

Decomposition:

P (GQ|πB) =

tmax∏
t=1

{
P (Gt|πB)

∏
C

[
N∏
i=1

P (Qi,tC |G
t πB)

]}
Parametric forms:

P (Gt|πB) ≡ P (Gt|V 1→tO1→tπA) is the prior taken from the result of the model of Figure 5.3;

P (Qi,tC |G
t πB) is a beta distribution B(αQ, βQ) for [Gt = C] that expresses that,

for a given point of fixation proposal for the next gaze shift, Qi,tC is more likely near 1,

or a uniform distribution on Qi,tC for [Gt 6= C].

Identification:

Empirical values for free parameters αQ and βQ.

Questions:

P (Gt|V 1→tO1→t St πB) = P (Gt|Qt πB)

Figure 5.4: Bayesian Program for automatic orienting based on sensory saliency model πB.
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The first model we propose uses the knowledge from the BVM layer to determine

gaze shift fixation points. More precisely, it tends to look towards locations of high

entropy/uncertainty. Its likelihood will be based on the rationale conveyed by an

additional variable that quantifies the uncertainty-based interest of a cell on the BVM,

thus promoting entropy-based active exploration, as described on chapter 4.

The Bayesian Program for this model is presented on Fig. 5.3. The dependency

of the uncertainty measure variable U t
C — equation (4.3) — on the BVM states

(V 1→t, O1→t) are implicitly stated by definition, thus, with this model, the distribu-

tion on the point of fixation of the next desired gaze shift can be computed using the

following expression

P (Gt|V 1→tO1→t πA) = P (Gt|U t πA)

∝
∏
C

P (U t
C |Gt πA) (5.1)

The second model is based on sensor models that relate sensor measurements Zi,t
j

with i = 1..N independent sensory properties of saliency (j = 1..Mi total independent

measurements for each saliency property), represented by the set of binary random

variables Si,tC (equalling 0 when the cell is non-salient and 1 when salient) correspond-

ing to each cell C. In other words, these sensor models are generically notated as

P (Zt|Si,tC V t
C O

t
C πC), indiscriminately of what the specific sensory saliency property

Si,t =
∧
C S

i,t
C might represent.

The Bayesian Program for model πB is presented on Fig. 5.4. With this model,

the distribution on the point of fixation of the next desired gaze shift can be computed

using the following expression

P (Gt|V 1→tO1→t St πB) ∝

P (Gt|V 1→tO1→tπA)
∏
C

[
N∏
i=1

P (Qi,t
C |G

t πB)

]
(5.2)

In short, this model is the product between the prior on gaze shifts due to entropy-

based active exploration and each distribution on the sensory-salient cells. This expres-

sion shows that the model is attracted towards both salient cells (without necessarily

looking at one in particular, as the balance between the distributions on salient cells

can lead to a peak in some weighted sum of their locations) and locations of high un-

certainty when sensory saliency is not preponderant enough (i.e. this process is called
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Relevant variables:

OtC : binary value describing the occupancy of cell C at time t, [OC = 1] if cell C is occupied

by an object, [OC = 0] otherwise (related variables: O =
∧

t∈[1,tmax]

OtC and Ot =
∧
C

OtC);

V tC : velocity of cell C at time t, discretised into n+ 1 possible cases ∈ V ≡ {v0, · · · , vn}

(related variables: V =
∧

t∈[1,tmax]

V tC and V t =
∧
C

V tC);

RtC ≡ f(Gt−1) ∈ [0, 1]: inhibition level for cell C modelling the Inhibition of Return behaviour (see below),

ranging from no inhibition (0) to full inhibition (1)

(related variables: Rt =
∧
C

RtC and R =
∧

t∈[1,tmax]

Rt);

Gt ≡ (logb ρmax, θmax, φmax) ∈ Y: fixation point for next gaze-shift, computed at time t,

with related variable G =
∧

t∈[1,tmax]

Gt;

Si,tC : binary value describing the ith of N sensory saliency properties of cell C at time t,

[Si,tC = 0] when non-salient and [Si,tC = 1] when salient

(related variables: Si =
∧

t∈[1,tmax]

Si,t, St =
N∧
i=1

Si,t and S =

N∧
i=1

Si);

Zi,tj ∈ Z: sensor measurements at time t (j = 1..Mi total independent measurements for

each saliency property at time t, Si,t)

(related variables: Zi =
∧

t∈[0,tmax]

Zi,t and Z =

N∧
i=1

Zi);

Qi,tC = P ([Si,tC = 1]|Zi,tj C) ∈ [0, 1]: probability of a perceptually salient object occupying cell C

(related variables: Qi =
∧

t∈[1,tmax]

Qi,t, Qt =
N∧
i=1

Qi,t and Q =
N∧
i=1

Qi).

Decomposition:

P (GR|πC) =

tmax∏
t=1

{
P (Gt|πC)

∏
C

[
P (RtC |G

t πC)
]}

Parametric forms:

P (RtC |G
t πC): is a beta distribution B(αR, βR) for [Gt = C] modelling the Inhibition of Return behaviour

(see main text) that expresses that, for a given point of fixation proposal for the next gaze shift,

RtC is more likely to be 0, and a uniform distribution for [Gt 6= C].

P (Gt|πC) ≡ P (Gt|V 1→tO1→t St πB) is the prior taken from the result of the model of Figure 5.4;

Identification:

Empirical values for free parameters αR and βR.

Questions:

P (Gt|V 1→tO1→t StGt−1πC) = P (Gt|Rt πC)

Figure 5.5: Bayesian Program for full active perception model πC .
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weighting, as opposed to switching, in which these behaviours would be mutually ex-

clusive — see [Colas et al. 2010, Ferreira and Castelo-Branco 2007]).

The Bayesian Program for the third and final model πC , which defines the full

active perception hierarchy by adding an implementation the Inhibition of Return

(IoR) mechanism, is presented on Fig. 5.5. With this model, the distribution on the

point of fixation of the next desired gaze shift can be computed using the following

expression

P (Gt|V 1→tO1→t StGt−1 πC) ∝

P (Gt|V 1→tO1→t St πB)
∏
C

[
P (Rt

C |Gt πC)
]

(5.3)

In conclusion, the full hierarchy, represented graphically in Fig. 5.6, is defined as the

product between the prior on gaze shifts due to entropy-based active exploration and

each distribution on the sensory-salient cells, while avoiding the fixation site computed

on the previous time step through the IoR process, implemented by the last factor in the

product. The parameters used for each distribution in this product, which define the

relative importance of each level of the hierarchy and of each sensory saliency property,

may be introduced directly by the programmer (like a genetic imprint) or manipulated

“on the fly”, which in turn allows for goal-dependent behaviour implementation (i.e.

top-down influences), therefore ensuring that the framework is adaptive.

5.3 Implementation of an Artificial Bayesian Active

Perception System

5.3.1 Visual saliency properties

Saliency properties from a generic visual cue, or, in other words, the conspicuity

maps given by the BVM extended operators Qi,t
C = P ([Si,tC = 1]|Zi,t

j C) ∈ [0, 1], were

implemented in two steps:

1. A single-channel image with values varying between 0 and 1 is taken directly from

visual cues taken from the right camera of the stereovision setup (thus simulat-

ing a dominant eye), either by directly normalising traditional dense conspicuity

maps as defined by [Itti et al. 1998], or by generating a conspicuity map by form-

ing Gaussian distributions with specific standard deviations centred on individual

points of interest on the right camera image, for example in the case of sparse

feature extractors such as face detection algorithms.
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Figure 5.6: Graphical representation of the hierarchical framework for active perception.

Bottom half: Update and Representation Models for the BVM-BOF framework presented in

chapter 2, extended by the entropy gradient-based operator introduced in chapter 4. Upper

half: Bayesian network summarising the models presented in this chapter, using the plates

notation (an intuitive method of representing variables that repeat in a graphical model,

so that the respective distributions appear in the joint distribution as an indexed product

of the sequence of variables — for more information refer to Buntine [1994]). As can be

seen, emergent behaviour results from a probabilistic fusion model implemented through a

sequence of Bayesian Programming subroutines and an implicit loop that ensures the dynamic

behaviour of the framework [Colas et al. 2010].

2. The saliency values from each pixel in the conspicuity map for which a disparity

was estimated by the stereovision module are then projected on the log-spherical

configuration through projection lines spanning the corresponding (θ, φ) esti-

mates taken from equations (4.4) and (4.5) — if two or more different saliency

values are projected throughout the same direction, only the highest saliency

value is used. These values are thus considered as soft evidence regarding Si,tC ,

therefore yielding Qi,t
C .

The specific properties used in this work (although any visual saliency prop-

erty would have been usable by applying the two steps described above) were op-

tical flow magnitude taken from the result of using the CUDA implementation of
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the “Bayesian Multi-scale Differential Optical Flow” algorithm of Simoncelli [1999] by

Daniel Cabrini Hauagge (please refer to http://www.liv.ic.unicamp.br/~hauagge/

Daniel_Cabrini_Hauagge/Home_Page.html for more information), and face detection

using the Haar-like features implementation of the OpenCV library. Using these imple-

mentations, the 15 Hz performance of the stereovision unit where they are integrated

reported in chapter 4 is reduced to about 6 Hz, mainly as a consequence of the slow

performance of the face detection algorithm.

5.3.2 Auditory saliency properties

The auditory saliency property used in this work was directly implemented from

the P ([SC = 1]|Z C) question solved by the Bayesian model of binaural perception

presented on Fig. 2.12 on page 45.

5.3.3 Inhibition of Return

The Inhibition of Return mechanism used in this work is implemented by assigning

values on a log-spherical data structure corresponding to Rt
C ranging from 1 to values

close to 0 depending on the distance in Y between Gt−1 and each C, denoted dIoR,

through the following expression

Rt
C ≡ f(Gt−1) =

(
1

2

)dIoR
(5.4)

5.3.4 Hierarchical model

The parameters distributions defined on the Bayesian Programs of Figs. 5.3, 5.4

and 5.5 were chosen for initial values in order to attain the beta distributions presented

on Fig. 5.7. These preprogrammed parameters define the genetic imprint of prelimi-

nary knowledge that establishes the baseline hierarchy of the set of active perception

behaviours; these parameters are changeable “on the fly” through sliders on the graph-

ical user interface of the implementation software, thus simulating top-down influences

on behaviour prioritisation (i.e. the adaptivity property). The influence of the relative

weights imposed by these parameters will be discussed on the Results section.

The fixation point for the next time instant Gt is obtained by sub-

stituting equations (5.1) and (5.2) consecutively into (5.3), and computing

Gt = arg maxC P ([Gt = C]|V 1→tO1→t StGt−1 πC), knowing that

http://www.liv.ic.unicamp.br/~hauagge/Daniel_Cabrini_Hauagge/Home_Page.html
http://www.liv.ic.unicamp.br/~hauagge/Daniel_Cabrini_Hauagge/Home_Page.html
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Figure 5.7: Beta distributions of the active perception hierarchy using the baseline choice

for parameters. Corresponding parameters are αU = 1 and βU = 0.92 for active exploration,

αQ = 1 and βQ = 0.01 for auditory saliency, αQ = 1 and βQ = 0.6 for face detection saliency,

αQ = 1 and βQ = 0.85 for optical flow magnitude saliency, and αR = 0.8 and βR = 1 for

Inhibition of Return.

P ([Gt = C]|V 1→tO1→t StGt−1 πC) ∝

P (U t
C |[Gt = C] πA)

N∏
i=1

[
P (Qi,t

C |[G
t = C] πB)

]
P (Rt

C |[Gt = C] πC) (5.5)

by factoring out the effect of the uniform distributions corresponding to considering

[Gt 6= C].

All visual conspicuity maps were implemented using a solution similar to what

was presented in chapter 4, Fig. 4.7, and sensory saliency computations as in Fig. 4.6

without resorting to aprons. These computations, all corresponding to πB, are all

performed within the auditory CUDA stream to save time. Then, in a similar way as

with the saliency computations, πA and πC are implemented after estimating the BVM

state, while the final gaze computation process is performed as described on Fig. 4.8

(b), by substituting UC with P ([Gt = C]|V 1→tO1→t StGt−1 πC).

Finally, the full active perception system runs at about 5 Hz, for N = 10, ∆θ = 1o,

∆φ = 2o, mainly due to the degraded performance of the stereovision unit reported

above. In any case, these ratings are still just within the parameters of satisfactory

real-time performance, as defined in the concluding section of chapter 4.
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Figure 5.8: Overview of the setup used in the experimental sessions testing the Bayesian

hierarchical framework for multimodal active perception. The “IMPEP 2 and interlocutors”

scenario, in which one of the interlocutors is wearing body-tracking suit, is implemented

using an acting script (presented on Fig. 5.9). During the experimental sessions, the signals

which were recorded for analysis included data from: IMPEP 2 time-stamped video and audio

logging; camera network capturing several external points of view; body-tracking poses. All

signals were synchronised through common-server timestamping.

5.4 Results and Conclusions

Five experimental sessions were conducted to test the performance of the hierarchi-

cal framework presented in this chapter, in particular to demonstrate its properties of

emergence, scalability and adaptivity. Consequently, in the following lines, the results

of each of these sessions will be discussed.

During all the experiments, three views were also filmed from external cameras —

see Fig. 5.8 for an overview of the experimental setup using one of these views — and

a body-tracking suit was also used by the speaker to the left from the IMPEP head’s

perspective, the only speaker allowed to walk from one position to another within the

BVM horopter, for positioning ground-truth.

Experimental Session 1 — active perception hierarchy implementing all

behaviours, using baseline priorities

In this session, a two-speaker scenario was enacted following a script (Fig. 5.9)

roughly describing the activity reported in the annotated timeline of the experiment

presented on Fig. 5.10.

The genetically imprinted parameters for the distributions that was used was pre-

sented on Fig. 5.7. This particular choice of parameters was made to emphasise socially-

oriented, high-level behaviours as opposed to low-level behaviours and the IoR effect,
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Action 1 – Right speaker talks for a few 
seconds, while left speaker is silent. 

Both speakers are still.

Action 2 – Left speaker talks for a few 
seconds and then moves while talking 
towards right speaker. Right speaker is 

still and silent.

Action 3 – Both speakers greet each other.

Action 4 – Both speakers talk; right speaker 
remains standing still, while left speaker turns 

away and moves towards original position.

Action 5 – Repeat from action 1 to 4.
Action 6 – Right speaker leaves, while 

left speaker waves goodbye.

Figure 5.9: Acting script for active perception experiments.
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Figure 5.10: Annotated timeline for Experimental Session 1 — active perception hierarchy

implementing all behaviour susing baseline priorities. The two lower annotation lanes, la-

belling the actions performed by the right and left speaker in the perspective of the IMPEP

head, were performed by inspection of images taken by the IMPEP stereovision system, by

the external cameras, by the tracking suit, and by the audio file recorded by the IMPEP

binaural system. The top annotation lane, labelling the emergent behaviours of the active

perception system and an interpretation of what were the most prominent underlying low-

level behaviours (AE: active exploration; AS: auditory saliency; OF: optical flow magnitude

saliency; FD: face detection saliency), was annotated by additionally inspecting saved logs of

P ([Gt = C]|V 1→tO1→t StGt−1 πC).
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Figure 5.11: Offline rendering of a BVM representation of the two speakers scenario of

Experimental Session 1. After the experiment, an instantiation of the BVM occupancy grid

is rendered using a Blender-based viewer, of which two different views are presented. Notice

the well-defined speaker upper torso silhouette reconstructions, which are clearly identifiable

even despite the distortion elicited to visual inspection caused by the log-spherical nature of

each cell. These reconstructions are better detailed as opposed to those shown on the results

presented in chapter 4 due to the stabler fixation induced by the face detection saliency,

allowing for accumulating more evidence on occupancy. All parameters and labelling are the

same or analogous to Fig 4.15.

Figure 5.12: Offline rendering of example saliency maps of the two speakers scenario of Ex-

perimental Session 1. The rendering represents values for P ([Gt = C]|V 1→tO1→t StGt−1 πC)

that were logged during the session for a specific time instant. Only a slice corresponding

to all cells at 10o in azimuth and 20o in elevation around the next fixation point Gt with

P (OC |C) > .45 are shown, depicted using a smoothly gradated red-to-green colour-code (red

corresponds to lower values, green corresponds to higher values). All other parameters and

labelling are the same or analogous to Fig 5.11. On the left, a purely auditory-elicited map

is shown, while on the right, a map resulting from the fusion of at least auditory and face

detection conspicuity maps is shown.
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which has a noticeable effect only when the former are absent. Countering the IoR

effect in the presence of socially-oriented behaviours allows for an apparently more

natural emergent behaviour of the system.

As can be seen in Fig. 5.10, the system successfully fixated both speakers, and

even exhibited an emergent behaviour very similar to smooth pursuit while following

the speaker to the left in the perspective of the IMPEP head.

This showed that the baseline priority rationale for the choice of parameters for

the distributions was reasonably planned.

Offline high-definition renderings of BVM and saliency logs are presented on

Figs. 5.11 and 5.12, respectively.

Experimental Session 2 — active perception hierarchy implementing all

behaviours, with swapped priorities

In this session, the first part of the script of Experimental Session 1 was reenacted,

but this time swapping the parameters of the distributions for auditory saliency and

face detection saliency, presented on Fig. 5.7. This resulted in the system being unable

to change gaze direction to the second speaker after fixating the first speaker, due

to the deadlock caused by the face detection saliency keeping attention on the first

speaker’s face, further showcasing the importance of choosing the appropriate weights

for each behaviour.

Experimental Session 3 — active perception hierarchy implementing active

exploration only

In this session, the full script of Experimental Session 1 was reenacted, but this

time all behaviours except entropy gradient-based active exploration were turned off

by making all other distributions uniform. As expected, the behaviour described in

chapter 4 emerged, namely the typical “chicken-like” saccadic movements of the IMPEP

head exploring the surrounding environment, and a particular sensitivity to the entropy

caused by binaural sensing and motion.

Experimental Session 4 — active perception hierarchy implementing optical

flow magnitude saliency only

In this session, a single human subject (using the body-tracking suit) is tracked

while walking from one position to another within the system’s horopter using only

optical flow magnitude saliency by making all other distributions uniform, as before.
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Figure 5.13: Offline rendering of an example optical flow magnitude saliency map of Ex-

perimental Session 4. All parameters and labelling are the same or analogous to Fig 5.11.

As long as the subject walked within reasonable velocity limits, the system was able

to track him successfully.

A saliency map from this session, representing an example of an optical flow mag-

nitude conspicuity map, is presented on Fig. 5.13.

Experimental Session 5 — active perception hierarchy implementing Inhi-

bition of Return only

In this session, the IoR behaviour was tested by making all other distributions

uniform, as before. In this case, a fortuitous saccadic behaviour emerged, with the

system redirecting gaze to random directions at a constant rate.

In conclusion, the Bayesian hierarchical framework presented in this chapter was

shown to adequately follow human-like active perception behaviours, namely by ex-

hibiting the following desirable properties:

Emergence — High-level behaviour results from low-level interaction of simpler build-

ing blocks.

Scalability — Seamless integration of additional inputs is allowed by the Bayesian

Programming formalism used to state the models of the framework.

Adaptivity — Initial “genetic imprint” of distribution parameters may be changed

“on the fly” through parameter manipulation, thus allowing for the implementa-

tion of goal-dependent behaviours (i.e. top-down influences).



Chapter 6

Overall Conclusions and Future

Work

6.1 Overall Conclusions

In this text we presented Bayesian models for visuoauditory perception and iner-

tial sensing emulating vestibular perception which form the basis of the probabilistic

framework for multimodal sensor fusion — the Bayesian Volumetric Map — intro-

ducing an approach which, while not strictly neuromimetic, finds its roots in the role

of the dorsal perceptual pathway of the human brain. These models build upon a

common spatial configuration that is naturally fitting for the integration of readings

from multiple sensors. We then presented our baseline research on human multimodal

motion perception, which will serve as the foundation for future work on our frame-

work by providing prior knowledge firmly supported by perceptual processes of the

human brain. We also presented the robotic platform that supports the use of these

computational models for implementing an entropy-based exploratory behaviour for

multimodal active perception. Finally, we presented a real-time implementation of

this system and extended the original framework by building a Bayesian hierarchical

solution for multimodal active perception following human-like behaviours.

Our work on the Bayesian Volumetric Map framework has led us to the following

conclusions as for its theoretical contributions:

1. The stereovision sensor model presented in this text is novel, as far as the authors

know, in terms of the use of population code-like data structures to provide soft

evidence in adaptive fashion (i.e. depending on an adaptive evaluation of readings

taken from the environment), and provides a robust and efficient solution for
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visual sensing of spatial occupancy.

2. A robust binaural sensing model that allows for the estimation of the absolute

3D positioning of sound-sources using an occupancy grid framework and based

only on binaural cues is a novel approach, to the authors’ knowledge.

3. A unified framework for fusion of computer vision, binaural sensing and vestibular

sensing, which is, to the authors’ knowledge, also novel.

4. The log-spherical configuration is designed to attain different goals in terms of

spatial mapping when comparing to Euclidian solutions. In fact, to the authors’

knowledge, the application of a log-spherical configuration as a solution to prob-

lems remotely similar to the ones presented in this text is also unprecedented.

Concerning its future use in applications such as human-machine interaction or

mobile robot navigation, the following conclusions may be drawn:

• The results presented in chapter 4 show that the active exploration algorithm

successfully drives the IMPEP-BVM framework to explore areas of the environ-

ment mapped with high uncertainty in real-time, with an intelligent heuristic

that minimises the effects of local minima by attending to the closest regions of

high entropy first.

• The results presented in chapter 5 show that the full hierarchical framework

exhibits the desirable properties of emergence, scalability and adaptivity.

• Moreover, since the human saccade-generation system promotes fixation periods

(i.e. time intervals between gaze shifts) of a few hundred milliseconds on average

[Carpenter 2004, Caspi et al. 2004], the overall rates of 5 to 10 Hz achieved with

our CUDA implementation, in our opinion, back up the claim that our system

does, in fact, achieve satisfactory real-time performance.

• Effective use of visual spatial accuracy and auditory panoramic capabilities and

temporal accuracy by our system constitutes a powerful solution for attention

allocation in realistic settings, even in the presence of ambiguity and uncertainty

caused by multiple sensory targets and complex noise.

• Although not explicitly providing for object representation, many of the scene

properties that are already represented by the Bayesian filter allow for clustering

and tracking of neighbouring cells sharing similar states, which in turn provides a

fast processing prior/cue generator for an additional object detection and recog-

nition module.
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6.2 Future Work

6.2.1 Study of human strategies for active visuoauditory per-

ception

The Bayesian hierarchical framework formulated earlier will now be shown to be

a useful tool in proving both of our primary hypotheses for active visuoauditory per-

ception, namely active exploration and automatic orienting using sensory saliency, as

valid strategies in human behaviour regarding saccade generation through psychophys-

ical studies. Additionally, these studies can be used to provide the data for a Bayesian

learning process of switching/weighing of these strategies so as to construct an artifi-

cial active perception system that, not only generically follows, but even mimics human

behaviour.

The paradigm/preliminary protocol proposed in the following lines is currently

being used in a pilot experiment, which is planned to be extended to close to 20

subjects. In the following months, we hope to perform a full-fledged experiment with

the final protocol based on the outcome of the pilot experiment, and consequent training

and testing of the resulting active perception model using the IMPEP experimental

platform.

In the future, this framework will also be used to compare the relative enacting

of active perception behaviours in “healthy” subjects with subjects whose condition is

believed to be directly or indirectly caused by active perception impairments, such as

patients suffering from autism.

Stimuli used for this experiment consist of 3D audiovisual, stereoscopic-binaural,

dynamically created on-the-fly, movies of synthetic scenes presented using an nVisor

SX Head Mounted Device (HMD) by NVIS (http://www.nvisinc.com), with inte-

grated eye-trackers by Arrington Research (http://www.arringtonresearch.com/),

and also with a miniature inertial sensor, the Xsens MTi (http://www.xsens.com/),

functioning as a head-tracker.

These scenes were generated using the NeuroVR Blender-based editor (http:

//www.neurovr.org/), and were presented continuously to each subject until each

subtask wass considered to be concluded, using proprietary software developed at

the ISR/FCT-UC for virtual scene visualisation and raw data logging. The subjects’

tracked head-eye gaze shifts control the virtual stereoscopic-binaural point of view,

and hence the progression of each stimulus movie — see Fig. 6.1. Several different

scenes (i.e. with different properties and contexts) were used for each stimulus, so as

to increase the amount and richness of the data used for the statistical analysis in the

http://www.nvisinc.com
http://www.arringtonresearch.com/
http://www.xsens.com/
http://www.neurovr.org/
http://www.neurovr.org/
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Figure 6.1: Virtual point-of-view generator setup that allows the updating of audiovisual

stimuli presentation according to the monitored subjects’ gaze direction.

learning process, thus increasing its statistical power.

Controlled free-viewing conditions will be enforced by proposing generic tasks to

the subjects, such as “Look at the following scene; you must be able to describe it

in detail when you’re finished” or “Count the number of different individual objects,

people and animals that you find in the following scene”: these experiments thus

enforced an exploratory task while avoiding implicit or personal goals that would bias

the ratio between each behavioural hypothesis represented by each model.

The plausibility of these realistic presentations paired with the flexibility of the

precise control of the VR world construction and editing (e.g. object and sound-source

placement) in conjunction with the powerful tracking devices used for head-eye gaze

shift measurements allowed for the logging of all sensory and proprioceptive data for

processing by the framework and consequent comparison of the hypotheses posited by

each model as described in Colas et al. [2009].

The full protocol is described on Fig. 6.2 — the relation between the protocol and

the general paradigm described earlier on is depicted on Fig. 6.3.

6.2.2 Other Issues

Long-term improvements to the BVM-IMPEP framework would include sensor

models specifically for local motion, in contrast to the occupancy-only-based sensor

models presented in this dissertation.

These models could be built upon concepts such as optical flow processing for vision

(which could be enhanced by visuoinertial integration), the Doppler effect for audition,

etc. — and perceptual grouping solutions, through clustering processes similar to what

was presented by Tay et al. [2007], but in our case using prior distributions based on

multimodal perceptual integration processes, benefiting from the our baseline research
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Figure 6.2: Visuoauditory-based saccade generation experimental protocol. Different vir-

tual room stimuli are presented in N trials, with each presentation ended by the subject

(by key press) whenever he/she decides that a faithful description of the surroundings can

be produced, after which the next stimulus presentation takes place. During the course of

each presentation, outputs from the tracking systems are recorded in a log file. The Bayesian

model for saccade generation presented earlier is then fed offline with the same stimuli as the

subject, the BVM filter is updated throughout time, and the gaze shift decisions made by the

human subject used, together with the BVMs generated for each time instant, to perform

the comparison between the decision models and hypothesis.
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on human motion perception presented on chapter 3.

On the other hand, several improvements on the CUDA implementations described

in this text are still possible, in order to increase the scalability of the system and im-

prove processing times, namely memory coalescing through pitched 2D memory opera-

tions (refer to [NVIDIA 2007] for more information), possibly the use of pinned memory

on the host, and the use of multiple grids processed by parallel CUDA streams for the

BVM filter in order to subdivide the BVM data structure, therefore eradicating the

limit of N = 11 divisions in distance. Furthermore, future use of the next generation of

graphics cards and CUDA Compute architectures, such as the NVIDIA Fermi [NVIDIA

2009], will make a much improved computational framework and memory subsystem

available, by adding, for example, more capacity, a hierarchy with Configurable L1

and Unified L2 Caches, ECC memory support and greatly improved atomic memory

operation performance.
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Appendix A

Bayesian Programming

A.1 Bayesian Program Definition

The Bayesian Program (BP), as first defined by Lebeltel [1999] and later consol-

idated by Bessière, Laugier, and Siegwart [2008], is a generic formalism for building

probabilistic models and for solving decision and inference problems on these models.

This formalism was created to supersede, restate and compare numerous classical

probabilistic models such as Bayesian Networks (BN), Dynamic Bayesian Networks

(DBN), Bayesian Filters, Hidden Markov Models (HMM), Kalman Filters, Particle

Filters, Mixture Models, or Maximum Entropy Models1.

A Bayesian Program consists of two parts (see Fig. A.1) [Bessière et al. 2008]:

• a description which is the probabilistic model of the studied phenomenon or

programmed behaviour;

• a question that specifies an inference problem to be solved using this model.

The description itself contains two subparts [Bessière et al. 2008]:

• a specification section that formalises the knowledge of the programmer;

• an identification section, in which the procedure for estimating the model’s free

parameters from experimental data is specified.

Some essential notation issues will be presented in the following lines.

• Random variables are represented in uppercase, such as C, and their instantia-

tions are represented in lowercase, as in c. These instantiations are fully stated

by proceeding as in the example that follows: [C = c].

1This is detailed by Bessière et al. [2008].
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Relevant variables:

X1, X2, . . . , XN

Decomposition:

P (X1X2 . . . XN |π) =

P (L0|π)P (L1|L0 π) . . . P (LK |LK−1 LK−2 . . . L0 π) =

P (L0|π)P (L1|R1 π) . . . P (LK |RK π)

Parametric forms:

P (Li|Ri π), ∀i ∈ 0 . . .K: distribution of type fµ(Li),

where µ is a vector of parameters that may depend either on Ri, on experimental data, or both.

Identification:

Method for estimating free parameters of fµ(Li).

Question:

P (Search|knownπ),where Search and known (with known being a particular instantiation of Known)

are conjunctions of subsets of relevant variables.

Figure A.1: Generic Bayesian Program. See main text for the definition of auxiliary vari-

ables L0, . . . , LK and their corresponding counterparts R0, . . . , RK .

• Preliminary knowledge unrelated to any relevant variable2 is expressed by the

proposition denoted by π. Consequently, any proposition in a model is always

conditioned by π. Therefore, in some cases π is not explicitly stated, although it

is always implied.

• In general, single probability values, probability distributions and families of

probability distributions are all formally denoted as conditional probabilities,

P (•| • π). They are distinguished from one another by the context of their

arguments. For simplicity, this notation can be reduced to P (•|•) by making the

influence of hidden and latent variables implicit.

• In exceptional cases, there are only dependences on hidden or latent variables, in

which case the notation reduces to P (•|π), or more simply to P (•).

• If the dependent variables (on the left of |) are not instantiated random variables

or, equivalently, instantiations of random variables, this notation defines:

– a single probability distribution if all variables on the right of | are instan-

tiated, or if there is only a dependence on hidden or latent variables;

2In other words, it is not or cannot be explicitly modelled as anything but an unknown cause of
which only the effect is known, consubstantiated by hidden and latent variables (i.e. intentionally
or unintentionally unaccounted for factors). Sometimes, for this reason, it is also used to formally
identify a particular context for the model without explicitly describing that context.
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– otherwise, a family of probability distributions, one per combination of in-

stantiations of dependent variables.

• Alternatively, if all variables are instantiated, including the dependent variables,

the notation P (•|•) (or P (•) if no dependency is stated) implicitly defines a single

probability value (single probabilities, can exceptionally and abusively also be

denoted as Pidx, where idx may be any descriptive text, for easier reading).

In the following sections, each of the constituents of a generic Bayesian Program

will be explained in greater detail, based on what is presented on Bessière et al. [2008].

A.2 Description

As already defined, the description is the probabilistic model of the studied phe-

nomenon or programmed behaviour. All the knowledge available about this phe-

nomenon or behaviour is encoded in the joint probability distribution on the relevant

variables (see Fig. A.1.

Unfortunately, this joint distribution is generally too complex to use as is. The

first purpose of the description is to give an effective method of computing the joint

distribution in a tractable fashion (specification). The second purpose is to specify the

learning methods for identifying values of the free parameters from the observed data

(identification).

A.2.1 Specification

The programmer’s knowledge is specified in a sequence of three steps:

1. Define the set of relevant variables {X1, X2, . . . , XN} on which the joint distri-

bution is defined.

2. Decompose the joint distribution to obtain a tractable way to compute it. The

only rule that must be obeyed to attain a valid probabilistic expression is that

each variable must appear only once on the left side of the conditioning bar. This

is formally expressed as follows. Given a partition of {X1, X2, . . . , XN} into K

subsets, we define K variables L0, . . . , LK , each corresponding to one of these

subsets. Each variable Li is consequently obtained as the conjunction of the

variables composing each subset i.
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The recursive application of the conjunction rule of Bayesian inference [Bessière

et al. 2008] leads to the exact mathematical expression on Li presented in Fig. A.1.

On the other hand, conditional independence hypotheses then allow for further

simplifications. Such a hypothesis can be defined for variable Li by picking a

subset of variables Xj among the variables appearing in the conjunction formed

by Li−1 . . . L0 by denoting the latter by Ri and rewriting the joint distribution

decomposition as shown on Fig. A.1.

3. Define the parametric forms that give an explicit means to compute each distri-

bution P (Li|Ri π) appearing in the decomposition. This is achieved by associ-

ating each distribution P (Li|Ri π) with a function fµ(Li) — µ denotes the set

of parameters that define the distribution — or a question to another Bayesian

Program3.

A.2.2 Identification

The role of the identification phase is to assign values to free parameters within the

set µ, either through direct assignment or through the estimation of these parameters

using Bayesian learning with experimental data.

A.3 Question

Given a particular description on a BP, a question is obtained by partitioning the

set of relevant variables into three sets: the searched variables (the conjunction of which

is denoted by Search), the known variables (the conjunction of which is denoted by

Known) and the free variables (the conjunction of which is denoted by Free).

For a given value of the variable Known (denoted by known), a question is defined

as P (Search|knownπ), as shown on Fig. A.1.

3This leads to two very important concepts within Bayesian programming: subprogramming and
hierarchies of Bayesian Programs.
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Bayesian Real-Time Perception

Algorithms Using The Compute

Unified Device Architecture

(CUDA)

B.1 A Brief History of the Implementation of Per-

ception Algorithms Using GPU Computing

GPUs have developed from fixed function architectures to programmable, multi-

core architectures, leading to new applications.

A relatively popular subset of this work over the years has been vision and imaging

applications. Fung and Mann [2008], present an excellent summary on this work,

ranging from General Purpose GPU (GPGPU) processing, where graphics hardware

is used to perform computations for tasks other than graphics, to the more recent

trend of GPU Computing, where GPU architectures and programming tools have been

developed that have created a parallel programming environment that is no longer

based on the graphics processing pipeline, but still exploits the parallel architecture of

the GPU — in fact, GPU Computing has transformed the GPGPU concept into the

simple mapping of parellelisable algorithms onto SIMD format for the GPU, making a

complete abstraction from the intricacies of graphics programming.

As a result, several full-fledged computer vision and image processing toolkits and

libraries that resort to GPU technology have emerged, such as OpenVIDIA [Fung et al.

2005], GPU4Vision [GPU 2009] or GpuCV [Farrugia et al. 2006].
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On the other hand, probabilistic approaches to perception have risen the stakes

regarding the usefulness of GPU implementations of parallelisable algorithms. Neural

network implementation is an example of this, as shown by Jang, Park, and Jung [2008],

who propose a quick and efficient implementation of neural networks on both GPU

and multi-core CPU, with which they developed a text detection system, achieving

computational times about 15 times faster than the analogous implementation using

CPU and about 4 times faster than implementation on GPU alone.

Occupancy grid-based sensor fusion algorithms, on the other hand, an example of

a probabilistic approach to sensor fusion, have as of recently been a source of very

interesting work on GPUs, given their obvious parallelisable trait due to the probabil-

ity independence postulate between grid cells. Moreover, computational frameworks

such as this are perfect candidates for GPU processing: very large data structures are

processed in parallel using simple operations, yielding the perfect backdrop for SIMD-

based computation. However, GPU implemetations for such algorithms are still very

recent and few — examples would be the work by Reinbothe, Boubekeur, and Alexa

[2009], and also Yguel, Aycard, and Laugier [2007].

Hence we believe that there is a real contribution to be made in this area, specially

now, when GPU Computing has taken such a huge step forward, with the appearance of

tools such as NVIDIA’s CUDA architecture, which will be summarised in the following

section.

B.2 The Compute Unified Device Architecture

(CUDA)

We will make a brief presentation of the main features of NVIDIA’s CUDA, based

on the excellent summary by Hussein, Varshney, and Davis [2007]. For a detailed

description, refer to [NVIDIA 2007].

B.2.1 Hardware architecture

In CUDA terminology, the GPU is called the device and the CPU is called the host.

A CUDA device consists of a set of multicore processors. Each multicore processor is

simply referred to as a multiprocessor. Cores of a multiprocessor work in a SIMD

fashion. All multiprocessors have access to three common memory spaces (globally

referred to as device memory). They are:

Constant Memory: read-only cached memory space.
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Texture Memory: read-only cached memory space that is optimized for texture

fetching operations.

Global Memory: read/write non-cached memory

Besides the three memory spaces that are common among all multiprocessors, each

multiprocessor has an on chip shared memory space that is common among its cores.

Furthermore, each core has an exclusive access to a read/write non-cached memory

space called local memory.

Accessing constant and texture memory spaces is as fast as accessing registers on

cache hits. Accessing shared memory is as fast as accessing registers as long as there is

no bank conflict. On the other hand, accessing global and local memory spaces is much

slower, typically two orders of magnitude slower than floating point multiplication and

addition1.

B.2.2 Execution model

The execution is based on threads. A thread can be viewed as a module, called a

kernel, that processes a single data element of a data stream. Threads are batched in

groups called blocks, and can only access shared memory from within their respective

blocks. The group of blocks that executes a kernel constitutes one grid. Each thread

has a three-dimensional index that is unique within its block. Each block in a grid

in turn has a unique two dimensional index. Knowing its own index and the index of

the block in which it resides, each thread can compute the memory address of a data

element to process.

A block of threads can be executed only on a single multiprocessor. However, a sin-

gle multiprocessor can execute multiple blocks simultaneously by time slicing. Threads

in a block can communicate with one another via the shared memory space. They can

also use it to share data fetched from global memory. There is no means of synchro-

nization among threads in different blocks. The number of threads within a block that

can execute simultaneously is limited by the number of cores in a multiprocessor. A

group of threads that execute simultaneously is called a warp. Warps of a block are

concurrently executed by time slicing.

1However, the new Fermi GPUs from NVIDIA will have Configurable L1 and Unified L2 caches
[NVIDIA 2009].
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B.2.3 Optimisation issues

There are some important considerations that need to be taken into account to

obtain good performance on CUDA.

• Effect of Branching: If different threads of a warp take different paths of execu-

tion, the different paths are serialized, which reduces parallelism.

• Global Memory Read Coalescing: Global memory reads from different threads in

a warp can be coalesced. To be coalesced, the threads have to access data elements

in consecutive memory locations. Moreover, addresses of all data elements must

follow the memory alignment guidelines. Details are in [NVIDIA 2007].

• Shared Memory Bank Conflict: Reading from shared memory is as fast as reading

from registers unless a bank conflict occurs among threads. Simultaneous accesses

to the same bank of shared memory are in most cases serialized.

• Writing to Global Memory: In CUDA, two or more different threads, in the same

warp, can write simultaneously to the same address in global memory. The order

of writing is not specified, but, one is guaranteed to succeed.
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Errata 

 

Page 3, Paragraph 2, from Line 3 onwards: 

 

 “Aided by developments… …of perceptual variables [Knill and Pouget 2004].” should read: 
 

“Recent advances both in statistics and artificial intelligence have spurred researchers to 
begin to apply the concepts of probability theory rigorously to problems in biological 
perception and action. «One striking observation from this work is the myriad ways in which 
human observers behave as near-optimal Bayesian observers. This observation, along with 
the behavioural and computational work on which it is based, has fundamental implications 
for neuroscience, particularly in how we conceive of neural computations and the nature of 
neural representations of perceptual variables» [Knill and Pouget 2004].” 
 
 

Page 3, Paragraph 3: 

 

This paragraph should read: 
 

“Human perception is clearly not optimal; humans only achieve the level of performance 
afforded by the uncertainty in the physical stimulus [Knill and Pouget 2004; Kozak and 
Castelo-Branco 2008]. «Absolute efficiencies (a measure of performance relative to a Bayesian 
optimal observer) for performing high-level perceptual tasks are generally low and vary 
widely across tasks» [Knill and Pouget 2004] – see [Silva et al. 2008] for such an example. «In 
some cases, this inefficiency is entirely due to uncertainty in the coding of sensory primitives 
that serve as inputs to perceptual computations; in others, it is due to a combination of 
sensory, perceptual and cognitive factors. The real test of the Bayesian coding hypothesis is 
in whether the neural computations that result in perceptual judgements or motor behaviour 
take into account the uncertainty in the information available at each stage of processing» 
[Knill and Pouget 2004]. Psychophysical work in several areas suggests that this is the case 
[Knill and Pouget 2004], being particularly evident in clinical models [Castelo-Branco, 
Mendes, Sebastião, Reis, Soares, Saraiva, Bernardes, Flores, Pérez-Jurado, and Silva 2007].” 
 
 

Page 6, Paragraphs 1 and 2: 

 

These paragraphs should be enclosed in quotes («»). 
 
 

Page 6, Paragraph 4, continued to page 7: 

 

This paragraph should be enclosed in quotes («»). 
  



 
 
 
 
 

Page 7, Paragraph 3, from Line 2: 

 

The period reading “allocentric spatial… …the visual control of action [Murphy et al. 1998]” should 
read “«allocentric spatial… …the visual control of action» [Murphy et al. 1998].” 
 
 

Page 7, Paragraph 4, from Line 3: 

 

The period reading “An important fact about results… …[Cutting and Vishton 1995]” should read 
“«An important fact about results… …» [Cutting and Vishton 1995].” 
 

Page 8, Paragraph 1, from Line 9: 

 
The period reading “Distance or depth errors… … at different positions [Cutting and Vishton 1995]” 
should read “Errors in estimating depth most probably occur in distant portions of the visual 
field, since in this case depth cues are below a detectable threshold and thus unable to 
support the perception of depth between objects at different positions [Cutting and Vishton 
1995].” 
 

Page 95, Paragraph 2, from Line 2: 

 
The period reading “In a subject’s point of view,… (i.e., covert attention).” should read “In a subject's 
point of view, gaze fixation may be switched to the point being attended to (i.e., overt 
attention) or, alternatively, attentional processing may also be switched without involving any 
fixation shift or motor action (i.e., covert attention).” 
 
 

Page 95, Paragraph 3, from Line 5 (continued in Page 96): 

 
The period reading “There is now… …under debate [Parkhurst et al. 2002].” should be enclosed in 
quotes («»). 
 
 

Page 96, Paragraph 6: 

 
The period reading “Itti et al.'s model is a… … reproducibility of results [Shic and Scassellati 2007].” 
should read “Itti et al.'s model «is a… … reproducibility of results» [Shic and Scassellati 
2007].”. 
 
  



Acronyms and Abbreviations 

 

2D two-dimensions/two-dimensional 
3D three-dimensions/three-dimensional 
AIM auditory image model 
AKG Akustische und Kino-Geräte Gesellschaft m.b.H. (company) 
BACS Bayesian Approach to Cognitive Systems (European Project) 
BMM basilar membrane motion 
BOF Bayesian Occupancy Filter 
BN Bayesian Network 
BP Bayesian Program 
BVM Bayesian Volumetric Map 
CPU central processing unit 
CUDA Compute Unified Device Architecture 
ECC Error-correcting code 
ERB equivalent rectangular bandwidths 
FEF frontal eye fields 
GPGPU General Purpose GPU processing 
fMRI functional magnetic resonance imaging 
EC European Commission 
FCT-UC Faculty of  Sciences and Technology of  the University of  Coimbra 
GLM generalised linear model 
GPU graphics processing unit 
IC interaural coherence 
ICc central nucleus of  the inferior colliculus 
ICx external nucleus of  the inferior colliculus 
IEEE Institute of  Electrical and Electronics Engineers 
ILD interaural level difference 
IMPEP  Integrated Multimodal Perception Experimental Platform 
IMU inertial measuring unit 
IoR Inhibition of  Return 
ISR Institute of  Systems and Robotics (University of  Coimbra) 
ITD interaural time difference 
MAP maximum a posteriori 
NAP neural activity pattern 
OpenCV Open Source Computer Vision Library 
POP Perception on Purpose (European Project) 
SIMD single instruction multiple data 
SOC  superior olivary complex 
SC superior colliculus 
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