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Abstract 

 
 

In the first part of this Thesis, the detailed characterization of the molecular 

structure, photochemistry and spectroscopic properties of a series of heterocyclic 

molecules containing nitrogen or/and their precursors and photoproducts was 

undertaken by matrix isolation infrared spectroscopy and high-level quantum 

chemical calculations.  

The characterization of the low energy conformers was made by undertaking a 

systematic investigation of the DFT(B3LYP)/6-311++G(d,p) potential energy surface 

of the molecules. In the case of the azide representative (methyl (Z)-2-azido-3-chloro-

3-benzoylpropenoate, MACBP) and its photoproducts, systematic preliminary 

explorations of the potential energy surfaces were performed using the semi-empirical 

PM3 method.  

The studied five-membered ring derivatives (methyl 4-chloro-5-phenyl-1,3-

oxazole-2-carboxylate and methyl 4-chloro-5-phenylisoxazole-3-carboxylate) and 

MACBP represent interesting systems where conformational cooling takes place 

during deposition of the matrices and partial conversion of higher energy isomers into 

the more stable forms during matrix annealing were found to be relevant. 

The photochemical transformations resulting from in situ irradiation of the 

matrix-isolated compounds were studied using broadband ultraviolet light (UV) for all 

compounds, and narrowband UV laser irradiation for methyl aziridine-2-carboxylate. 

  

In the second part of this Thesis, formic and acetic acids were studied in solid 

nitrogen. The low-energy trans and high-energy cis conformers of monomeric forms 

of formic and acetic acids, have been identified and their IR spectra assigned. The 

higher-energy cis conformers of these molecules were produced by vibrational 

excitation of the more stable trans conformers. The decay of the cis forms into the 

trans forms was observed and explained by tunneling of hydrogen atom through the 

cis–to–trans torsional barrier, similarly to what has been previously observed for these 

species in rare-gas matrices.  

Three trans-trans and two trans-cis dimers of acetic acid were produced in solid 

nitrogen and structurally and vibrationally characterized. One trans-trans dimer and 

both observed trans-cis dimers were reported for the first time. 



On the whole, the studies reported in this Thesis address some of the most 

important chemical phenomena and processes taking place for criteriously chosen 

molecules isolated in matrices: thermally induced reactions (conformational cooling; 

thermally induced-conformational isomerization upon annealing of the matrices; 

thermal mobilization of monomers to produce dimers); photochemical reactions (UV-

induced conformational isomerizations, tautomerizations and other rearrangements, 

including complex bond breaking – bond forming processes); infrared-induced 

conformational conversions; and reactions occurring by tunneling mechanism.  

 



Resumo 

 

 Na primeira parte desta Tese, a caracterização detalhada da estrutura 

molecular, fotoquímica e propriedades espectroscópicas numa série de moléculas 

heterocíclicas contendo um átomo de nitrogénio e/ou seus precursores e seus 

fotoprodutos foi efectuado através da espectroscopia de infravermelho com 

isolamento em matrizes e recorrendo a métodos teóricos de química quântica. 

 A caracterização dos confórmeros de menor energia foi realizado através de 

um varrimento da superfície de energia potencial das diferentes moléculas ao nível 

DFT(B3LYP)/6-311++G(d,p). No caso do representante da azida ((Z)-2-azido-3-

cloro-3-benzoilpropenoato de metilo, “MACBP”) e dos seus fotoprodutos, foi 

realizado um varrimento do espaço conformacional preliminar usando o método semi-

empírico PM3. 

 Os derivados com anéis de cinco membros (4-cloro-5-fenil-1,3-oxazole-2-

carboxilato de metilo e 4-cloro-5-fenil-isoxazole-2-carboxilato de metilo) e 

“MACBP” representam casos de sistemas interessantes em que ocorre arrefecimento 

conformacional durante a deposição das matrizes e conversão parcial dos isómeros 

mais energéticos nas formas mais estáveis em experiências de variação de temperatura 

da matriz (“annealing”). 

 As transformações fotoquímicas resultantes da irradiação in situ dos 

monómeros das moléculas isoladas em matrizes de árgon e xénon foram estudadas 

usando irradiação na região do ultravioleta (UV) de banda larga, e com irradiação na 

região do ultravioleta (UV) de banda estreita no caso da aziridina-2-carboxilato de 

metilo. 

 

 Na segunda parte desta Tese, os ácidos fórmico e acético foram estudados em 

matrizes de nitrogénio. O confórmero menos energético trans e o mais energético cis 

das formas monoméricas dos ácidos fórmico e acético, foram identificados e os 

espectros vibracionais atribuídos. Os confórmeros mais energéticos cis destas 

moléculas foram produzidos por excitação vibracional dos confórmeros mais estáveis 

trans. O decaimento das formas cis nas formas trans foi observado e explicado 

recorrendo ao mecanismo do efeito de túnel do átomo de hidrogénio através da 



barreira torsional cis  trans, que ocorre de um modo similar ao observado 

anteriormente para estas espécies em outras matrizes criogénicas. 

 Três dimeros trans-trans e dois dimeros trans-cis do ácido acético, foram 

produzidos em nitrogénio sólido e estrutural e vibracionalmente caracterizados. Um 

dos dímeros trans-trans e ambos os dímeros trans-cis foram observados pela primeira 

vez.  

 No seu todo, os estudos referidos nesta Tese relatam alguns dos fenómenos e 

processos químicos mais importantes que ocorrem para moléculas criteriosamente 

escolhidas isoladas em matrizes: reacções termicamente induzidas (arrefecimento 

conformacional; isomerizações conformacionais termicamente induzidas; mobilização 

térmica dos monómeros para produzir dímeros); reacções fotoquímicas (isomerizações 

conformacionais induzidas por radiação UV, tautomerizações, e outros rearranjos, 

incluindo processos complexos envolvendo quebra de ligações – formação de novas 

ligações); conversões conformacionais induzidas por radiação na região do 

infravermelho e reacções que ocorrem através do mecanismo do efeito de túnel.  
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General organization of the Thesis 

 

This Thesis consists of five chapters. In the first chapter, a general introduction 

is presented, with emphasis on the relevance of the systems studied, and methods 

applied. A brief introduction to the matrix isolation infrared spectroscopy technique as 

well as to thermally and infrared induced conformational isomerizations, 

photochemical transformations and tunneling in cryomatrices is presented, in addition 

to a short overview of the theoretical methods used in this work. In chapter 2, the 

experimental and computational details relevant for the general description of the 

research strategies and approaches used in this study are provided. Chapters 3 and 4 

contain the case studies. Chapter 3 includes the work concerning the nitrogen 

containing heterocycles here investigated; Chapter 4 the studies on formic and acetic 

acids. In chapter 5 a general conclusion is presented and perspectives for the future 

development of this research project are presented. Finally, the supporting information 

related to the reproduced papers (Chapters 3 and 4) is provided at the end of this 

Thesis.  

 





 1 

1 Introduction 

 

The work presented in this Thesis was carried out in the Laboratory for 

Molecular Cryospectroscopy and Biospectroscopy (LMCB) of the Department of 

Chemistry, University of Coimbra in Portugal, and of the Laboratory of Physical 

Chemistry of the Department of Chemistry of the University of Helsinki in Finland.  

This work contains examples of thermally induced conformational 

isomerizations, and ultraviolet (UV) induced photochemical changes of a series of 

selected heterocyclic ring molecules containing nitrogen isolated in low-temperature 

matrices. The heterocyclic compounds include six-, five- and three-membered rings 

( -pyridil, methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (MCPOC),  methyl 

4-chloro-5-phenylisoxazole-3-carboxylate (MCPIC), methyl (Z)-2-azido-3-chloro-3-

benzoylpropenoate, (MACBP) and methyl aziridine-2-carboxylate (MA2C) . All the 

molecules, except -pyridil contain an ester carboxylic group, which can exist in cis 

and trans configurations. 

For the thermally induced processes, conformational cooling during deposition 

and partial conversion of higher energy isomers into lower energy ones was observed 

for MCPOC, MCPIC and its precursor MACBP. Furthermore, unimolecular 

photoprocesses were observed upon broadband UV irradiation (λ > 235 nm) for 

MCPIC and MACBP, and narrowband tunable laser light irradiation (λ = 235 nm) for 

MA2C, followed by identification and assignment of the resulting photoproducts. In 

the case of -pyridil, isomerizations of the pyridine rings to their valence Dewar or 

Hückel (aza-benzvalene) isomers were found to be the preferred photochemical 

pathways.   

The second series of studies described in this Thesis focus on light induced 

conformational changes induced by infrared (IR) radiation. In particular, selective 

vibrational excitation of the lower-energy trans forms of two carboxylic acids, formic 

acid (HCOOH, FA) and acetic acid (CH3COOH, AA), allowed to produce in situ the 

higher-energy cis conformers of these compounds, and study their stability in the 

cryogenic matrices. Combined with thermal mobilization of matrix-isolated 

molecules, vibrational pumping of the trans conformers of formic and acetic acids 

allows us to produce also novel dimers of these substances, determine their stability 
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and characterize them spectroscopically. When let in the dark, the cis carboxylic acid 

forms were found to spontaneously convert into the lower-energy trans conformers 

via dissipative proton tunneling through the torsional barrier. Their stabilities were 

also studied as a function of temperature, host and isotopic composition. 

Extensive theoretical calculations carried out at the DFT(B3LYP)/6-

311++G(d,p) and MP2 levels of approximation, using the 6-311++G(d,p) and the  

6-311++G(2d,2p) basis sets, were used to aid the conformational and vibrational 

analysis as well as the structural characterization of each of the studied molecules, and 

their photoproducts. 

 

 

1.1 The relevance of the systems studied 

 

Heterocycles such as isoxazoles and oxazoles are important classes of organic 

compounds that have a remarkable number of applications, from building blocks in 

organic synthesis, to drug design.
1-4

 As a result, the knowledge of their properties, 

structural characterization and chemical behavior is crucial for understanding their 

reactivity patterns. The most interesting aspect of the reactivity of isoxazoles (1, in 

Scheme 1) is their capability to be converted into other heterocylic compounds 

through a ring-opening reaction and subsequent re-cyclization. The first step of this 

type of chemical transformation is the cleavage of the labile N O single bond, which 

can be either thermally
5-10

 or photochemically induced.
10-15

 The generation of vinyl 

nitrene intermediates (2) has been proposed,
7-9,11,14

 which rearrange into the 

corresponding 2H-azirines (3). The 2H-azirines can then undergo ring cleavage to 

nitrile-ylides (4) followed by recyclization to give oxazoles (5) as the final products 

(see Scheme 1).
7,13-15

 Other possible reaction pathways may, however, be conceived. 

Photochemical processes involving cleavage of the C N bond have also been 

observed for substituted azirines bearing electron-withdrawing substituents in the 

ring.
16-22

 In the work by Inui and Murata,
16-19

 upon photolysis of 3-methyl-2-(1-

naphthyl)-2H-azirines both C C and C N bonds were found to be cleaved in the 

matrices depending on the excitation wavelength used. They concluded that the 

tendency toward the C N bond cleavage of the azirine ring increases with the 

electron-withdrawing ability of the ring substituents (e.g. introduction of an electron-
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withdrawing nitro group into the naphthyl ring). This was the first observation of the 

C N bond cleavage in the photochemistry of 2H-azirines. Similar conclusions were 

obtained from the study of the photolysis of two 3-methyl-2H-azirines bearing 

electron-withdrawing substituents at C2, methyl 3-methyl-2H-azirine-2-carboxylate 

(MMAC) and methyl 2-chloro-3-methyl-2H-azirine-2-carboxylate (MCMAC), 

isolated in rare gas matrices carried out in our laboratory.
20-22 

The relevance of the vinyl nitrene has also raised controversy.
23-28 

Padwa and 

co-workers,
23,24

 reported the thermal and photochemical ring expansion reactions of 2-

vinyl-substituted 2H-azirines (2-formyl-3-phenyl-2H-azirine-N-allylimine and  3-

phenyl-2-styryl-2H-azirine). Both azirines  underwent  thermal  rearrangement  by  

rupture of the C N single bond  to  give  a  butadienyl  nitrene which subsequently 

underwent cyclization. Isomura et al.,
25

 demonstrated that a vinyl nitrene is the 

intermediate in the thermal rearrangement of 3-methyl-2-phenyl-2H-azirine into 2-

methylindole by rupture of  the C N single bond. On the other hand, Wendling and 

Bergman
26,27

 studied the thermal decomposition of several 2H-azirines (2-phenyl-3-

methyl-2H-azirine, 2-methyl-3-phenyl-2H-azirine, 2-ethyl-3-phenyl-2H-azirine, 2,2-

dimethyl-3-phenyl-2H-azirine) by the less common thermal cleavage of the C C 

bond, which led initially to iminocarbene intermediates and not the vinyl nitrene 

intermediate was evidenced by the formation of the products observed. An ab intio 

MO study on thermal rearrangements on the C2H3N potential energy hypersurface, has 

disregarded vinyl nitrene structure as an intermediate due to its absence as an energy 

minimum on the potential energy surface.
28

  

 

 

Scheme 1. 
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In this work, the monomeric forms of methyl 4-chloro-5-phenylisoxazole-3-

carboxylate (MCPIC; 1a in Scheme 2) and its oxazole counterpart, methyl 4-chloro-5-

phenyl-1,3-oxazole-2-carboxylate (MCPOC; 5a) were studied. The analysis of matrix-

isolated MCPIC and MCPOC FTIR spectra allowed a detailed vibrational and 

structural characterization of these molecules. It was also shown that the methyl 2-

benzoyl-2-halo-2H-azirine-3-carboxylates (e.g., 3a) undergo thermal ring expansion 

to give 4-halo-5-phenyl-1,4-oxazole-2-carboxylates (e.g., MCPOC, 5a) and not the 

isoxazole counterpart, (e.g., MCPIC), as previously suggested.
29

 In the studied 

processes, the precursor of the azirine was its related azide (6) and all intermediate 

species converting the azide into the corresponding isoxazole could be experimentally 

identified. The observations seem to indicate that in the case of the compounds 

studied, formation of the vinyl nitrene from the azide and, with all probability also 

from the azirine does not take place. The observed photostability of the studied 

oxazole (1a) seems also to point to the irrelevance vinyl nitrene (2a) to the reactivity 

of oxazoles substituted with electron withdrawing groups. 

Indeed, our studies showed that that the thermolysis of the azide precursor (6) 

produces the azirine (3a) in a concerted manner, instead of via vinyl nitrene 

intermediate (2a). This conclusion was extracted taking into account the fact that the 

final product was the oxazole (5a) instead of the isoxazole (1a), which would be the 

expected product if the nitrene were formed along the process, either directly from the 

azide or from the azirine initially formed. In fact, the formation of the oxazole was 

initially not expected,
29

 since it is generally accepted that 2H-azirines react 

preferentially upon thermal excitation through cleavage of the C N bond, the required 

route to the nitrene species,
23-25,30-32

 whereas thermal cleavage of the C C bond is 

considered to be less common.
26,27

 In a recent study carried out in our laboratory, the 

photochemistry of matrix-isolated unsubstituted isoxazole ring in an argon matrix was 

found to lead to the corresponding azirine but not to the oxazole.  
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1

4

6
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Scheme 2. 

 

The aziridine ring can be found in natural products such as mitomycins, 

carzinophilin and azinomycins, which display strong antibiotic and antitumor 

properties.
33-36

 Aziridines are extremely versatile compounds used in the synthesis of 

molecules such as amino acids, nitrogen-containing larger-ring heterocycles, 

pharmaceutical intermediates, etc.
30,37-45

 In particular, aziridine-2-carboxylates and 

their derivatives have been used as intermediates in the syntheses of - and -amino 

acids, both natural and non-natural, by stereospecific ring-opening reactions of the 

heterocyclic ring with nucleophiles, including organometallic reagents.
46-50

 

Like 2H-azirines, aziridines, (7, in Scheme 3) are reactive three-membered 

heterocycles containing one nitrogen atom that can undergo C N or C C bond 

cleavages. They owe their ring strain their high reactivity.
37,51,52

 Also like in the case 

of 2H-azirines the nature of the substituents and their position in the aziridine ring, in 

particular the nature of the substituent at the N-atom, play a crucial role in determining 

the preferred reactive pathways in these molecules.
37,39,42,43,51,52

  It is well known that 

upon irradiation (disrotatorial) or on thermal activation (conrotatorial), aziridines 

undergo ring-opening (through C C bond cleavage) to the corresponding azomethine 

ylides. The occurrence of a hydrogen atom shift leads to the formation of new species. 

For example, in the work by Gaebert et al.,
53

 the matrix isolation technique was 

applied to the identification and characterization of azomethine ylides resulting from 

the photochemical C C bond cleavage of phenyl-substituted aziridines in freon 

6 

4a 5a

a 

2a

a 

3a

a 

1a

a 
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matrices at 77 K. However, cleavage of the C N bonds may also take place, leading to 

different final products. In total six potential photoproducts can be realized (Scheme 

3). The understanding of how different substituents in the aziridine ring influence the 

preference for the carbon-nitrogen or the carbon-carbon bond cleavage reactions, is, 

however, still an open question.
54,55

  

In the present work, the photochemistry of methyl aziridine-2-carboxylate 

(MA2C) was found to follow the classical pattern, being dominated by the C−C bond 

cleavage. The primary photoproduct was identified as methyl 2-(methyleneamino)-

acetate (MMAA), which is formed after subsequent migration of one hydrogen atom 

of the azomethine ylide. The use of narrowband tunable laser light irradiation allowed 

the observation of the two most stable isomers of MMAA. Subsequent 

photodecomposition photoprocesses, were also observed leading to formation of 

carbon monoxide and other still unidentified products. 
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Scheme 3. Possible products resulting from different ring-opening reactions of 2-

substituted aziridine. Pairs of numbers next to the arrows specify the atom numbers 

where the bond cleavage occurs.  

 

7 

8  9 

10 

11 

13 

12 



 7 

 The unsubstituted pyridine ring has been widely studied, both experimentally 

and theoretically. Specifically, the infrared spectrum of matrix isolated pyridine has 

been studied in different cryomatrices (e.g., argon, nitrogen or xenon), and the results 

from its UV photolysis were discussed.
56-59

 The experimental observation and 

identification of high-energy isomers of pyridine, like the Dewar isomer (where two 

tautomers can be considered) and azaprismane, has been reported.
56,59

 Other valence 

isomers of pyridine (aza-benzvalenes, Hückel, prismane and bicyclopropenyls) were 

also considered theoretically.
60-62

 

Pyridil consists of two pyridine rings connected to the central dicarbonyl 

fragment. Derivatives of pyridil are main components of many pesticides, 

herbicides and fungicides
63-65

 and have been used as reagents in the production of 

several compounds with pharmaceutical interest.
66-69

 Pyridils have also found 

important applications in the preparation of transition metal complexes
70-72

 and as 

organic inhibitors for mild steel corrosion in hydrochloric acid.
73

 

In the present study, the structure of pyridil (Scheme 4) was investigated 

and its photochemistry analysed. The molecule was found to adopt a skewed structure 

in which the pyridyl rings are twisted. UV irradiation  > 235 nm of the matrix-

isolated compound showed that the compound prefers to isomerize into unusual 

molecular species bearing Hückel-type pyridine (aza-benzvalene) rings, contrary to 

what was observed for benzil (the similar dicarbonyl compound with two benzene 

rings), where irradiation has the effect of increasing the average O=C–C=O dihedral 

angle by relaxation in the excited electronic states, (S1 and T1), which contrarily to the 

ground state have planar configurations with the O=C–C=O dihedral angle equal to 

180º,
74

 or diacetyl (CH3C(=O)C(=O)CH3) and 1-phenyl-1,2-propanedione 

(CH3C(=O)C(=O)C6H5) which were found to undergo photocleavage of the central C–

C bond leading to production of carbon monoxide and acetone or acetophenone, 

respectively.
75,76 

 

N

O N

O

 

Scheme 4. Schematic representation of pyridil.  
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On the whole, the studies preformed on the nitrogen containing heterocycles 

allowed achieving considerable advances on the understanding of the reactivity of 

these compounds, specially the three-membered rings, and demonstrated its richness 

and versatility: from valence isomerizations to complex bond-breaking/bond-forming 

multi steps processes. 

  

The other type of systems investigated in this study, though appearing to be very 

simple, revealed themselves also extremely challenging to investigation. Formic and 

acetic acids are indeed quite simple molecules, but their intramolecular dynamics and 

aggregation processes were found to be very interesting and complex. 

 FA and AA have attracted a great deal of interest for a number of reasons. They 

are the simplest carboxylic acids, and therefore serve as model compounds for 

understanding the reactivity of more complex biologically relevant molecular systems 

containing the carboxylic moiety. Acetic acid is of particular importance due to its 

structural proximity to glycine, the simplest amino acid. Both carboxylic acids have 

been identified in the interstellar medium.
77,78

   

FA and AA have only two conformers (trans and cis, in Scheme 5) which can 

interconvert in one another through internal rotation around the C-O bond. The cis 

form is higher in energy than the trans form. Detailed infrared spectroscopic data for 

trans and cis conformers of these acids and some of their isotopomers have been 

reported in rare-gas matrices.
79-87

 Narrowband vibrational excitation of the lower 

energy form (trans) was used to produce the higher energy cis conformer. The cis 

form subsequently converts to the lower energy conformer via dissipative proton 

tunneling through the torsional barrier, which limits its lifetime. Detailed studies of 

this type of processes for other compounds in noble gas matrices have also been 

reported.
88-100

  

In the present study, the trans and cis forms of monomeric forms of FA and AA 

were investigated in nitrogen matrices. As in previous studies,
79-87

 the higher energy 

cis conformer of these molecules was produced by vibrational excitation of the more 

stable trans conformer. It was found that for both molecules the tunneling is 

considerably slower in a nitrogen matrix than in rare-gas matrices (for example, the 

cis–to–trans conversion of HCOOH slows down in a nitrogen matrix by four orders of 

magnitude compared to a neon matrix) and a mechanism explaining this observation 

was proposed. 
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Scheme 5. Trans (most stable) and cis (higher energy) conformers of formic acid (R= 

H) and acetic acid (R= CH3). 

 

In addition to the monomeric forms of AA (trans and cis), in the present study 

AA dimers were also studied in a nitrogen matrix. Dimerization (and aggregation in 

general) in carboxylic acid systems is of fundamental importance in many areas of 

research, in particular materials science and biologically oriented subjects. The 

infrared spectra of three trans-trans and two trans-cis acetic acid dimers (Figure 1.1) 

were reported and analyzed. Both trans-cis dimers observed as well one of the trans-

trans dimers were identified experimentally for the first time. One of the trans-cis AA 

dimers bearing an eight-membered ring with one C H
…

O= and one OH
…

O= 

intermolecular H bond, was produced by selective vibrational excitation of a 

structurally related trans-trans dimer; the other with a single OH
…

O= intermolecular 

hydrogen bond and the two monomeric units in a nearly perpendicular position, was 

obtained by thermal mobilization of a mixture of trans and cis monomers of AA, the 

latter being produced in an initial step by vibrational excitation of the trans monomer. 

 

 

 

 

 
   D1_TT (C2h)      D2_TT (Cs)        D2’_TT (C1) 

 

 

 

 

 
  D2_TC (C1)                    D2’_TC (Cs) 

 

 

Figure 1.1 - Calculated structures for AA dimers (trans-trans and trans-cis) observed 

in solid nitrogen.  
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1.2. Experimental Methods 

 

 

Matrix isolation spectroscopy 

 

 The term matrix isolation was first introduced by Pimentel, Whittle and 

Dows,
101

 in 1954, to describe the technique of trapping molecules or atoms (guests) in 

solidified inert (or occasionally reactive) gases (hosts).
102-105

 The principle of the 

matrix isolation method is to simulate the gas phase for the species by surrounding it 

with an inert and transparent solid (often rare gas solids such as Ar, Kr, Xe, or 

cryogenic solids e.g., N2, O2, CO, methane) so that the interactions between the 

molecules of the trapped species are negligible as are the case of molecules in the gas 

phase at low pressures.  

The extremely low working temperatures allow species which are normally 

short-lived, such as reactive intermediates and other unstable species resulting from 

chemical processes (e.g., nitrenes and carbenes), to be preserved and studied with 

leisure. A variety of spectroscopic methods can then be applied to the detection and 

characterization of the trapped species, e.g., infrared, ultraviolet/visible, nuclear 

magnetic resonance (NMR) and Raman spectroscopies. Among these methods, 

infrared spectroscopy is the most effective technique to determine the structure of the 

molecules isolated in low-temperature matrices. The low concentration of the trapped 

species makes negligible the interactions between guest molecules, while the usual 

chemical matrix of the host minimizes host-guest interactions. This leads to a decrease 

in dispersion of the vibrational levels, facilitating the comparison of the experimental 

spectra with the theoretical results (quantum chemical calculations or molecular 

mechanics), which normally treats the molecule like an isolated species in vacuum. In 

matrix isolation studies, the assignment of bands in IR spectra of intermediates was 

based primarily on the registry of the characteristic absorption bands, whenever 

possible with use of the isotopic substitution, reactions of primary intermediates, etc. 

Nowadays, the interpretation of experimental IR spectra is greatly simplified due to 

the development of accurate theoretical methods for their calculation, such as Density 

Functional Theory (DFT) based methods or up-tp-date perturbational approaches (e.g., 

Møller-Plesset methods).
106
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The rigidity of the matrix inhibits diffusion of the molecules and minimizes 

aggregation, also contributing to increase the spectral resolution. Furthermore, if for 

instance the trapped molecules are made to react by in situ irradiation with UV light, 

in general the fragments resulting from the precursor species are unable to escape 

from the matrix cage where they were formed, precluding cross recombination 

reactions between fragments originated in different molecules. Such feature strongly 

simplifies the possible chemistry, thus making this method a very useful one to study 

reaction mechanisms. 

 Significant sharpening of the bands and increase in the peak intensities are 

observed in matrix isolation when compared to spectra obtained in most of current 

experimental conditions, where bands due to different vibrations are frequently 

overlapped, not allowing their separation. Another general finding for all matrix-

isolation spectra is that the bands positions are weakly usually shifted when compared 

with gas phase spectra. However, care should still be taken in the band assignment, 

since, for example, it is frequent that in matrix isolation spectral bands show splittings 

caused by matrix (or site) anisotropy. Thus, the nature of the observed splittings can 

be due to different chemical species (different conformers) or to the same species in 

different trapping sites. Changing the matrix host is the most common method for 

distinguishing between these two possibilities. This procedure usually does not have a 

significant effect on the bands due to different chemical species but produces a drastic 

change in the profile of the signals due to distinct trapping sites. Another effective 

method to distinguish between bands originated by different chemical species and due 

to matrix interactions is to change the temperature of the gaseous mixture before 

deposition: this way, the relative gas phase populations of the different species may be 

altered, leading to a corresponding change in the intensity of the bands in the matrix 

whereas in principle the site splittings are insensitive to this procedure.  

 

 A matrix isolated sample can be prepared by deposition of a pre-mixed 

gaseous mixture or by co-deposition of the species to be studied (or a suitable 

precursor) and the host gas. In both situations, the gas mixture is directed towards a 

cold window kept typically in the 4-60 K temperature range and at very low pressure 

(10
-8
10

-10
 atm) inside a cryostat. A rapid cooling of the sample mixed with the inert 

matrix allows an efficient trapping of the populations of the different conformational 
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species, once the energy barriers separating them are large enough. Hence, the method 

is particularly suitable in the study of conformational isomerism. 

 Matrix isolation is also a quite powerful technique to investigate aggregation 

and Hbonding, since control of temperature of a pre-deposited matrix (or of the 

substrate, during deposition) can allow to efficiently control the levels of aggregation 

in a sample. The technique is then suitable for study of dimers and small 

aggregation.
107-118

 

 

 

Thermally induced conformational isomerizations in cryomatrices 

 

Matrix isolation infrared spectroscopy has been employed in numerous studies 

of conformational or tautomeric isomerization reactions, in the high or low 

temperature ranges (deposition temperature vs. “annealing”).
119-125

 In the high 

temperature range, as the temperature of the sample mixture is increased prior to 

deposition, the equilibrium among conformers is shifted in favour of the less stable 

conformers (or tautomers), i.e., the more energetic forms. Assuming that no 

isomerization occurs during deposition, it is possible to determine the relative 

population of the conformers which should correspond to the equilibrium existing in 

the gas phase prior to deposition. However, for systems with low energy barriers (of a 

few kJ mol
-1

) conversion of higher energy forms into lower energy forms can take 

place, being exceptions to this rule. In such systems the low temperature matrix 

distribution may differ considerably from that of the equilibrium gas phase due to 

conformational cooling during deposition of the matrix.
119-125

 On the other hand, 

temperature variation studies by annealing of the matrices to higher temperatures, may 

also lead to loss of the less stable forms.
119-125

 In practical terms, all these changes 

should be observed regarding the intensity of the bands assigned to the different 

conformers and not reflect in the appearance of new bands, which would indicate 

different species than those molecules present in the deposited matrix. Annealing of 

the matrices can be attained to 35, 45 and 60 K, for argon, krypton and xenon 

matrices, so that in some cases observation of isomerization can only be observed in 

the heavier atom matrix gases, depending on the energy required for the conversion.
119

 

1,2-Butanediol
122

 represents an extreme case of conformational cooling. The 

molecule has three conformationally relevant rotational axes, which can result in 81 



 13 

possible conformations. In this molecule, as a result of massive conformational 

cooling occurring upon matrix deposition, only five conformers of 1,2-butanediol 

were retained in the samples deposited at 10 K. The theoretically predicted energy 

barriers are high enough to allow these five minima to be trapped in the matrices at 

this temperature. On the other hand, annealing of the matrices up to 50 K, resulted in 

the conversion of all higher energy forms into the most stable single conformer.  

Cyanoacetic acid (CAA) and methyl cyanoacetate (MCA) are two related 

systems, which differ from each other by replacing the acid hydrogen atom by a 

methyl group.
123

 Ab initio calculations predicted that both systems have two 

isoenergetic conformers (gauche and syn) separated by similar low energy barriers 

(ca.3 kJ mol
-1

). The relative populations of the two conformational states trapped in 

the matrices however, were found to strongly depend on the temperature of the optical 

substrate during deposition. When CAA was deposited in a xenon matrix at 20 K, only 

bands due to one conformer (more stable) was observed, contrarily to what could be 

expected, since calculations predicted that both conformers should co-exist in the gas 

phase. By decreasing the substrate temperature to 10 K, the second conformer could, 

however, been trapped in the matrix, because at that temperature the barrier for 

interconversion is high enough to prevent conformational cooling to take place during 

deposition. In the case of MCA, both argon and xenon matrices have been studied and 

both syn and gauche isomers were observed. During annealing of the matrices the 

gauche form was converted into the syn, as well as in the series of experiments in 

which matrices were deposited at increased substrate temperature. The different 

behaviour shown by these two similar structures indicates that necessary care must be 

taken in transferring the gas phase potential energy landscape to matrices. Indeed, in 

some cases, interaction with the matrix results in considerable change in the PES and 

direct comparison with gas phase is no more possible. In general, more polar and more 

planar conformers are favoured in matrices relatively to the gas phase.
121,123

 The three 

most stable conformers of dimethyl sulphite (GG, GG’ and GT) could be isolated and 

characterized in argon matrices.
124,125

 Annealing of the matrix allows the conversion 

of the GG’ into GT form, which in turn yields the most stable GG form. The two 

observed processes were found to occur at two temperatures in consonance with the 

relative values of the predicted energy barriers:  GG′GT, 1.90 kJ mol
-1

; GTGG, 

9.64 kJ mol
-1

; and GG′GG, 19.46 kJ mol
-1

. 
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 The knowledge of the energy barriers for interconversion between the 

conformers is, as stated above, of extreme importance in the interpretation of the 

experimental results. It will be shown in Chapter 3 that, in the case of MCPIC and 

MACBP molecules studied in this project the energy barrier between conformers III 

and II, being extremely low, lead conformer III to relax into conformer II during 

matrix deposition, thus precluding its experimental observation in both argon and 

xenon matrices. Also, the moderately low barrier for the III isomerization (ca. 4 kJ 

mol
-1

) in MCPIC resulted in partial conversion of II into I during matrix deposition. 

On the other hand, in the case of MCPOC, the predicted barrier for the III 

isomerization (20.5 kJ mol
-1

) is high enough to prevent this reaction to take place 

during matrix deposition. With an energy barrier this high, a considerable wider range 

of temperatures should be used to allow for conformational relaxation. Indeed, 

annealing of the xenon matrices up to ca. 60 K allowed observation of a redistribution 

of the intensities of the bands due to monomers, indicating conversion of form II into 

conformer I.  

 

 

Photochemistry in matrices 

  

Besides the low working temperature and chemical inertia of a noble gas 

cryomatrix, which helps stabilizing less stable chemical species, the relative rigidity of 

the matrix cage is particularly relevant for photochemical studies of matrix isolated 

species. These conditions facilitate the study of photochemical reactions in general, as 

the processes are restricted to a specific matrix cage. Due to the general inhibition of 

molecular diffusion, the observed processes do not involve more than one reactant 

molecule, and, in secondary steps, more than the products formed from a unique initial 

reactant molecule. Photochemical excitation by ultraviolet irradiation of the matrix-

isolated molecules can promote conformational and/or other types of isomerization 

reactions, of the trapped species can undergo other photochemical transformations 

such as photodegradations or rearrangement reactions through bond cleavage (or bond 

cleavage/bond forming) originating new products.  

 

Irradiation in situ of the matrix with ultraviolet light allows observation of 

processes with high energy barriers, since it may allow providing the molecule with a 
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large amount of energy. However, in some cases, subsequent reactions to 

photoexcitations can be quite exothermic, resulting in significant increase of local 

temperature. This can lead to subsequent reaction steps and also partial diffusion of 

the species still present in the matrix.  

Conformational changes leading to an increase in population of one or more 

high energy conformers can be achieved upon irradiation of the matrices with 

ultraviolet light. Nishino and Nakata
126,127

 studied the photoreaction mechanism for 

halogen substituted carboxylic acids. The rotational isomerism of 2-choloropropionic 

acid (2CPA)
126

 in a low temperature argon matrix was investigated. The 

photoisomerization from syn to anti forms around the CO bond and around the 

central CC bond of 2CPA was observed upon irradiation at   240 nm. In an earlier 

study, 2-chlorobenzoic acid (2CBA)
127

 was investigated. The spectra of the two most 

stable isomers, SC and ST, were observed after deposition in argon and xenon 

matrices. Upon UV irradiation, two less stable isomers, AT and AC, were formed.  

 Several types of photoinduced tautomerization reactions are known (e.g., keto-

enol,
128,129

 amino-imino
130-132

 and oxo-hydroxy
133,134

) and have been extensively 

studied in matrices. One of the simplest models for keto-enol tautomerism is the 2-

hydroxypyridine/2(1H)-pyridinone system.
129

 The amino-imino tautomerization in 

several amino pyridine derivatives, such as 2-aminopyridine, 2-amino-5-

methylpyridine and 2-(methylamino)pyridine, was investigated by Akai et al.
130-132

 In 

the case of 2-amino-5-methylpyridine,
131

 the amino tautomer is more stable and 

changes into the imino tautomer (5-methyl-2(1H)-pyridinimine) upon UV irradiation 

(370 > λ ≥ 340 nm), while the reverse change occurs by longer wavelength (420 > λ ≥ 

340 nm) irradiation. The two most stable forms of hypoxanthine,
133

 oxo-N(9)-H and 

oxo-N(7)-H, as well as a very small amount of the minor hydroxy-N(9)-H tautomer 

were observed in argon matrices directly after their deposition. UV irradiation of the 

matrices induced conversion of the oxo tautomers of the compound into the hydroxy-

N(9)-H and hydroxy-N(7)-H forms, respectively. According to the reports of Maier 

and Enders
135

 and of Duvernay et al.,
136

  an analogous oxo  hydroxy 

phototautomerism occurs also for the simple molecule of formamide.         

UV irradiation can also promote photodissociation reactions of matrix-isolated 

species. As mentioned above, the processes are restricted to a specific matrix cage, 
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thus preventing the formation of many of the photoproducts expected to be formed in 

gas phase or solution.  

The photochemistry of matrix-isolated 1-phenyl-1,2-propanedione in solid 

xenon was studied by Lopes et al.
76

 Irradiation of the matrix with UV light (λ > 235 

nm) led to decarbonylation of the compound, with generation of acetophenone and 

carbon monoxide, with an almost complete consumption of the reagent after 20 hours 

of irradiation. The reaction proceeds with formation of radicals but no signs of the 

putative products resulting from cross-reactions including different molecules could 

be detected in the spectra of the photolyzed matrix.     

Two 3-methyl-2H-azirines bearing electron-withdrawing substituents at C2, 

clearly related to some of the compounds studied in the present work, methyl 3-

methyl-2H-azirine-2-carboxylate and methyl 2-chloro-3-methyl-2H-azirine-2-

carboxylate, were studied by Gómez-Zavaglia et al.
20-22

 In situ broadband UV (λ > 

235 nm) excitation led to the observation of two primary photoprocesses: CC bond 

cleavage with production of nitrile ylides and CN bond cleavage with formation of 

methylated ketenimines.  

 

 For the oxazole representative described in this thesis (methyl 4-chloro-5-

phenyl-1,3-oxazole-2-carboxylate; MCPOC), no photodecomposition of the oxazole 

ring was observed upon broadband UV irradiation. The situation for the isoxazole 

counterpart (MCPIC) was the opposite. Irradiation of the matrix-isolated compound 

lead to formation of MCPOC as final photoproduct. In agreement with the mechanism 

for the isoxazoleoxazole photoisomerization previously proposed,
7,8,13-15

 the 

expected azirine and nitrile-ylide intermediates could be identified spectroscopically 

in the photolyzed matrices in the present study.
 

 In turn, methyl (Z)-2-azido-3-chloro-3-benzoyl-propenoate (MACBP) was 

also found to be transformed into MCPOC in a reaction where the azirine and nitrile 

ylide also work as intermediates. This reaction was found to be accompanied by a 

second one, leading to formation of the ketenimine C-chloro-C-benzoyl-N-

methoxycarbonylketenimine (CBMK). The non-observation of the corresponding 

isoxazole suggests the concerted nature of the different steps leading to the observed 

final products. This also supports the idea that in the studied system the putative vinyl 
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nitrene intermediate is not involved in the conversion of the azide into the azirine, as 

well as in the subsequent reactions of this latter. 

 The photochemistry of methyl aziridine-2-carboxylate (MA2C) was also 

addressed in the present study. The primary photoproduct was found to be methyl 2-

(methyleneamino)-acetate (MMAA) obtained from the 1,2 hydrogen atom shift from 

the azomethine ylide resulting from ring-opening through cleavage of the aziridine 

CC bond. Irradiation at  = 290 nm using narrowband tunable laser light led to the 

decrease of bands due to of the most stable form of MMAA and formation of other 

photoproducts derived from the latter. Subsequent photodecomposition 

photoprocesses were also observed leading to formation of carbon monoxide and 

other unidentified products. 

 In the case of matrix-isolated -pyridil, as mentioned before, contrarily to 

other -dicarbonyl compounds (e.g., diacetyl, 1-phenyl-1,2-propanedione),
75,76

 which 

undergo cleavage of the intercarbonyl group followed by decarbonylation from one of 

the radicals initially formed and recombination of the two resulting radicals to form, 

as final product, the ketone, -pyridil was found to prefer to isomerize into unusual 

molecular species bearing Hückel-type pyridine (aza-benzvalene) rings upon 

irradiation at   235 nm. 

 

 

Infrared induced conformational isomerization and tunneling in cryomatices 

 

Infrared irradiation, in particular, irradiation in the near infrared region using a 

narrowband tunable light source recently became of practical use to induce 

conformational isomerizations in low-temperature matrices.
79-100,107-111

 This approach 

allows the selective excitation of a specific vibrational mode of a given species and 

convert this species into other forms. The effect of near-infrared irradiation was first 

observed by Pimentel and his co-workers for the cis-trans isomerization in nitrous 

acid (HONO),
93,94 

which is the smallest stable molecule exhibiting rotational 

isomerism. Isomerization rates for HONO
95,96

 were reported to depend strongly on the 

host matrix. By using infrared band pass filters, Hall and Pimentel
94

 demonstrated that 

both cis  trans and the reverse trans  cis interconversions took place 

simultaneously, but at different rates. Khriachtchev et al.
97

 showed that trans-cis 
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isomerization of HONO in a krypton matrix takes place when either the OH stretching 

or N=O first overtone modes are excited. Very interestingly, the isomerization process 

is found to be selective with respect to matrix sites, demonstrating the stability of the 

host cage under the resonant IR irradiation. Narrowband near-infrared irradiation was 

also used to produce the higher energy conformer of hydroxyacetone.
91

   

The high energy cis forms of several carboxylic acids, (formic, acetic, propionic 

and propiolic acid) and their isotopomers could be prepared from the lower energy 

corresponding trans forms by this method and studied in different cryogenic 

matrices.
79-88,90

 The cis form subsequently converts to the lower energy trans 

conformer via dissipative proton tunneling through the torsional barrier, which limits 

their lifetime.  

Cis-CH3COOH has a shorter lifetime in rare-gas matrices than cis-HCOOH (ca. 

50 s
85 

versus 8 min
86

 in solid argon at 8 K). Deuteration of the OH group influences 

greatly the tunneling process, slowing it down by about four orders of magnitude. The 

conversion process of cis-CH3COOD and cis-HCOOD to the trans forms in an argon 

matrix at 8 K takes about 15 days.
85,87

 On the other hand, the tunneling rates in 

formic
86

 and acetic acids
85

 increase upon deuteration of CH or CH3 groups. This 

secondary isotopic effect is very interesting but was not yet explained.  

The tunneling rates in these species are strongly dependent on the matrix 

material. The cis-HCOOH decay rates increase with the matrix polarizability as 

NeArKrXe kkkk  .
86

 However, the decay of cis-HCOOD follows almost the 

opposite trend: NeArKrXe kkkk  .
87

 With respect to the reaction barrier height, 

which increases in more polarizable hosts, the order of the rate constants in HCOOD 

is anomalous.
86,107

 Similar “anomalous” behavior was also reported for AA 

( KrArXe kkk  ).
85

 Clearly, in addition to the barrier change upon solvation in 

polarizable media, other factors can also influence the cis-to-trans conversion.
86,87,107 

 In the present study, both HCOOH and CH3COOH were studied in nitrogen 

matrices. It was shown that the cis conformers of these compounds are stabilized in N2 

matrix by factors of 55 and 600 (compared to argon matrix) due to interactions of 

OH
…

N2 type. The IR spectra of the cis and trans conformers of both acids were 

assigned. 

 Exciting new research has been opened with the preparation by vibrational 

excitation of the trans–trans dimeric forms of FA in neon and argon matrices, yielding 
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trans–cis dimers.
108-111

 It was found that tunneling decay of cis formic acid is 

substantially slower in the dimeric form compared to monomer, especially in solid 

neon.
109

 This stabilization effect was explained by a complexation-induced increase of 

the reaction barrier, which was confirmed computationally.
108

  

 In this thesis, data for dimers of FA and AA in N2 matrices are presented. 

Three new acetic acid dimers were produced in situ, characterized structurally and 

spectroscopically and evaluated from the point of view of stability (for cis containing 

dimers).  

 

 

1.3 Computational Methods 

 

 The use of computational methods can simplify significantly the interpretation 

of results obtained from experimental studies. It is in general possible nowadays to 

find a suitable method with a level of calculation adequate to the study of the desired 

systems or properties. These methods include Molecular Mechanics (MM), semi-

empirical, ab initio and density functional methods.
137-141

 In a simple view, MM can 

be considered to be based on a model where a molecule is described as a collection of 

atoms represented as balls whose mass depends on the elements connected by 

chemical bonds that are treated as springs whose stiffness depends on which elements 

are bound together, and whether the bond is single, double or triple. If the normal 

spring lengths and the angles between them are known, and how much energy it takes 

to stretch and bend the springs, then the energy of a particular set of balls and springs, 

i.e., of a given molecule, can be calculated; changing the geometry until the lowest 

energy is found enables us to do a geometry optimization, i.e., to calculate a stable 

geometry for the molecule.
138,140

  

 Semi-empirical methods are based on approximate solutions of the 

Schrödinger equation, using appropriate parameters derived from experimental data in 

order to simplify the calculation and achieve a faster solution (using less 

computational resources). The large majority of semi-empirical methods use only s- 

and p- functions, and the basis functions are Slater type orbitals (STO). Therefore, the 

computational cost is reduced by reducing the number of integrals which are required 
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to be calculated. Semi-empirical calculations are slower than MM, but much faster 

than ab initio calculations.
138,140

     

 Ab initio calculations are also based on the Schrödinger equation, however, no 

experimental parameters are used in the calculations. Their computations are based 

only on the laws of quantum mechanics and on the values of a small number of 

physical constants (the speed of light, the masses and charges of electrons and nuclei, 

Planck’s constant). Both the semi-empirical and the ab initio approaches calculate a 

molecular wave function and molecular orbital energies and thus represent wave 

function methods.
137-140

   

 Density Functional Theory (DFT) calculations define the energy of an 

electronic system in terms of its electronic probability density function,  r


 , and not 

in terms of a wave function. In addition, they include the effects of electron 

correlation within a single configuration representation of the ground electronic state 

of atoms and molecules.
137-141

 They are in general more efficient then ab initio 

methods in terms of computational efforts and have been widely used in structural 

chemistry and theoretical spectroscopy during the last two decades. 

 

 

Semi-empirical methods 

 

Semi-empirical methods are simplified versions of Hartree-Fock theory using 

empirical (derived from experimental data) corrections in order to improve 

performance. The first step in reducing the computational problem to solve, is to 

consider the valence electrons, ignoring core (non-valence) electrons and making 

major theoretical assumptions. Furthermore, only a minimum basis set is used for the 

valence electrons. These methods allow the user a way to study larger molecules, 

however, it is not possible to compute all molecules using these methods. Semi-

empirical methods do not behave well with hydrogen bonding, transition sates, or 

molecules with non-parameterized atoms.
138,140

     

 The most frequently used methods include the Modified Neglect of 

Differential Overlap (MNDO),
142

 Austin Method 1 (AM1)
143

  and Parameterization 

Method 3 (PM3).
144-146

 All of them are based on the Neglect of Differential Diatomic 

Overlap (NDDO) integral approximation, while older methods use simpler integral 
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schemes such as Complete Neglect of Differential Overlap (CNDO) and Intermediate 

Neglect of Differential Overlap (INDO). All three approaches belong to the class of 

Zero Differential Overlap (ZDO) methods, in which all two-electron integrals 

involving two-center charge distributions are neglected. Of the various methods, PM3 

is the most commonly cited in computational chemistry literature. This was the 

selected semi-empirical method to be used in this study, whenever required.  

 The PM3 method was developed by J. P. Stewart in the late 1980s.
144-146

 The 

name derives from the fact that this was the third NDDO method (following MNDO 

and AM1). PM3 is considered a variation of AM1, as PM3 contains many of the 

parameters as does AM1, differing mainly in how the parametrization is done. PM3 

uses two Gaussian functions per atom, instead of the variable number used by AM1 

(which uses between one and four Gaussians per element). The increase in the 

numerical values of the parameters permitted an efficient search of the parameter 

space compared to AM1. As compared to MNDO, the parameters are quite different, 

but the accuracy of the calculation is close to the same. With the publication of the 44 

sets of parameters in 2004,
147

 the mapping of the more important elements of the main 

group is completed for the semi-empirical methods MNDO, AM1, and PM3. 

 

 

Ab initio calculations 

 

 The general objective of ab initio quantum chemical methods is the solution of 

the time-independent Schrödinger equation
148

 

 

      RrRERrH ,,ˆ                (1.3.1) 

 

where Ĥ  is the Hamiltonian operator, E is the molecular energy and  Rr,  is the 

molecular wave function that depends on the coordinates of the electrons and nuclei. 

 The Hamiltonian operator for a molecule with N nuclei and n electrons can be 

expressed (in atomic units) as:   
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where i and  j are electron indices, A and B are nuclei indices, r is the distance 

between electrons or electron-nuclei and R is the distance between nuclei, e is the 

electron charge, Z is the atomic number, 
A

M  is the mass of nucleus A, and finally, 
2

i
  

and 
2

A
  represent the Laplace operators associated to electrons and nuclei, 

respectively. 

 The first and second term represent the electronic and nuclear kinetic energy 

operators, respectively, which depend on the mass and coordinates of the particles. 

The third to fifth terms represent the potential energy operators, nuclear-electronic 

attraction, electronic-electronic repulsion and the nuclear-nuclear repulsion, 

respectively. 

  Since the above equation does not have an analytical solution, a few 

approximations were set up. The Born-Oppenheimer approximation
149

 was introduced 

to separate the nuclear and the electronic motion. Within this approximation, the wave 

function is separated into electronic and nuclear parts. One can consider the electrons 

in a molecule to be moving in the field of fixed nuclei. Consequently, the kinetic 

energy of the nuclei can be neglected and the repulsion between the nuclei can be 

considered to be constant. The Hamiltonian operator can then be separated into two 

equations, the electronic (1.3.3) and nuclear Hamiltonians (1.3.4): 

 

      RVRrVrTH elecelecnucelecelecelec   ˆ,ˆˆˆ             (1.3.3) 

 

where the first term represents the electronic kinetic energy operator, the second and 

third terms correspond to the nuclear-electronic attraction and electronic-electronic 

repulsion potential energy operators;  

 

    RERTH effnucnuc  ˆˆ               (1.3.4)

  

where nucT̂  is the nuclear kinetic energy operator and
eff

E is the nuclear effective 

potential. The introduction of this nuclear effective potential means that each electron 

is subjected to a field that models the effect of the other electrons in the system (this is 

a reasonable first approximation to the way that electrons interact with each other).   
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The Hartree-Fock Theory 

 

 A first approximation in solving the Schrödinger equation for n electrons 

systems, is treating the electron-electron repulsion that one electron experiences from 

another electron as a mean field repulsion (Hartree-Fock procedure). The wave 

function is taken as a single product of n one-electron functions (molecular orbitals, 

MOs), which is known as a Hartree product 
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However, the wave function must be antisymmetric with respect to the 

exchange of the positions (and spin) of any two electrons, i.e., the Pauli Exclusion 

Principle must be followed. Since the Hartree product fails to satisfy the antisymmetry 

principle, to ensure that an approximate wave function meets these criteria, it may be 

written as a determinant of spin orbitals (Slater determinant):
150
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By minimizing the energy of the spin-orbital wave function, through the 

variational principle, the Hartree-Fock equations are obtained
151,152

 

 

iiif  ˆ                (1.3.7) 

 

where f̂  is an effective one-electron operator or Fock operator, 
i

  is the energy of 

orbital i, and 
i

  represents the spin orbital. The Fock operator is given by   
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where )(iHF  is the average potential experienced by the ith electron due to the 

presence of the other electrons. From a practical point, the treatment of the equations 

is iterative, also called as self-consistent (Self-Consistent Field, SCF). The method 

searches until the orbitals and the average potential no longer change. 

 Unfortunately, the Hartree-Fock equations cannot be solved for systems larger 

than atoms or molecules with small number of electrons. Each MO can then be 

expressed as a linear combination of atomic orbitals (AO) called basis sets 

 

 



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                  (1.3.9) 

   

where 
i

c


 are the expansion coefficients of the molecular orbital 
i

  in the basis 

functions,  , usually called as atomic orbitals (AO). The Hartree-Fock-Roothan
153

 

equations can be written in matrix form as  
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


     i=1,2,...,M         (1.3.10) 

 

or even more simply as 

 

 SCFC                (1.3.11) 

 

where 


F  are elements of the Fock matrix, F, 


S  are elements of the overlap matrix 

S, and i is the orbital energy of the molecular orbital 
i

 . 

 The Hartree-Fock method produces an energy that is higher than the actual 

value (a consequence of the Variational Principle) due to the approximation of the 

wave function. Furthermore, the Schrödinger equation is not actually separable, and so 

the nuclear orbital approximation introduces inaccuracy in this respect. Moreover, it 

also treats the Coulombic repulsion between electrons in an average way only, 

whereas the instantaneous interaction between electrons must be considered for a 

more accurate counter. The motion of the electrons is said to be correlated and it is the 
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instantaneous electronic interaction (not just an average repulsion) that is referred to 

as electron correlation. The correlation energy ( corrE ) is the difference between the 

exact non-relativistic energy of the system ( ) and the Hartree-Fock energy ( HFE ) 

 

 HFcorr EE                     (1.3.12) 

   

Because the Hartree-Fock energy is an upper bound to the exact energy, the 

correlation energy is negative.  

 

 

Basis sets  

 

 Most methods require a specific basis set. As mentioned, basis set is a 

mathematical description of the molecular orbitals within a system, expanded as linear 

combinations used to approximate the electronic wave function. Slater Type Orbitals 

(STO) are commonly used as basis functions in molecular calculations, however the 

two-electron integrals require excessive computer time. Nowadays, Gaussian type 

atomic functions, i.e., Gaussian Type Orbitals (GTO), are currently used as basis 

functions in electronic structure calculations. GTOs can be written in terms of polar or 

Cartesian coordinates 
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where N is a normalization constant and the sum 
yx

ll ,  and  
z

l  determines the type of 

orbital. If 0
zyx

lll , the GTO is a s-type; if the sum is equal to 1 or 2, the GTO is 

a p-type or d-type, respectively. However, individual Gaussian functions do not 

represent the electronic distribution as well as the STO, requiring the use of a linear 

combination that allows a better representation of the STO. Linear combinations of 

primitive Gaussians which are used to form the basis function are designated as 

Contracted Gaussian Functions (CGF) according to  
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 
M

a
aarr

d                (1.3.14) 

  

where M  is the number of primitive gaussians used in the linear combination, the 

contraction coefficients 
ar

d do not vary independently but are held fixed within each 

linear combination. 

 A minimal basis set consists of the smallest number of functions. For instance, 

STO-3G
154

 basis set is a minimal basis set which combines three contracted gaussians 

functions for each AO. The double zeta (DZ, double ) and triple zeta (TZ, 

triple ) type basis are included in the split valence basis set which uses two or 

more STO for each inner-shell. A DZ basis set contains two times as many functions 

as the minimal basis set, each atomic orbital is represented by two STO basis 

functions. The letter    is the exponent of the STO basis functions. The basis sets 3-

21G, 4-31G, 6-31G and 6-311G
155-159

 are a few examples of split valence basis sets. 

 This type of basis set can incorporate polarization functions, e.g., 6-31G* or 6-

31G(d), include d-type orbitals to describe the heavy atoms, while 6-311G** or 6-

311G(d,p) also include p-type orbitals to describe the hydrogen atoms in addition to 

the d-type orbitals to describe the heavy atoms.
160

 In addition, diffuse functions can 

also be added, denoted by + or ++, that consist of s-type and p-type orbitals to portray 

the heavy atoms and the hydrogen atoms.
161

 Diffuse functions are necessary for 

correct description of anions and weak bonds and are frequently used for calculations 

of such properties as dipole moments, polarizabilities, hydrogen bonds, etc. 

 Two basis sets were used in this work, 6-311++G(d,p)
159

 for the heterocyclic 

compounds and 6-311++G(2d,2p)
159,160

 for formic and acetic acids. Both basis set 

include polarization and diffuse functions. In both basis sets, 6-311 can be explained 

as 6 Gaussian functions for the inner shells, 5 Gaussian functions to describe the 

valence orbitals, composed of three, one and one contracted Gaussians, representing 

triple zeta basis set. On the other hand, the basis set 6-311++G(2d,2p), adds 2 d-type 

and 2 p-type orbitals on heavy atoms and hydrogen atoms. These basis sets constitute 

appropriate choices for the systems studied, enabling a good comparison between the 

quality of the results and the computational effort. 
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Møller-Plesset Perturbation Theory 

 

 A relatively simple treatment of electron correlation is the Perturbation Theory 

described by Møller-Plesset in 1934.
162

 According to the Perturbation Theory the 

Hamiltonian Ĥ  is divided into two parts, described as the sum of the unperturbed 

Hamiltonian 0Ĥ  and a perturbation applied to 0Ĥ , 'Ĥ : 

 

  Ĥ 0Ĥ 'Ĥ             (1.3.15) 

                  

  is an arbitrary real parameter that satisfies the relation 10   . 

 In order to obtain the exact solution to the Schrödinger equation, one must start 

from the solutions of the unperturbed system. Therefore, the unperturbed wave 

function, 
 0

  is the HF wave function and the HF energy is the sum of the zeroth 

order correction (=0), 
 0

E , and the first order one (=1), 
 1

E : 
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The first correction to the electronic ground state energy is given by the second 

order perturbation (MP2): 
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where J concerns the degree of substitution of the wave function (in this case, two 

electrons are promoted from the occupied orbitals i and j to virtual orbitals a and b, 

with energies i, j, a e b, respectively). 

Thus, 
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where the knowledge of the Hartree-Fock orbitals () and its respective energies () is 

required. 

 To improve further the Hartree-Fock energy,  higher order energy corrections 

should be calculated,    43 , EE , etc. MP calculations are designated by MP2, MP3, 

MP4, according to their order of energy correction 
   32

, EE or 
 4

E , respectively.  

 Some of the advantages of the MP theory include the size-consistency, 

interpretability in terms of correlations between specific number of electrons, and the 

ability to describe van der Waals attractive forces. Furthermore, the MP theory always 

provides improved geometries and relative energies for the stationary points on the 

potential energy surface compared to HF theory. However, for some molecules 

convergence problems might occur when the molecule is far from the equilibrium 

geometry or when the fundamental ground state is not sufficiently displaced from the 

lowest excited state. In practical terms, it could become more advantageous to use a 

higher basis set with a MP2 calculation than use a smaller basis set with a MP3 or 

MP4 level calculation. In the present study MP2 calculations were selected,
163

 with 

the 6-311++G(d,p) and 6-311++G(2d,2p) basis sets. The use of MP2 calculations was 

found to be particularly relevant in the studies of dimeric structures (Chapter 4). The 

optimized geometries of the minima of MA2C were also calculated at the MP2 level 

using the 6-311++G(d,p) basis set. 

 

Density Functional Theory 

 

Density Functional Theory (DFT) methods are nowadays the most widespread 

methods used in computational science and solid state physics, due to its high 

computational efficiency and very good accuracy compared to HF or MP methods.
137-

141
 Its foundations emerged for the first time in the late 1920s, with the work 

developed by Thomas and Fermi,
164,165

 based on the uniform electron gas. The main 

advantage of DFT is that the energy of an electronic system can be defined in terms of 

its electronic probability density,  r


 . For a system with n electrons,  r


  represents 

the total electron density at a particular point in space r. The electronic energy E is 

regarded as a functional of the electron density,  E .  
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The Hohenberg-Kohn theorems
166

 were able to relate the energy and other 

properties of the system with the electron density. The first theorem (Existence 

Theorem) demonstrates that all the properties of a molecule in the ground electronic 

state are uniquely defined by its electron density. Although, the first theorem confirms 

the existence of a functional relating the electron density and the energy of a system, it 

does not tell us the form of such functional. The second theorem (Variational 

Theorem) states that the functional that delivers the ground state energy of the system 

delivers the lowest energy if and only if the input density is the true ground state 

density. 

Nowadays, DFT calculations are based on the Kohn and Sham approach,
167

 

which allowed to overcome the difficulty related to the kinetic energy functional of 

the system. The basic idea in the Kohn e Sham formalism is splitting the kinetic 

energy functional into two parts, one part that can be calculated exactly, which 

considers non-interacting electrons, and a small correction term accounting for 

electron-electron interaction. In the non-interacting case,  E   has a kinetic 

contribution and a contribution from the external potential: 

 

          XCJVT EEEEE           (1.3.19) 

 

where 
T

E is the electronic  kinetic energy term, 
V

E  is the potential energy of the 

nuclear-electronic attraction term, 
J

E , is the classic Coulomb repulsion between 

electrons, the finally, 
XC

E , is the exchange correlation-energy term. 

 There are a large number of approximations that attempt to calculate the 

electron exchange-correlation energy functional. The Local Density Approximation 

(LDA) constitutes the simplest approach to represent this functional. At the center of 

this model is the concept of a uniform electron gas. In short, LDA assumes that the 

density is uniform throughout the molecule. The LDA exchange-correlation energy 

functional can be written as 

 

         rdrrE
XC

LDA

XC


             (1.3.20) 
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In this equation,  )(r
XC


  is the exchange-correlation energy per particle of uniform 

electron gas of density  r


 . The exchange-correlation energy,
XC

 , can be further 

split into two separate parts, the exchange energy, 
X

 , and the correlation 

energy,
C
 .

164,165,168
 

 The Local Spin Density Approximation (LSDA) represents a more general 

application of LDA, which introduces spin dependence into the functionals and has 

been gradually replacing LDA for open shell systems. Within the LSDA approach, the 

total electronic density is equal to the sum of the  spin density and the  spin density.  

 Although LDA and LSDA produce good results for certain systems, this is not 

the case for other molecules. For many molecules, the electron density is not uniform, 

therefore, functionals that combine electron density and are gradient corrected were 

created. Generalized Gradient Approximation (GGA) methods also referred to as non-

local methods take into account this effect. The GGA exchange-correlation energy 

functional can be written as 

 

              rdrrrrfE
GGA

XC

 
 ,,,,        (1.3.21) 

 

where f is any given function of the spin densities and their corrected gradients. The 

GGA exchange-correlation energy,
GGA

XC
E , can also be divided into two parts, exchange 

energy and correlation energy.
137-141

 

 There are also bybrid methods that combine functionals from other methods 

with pieces of a Hartree-Fock calculation, usually the exchange integrals. Among the 

most popular hybrid functionals, the exchange functional developed by Becke in 1988 

(B or B88),
169

 Perdew-Wang in 1986 (PW86),
170

 modified to Perdew-Wang in 1991 

(PW91),
171

 the correlation functionals of Lee, Yang and Parr (LYP),
172,173

 Perdew in 

1986 (P86)
174

 and, Vosko, Wilk and Nusair (VWN) in 1980,
175

 are now in wide use. 

The B3LYP hybrid functional one of the most popular functional used in theoretical 

calculations today. The B3LYP functional is given as
169,172,173,175

 

 

    3 1 1B LYP LSDA HF B VWN LYP

XC X X X C CE a E aE b E c E cE                (1.3.22) 
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In this equation, the exchange energy
HF

X
E , is sometimes denoted as HF exact 

exchange energy functional, exact

XE . The parameters a, b and c have the same values as 

those attributed by Becke for the B3PW91 functional (0.2, 0.72 and 0.81, 

respectively). The exchange functional developed by Becke in 1988 is: 
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where 
4

3/ ( )

     and b is an empirical parameter (normally 0.042 atomic 

units).  The correlation functional of Lee, Yang and Parr (LYP) is 
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where the constants a=0.049, b=0.132, c=0.2533 and d=0.349, while tHF and tW are the 

kinetic energy density of Hartree-Fock and Weizsacker, respectively. 

  In this study, the B3LYP was the most frequently used functional.  

 

 

Normal Coordinate Analysis 

  

 Normal coordinate analysis was undertaken in the internal coordinate space, as 

described by Schachtschneider and Mortimer
176

 using the BALGA program.
177

 For 

each molecule, the potential energy distribution (PED) associated with each normal 

mode was obtained. 

 The vibrational potential, V, can be given in terms of the normal coordinates, 

Qk by the following expression: 
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2
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k i j
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where F denotes the potential energy matrix and L is the transformation matrix 

between internal (or symmetry) coordinates and normal coordinates; i is the number of 

coordinates and j, k, l are the numbers of internal coordinates. 

 Instead of computing the jk ik ijL L F  terms, a single potential energy distribution 

matrix, PED, is usually applied, whose elements are given by
178,179

 

 

   jk ik ijkj
i

PED L L F             (1.3.25) 

 

 By normalizing the matrix elements with respect to the calculated eigenvalues, 

k , the equation be written as 

 

  jk ik ij kkj
i

PED L L F


             (1.3.26) 

 

 By rearranging equation (1.3.26), into a matrix product, a simpler PED is 

obtained 

 

  1 1
kjjk ik ij k jkkj jk

i kj

PED L L F L FL L LF


   
         

         (1.3.27) 

 

where L represents the transpose of L. 

 On the basis of the vibrational eigenvalue equation it can be proved that 

 

 1 1L F L                 (1.3.28) 

 

 The substitution of this expression in equation (1.3.26) renders 

 

   1
kj

kj kj
PED L L

                  (1.3.29) 

 

 However, this expression does not contain potential energy matrix elements or 

eigenvalues, on its own the L matrix includes all the information characteristic of the 

normalized potential energy distribution. 
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 If the elements belonging to a given row or column of the PED matrix are 

summed, the expression obtained is equivalent to an element of a product matrix 

 

   1 1 1

kj kj kjkj kk
j j jkj

PED L L L L L L
                     (1.3.30) 

 

  1 1 1

kj jk kjkj jj
k k kkj

PED L L L L LL
                     (1.3.31) 

 

Since LL
-1

= E are equal to one, the discussed property has been proved. 
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2 Experimental and Computational Details 

 

2.1 Samples sources 

 

Synthesis of methyl 4-chloro-5-phenyl-1,3-oxazole-3-carboxylate (MCPOC) 

The 2-halo-2H-azirine
1
 (2.81 mmol) was dissolved in toluene (10 mL) and the 

reaction mixture was heated at reflux for 5 h. The solvent was evaporated giving the 

1,3-oxazole as a solid. MCPOC was obtained as a solid (96%), mp 71-72 °C. IR 

(KBr) 1529, 1738, 2959 cm
-1

; 
1
H NMR 4.04 (3H, s), 7.47-7.51 (3H, m, Ar-H), 7.98-

8.01 (2H, m, Ar-H); 
13

C NMR 53.5, 125.6, 125.9, 126.6, 129.0, 130.2, 147.8, 148.7, 

155.3; MS (EI) m/z 239 [M(
37

Cl)+] (34), 237 [M(
35

Cl)+] (100), 177 (17), 128 (8), 105 

(55), 77 (59). Anal. Calcd. for C11H8NO3Cl: C, 55.60; H, 3.39; N, 5.89. Found: C, 

55.66; H, 3.32; N, 5.92%. 

 

Synthesis of methyl 4-chloro-5-phenylisoxazole-3-carboxylate (MCPIC) 

A solution of methyl 5-phenylisoxazole-3-carboxylate (70 mg, 0.345 mmol) 

and NCS (85 mg, 0.64 mmol) in 2.3 mL of 7% fuming nitric acid in acetic acid was 

irradiated for 40 min in the microwave reactor (CEM Focused Synthesis System, 

Discover S-Class) with the temperature set to 160 ºC. After cooling to room 

temperature, water (15 mL) was added and the mixture extracted with CH2Cl2 (2x15 

mL). The organic phase was dried (MgSO4) and evaporated off. The crude product 

was purified by flash chromatography [ethyl acetate–hexane (1:5)] to give MCPIC as 

a white solid (59%). mp 62-63 °C. IR (KBr) 1221, 1441, 1738, 2957 cm
-1

; 
1
H NMR 

4.03 (3H, s), 7.52-7.55 (3H, m), 8.03-8.06 (2H, m);
13

C NMR 53.1, 106.0, 125.6, 

126.6, 129.0, 131.2, 153.3, 159.1, 165.8; MS (EI) m/z 237 (M
+
, 99), 206 (14), 105 

(100), 77 (68), 59 (78); HRMS (CI) m/z 237.0200 (C11H8NO3Cl [M
+
], 237.0193). 

 

Synthesis of methyl (Z)-2-azido-3-chloro-3-benzoylpropenoate (MACBP) 

(Z)-3-azido-(E)-3-methylcarboxylate-2-chloro-acrylophenone (or methyl (Z)-

2-azido-3-chloro-3-benzoylpropenoate, MACBP 1) was prepared using a known 

synthetic method procedure (Scheme 1).
1
 The 2-
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(triphenylphosphoranylidene)acetophenone 4, obtained by reaction of 2-

bromoacetophenone 3 and triphenylphosphine 2, was added to a solution of 

triethylamine in dry toluene and treated with the appropriated acid chloride to give the 

methyl 2,4-dioxo-4-phenyl-3-triphenylphosphoranylidenebutanoate 5 almost in a 

quantitative yield. This ylide 5 reacts with azidotrimethylsilane and N-

chlorosuccinimide in dichloromethane to give the crystalline methyl (Z)-2-azido-3-

chloro-3-benzoylpropenoate 1 after the purification by column chromatography and 

crystallization. 

 

 

     Scheme 1. 

 

 

Other compounds: 

The commercially available compounds were methyl aziridine-2-carboxylate 

(MA2C), -pyridil, formic and acetic acids.  

MA2C (97% purity) was purchased from TCI Europe. Prior to usage, MA2C 

was additionally purified by using the standard freeze-pump-thaw technique.  

The sample of -pyridil (97 % purity) was obtained from Aldrich and used 

without any further purification. 

Formic acid (FA) and acetic acid (AA) were supplied by KEBO LAB, both 

with 99% purity. The acids were also purified by a few freezing-pumping cycles. 

 

 

2.2 Matrices preparation and other sampling procedures 

 

 The molecules studied at the Laboratory for Molecular Cryospectroscopy and 

Biospectroscopy (LMCB), Department of Chemistry (University of Coimbra) were 

MCPOC, MCPIC, MACBP, -pyridil and MA2C. A similar procedure was followed 

regarding the deposition of the solid compounds studied in this work (MCPOC, 
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MCPIC, MACBP and -pyridil). Matrices were prepared by co-deposition of sample 

vapors coming out from a specially designed thermoelectrically heatable mini-furnace 

(Figure 2.1), assembled inside the cryostat (APD Cryogenics closed-cycle helium 

refrigeration system) with a DE-202A expander, and large excess of the matrix gas 

(argon, N60; xenon, N48, both obtained from Air Liquide) onto the CsI substrate 

cooled to ~10 K (for argon matrices) and ~20 K (for xenon matrices). The average 

matrix deposition time was two hours. Care was taken to ensure that the matrices 

were not too thick, in order to avoid undesired scattering of the spectral beam.  

 In the case of the liquid (at room temperature) MA2C compound, the MA2C 

vapors were premixed with argon and xenon (N60 and N48, respectively, both 

supplied by Air Liquid) at a ratio of 1:1000 in a 3 L Pyrex glass reservoir to a pressure 

of 800 mbar, using the standard manometric procedure. During the experiments, the 

flux of the mixture was controlled by reading the drop pressure in the reservoir with a 

capacitance manometer. The pulsed valve controller allows different operating modes 

to define the sample introduction rate. In a typical experiment, the valve operated with 

an opening time of 5 ms and pulse frequency of 12 Hz during 1000 to 3000 seconds. 

In this case, the deposition temperatures were 15 K (Ar) and 30 K (Xe).  

The low temperature solid amorphous layers of pyridil and MCPOC were 

prepared in the same way as matrices but with the flux of matrix gas cut off. The 

layers were then allowed to anneal at slowly increasing temperature up to 300 K and 

280 K, for pyridil and MCPOC, respectively. After recording of the infrared 

spectrum of the obtained crystal, the sample was cooled back again to 10 K and a new 

spectrum of the crystalline phase was collected. 

KBr pellets and nujol mulls containing MCPOC were prepared by standard 

procedures. Their IR spectra were collected at room temperature using a BOMEM 

(MB40) spectrometer, with a Zn/Se beam splitter and a DTGS detector, with 4 cm
-1

 

spectral resolution. The Raman spectrum of solid MCPOC in the 3380–100 cm
−1

 

range, was acquired at room temperature using a dispersive Raman instrument, model 

DXR SmartRaman
TM

, from Thermo Fisher Scientific, equipped with a low-power, 

externally stabilized diode laser (= 780 nm), with a maximum power at output of 

laser head of 14 mW and a 3.0 mm beam diameter. The data were collected with an 

exposure time to laser radiation of 99 s, 100 sample exposures and a slit aperture of 

25 m. 
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Figure 2.1 – Special devices for gas-inlet and sample deposition developed in the Laboratory for 

Molecular Cryospectroscopy and Biospectroscopy (LMCB) – Coimbra. A: internal mini-furnace, for 

deposition of non-volatile solid substances, B: doubly thermostattable Knudsen cell, with shut-off 

capability, for separate controlling of the temperature of the compound to be deposited and of the vapor 

immediately prior to deposition, C: internal mini-furnace used nowadays, for deposition of non-volatile 

solid substances. 

 

 

Formic (FA) and acetic acid (AA) were studied at The Laboratory of Physical 

Chemistry, Department of Chemistry (University of Helsinki). Gaseous mixtures of 

FA and AA with nitrogen were prepared with a typical ratio of 1:1200 (monomers) 

and 1:1500 (acetic acid dimers). The acids were purified by a few freezing-pumping 

cycles (Figure 2.2). Nitrogen was used as supplied. HCOOD molecules were 

produced by an H/D exchange with deuterated surfaces in the deposition line.  

 

 

Figure 2.2 – Vacuum line used in the freezing-pumping cycles for FA and AA at the Laboratory of 

Physical Chemistry, Department of Chemistry (University of Helsinki). 
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2.3 IR absorption measurements 

 

At the LMCB: the IR spectra were recorded with 0.5 cm
-1 

spectral resolution 

in the spectral range 4000-400 cm
-1

 using a Mattson (Infinity 60AR Series) (Figure 

2.3-A) or a Nicolet 6700 Fourier Transform infrared spectrometers (Figure 2.3-B), 

equipped with a deuterated triglycine sulphate (DTGS) detector and a Ge/KBr beam 

splitter. The spectra were acquired after accumulating interferograms from 256 and 

128 scans, for the Mattson (Infinity 60AR Series) and Nicolet 6700 Fourier 

Transform infrared spectrometers, respectively. 

 Necessary modifications of the sample compartment of the spectrometer were 

done in order to accommodate the cryostat head and allow purging of the instrument 

by a stream of dry nitrogen, to remove water vapors and CO2.  

 

 

A B

 

Figure 2.3 – A: Mattson (Infinity 60AR Series) Fourier Transform infrared spectrometer, and B: 

Nicolet 6700 Fourier Transform infrared spectrometer (Department of Chemistry – University of 

Coimbra). 

 

 

 At the Helsinki Laboratory of Physical Chemistry: the gaseous mixtures of FA 

and AA were deposited onto a CsI window at ca. 8.5 K in a close–cycle helium 

cryostat (APD, DE 202A). The spectra were recorded with a Nicolet 60SX FTIR 

instrument by co–adding 200 interferograms with 1 cm
–1

 spectral resolution (Figure 

2.4). 
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Figure 2.4 – Nicolet 60SX Fourier Transform infrared spectrometer at the Laboratory of Physical 

Chemistry (Department of Chemistry – University of Helsinki). 

 

 

2.4 Narrow band selective IR and UV irradiations 

 

Irradiation of the matrices of all compounds was carried out with unfiltered 

light from a 500 W Hg(Xe) lamp (Newport, Oriel Instruments), with output power set 

to 200 W shown in Figure 2.5-A, through the outer KBr ( > 235 nm) and quartz  

( > 215 nm) windows of the cryostat. A series of longpass optical filters were also 

used:   397, 367, 328, 313 and 288 nm. However, either no photochemical changes 

were observed or the changes were very limited. The time of the irradiation of the 

matrix depended on the studied molecule, which varied between minutes to several 

hours (without longpass filters).  

For MA2C, matrices were also irradiated with the frequency doubled signal 

beam  of  the  Quanta-Ray  MOPO-SL  pulsed  (10  ns) optical parametric oscillator 

(FWHM ~0.2 cm
-1

, repetition rate 10 Hz, pulse energy E 1.0 mJ) pumped with a 

pulsed Nd:YAG laser (Figure 2.5-B). Irradiation of the matrices was undertaken using 

narrowband tunable UV irradiation by different wavelengths ( = 235 and 290 nm). 
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A

B

 
 
Figure 2.5 – Irradiation sources used in the Laboratory for Molecular Cryospectroscopy and 

Biospectroscopy (LMCB) – Coimbra: A: 500 W Hg(Xe) lamp (Newport, Oriel Instruments), B: 

Quanta-Ray  MOPO-SL  pulsed  (10  ns) optical parametric oscillator (FWHM ~0.2 cm
-1

, repetition 

rate 10 Hz, pulse energy E 1.0 mJ) pumped with a pulsed Nd:YAG laser. 

 

 

 

 

For FA and AA, vibrational excitation was carried out with tunable pulsed IR 

radiation provided by an optical parametric oscillator (Continuum, OPO Sunlite with 

IR extension, operated by Dr. Leonid Khriachtchev, see Figure 2.6). The pulse 

duration was ~5 ns, the spectral linewidth ~ 0.1 cm
-1

 and the repetition rate 10 Hz. 

The pulse energy of the OPO was measured at the sample position with a pulse 

energy meter (Molectron) to be ~ 0.1 mJ in the 3000-3700 cm
-1

 and ~ 0.4-0.6 mJ in 

the 4000-7000 cm
-1

 spectral region. The OPO radiation frequency was measured with 

a Burleigh WA-4500 wavemeter providing an absolute accuracy better than 1 cm
-1

 for 

the IR pumping radiation.  

During the decay kinetic studies of the high energy species (cis-FA, cis-AA 

and trans-cis dimers of AA) a long–pass optical filter (>1500 cm
–1

) was inserted 

between the sample and the Globar source in order to suppress high frequency light 

components which could accelerate the cis–to–trans conversion process.
 
The Globar 

light was blocked between the measurements. 
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Figure 2.6 – OPO-based system (Continuum) providing 5-ns light pulses tunable in the 225 nm to 4 

um range (the pulse duration was ~5 ns, the spectral linewidth ~ 0.1 cm
-1

 and the repetition rate 10 Hz) 

used in the Laboratory of Physical Chemistry, Department of Chemistry (University of Helsinki). 

 

 

2. 5 Computational Details 

 

The quantum chemical calculations were performed with Gaussian 03
2
 at the 

DFT level of theory, using the split valence triple- 6-311++G(d,p) basis set
3
 and the 

three-parameter B3LYP density functional, which includes Becke’s gradient 

exchange correction
4
 and the Lee, Yang and Parr correlation functional,

5
 for all the 

heterocyclic derivative molecules studied in this work. For the MA2C molecule, 

calculations were also carried out at the MP2 level of theory.   

Geometrical parameters of the different conformations were optimized using 

the Geometry Direct Inversion of the Invariant Subspace (GDIIS) method.
6,7

 

Transition states were located using the synchronous transit-guided quasi-Newton 

(STQN) method.
8
 In order to assist the analysis of the experimental spectra, 

vibrational frequencies and IR intensities were also calculated at the same level of 

approximation. The nature of stationary points on the potential energy surface was 

checked through the analysis of the corresponding Hessian matrix. 

The computed harmonic frequencies were scaled down by a single factor 

(0.978 for -pyridil, MACBP, MA2C and their corresponding photoproducts), which 

was chosen to correct them for the effects of basis set limitations, neglected part of 

electron correlation and anharmonicity effects. For MCPOC, the scaling factor was 

0.9835, obtained from linear fitting of the calculated to experimental wavenumbers 
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(measured in xenon matrix), whereas, for MCPIC this factor (0.9817) was determined 

by simple linear fitting (with intercept fixed at zero) of the calculated wavenumbers to 

the experimental ones.  

In addition, for MCPOC, Raman scattering activities (S
R
) were also calculated 

at the same level of approximation. Theoretical Raman intensities (I
R
) were obtained 

from the calculated Raman scattering activities according to the expression I
R
(i) =  

10
-12

 (0–i)
4
 i

-1
 S

R
(i), where 0 is the excitation wavenumber and i is the calculated 

wavenumber of the normal mode i.
9 

The potential energy surface of all the molecules studied in this thesis was 

undertaken at the DFT(B3LYP)/6-311++G(d,p) level of theory in order to determine 

all the minima. Taking into account the high flexibility of the MACBP molecule, with 

four conformationally relevant rotational axes, a systematic preliminary 

conformational exploration of the MACBP potential energy surface (PES) was 

initially carried out at the semi-empirical PM3 method
10,11

 using the HyperChem 

Conformational Search module (CyberChem, Inc. © 2004).
12  

These calculations 

provided a quick assessment of the main features of the conformational space of the 

molecule, which were later on taken into account in the subsequent analysis 

performed at the DFT(B3LYP)/6-311++G(d,p) level of theory.  

For FA and AA, the quantum chemical calculations were performed using 

Gamess, version R1 (24-Mar-2007)
13

 and version R2 (24-Mar-2010)
14

 at the MP2 

level of theory
15

 using the 6-311++G(2d,2p) basis set.
16,17

 The optimization criteria 

parameter OPTTOL was set to 0.00001 and 0.0001 hartree/bohr. This parameter 

corresponds to the maximum value allowed to the energy gradient and also controls 

the maximum allowed value of the root mean square gradient, which is given by 1/3 

of OPTTOL. The optimized structures of all FA…N2 and AA…N2 complexes 

(0.00001 hartree/bohr) and the trans-trans and trans-cis dimers of AA (0.0001 

hartree/bohr) were confirmed to correspond to the true energy minima on the potential 

energy surfaces by inspection of the Hessian matrices. The vibrational spectra were 

computed at the same level of theory. No scaling factor was used to scale the 

computed harmonic frequencies at this level of calculation. 

Normal coordinate analysis was undertaken in the internal coordinates space, as 

described by Schachtschneider and Mortimer
18

 using the BALGA program.
19

 For 
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each molecule, the potential energy distribution (PED) associated with each normal 

mode was obtained. 

The internal coordinates used in this analysis were defined following the 

recommendations of Pulay et al.
20 
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3 Case Studies 

 
 

The studies carried out in this project on the molecular structure, spectroscopy and 

reactivity of a series of selected heterocyclic ring compounds containing nitrogen 

(MCPOC, MCPIC, MACBP, MA2C and -pyridil) were presented in this Chapter, 

which comprehends the following articles: 

 

 

4-Halo-1,3-Oxazoles: Unambiguous Structural Assignment of 2-halo-2-benzoyl-2H-

azirine-3-carboxylates thermal ring expansion products, S. Lopes, C. M. Nunes, R. 

Fausto and T.M.V.D. Pinho e Melo, J. Mol. Struct., 2009, 919, 47-53. 

 

Conformational Space and Vibrational Spectra of Methyl 4-Chloro-5-phenyl-1,3-

oxazole-2-carboxylate, S. Lopes, C. M. Nunes, A. Gómez-Zavaglia, T.M.V.D. Pinho e 

Melo and R. Fausto, J. Phys. Chem. A, 2010, 114, 9074-9082. 

 

Photochemistry and Vibrational Spectra of Matrix-Isolated Methyl 4-Chloro-5-

phenylisoxazole-3-carboxylate, S. Lopes, C. M. Nunes, A. Gómez-Zavaglia, T. 

M.V.D. Pinho e Melo and R. Fausto, J. Phys. Chem. A, 2011, 115, 1199-1209. 

 

3-Azido-Acrylophonones as Photochemical Precursors of Oxazoles: A Matrix 

Isolation Infrared Spectroscopy Study, Lopes, C. M. Nunes, A. Gómez-Zavaglia, T. 

M.V.D. Pinho e Melo and R. Fausto, Tetrahedron (2011) - submitted.  

 

UV-Induced Photochemical Study of Methyl Aziridine-2-Carboxylate Isolated in Low 

Temperature Inert Matrices, S. Lopes, I. Reva and R. Fausto (to be submitted) 

 

Low Temperature IR Spectroscopy and Photochemistry of Matrix-Isolated  -Pyridil, 

S. Lopes, A. Gómez-Zavaglia and Rui Fausto, J. Photochem. Photobiol. A: Chemistry, 

2008, 200, 169-180. 
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Journal of Molecular Structure, 2009, 919, 47-53. 

 

4-Halo-1,3-Oxazoles: Unambiguous Structural Assignment of 2-

halo-2-benzoyl-2H-azirine-3-carboxylates thermal ring expansion 

products 

 

Susy Lopes, Cláudio M. Nunes, Rui Fausto and Teresa M.V.D. Pinho e Melo
 

Department of Chemistry, University of Coimbra, P-3004-535 Coimbra, Portugal 

 

 

ABSTRACT 

 

IR spectroscopy in cryogenic argon matrix of methyl 4-chloro-5-phenyl-1,3-

oxazole-2-carboxylate and methyl 4-chloro-5-phenylisoxazole-3-carboxylate was 

applied for the structural assignment of these isomeric heterocycles. It was 

demonstrated that methyl 2-benzoyl-2-halo-2H-azirine-3-carboxylates undergo 

thermal ring expansion to give 4-halo-5-phenyl-1,3-oxazole-2-carboxylates and not 

the isomeric isoxazoles. 

 

 

1. Introduction 

 

Oxazoles and isoxazoles are isomeric heterocyclic compounds having a 

remarkable number of applications and have been demonstrated to be very versatile 

building blocks in organic synthesis.
1
 The wide range of biological activities of 

isoxazoles and oxazoles includes pharmacological properties such as hypoglycemic, 

analgesic, anti-inflammatory, anti-bacterial, anti-tumoral and HIV-inhibitory activity. 

Some isoxazole derivatives display agrochemical properties, namely herbicidal and 

soil fungicidal activity, and have applications as pesticides and insecticides.  

Isoxazoles have also been used as dyes, electric insulating oils, high temperature 

lubricants and polyisoxazoles have applications as semicondutors. The oxazole ring 

occurs naturally and the total synthesis of natural products with a wide variety of 



 56 

biological activities containing oxazole moiety is an area of intense research. Other 

applications of oxazole derivatives include the use as pesticides, fluorescent whitening 

agents, lubricants, dyes and pigments. Therefore, there is considerable interest of 

having available efficient routes to these heterocycles and to better understand their 

reactivity. 

In relation with our ongoing research on the synthesis and reactivity of 2-halo-

2H-azirines
2
 we reported the thermolysis of 2-halo-2-acyl-2H-azirines (Scheme 1).

2g
 

2-Benzoyl-2-halo-2H-azirine-3-carboxylates (1) underwent ring expansion giving 

products in high yield which were identified as being 4-haloisoxazoles 3. The same 

products were also obtained in high yield from the thermolysis of haloazidoalkenes 4 

via intermediate 2-benzoyl-2-halo-2H-azirines 1. 

 

     Scheme 1. 

 

The thermolysis of 2H-azirines usually results in cleavage of the N-C2 single 

bond giving a transient vinylnitrene, the reverse of the cyclization of vinylnitrenes 

used to prepare 2H-azirines.
3
 Evidence for the existence of this intermediate comes 

from the thermal ring opening of 2,3-diaryl-2-cyano-2H-azirine where the vinylnitrene 

was trapped with phosphanes.
4
 On the other hand, it was known that heating a solution 

of 3-phenyl-2H-azirine-2-carboxaldehyde (5a) at 200 °C leads to 3-phenylisoxazole 

(6a) in high yield.
5a

 The same isoxazole can also be obtained in 90% yield by 

treatment of 3-phenyl-2H-azirine-2-carboxaldehyde at 25 ºC with Grubbs’ catalyst.
5b 

Furthermore, 2-benzoyl-3-phenyl-2H-azirine (5b) affords the corresponding isoxazole 
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6b upon heating in nonhydroxylic solvents.
5c

 These observations led us to rationalize 

the thermal reaction of 2-benzoyl-2-halo-2H-azirine-3-carboxylates (1) as being the 

conversion into isoxazoles 3 via vinyl nitrenes 2 (Scheme 1). 

Isoxazoles have also been obtained from (Z)--azido-,-unsaturated ketones 

and esters (7 and 9a) (Scheme 2).
5d,5e

 Hassner et al. also observed that meso-1,2-

benzoylethylene dibromide 12 reacts with two equivalents of sodium azide to give 3-

benzoyl-5-phenylisoxazole 13 via a vinyl azide intermediate.
5f

 However, the thermal 

induced reaction of (E)--azido-,-unsaturated ketone 9b gives the corresponding 

1,3-oxazole 11.
5e

 The different outcome of the thermolysis of the (Z)- and (E)--

azido-,-unsaturated ketones led the authors to propose a concerted mechanism for 

the synthesis of isoxazoles starting from (Z)--azido-,-unsaturated ketones. In the 

case of the (E)--azido-,-unsaturated ketones the concerted mechanism would not  

  

Scheme 2. 

 

be possible due to the configuration of the alkene. Therefore, the formation of 2H-

azirine intermediates was postulated followed by ring expansion reaction to oxazole, 

which would require a C2-C3 bond cleavage. These observations could lead to the 

conclusion that starting from 2-acyl-2H-azirines only oxazoles could be obtained. 

Nevertheless, this does not account for the fact that the thermolyses of both 3-phenyl-

2H-azirine-2-carboxaldehyde (5a) and 2-benzoyl-3-phenyl-2H-azirine (5b) afford the 

corresponding isoxazoles (Scheme 1).
5a,5c
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derivatives has been shown to be more difficult to establish a piori then initially 

supposed, since it is significantly dependent on the nature of the substituents. 

In fact, under thermal conditions the reactivity expected for 2H-azirines is the 

cleavage of the N-C2 single bond giving a transient vinylnitrene whereas the 

photolysis should lead to the cleavage of the C2-C3 bond giving nitrile ylide 

intermediates.
1,3

 However, we have previously studied the UV induced photochemical 

reactions of two aliphatic 2H-azirines – methyl 2-chloro-3-methyl-2H-azirine-2-

carboxylate and methyl 3-methyl-2H-azirine-2-carboxylate – isolated in argon 

matrices.
6a-6c

 For both compounds, irradiation with  > 235 nm led to the observation 

of two primary photoprocesses: the expected C2-C3 bond cleavage, with production 

of nitrile ylides, but also the N-C2 bond cleavage, with production of methylated 

ketene imines. Inui and Murata also demonstrated that both C2-C3 and N-C2 bonds 

can be cleaved upon photolysis of matrix-isolated 2H-azirines bearing an aromatic 

substituent at C2.
6d-6f

 They concluded that the tendency toward the N-C2 bond 

cleavage increases with the electron-withdrawing ability of the ring substituents. 

Thermally induced ring expansion reactions of 2-acyl-2H-azirines leading to 

oxazoles have also been reported, although these transformations required a base- or 

Lewis acid-catalysis or the use of organometallic catalysts.
5c,7

 

Matrix isolation infrared spectroscopy is extremely powerful to undertake 

detailed structural and photochemical studies. Once the substance under investigation 

is isolated in a cryogenic inert matrix, in situ irradiation can be undertaken and the 

progress of the reaction probed spectroscopically. The use of criteriously chosen 

irradiation conditions can selectively induce a given reaction path, enabling a detailed 

characterization of the related intermediates. Thus, we decided to use matrix isolation 

infrared spectroscopy to carry out the structural and vibrational characterization as 

well as the study of the photochemistry of 4-haloisoxazoles. 

The chloro compound obtained from the thermolysis of methyl 2-benzoyl-2-

chloro-2H-azirine-3-carboxylate (1b) was selected for our study. The monomeric 

structure isolated in low temperature argon matrix was studied by FT-IR spectroscopy, 

supported by theoretical calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) 

level of theory. For our surprise the theoretically predicted spectrum for isoxazole 3b 

did not match the experimental IR spectrum. Indeed, the results described below will 

demonstrate that the studied compound cannot be methyl 4-chloro-5-phenylisoxazole-
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3-carboxylate (3b) but instead we are in the presence of methyl 4-chloro-5-phenyl-

1,3-oxazole-2-carboxylate (15) (MCPOC). 

 

2. Experimental  

 

  1
H NMR spectra were recorded on a Bruker Avance 300 instrument operating at 

300 MHz.  
13

C spectra were recorded on a Bruker Avance 300 instrument operating at 

75.5 MHz.  The solvent is deuteriochloroform except where indicated otherwise.  IR 

spectra were recorded on a Perkin Elmer 1720X FTIR spectrometer.  Mass spectra 

were recorded on a HP GC 6890/MSD5973 instrument under electron impact (EI) 

except where indicated otherwise. Microanalyses were performed using an EA 1108-

HNS-O Fisons instrument.  Mp were recorded on a Reichert hot stage and are 

uncorrected.  Flash column chromatography was performed with Merck 9385 silica as 

the stationary phase. 

2.2. General procedure for the synthesis of 1,3-oxazoles 15 and 18 from 2-halo-

2H-azirines.  

The 2-halo-2H-azirine
2b

 (2.81 mmol) was dissolved in toluene (10 ml) and the 

reaction mixture was heated at reflux for 5 h. The solvent was evaporated giving the 

1,3-oxazole as a solid. 

2.2.1. Methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate 15.
8
 Compound 15 was 

obtained as a solid (96%), mp 71-72 °C. IR (KBr) 1529, 1738, 2959 cm
-1

; 
1
H NMR 

4.04 (3H, s), 7.47-7.51 (3H, m, Ar-H), 7.98-8.01 (2H, m, Ar-H); 
13

C NMR 53.5, 

125.6, 125.9, 126.6, 129.0, 130.2, 147.8, 148.7, 155.3; MS (EI) m/z 239 [M(
37

Cl)+] 

(34), 237 [M(
35

Cl)+] (100), 177 (17), 128 (8), 105 (55), 77 (59). Anal. Calcd. for 

C11H8NO3Cl: C, 55.60; H, 3.39; N, 5.89. Found: C, 55.66; H, 3.32; N, 5.92%. 

 

2.2.2. Methyl 4-bromo-5-phenyl-1,3-oxazole-2-carboxylate 18. Compound 18 was 

obtained as a solid (97%), mp 66-68 °C. IR (KBr) 1737, 2958 cm
-1

; 
1
H NMR 4.04 

(3H, s), 7.48-7.51 (3H, m, Ar-H), 8.03-8.06 (2H, m, Ar-H); 
13

C NMR 4.04 (3H, s), 

7.48-7.51 (3H, m, Ar-H), 8.03-8.06 (2H, m, Ar-H); MS (EI) m/z 283 [M(
81

Br)+] 
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(100), 281 [M(
79

Br)+] (100), 223 (18), 221 (18), 105 (55), 77 (89). Anal. Calcd. for 

C11H8NO3Br: C, 46.84; H, 2.86; N, 4.97. Found: C, 47.24; H, 3.12; N, 5.29%. 

 

2.3. General procedure for the synthesis of 1,3-oxazoles from haloazidoalkenes.  

The azidoalkene
2b

 (1 mmol) was dissolved in toluene (10 ml) and the reaction 

mixture was heated under reflux for 7 h.  The solvent was evaporated and the residue 

was washed with cooled ethyl ether giving the 1,3-oxazole as a solid. 

2.3.1. Methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate 15 (98%). Identified by 

comparison with the specimen isolated earlier. 

 

2.3.2.  Methyl 4-bromo-5-phenyl-1,3-oxazole-2-carboxylate 18 (95%). Identified by 

comparison with the specimen isolated earlier. 

 

2.4. Methyl 4-chloro-5-phenylisoxazole-3-carboxylate 3b. A solution of methyl 5-

phenylisoxazole-3-carboxylate 17
9
 (70 mg, 0.345 mmol) and NCS (85 mg, 0.64 

mmol) in 2.3 mL of 7% fuming nitric acid in acetic acid was irradiated for 40 min in 

the microwave reactor (CEM Focused Synthesis System, Discover S-Class) with the 

temperature set to 160 ºC. After cooling to room temperature, water (15 mL) was 

added and the mixture extracted with CH2Cl2 (2x15 mL). The organic phase was dried 

(MgSO4) and evaporated off. The crude product was purified by flash chromatography 

[ethyl acetate–hexane (1:5)] to give 3b as a white solid (59%). mp 62-63 °C. IR (KBr) 

1221, 1441, 1738, 2957 cm
-1

; 
1
H NMR 4.03 (3H, s), 7.52-7.55 (3H, m), 8.03-8.06 

(2H, m);
13

C NMR 53.1, 106.0, 125.6, 126.6, 129.0, 131.2, 153.3, 159.1, 165.8; MS 

(EI) m/z 237 (M
+
, 99), 206 (14), 105 (100), 77 (68), 59 (78); HRMS (CI) m/z 

237.0200 (C11H8NO3Cl [M
+
], 237.0193). 

 

2.4. Infrared spectroscopy 

Matrix isolation of 1,3-oxazole 15 (MCPOC) and isoxazole 3b (MCPIC): The IR 

spectra were collected, with 0.5 cm
-1

 spectra resolution, using a Mattson (Infinity 

60AR series) or a Nicolet 6700 Fourier transform infrared spectrometer, equipped 

with a deuterated triglycine sulphate (DTGS) detector and a Ge/KBr beamsplitter. 
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To avoid interference from atmospheric H2O and CO2, a stream of dry nitrogen 

continuously purged the optical path of the spectrometers. All experiments were 

performed using an APD Cryogenics closed-cycle helium refrigeration system with a 

DE-202A expander. 

To deposit the matrices, the compound to be studied was sublimated (T = 323 K) 

using a specially designed mini-furnace thermoelectrically heatable placed inside the 

cryostat and co-deposited with a large excess of the matrix gas (argon N60 obtained 

from Air Liquide) onto the CsI optical substrate of the cryostat cooled to 10 K. 

 

2.5 Computational methodology 

The quantum chemical calculations were performed with Gaussian 03 (Revision B.01) 

program
10

 at the DFT level of theory, using the split valence triple-ζ 6-311++G(d,p) 

basis set and the three-parameter B3LYP density functional, which includes Becke’s 

gradient exchange correction
11

 and the Lee, Yang and Parr correlation functional.
12

 

Geometrical parameters of the relevant conformations were optimized using the 

Geometry Direct Inversion of the Invariant Subspace (GDIIS) method.
13

 In order to 

assist the analysis of the experimental spectra, vibrational frequencies and IR 

intensities were also calculated at the same level of approximation. The computed 

harmonic frequencies were scaled down by two factors (0.9894 for MCPOC and 

0.9817 for MCPIC) to correct them for the effects of basis set limitations, neglected 

part of electron correlation and anharmonicity effects. The optimized structures of all 

conformers described in this study were confirmed to correspond to true minimum 

energy conformations on the potential energy surface investigated. 

 

3. Results and Discussion  

 

Two low energy conformers of MCPOC were predicted to exist by the 

calculations (Figure 1). The IR spectrum of matrix-isolated 1,3-oxazole 15 is 

presented in Figures 2 and 3 along with the calculated spectra for the two most stable 

conformers. The comparison of the IR spectrum of the product of the thermolysis of 
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methyl 2-benzoyl-2-chloro-2H-azirine-3-carboxylate (1b) with the theoretically 

predicted spectrum of MCPOC allow us to unambiguously establish the structure as 

being methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conformers of methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (15) (MCPOC) with 

atom numbering. Relative energies and dipole moments are also provided, as well as the C6-C5-C1-O3, 

N16=C17-C18=O19 and C17-C18-O20-C21 dihedral angles. 
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Figure 2. Infrared spectra of MCPOC (15) (1800-1145 cm

-1
 region): (a) spectrum of MCPOC isolated 

in an argon matrix (sublimation temperature: 323 K; substrate temperature: 10 K), (b) simulated 

population-weighted (at 323 K) spectrum of MCPOC using Lorentzian functions with 2 cm
-1

 half 

bandwidth and centred at the DFT(B3LYP)6-311++G(d,p) calculated wavenumbers for the two relevant 

conformers of MCPOC; and (c) theoretical spectra for the two conformers of MCPOC. Calculated 

wavenumbers were scaled by 0.9894. Bands marked with an asterisk are due to monomeric water 

impurity. 

 

 

In the present case, the formation of oxazole 15 from 2H-azirine 1b can be 

explained considering the thermal cleavage of the C2-C3 to give nitrile ylide 14 

followed by recyclization giving oxazole 15 as the final product (Scheme 3). Since the 

oxazole is obtained in high yield (98%) we can conclude that only the reaction 

pathway B is observed. 

Another relevant conclusion can be drawn from this study. In fact, the 

mechanism of formation of the 2H-azirine ring from the haloazidoalkene 4b must be a 

concerted process since the formation of a vinylnitrene intermediate should lead to the 

competitive formation of the isoxazole 3b. 
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Figure 3. Infrared spectra of MCPOC (15) (1145-530 cm
-1

 region): (a) spectrum of MCPOC isolated in 

an argon matrix (sublimation temperature: 323 K; substrate temperature: 10 K), (b) simulated 

population-weighted (at 323 K) spectrum of MCPOC using Lorentzian functions with 2 cm
-1

 half 

bandwidth and centred at the DFT(B3LYP)6-311++G(d,p) calculated wavenumbers for the two 

relevante conformers of MCPOC; and (c) theoretical spectra for the two conformers of MCPOC. 

Calculated wavenumbers were scaled by 0.9894. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. 
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Recently, Li et al. reported the bromination of isoxazoles with N-

bromosuccinimide in acid solvents using microwave irradiation.
14

 The work included 

the synthesis of methyl 4-bromo-5-phenylisoxazole-3-carboxylate (3a). The authors 

observed that the 
13

C NMR spectrum of this compound did not match the NMR data 

previously reported by us for the product of the thermolysis of 2-benzoyl-2-bromo-

2H-azirine-3-carboxylate 1a.
2g

 This led the authors to confirm the structure of 4-

bromo-5-phenylisoxazole-3-carboxylate 3a by single crystal X-ray crystallography. 

This was another evidence that indicates that the thermolysis of 2-benzoyl-2-halo-2H-

azirine-3-carboxylates 1 leads to oxazoles and not to isoxazoles. 

In order to get further support to the structural assignment we decided to prepare 

4-chloro-5-phenylisoxazole-3-carboxylate 3b to study the compound by matrix- 

isolation FTIR. The synthesis of isoxazole 3b is outlined in Scheme 4. The starting 

methyl 5-phenylisoxazole-3- carboxylate (17) was prepared by cyclization of 2,4-

dioxo-4-phenylbutanoate (16) with hydroxylamine hydrochloride.
9
 We applied the 

general procedure described by Li et al.
14

 for the synthesis of 4-chloro-5-

phenylisoxazole-3-carboxylate 3b but using NCS instead of NBS. Using 5% fuming 

nitric acid in acetic acid as solvent the solution of isoxazole 17 was irradiated in the 

microwave reactor with the temperature set to 150 ºC for 25 minutes giving the 

desired product in 45% yield. However, the yield could be improved to 59% carrying 

out the microwave irradiation at 160 ºC for 40 minutes. 

 

 

 

 

 

 

 

 

 

 

Scheme 4. 
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spectrum of matrix-isolated 4-chloro-5-phenylisoxazole-3-carboxylate 3b (MCPIC) is 

shown in Figures 5 and 6. The assignment of the observed bands was carried out by 

comparison with the theoretically predicted simulated spectrum, which nicely fits the 

observed spectrum (see Figures 5 and 6). This spectrum of MCPIC is significantly 

distinct from that of the product resulting from the thermolysis of 1b (which, as 

already shown, corresponds to the 1,3-oxazole 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Conformers of methyl 4-chloro-5-phenylisoxazole-3-carboxylate (3b) (MCPIC) with atom 

numbering. Relative energies and dipole moments are also provided, as well as the C15-C14-C1-C2, 

O7=C6-C3-C2 and C9-O8-C6-C3 dihedral angles. 
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Figure 5. Infrared spectra of MCPIC (3b) (1800-1145 cm
-1

 region): (a) spectrum of MCPIC isolated in 

an argon matrix (sublimation temperature: 323 K; substrate temperature: 10 K), (b) simulated 

population-weighted (at 323 K) spectrum of MCPIC using Lorentzian functions with 2 cm
-1

 half 

bandwidth and centred at the DFT(B3LYP)6-311++G(d,p) calculated wavenumbers for the three 

relevant conformers of MCPIC; and (c) theoretical spectra of the three conformers of MCPIC. 

Calculated wavenumbers were scaled by 0.9817. Bands marked with an asterisk are due to monomeric 

water impurity. 
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the thermal rearrangement of 4-acylisoxazoles to 4-acyloxazoles is known.
15

 In 

reference 15, the synthesis of the oxazoles from the corresponding isoxazoles was 

rationalized considering ring contraction reaction to give a 2H-azirine intermediate, 

followed by a ring expansion process via C2-C3 bond cleavage and cyclization. 
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Therefore, the thermolysis of 2-benzoyl-2-chloro-2H-azirine-3-carboxylate 1b could 

also involve the formation of isoxazole 3b followed by the rearrangement to oxazole 

15. However, this possibility was rolled out, since upon heating at reflux for 5 hours a 

solution of isoxazole 3b in toluene no reaction was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Infrared spectra of MCPIC (3b) (1145-530 cm
-1

 region): (a) spectrum of MCPIC isolated in 

an argon matrix (sublimation temperature: 323 K; substrate temperature: 10 K), (b) simulated 

population-weighted (at 323 K) spectrum of MCPIC using Lorentzian functions with 2 cm
-1

 half 

bandwidth and centred at the DFT(B3LYP)6-311++G(d,p) calculated wavenumbers of the three 

relevant conformers of MCPIC; and (c) theoretical spectra of the three conformers of MCPIC. 

Calculated wavenumbers were scaled by 0.9817. 
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4. Conclusion  

 

It is clear from the analysis of the matrix-isolated 4-chloro-5-phenyl-1,3-

oxazole-2-carboxylate 15 and methyl 4-chloro-5-phenylisoxazole-3-carboxylate 3b 

FTIR spectra that this technique  allows to distinguish easily these isomeric 

heterocycles. Therefore, it has been demonstrated that methyl 2-benzoyl-2-halo-2H-

azirine-3-carboxylates 1 undergo thermal ring expansion to give 4-halo-5-phenyl-1,3-

oxazole-2-carboxylates (15 and 18) in high yield. These 1,3-oxazoles can also be 

obtained in high yield from haloazidoalkenes 4 (Scheme 5). 

 

 

 

 

 

 

 

 

Scheme 5. 
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ABSTRACT 

 

Methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (MCPOC) has been 

synthesized and isolated in cryogenic matrices (argon and xenon). FTIR spectroscopy 

studies on the matrix isolated compound, supported by DFT(B3LYP)/6-311++G(d,p) 

calculations, allow for the identification of two low energy conformers (I and II) of 

the molecule, which differ from each other in the orientation of the ester group 

relatively to the oxazole ring. In both these conformers, the ester moiety is in the s-cis 

configuration (O=C-O-CH3 dihedral: 0º). Conformer II is ca. 3.0 kJ mol
-1

 higher in 

energy than form I in gas phase. Two additional higher energy conformers, III and 

IV, with relative energies of ca. 30 and 45 kJ mol
-1

, respectively, were predicted to 

exist by the calculations, corresponding to structures where the ester group is in an 

approximately s-trans arrangement. Annealing of the compound isolated in xenon at 

60 K led to aggregation and simultaneous reduction of the population of I compared to 

that of the more polar conformer II. These results suggest the inversion of the order of 

stability of the two conformers in that matrix, eventually accompanied by a higher 

trend of conformer I to aggregate. Full assignment of the observed infrared bands to 

the two experimentally accessible conformers was carried out for the matrix isolated 

monomeric species. In addition, the infrared spectra of the neat compound in the low 

temperature (10 K) amorphous and crystalline phases, as well as the infrared and 

Raman spectra of the crystal at room temperature were also obtained and assigned.   
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Introduction 

 

Oxazole is a five-membered heterocyclic compound that contains the N=C–O 

moiety. The oxazole ring occurs naturally in numerous living systems, such as marine 

organisms, plants (e.g., coffee, peanuts) and mushrooms.
1-9

 In recent years, an 

increasing number of studies have been developed dealing with the total synthesis of 

natural products bearing oxazole moieties with interesting biological activities. In 

particular, oxazole containing molecules isolated from marine organisms constitute an 

ever-growing number of natural products that have been receiving different 

pharmacological uses (as anti-inflammatory, anti-bacterial, antibiotic, antiviral, 

analgesic and anti-tumor drugs).
3,4,10-26

 Some oxazoles display scintillator 

properties
27,28

 and are used as fluorescent whitening agents
29,30

 and in dyes and 

pigments.
31

 The practical uses of oxazoles extend to other industrial applications such 

as pesticides, in the production of electrophotographic materials, as additives to 

detergents, and in hydraulic fluids and lubricants.
32

 

Because of their known multiple practical uses, aryl- and alkyloxazoles have 

been extensively studied both experimentally and theoretically.
33-43

 On the other hand, 

halogen-substituted oxazoles are a relatively new family of compounds which, in spite 

of its relevance as synthetic intermediates in carbon-carbon bond making 

reactions,
44,45

 have been paid little attention. In a previous publication,
46

 we described 

the first structural assignment of methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate 

(MCPOC) in an argon matrix. In such study, we were able to confirm that the 

thermolysis product of methyl 2-benzoyl-2-choro-2H-azirine-3-carboxylate was 

MCPOC and not the isoxazole 4-choro-5-phenylisoxazole-3-carboxylate as previously 

suggested.
47

   

In the present study, the conformational space of MCPOC was investigated in 

detail by a concerted matrix-isolation infrared spectroscopy (in both argon and xenon 

matrices) and quantum chemical theoretical [DFT(B3LYP)/6-311++G(d,p)] approach. 

As it will be described in detail in the next sections, from these studies it was possible 

to conclude on the existence of two significantly populated conformers of MCPOC in 

the gas-phase and in the cryogenic matrices (argon, xenon), and of two higher energy 

forms. The two experimentally relevant low-energy conformers were successfully 

characterized and the obtained experimental spectra interpreted. The infrared spectra 

of the neat compound in the low temperature (10 K) amorphous and crystalline 
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phases, as well as the infrared and Raman spectra of the crystal at room temperature 

were also obtained and assigned. 

 

 

Experimental and Computational Methods 

 

The procedure for the synthesis of methyl 4-chloro-5-phenyl-1,3-oxazole-2 

carboxylate (MCPOC) has been reported elsewhere.
46

 

Matrices were prepared by co-deposition of MCPOC vapors coming out from 

a specially designed thermoelectrically heatable mini-furnace, assembled inside the 

cryostat (APD Cryogenics, model DE-202A) chamber, and large excess of the matrix 

gas (argon, N60; xenon, N48, both obtained from Air Liquide) onto the CsI substrate 

cooled to 10 K (for argon matrices) and 20 K (for xenon matrices). The IR spectra 

were recorded with 0.5 cm
-1 

spectral resolution in a Mattson (Infinity 60AR Series) 

Fourier Transform infrared spectrometer, equipped with a deuterated triglycine 

sulphate (DTGS) detector and a Ge/KBr beam splitter. Necessary modifications of the 

sample compartment of the spectrometer were done in order to accommodate the 

cryostat head and allow purging of the instrument by a stream of dry nitrogen, to 

remove water vapors and CO2. 

The low temperature solid amorphous layer was prepared in the same way as 

matrices but with the flux of matrix gas cut off. The layer was then allowed to anneal 

at slowly increasing temperature up to 280 K and crystallization of the amorphous 

layer occurred. After recording of the infrared spectrum of the obtained crystal, the 

sample was cooled back again to 10 K and a new spectrum of the crystalline phase 

was collected. 

KBr pellets and nujol mulls containing MCPOC were prepared by standard 

procedures. Their IR spectra were collected at room temperature using a BOMEM 

(MB40) spectrometer, with a Zn/Se beam splitter and a DTGS detector, with 4 cm
-1

 

spectral resolution. The Raman spectrum of solid MCPOC in the 3380–100 cm
−1

 

range, was acquired at room temperature using a dispersive Raman instrument, model 

DXR SmartRaman
TM

, from Thermo Fisher Scientific, equipped with a low-power, 

externally stabilized diode laser (= 780 nm), with a maximum power at output of 

laser head of 14 mW and a 3.0 mm beam diameter. The data were collected with an 
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exposure time to laser radiation of 99 s, 100 sample exposures and a slit aperture of 25 

m. 

The quantum chemical calculations were performed with Gaussian 03
48

 at the 

DFT level of theory, using the split valence triple- 6-311++G(d,p) basis set
49

 and the 

three-parameter B3LYP density functional, which includes Becke’s gradient exchange 

correction
50

 and the Lee, Yang and Parr correlation functional.
51

 

Geometrical parameters of the different conformations were optimized using 

the Geometry Direct Inversion of the Invariant Subspace (GDIIS) method
52,53

 and the 

synchronous transit-guided quasi-Newton (STQN) method
54

 was used to locate the 

transition states for conformational isomerization. In order to assist the analysis of the 

experimental vibrational spectra, wavenumbers and IR intensities and Raman 

scattering activities (S
R
) were also calculated at the same level of approximation. 

Theoretical Raman intensities (I
R
) were obtained from the calculated Raman scattering 

activities according to the expression I
R
(i)= 10

-12
 (0–i)

4
 i

-1
 S

R
(i), where 0 is the 

excitation wavenumber and i is the calculated wavenumber of the normal mode i.
55

 

The computed harmonic frequencies were scaled down by a single factor, 0.9835, 

obtained from linear fitting of the calculated to experimental wavenumbers (measured 

in xenon matrix), to correct them for the effects of basis set limitations, neglected part 

of electron correlation and anharmonicity effects. The nature of stationary points on 

the potential energy surface was checked through the analysis of the corresponding 

Hessian matrix. 

Normal coordinate analysis was undertaken in the internal coordinates space, 

as described by Schachtschneider
56

 and the optimized geometries and harmonic force 

constants resulting from the DFT(B3LYP)/6-311++G(d,p) calculations. The internal 

coordinates used in this analysis were defined following the recommendations of 

Pulay et al.
57

 

 

 

Results and Discussion  

Potential Energy Landscape. The MCPOC molecule bears 4 

conformationally relevant internal rotation axes, corresponding to rotations about the 

C1–C5, C17–C18, C18–O20 and O20–C21 bonds. In order to characterize structurally in 

detail the molecule, a systematic investigation of its potential energy surface was 
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undertaken at the DFT(B3LYP)/6-311++G(d,p) level of approximation, where these 4 

internal degrees of freedom were taken into account. These calculations showed that 

in all minimum energy conformations (Figure 1) the geometry around the C1–C5 and 

O20–C21 bonds, i.e., the configurations assumed by the phenyl group in relation to the 

oxazole ring and that of the methyl group, respectively, are the same: (i) the phenyl 

group and the oxazole ring are co-planar (or nearly co-planar), as it could be expected 

considering the relevance of the -electron delocalization between the two rings and 

the favorable interactions between H11 and the chlorine atom for this arrangement; (ii) 

the methyl group has one of its hydrogen atoms in the anti-periplanar position 

relatively to the carbonyl group and the other two hydrogen atoms symmetrically 

placed out of the molecular plane and forming H-C-O-C(=O) angles of ca. ±60º, as it 

happens usually in non sterically hindered methyl esters.
58-60

 

Rotations about the C17–C18 and C18–O20 bonds led to existence of 6 minima 

on the potential energy surface of the molecule. Two of these minima are unique and 

belong to the Cs point group. They correspond to the two most stable conformers of 

MCPOC, I and II (see Figure 1). In these conformers, the configuration about the 

ester C18–O20 bond is s-cis (O19–C18–O20–C21 dihedral of 0º), whereas the  

N16=C17–C18=O19 dihedral is 180º in the most stable conformer I, and 0º in conformer 

II, which is ca. 3.0 kJ mol
-1

 higher in energy than form I. The calculated barrier for 

the III isomerization reaction is 20.5 kJ mol
-1

 (Figure 2). The other 4 minima 

correspond to two symmetry-equivalent pairs and are related with the higher energy 

conformers III and IV represented in Figure 1. Conformer IV is the highest energy 

form (relative energy of 45.5 kJ mol
-1

). It exists as a doubly-degenerated-by-symmetry 

form with C6–C5–C1–O3, N16=C17–C18=O19 and O19–C18–O20–C21 dihedral angles of 

12.5º, 33.7º and –161.0º (or –12.5º, –33.7º and 161.0º). The two equivalent-by-

symmetry forms IV are separated by an energy barrier of 3.6 kJ mol
-1

, the transition 

state structure corresponding to the Cs symmetry structure where the C6–C5–C1–O3, 

N16=C17–C18=O19 and O19–C18–O20–C21 dihedral angles are 0º, 0º and 180º, 

respectively (see Figure 2). They are separated from conformer II by an energy barrier 

of 8.6 kJ mol
-1

 (Figure 2). In the case of the two symmetry-equivalent minima related 

with conformer III the situation is different because they are separated by an energy 

barrier that is below the zero point vibrational level associated with the 
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interconversion between them, making the transition state Cs symmetry structure to be 

the most probable structure defining a unique conformational state. 

 

 
 

 
Figure 1. Minimum energy structures on the potential energy surface of MCPOC, with atom numbering. Relative 

energies, including zero-point energy corrections (E/ kJ mol-1) and dipole moments (/ D; 1 D= 3.33564 x 10-30 C 

m) are also provided. III and IV correspond to pairs of symmetry-equivalent minima with C6–C5–C1–O3,  

N16=C17–C18=O19 and O19–C18–O20–C21 dihedral angles (º) of 177.2, –172.5 and –175.5 (or -177.2, 172.5, 175.5) 

and 12.5, 33.7 and –161.0 (or –12.5, –33.7 and 161.0), respectively. However, because the transition state structure 

separating the two minima III lies below their zero point vibrational level, only conformer IV is doubly-

degenerated-by-symmetry, while III is an unique conformer with most probable geometry at the geometry of the 

Cs symmetry structure separating the two minima. Note that the dipole moment value for conformer II indicated in 

[46] was misprinted (1.71 D, instead of the right value, 4.71). 
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The two minima have C6–C5–C1–O3, N16=C17–C18=O19 and O19=C18–O20–C21 dihedral 

angles equal to 177.2º, –172.5º and –175.5º, and  –177.2º, 172.5º and 175.5º, 

respectively, and in the most probable Cs structure separating them these angles are 

180º, 180º and 180º. Conformer III is 28.9 kJ mol
-1

 higher in energy than the most 

stable form and has energy barriers separating it from I and IV equal to 14.5 and 19.3 

kJ mol
-1

, respectively (see Figure 2). 
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Figure 2. DFT(B3LYP)/6-311++G(d,p) calculated potential energy profiles for internal rotation around 

the C17–C18 and C18–O20 bonds. The curves were obtained by performing a relaxed scan on the potential 

energy surface of the molecule along the two relevant coordinates (N16=C17–C18=O19 and  

O19=C18–O20–C21 dihedral angles) in steps of 30º. 

 

 

The reasons for the relative stability of the MCPOC conformers can be easily 

correlated with their structure. The large energy of conformer III relatively to form I 

and II results essentially from the fact that in the first form the arrangement of the 

ester group is the well-known less stable s-trans geometry,
61-65

 whereas in the latter 

this group is in the s-cis geometry. The difference in energy between III and I is 

indeed similar to those between the s-trans and s-cis conformers of methyl formate, 
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acetate and chloroacetate, for example, all of them of ca. 32 kJ mol
-1

.
61-63

 Conformer 

IV has also the ester group in the s-trans arrangement, but its energy is even larger 

than that of conformer III due to the unfavorable strong repulsive steric interaction 

between the methyl ester group and the oxazole ring. This interaction (directly and 

through the reduction in the -delocalization within the ester fragment and between 

this fragment and the oxazole ring it imposes by forcing the ester group to be 

considerably skewed and out of the plane of the oxazole ring) accounts for the 

additional ca. 15 kJ mol
-1

 energy of conformer IV relatively to III.  

The relative energy of I and II is determined by the arrangement around the 

C17–C18 bond, mostly by the relative importance of the repulsive interactions between 

the two oxygen atoms of the ester group and the N and O atoms of the oxazole ring. 

All these 4 atoms are negatively charged, but it is clear from Figure 3, where the 

charges calculated from the atomic polar tensors (APT charges) for these four atoms 

and the distances between them in I and II are depicted, that the most important 

repulsive interaction occurs conformer II, between the most negatively charged atom 

of each interacting fragment (the O3 atom of the oxazole ring and the O20 ester atom), 

which are also those separated by the shortest distance. 

The calculated geometrical parameters for conformers I and II are provided in 

Table S1 (Supporting Information). Optimized geometries for all MCPOC 

conformers, in Cartesian coordinates, are given in Table S2. 

Taking into account the calculated relative energies for the different MCPOC 

conformers, their populations can be estimated according to the Boltzmann statistics. 

At room temperature (298 K) the I : II population ratio is 0.770 : 0.230, whereas the 

total population of conformers III and IV is smaller than 5x10
-4

. At 323 K, the 

temperature used to sublimate the compound in the matrix isolation spectroscopic 

experiments, the I : II population ratio slightly changes to 0.753 : 0.246, with the 

population of III being equal to 0.001 and that of IV less than 10
-5

. These results 

mean that only conformers I and II are experimentally accessible as isolated species. 

Moreover, at the temperature of the cold substrate of the cryostat (10-20 K), only the 

lowest energy conformer would subsist if the system could reach the thermodynamic 

equilibrium. However, the predicted barrier for the III isomerization reaction is 

high enough (20.5 kJ mol
-1

; see Figure 2) to be significantly overcome during 

deposition at these temperatures and it can then be expected that the populations of the 

two most stable conformers existing in the vapor of the compound prior to deposition 



 80 

are efficiently trapped in the matrices, i.e., a I : II population ration of ca. 3:1 are 

expected to be observed in the as-deposited matrices. 
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Figure 3. Calculated APT charges (units of electron; 1 e = 1.602176487 x 10

-19
 C) on selected atoms 

and distances (pm) between these atoms in the two most stable MCPOC conformers. 

 

 

Matrix Isolation FTIR Results. The mid-infrared spectra of MCPOC isolated 

in both argon and xenon matrices were obtained in the 4000-400 cm
-1

 range. The 

temperature of the vapor immediately prior to the deposition of the matrices was 323 

K, and the substrate temperature 10 K and 20 K, for argon and xenon matrices, 

respectively. The spectrum obtained in argon matrix and the simulated spectrum 

obtained by summing the DFT(B3LYP)/6-311++G(d,p) predicted spectra of the 

experimentally relevant conformers I and II weighted by their expected populations 

(0.75 : 0.25) is provided in the Supporting Information as Figure S1. In the simulated 
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spectrum, bands were represented by Lorentzian functions centered at the calculated 

wavenumbers scaled by 0.9835 and with fwhm (full width at half maximum) equal to 

2 cm
-1

. The simulated spectrum reproduces very well the experimental spectrum, 

providing a strong evidence for the presence in the matrices of the two low energy 

MCPOC conformers in the expected population ratio. The as-deposited spectrum 

obtained in xenon matrix is qualitatively identical to that obtained in argon. Results 

obtained in xenon were particularly useful for band assignment and conformers 

identification and will be discussed in detail later on.  

Both experimentally relevant conformers of MCPOC belong to the Cs 

symmetry point group, with their 66 fundamental vibrations spanning the irreducible 

representations 44A´ and 22A´´, all being active in infrared. Results of normal 

coordinates analysis based on the DFT(B3LYP)/6-311++G(d,p) calculated data are 

provided in Tables S3-S5 (Supporting Information). The definitions of the adopted 

internal coordinates are given in Table S3 and the calculated wavenumbers, infrared 

and Raman intensities, and potential energy distributions resulting from the normal 

mode analysis carried out for I and II are presented in Tables S4 and S5, respectively.  

As mentioned before, the predicted barrier for the III isomerization (20.5  

kJ mol
-1

) is high enough to prevent this reaction to take place during deposition of the 

matrices. Annealing of argon matrix up to the maximum possible work temperature 

(ca. 40 K; above this temperature the matrix starts to evaporate and loses its optical 

properties) did not allow for observation of any conformational isomerization as well. 

However, xenon matrices can be used in a considerably wider range of temperatures 

and, when MCPOC monomers isolated in this kind of matrix were annealed to ca.  

60 K, besides aggregation one could observe a redistribution of the intensities of the 

bands due to the monomers, indicating that their relative populations changed. 

According to the Barnes’ relationship,
66

 this temperature is still significantly below 

that fitting the expectations for the temperature at which an isomerization reaction 

should start being observed for a process with an activation barrier of the order of that 

predicted for the III gas phase isomerization. Indeed, the Barnes’ relationship 

implies that such temperature is about 70-75 K.
66

 Such evidence indicates that the 

potential energy landscape for the matrix-isolated compound is considerably different 

of that corresponding to gas phase. Since the dipole moments of conformers I and II 

are significantly different (1.1 and 4.7 Debye, respectively), a different stabilization of 

the two conformers upon deposition in a matrix can be devised, in particular in the 
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case of the highly polarizable xenon matrix, where conformer II can be expected to be 

considerably stabilized relatively to form I. According to the experimental 

observations, the height of the energy barrier separating the two conformers seems 

also to be smaller than in the gas phase. 

Figure 4 shows two selected spectral regions (1800-1725 cm
-1

 and 1180-700 

cm
-1

) of the infrared spectrum of the as-deposited xenon matrix of MCPOC 

(temperature of the vapor, 323 K; substrate temperature 20 K) and of the spectrum 

collected after annealing of the matrix at 60 K. At this temperature, aggregation has 

already started and all bands due to the monomers decrease. However, two groups of 

bands could be easily identified in the spectra, with one group of bands reducing 

considerably more of intensity than the other one. The two experimental spectra 

shown in Figure 4 were normalized by the bands which reduce less of intensity and 

bands due to aggregates were subtracted (the position of these bands was established 

doubtlessly by further annealing the matrix at higher temperature, where aggregates 

are by far the dominant species). Figure 4 also shows the DFT(B3LYP)/6-

311++G(d,p) calculated infrared spectra of MCPOC conformers I and II (stick 

spectra) and the simulated spectrum obtained by summing the calculated spectra of I 

and II, weighted by their expected populations in the gas phase prior to deposition 

(0.75 : 0.25). Two main conclusions result from the comparison of these spectra with 

the experimental ones: (1) the simulated spectrum fits very well the as-deposited 

spectrum of the compound in xenon matrix, demonstrating that no significant 

isomerization took place during deposition of the matrix and the gas phase equilibrium 

populations could be efficiently trapped in the matrix; (2) the bands that decreased 

more of intensity upon annealing fit nicely the spectrum of conformer I, whereas those 

decreasing in small extent can be doubtlessly ascribed to conformer II.  

The different behaviour of the bands due to each conformer upon annealing of 

the xenon matrix facilitated the assignment of the spectrum obtained in this matrix to 

the individual conformers. Comparison of the spectra obtained in xenon matrix with 

that registered in argon then led to a prompt assignment of this latter. The proposed 

assignments are presented in Table 1. 

The striking fact resulting from the temperature variation experiments carried 

out in the xenon matrix was the observation that it was conformer I the species that 

reduces faster its population upon annealing.   
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Figure 4. Top: Selected spectral regions (1800-1725 cm

-1
 and 1180-700 cm

-1
) of the DFT(B3LYP)/6-

311++G(d,p) calculated infrared spectra of MCPOC conformers I and II (stick spectra). Middle: The 

same spectral regions of the simulated spectrum obtained by summing the calculated spectra of I and 

II, weighted by their expected populations in the gas phase prior to deposition (0.75 : 0.25). In the  

simulated spectrum, bands were represented by Lorentzian functions centered at the calculated 

wavenumbers scaled by 0.9835 and with fwhm (full width at half maximum) equal to 2 cm
-1

. Bottom: 

The same spectral regions of the infrared spectrum of MCPOC isolated in xenon matrix. Dashed line: 

spectrum of the as-deposited matrix (temperature of the vapor, 323 K; substrate temperature 20 K); 

solid line: spectrum of the annealed sample at 60 K. The experimental spectra were normalized to the 

bands ascribed to conformer II (marked with asterisks) and bands due to aggregates were subtracted. 
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Table 1 – Experimental (matrix-isolation) and DFT(B3LYP)/6-311++G(d,p) calculated infrared data for 

MCPOC and vibrational assignments based on the results of normal coordinate analysis.
a
 

Experimental  Calculated   

Ar matrix Xe matrix Conformer I Conformer II  
Approximate  

description 

ν ν νb Ic νb Ic   
n.obs. 3090 3168 1.4 1369 0.4 A´ (C-H1) 

n.obs. 3075 3153 1.9 3153 0.7 A´ (C-H5) 

3084 3063 3138 13.2 3138 4.3 A´ (C-H2) 
3073 3055 3137 8.1 3136 2.6 A´ (C-H3) 

3039 3034 3117 0.2 3116 0.1 A´ (C-H4) 

3013 2998 3113 8.7 3112 2.5 A´ CH3 as´ 
2963   ~2953 3075 12.2 3077 3.8 A´´ CH3 as´´ 

2970 2948 3003 27.0 3004 8.4 A´ CH3 s 

2854 2849      2CH3´ 

1751/1750 (I);   
1769/1763 (II) 

1748 (I); 
1763/1759 (II) 

1750 199.4 1764 106.6 A´ (C=O) 

1612 n.obs. 1616 0.8 1616 0.3 A´ Ph3 

1586 1585 1589 4.3 1589 1.1 A´ Ph4 
1567 1567 1561 25.5 1564 2.2 A´ Ox3 

1530 (I); 

1541 (II) 

1532 (I); 

1535/1529 (II) 

1526 84.6 1529 25.1 A´ Ox1 

1492/1487 1489 1487 65.5 1487 21.5 A´ (C-H2) 

1479 1474 (I); 

1478 (II) 

1471 15.4 1472 2.3 A´ CH3 as´ 

1460 1455 1459 7.8 1459 2.5 A´´ CH3 as´´ 

1453/1452/1451/1450 1450/1444 1452 43.3 1452 11.5 A´ (C-H3) 

1442 1439/1436 1447 5.0 1446 1.2 A´ CH3 s 
1360/1358 (I) 1361 (I) 1351 46.2 1347 0.5 A´ (C-H1) 

1346 (I) 1341 (I) 1337 49.5 1329 1.1 A´ Ph2 

1332/1327/1318/1313/1311d (I); 
1301/1300 (II) 

1330/1318/1309d (I); 
1302 (II)  

1308 175.9 1294 67.2 A´ Ox2; (C-Cα) 

1281/1277 1280/1277 1275 66.6 1276 31.5 A´ Ox4 

1215 (I) 1213 (I) 1215 1.4 1219 0.1 A´ (C-CIR) 
1208/1207 (I); 

1204/1202 (II) 

1209/1204 (I); 

1197 (II) 

1203 225.3 1196 38.9 A´ (C-O); CH3´ 

1194 1193 1194 11.4 1193 3.6 A´ (C-H4) 
1174/1172 (I); 

1168/1166 (II) 

1174/1170/1168 (I); 

1163 (II) 

1169 

 

157.2 

 

1158 

 

46.8 

 

A´ 

 
CH3´; (C-O) 

 

n.obs. n.obs. 1167 6.6 1167 <0.1 A´ (C-H5)  
n.obs. n.obs. 1151 0.8 1152 0.9 A´´ CH3´´ 

1117 1118/1114 (I);  

1110/1109 (II) 

1112 11.8 1108 5.1 A´ Ox5 

1096 (I); 

1094 (II) 

1095/1092 (I);  

1090 (II) 

1082 17.9 1080 4.6 A´ Ph6 

1041/1033 1038/1031/1027 1036 5.7 1036 3.8 A´ Ph5 
1008/1006 (I); 

1020/1016 (II) 

1007/1005 (I);  

1016 (II) 

1007 38.2 1014 17.9 A´ Ox1 

993 989 999 1.2 999 0.4 A´ Ph1 

n.obs. n.obs. 984 <0.1 981 <0.1 A´´ (C-H5) 

981 980 982 14.7 981 7.8 A´ Ph1 

n.obs. n.obs. 973 0.1 972 <0.1 A´´ (C-H4) 
956 (I); 

951 (II) 

954 (I);  

947 (II) 

954 4.4 947 2.3 A´ (O-CH3) 

918 (I); 
917 (II) 

914 922 1.7 920 0.5 A´´ (C-H3) 

n.obs. n.obs. 842 <0.1 841 <0.1 A´´ (C-H2) 

817 (I); 
815 (II) 

815 (I);  
812 (II) 

813 12.9 809 4.9 A´ (OCO) 

781 (I); 
778 (II) 

778 (I);  
775 (II) 

786 4.1 780 1.5 A´´ (C=O) 

765 762 762 26.1 760 9.1 A´´ (C-H1) 

691 690 693 8.4 693 2.4 A´ Ph3 
689/688/687 686 685 

682 

26.0 

26.0 

683 

681 

6.9 

2.9 

A´´ 

A´´ 
Ox1 

Ph1 

652 650/648 654 17.6 653 5.5 A´´ Ox2 
a Wavenumbers in cm-1, calculated intensities in km mol-1, , bond stretching, , bending, , rocking, w, wagging, , torsion, s, 

symmetric, as, asymmetric, IR, inter-ring, Ox, oxazole ring, Ph, phenyl ring. n.obs., not observed. See Table S3 (Supplementary 
Material) for definition of internal coordinates and Tables S4 and S5 for potential energy distributions. b Scaled wavenumbers 

(0.9835). Intensities weighted by their expected populations: 0.75 (I) and 0.25 (II). d Fermi resonance with 2Ox1. 
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There are two possible mechanisms which can explain the observations, which may 

opperate separately or simultaneously. The first implies that aggregation is facilitated 

in conformer I, relatively to conformer II. Conformer selective aggregation was found 

for some matrix-isolated compounds, like dimethyl glycine,
67

 dimethyl sulfite
68

 and 5-

methyl-1H,3H-pyrrolo[1,2-c][1,3]thiazole-6,7-dicarboxylate 2,2-dioxide.
69

 Though 

this mechanism alone can explain the observations, it is known that the more polar or 

smaller conformers are those which are more prone to exhibit a preferential 

aggregation.
67-69

 In MCPOC, however, it is conformer II that is simultaneously more 

polar (= 4.7 Debye vs. 1.1 Debye in I) and smaller (the calculated spatial extent of I 

and II is 4967 and 4821 a.u., respectively). The second mechanism, which we favour 

on the basis of the obtained experimental data and accumulated knowledge,
67-71

 would 

require that an inversion in the order of stability of the two conformers took place in 

the matrix media. Then, conformer I (most stable in the gas phase) would relax to 

form II upon annealing of the xenon matrix, where this latter form would be the most 

stable species. The necessary general conditions that need to be satisfied to make 

possible experimental observation of this inversion of the relative stability of 

conformers are (i) close energies of the conformers in the gas phase (with the less 

polar form being the most stable), (ii) significant differences in the dipole moments of 

the conformers, and (iii) accessible energy barriers for conformational isomerization. 

Both first and second conditions above are fulfilled in the case of the relevant 

conformers of MCPOC, and it seems also possible that the energy barrier reduces in 

the matrix media to allow for conformational isomerization (III) to take place. 

Examples of inversion of the relative order of stability of conformers upon deposition 

of a compound in a matrix can be found in recent literature, e.g., for dimethyl glycine 

methyl ester,
70

 methyl cyanoacetate
71

 and 5-methyl-1H,3H-pyrrolo[1,2-

c][1,3]thiazole-6,7-dicarboxy-late 2,2-dioxide.
69

 The latter compound is in fact a case 

where both selective aggregation and inversion of the order of stability of conformers 

were found to take place simultaneously. 

 

Spectroscopic Studies in the Neat Condensed Phases. The results discussed in the 

previous section indicated that the more polar conformer II of MCPOC is stabilized 

relatively to form I upon deposition in matrices. In order to get additional information 

regarding the relative importance of the two conformers in more polar media, 

spectroscopic studies were also undertaken for the compound in neat condensed 



 86 

phases. Figure 5 presents a selected spectral range of the infrared spectra of MCPOC 

(i) in the amorphous layer resulting from fast deposition of the vapor of the compound 

at 343 K onto the cold substrate (10 K) of the cryostat, (ii) in the room temperature 

crystalline phase, both as a KBr pellet and a nujol mull, and (iii) in the crystalline 

phase resulting from warming the amorphous layer to 280 K, subsequently cooled 

down to 10 K. These spectra are compared with the DFT(B3LYP)/6-311++G(d,p) 

calculated infrared spectra of conformers I and II. Full range spectra are presented in 

Figure S2 (Supplementary Material), where the spectrum of the crystalline phase 

recorded immediately after its formation from the amorphous state at 280 K is also 

presented.  

As it could be anticipated, the spectrum of the amorphous phase has 

characteristically broad bands due to both presence of the two conformers and 

significant disorder. The bands at 1361, 1330 and 1318 cm
-1

 can be assigned mainly to 

conformer I (compare the experimental spectrum with those calculated for the two 

conformers; Figure 5), whereas that observed at 1302 cm
-1

 is a band mark of 

conformer II. All the other bands shall contain contributions from both conformers. 

Upon crystallization of the amorphous phase (at ca. 280 K), the spectrum changes 

considerably (see Figure S2). Re-cooling of the sample to 10 K did not lead to further 

changes, except some further band narrowing. The 10 K spectrum of the crystalline 

phase obtained from the amorphous film (Figure 5) clearly reveals bands due to both 

conformers (see Table 2 for assignments). For example, besides the bands at 1348, 

1330 and 1318 cm
-1

, which relates to those observed and 1361, 1330 and 1318 cm
-1

 in 

the spectrum of the amorphous phase, other bands ascribable to conformer I are also 

observed at 1225, 1205, 1182, 1073 and 1009/1007 cm
-1

, while bands due to 

conformer II are observed at 1302, 1221, 1201, 1172/1168, 1070 and 1012 cm
-1

. From 

the intensity of the bands at 1318 cm
-1

 (I) and 1302 cm
-1

 (II), which are well separated 

and intense bands in the spectrum of the crystalline phase, a rough estimation of the 

relative population of molecules with conformation I and II in that phase could be 

obtained. The results indicate that the two conformations are essentially equally 

populated (I:II population ratio: 0.920.1), i.e., they are compatible with a crystalline 

phase where both conformers exist in a 1:1 ratio. The spectra of the crystal at room 

temperature (both in KBr pellet and in nujol) are qualitatively identical to that of the  

crystal at low temperature, though, as expected, exhibiting bands considerably 

broader.  
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Figure 5. From bottom to top: 1400-900 cm

-1
 spectral range of the infrared spectra of MCPOC (i) in 

the amorphous layer resulting from fast deposition of the vapor of the compound at 343 K onto the cold 

substrate (10 K) of the cryostat; (ii) in the room temperature crystalline phase, as a nujol mull; (iii) in 

the room temperature crystalline phase, as a KBr pellet; (iv) in the crystalline phase resulting from 

warming the amorphous layer to 280 K, subsequently cooled down to 10 K; (v) and (vi) 

DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra of conformers I and II, respectively. In the 

calculated spectra, bands were represented by Lorentzian functions centered at the calculated 

wavenumbers scaled by 0.9835 and with fwhm (full width at half maximum) equal to 2 cm
-1

.  
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Table 2 – Assignment of the vibrational spectra of MCPOC in the neat condensed phases.
a 

Approximate 

Description 

IR Glass 

(10 K)  

IR Crystal 

(RT; KBr) 

IR Crystal 

(10 K)  

Raman Crystal 

(RT) 

(C-H1) 

3067 3066 

3098 

3077 (C-H5) 3093 

(C-H2) 3079 

(C-H3) 3069 

(C-H4) 3057 3056 

CH3 as´ 3037 3034 3034 3035 

CH3 as´´ 3005 3014 3013 3013 

CH3 s 2956 2956 2957 2958 

2CH3´ 2849 2849 2849 2849 

(C=O) 1743 1738 1736 (I); 

1740 (II) 

1740 

Ph3 1608 1607 1607 1606 

Ph4 1585 1577 1585 1585 

Ox3 1566 1558 1553 (I); 

1567 (II) 

1566 

Ox1 1530 1530 (I); 

1542 (II) 

1532 (I); 

1541 (II) 

1531 

(C-H2) 1490 1510 1485 1499 

CH3 as´ 1484 1484 n.obs. 1484 

CH3 as´´ 1459 1458 1459/1455 1458 

(C-H3) 1450 1449 1448/1447 1449 

CH3 s 1438 1437 1438 1439 

(C-H1) 1361 (I) 1362 (I) 1361 (I) 1369 

Ph2 1348 (I) 1345 (I) 1348 (I) 1347 

Ox2; (C-Cα) 1330/1319 (I); 

1302 (II) 

1330/1316 (I); 

1298 (II) 

1330/1318/1312 (I); 

1302 (II) 

1316 (I) 

1299 (II) 

Ox4 1281 1280 1283/1280 1280 

(C-CIR) 1212 1216 1225 (I); 

1221 (II) 

1215 

(C-O); CH3´ 1204 1203 1205 (I); 

1201 (II) 

1202 

(C-H4) n.obs. n.obs. n.obs. n.obs. 

CH3´; (C-O) 

 

1174 1174 1182 (I); 

1172/1168 (II) 

1182 

1168 

(C-H5)  1158 1158 1158 1160 

CH3´´ n.obs. n.obs. 1152 n.obs. 

Ox5 1114 1111 1114 1112 

Ph6 1098 1094 1099 (I); 

1095 (II) 

1095 

2(C-Cl) 1074 1070 1073/1070 1071 

Ph5 1032 1034 1032 1034 

Ox1 1005 1008 1007/1003 (I); 

1012 (II) 1004 

Ph1 n.obs. n.obs. n.obs. 

(C-H5) n.obs. n.obs. n.obs. n.obs. 

Ph1 980 979 980 979 

(C-H4) n.obs. n.obs. n.obs. n.obs. 

(O-CH3) 948 937 940 938 

(C-H3) 919 915 918/913 n.obs. 

(C-H2) 844 834 840 841 

(OCO) 817 813 815 813 

(C=O) 778 774 778/776 n.obs. 

(C-H1) 766 766 770 769 

Ph3 

691 687 

692 

687 Ox1 686 

Ph1 682 

Ox2 650 646 645 646 

Ph2 619 622 617 619 

w(Ox-Ph) 590 603 595 595 
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(C-Cl) 562  

n.i. 

544 542 

(Ph-Ox) 494 494 495 

(CC=O) 434 454 455 

Ph3 

n.i. n.i. n.i. 

357 

Ox2 314 

(C–Cl) 293 

(C–O–CH3) 249 

(C–Cα) 
b 233 

w(C–Cl) (I)/ Ph2 (II) 162 

Ph2 (I)/ w(C–Cl) (II) 145 

(C–O)  106 
a
 Wavenumbers in cm

-1
. , bond stretching, , bending,  rocking,  torsion, w, wagging, s, symmetric, 

as, asymmetric, n.obs., not observed, n.i., not investigated. See Table S3 for definition of coordinates.  
b
 Combined with w(Ph–Ox) in I and with (C–O–CH3) in II (see Tables S4 and S5). 

 

 

Comparison of the Raman spectrum of the crystal at room temperature with 

those calculated for I and II (Figure S3; Supplementary Material), is also in agreement 

with the presence of the two conformers in the crystalline phase of MCPOC (see also 

Table 2), though the greater similarity of the Raman spectra of the individual 

conformers (the most conformationally characteristic Raman bands have very low 

intensities) makes these spectra less informative than the infrared spectra regarding 

this question. 

On the whole, the results obtained for the neat condensed phases of MCPOC 

agree with the information obtained from the matrix-isolation studies regarding the 

stabilization of conformer II in more polar environments compared to gas phase. 

 

 

Conclusion 

 

The conformational preferences and spectroscopic properties of methyl 4-

chloro-5-phenyl-1,3-oxazole-2-carboxylate (MCPOC) have been studied by FTIR 

spectroscopy for the compound isolated in cryogenic matrices (argon; xenon) and in 

neat condensed phases. The experimental studies were complemented with 

DFT(B3LYP)/6-311++G(d,p) calculations. Two experimentally relevant low-energy 

conformers (I and II) of the molecule were identified. These conformers differ from 

each other in the orientation of the ester group relatively to the oxazole ring. In both 

conformers, the ester moiety was found to be in the s-cis configuration (O=C-O-CH3 

dihedral: 0º). In gas phase, conformer I is ca. 3.0 kJ mol
-1

 more stable than form II, 

corresponding to a room temperature I:II relative population of ca. 3. Two additional 
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higher energy conformers, III and IV, of no experimental relevance, with relative 

energies of ca. 30 and 45 kJ mol
-1

, respectively, were also predicted to exist by the 

calculations, corresponding to structures where the ester group is in an approximately 

s-trans arrangement.  

Annealing of the compound isolated in xenon at 60 K led to aggregation and 

simultaneous reduction of the population of I compared to that of the more polar 

conformer II. These results suggest the inversion of the order of stability of the two 

conformers in that matrix, eventually accompanied by a higher trend of conformer I to 

aggregate. In agreement with these results, in the crystalline phase of the compound, 

presence of both conformers in a 1:1 population ratio was testified by both infrared 

and Raman spectroscopy. Full assignment of the observed infrared bands to the two 

experimentally accessible conformers was carried out for the matrix isolated 

monomeric species. In addition, the infrared spectra of the neat compound in the low 

temperature (10 K) amorphous and crystalline phases, as well as the infrared and 

Raman spectra of the crystal at room temperature were also assigned.   
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ABSTRACT 

 

Methyl 4-chloro-5-phenylisoxazole-3-carboxylate (MCPIC) has been 

synthesized, isolated in low temperature argon and xenon matrices and studied 

by FTIR spectroscopy. The characterization of the low energy conformers of 

MCPIC was made by undertaking a systematic investigation of the 

DFT(B3LYP)/6-311++G(d,p) potential energy surface of the molecule. The 

theoretical calculations 

predicted the existence of 

three low energy 

conformers. Two of them 

(I and II) were observed 

experimentally in the cryogenic matrices. The third one (III) was found to be 

converted into conformer II during deposition of the matrices, a result that is in 

agreement with the predicted low IIIII energy barrier (< 0.3 kJ mol
-1

) . In situ 

UV irradiation (  235 nm) of matrix-isolated MCPIC yielded as final 

photoproduct the corresponding oxazole (methyl 4-chloro-5-phenyl-1,3-

oxazole-2-carboxylate). Identification of the azirine and nitrile-ylide 

intermediates in the spectra of the irradiated matrices confirmed their 

mechanistic relevance in the isoxazoleoxazole photoisomerization.   
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Introduction 

 

Isoxazole and its derivatives are important building blocks of many 

compounds of biological interest. These heterocycles are reactants or intermediates in 

the synthesis of compounds that have been receiving pharmaceutical and medicinal 

applications.
1-12

 In particular, several phenylisoxazoles with halogen or multiple 

halogen substituents have been reported as anthelmintics or possessing antiparasitic 

activity.
13,14

 The agricultural uses of isoxazole derivatives include herbicidal, 

insecticidal and soil fungicidal activities.
15-18

 Isoxazoles have also been used as 

semiconductors, as corrosion inhibitors in fuels and lubrificants, and in the production 

of photographic and liquid crystalline materials.
19-25

  

Isoxazoles (1, in Scheme 1), including the unsubstituted compound, have been 

the subject of many studies by different well-known techniques, such as infrared (IR), 

Raman, NMR and microwave spectroscopies, mass spectrometry, and X-ray 

diffraction.
6,9,10,26-29

 Many studies combined experimental techniques and theoretical 

methods at various levels of approximation, such as DFT and MP2.
30-34

 One of the 

most interesting features of the reactivity of isoxazoles is their capability to be 

converted into other heterocylic compounds through a ring-opening reaction and 

subsequent re-cyclization. The first step of this type of chemical transformation is the 

cleavage of the labile N-O single bond, which can be either thermally 
35-40

 or 

photochemically induced.
40-45

 The generation of vinyl nitrene intermediates (2) have 

been proposed,
37,39-41,44

 which rearrange into the corresponding 2H-azirines (3). The 

2H-azirines can then undergo ring cleavage to nitrile-ylides (4) followed by 

recyclization to give oxazoles (5) as the final products (see Scheme 1).
37,38,43-45

 

Although the detection of the 2H-azirine is not always possible, their presence has 

been inferred in the isoxazole-oxazole rearrangement. The nature of the substituents 

and their position in the isoxazole ring are also important factors in determining the 

preferred reactive pathway and details of the chemical reactivity of isoxazoles.
46-48
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Scheme 1. 

 

 In a previous publication,
49

 the monomeric forms of methyl 4-chloro-5-

phenylisoxazole-3-carboxylate (MCPIC; 1a in Chart 1) and its oxazole counterpart, 

methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (MCPOC; 5a) were studied 

using matrix-isolation infrared spectroscopy (argon matrix) and quantum chemical 

calculations. That study confirmed unambiguously the vibrational signature of both 

heterocycles through direct comparison of the experimental spectra of both 

compounds with the corresponding calculated spectra. The conformational space of 

MCPOC was subsequently investigated in detail both experimentally and 

theoretically,
50

 the compound representing an interesting case where an inversion of 

the order of stability of the two most stable conformers occurs upon going from the 

gas phase to a xenon matrix.  

 

N
O

CO2MeCl

Ph

N

O

Cl

Ph CO2Me

1a 5a
 

Chart 1. 

 

In the present study, details of the vibrational spectra of matrix-isolated 

MPCIC (both in argon and xenon matrices) and its photochemistry were investigated 

using matrix-isolation infrared spectroscopy and DFT calculations. As it will be 

shown in detail below, the present study allowed us to conclude that, among the three 

low energy forms of MPCIC present in significant amount in the gas phase room 

temperature equilibrium, only two of them could be trapped in the matrices. On the 
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other hand, the third conformer converts into one of the observed forms during 

deposition of the matrices. These results could be explained taking into account the 

calculated energy barriers separating the different MPCIC conformers. UV irradiation 

(  235 nm) of matrix-isolated MCPIC led to its conversion to the corresponding 

oxazole, with the azirine and nitrile-ylide intermediates being experimentally detected, 

thus confirming the previously proposed mechanism for the isoxazoleoxazole 

photoisomerization.
40-45

 

 

 

Experimental Procedures 
 

 

The procedure for the synthesis of MCPIC has been reported elsewhere.
49

 

Briefly, a solution of methyl 5-phenylisoxazole-3-carboxylate and N-

chlorosuccinimide in 7% fuming nitric acid in acetic acid was irradiated with 

microwaves at 160 ºC during about 40 min. After cooling to room temperature, water 

was added and the mixture extracted with CH2Cl2, the organic phase was dried 

(MgSO4) and evaporated off. The crude product was purified by flash chromatography 

[ethyl acetate–hexane (1:5)], to give MCPIC as a white solid (59%) [mp: 62–63 ºC; IR 

(KBr): 1221, 1441, 1738, 2957 cm
-1

; 
1
H NMR: 4.03 (3H, s), 7.52–7.55 (3H, m), 8.03–

8.06 (2H, m); 
13

C NMR: 53.1, 106.0, 125.6, 126.6, 129.0, 131.2,  153.3, 159.1, 165.8;  

MS (EI): m/z 237 (M
+
, 99), 206 (14), 105 (100), 77 (68), 59 (78); HRMS (CI): m/z 

237.0200 (C11H8NO3Cl [M
+
], 237.0193). 

Matrices were prepared by co-deposition of MCPIC vapors coming out from a 

specially designed thermoelectrically heatable mini-furnace, assembled inside the 

cryostat (APD Cryogenics, model DE-202A) chamber, and large excess of the matrix 

gas (argon, N60; xenon, N48, both obtained from Air Liquide) onto a CsI substrate 

cooled to 10 K (for argon matrices) and 20 K (for xenon matrices). The IR spectra 

were recorded with 0.5 cm
-1 

spectral resolution in a Mattson (Infinity 60AR Series) 

Fourier transform infrared spectrometer, equipped with a deuterated triglycine 

sulphate (DTGS) detector and a Ge/KBr beam splitter. Necessary modifications of the 

sample compartment of the spectrometer were done in order to accommodate the 

cryostat head and allow purging of the instrument by a stream of dry nitrogen, to 

remove water vapors and CO2.  
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Irradiation of the matrices was carried out with unfiltered light from a 500 W 

Hg(Xe) lamp (Newport, Oriel Instruments), with output power set to 200 W, through 

the outer KBr windows of the cryostat ( > 235 nm). 

 

 

Computational Methods 

 

The quantum chemical calculations were performed with Gaussian 03
51

 at the 

DFT level of theory, using the split valence triple- 6-311++G(d,p) basis set
52

 and the 

three-parameter B3LYP density functional, which includes Becke’s gradient exchange 

correction
53

 and the Lee, Yang and Parr correlation functional.
54

  

Geometrical parameters of the different conformations were optimized using 

the Geometry Direct Inversion of the Invariant Subspace (GDIIS) method.
55,56

 

Transition states were located using the synchronous transit-guided quasi-Newton 

(STQN) method.
57

 In order to assist the analysis of the experimental spectra, 

vibrational frequencies and IR intensities were also calculated at the same level of 

approximation. The computed harmonic frequencies were scaled down by a single 

factor (0.9817) to correct them for the effects of basis set limitations, neglected part of 

electron correlation and anharmonicity effects. This factor was determined by simple 

linear fitting (with intercept fixed at zero) of the calculated wavenumbers to the 

experimental ones. The scaling procedure used was chosen mostly to achieve two 

goals: (1) respect the potential energy distribution (i.e., mode composition) obtained 

directly from the MO calculations before scaling; this justifies the use of a single scale 

factor, and (2) provide the best possible comparison with the experimental data; this 

justifies the choice for a fitting procedure instead of using a more standard scale factor 

extracted from general literature. 

Normal coordinate analyses were undertaken in the internal coordinates space, 

as described by Schachtschneider and Mortimer,
58

 using the optimized geometries and 

harmonic force constants resulting from the DFT(B3LYP)/6-311++G(d,p) 

calculations. The internal coordinates used in these analyses were defined according to 

the recommendations of Pulay et al.
59
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Results and Discussion 

 

Conformational Space of MCPIC. MCPIC is characterized by three 

conformationally relevant internal rotation axes defined around the C14–C1, C3–C6 and 

C6–O8 bonds (Figure 1). As in other carboxylic ester molecules,
60-65

 internal rotation 

around the C6–O8 bond gives rise to s-cis and s-trans structures, with the s-cis species 

(C–C–O–C dihedral equal to 0º) being more stable than the s-trans forms by ca.  

30 kJ mol
–1

.
63-65

 The latter species are then of no practical importance. On the other 

hand, internal rotations around the C14–C1 and C3–C6 bonds lead to different low 

energy conformers. A systematic investigation of the potential energy surface (PES) 

of the molecule was then undertaken by varying the C15–C14–C1–O5 and C2–C3–C6–O8 

dihedral angles in steps of 30º and optimizing all remaining geometric parameters at 

each point.  

Figure 2 presents the contour map of the DFT(B3LYP)/6-311++G(d,p) PES 

calculated as described above. Three sets of symmetry-equivalent energy minima 

were found on the PES, corresponding to three different conformers (I, II and III, see 

Figure 1). According to calculations, conformers II and III are 3.9 and 4.2 kJ mol
-1

 

higher in energy than the most stable form (calculated values including zero-point 

energy corrections; the corresponding relative energies from the bottom of the 

potential wells are 4.0 and 4.4 kJ mol
-1

).  

The calculated optimized geometries for the three conformers are given in 

Table S1 (Supporting Information). In all these conformers, the position of the phenyl 

group in relation to the isoxazole ring is nearly the same, the angle between the planes 

of the two rings being ca. 20º (more precisely, 18.5, 19.0 and 15.6º in I, II and III, 

respectively; see Table S1). In the most stable conformer (I) the methyl ester group 

and the chlorine substituent of the isoxazole ring exhibit a nearly trans orientation, 

while in conformers II and III these groups exhibit a nearly cis arrangement: in 

conformer I the C2–C3–C6–O8 dihedral angle is ~170º, while in conformers II and III 

this angle is ca. –25º and 25º, respectively.
a
 

                                                 
a
 Here we are considering the minima where the C15–C14–C1–O5 dihedral angle is ca. 20º, i.e., the 

minima corresponding to conformers I and III located in the 1
st
 quadrant of the PES map shown in 

Figure 2, and that corresponding to conformer II located in the 4
th

 quadrant. Other forms related to 

these by symmetry. 
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Figure 1. Low energy conformers of MCPIC, optimized at the DFT(B3LYP)/6-311++G(d,p) level of 

theory, with atom numbering. Relative energies, including zero point corrections (Eº/ kJ mol
-1

) are 

given in parenthesis. The values of dipole moments () for these conformers are: 1.52, 4.09 and 4.09 D 

(1 D= 3.33564 x 10
-30

 C m), respectively. Each conformer corresponds to four symmetry-related 

minima in the molecules’ potential energy surface (see Figure 2). The complete calculated optimized 

geometries for the three conformers are given in Table S1 (Supporting Information). The picture was 

made using the Ortep-3 for Windows program (Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565). Atoms 

color code: carbon, hydrogen: black; nitrogen: blue; chlorine: green; oxygen: red. 
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The most stable conformer of MCPIC is similar to that determined by X-ray 

diffraction to be present in the crystal of the analogous bromo-substituted compound, 

4-bromo-5-phenylisoxazole-3-carboxylate.
66

 In that molecule, the angle between the 

phenyl and isoxazole ring was found to be 20.8º (compared to 18.5º now calculated 

for conformer I of MCPIC) and the C2–C3–C6–O8 dihedral angle 169.8º (compared to 

169.3º for MCPIC). 
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Left: B3LYP/6-311++G(d,p) potential energy map showing the position of the three low energy 

conformers of MCPIC. Each conformer correspond to four equivalent-by-symmetry minima; they are 

represented by squares (, conformer I), triangles (, II) and stars (, III). 1
st
 order transition states 

interconnecting the conformers are represented by black circles (), and the Cs symmetry structures, 

corresponding to 2
nd

 order transition states, by open circles (). The isoenergy contour lines (kJ mol
-1

) 

were obtained by fitting a grid of energy values with increment in the two scanned dihedral angles of 

30º, interpolated according to the Renka-Cline method. All remaining geometric parameters were 

optimized at each point. See Figure 1 for conformers structures and atom numbering. Right-top: PES 

profile along the C2–C3–C6–C8 coordinate, showing a possible pathway for interconversion between the 

three conformers. Right-bottom: expanded energy scale view of the PES in the vicinity of conformers II 

and III. In the two last panels, colors were used only for better visualization of the data. 

 

 

In relation to the higher energy forms exhibiting an s-trans configuration about 

the C6–O8 bond, the calculations predicted the existence of only two conformers 

(forms IV and V; see Figure S1, Supporting Information). These conformers can be 

obtained from conformer I by rotation around the C6–O8 bond, and, as already 

mentioned, are ca. 30 kJ mol
-1

 higher in energy than the most stable conformer. The 
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conformationally relevant C15–C14–C1–O5, C2–C3–C6–O8 and O7=C6–O8–C9 dihedral 

angles in these high energy conformers were calculated as (14.9º, 137.0º, 173.1º) and 

(13.5º, –137.8º, –172.9º), for forms IV and V, respectively. No high energy 

conformers were found that could be obtained from rotation around the C6-O8 bond of 

forms II and III, i.e. exhibiting a C2–C3–C6–O8 dihedral angle in the ±25º region. 

The main factors determining the relative stability of conformers I, II and III 

can be guessed based on the fact that the conformers do not have the phenyl and 

isoxazole rings and the heavy atoms of the ester group in the same plane. This is a 

clear indication that repulsive interactions between both the phenyl and ester 

fragments and the chlorine substituent of the isoxazole ring are the key interactions 

determining the precise geometry of the conformers and their relative energies. The 

interaction between the phenyl group and the chlorine atom involves the closest 

phenyl hydrogen atom (H24) and must be of steric nature, since electrostatic 

interactions would, in this case, favor the coplanarity of the two rings (phenyl and 

isoxazole). This interaction is of equal importance in conformers I and II and slightly 

more important in conformer III, as implied by the relative values for the dihedral 

angle between the planes of the two rings in the three conformers (18.5, 19.0 and 

15.6º, for I, II and III, respectively; see Figure 2 and Table S1), as well as H
…

Cl 

distances, which amount to 269.1 (I), 269.9 (II) and 265.9 (III) pm  

(sum of H and Cl van der Waals radii is ~295 pm). The slightly higher energy of III 

compared with II is then partially accounted by this interaction. 

On the other hand, the interactions between the ester group and the chlorine 

atom are different in the three conformers and, besides determining the non planarity 

of the ester and isoxazole fragments (as measured by the C2–C3–C6–O8 dihedral angle; 

see Figure 2 and Table S1), must be responsible for their relative energies. In 

conformer I, it is the carbonyl oxygen (O7) which interacts with the chlorine atom, 

whereas in conformers II and III the interaction involves O8. These interactions are 

both steric and electrostatic. The calculated atomic polar tensor (APT) charges
67

 for 

the three conformers are shown in Table 1. From this table, it can be noticed that O8 is 

more negative than O7, so that the Cl
…

O8 electrostatic repulsion in II and III is more 

important than the Cl
…

O7 electrostatic repulsion in I. This difference seems to be the 

main factor justifying the lower energy of I compared to II and III. In addition, the 

Cl
…

O7/8 contact distances decrease in the order I (316.1 pm) > II (312.0 pm) > III 

(309.6 pm) (sum of O and Cl van der Waals radii is ~327 pm), also contributing to 
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make the Cl
…

O repulsive electrostatic interaction more important in the order III > II 

> I, and leading the Cl
…

O steric interaction to follow also the same trend. 

On the whole, the H24
…

Cl steric interactions and the Cl
…

O7/8 electrostatic and 

steric interactions fully explain the relative energy of the three low energy conformers 

of MCPIC. It shall be noticed that in both conformers I and II the chlorine atom can 

move simultaneously apart from both H24 and O7/8, since H24 and O7/8 stay the same 

side of the isoxazole ring (see Figure 1). On the other hand, in conformer III, the 

situation is different, since H24 and O8 stay in opposite sides of the isoxazole ring, thus 

restricting in some amount the flexibility of the molecule to release energy by rotation 

about the C14–C1 and C3–C6 bonds. This is consistent with the smaller dihedral angles 

between the two rings and about the C3–C6 bond in conformer III. 

The pathways for interconversion between the three low energy conformers of 

MCPIC were also evaluated in this study. Two preliminary observations must be 

stressed. (i) The first one is that it is clear from Figure 2 that, for each conformer, two 

symmetry-equivalent minima exist in two different valleys on the PES. These two 

valleys are defined by values of the C15–C14–C1–O5 dihedral angle in the ranges  

(–30º,30º) and (150º,–150º) and extend the full range of the C2–C3–C6–O8 dihedral 

angle, being symmetrically equivalent. The two valleys are separated by barriers 

larger than 10 kJ mol
-1

. (ii) The second preliminary observation is that the possible Cs 

symmetry structures, where the two rings and the heavy atoms of the ester fragment of 

MCPIC are in the same plane, correspond to second order transition states. 

Within the same valley [let us consider that depicted in the central part of 

Figure 2, corresponding to C15–C14–C1–O5 in the (–60º,60º) range and shown in an 

extended energy scale in a separate graph in Figure 2], we found that the two 

equivalent-by-symmetry structures corresponding to conformer I can be 

interconverted directly to each other by crossing a barrier of 0.3 kJ mol
-1

 (0.2 kJ mol
-1

 

if zero-point corrections are taken into account), following two symmetry equivalent 

pathways whose transition states have the C15–C14–C1–O5 and C2–C3–C6–O8 dihedral 

angles equal to –0.8º and 172.8º or 0.8º and –172.8º. These two first order transition 

states are symmetrically located in relation to the planar second order transition state 

with C15–C14–C1–O5 and C2–C3–C6–O8 dihedral angles equal to 0º and 180º (see 

Figure 2). 
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Table 1 – DFT(B3LYP)/6-311++G(d,p) calculated atomic 

polar tensor (APT) charges on atoms for conformers I, II 

and III of MCPIC.
a
 

 
APT charges/ e 

Atom I II III 

C1 0.402 0.412 0.408 

C2 0.049 0.046 0.048 

C3 0.070 0.075 0.070 

N4 –0.150 –0.157 –0.157 

O5 –0.433 –0.421 –0.420 

C6 1.354 1.336 1.342 

O7 –0.739 –0.763 –0.766 

O8 –0.932 –0.890 –0.891 

C9 0.518 0.505 0.505 

H10 –0.019 –0.015 –0.017 

H11 –0.018 –0.017 –0.015 

H12 0.009 0.012 0.012 

Cl13 –0.157 –0.167 –0.167 

C14 0.015 0.010 0.017 

C15 –0.061 –0.060 –0.064 

C16 –0.040 –0.041 –0.041 

C17 –0.035 –0.035 –0.036 

C18 –0.041 –0.039 –0.038 

C19 –0.045 –0.044 –0.047 

H20 0.074 0.071 0.074 

H21 0.035 0.034 0.034 

H22 0.039 0.039 0.039 

H23 0.034 0.034 0.034 

H24 0.075 0.075 0.077 
a 

See Figure 1 for atom numbering. 1e = 1.60217646 × 10
-

19
 C. 

 

 

On the other hand, the symmetry-equivalent forms of both conformers II and 

III cannot be converted directly to each other, since no first order transition states 

exist between those forms. Direct conversion would imply simultaneous rotation 

about the C14–C1 and C3–C6 bonds, passing the second order transition state defined 

by C15–C14–C1–O5 and C2–C3–C6–O8 dihedral angles equal to 0º (see Figure 2). 

Conformers II and III can, alternatively, be easily converted into each other either by 

rotation around the C14–C1 or C3–C6 bonds. Though the barriers associated with these 

two pathways are both very small, the one implying a rotation around the C3–C6 bond 

is predicted to be slightly lower than that associated with the rotation around the  

C14–C1 bond: zero-point corrected values, Eo
#

(IIIII)= 0.1 kJ mol
-1

 vs. 0.2 kJ mol
-1
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(0.4 vs. 0.6 kJ mol
-1

 in the opposite direction); values without zero-point corrections, 

E
#

(IIIII)= 0.1 kJ mol
-1

 vs. 0.3 kJ mol
-1

 (0.4 vs. 0.6 kJ mol
-1

 in the opposite direction). 

Finally, both conformers II and III can also be converted into the most stable 

form. Interestingly, the two conversion pathways were found to include a common 

first order transition state (see Figure 2), which leads to III and IIII energy 

barriers of 3.9 and 3.6 kJ mol
-1

, respectively (7.8 kJ mol
-1

 in the reverse direction) 

(zero point corrected values; non-corrected values are: 4.3 kJ mol
-1

 (III),  

4.0 kJ mol
-1 

(IIII) and 8.3 kJ mol
-1

 (III/III). 

 

Matrix Isolation IR Spectra of MCPIC (As-Deposited Matrices). All 

conformers of MCPIC belong to the C1 symmetry point group, possessing 66 

fundamental vibrations, all of them active in the infrared. In order to interpret the 

experimental spectra of the compound, the B3LYP/6-311++G(d,p) IR spectra of its 

experimentally relevant low energy conformers were obtained and normal coordinate 

analysis calculations were performed. The definition of the internal coordinates used 

in the vibrational analysis is provided in Table S2 (Supporting Information). The 

complete list of calculated wavenumbers, IR intensities and potential energy 

distributions resulting from the normal mode analyses are presented in Tables S3 and 

S4 (Supporting Information). 

As discussed in detail in the previous section, the three low energy conformers 

of MCPIC have relative energies of 0.0 (I), 3.9 (II) and 4.2 (III) kJ mol
-1

. At the 

sublimation temperature used to deposit the matrices (50 ºC), the estimated Boltzmann 

populations of these conformers are 69.2%, 16.4% and 14.4%, respectively. However, 

the energy barriers associated with the IIIII conformational isomerization are very 

low (< 0.3 kJ mol
-1

). Energy barriers of this magnitude are known
68-72

 to be easily 

overcome during deposition of matrices under the experimental conditions used in this 

study. The gas being deposited is hot and the energy dissipated and made available 

during the landing of the molecules onto the cold substrate is enough to allow the 

barrier to be surpassed. In the present case, this can be expected to lead to relaxation 

of the higher energy conformer III into the lower energy conformer II. Hence, we can 

expect exclusive observation of conformers I and II in the as-deposited matrices of 

MCPIC. If no conversion from II to I takes place during deposition, the population of 
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conformer II in the matrices should correspond to the sum of those of conformers II 

and III in the vapor being deposited, i.e., 30.8%. 

Figure 3 shows the infrared spectra of MCPIC isolated in both argon and 

xenon matrices (sublimation temperature, 50 ºC; substrate temperature during 

deposition: argon, 10 K, xenon, 20 K). The B3LYP)/6-311++G(d,p) theoretically 

predicted spectra of conformers I and II are also presented in this figure (in format of 

stick spectra), as well as the simulated spectra of the expected conformational mixture 

at 50 ºC, built up by adding the calculated spectrum of conformers I and II with 

intensities scaled by their predicted populations (69% for conformer I and 31% for 

conformer II; see text).  

The experimental spectra are well reproduced by the simulated spectrum, though it is 

clear that the population of conformer II is smaller than expected taking into account 

its predicted population in the vapor of the compound at 50 ºC. It can also be noticed 

that the population of II is smaller in the xenon than in the argon matrix. Indeed, the 

relative populations of the conformers present in the matrices were estimated from the 

observed integral bands intensities in the carbonyl stretching region (normalized by 

the calculated intensities of the conformers). According to this estimation, conformer I 

accounts for 86.1% of the total population in argon matrix and conformer II for the 

remaining 13.9%, whereas in the xenon matrix these values change to 90.4% (I) and 

9.6% (II). All these results are consistent with the occurrence of two isomerization 

processes during deposition of the matrices: (i) conformer III is fully converted to 

form II, as expected taking into account the very low energy barriers for the IIIII 

isomerization (<0.3 kJ mol
-1

), and it is not present neither in the argon nor in the 

xenon matrix; (ii) conformer II is partially converted to the most stable conformer I. 

As discussed above, the last process has a predicted gas phase barrier of ca.  

4 kJ mol
-1

, which is still low enough to be accessible during deposition of the 

matrices, in particular in the case of the xenon matrix, where the temperature of the 

substrate during deposition was higher. A higher temperature of the substrate during 

deposition facilitates the conformational cooling.
68-72

 Moreover, xenon has also been 

shown to facilitate conformational cooling in relation to argon.
69,70
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Figure 3. Top (two panels): Infrared spectra of MCPIC isolated in solid argon and xenon (as-deposited 

matrices; temperature of the deposited vapor: 50 ºC; substrate temperature during deposition: argon, 10 

K, xenon, 20 K); Bottom: DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra of MCPIC 

conformers I (open circles, ) and II (black circles, ) shown as stick spectra (wavenumbers scaled by 

0.9817); Middle: simulated spectra of the expected conformational mixture at 50 ºC,  built by adding 

the calculated spectrum of conformers I and II with intensities scaled by their predicted populations 

(69% for conformer I and 31% for conformer II; see text). In the simulated spectra, bands were 

represented by Lorentzian functions centered at the calculated wavenumbers (scaled by 0.9817) and 

with fwhm (full width at half maximum) equal to 4 cm
-1

. 
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Annealing of the matrices to higher temperatures was also undertaken, in order 

to check the possibility of conformer II to be converted in conformer I after the matrix 

is formed. However, no significant changes could be observed in the spectra that 

could be unequivocally ascribed to the III conversion in the accessible range of 

temperatures (at ca. 30 K, the argon matrix started to deteriorate and aggregation of 

the compound started to be important; the same happened in the case of the xenon 

matrix at ca. 60 K). If we take into account the Barnes relationship between the 

temperature and the conversion barriers,
68

 the non-observation of the III conversion 

till ca. 60 K indicates that the isomerization barrier for this process in the matrices 

must considerably increase to ca. 14-17 kJ mol
-1

. Since this isomerization implies 

rotation of a voluminous fragment (the COOCH3 moiety), such increase in the barrier 

to internal rotation in going from the gas phase to the solid state matrix could indeed 

be anticipated. In a matrix, this process would require extensive rearrangement of the 

matrix host, which is an energetically demanding process contributing to the increase 

of the effective barrier and, in the present case, precluding observation of the 

isomerization reaction.  

The assignment of the bands in the experimental spectra was strongly aided by 

the excellent agreement between the experimental and the calculated data. The 

observed bands are mostly due to the most abundant conformer I, though in most of 

the cases they shall also contain a minor contribution from the less abundant 

conformer II, since the spectra of the two forms are quite similar (see Figure 3, 

bottom panel). The proposed assignments are presented in Table 2. A few bands (or 

prominent shoulders) could be tentatively ascribed to conformer II, besides those 

originated in the carbonyl stretching mode of this conformer, appearing at 1771/1767 

cm
-1

 in argon, and 1760 cm
-1

 in xenon, whose assignment is unequivocal. Such bands 

appear at: 1472/1470 (C-H1, Isox1), 1410/1407 (Isox4), 1272 (shoulder; Isox2), 

1239/1227/1224 (C–O), 1129 (Isox5, Isox1), 1066/1063 (Isox2) and 

1002/1000/997/992 (Isox5) cm
-1

 in argon and, correspondingly, at 1470/1469, 

1404/1401, 1269 (shoulder), 1234/1232/1230/1221, 1124, 1064/1058 and 

1002/1000/996/993 cm
-1

 in xenon (see Table S2 in the Supporting Information for 

designation of the vibrational modes and also Table S4).  

 

~ 
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Table 2 – Experimental (matrix-isolation) and calculated vibrational data for MCPIC with vibrational 

assignments based on the results of normal coordinate analysis.
a 

Experimental  Calculated 
 

Ar matrix Xe matrix Conformer I 
Approximate  

description 

ν ν ν I  

3120 3114 3159 1.7 (C-H1) 

3105 3096 3146 3.0 (C-H5) 

3090/3081 3084 3132 16.9 (C-H2) 

3070 3065/3060 3121 9.9 (C-H3) 

3046/3035/3030 3040 3107 11.0 CH3 as´ 

3014 3027 3070 16.3 CH3 as´´ 

2964 2994 2998 34.3 CH3 s 

1755/1752 1754/1748/1738 1753 237.5 C=O 

1601 n.obs. 1614 1.0 Ph3 

1593 1590/1586 1591 4.8 Ph4 

1573 1570 1570 13.1 Isox3 

1499 1497 1499 1.8 (C-H4) 

n.obs. 1482 1469 5.2 CH3 as´ 

1467 1466/1463 1459 83.7 (C-H1), Isox1 

1459 1453 1457 11.6 CH3 as´´ 

1450 1445 1448 29.7 CH3 s 

1448/1447 1445/1443(sh) 1446 53.1 Isox2 

1423 1423(sh)/1420 1416 25.5 Isox4 

1344/1340 1344(sh)/1341 1339 5.6 (C-H2) 

1328/1320/1318/1315 1324/1315/1313 1312 12.1 Ph2 

1269/1299 b 1297/1275/1266/1262 b 1258 94.7 (C-CIR) 

1221 1218 1215 465.5 C-O 

1192 1191/1189 1190 5.8 (C-H3) 

1189(sh)/1187/1182 1185/1183/1180 1182 34.2 CH3´ 

1164 1161 1165 0.5 (C-H5) 

1159 1155 1149 0.9 CH3´´ 

1130 1127 1121 19.6 Isox1 

1098/1096(sh) 1096(sh)/1093 1084 14.7 Ph6 

1082/1079/1075/1073(sh) 1071/1069 1060 111.5 Isox2 

1034 1031 1031 0.5 Ph5 

984/980/971  985(sh)/980/973/967  978 53.5 Isox5 

n.obs. n.obs. 973 1.0 (C-H4) 

961/957 957 953 5.5 (O-CH3) 

934 933/931 932 8.1 (O-CH3) 

921/920(sh)/919(sh) 920/918 924 2.6 (C-H5), (C-H1) 

841 839 840 0.4 (C-H1) 

814(sh)/812 812 809 31.9 (OCO) 

790/788(sh)/786 787/784 791 9.5 (C=O) 

769(sh)/768 766 769 23.2 (C-H3) 

696/692(sh)/691 695/691/689/687 696 6.1 Ph3 

688/684 685/681 691 44.0 Ph1 

680 677 680 23.4 Isox1 

579 575 
573 1.1 w(Isox-E), w(Isox-Ph),  

w(C-Cl) 

486/485/477 484/482 485 2.7 (Ph-Isox) 

     
a Wavenumbers (cm-1, scaled by 0.9817), calculated intensities (km mol-1), , bond stretching, , bending, , 

rocking, w, wagging, , torsion, s, symmetric, as, antisymmetric, IR, inter–ring; Isox, isoxazole ring; Ph, phenyl 

ring; E, ester, sh, shoulder; n.obs., not observed; see Table S2 (Supporting Information) for definition of internal 

coordinates and Table S3 for potential energy distributions. b Fermi resonance with Ph1 + (w(Isox-E), w(Isox-Ph), 

w(C-Cl)). 
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Photolysis Experiments (In Situ UV-irradiation with   235 nm). In situ 

UV irradiation experiments were carried out to study the photochemistry of MCPIC in 

argon and xenon matrices. Upon broadband UV irradiation (  235 nm) of the matrix 

isolated compound, significant changes occurred in the infrared spectrum, with bands 

due to MCPIC decreasing of intensity while new bands due to photoproducts emerged 

(Figures 4 and 5). The obtained results were identical in both argon and xenon 

matrices, with the difference that the observed reactions were found to be 

considerably faster in the latter matrix, indicating that triplet states are involved in the 

photoprocesses,
71,73

 as it has also been suggested before based on the relative quantum 

yields for isoxazole→oxazole conversion of the studied compound and its bromo-

substituted analogue in solution,
74

 and acetone-sentitized conversion of 3-acetyl-5-

methylisoxazole into the corresponding oxazole in different solvents.
75

 The 

involvement of triplet states in the photoisomerization of isoxazole to oxazole has also 

been predicted theoretically.
45,76

 In a xenon matrix, after 90 min of irradiation ca. 90% 

of the initially deposited MCPIC was transformed into other species, while in argon 

matrix only ca. 50% of the reactant was consumed. Below, we will concentrate the 

discussion in the results obtained in the xenon matrix. 

Figure 4 (middle panel) shows the difference infrared spectrum obtained by 

subtracting to the spectrum of the MCPIC xenon matrix irradiated during 90 min  

(> 235 nm) the spectrum of the as-deposited MCPIC xenon matrix. The negative 

bands shown in this spectrum correspond to the bands of the reactant whose IR 

spectrum in a freshly deposited xenon matrix is also shown in the Figure as reference 

(bottom panel). The spectrum shown in the top panel of Figure 4 is the infrared 

spectrum of methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (MCPOC) deposited 

in xenon matrix at 20 K in a different experiment. It is clear from the data shown in 

that Figure that the main product from the photolysis (> 235 nm) of matrix isolated 

MCPIC is its isomeric oxazole, MCPOC. 

It is also clear from Figure 4 that, in addition to the bands due to MCPOC, 

other bands appear in the spectrum of the photolyzed matrix (positive bands in the 

difference spectrum shown in Figure 4; e.g., in the 1800-1650 cm
-1

 region, and at 

1601, 1584, 1256, 1240 and ca. 705 cm
-1

), which must be assigned to different 

photoproducts. In order to allow for a clear examination of these bands, the spectrum 

of MCPOC was subtracted (multiplied by an appropriated intensity factor) from the 
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difference spectrum presented in Figure 4. The obtained new difference spectrum is 

shown in Figure 5. In this Figure, the presented spectral region corresponds to that 

where the strongest and most characteristic bands of other than the oxazole 

photoproduct are observed.  

The identification of the photoproducts contributing to the positive bands 

shown in Figure 5 was done both by calculating the IR spectra of a series of possible 

photoproducts at the DFT(B3LYP)/6-311++G(d,p) level of theory and, whenever 

available, by comparing the position of the bands with characteristic bands of similar 

molecules.  

According to the previously proposed mechanism for the photochemical 

isoxazole-oxazole rearrangement
46-48

 the primary photoproduct, resulting from 

cleavage of the weakest bond in isoxazole, the N–O bond, should be the vinyl nitrene 

(2, in Scheme 1, where for the present molecule R1 is a phenyl group, R2 a chlorine 

substituent and R3 the methyl ester fragment). Such species has never been 

experimentally detected and it is supposed to rearrange very easily to the closed ring 

2H-azirine (3, in Scheme 1). Hence, the first molecule here considered as a possible 

contributing species to the spectrum of the photolyzed matrix (besides MCPOC) was 

the azirine methyl 2-benzoyl-2-chloro-2H-azirine-3-carboxylate (MBCAC). 

Substituted 2H-azirines with a methyl ester group have characteristic intense bands 

around 1780, 1750 and 1250 cm
-1

, corresponding to the symmetric and antisymmetric 

combination of the C=N and C=O coordinates, and the C–O stretching mode, 

respectively.
41,73,77

 The spectrum calculated in this study for the most stable conformer 

of MBCAC is presented (in the form of stick spectrum) in Figure 5 and accounts for 

most of the positive bands of the difference spectrum shown in this Figure, allowing 

for unequivocal identification of MBCAC in the spectrum of the photolyzed matrix.  

 



 113 

1800 1600 1400 1200 1000 800 600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1800 1600 1400 1200 1000 800 600

-0.02

0.00

0.02

0.04

0.06

1800 1600 1400 1200 1000 800 600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
b

s
o

rb
a

n
c
e

Wavenumber/ cm
-1

MCPIC

As-deposited (Xe; 20 K)

A
b

s
o

rb
a

n
c
e

Irradiated matrix (90 min; > 235 nm)

minus as-deposited matrix (Xe; 20 K) 

 

N

O

Cl

Ph CO2Me

 

N
O

CO2MeCl

Ph

A
b

s
o

rb
a

n
c
e

MCPOC

As-deposited (Xe; 20 K)

 
Figure 4. Bottom: IR spectrum (1850-550 cm

-1
 range) of MCPIC in a xenon matrix (as deposited; 20 

K); Middle: IR difference spectrum (> 235 nm irradiated xenon matrix during 90 min minus as-

deposited matrix); Top: IR spectrum of MCPOC in a xenon matrix (as-deposited; 20 K). 
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Figure 5. Top: B3LYP/6-311++G(d,p) calculated IR stick spectra for other than MCPOC observed 

photoproducts of MCPIC (wavenumbers scaled by 0.9817); Middle: Simulated IR spectrum built from 

the B3LYP/6-311++G(d,p) calculated spectra shown in the top panel (intensities of the different species 

were arbitrarily scaled in order to obtain the best match with the experimental data; bands were 

simulated by Lorentzian functions centered at the calculated frequencies and with FWHM equal to 10 

cm
-1

); Bottom: IR difference spectrum (2300-1000 cm
-1

 range) obtained by subtracting to the difference 

spectrum shown in Figure 4 (> 235 nm irradiated xenon matrix during 90 min minus as-deposited 

matrix) the spectrum of MCPOC in a xenon matrix (as-deposited; 20 K) multiplied by an appropriated 

intensity factor. The bands pointing down in this spectrum correspond to both MCPIC and MCPOC.  
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The identification of the remaining photoproducts was mainly made on the 

basis of the bands appearing in the 2300-1900 cm
-1

 spectral region, which is a clean 

region in the spectra of MCPIC, MCPOC and MBCAC. 

The first band in this region is observed at 1955 cm
-1

 and appears at the 

characteristic wavenumber of the antisymmetric stretching of the CNC fragment of a 

nitrile-ylide.
77,78

 The intensity of this band is low and all other bands predicted by the 

calculations to be intense for the nitrile-ylide resulting from MCPIC (4 in Scheme 1) 

are expected to appear in regions where either MCPOC or MBCAC also absorb. 

Hence, this corresponds to the sole band unequivocally ascribable to the nitrile-ylide. 

However, its very characteristic wavenumber
77,78

 ensures certainty in the identification 

of this species. Together with the observation of the azirine MBCAC, the observation 

of the nitrile-ylide in the spectrum of the matrix resulting from the photolysis of 

MCPIC (see also Figure 5), confirms the previously proposed mechanism for the 

photochemical isoxazoleoxazole rearrangement.
46-48

 

The other bands found in the 2300-1900 cm
-1

 spectral region of the spectrum 

of the photolyzed matrix result from species photoproduced from the vinyl nitrene 

and/or the azirine in alternative competing photochemical pathways (see Scheme 2). 
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Scheme 2. 

 

The band observed at 2057 cm
-1

 is characteristic of the ketenimine C=C=N 

antisymmetric stretching mode,
77-79

 and can then be ascribed to the ketenimine 6 

(Scheme 2), which can result both from rearrangements of the azirine and vinyl 

nitrene intermediates. In Figure 5 it can be seen that the calculated wavenumber for 
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the ketenimine 6 C=C=N antisymmetric stretching mode fits nicely that of the 

experimentally observed band here ascribed to this mode. Contrarily to nitrile-ylides, 

which result from the usually preferred photochemical breakage of the C–C bond of 

the azirine ring, ketenimines result from cleavage of the C–N bond. Nevertheless, the 

photochemical formation of ketenimines from 2H-azirines (in particular those 

substituted by a methyl ester group in the position 3 of the ring) has been 

observed.
71,73-80

 The subsequent decarbonylation of the ketenimine 6 can account for 

the observation of the characteristic band of CO in the photolyzed MCPIC matrices. 

This band is observed at in the 2139-2119 cm
-1

 range, with maximum at 2127 cm
-1

. 

Monomeric CO isolated in a xenon matrix gives rise to a band at 2133 cm
-1

.
81,82

 The 

product formed together with CO, which is also a ketenimine (7, in Scheme 2), shall 

also contribute to the band at 2057 cm
-1

 (see Figure 5). Decarbonylation of conjugated 

ketenimines like 6 has also been previously described.
71,73

 

 

 

Conclusions 

 

Methyl 4-chloro-5-phenylisoxazole-3-carboxylate was isolated in cryogenic 

matrices of noble gases (argon, xenon), and the preferred conformations assumed by 

the monomer of the compound probed by infrared spectroscopy, supported by 

theoretical calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) level of 

approximation. The theoretical potential energy surface revealed the existence of three 

low energy conformers, the most stable form, I, being characterized by  

C15–C14–C1–O5, C2–C3–C6–O8 and O7=C6–O8–C9 dihedral angles of 169.8º, 18.5º and 

–1.2º, being similar to the conformer present in the crystal of the analogous bromo-

substituted compound, 4-bromo-5-phenylisoxazole-3-carboxylate.
66

 Conformers II 

and III differ from I fundamentally in the orientation of the ester fragment, and are 

3.9 and 4.2 kJ mol
-1

 higher in energy than the most stable conformer. The H24
…

Cl 

steric interactions and Cl
…

O7/8 electrostatic and steric interactions were found to 

explain the relative energy of the three conformers.  

Conformers I and II were observed in the matrix isolation experiments, 

whereas conformer III was found to be totally converted into conformer II during 

deposition of the matrices. These results are in consonance with the very low energy 

barrier associated with the IIIII conversion ( 0.3 kJ mol
-1

), which can be easily 
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overcome during deposition of the matrices. Moreover, partial conversion of II into I 

during matrix deposition was also observed, a result that is also consistent with the 

moderately low predicted isomerization barrier for the III conversion (ca.  

4 kJ mol
-1

). On the other hand, annealing of the matrices up to 60 K (in xenon) did not 

promote any conversion of II into I, which point to a much larger barrier for this 

process in the solid matrix environment. 

The assignment of the bands observed in the IR spectra 3500-400 cm
-1

 range] 

of MCPIC in both argon and xenon matrices was undertaken, aided by the excellent 

agreement between the experimental and the calculated spectroscopic data.  

Broadband UV ( 235 nm) irradiation of matrix-isolated MCPIC was found 

to lead to the corresponding oxazole, methyl 4-chloro-5-phenyl-1,3-oxazole-2-

carboxylate, as final photoproduct. In agreement with the mechanism for the 

isoxazoleoxazole photoisomerization previously proposed,
40-45

 the expected azirine 

and nitrile-ylide intermediates could be identified spectroscopically in the present 

study in the photolysed matrices. 

 

Supporting Information Available: Figure S1, High energy conformers of MCPIC 

optimized at the B3LYP/6-311++G(d,p) level of theory; Table S1, the calculated 

geometries for MCPIC low energy conformers I, II and III; Table S2, definition of 

internal coordinates used in the normal-mode analysis of MCPIC. Tables S3 and S4, 

B3LYP/6-311++G(d,p) calculated spectroscopic data and results of normal coordinate 

analysis for the two most stable, experimentally relevant conformers of MCPIC 

(forms I and II). This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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ABSTRACT 

 

(Z)-3-azido-(E)-3-methylcarboxylate-2-chloro-acrylophenone (or methyl (Z)-

2-azido-3-chloro-3-benzoylpropenoate; MACBP) has been synthesized, isolated in 

low temperature argon and xenon matrices and studied by FTIR spectroscopy, 

complemented by DFT(B3LYP)/6-311++G(d,p) calculations. The molecule was 

characterized both structurally and spectroscopically, and its photochemistry used to 

probe the mechanism of photo-induced conversion of 3-azido-acrylophenones into 

oxazoles. In situ UV irradiation (  235 nm) of matrix-isolated MACBP yielded as 

primary photoproduct a 2H-azirine, which undergoes subsequent photoisomerization 

to the oxazole (methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate).  This reaction is 

accompanied by a second one leading to formation of a ketenimine. The non-

 

 



 124 

observation of the corresponding isoxazole points to the concerted nature of the 

different steps leading to the observed final products. This also supports the idea that 

in the studied system a vinyl nitrene intermediate is not involved in the conversion of 

the azide into the azirine, as well as in the subsequent reactions of this latter. 

 

 

Introduction 

 

Molecules containing the azido-moiety (-N3) are energy-rich and flexible 

chemical systems that have enjoyed increased interest over the years. Organic azides 

constitute a versatile class of compounds used as building blocks in organic 

synthesis,
1-5

 with particular relevance in peptide and bioorganic chemistry.
6-14

 The 

copper(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition forming 

triazoles,
7,10,11,14-20

 known as the „click reaction„, is one of the most effective ways to 

make connections between structures that bear a wide variety of functional groups. 

This reaction has found applications in a wide variety of research areas, for example, 

in materials science and drug design.
10,11,14

  

It is well known that azides are also explosive substances that decompose with 

the release of nitrogen through the slightest input of external energy.
4
 However, in 

spite of their explosive properties, the industrial interest in organic azide compounds 

extends to a number of areas, as they have applications in polymer synthesis
9,13,16,17

 

and light-induced activation of polymer surfaces,
21,22

 as photo resistors for 

lithography,
23,24

 in photo affinity labeling biological methods,
25,26

 or as energetic 

additives for solid propellants.
27,28

  

The mechanisms for the decomposition of azides through thermal and/or 

photochemical treatment and the intermediates formed have been extensively 

investigated. Nevertheless, there are still many cases where general consensus in 

relation to the precise mechanism involved in these processes could not been obtained. 

For example, it is considered that, in general, the release of molecular nitrogen is 

accompanied by the formation of a nitrene intermediate, which then undergoes further 

reactions, including isomerization to ketenimines, cyclization to azirines, C-H bond 

insertion or C=C bond addition.
29-39

 However, even in the case of the common 

synthetic approach for preparing 2H-azirines from photolysis or thermolysis of vinyl 

azides the precise mechanism of the reaction has been questioned, in particular in 
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relation to the involvement of the nitrene intermediate in the process (vs. concerted 

rearrangement).
32-39

 

Recently,
40

 we proposed that the thermolysis of 3-azido-3-carboxylate-2-halo-

acrylophenones (1, in Scheme 1) produces the corresponding 2-benzoyl-2-halo-2H-

azirine-3-carboxylates (2) in a concerted manner, instead of via vinyl nitrene 

intermediate (3). This conclusion was extracted taking into account the fact that the 

final product was the oxazole species (6) instead of the isoxazole (4), which would be 

the expected product if the nitrene were formed along the process, either directly from 

the azide or from the azirine initially formed. The production of the oxazole was in 

fact initially not expected,
41

 since it is generally accepted that 2H-azirines react 

preferentially upon thermal excitation through cleavage of the C-N bond, the required 

route to the nitrene species,
42-51

 whereas thermal cleavage of the C-C bond is less 

common.
45
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Scheme 1. 

 

 

On the other hand, photochemical excitation of 2H-azirines leads most 

frequently to the C-C bond cleavage of the azirine ring, yielding the corresponding 
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nitrile ylides (5),
46-53

 which are the expected intermediates to the oxazole production. 

However, photochemical processes involving cleavage of the C-N bond have also 

been observed upon photolysis of substituted azirines bearing electron- withdrawing 

substituents in the ring.
48-51,54,55

  

 In the present study, (Z)-3-azido-(E)-3-methylcarboxylate-2-chloro-

acrylophenone (or methyl (Z)-2-azido-3-chloro-3-benzoylpropenoate, MACBP; 

Figure 1, see Experimental Section) has been chosen as target to further investigation 

of the mechanism of conversion of 3-azido-acrylophenones into oxazoles. The 

compound was synthesized and then isolated in cryogenic matrices (Ar, Xe), where its 

conformational preferences and UV-induced photochemistry were investigated by 

infrared spectroscopy, supported by DFT calculations. The matrix isolation technique 

was selected to carry out this study because in a matrix the reactions are cage-

confined, since molecular diffusion is inhibited, and no reactions involving molecules 

initially located in different matrix sites can occur. Hence, only unimolecular reactions 

are expected to take place in relation with the molecule of the initial reactant, a 

characteristic that introduces a very useful simplification in the study of 

photochemical reactivity, in particular in the characterization of the associated 

reaction mechanisms. 

As it will be shown in detail in this paper, upon photolysis (> 235 nm) matrix 

isolated MACBP evolves to the corresponding azirine (methyl 2-benzoyl-2-chloro-

2H-azirine-3-carboxylate; MBCAC), which subsequently undergoes ring expansion to 

the oxazole (methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate; MCPOC). An 

additional photoproduct resulting from C-N ring cleavage of the initially formed 

azirine in a concerted Curtius type rearrangement was also observed (C-chloro-C-

benzoyl-N-methoxycarbonylketenimine; CBMK). No formation of the isoxazole 

compound was observed upon photolysis, which supports the conclusion that the vinyl 

nitrene species is not involved in the conversion of the azide into the azirine, as well 

as in the subsequent reactions of this latter.  
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Figure 1. Low energy conformers of MACBP, optimized at the DFT(B3LYP)/6-311++G(d,p) level of 

theory, with atom numbering. The picture was made using the Ortep-3 for Windows program (Farrugia, 

L. J. J. Appl. Cryst. 1997, 30, 565). Atoms color code: carbon, hydrogen: black; nitrogen: blue; 

chlorine: green; oxygen, red. 
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Experimental Section 

 

Synthesis of MACBP. (Z)-3-azido-(E)-3-methylcarboxylate-2-chloro-

acrylophenone (or methyl (Z)-2-azido-3-chloro-3-benzoylpropenoate, MACBP 1) was 

prepared using a known synthetic method procedure (Scheme 3).
39

 The 2-

(triphenylphosphoranylidene)acetophenone 12, obtained by reaction of 2-

bromoacetophenone 11 and triphenylphosphine 10, was added to a solution of 

triethylamine in dry toluene and treated with the appropriated acid chloride to give the 

methyl 2,4-dioxo-4-phenyl-3-triphenylphosphoranylidenebutanoate 13 almost in a 

quantitative yield. This ylide 13 reacts with azidotrimethylsilane and N-

chlorosuccinimide in dichloromethane to give the crystalline methyl (Z)-2-azido-3-

chloro-3-benzoylpropenoate 1 after the purification by column chromatography and 

crystallization. 

 

 

 

Scheme 3. Synthesis of methyl (Z)-2-azido-3-chloro-3-benzoylpropenoate 1. 

 

 

Matrix Isolation Experiments. Matrices were prepared by co-deposition of 

MACBP vapors coming out from a specially designed thermoelectrically heatable 

mini-furnace, assembled inside the cryostat (APD Cryogenics, model DE-202A) 

chamber, and large excess of the matrix gas (argon, N60; xenon, N48, both obtained 

from Air Liquide) onto a CsI substrate cooled to 10 K (for argon matrices) and 20 K 

(for xenon matrices). The IR spectra were recorded with 0.5 cm
-1 

spectral resolution in 

a Mattson (Infinity 60AR Series) Fourier transform infrared spectrometer, equipped 

with a deuterated triglycine sulphate (DTGS) detector and a Ge/KBr beam splitter. 

Necessary modifications of the sample compartment of the spectrometer were done in 

order to accommodate the cryostat head and allow purging of the instrument by a 

stream of dry nitrogen, to remove water vapors and CO2.  
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Irradiation of the matrices was carried out with unfiltered light from a 500 W 

Hg(Xe) lamp (Newport, Oriel Instruments), with output power set to 200 W, through 

the outer KBr windows of the cryostat ( > 235 nm). 

 

 

Computational Methods 

 

A systematic preliminary conformational exploration of the MACBP potential 

energy surface (PES) was performed using the semi-empirical PM3 method
56,57

 and 

the HyperChem Conformational Search module (CyberChem, Inc. © 2004).
58

 These 

calculations provided a quick assessment of the main features of the conformational 

space of the molecule, which were later on taken into account in the subsequent 

analysis performed at higher level of theory. Taking into account the high flexibility 

of the MACBP molecule, a random search appeared as the most appropriate way to 

perform the conformational search.
59-61

 The program generates starting conformations 

for energy minimization using a random variation of the conformationally relevant 

dihedral angles obtained for previously located minima.
60,61

 The method searches on 

until no new minima are generated. The same approach was used in the structural 

studies performed for the conformationally flexible photoproducts of MACBP, 

specifically the azirine (MBCAC) and ketenimine (CBMK) photoproducts. For all 

three compounds 30000 initial structures were generated by varying the relevant 

dihedral angles, and the structures corresponding to the 25 (18 for CBMK) lowest 

energy unique minima were saved and used as input geometries for the subsequent 

higher level calculations undertaken with Gaussian 03
62

 at the DFT level of theory, 

using the split valence triple- 6-311++G(d,p) basis set
63

 and the three-parameter 

B3LYP density functional.
64,65

 Structures were optimized using the Geometry Direct 

Inversion of the Invariant Subspace (GDIIS) method.
66,67

 Transition states for 

conformational interconversions were determined at the same level of approximation, 

with help of the synchronous transit-guided quasi-Newton (STQN) method.
68

 

In order to assist the analysis of the experimental infrared (IR) spectra, vibrational 

frequencies and IR intensities were also calculated at the same level of theory. The 

computed harmonic frequencies were scaled down by a single factor (0.978) to correct 

them for the effects of basis set limitations, neglected part of electron correlation and 
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anharmonicity effects. The nature of stationary points on the potential energy surface 

was checked through the analysis of the corresponding Hessian matrix. 

Normal coordinate analysis was undertaken in the internal coordinates space, as 

described by Schachtschneider and Mortimer
69

 and the optimized geometries and 

harmonic force constants resulting from the DFT(B3LYP)/6-311++G(d,p) 

calculations. The internal coordinates used in this analysis were defined following the 

recommendations of Pulay et al..
70

 

 

 

Results and Discussion 

 

Molecular structures and relative energies of MACBP conformers. 

MACBP has four conformationally relevant rotational axes defined by the 

N4=N3C2=C1, O8=C7C2=C1, C16C14C1=C2 and C17C16C14C1 dihedral angles. 

The s-cis conformation of a methyl ester group (C10O9C7=O8 equal to ~0º) is well-

known
71-73

 to be considerably more stable than the s-trans one (C10O9C7=O8 equal 

to ~180º) and only structures with the first type of arrangement were taken into 

account (s-trans methyl ester minima can be expected to be at least 25 kJ mol
-1

 higher 

in energy than the s-cis forms
71-73

). After re-optimizing at the DFT(B3LYP)/6-

311++G(d,p) level of theory the structures obtained from the preliminary semi-

empirical random conformational search, fourteen different minima were found on the 

PES of the molecule with relative energies within 19 kJ mol
-1

. These minima 

correspond to 7 pairs of equivalent-by-symmetry conformers, all of them belonging to 

the C1 symmetry point group. Table 1 displays the predicted relative energies 

(including zero-point corrections) of these conformers.  

According to the calculations, conformers II and III are 3.95 and 5.40 kJ mol
-1

 

higher in energy than the most stable conformer I (Figure 1). The remaining forms 

(conformers IV to VII; Figure S1 in the Supporting Information) have calculated 

relative energies at least 12 kJ mol
-1

 higher than that of conformer I, and as a whole 

are predicted to constitute less than 1.0% of the total conformational population in gas 

phase at room temperature (see Table 1).  
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Table 1. DFT(B3LYP)/6-311++G(D,P) Calculated Relative Energies (E0/ Kj Mol
-1

), 

Including Zero-Point Vibrational Contributions, and Predicted Relative Populations for the 

Conformers of MACBP. 

Conformer 
a
 E0 Population (%) 

  T= 298 K T= 323 K 

I   0.00 75.3 72.4 

II   3.95 15.3 16.6 

III   5.40   8.5   9.7 

IV 12.73   0.4   0.6 

V 14.07   0.3   0.4 

VI 15.26   0.2   0.2 

VII 18.71 ~0.0   0.1 
   a

 See Figures 1 and S1 (Supporting Information) for structures of the conformers. 

 

 

The calculated optimized geometries for the three most stable conformers are 

given in Table S1 (Supporting Information). In the description of the structures of the 

conformers, the position of the azide (-N=NN), carboxylic ester (-COOCH3) and 

benzoyl (-C6H5C=O) groups will be considered in relation to the central C1=C2 double 

bond.  

Rotation around the N3C2 bond defines the relative orientation of the azide 

group in relation to the C2=C1 double bond. The calculations show that the orientation 

of the azide moiety allows us to divide the conformers into two groups: one where the 

azide is in an almost trans orientation, to which the three lower energy conformers 

belong (I, II and III, where the N4=N3C2=C1 dihedral angle is 171.0º, 160.1 and 

+155º, respectively), and the other where the azide in an nearly cis orientation 

(N4=N3C2=C1 dihedral angle of ca. ±40º), to which the higher energy conformers 

(IV-VII) belong. The higher energy of conformers IV-VII can then be associated with 

unfavorable interactions between the closely located azide and chlorine substituents in 

these forms. 

The carboxylic ester group can be arranged in a cis (O8=C7C2=C1 ~0º) or trans 

(O8=C7C2=C1 ~180º) orientation towards the central double bond, while the benzoyl 

group exhibits a quasi-planar configuration and assumes a nearly perpendicular 

geometry in relation to the main molecular plane in all conformers. Among the three 

most stable conformers (see Figure 1), conformer I presents the unique arrangement 

of its carboxylic ester in the trans orientation relative to the C2=C1 bond, while in II 

and III this group adopts the cis arrangement. For the higher energy conformers, the 
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carboxylic ester group is cis in conformers IV and VI and trans in conformers V and 

VII. 

According to calculations, repulsive interactions between the azide and 

carboxylic ester groups should be considered the main factor determining the relative 

stability of the three lower energy conformers of MACBP. In conformer I, it is the 

carbonyl oxygen (O8) which interacts with the azide group, whereas in conformers II 

and III the interaction involves the methoxyl oxygen atom (O9). The calculated 

atomic polar tensor (APT) charges
74

 for the three conformers are shown in Table 2. 

From this table, it can be noticed that O9 is more negatively charged than O8, so that 

the N3
…

O9 electrostatic repulsion in II and III is more important than the N3
…

O8 

electrostatic repulsion in I. In addition, the N3
…

O8/9 contact distances decrease in the 

order I (285.8 pm) > II (276.7 pm) > III (275.5 pm), also contributing to make the 

N3
…

O8/9 repulsive electrostatic interaction more important in the order III > II > I. 

 

 
Table 2. DFT(B3LYP)/6–311++G(D,P) Calculated Atomic 

Polar Tensor (APT) Charges on Atoms (With Hydrogens 

Summed Into Heavy Atoms) for Conformers I, II and III of 

MACBP.
a
 

 
APT charges/ e 

Atom I II III 

C1 0.117 0.182 0.218 

C2 0.249 0.205 0.176 

N3 –0.905 –0.883 –0.882 

N4 1.164 1.127 1.130 

N5 –0.618 –0.617 –0.616 

Cl6 –0.314 –0.304 –0.298 

C7 1.196 1.236 1.233 

O8 –0.746 –0.715 –0.729 

O9 –0.818 –0.911 –0.897 

C10 0.465 0.483 0.482 

C14 1.208 1.210 1.192 

O15 –0.789 –0.800 –0.798 

C16 –0.339 –0.342 –0.332 

C17 0.068 0.110 0.103 

C18 –0.051 –0.052 –0.046 

C19 0.061 0.061 0.058 

C20 –0.052 –0.055 –0.052 

C21 0.104 0.065 0.058 
a 
See Figure 1 for atom numbering. 1e = 1.60217646 

× 10
–19

 C.  
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It is interesting to point out that the crystal structure determined by X-ray 

diffraction of the analogous bromo-substituted compound, methyl (Z)-2-azido-3-

bromo-3-benzoyl-propenoate
41

 bears great similarity to the second stable conformer 

(II) of MACBP. In the bromo-substituted molecule, the N4=N3C2=C1, O8=C7C2=C1 

and C16C14C1=C2 dihedral angles were found to be 162.7(6)º, 14.4(10)º and 

102.0(10)º, which can be compared with the values for the same dihedral angles 

calculated for conformer II of MACBP (160.1º, 19.6º and 106.6º, respectively).  

 

Matrix isolation infrared spectra of as-deposited matrices. As shown in the 

previous section, the calculations predicted three experimentally relevant conformers 

of MACBP in gas phase: conformers I, II and III, with estimated relative energies of 

0.0, 3.95 and 5.40 kJ mol
-1

, respectively. At the sublimation temperature used to 

prepare the cryogenic matrices (T= 323 K) the estimated gas phase equilibrium 

Boltzmann populations are 72.4%, 16.6% and 9.7% (see Table 1). The combined 

populations of the higher energy conformers (IV-VII) are 1.3 % and therefore these 

forms are of no practical interest for our study. 

Another important piece of information for interpretation of the matrix-

isolation experimental spectroscopic results described in this section is the knowledge 

of the energy barriers for interconversion between the conformers whose abundance in 

the gas phase prior to deposition is significant. This is because when a higher energy 

conformer is separated from a lower energy form by a small barrier (of a few kJ mol
-1

) 

the higher energy form can be converted into the lower energy form during matrix 

deposition, since the thermal energy available in the gaseous beam might be enough to 

allow surpassing of the barrier during the landing of the molecules onto the cold 

substrate of the cryostat (conformational cooling effect
75-82

). The energy barrier 

between IIIII was indeed found to be extremely low, amounting only to ca. 0.03  

kJ mol
-1

 (1.4 kJ mol
-1

 in the opposite direction), indicating that conformer III shall 

relax into conformer II during matrix deposition. On the other hand, the energy barrier 

separating forms I and II is ~15 kJ mol
-1

 (for III; ca. 19 kJ mol
-1

 in the reverse 

direction). With an energy barrier of this magnitude, the III conversion cannot 

occur during deposition of the matrices at the deposition temperatures used  

(10-20 K)
75-82

, so that we can expect experimental observation of both conformers I 

and II in the matrices, the latter with a population equal to the sum of the populations 
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of conformers II and III in the gas phase before deposition. The expected I:II 

population ratio in the matrices is then 72.4 : 26.3, i.e., nearly 3:1.  

Figure 2 shows the infrared spectra of MACBP isolated in both solid argon 

and xenon (as-deposited matrices; nozzle temperature 50 ºC, substrate temperature: 

argon, 10 K, xenon, 20 K), together with the calculated spectra for conformers I and 

II and the simulated spectrum of the predicted conformational mixture in the matrices 

assuming the relative abundances equal to 72.4 : 26.3. In the simulated spectra, bands 

were represented by Lorentzian functions centered at the calculated wavenumbers 

(scaled by 0.978) and with fwhm (full width at half maximum) equal to 2 cm
-1

 (see 

Experimental Section for methodology used in the matrix isolation experiments).  

The spectra obtained in argon and xenon matrices look very similar and they 

are generally well reproduced by the simulated spectrum. The proposed assignments 

for the fundamental bands are given in Table 3. MACBP has 72 fundamental 

vibrations, all of them active in the infrared. The definition of the internal coordinates 

adopted in the performed vibrational analysis is provided in Table S2 (Supporting 

Information). The calculated wavenumbers, infrared intensities and potential energy 

distributions resulting from normal mode analysis carried out for the two 

experimentally relevant conformers are presented in Tables S3 and S4 (Supporting 

Information). 

Due to the similarity of the spectra of the two conformers, secure assignment 

of bands to a unique conformer is not possible, except in the 1270-1230 cm
-1

 spectral 

range, where the calculations predict a different pattern for the spectral profile of the 

two forms (see Figure 2). Besides the azide anti-symmetric stretching band observed 

as an intense band at ~2130 cm
-1

 (both in argon and xenon), the bands in the 1270-

1230 cm
-1

 range are the most intense of the spectra. These bands are due to the C–O 

ester (also with some contribution from the stretching of the adjacent C–C bond; 

notated as C–C E in Table 3) and C14–C16 (designated as C–CPh in Table 3) 

stretching modes. The higher frequency band, observed in argon matrix at 1267/1261 

cm
-1

 (1268/1262 cm
-1

 in xenon) is due to the ester C–O stretching in conformer I, 

which is predicted to occur at 1251 cm
-1

 with an intensity of 324.0 km mol
-1

 by the 

calculations. The middle band observed in this region (1251 cm
-1

 in argon and 1249 

cm
-1

 in xenon) is due to the same mode in conformer II, where it is predicted by the 

calculations to occur at 1238 cm
-1

 with an intensity of 595.2 km mol
-1

. The lower 
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frequency band (1240 cm
-1

 in argon; 1237 cm
-1

 in xenon) results from the absorption 

of the C14–C16 stretching mode in the two conformers. This last vibration is predicted 

at 1231 cm
-1

 with an intensity of 413.1 km mol
-1

 in form I, and at 1230 cm
-1

 with an 

intensity of 141.9 km mol
-1

 in form II, so that the predominant contribution to the 

band is due to conformer I.  
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Figure 2. Top (two panels): Infrared spectra of MACBP isolated in solid argon and xenon (as-deposited 

matrices; temperature of the deposited vapor: 323 K; substrate temperature during deposition: argon, 10 

K, xenon, 20 K); Bottom: DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra of MACBP 

conformers shown as stick spectra (wavenumbers scaled by 0.978): I (open triangles, ) and II (black 

circles, ); Middle: simulated spectrum of the expected gas phase equilibrium conformational mixture 

at 323 K,  built by adding the calculated spectrum of conformers I and II with intensities scaled by their 

predicted populations (72.4% for conformer I and 26.3% for conformer II; see text). In the simulated 

spectra, bands were represented by Lorentzian functions centered at the calculated wavenumbers 

(scaled by 0.978) and with fwhm (full width at half maximum) equal to 2 cm
-1

. 
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Table 3. Experimental (Matrix-Isolation) and Calculated Vibrational Data for MACBP 

with Vibrational Assignments Based on the Results of Normal Coordinate Analysis.
a
 

Experimental  Calculated  

Ar matrix Xe matrix Conformer I Conformer II 
Approximate  

descriptionb 

ν ν ν IIR ν IIR  

3109 3101 3129 7.8 3131 7.2 (C-H5); (C-H1) 
3095/3093 3087 3124 7.4 3123 8.6 (C-H1); (C-H4) 

3074/3068 3064 3115 15.5 3115 18.2 (C-H4); (C-H5) 

3042 3037 3107 5.6 3107 5.5 (C-H2) 
3038 3030 3100 6.9 3100 8.5 CH3 as´ 

  3097 0.1 3097 0.2 (C-H3) 

3021/3012 3001 3067 10.0 3067 11.2 CH3 as´´ 
2967/2964 2951 2991 24.1 2991 25.2 CH3 s 

2158/2134/2109 2153/2130 2213 981.7 2212 972.7 (N=N) as 

1746 sh/1742/1740 1739/1737/1735 sh 1734 274.2 1739 156.0 (C=O) E 
1697/1689/1679 1692/1684/1676 1696 214.9 1699 252.4 (C=O) Ph 

1611/1607 1610 1603 81.2 1603 71.2 Ph3 

1605/1597 1604 1596 140.3 1595 162.4 (C=C) 
1589/1586 1585/1582 1583 16.5 1584 14.7 Ph4 

1492 1491 1486 0.8 1487 0.9 (C-H2) 

1461 (II);  
1459 (I) 

1455/1453 (II);  
1451 (I) 

1461 10.6 1463 8.7 CH3 as´ 

1453/1449 1443 1451 7.5 1451 10.8 CH3 as´´ 

  1447 18.3 1447 16.8 Ph6, (C-H3) 
1442/1441/1439 sh 1438/1436 sh 1437 25.2 1439 21.5 CH3 s  

1356/1341 1353/1348/1341 1370 194.6 1372 265.6 (N=N) s 

1317/1315 1315 1323 3.5 1323 3.8 (C-H1) 
1311/1307 1311 1309 17.2 1310 16.3 Ph2 

1267/1261 (I);  

1251 (II) 

1268/1262 (I);  

1249 (II) 

1251 324.0 1238 595.2 (C-O), (C-Cα) E  

1240 1237 1231 413.1 1230 141.9 (C-C Ph) 

1194 1194/1192 1185 8.5 1186 18.9 CH3´ 

1180/1177 1178/1175/1174 1171 55.2 1172 52.4 (C-H4) 
1158/1156/1155 1159 1159 1.5 1158 1.0 (C-H5) 

. . 1144 1.7 1147 0.9 CH3´´ 

1132 1131 1119 72.5 1115 33.5 (C-O), (O-CH3) 
1074 1073 1082 6.7 1082 5.5 Ph6 

1061 (I); 1047 (II) 1059 (I); 1045 (II) 1041 53.7 1036 50.5 Ph5, (C-C)  

1026 1023 1019 29.2 1018 40.6 Ph1 
  994 1.1 994 1.1 Ph1 

1002/998 1000/996 992 0.1 990 8.6 (C-H5) 

  977 0.6 975 0.2 (C-H4)  
  - - 986 57.4 (O-CH3) 

975/971 (I) 969/962 (I) 958 26.1 - - (O-CH3) 

935 934 935 1.3 933 0.2 (C-H3) 

918 (I); 906 (II) 910 (I); 906 (II) 889 16.5 865 12.1 (C-Cl) 

842 841 843 0.8 841 0.5 (C-H2) 

  
834 40.1 829 67.7 

(C=O), (C-N); 

(C-N)  

799/798 798/796 795 33.1 792 20.7 (C=O) 

783/776 780/773 775 15.4 771 17.6 (C=O) E 
746 746 742 17.3 737 8.5 (C=O) E, (OCO); 

(C=O) E, (C-Cl) 

702/697/693 702/692/689 690 91.9 686 74.4 (C-H1) 
679 677 677 11.9 674 20.6 Ph1 

668/665/663 670/666/662 665 46.3 664 25.4 Ph3; (NNN), 

(OCO) 
659 (II) 660/659 (II) - - 655 68.6 (NNN) 

653 (I) 653 (I) 643 33.7 - - Ph3 

621 622 617 0.4 622 8.1 Ph2; (CCCPh),  

(C-Cl) 
614/610 613/610 614 5.1 616 2.4 (C-Cl); Ph2 

530 526 516 4.0 522 7.5 (NNN) 

       
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1). b In the approximate description, the 

symbol “;” separates the description for I and II, when they are different, while “,” indicates that the 

approximate description for a given mode has more than one relevant contributing coordinate; , bond 

stretching, , bending, , rocking, , torsion, s, symmetric, as, asymmetric, Ph, phenyl ring, E, ester; sh, 

shoulder, n.obs., not observed. See Table S2 (Supplementary Information) for definition of internal coordinates 

and Tables S3 and S4 (Supplementary Information) for potential energy distributions.   
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Very interestingly, compared with the simulated spectrum, the intensity of the 

C–O stretching band of form II appears larger in the experimental spectra in relation 

to both the C–O stretching band of form I and that assigned to C14–C16 stretching 

mode (which, as stated above, has also a predominant contribution of this latter 

conformer). Furthermore, the relative intensification of the band due to conformer II 

is greater in the spectrum obtained in xenon than in argon (see Figure 2). These 

observations cannot be interpreted as an indication of partial conversion of I into II 

during deposition of the matrices, since the calculated barrier is large enough to 

prevent this isomerization and, more importantly, if any isomerization between these 

two conformers could take place (e.g., in case the isomerization barriers in the 

matrices were much smaller than in gas phase), this would have to occur exactly in the 

opposite direction, i.e., the less stable conformer II would have to be converted into 

the most stable form I. Moreover, this hypothetical conversion would have to occur in 

larger extent during deposition of the xenon matrix than during deposition of the 

argon matrix, both because xenon is well-known to be a better matrix medium for 

conformational cooling to take place than argon, and because the temperature of the 

cold window of the cryostat was kept at a higher temperature in the xenon 

experiments than in the argon ones.
75-82

 Experimental observations show exactly the 

opposite trend, thus requiring a different explanation. 

According to the calculations, the C–O ester bond is highly polarized in both 

conformers (see Table 2). However, it is considerably more polarized in conformer II, 

since the positive charge in the C7 is larger in this form and the charge in O9 is also 

more negative in conformer II than in I. These results are in agreement with the 

calculated relative infrared intensities of the C–O bands: intense bands are predicted 

for this mode in both conformers, but the intensity in conformer II (595.2 km mol
-1

) is 

almost twice that in conformer I (324.0 km mol
-1

). This means that the C–O ester 

bond in II is also more sensitive to the polarizability of the media than the same bond 

in conformer I, being additionally polarized in greater extent in more polarizable 

media. Consequently, the relative infrared intensities of the C–O stretching modes in 

conformer II compared to form I can be expected to grow in the order: gas phase < 

argon matrix < xenon matrix, as observed experimentally. 

Assignment of a few other less intense bands to a single conformer was also 

attempted and is presented in Table 3, but they must be considered as tentative, e.g., 
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bands ascribed  uniquely to the less stable conformer (II) at 1461 (CH3 as´), 1047 

[phenyl ring stretching  vibration (Ph5, as defined in Table S2) mixed with  

(C1–C14)], 906 [(C–Cl)] and 659 cm
-1

 [NNN)] in argon, which in xenon appear at 

1455/1453, 1045, 906 and 660/659 cm
-1

, respectively.    

 

 

Photochemistry of matrix-isolated MACBP. Upon in situ broadband UV 

irradiation ( > 235 nm) of matrix-isolated monomeric MACBP, a significant 

decrease in the intensity of the bands of the compound was observed, while new bands 

due to photoproducts emerged. These changes were already clearly visible after 10 

min of irradiation, whereas more than 90% of the original compound was consumed 

after 450 minutes of irradiation of both argon and xenon matrices (see Experimental 

Section for methodology used in the matrix isolation experiments). Analysis of the 

kinetical profiles of the bands appeared upon photolysis provided essentially two 

distinct patterns: a) a set of bands starting to grow in the early stages of irradiation and 

then decreasing of intensity, and b) the remaining bands starting to noticeably increase 

of intensity later on and in a continuous way. This behavior is shown in Figures 3, 

which presents the infrared difference spectrum of the irradiated Xe matrix of 

MACBP obtained subtracting the spectrum after 40 min of irradiation from that 

collected after 690 min of irradiation (before subtraction, residual bands due MACBP 

were subtracted from the spectra of the irradiated matrix). Bands pointing down in this 

spectrum correspond to the initially formed species, while those pointing up are due to 

photoproducts appearing at a later stage of irradiation. Results obtained upon 

irradiation of the argon matrix were qualitatively identical (see Figure S3 in the 

Supporting Information). 

It can be seen in both Figures 3 and S3 that the spectrum of the initial 

photoproduct fits well that theoretically predicted for the postulated azirine, methyl 2-

benzoyl-2-chloro-2H-azirine-3-carboxylate (MBCAC; 2), while the set of bands 

corresponding to the species formed later on can be well reproduced by consideration 

of possible photoproducts of this latter compound, specifically, the oxazole derivative, 

methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (MCPOC; 6) and the ketenimine 

C-chloro-C-benzoyl-N-methoxycarbonylketenimine (CBMK; 7 in Scheme 2). No 

formation of the isoxazole derivative was observed upon photolysis, which supports 
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the conclusion
40

 that the vinyl nitrene species is not involved in the generation of 

ketenimine 7, which with all probability, is obtained from the starting azide via a 

Curtius type concerted rearrangement. Thus, the formation of 2H-azirine 2 and 

keteimine 7 are competitive processes, being the former a more favourable process, 

since with a short time of irradiation only the 2H-azirine is detected. 
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Figure 3. Top: Simulated IR spectrum of CBMK (most stable conformer); Middle top:  IR spectrum of 

MCPOC in xenon matrix (as deposited; 20 K); Middle bottom: IR difference spectrum of irradiated Xe 

matrix of MACBP (> 235 nm irradiated matrix during 690 min minus > 235 nm irradiated matrix 

during 40 min; before subtraction, residual bands due MACBP were subtracted from the spectra of the 

irradiated matrix); Bottom: simulated IR spectrum of MBCAC (most stable conformer). In the 

simulated spectra, bands were represented by Lorenztian functions centered at the DFT(B3LYP)/6-

311++G(d,p) calculated wavenumbers (scaled by 0.978) and with fwhm (full width at half maximum) 

equal to 2 cm
-1

 (in case of MBCAC, the spectrum was multiplied by –1).  
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Table 4 – Vibrational assignments of the bands observed in the UV irradiated matrices of MACBP.
a
 

 

Irradiated MACBP  

Ar matrix 

 

Irradiated MACBP  

Xe matrix 

 

 

Approximate 

descriptionb 
       

MCPOC  Ar matrix  Xe matrix   

ν ν ν  ν   

1764/1760/1753 1763/1758/1751 1769/1763/1751/1750  1763/1759/1748  (C=O) 

1541/1536/1530 1537 1541/1530  1535/1532/1529  Ox1 
1492 1490/1488 1492/1487  1489  (C-H2) 

1478/1472 1474 1479  1478/1474  CH3 as´ 

1456 1456 1460  1455  CH3 as´´ 
1450 1451/1448 1453/1452/1451/1450  1450/1444  (C-H3) 

1447 1443 1442  1439/1436  CH3 s 

1360/1358 1364/1340 1360/1358/1346  1361/1341  (C-H1); Ph2 

1317/1313/1300 1313/1310/1298 1332-1300  1330-1302  Ox2; (C-Cα) 
1226-1198 1223/1199 1215-1202  1213-1197  (C-CIR); (C-O); CH3´ 

1173/1168 1171/1163 1174/1172/1168/1166  1174/1170/1168/1163  CH3´; (C-O) 

1118 1114 1117  1118/1114/1110/1109  Ox5
1093/1085 1089 1096/1094  1095/1092/1090  Ph6

1034 1034 1041/1033  1038/1031/1027  Ph5

1018/1008 1015/1006 1020/1016/1008/1006  1016/1007/1005  Ox1
977 977 981  980  Ph1 

814 813 817/815  815/512  (OCO) 

778 776 781/778  778/775  (C=O) 
765 762 765  762  (C-H1) 

690  691  690  Ph3 

688 686 689/688/687  686  Ox1 
653 651 652  650/648  Ox2 

       

MBCAC  Calculated     

ν ν νc I    

1776 1772 1777 188.4   (C=N) A 

1742 1740 1752 144.7   (C=O) E 
1706/1696 1694 1697 193.8   (C=O) 

1608 1604 1602 42.6   Ph 

 1584 1582 11.0   Ph 
1464 1463 1460 9.5   CH3 as´´ 

1454 1454 1452 11.3   CH3 as´ 

1444 1442 1446 18.2   (C-H) Ph 
1438 1432 1439 12.8   CH3 s 

1322 1320 1322 29.8   (C-C) A 

1285 1283/1270/1262 1239 501.6   (C-CPh) 
1254/1244/1234 1251/1236/1232 1223 244.3   (C-O) 

1195 1194. 1178 38.2   (C-H) Ph 

1181 1175 1174 32.8   CH3´ 
1047 1045 1041 7.3   (C-C(=O)); (C-H) Ph 

1029/1025 1027/1021 1019 11.9   Ph 

990 975 971 44.9   (O-CH3) 

862  871 20.3   (C-N) A 
854 854 858 70.6   (C-Cl) 

 819 815 33.0   (OCO) 

785/773 784/771 767 17.7   A-E 
724 724 735 4.8   (C=O) E 

702/694 694 702 81.1   (C-H) Ph 

668/661 667/660 689 29.5   Ph 
 623 619 51.1   (CC=O) 

       

CBMK  Calculated     

ν ν νc I    

2059 2055 2077 875.3   C=C=N as 

1764 1763 1756 311.6   (C=O) E 
1680 1685 1682 350.9   (C=O) 

 1588 1601 19.5   Ph 

1440 1440 1441 45.7   CH3 s 
1378 1366 1366 123.2   C=C=N s 

1238 1242 1235 56.7   (C-CPh) 
d d 

1207 1042.2   (C-O) 
1187 1184/1178 1173 304.8   CH3´ 

1067  1055 198.1   (C-C(=O)); (C-H) Ph 

 823 816 60.3   (C-Cl) 
718/711 715/708 709 76.9   (C-H) Ph 

680 678 673 23.5   Ph 

643 643 643 28.7   (CC=O); (C=C=N) 
a Wavenumbers () in cm-1, calculated intensities (I) in km mol-1, , bond stretching, , bending, , rocking, , torsion, s, symmetric, 

as, asymmetric, Ox, oxazole ring, Ph, phenyl ring, A, azirine ring; E, ester, IR, inter-rings. b Approximate descriptions for MCPOC as 

in ref 83. c Scaled wavenumbers (0.978). d buried within the profile due to MCPOC bands.  
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The assignments of the bands due to the photoproducts are presented in Table 

4. It is worth mentioning that the spectrum of the photoproduced oxazole (MCPOC) in 

both argon and xenon matrices is well-known,
40,83

 so that the identification of this 

compound in the irradiated MACBP matrices was doubtless and band assignment 

followed that presented before.
83

 For example, bands at 1764/1760, 1753, 

1541/1536/1530, 1492, 1300 and 1173/1168 cm
-1

, in argon, with counterparts at 

1763/1758, 1751, 1537, 1490/1488, 1298 and 1171/1163 cm
-1

, in xenon, respectively, 

are intense characteristic bands of MCPOC.
83

 On the other hand, for both the azirine 

and ketenimine species no experimental data for the matrix isolated compounds were 

reported hitherto, so that their identification and band assignments were based on the 

comparison with theoretically predicted spectra obtained at the DFT(B3LYP)/6-

311++G(d,p) level of theory and on data for other molecules of the same 

families.
50,51,84-94

 Moreover, these two compounds have conformationally flexible 

molecules and, according to the structural calculations performed on these species, 

several low energy conformers exist in both cases. For the azirine, the calculations 

predicted the existence of five different conformers with relative energies within  

10 kJ mol
-1

. In the case of the ketenimine, the calculations yielded seven conformers 

with relative energies within the same limit. Nevertheless, the calculated infrared 

spectra of all low-energy forms predicted theoretically for each molecule were found 

to be quite similar, thus facilitating their experimental identification and band 

assignments. Figure 3 (and Figure S3, in Supporting Information) show only the 

spectra corresponding to the most stable conformer of each molecule, MBCAC and 

CBMK (see Figure S2 for structures of these forms), while the calculated data for 

these molecules shown in Table 4 also belong only to their most stable forms.  

Among the bands ascribed to MBCAC (see Table 4) the most intense ones 

were observed at 1776, 1742, 1706/1696, 1608, 1285, 702/694 and 668/661 cm
-1

 in 

argon (1772, 1740, 1694,1604, 1283/1270/1262, 694 and 667/660 cm
-1

 in xenon), 

corresponding to the (C=N) stretching of the azirine ring, (C=O) stretchings in ester 

and benzoyl fragments, the highest frequency stretching mode of the phenyl group, the 

stretching vibration of the C-CPh bond, and the all in phase rocking out-of-plane C-H 

deformation and a skeletal deformational mode of the phenyl group, which were 

predicted to occur at 1777, 1752, 1697, 1602, 1239, 702 and 689 cm
-1

,  respectively. 

The most characteristic band of CBMK was observed at 2059 cm
-1

 (argon) and 2055 
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(xenon) cm
-1

, and is ascribed to the ketenimine C=C=N antisymmetric stretching 

mode.
48-51,54,55

 

In the present study, among the species predicted to take part in the 

azide→oxazole photochemical conversion (see Scheme 1), only the nitrile ylide 5 

could not be doubtlessly observed, indicating that for the system under study this 

species is a quite unstable intermediate, which is promptly converted to the oxazole. 

The intrinsically strong band in infrared due to the antisymmetric stretching of the 

CN
+
C

–
 moiety of a nitrile-ylide appears usually at a characteristic frequency of about 

1950 cm
-1

.
48,49,54,55

 In both the infrared spectra of the photolyzed argon and xenon 

matrices of MACBP, the presence of such band could not be confirmed. 

 

 

Conclusions 

 

 The 3-azido-acrylophenone MACBP (or methyl (Z)-2-azido-3-chloro-3-

benzoyl-propenoate) has been shown to be a photochemical precursor of the related 

oxazole, methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate (MCPOC), in a reaction 

where the azirine and nitrile ylide work as intermediates. This reaction is accompanied 

by a second one leading to formation of the ketenimine C-chloro-C-benzoyl-N-

methoxycarbonylketenimine (CBMK). The non-observation of the corresponding 

isoxazole points to the concerted nature of the different steps leading to the observed 

final products. This also supports the idea that in the studied system the putative vinyl 

nitrene intermediate is not involved in the conversion of the azide into the azirine, as 

well as in the subsequent reactions of this latter. 

MACBP was synthesized, isolated in low temperature argon and xenon 

matrices and structurally and vibrationally characterized by infrared spectroscopy and 

quantum chemical calculations before execution of the photochemical studies. Seven 

different low energy conformers were found on the DFT(B3LYP)/6-311++G(d,p) 

PES, with the 3 lower energy forms (which correspond to the conformers predicted to 

have significant populations in the gas phase equilibrium at the sublimation 

temperature required to produce the cryogenic matrices) showing an orientation of the 

azide group in a nearly trans orientation. In the matrix isolation experiments, 

however, only the two most stable conformers of the compound (I and II) were 

observed, whereas conformer III was found to be totally converted into conformer II 
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during deposition of the matrices, a result that is in consonance with the very low 

energy barrier associated with the IIIII conversion (ca. 0.03 kJ mol
-1

).  
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ABSTRACT 

 

Methyl aziridine-2-carboxylate (MA2C) has been isolated in low temperature 

argon and xenon matrices and its structure and photochemistry were studied by FTIR 

spectroscopy. The reactant as well as the main photoproducts were characterized by 

comparison of their experimental IR spectra with the spectra calculated at the 

DFT(B3LYP)/6-311++G(d,p) level. The theoretical calculations predicted the 

existence of two low energy MA2C conformers differing by the orientation of the 

O=C−C−N dihedral angle. Both conformers were identified in the studied matrices. 

Upon broadband UV irradiation (  235 nm) of matrix-isolated MA2C, the most 

common photoreaction was observed: cleavage of the C−C bond of the aziridine ring. 

The primary photoproduct of this reaction, azomethine ylide, undergoes a [1,2]-shift 

of hydrogen atom rearranging into methyl 2-(methyleneamino)-acetate (MMAA). The 

same phototransformation was observed using narrowband UV laser irradiation at 235 

nm. Subsequent irradiation at 290 nm led to the observation of new bands resulting 

from further decomposition of the main photoproduct, MMAA. These bands fit well 

the spectrum of methyl formate. The spectra of the photolyzed matrices also show 

bands which result from non-identified photoproducts, possibly resulting from C−N 

cleavage of the aziridine.  
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Introduction 

 

 Aziridines are saturated three-membered heterocycles containing a nitrogen 

atom, which occur naturally and have innumerable applications.
1,2

 The best known 

examples of natural products containing an aziridine ring include biologically active 

compounds such as mitomycins, carzinophilin and azinomycins, which possess strong 

antibiotic and antitumor properties.
3-6

 Aziridines are also extremely versatile 

compounds used in the synthesis of molecules such as amino acids, nitrogen-

containing larger-ring heterocycles and alkaloids, chiral ligands, natural products, 

pharmaceutical intermediates, etc, via ring opening and ring expansion reactions.
1-18

 

In particular, aziridine-2-carboxylates and their derivatives have been used as 

intermediates in the syntheses of - and -amino acids, both natural and non-natural, 

by stereospecific ring-opening reactions of the heterocyclic ring with nucleophiles, 

including organometallic reagents.
19-24

 

 The reactivity of aziridines toward ring opening (either by C−N or C−C bond 

cleavage) and expansion relates to their extremely high ring strain (above 110  

kJ mol
−1

).
1,25,26

 The nature of the substituent at the N−atom plays a crucial role in the 

nucleophilic ring opening of aziridines through C−N bond cleavage, as aziridines are 

classified into two groups, “activated” and “nonactivated”.
1,2,9,26

 The first group 

includes electron-withdrawing substituents such as tosyl or acyl functional groups,
15,21

 

which can stabilize the negative charge of the nitrogen atom and increase the 

reactivity of aziridine rings towards nucleophiles. In the case of the nonactivated 

group, non-oxygenated substituents such as the hydrogen atom, alkyl or aryl 

functional groups, the aziridine ring is more stable and less reactive towards 

nucleophiles, thus a Lewis acid catalyst is frequently employed.
13,14,18

 

 Aziridines can also undergo ring opening involving carbon-carbon bond 

cleavage in a conrotatory (thermolysis) or disrotatory (photolysis) process yielding 

azomethine ylides (see Scheme 1). The latter can undergo 1,3-dipolar cycloadditions 

or, less frequently observed, addition to nucleophiles.
27-32

 The matrix isolation 

technique was previously applied in the identification and characterization of 

azomethine ylides resulting from the photochemical C−C bond cleavage of phenyl-

substituted aziridines in Freon matrices at 77 K.
33

 However, it is not yet understood 

how different substituents in the aziridine ring influence the preference for the carbon-

nitrogen or the carbon-carbon bond cleavage reactions.
34-36
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Scheme 1. The carbon-carbon bond cleavage in aziridine yields azomethine ylide. The ring-opening 

processes induced by thermolysis (bottom) and photolysis (top) are conrotatory and disrotatory, 

respectively. 
 

 

In the present study, we report on the UV-induced photochemical behaviour of 

a compound that belongs to the class of non-activated aziridines (bearing hydrogen 

atoms at the ring nitrogen and one of the ring carbon atoms), having a carboxylate 

substituent at the aziridine ring. Monomers of methyl aziridine-2-carboxylate (MA2C) 

were isolated in inert cryogenic matrices and their unimolecular photochemistry was 

followed by the interpretation of the IR spectra of the starting compound and of the 

resulting photoproducts. In addition to ring-opening photoreactions, UV irradiation 

using laser light was found to lead to the observation of new products originating from 

a secondary photoreaction involving MMAA (the dominant photoproduct resulting 

from C−C bond cleavage). We also performed a detailed theoretical investigation of 

the potential energy surfaces of MA2C and of the possible photoproducts resulting 

from both C−C and C−N bond cleavage of the aziridine ring at the DFT(B3LYP)/6-

311++G(d,p) level. To the best of our knowledge, no studies on matrix-isolated 

MA2C and its photochemistry have been reported hitherto.  

 

 

Experimental and Computational Methods 

 Methyl aziridine-2-carboxylate (MA2C) (97% purity) was purchased from TCI 

Europe. Prior to usage, MA2C was additionally purified by the standard freeze-pump-

thaw technique. The MA2C vapors were premixed with argon and xenon (N60 and 

N48, respectively, both supplied by Air Liquide) at a ratio of 1:1000 in a 3 L Pyrex 

glass reservoir to a pressure of 800 mbar, using the standard manometric procedure. 

During the experiments, the flux of the mixture was controlled by reading the drop 

pressure in the reservoir with a capacitance manometer. The pulsed valve controller 
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allows different operating modes to define the sample introduction rate. In a typical 

experiment, the valve operated with an opening time of 5 ms and pulse frequency of 

12 Hz during 1000 to 3000 seconds. Matrices were prepared by deposition of the 

mixture onto a CsI substrate cooled to 15 K (Ar) and 30 K (Xe) assembled inside the 

cryostat (APD Cryogenics closed-cycle helium refrigeration system) with a DE-202A 

expander. The temperature of the (MA2C : inert gas) mixture prior to deposition was 

297 K and this temperature defined the conformational composition of MA2C 

monomers.  

 The IR spectra, in the 4000-400 cm
−1

 range, were obtained using a Mattson 

(Infinity 60AR Series) or a Thermo Nicolet 6700 Fourier transform infrared 

spectrometers, equipped with a deuterated triglycine sulphate (DTGS) detector and a 

Ge/KBr beam splitter, with 0.5 cm
−1

 spectral resolutions. To avoid interference from 

atmospheric H2O and CO2, a stream of dry air was continuously purged through the 

optical path of the spectrometer. 

 Matrices were irradiated using two sources. The broadband irradiation was 

carried out with UV light from a 500 W Hg(Xe) lamp (Newport, Oriel Instruments), 

with output power set to 200 W, through the outer KBr window of the cryostat. A 

series of longpass optical filters, transmitting UV-light with   397, 367, 328, 313 

and 288 nm, was used. No change was observed in the spectra of MA2C upon 

irradiation under these conditions. Photochemical changes were observed only without 

longpass filters, i.e., for  > 235 nm (this value is defined by the absorbance edge of 

KBr in UV). Matrices were also irradiated with tunable UV light provided by the 

frequency doubled signal beam of the Quanta-Ray MOPO-SL pulsed (10 ns) optical 

parametric oscillator (FWHM ~0.2 cm
-1

, repetition rate 10 Hz, pulse energy ~1.0 mJ) 

pumped with a pulsed Nd:YAG laser.  

The quantum chemical calculations were performed using the Gaussian 03 

program package
37

 at the DFT level of theory, using the split valence triple- 

6-311++G(d,p) basis set
38

 and the three-parameter B3LYP density functional, which 

includes Becke’s gradient exchange correction
39

 and the Lee, Yang and Parr 

correlation functional.
40

 In the case of the MA2C, the structures of conformers, 

optimized at the DFT and MP2 levels, were confirmed to correspond to true minima 

on the potential energy surface, through the analysis of the corresponding Hessian 

matrices. 
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The calculated vibrational frequencies and IR intensities were also used to 

assist the analysis of the experimental spectra. The computed harmonic frequencies 

were scaled down by a single factor (0.978) to correct them for the effects of basis set 

limitations, neglected part of electron correlation and anharmonicity effects. The 

transition states structures and energy barriers were located using the synchronous 

transit-guided quasi-Newton (STQN) method.
41

  

In addition, relaxed potential energy scans and two-dimensional potential 

energy maps were calculated to locate all the minima of the possible photoproducts 

resulting from ring-opening reactions (C−C and C−N bond cleavage) aiding in a more 

detailed characterization. All structures corresponding to the stationary points (both 

transition states and local minima) were optimized and the harmonic vibrational 

frequencies and infrared intensities were calculated at the DFT(B3LYP)/6-

311++G(d,p) level. 

Normal coordinate analysis was undertaken in the internal coordinates space, 

as described by Schachtschneider and Mortimer
42

 using the optimized geometries and 

harmonic force constants resulting from the DFT(B3LYP)/6-311++G(d,p) 

calculations. The internal coordinates used in this analysis were defined following the 

recommendations of Pulay et al.
43

 

 

 

Results and Discussion 

 

Calculated structures 

The MA2C molecule has one chiral center, carbon atom C3 (see Figure 1 for 

atom numbering). The geometric parameters of MA2C reported in this work refer to 

the S-enantiomer. 

 MA2C has three intramolecular degrees of freedom that lead to different 

conformers. These are: (i) rotation of the ester group around the exocyclic C1−C3 

bond; (ii) rotation of the methoxy group around the C1−O10 bond; (iii) pyramidality at 

the nitrogen atom. The three above listed coordinates can assume two minimum-

energy orientations each. They correspond approximately to cis and trans orientations 

around the (i) O2=C1−C3−N4; (ii) O2=C1−O10−C11; and (iii) H9−N4−C3−C1 dihedral 

angles, respectively. The latter coordinate is related with the sp
3
 hybridization of N4 

that renders two possible orientations of the NH group with respect to the plane of the 
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aziridine ring. The combinations of all possible orientations produce eight unique 

minima for the MA2C monomer (the optimized structures of the higher energy 

conformers of MA2C are shown in Figure S1 in the Supporting Information). The 

relative calculated energies of the eight conformers are presented in Table 1, and the 

main conformational dihedral angles are presented in Table 2. The Cartesian 

coordinates for calculated optimized geometries of the eight conformers are given in 

Table S1 (Supporting Information). 

 

 

 

 

 

 

 

 

 

 

Figure 1. DFT(B3LYP)/6-311++G(d,p) optimized structures of the two most stable conformers of 

methyl aziridine-2-carboxylate (MA2C), with atom numbering adopted in this work. Color codes: 

carbon – grey, hydrogen – white, oxygen – red, nitrogen – blue. 

 

 

The theoretical calculations carried out at the DFT(B3LYP)/6-311++G(d,p) 

level predicted the existence of two low-energy minima, both belonging to the C1 

symmetry point group (see Figure 1).  In both conformers, the O=C−O−CH3 group is 

in the cis orientation and the N−H bond is positioned in an anti orientation regarding 

the C3−H6 bond of the aziridine ring. Such orientation signifies that the NH and the 

ester groups are positioned on the same side of the aziridine ring and the NH group is 

in a close vicinity of one of the oxygen atoms. This fact results in a stabilizing 

interaction of the NH group with either the lone electron pairs of C=O group (in 

conformer I) or the lone electron pairs of C−O group (in conformer II). Higher energy 

structures were obtained when the ester group is in a trans orientation (O=C−O−CH3 

dihedral angle is about 180°) or the N−H bond is in a cis position regarding the C3−H6 

bond of the aziridine ring (see Figure S1).    
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Table 1  DFT(B3LYP)/6-311++G(d,p) and MP2/6-311++G(d,p) calculated relative energies (E/ 

kJ mol
-1

) including zero-point contributions and calculated relative Gibbs energy difference (G/ kJ 

mol
-1

) for the eight conformers of MA2C. 

Conformera EDFT EMP2 GDFT GMP2 

I 0.0 0.0 0.0 0.0 

II 6.4 5.9 6.3 5.9 

III 12.6 12.2 12.6 12.2 

IV 14.6 13.6 13.4 13.6 

V 33.1 33.6 33.4 33.6 

VI 50.4 48.5 48.5 48.5 

VII 54.8 56.3 52.2 56.3 

VIII 73.5 73.1 73.1  
   a

 See Figure 1 and Figure S1 for optimized structures of the conformers of MA2C. 

 

 

Table 2  DFT(B3LYP)/6-311++G(d,p) and MP2/6-311++G(d,p) calculated values for the main 

conformational dihedral angles (º) of the eight conformers of MA2C.
a 

 

Conformer  O2=C1–C3–N4  O2=C1–O10–C11  H9−N4−C3−C1 

  DFT MP2  DFT MP2  DFT MP2 

I  21.2 22.4  0.7 0.6  3.6 4.1 

II  158.3 157.5  1.4 1.8  4.8 5.1 

III  42.3 40.3  0.2 0.3  145.9 147.6 

IV  141.6 141.6  2.3 2.3  143.0 144.7 

V  12.5 11.6  175.3 173.2  145.9 2.8 

VI  100.6 100.9  173.8 171.5  146.3 147.7 

VII  173.8 166.5  165.9 160.6  146.1 147.5 

VIII  140.9   147.8   12.1  
a
 See Figure 1 for the optimized structures of the two most stable conformers of MA2C and for atom 

numbering; see Figure S1 for high-energy conformers of MA2C. 

 

   

 The energy (including the zero-point correction) of form II is higher by  

6.4 kJ mol
−1

 (5.9 kJ mol
−1

 at MP2 level) than the most stable form. The relative Gibbs 

free energies are identical to the electronic energy (6.3 and 5.9 mol
−1

 at the DFT and 

MP2 levels, correspondingly). Considering the calculated relative stabilities of I and 

II, their expected populations in the equilibrium gas phase at room temperature 

(taking into account the relative Gibbs free energies) should be 92.7 and 7.3%, 

respectively. The calculated energy barrier between these two conformers is no less 

than ca. 20 kJ mol
−1

 in all directions. Figure 2 shows the potential energy profile 

associated with the internal rotation of the ester group around the exocyclic C1−C3 

bond corresponding to the interconversion between the two most stable conformers. 

Therefore, the relatively high energy barriers prevent occurrence of the 
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conformational cooling during deposition of the matrices,
44-46

 and the two conformers 

present in the gas phase are expected to be effectively trapped in the samples. Other 

MA2C conformers have calculated energies higher than 12 kJ mol
−1

 and are not 

experimentally relevant (see Table 1). 
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Figure 2. Calculated DFT(B3LYP)/6-311++G(d,p) potential energy profile for internal rotation of the 

ester group around the exocyclic C1−C3 bond corresponding to the interconversion between the two 

most stable conformers of MA2C. 

 

 

Infrared spectroscopy: matrix isolation (as-deposited matrix) 

 The infrared spectra of MA2C monomers isolated in freshly deposited argon 

and xenon matrices are presented in Figure 3a and 3b. The theoretical spectra of the 

two most stable conformers calculated at the DFT(B3LYP)/6-311++G(d,p) level are 

also shown for comparison (Figure 3d). Intensities in the stick spectra were not scaled, 

however, in the simulated sum spectrum (Figure 3c) intensities were weighted by their 

expected populations (0.927 for conformer I and 0.073 for conformer II).  

The good agreement between the experimental infrared spectra and the 

calculated spectra allowed an easy assignment of the fundamental bands (see Table 3). 

The definition of the internal symmetry coordinates adopted in the vibrational analysis 

for the two most stable conformers of MA2C is provided in Table S2 (Supplementary 

Information). The calculated wavenumbers, infrared intensities and potential energy 

distributions resulting from normal mode analysis, carried out for these conformers 
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are presented in Tables S3 and Table S4 (Supplementary Information). The MA2C 

molecule belongs to the C1 symmetry point group with 36 fundamental vibrations, all 

of them active in the infrared. 
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Figure 3. Experimental FTIR spectra of methyl aziridine-2-carboxylate (MA2C) isolated in an argon 

matrix at 13 K (a), and in a xenon matrix at 30 K (b), compared with the infrared spectrum simulated 

for the gas-phase equilibrium mixture of conformers I and II (c), theoretical infrared spectra of 

individual conformers (d) calculated at the DFT(B3LYP)/6-311++G(d,p) level. The sum spectrum (c) 

was simulated using Lorentzian functions (fwhm = 2 cm
−1

)
 
centered at the calculated wavenumbers 

(scaled by a single factor of 0.978). Calculated intensities of the bands due to individual conformers 

were weighted by their expected populations (0.927 for I and 0.073 for II), corresponding to the 

calculated relative Gibbs energy difference (6.3 kJ mol
−1

) at room temperature. Intensities in the stick 

spectra (d) are not scaled.  
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Table 3 – Experimental (matrix-isolation) and DFT(B3LYP)/6-311++G(d,p) calculated infrared data 

for MA2C and vibrational assignments based on the results of normal coordinate analysis.
a
 

Experimental  Calculated  

Ar matrix Xe matrix Conformer I Conformer II 
Approximate  

description 

ν ν ν IIR ν IIR  

3301/3298 3289/3286 3402.3 11.4 3434.6 10.9 (NH) 

3084 3081/3069 3129.8 9.6 3129.2 10.9 a(CH2) 

3057/3050 n.obs. 3107.7 4.2 3108.0 11.1 (CH) 

3040 3027 3091.4 12.6 3089.1 3.6 a(CH3)´ 

3013 3000 3058.4 17.7 3058.3 11.8 a(CH3)´´ 

3005 2990 3039.6 17.8 3041.0 17.1 s(CH2) 

2966 2951sh/2947 2986.0 29.6 2985.6 17.9 s(CH3) 

1758/1755 (II) 1752 (II)   1751.7 333.4 (C=O) 

1748/1742 (I) 1740 (I) 1733.3 220.1   (C=O) 

1465/1461/1459sh 1465/1455 1467.7 5.7   (CH2) 

  1464.2 8.8 1465.7 9.4 2(CH3) 

1449 n.obs. 1451.5 10.0 1450.0 9.6 3(CH3) 

1445/1444/1440 1443/1441 1440.9 30.4 1438.7 15.6 1(CH3) 

1390/1385 (I) 1385 (I) 1378.6 83.8   (CH8) 

1352 (II) 1355/1353 (II)   1354.0 17.1 (CH8) 

1290/1282sh/1274/1270sh

/1264/1262/1258 

1277/1272/1269/1263 1274.3 2.2 1268.6 39.4 (NH) 

1245/1244/1240 1240/1237 1251.3 52.8 1252.9 222.1 (NH) 

1230 1227   1241.1 23.5 (CO), (C1C3) 

1215/1208sh 1220/1212/1204 1203.3 399.3   (CO) 

1191/1187/1186sh/1178 1186/1176 1177.1 66.0 1179.2 10.6 4(CH3) 

1159/1151/1149/1147/ 

1144 

1156/1152sh/1150/1149sh

/1147/1142/1141sh 

1149.3 7.6 1146.9 11.0 (CH8), (NH); 

5(CH3) 

  1145.2 1.9 1143.7 39.8 wag(CH2), (CH8) 

1114/1112sh/1110 1111/1110/1107/1106 1108.4 14.4 1108.3 37.0 (CH8) 

1094/1091/1088/1087 (I) 1089sh/1088 (I) 1088.6 13.4   wag(CH2) 

1083 (II) 1080 (II)   1080.9 73.5 wag(CH2) 

1039/1037 (II) 1031 (II)   1023.3 55.6 (O-CH3) 

1020/1016/1013/1010 (I) 1012/1011sh (I) 1003.0 19.0   (O-CH3) 

997/993/989 990/988 978.9 6.5   (O-CH3), 

twist(CH2) 

959/956 956sh/955 948.4 6.9 955.8 9.1 rock(CH2)  

    946.0 9.0 twist(CH2) 

891/889/884sh/882 884/882sh 878.8 38.9 883.6 28.6 (NC) 

846 839 846.6 1.2   (CN) 

822 (II) 824 (II)   814.4 55.9 (CN) 

815/813 815/814 802.2 56.8 797.3 21.2 (C3C5) 

760 761 750.5 8.8 743.5 7.5 (C=O) 

680/678/676/674 678sh/677 665.5 9.5   (CC=O),(C1C3) 

n.i. n.i.   615.3 9.2 (C1C3), (C1C3) 

n.i. n.i. 412.2 2.4 466.8 7.6 (OCC); (CC=O) 

n.i. n.i. 319.9 25.7 317.4 18.6 (C-O-CH3) 

n.i. n.i. 293.6 13.2 291.7 11.3 (C1C3) 

n.i. n.i. 200.0 0.6 195.3 0.2 (C1C3); (OCC) 

n.i. n.i. 159.3 1.2 142.5 1.0 (CO) 

n.i. n.i. 123.8 0.4 119.6 1.0 CH3 

n.i. n.i. 75.7 2.8 85.7 1.1 (CC) 

       
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), s = symmetric; a = antisymmetric; ν = 

stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = rocking; wag = wagging; twist = 

twisting, n.obs. = not observed; n.i. = not investigated. See Table S2 for definition of symmetry coordinates and 

Tables S3 and S4 for potential energy distributions.  
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 In agreement with prediction of relative energies, conformer I is the main 

species present in the matrices. On the whole, the experimental FTIR spectra of 

MA2C isolated in argon and xenon matrices are quite similar, nevertheless, it is 

possible to observe several bands which show unequivocally that conformer II is also 

present in the matrices. Figure 4 displays selected spectral regions of the infrared 

spectrum of MA2C isolated in a xenon matrix (T=30 K) compared with the theoretical 

calculated spectra of the two most stable conformers of MA2C. This Figure shows 

more precisely the position of the bands ascribed to the more energetic conformer. 

The bands observed at 1752, 1355/1353, 1080, 1031 and 824 cm
−1

 in a xenon matrix 

are ascribable to (C=O), (CH8), wag(CH2), (CN), (O−CH3) and (C3C5) 

vibrations of conformer II (See Table 3). These vibrations have strong predicted 

intensities in infrared and do not overlap with vibrations of conformer I. Their 

counterparts were also observed for MA2C monomers isolated in an argon matrix, and 

clearly show the presence of conformer II in the samples.  

In the (C=O) stretching region, the two vibrations give rise to a doublet of 

bands at 1758/1755 and 1748/1742 cm
-1

 (Ar) assigned to conformers II and I, 

respectively, these bands are not the result of matrix-site effects which are known to 

occur frequently in an argon matrix. However, matrix-site effects are visible 

throughout both spectra, in particular in the argon matrix. In addition to the 

fundamentals, another interesting feature concerning the (C=O) vibration was the 

observation of the first overtone band at ca. 3468 cm
-1

 (Ar) and 3462 cm
-1

 (Xe) for 

this mode. Moreover, the triplet of bands at ca. 2910/2862/2821cm
-1

 (Ar) and their 

counterparts for the molecule isolated in a xenon matrix (2898/2854/2818 cm
-1

) can be 

assigned as an overtone of the in-plane bending of the CH3 group. 

The (NH) vibration gives rise to bands of very weak intensity at 3301/3298 

and 3289/3286 cm
-1

 for argon and xenon matrices, respectively. The calculations 

predict the (NH) mode at 3402.3 and 3434.6 cm
-1

, for conformers I and II, 

correspondingly. Therefore, the position of the experimental bands is a clear 

indication of formation of intramolecular H−bonds, the bands shows a significant red-

shift as they appear at much lower frequency compared to the predicted values. As 

mentioned above, the specific orientation of the NH and the ester groups, in particular, 

their position on the same side of the aziridine ring in the two most stable conformers, 

can originate different intramolecular H−bonds, strong N−H


O=C (2.4 Å) for 
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conformer I and weaker N−H


O−C (2.3 Å) for conformer II, is another factor of 

stabilization of conformer I regarding form II.  
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Figure 4. Selected regions of the experimental FTIR spectrum of methyl aziridine-2-carboxylate 

(MA2C) isolated in a xenon matrix at 30 K (a), compared with the theoretical infrared spectra of 

individual conformers I and II (b) calculated at the DFT(B3LYP)/6-311++G(d,p) level of theory. The 

calculated frequencies were scaled by a single factor (0.978). Calculated intensities were weighted by 

the expected populations of the individual conformers (0.927 for I and 0.073 for II) at room 

temperature. The ordinate scales are expanded to afford a better visibility of the bands due to the minor 

conformer II (thus the high intensity bands in the spectra of conformer I are truncated). Asterisk (in 

frame a) designates the band due to traces of matrix-isolated monomeric methanol impurity. 
 

 

UV-Induced Photochemical Transformations – Ring Opening of the Aziridine ring 

Upon broadband UV irradiation (  235 nm) of matrix isolated monomeric 

MA2C, bands due to the initial compound decreased in intensity while new bands 

were formed. A detailed analysis of the infrared spectra after irradiation of the 

matrices shows that the appearance of these new bands is the result of both 

conformers being consumed (and also, that there is no photo-induced conformational 

isomerization). The appearance of new bands was discernible after just 1 minute of 

irradiation (total irradiation time was 240 min). 

 Upon UV-excitation in the gas phase, the unsubstituted aziridine yields 

primary products such as ethylene, ethane, methane, atomic and molecular hydrogen 

and nitrogen, ammonia, and methyl radicals.
47,48

 As mentioned in the Introduction, 

two main reaction mechanisms regarding ring-opening of aziridines are possible 

(through C−C or C−N bond cleavage).  

 Figure 5 shows different possibilities of the ring-opening reaction for the 

2-substituted aziridine system. The possible reaction paths are depicted by pairs of 
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numbers which specify where the bond cleavage occurs. Two reaction paths for the 

cleavage of the CN bond are shown (1,2  and 1,3) and one for the CC bond rupture 

(2,3). Atom numbering in Figure 5 differs from that adopted for MA2C, since Figure 

5 has a more general character, and is proposed as a general complete set of 

possibilities for 2-substituted aziridines. The initially formed products undergo 

hydrogen atom shifts which lead to a total of six potential photoproducts, numbered as 

1,2-A and 1,2-B and, 1,3-A and 1,3-B (in the case of C−N bond cleavage), and 2,3-A 

and 2,3-B (in the case of C−C bond cleavage). For MA2C, where R1=”ester group”, 

only structures with the usually most stable cis orientation (O=C−O−CH3 dihedral 

angle is about 0°) were considered. Furthermore, the general character of Figure 5 

easily accounts for the possibilities of decarbonylation (R2 equals COCH3) or 

decarboxylation (R3 equals CH3) of MA2C and of the corresponding photoproducts 

(see Figure 5). Bigot et al.
48

 performed an early theoretical study on the 

photochemical behaviour of the unsubstituted aziridine ring. Their analysis focused on 

the CC and CN bond ring-openings and rupture of the NH bond. The main results 

are that in the gas phase the CN bond ring-opening is favoured while in protic 

condensed media the CC bond ring-opening competes with the CN bond ring-

opening.  
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Figure 5. Possible structural rearrangements in 2-substituted aziridine resulting from different 

ring-opening reactions. Pairs of numbers next to the arrows specify the atom numbers where the bond 

cleavage occurs. R1 equals to C(=O)OCH3 for the non-reacted compound, R2 equals to COCH3 in the 

case of decarbonylation, R3 equals to CH3 in the case of decarboxylation. 
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C−C bond cleavage (2,3) 

According to the literature,
36,48

 the most likely photochemical reaction of 

MA2C corresponds to the CC bond cleavage. The initial step in the cleavage of the 

C−C bond of the aziridine ring (2,3) results in the formation of the planar 

intermediate, azomethine ylide (AMY, see Scheme 1). Subsequently, a [1,2] hydrogen 

atom shift occurs and leads to the formation of two species: [2,3-A or methyl 

2-(methyleneamino)-acetate, MMAA] and [2,3-B or methyl 2-(methylimino)-acetate, 

MMIA]. In channel (A) the hydrogen atom of the N−H bond migrates towards the 

C−H group, while in channel (B) this shift occurs in the opposite direction towards the 

CH2 group rearranging into a methyl group. 

For the MMAA product, internal rotation around C1−C3 and C3−N4 single 

bonds (according to the atom numbering adopted for this isomer, see Figure 6) may 

afford several conformers. 

 

 

 

 

 

 

 

 

 
Figure 6. DFT(B3LYP)/6-311++G(d,p) optimized structures of the two most stable conformers of 

methyl 2-(methyleneamino)-acetate (MMAA), with atom numbering adopted in this work. Color codes: 

carbon – grey, hydrogen – white, oxygen – red, nitrogen – blue. 

 

 

 Three structures within the 0-7 kJ mol
−1

 energy range were located on the 

potential energy surface for this species (see Figure 7). Figure 7 presents the potential 

energy surface of MMAA calculated at the DFT(B3LYP)/6-311++G(d,p) level as a 

function of the CCN=C and O=CCN dihedral angles. These dihedral angles were 

incremented in steps of 20º and all remaining internal coordinates were optimized at 

each point. For the potential energy surface shown in Figure 7, the ester group was 

kept in a cis orientation (O=C−O−CH3 dihedral angle is about 0°). Much higher 

energy structures were obtained when the ester group is in a trans orientation 

(O=C−O−CH3 dihedral angle is about 180°). According to the calculations, MMAA 
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may adopt three different structures, with conformers MMAA II and MMAA III 

being 1.3 and 6.0 kJ mol
−1

 higher in energy than the most stable conformer I (see 

Figure 6 and Table S5), all of them belonging to the C1 symmetry point group. The 

conformationally relevant dihedral angles O2=C1−C3−N4 and C1−C1−N4=C5 were 

calculated as (−35.2, 138.3 and 46.8º) and (111.5, 122.4, −0.9º) for conformers I, II 

and III, respectively, with mirror-like counterparts with O2=C1−C3−N4 and 

C1−C1−N4=C5 dihedral angles equal to (35.2, −138.3 and −46.8º) and (−111.5, −122.4, 

0.9º), respectively (see Table S6). The orientation of the −CH2−N=CH2 group in 

relation to the C1−C3 single bond is a key factor that determines the stabilization 

between the conformers. The interaction between the nitrogen atom and the oxygen 

atoms (=O2 and −O10) of the ester group determines the non-planarity of this fragment. 

Completely planar structures were found to be transition states. 
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Figure 7. Potential energy map showing the position of the three low energy conformers of MMAA as 

a function of CCN=C and O=CCN dihedral angles. Calculations were carried out at the DFT/B3LYP/6-

311++G(d,p) level. These dihedral angles were incremented in steps of 20º and all remaining internal 

coordinates were optimized at each point. Each conformer correspond to equivalent-by-symmetry 

minima and are represented by squares (, conformer I), black circles (, II) and triangles (, III). 1
st
 

order transition states interconnecting the conformers are represented by crosses (x). Energies are 

relative to the most stable conformer (I) and do not include zero-point vibrational corrections. The 

corresponding one-dimensional potential energy profiles are also shown. Isoenergy levels are spaced by 

2 kJ mol
-1

. See Figure 6 for conformer structures and atom numbering.  
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The energy barriers for interconversion of III and IIII were also 

calculated because the knowledge of the energy barriers for interconversion between 

the conformers is of extreme importance in the interpretation of the experimental 

results. A more detailed look at the possible pathway for interconversion between 

conformers is shown in Figure 8. Conversion between forms I and II imply internal 

rotation around the C1−C3 bond, with an energy barrier for III of 2.3 kJ mol
-1

  

(3.5 kJ mol
-1

 in the reverse direction). In the case of interconversion between forms I 

and III the driving coordinate is the C1−C1−N4=C5 dihedral angle. The IIII energy 

barrier was found to be 0.3 kJ mol
−1

 only. 
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Figure 8. Left: PES profile along the CCNC coordinate, showing a possible pathway for 

interconversion between conformer I and III. Right: PES profile along the OCCN coordinate, showing 

a possible pathway for interconversion between conformer I and II.  

 

 

The zero-point vibrational energy of structure III, for the coordinate 

transforming it to structure I (CCNC torsion), is equal to 0.3 kJ mol
−1

, i.e., exactly the 

same as the energy barrier in the IIII direction. Therefore, structure III cannot be 

treated as an independent conformation, but should be considered only as an excited 

vibrational state of conformer I. With respect to conformer II, the barrier separating it 

from the lower-energy conformer I is low enough to assume a possibility of 

conformational cooling
44,45

 for this system in the matrix-isolation experiments. 

However, the height of the barrier is not the only factor responsible for stabilization, 

or non-stabilization, of this structure. The barriers were calculated for a monomer in 
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vacuum, however in the cryogenic matrix the bulky fragments of the guest molecule 

may be subjected to the confinement in a rigid environment (matrix cage). This will 

result in an additional increase of the torsional energy barrier, and a possible 

stabilization of the higher-energy conformer in the matrix. Such situation occurred, for 

example, in the pair of related molecules, cyanoacetic acid and methyl cyanoacetate, 

differing only by substitution of a hydrogen-atom by methyl group.
45

 Therefore, the 

possibility of observation of the second MMAA conformer, must depend on the 

particular experimental conditions. As it will be shown in detail below, both low 

energy conformers of MMAA were indeed observed experimentally both in argon and 

xenon photolyzed matrices of MA2C.   

On the other hand, there are four MMIA structures (2,3-B) resulting form [1,2] 

hydrogen atom shift of AMY below 18 kJ mol
-1

 (the optimized structures of the four 

most stable conformers of MMIA are shown in Figure S2 in the Supporting 

Information). These conformers can be divided into two groups relative to the position 

of the CH3−N=C−C fragment. When the C5–N4=C3–C1 dihedral angle is 180º, i.e., in a 

trans orientation, the group includes the lowest energy forms of MMIA (conformers I 

and II), while the other group, where the dihedral angle is in a cis orientation  

(C5–N4=C3–C1 dihedral angle ~0º), includes conformers III and IV. The 

interconversion energy barriers corresponding to the lowest energy pair of 

conformers, associated with the internal rotation around the central bond C1−C3, being 

the O2=C1−C3−N4 dihedral angle the driving coordinate) was also evaluated. The 

energy barriers separating these forms were calculated to be higher than ca.  

10 kJ mol
-1

 in both directions. 

An additional note should be mentioned regarding the two sets of putative 

products resulting from cleavage of the C−C bond of the aziridine ring. A comparison 

of the energies of MMAA and MMIA structures revealed that conformers belonging 

to MMIA have lower energies compared to the MMAA conformers, a fact that could 

be explained taking into consideration the hybridization of the nitrogen atom in both 

families. The sp
2
 hybridization of the nitrogen atom in the MMIA molecule (2,3-B) 

compared to the sp
3
 hybridization of the nitrogen atom in the MMAA molecule (2,3-

A) adds to their enhanced stability. In consonance with this, the MMIA forms were 

not detected in the matrices after broadband UV irradiation or using laser light at any 

wavelength.  
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Broadband and Narrowband UV Irradiation  

 

 Figure 9 shows the effect of the subtraction resultant from the experimental 

spectrum recorded after UV irradiation at 235 nm during 80 min minus the spectrum 

recorded after deposition of MA2C in an argon matrix at 15 K (a); and the spectra 

theoretically simulated at the DFT(B3LYP)/6-31++G(d,p) level for two most stable 

conformers of MMAA (b). Irradiation of the xenon matrices using narrowband 

tunable UV irradiation gave essentially similar results. In fact, though irradiation 

using the two light sources (Hg(Xe) high-pressure lamp and laser light) led to the 

same main photoprocess, resulting from C−C bond cleavage of the aziridine ring, 

some additional bands belonging to other species not necessarily the same were 

observed in the spectra in both situations. The definition of the internal coordinates 

adopted in the vibrational analysis for the two most stable conformers of MMAA is 

provided in Table S7 (Supplementary Information). The calculated wavenumbers, 

infrared intensities and potential energy distributions resulting from normal mode 

analysis, carried out for these conformers are presented in Table S8 and Table S9 

(Supplementary Information). The assignments of bands due to photoproducts are 

presented in Table 4 (laser light).  

The most significant bands assigned to MMAA appear in the carbonyl region 

and in the 1200 cm
−1

 spectral region. The infrared spectra of the irradiated matrices 

reveal that two conformers of MMAA (I and II) can be assigned in agreement with 

calculated theoretical spectra. The most intense bands observed are due to the C=O 

modes and are observed at 1772/1766 with a shoulder at 1768 cm
-1

 (I) and  1767/1762  

cm
-1

 (II) in argon matrix (1757/1753 and 1751 cm
-1

, for forms I and II, respectively in 

xenon). Bands at 1203, 1197/1196, 1183-1175 cm
-1

 (Ar) and 1201, 1197, 1182-1178 

cm
-1

 (Xe) are ascribable to the wag(C5H2) and twist(CH2), 4(CH3) and wag(C5H2) 

vibrational modes (see Table 4 for details). 

No photochemical reactions were noticed upon UV laser irradiation at   240 

nm. However, immediately after just 2 minutes of irradiation at  = 235 nm new 

absorptions emerged throughout the spectrum, with emphasis in the carbonyl region 

(Figure 9) and around the 1200 cm
-1

 spectral region.  
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Figure 9. Experimental IR difference spectrum of irradiated Ar matrix of MA2C after UV irradiation at 

235 nm during 80 minutes minus the spectrum of MA2C isolated in an argon matrix (a), compared with 

the infrared spectrum simulated for the gas-phase equilibrium mixture of conformers I and II of MA2C, 

together with the simulated spectra of the two most stable conformers of MMAA (b) calculated at the 

DFT(B3LYP)/6-311++G(d,p) level. The sum spectrum (most stable conformers of MA2C) was 

simulated using Lorentzian functions (fwhm = 2 cm
−1

)
 
centered at the calculated wavenumbers (scaled 

by a single factor of 0.978 and multiplied by –1). Calculated intensities of the bands due to individual 

conformers of MA2C were weighted by their expected populations (0.927 for I and 0.073 for II), 

corresponding to the calculated relative Gibbs energy difference (6.3 kJ mol
−1

) at room temperature. 

Color codes: MA2C (sum spectrum) – black, MMAA I –dark blue and MMAA II – red. The strongest 

absorptions are truncated in both panels. 

 

 

The carbonyl region proved to be an exceptional example providing a clear 

visualization of both generated forms of MMAA generated (see also Table 4). Figure 

10 depicts the infrared spectra corresponding to the experimental spectrum of 

monomeric MA2C isolated in an argon matrix (15 K) and the spectrum resulting after 

UV irradiation at 235 nm during 80 minutes, as well as the subsequent irradiations at 

290 nm (selected spectral regions). After 80 minutes irradiation, approximately 80% 

of the initially matrix-isolated compound had been consumed. The B3LYP)/6-

311++G(d,p) theoretically predicted spectra of conformers I and II of MMAA and the 

most stable form of methyl formate  and acetonitrile are also presented in this figure 

(panel b). 
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Table 4 – Experimental and DFT(B3LYP)/6-311++G(d,p) calculated infrared data and vibrational 

assignments of the observed photoproducts resulting from narrowband UV irradiation using laser 

light ( = 235 nm) of MA2C in argon and xenon matrices. 

Experimental  Calculated   

Ar matrix Xe matrix MMAA I MMAA II 
Approximate  

description 

ν ν ν IIR ν IIR  

1772/1768sh/1766 (I) 1767/1762 (I) 1767.4 235.9   (C=O) 

1757/1753 (II) 1751 (II)   1755.0 339.5 (C=O) 

1688 1700/1695 1699.7 27.5 1694.9 7.0 (N=C) 

1457 1456 1464.3 8.4 1463.7 8.6 2(CH3) 

  1463.8 18.4 1462.4 13.4 (C5H2) 

1442/1437 1438/1436 1439.3 2.9 1440.4 3.7 (CH2) 

  1436.8 19.8 1435.6 14.0 1(CH3) 

1361/1356/1353 (I) 1356 (I) 1345.3 40.4 1330.3 14.7 wag(CH2) 

1316/1303; 1269 (II) 1300; 1275 (II)   1273.4 166.3 twist(CH2) 

1203 (I) 1201 (I) 1196.2 248.8   wag(C5H2) 

1197/1196 (II) 1197 (II)   1209.0 171.7 wag(C5H2), 

twist(CH2) 

1183(I) /1181/1179/ 

1178/1175/1171/1169/ 

1167 

1182(I)/1181/1178/

1166/1162/1159 1161.1 170.5 1178.5 21.4 

wag(C5H2), 

twist(CH2) 

1148/1146 1149/1146 1145.5 2.6 1145.2 0.9 5(CH3) 

n.obs.  1077     (CH) 

1050/1045/1043/ 

1040/1037/1035 

1049/1042/1035 1049.0 18.3 1046.3 10.9 (CH) 

987/984/980 993   988.4 9.3 (CN) 

962 962/961     rock(CH2) 

943 950 950.7 16.5   (CN) 

 926/924     (CN) 

884 n.obs. 893.3 7.1   (CO) 

748 740     (CC=O) 
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), s = symmetric; a = antisymmetric;  

ν = stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = rocking; wag = wagging;  

twist = twisting. See Table S7 for definition of internal coordinates and Table S8 and Table S9 for potential  

energy distributions.  

  

 

Upon irradiation at  = 290 nm, the band at 1772/1766 cm
-1

 assigned to the 

most stable form of MMAA (I) decreases in intensity while a significant increase in 

intensity of a new band at 1747 cm
-1

 is observed (the same effect occurred for the 

band at 1203 cm
-1

, with appearance of a new band at 1205 cm
-1

). On the other hand, 

the intensity of the doublet band at 1757/1753 cm
-1

 due to conformer II remains 

constant. According to previous publications,
49,50

 these new bands are distinctive for 

methyl formate isolated in an argon matrix, attributed to C=O and C=O vibrations. 

These observations thus indicate that MMAA undergoes a secondary 

phototransformation into methyl formate and possibly acetonitrile, which can be in the 

origin of the band at 2234 cm
-1

.  
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Figure 10. Selected spectral carbonyl stretching region (1790-1720 cm
-1

) showing the 

phototransformation of MA2C into MMAA using UV irradiation at  = 235 nm. Panel a: Fragments of 

the infrared spectrum of MA2C monomers isolated in an Ar matrix: (black) recorded after deposition of 

the matrix (15 K); after irradiation of the matrix with UV ( = 235 nm) monochromatic laser (red); after 

irradiation of the matrix with UV ( = 290 nm) monochromatic laser (blue). Panel b: In the theoretical 

spectra wavenumbers were scaled by 0.978, and intensities are not scaled: (, MMAA I), open circles 

(, MMAA II), triangles (, methyl formate) and stars (acetonitrile). 

 

 

C−N bond cleavage (1,2) and (1,3)  

 The second photochemical process analysed is the cleavage of the CN bond 

of the aziridine ring with two possible channels: 1,2 and 1,3 (see Figure 5). The 

simultaneous migration of the hydrogen atom (H6) towards the nitrogen and 

formation of the double C=N bond between C3 and N1 and the rupture of C-N bond 

(1,2) yields product 1,2-A (methyl 3-iminopropanoate, M3IP). In this case, besides 

three internal degrees of freedom that can give to different conformers (the orientation 

of the ester group, the rotation around the single central CC bond and around the 

CC bond connected to the HN=CH fragment), the orientation of the HN=CH moiety 

itself can give rise to different isomers, as the HN=CH dihedral angle can be either cis 

or trans. Two independent potential energy scans were performed at the 

DFT(B3LYP)/6-31++G(d,p) level, taking into consideration the two possible 
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orientations of the HN=CH fragment. Figures S3 (Supporting Information) presents 

the two-dimensional potential energy surface of 1,2-A with the HN=CH unit in a cis 

position as a function of N=CCC and O=CCC dihedral angles in steps of 20º and 

optimizing all remaining geometric parameters at each point. The PES of 1,2-A 

(HN=CH cis) shows three different minima energies below 7 kJ mol
-1

, as well as the 

interconversion pathways between the different minima and with the symmetry-

equivalent structures (see Figure S4). The conformationally relevant N4=C5–C3–C1 and 

C5–C3–C1=O2 dihedral angles are (135.3, 123.8 and –1.9º) and (21.2, –137.4 and  

–95.5º), for conformers I–III, respectively (see Figure S4 for the exact location of 

these minima on the potential energy surface). The weak hydrogen bond formed 

between the carbonyl oxygen atoms and the hydrogen atom of the HN=CH fragment, 

closing an intramolecular five-membered ring HCC(H2)C=O is the main factor 

responsible for the stabilization of the global minimum (I) with respect to conformers 

II and III (see Figure S4). It should be noticed that the interaction of the hydrogen 

atom with the lone pair of the carbonyl oxygen can be expected to be more important 

than with those of the methoxylic ester oxygen (as observed for conformer II), 

because in the first case the hybridization brings the maximum of electron density in 

the plane of the molecule and in the second case out of the plane. Rotation around the 

CC central bond leads to conformer II and III.    

On the other hand, the PES of 1,2-A (HN=CH trans) exhibits four minima, all 

belonging to the C1 symmetry point group, with energies between 0-4 kJ mol
-1

 (see 

Table S5), with symmetry-equivalent structures (see Figure 11).  

 The most striking result is the comparatively low energies between the three 

most stable forms, conformer II is less stable than I by only 0.1 kJ mol
-1

, whereas for 

III the value is 0.4 kJ mol
-1

. This closeness between the energies prompted us to 

undertake a two-dimensional potential energy surface to provide a better 

understanding of this particular group of conformers. As in the previous case, the two-

dimensional potential energy surface of 1,2-A where the HN=CH unit in a trans 

position was calculated as a function of N=CCC and O=CCC dihedral angles in steps 

of 20º and optimizing all remaining geometric parameters at each point is shown in 

Figure 12. The conformationally relevant N4=C5–C3–C1 and C5–C3–C1=O2 dihedral 

angles corresponding to conformer I are (16.0 and –41.2º), II (134.6 and 48.2º), III 

(120.4 and –119.4º) and IV (23.4 and 119.5º). For this set of structures, two weak 

hydrogen bonds can be formed between the carbonyl oxygen or methoxylic ester 
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oxygen atoms and the hydrogen atoms of the HN=CH fragment, closing into an 

intramolecular six-membered ring H=NCC(H2)C(O) or a five-membered ring 

HCC(H2)C(O) are the foremost important factors to consider in the stabilization 

of these minima. The six-membered ring is present in forms I and IV, where the 

=NH
…

O distances are 2.2 and 2.3 Å, respectively. In conformers II and III, the 

=CH
…

O distances are ca. 2.7 Å for the five-membered ring (see Figure 11). Figure 

12 also depicts the interconversion barriers relating the four conformers with the 

corresponding transition states indicated by the letter T. The interconversion energy 

barriers between the different conformers were found to be low, with energies varying 

from 15 mol
-1

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. DFT(B3LYP)/6-311++G(d,p) optimized structures of the two most stable conformers of 

methyl 3-iminopropanoate (M3IP) with the HN=CH fragment in trans position. Color codes: carbon – 

grey, hydrogen – white, oxygen – red, nitrogen – blue. 

 

 

Product 1,2-B (methyl 3-aminoacrylate, M3AA) is obtained by cleavage of 

bond 1,2 followed by formation of a new double bond between carbon atoms 2 and 3. 

Four minima with higher energies that can be interconverted in each other by internal 

rotation around the central C–C bond were found with energies higher than the most 

stable form equal to 12.4, 14.7 and 19.1 kJ mol
-1

, for conformers II-IV, respectively 

(see Table S5). The N4=C5–C3–C1 and C5–C3–C1=O2 dihedral angles are either 0º or 

180.0º, however, only conformer I and II are indeed planar belonging to the Cs 

symmetry group (see Figure S5). Constraining conformers III and IV to planarity 

I II

III IV

I II

III IV
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yielded transition states. The main difference between the four minima lies in the 

arrangement of the NH2 group. The nitrogen atom lies in the same plane as the 

C=C−(O=C−O−CH3) group, with both hydrogen atoms arranged in an out of plane 

orientation towards the nitrogen atom. 
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Figure 12. Potential energy map showing the position of the four low energy conformers of M3IP as 

a function of N=CCC and CCC=O dihedral angles. Calculations were carried out at the DFT/B3LYP/6-

311++G(d,p) level. These dihedral angles were incremented in steps of 20º and all remaining internal 

coordinates were optimized at each point. Each conformer correspond to equivalent-by-symmetry 

minima and are represented by black circles () corresponding to conformer I (16.001 and –41.171º), 

II (134.641 and 48.218º), III (120.416 and –119.379º) and IV (23.397 and 119.463º). 1
st
 order 

transition states interconnecting the conformers are represented by the letter T. The HN=CH fragment 

in trans position. Energies are relative to the most stable conformer (I) and do not include zero-point 

vibrational corrections. The corresponding one-dimensional potential energy profiles are shown in 

different colors (IIIII, dark blue); (II’, pink); (IIII, green); (IIIII, red) and (IIIV, purple). 

Isoenergy levels are spaced by 2 kJ mol
-1

. See Figure 11 for conformer structures. 
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 Finally, cleavage of the CN ring bond (1,3) also yields two different 

products: 1,3-A (methyl 2-iminopropanoate, M2IP) was formed after the concerted 

scission the CN bond and the migration of the hydrogen atom (H5) from C2 to C3 

with subsequent rearrangement into a methyl group of the initial –CH2 group. 1,3-B 

(methyl 2-aminoacrylate, M2AA) which resulted from the simultaneous migration of 

one the hydrogen atom from C3 to N1 due to the formation of a new C=C double bond 

between C2 and C3 (see Figures S6 and S7).  

Two unique planar conformers (Cs symmetry) were theoretically calculated for 

the 1,3-A product resulting from the rotation around the central C–C bond. The –N–H 

is orientated in a cis (most sable form) or trans position (second stable form) relative 

to the carbonyl double bond of the ester group. Once again, the predominance of a 

weak intramolecular five-membered ring formed between the hydrogen atom of the 

H–N=C–CH3 component and the carbonyl oxygen or methoxylic ester oxygen atoms 

is the key factor determining the relative stability of these two forms. The energy 

barriers associated with the interconversion between these two forms are 15.4 for 

III, and 17.0 kJ mol
-1

 for III. 

 Methyl 2-aminoacrylate (1,3-B) molecule bears only one conformationally 

relevant internal rotation axis, corresponding to the rotation around the central C–C 

bond (non-planar structures). Completely planar structures were also theoretically 

calculated, however, they were found to be first order transition states. The calculated 

interconversion barrier between these two forms is very high in both directions (above 

25 kJ mol
-1

).     

 

 

Broadband and Narrowband UV Irradiation  

The presence of characteristics bands due to carbon monoxide (CO) in the 

2170-2100 cm
-1

 spectral region and carbon dioxide (CO2) in the 2370-2310 cm
-1

 

spectral region were identified in both matrices after irradiation with broadband UV 

unfiltered light (  235 nm) and narrowband tunable UV laser light. These 

observations indicate the possibility that in a secondary process, decarbonylation or 

decarboxylation can occur. The carbon monoxide band has a broad profile in both 

irradiation experiments; in argon, bands at 2149.3, 2138.5, 2134.6, 2132.0, 2127.5 and 

2120.2 cm
-1

 from broadband irradiation, a doublet at 2162.6/2160.1 cm
-1

 and a 
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complex multiplet group of bands located at 2150-2130 cm
-1

 with UV laser light were 

observed, while in the xenon matrix the most intense bands appear at 2141.3, 2134.4, 

2132.5, 2127.6 and 2122.5 cm
-1

 (broadband irradiation) and bands at 2161.5/2157.5 

cm
-1 

 and
 
2136.7, 2134.4, 2132.4 and 2127.5 cm

-1
 are the most intense from UV laser 

light irradiation. Monomeric CO isolated in an argon matrix gives rise to a band at 

2138.5 cm
-1

 and the band at 2149.3 cm
-1

 has been assigned to the CO:H2O complex 

(2133.2 and 2141.1 cm
-1

 in xenon, respectively).
51,52

 The other bands observed must 

be due to CO complexed with other photoproducts.  

Besides the bands assigned to the primary photoproduct, MMAA, resulting 

from cleavage of the CC ring bond, the most outstanding spectral feature observed 

after broadband UV irradiation ( = 235 nm) is the appearance of a band at ca. 2234 

cm
-1

 in the argon matrix (ca. 2232 cm
-1

 in xenon). The appearance of this band in the 

2100-2300 cm
-1

 spectral region, is characteristic for nitrile (CN stretching vibrational 

mode). This band can be partially due to acetonitrile formed in the secondary reaction 

of MMAA which simultaneously produces methyl formate. However, it probably also 

results from other still non-identified photoproducts. These are, with all probability 

result of cleavage of the CN bond of aziridine. Note also that other bands (e.g., 1374, 

1333/1331, 1131/1130/1128, 1102, 1001, 1097, 962, 934/932 and 704 cm
-1

) ascribable 

to unidentified photoproducts were also observed. Positive identification of these 

additional photoproducts is underway.  

  

 

Conclusions 

 

 Quantum chemical calculations on MA2C carried out at the DFT/(B3LYP)/6-

311++G(d,p) level predicted the existence of two low-energy minima. The energy 

barrier separating these two forms is above ca. 20 kJ mol
-1

 in both directions. These 

two low energy forms were found to be present in the as-deposited matrices (argon, 

xenon) of the compound and their spectra were fully assigned in both matrices. The 

photochemistry of MA2C has also been investigated, using broadband UV irradiation 

(  235 nm) and narrowband tunable laser light irradiation at  = 235 nm. The most 

common photoreaction was observed: ring-opening through CC bond cleavage 

leading to MMAA as primary photoproduct. Subsequent irradiation at  = 290 nm led 
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to the observation of new bands with decrease of bands assigned to conformer I of 

MMAA. The most intense of these bands correlate well with the spectra of methyl 

formate and acetonitrile, which are then tentatively assigned as minor products of 

photochemical decomposition of MMAA I. In addition, bands assigned to carbon 

monoxide and carbon dioxide have been identified occurrence of decarbonylation and 

decarboxylation as secondary photoreactions. Other products still remain unidentified, 

which shall be a result of CN bond cleavage of the aziridine ring of MA2C.  

 

Supporting Information Available: Figures S1-S2, High energy conformers of 

MA2C and of the four most stable conformers of methyl 2-(methyleneamino)-acetate 

(MMIA) optimized at the DFT(B3LYP)/6-311++G(d,p) level of theory; Figure S3. 

DFT(B3LYP)/6-311++G(d,p) potential energy map of M3IP; Figures S4-S7. 

DFT(B3LYP)/6-311++G(d,p) optimized structures of the most stable conformers of 

methyl 3-iminopropanoate (M3IP) with the HN=CH fragment in cis position, methyl 

3-aminoacrylate (M3AA), methyl 2-iminopropanoate (M2IP) and methyl 2-

aminoacrylate (M2AA); Table S1 – DFT(B3LYP)/6-311++G(d,p) calculated bond 

lengths and angles of the eight conformers of MA2C; Table S2 – Definition of 

symmetry coordinates used in the normal mode analysis of the conformations of 

MA2C; Tables S3-S4 – Calculated scaled, DFT(B3LYP)/6-311++G(d,p) 

wavenumbers, IR intensities and Potential Energy Distributions (PED) for the two 

most stable conformers of MA2C; Table S5-S6  DFT(B3LYP)/6-311++G(d,p) 

calculated relative energies and calculated values for the main conformational dihedral 

angles of possible photoproducts resulting from different ring-opening reactions of 

MA2C; Table S7 – Definition of symmetry coordinates used in the normal mode 

analysis of the conformations of methyl (methyleneamino) acetate (MMAA); Tables 

S8-S9 – Calculated scaled, DFT(B3LYP)/6-311++G(d,p) wavenumbers, IR 

intensities and Potential Energy Distributions (PED) for the two most stable 

conformers of MMAA. This material is available free of charge via the Internet at … 
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ABSTRACT 

 

-Pyridil [(C6H4NO)2] has been isolated in low temperature argon and xenon 

matrices and studied by FTIR spectroscopy, supported by DFT(B3LYP)/6-

311++G(d,p) calculations. Calculations predicted the existence of three different 

conformers exhibiting skewed conformations around the intercarbonyl bond and the 

two C5H4N-C(=O) fragments nearly planar. The two higher energy forms, TCG and 

CCSk were estimated theoretically to be respectively 21.0 and 35.1 kJ mol
-1

 higher in 

energy than the most stable form, TTG. In consonance with the relatively high 

energies predicted by the calculations for the two less stable conformers of -pyridil, 

only the most stable conformer was found spectroscopically to be present in the 

studied matrices. Infrared spectra obtained for the neat low temperature amorphous 

and crystalline states reveals that the TTG conformer is also the sole conformer 

present in these phases. UV irradiation (  235 nm) of matrix-isolated -pyridil led to 

its isomerization to unusual molecular species bearing Hückel-type pyridine (aza-

benzvalene) rings. 
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Introduction 

 

In general, simple dicarbonyl compounds show interesting structural, 

spectroscopic and photophysical properties, including photorotamerism, due to 

conformational changes associated with the internal rotation around the flexible  

O=C-C=O intercarbonyl torsional coordinate in the ground or excited electronic 

states.
1-8

 Because of that, these compounds have received particular attention 

concerning their potential use for the development of molecular devices.
9-14

 These 

compounds have also received application in other fields. For example, derivatives of 

pyridil [C6NH4-C(=O)-C(=O)-C6NH4], which is a typical representative of 

aromatic heterocyclic -dicarbonyls are main components of many pesticides, 

herbicides and fungicides
15-17

 and have been used as reagents in the production of 

several compounds with pharmaceutical interest.
18-21

 -Pyridils have also found 

important applications in the preparation of transition metal complexes
22-24

 and as 

organic inhibitors for mild steel corrosion in hydrochloric acid.
25

 

The crystal structure of pyridil has already been determined by X-ray 

crystallography.
26,27

 It crystallizes in the monoclinic system, space group P21/n, with 

four molecules per unit cell. In the crystal, the molecule is known to adopt a structure 

in which two nearly planar fragments, each of which including a pyridine ring, a 

carbonyl group and its adjacent carbon atom, are skewed to each other, the angle 

between the two pyridyl fragments being ca. 83º. The predominant forces gathering 

the molecules in the crystal were found to be plane-to-plane interactions between 

approximately parallel pyridine rings.
26,27

  

Pyridil was also studied in the past by FT-IR, Raman, NMR and UV 

spectroscopies in the solid state and in solution either in the ground or in excited 

states.
28-40

 Some of these studies addressed the question of the conformational 

preferences of this molecule.
28,33-40

 

As in other -dicarbonyl compounds, the geometry of pyridil is the result of 

a balance between steric and resonance effects and seem to be different in different 

electronic states. The conjugation of the carbonyl groups with the pyridyl rings would 

favor the planar molecular configurations in order to achieve maximum  overlap, but 

the steric repulsions between the carbonyl oxygens, between these atoms and the 

nearest hydrogen atoms of the pyridyl rings and between the two pyridyl substituents 
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preferably twist the whole molecule, making skewed structures to be more stable than 

the planar ones in the electronic ground state. Investigations carried out for the 

compound in different solutions
28,33,40

 indicated that in these media the compound 

exists in a single conformation similar to that observed in the crystal, with the 

intercarbonyl angle decreasing with the increase in polarity of the solvent.
33

 On the 

other hand, according to time-resolved transient absorption spectra measurements, the 

lowest energy triplet state of pyridil seems to be planar in non-polar solvents.
41

 

To the best of our knowledge, no structural or vibrational studies have been 

performed on gaseous pyridil as well as for the compound isolated in a low 

temperature inert matrix hitherto. In addition, its photochemistry has also been 

addressed only for the  compound in solution,
36,37,41

 where the media was found to 

play an active role, such as, for example, as source for hydrogen atoms in the 

photochemical reduction of pyridil into the enediol, 1,2-di(2-pyridyl)-1,2-

ethenediol.  

In the present work, the conformational study of the molecule of pyridil was 

undertaken using low-temperature matrix-isolation FTIR spectroscopy combined with 

theoretical calculations preformed at the DFT(B3LYP)/6-311++G(d,p) level of theory. 

These studies allowed for the identification and vibrational characterization of the 

most stable conformer of pyridil. Irradiation of matrix-isolated pyridil with UV 

light (  235 nm) was also carried out in order to study its unimolecular 

photochemistry. As it will be described in detail below, under these experimental 

conditions pyridil isomerizes to molecular species bearing Hückel-type pyridyl 

(aza-benzvalene) substituents. Finally, low temperature infrared spectra of neat 

pyridil in the amorphous and crystalline states were also obtained and interpreted. 

 

 

Materials and Methods 

Infrared spectroscopy 

 

The sample of -pyridil (97 % purity) was obtained from Aldrich and used 

without any further purification. 

The IR spectra were recorded with 0.5 cm
-1 

spectral resolution in a Mattson 

(Infinity 60AR Series) Fourier Transform infrared spectrometer, equipped with a 
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deuterated triglycine sulphate (DTGS) detector and a Ge/KBr beam splitter. Necessary 

modifications of the sample compartment of the spectrometer were done in order to 

accommodate the cryostat head and allow purging of the instrument by a stream of dry 

nitrogen, to remove water vapors and CO2. The solid sample of -pyridil was placed 

in a specially designed thermoelectrically heatable mini-furnace assembled within the 

cryostat chamber. The temperatures of sublimation of the compound under these 

conditions varied within the 80-125 ºC range. Matrices were prepared by co-

deposition of -pyridil vapors coming out of the mini-furnace and large excess of the 

matrix gas (argon N60 or xenon N48, both obtained from Air Liquide) onto the CsI 

substrate of the cryostat (APD Cryogenics, model DE-202A), cooled to 10 K (for 

argon matrices) or 20 K (for xenon matrices).  

 Irradiation of the matrices was carried out with unfiltered light from a 500 W 

Hg(Xe) lamp (Newport, Oriel Instruments), with output power set to 200 W, through 

the outer KBr windows of the cryostat ( > 235 nm). 

The low temperature solid amorphous layer of pyridil was prepared in the 

same way as matrices but with the flux of matrix gas cut off. The layer was then 

allowed to anneal at slowly increasing temperature up to 300 K. After the temperature 

exceeded 250 K the crystallization of the amorphous layer occurred. Subsequently, the 

sample was cooled back to 10 K and the spectrum of the crystalline phase was 

collected. 

 

Computational methodology 

 

The quantum chemical calculations were performed with Gaussian 03 

(Revision C.02)
42

 at the DFT level of theory, using the split valence triple- 6-

311++G(d,p) basis set and the three-parameter B3LYP density functional, which 

includes Becke’s gradient exchange correction
43

 and the Lee, Yang and Parr 

correlation functional.
44

 

Geometrical parameters of the considered conformations were optimized using 

the Geometry Direct Inversion of the Invariant Subspace (GDIIS) method.
45

 In order 

to assist the analysis of the experimental spectra, vibrational frequencies and IR 

intensities were also calculated at the same level of approximation. The computed 

harmonic frequencies were scaled down by a single factor (0.978) to correct them for 
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the effects of basis set limitations, neglected part of electron correlation and 

anharmonicity effects. Normal coordinate calculations were undertaken in the internal 

coordinate space, as described by Schachtschneider,
46

 using the program BALGA and 

the optimized geometries and harmonic force constants resulting from the DFT 

calculations.  

 

 

Results and Discussion 

 

Geometries and energies 

 

The DFT(B3LYP)/6-311++G(d,p) calculations performed in this study predicted 

the existence of three non-symmetrically-equivalent minima on the potential energy 

surface of -pyridil. These structures are displayed in Figure 1 and exhibit a skewed 

conformation around the intercarbonyl bond and the two C5H4N-C(=O) fragments 

nearly planar. The names here adopted to designate the different conformers are based 

on the values of the O=C-C-N and O=C-C=O dihedral angles, where T, C, G and Sk 

refer to values of these angles of ca. 180º (trans), 0º (cis), 90º (gauche) and 120º 

(skew). The two most stable forms have the O=C-C=O moiety in the gauche 

configuration: TTG, with C2 symmetry and the O=C-C=O intercarbonyl dihedral 

angle equal to 82.3º, and TCG, with C1 symmetry and the intercarbonyl dihedral angle 

equal to 102.1º. In the less stable form, CCSk (C2 symmetry), the O=C-C=O dihedral 

angle is 118.3º (skew). The three conformers differ in the orientation of the pyridyl 

rings relatively to the carbonyl groups. In the most stable conformer (TTG) both 

pyridyl rings adopt the trans orientation relatively to the nearest carbonyl group, the 

CH
…

O distance in the two H-C=C-C=O five-membered rings being 259.2 pm. The 

second most stable conformer (TCG) has one pyridyl ring orientated that way, while 

the other is rotated by ca. 180º, resulting in an energetically less favorable  

H24-C16=C6-C3-C1=O2 six-membered ring. In this conformer, the calculated CH
…

O 

distances are 268.5 and 261.2 pm, for the six and five-membered ring, respectively. 

Finally, in the third conformer both pyridyl rings are in the cis orientation with respect 

to the carbonyl groups, forming two H-C=C-C-C=O six-membered rings where the 

CH
…

O distance is 244.2 pm. The theoretical calculations predicted the two higher 
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energy forms to be respectively 21.0 and 35.1 kJ mol
-1

 higher in energy than the TTG 

form. 
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Figure 1. Conformers of -pyridil with atom numbering. Calculated relative energies and dipole 

moments of the conformers are also provided, as well as the values of their defining dihedral angles 

(O4=C3-C6-N8, O2=C1-C5-N7, O2=C1-C3=O4). 
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The calculated geometries for all three conformers of pyridil are given in 

Table S1 (Supplementary Material), together with the geometry of the molecular unit 

in the crystal of the compound previously obtained by X-ray diffraction, which 

corresponds to a conformation similar to the TTG conformer, but slightly distorted 

from the C2 symmetry.
27

 The experimental parameters obtained by X-ray diffraction 

and those calculated for the isolated TTG conformer show a fairly good agreement, 

indicating that the crystal packing forces do not introduce substantial geometrical 

constraints. This is also in agreement with the almost perfect match found between the 

calculated value for the most flexible molecular coordinate (the intercarbonyl dihedral 

angle) in the isolated pyridil molecule (82.3º) and that observed in the crystalline 

state (82º).
27

  

A few remarks can be made by comparing the values of the geometrical 

parameters obtained theoretically for the different conformers of -pyridil. In 

addition, some insights regarding the prevalent intramolecular interactions in the 

different conformers can also be obtained by comparing the geometries of -pyridil 

and some analogous compounds, like diacetyl,
1
 benzil

2
 and -furil:

4
  

(a) The intercarbonyl dihedral angle in the three conformers decreases in the 

order CCSk > TCG > TTG. This is essentially a consequence of three 

factors: (i) steric repulsion between the lone-electron pairs of the carbonyl 

oxygen atoms, (ii) steric repulsion between the pyridyl rings, which correlate 

with the number of hydrogen atoms in the ortho position located in the inner 

side of the molecule (2, 1 and 0, respectively in CCSk, TCG and TTG) and 

(iii) the CH…O interactions stabilizing the H-C=C-C-C=O six-membered 

rings, which tend to be favored by a more planar arrangement of the 

molecule – there are two of such interactions in conformer CCSk, only one 

in TCG and none in TTG [the similar interaction stabilizing the  

H-C=C-C=O five-membered rings present in conformers TCG (one five-

membered ring) and TTG (two five-membered rings) involves only atoms 

from the same half of the molecule and are not important in determining the 

geometry around the intercarbonyl bond; they are, however, important in 

determining the trend to the planarity exhibited by the C5H4N-C(=O) 

fragments. Factor (i) dominates in the TTG conformer, while factor (ii) and 

specially (iii) dominate in forms TCG and CCSk. 
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(b) In agreement with (a), a comparison of the value of the intercarbonyl 

dihedral angle calculated at DFT(B3LYP)/6-311++G(d,p) level for -pyridil 

(O=C-C=O: 82.3º TTG; 118.3º CCSk) with those found in other  

-dicarbonyl molecules previously studied in our laboratory, such as 

diacetyl (CH3-C(=O)-C(=O)-CH3, O=C-C=O: 180º, ref. 1), benzil  

(C6H6-C(=O)-C(=O)-C6H6, O=C-C=O: 116.6º, ref. 2) and -furil  

(C4OH3-C(=O)-C(=O)-C4OH3, O=C-C=O: 106º TTG; 153º CCSk, ref. 4
1
) 

shows that the value of the intercarbonyl dihedral angle depends strongly of 

the structure of the substituent connected to the carbonyl groups. In acetyl, 

the substituents are small and the prevalent interaction is the repulsion 

between the lone electron pairs of the oxygen atoms, leading to a most stable 

trans configuration around the central bond.
1
 The interactions described in 

(a) are similar in benzil and in the CCSk conformer of -pyridil, and the 

intercarbonyl dihedral angle is similar in these two molecules. On the other 

hand, when compared to the analogous conformers of -furil, the -pyridil 

conformers have smaller intercarbonyl dihedral angles. Both in the case of 

CCSk and TTG conformers, this result is in consonance with the calculated 

more negative charges on the carbonyl oxygen atoms in -furil (–0.234 and  

–0.224 e, for TTG and CCSk forms, respectively) than in -pyridyl (–0.190 

and –0.166 e), which make more important the above mentioned factors in 

-furil (factor (i) and (iii) in the TTG and CCSk forms, respectively). 

(c) The length of the C-C intercarbonyl bond in -pyridil conformers varies in 

the range 154.7-154.4 pm. This range of values is typical for a non-

conjugated C-C single bond and follows the trend previously observed for 

other -dicarbonyls, like diacetyl, benzil, 1-phenyl-1,2-propanedione and  

-furil (155.7, 154.4, 155.0 and ca. 154.7 pm, respectively).
1-4

 As discussed 

in detail elsewhere,
4
 the long intercarbonyl bond length in -dicarbonyls 

results essentially from the balance between the relatively weak -electron 

delocalization within the O=C–C=O fragment and the more important  

-electron system repulsion due to the interaction between the positively 

charged carbonyl carbon atoms. This result is in consonance with the well-

                                                 
1
 In ref. 4 the -furil conformers here mentioned, TTG and CCSk, were designated as III and I, 

respectively.  
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known large conformational flexibility around the C-C central bond in  

-dicarbonyls
1-4

 and also with the previously reported photochemistry of 

this type of compounds, where the intercarbonyl bond cleavage appears as a 

prevalent pathway.
3,47

  

(d) The C1-C5 and C3-C6 bonds, connecting the O=C-C=O group to the pyridyl 

rings (149.5-150.7 pm) are longer than in the previous -dicarbonyl 

compounds studied in our laboratory, in particular, benzil, 1-phenyl-1,2-

propanedione and -furil (148.7, 148.6 and 145.6-145.8 pm, respectively).
2-4

  

This result indicates that the conjugation between the pyridyl substituents 

and the dicarbonyl moiety is less important in -pyridil than between this 

group and the phenyl or furanyl substituents in the remaining molecules. 

(e) In agreement with the reduced delocalization between the pyridyl rings and 

the dicarbonyl group indicated by the calculated lengths of the C1-C5 and  

C3-C6 bonds, the carbon-carbon and carbon-nitrogen bond lengths within the 

pyridyl rings were estimated to be similar to those found in benzene (139.7 

pm
48

) and pyridine (139.3 and 133.8 pm, average value for CC and CN bond 

lengths, respectively
49

) in all conformers of -pyridil: the carbon-carbon 

bond lengths vary within the range 138.9-139.9 pm, and the nitrogen-carbon 

bond lengths within the range 132.8-134.2 pm.  

(f) The O2=C1-C3 and C1-C3=O4 angles in -pyridil correspond to the valence 

angles that differ more among the various conformers. As expected, in the 

most stable TTG conformer, where the steric repulsion between the lone-

electron pairs of the carbonyl oxygen atoms dominates, the sum of these 

angles attain its maximum value (238.6º), while in the TCG and CCSk 

conformers it is 235.9º and 235.6º, respectively. 

 

 An important result coming out from the calculations in relation with the 

experimental study described in this work concerns the relatively high energies 

predicted for the two less stable conformers of -pyridil. In fact, using the Boltzmann 

distribution and the calculated relative energies of the conformers, the estimated joint 

population of these two forms in the gaseous phase in the range of temperatures used 

to sublimate the compound (80-125 ºC) is less than 0.2%. In practical terms, this result 

shows the impossibility of trapping the higher energy forms of -pyridil in the 
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cryogenic matrices in a detectable amount. Indeed, as described in detail below, only 

the most stable conformer could be observed experimentally in the present 

investigation.  

 

Infrared spectroscopy: analysis of the matrix isolation spectra and UV-irradiation 

experiments   

 

The-pyridil molecule has 66 fundamental vibrations (of 34A and 32B 

symmetry, for the C2 conformers), all of them active in the infrared. The definition of 

the internal coordinates adopted in the vibrational analysis undertaken in this study is 

provided in Table S2 (Supplementary Material). The calculated frequencies, infrared 

intensities and potential energy distributions resulting from normal mode analysis, 

carried out for the experimentally relevant TTG conformer, are presented in Table S3 

(Supplementary Material). The infrared spectra of -pyridil isolated in both solid 

argon and xenon (as-deposited matrices; sublimation and CsI substrate temperatures: 

Ar, 85 ºC and 10 K; Xe, 125 ºC and 20 K) together with the calculated spectrum of the 

TTG conformer are presented in Figure 2. Table 1 presents the assignments for the 

fundamental bands, which were strongly aided by the good agreement between the 

experimental and the calculated data. 

According to the calculations, the 4 most intense bands in the spectrum of  

-pyridil correspond to the stretching vibrations of the C=O groups (observed in 

argon at ca. 1727 and 1702 cm
-1

), the asymmetric stretching of the C-C bonds 

connecting the carbonyl groups to the pyridyl rings (C-C as.; 1227 cm
-1

) and a 

skeletal deformational mode observed at ca. 654 cm
-1

, which has a significant 

contribution from the in-plane asymmetric bending mode of the carbonyl groups. All 

these bands show extensive matrix-site splitting as it could be expected considering 

the high flexibility of the molecule around the intercarbonyl C-C bond (the calculated 

frequency for the intercarbonyl C-C torsion is as low as 24 cm
-1

; see Table 1), and 

were fairly well predicted by the calculations both regarding frequencies and relative 

intensities (see Table 1 and Figure 2). The general agreement between the calculated 

and experimental data for the less intense bands is also good, as shown in Figure 2, so 

that the proposed assignments (Table 1) could be made with high degree of 

confidence. 
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Figure 2. Infrared spectra of -pyridil isolated in solid argon (sublimation and substrate temperatures: 

85 ºC and 10 K, respectively) and solid xenon (125 ºC; 20 K) and DFT(B3LYP)/ 6-311++G(d,p) 

calculated spectrum for the TTG conformer. 
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Table 1 – Experimental (matrix-isolation) and calculated (TTG form) vibrational data for -pyridil and 

vibrational assignments based on the results of normal coordinate analysis.
a 

  Calculated Experimental 

Approximate description   I Ar (10 K) Ib Xe (20 K) Ib 

(C-H 2) s  A 
3134.9 0.9 3147.5 w 3145.5 w 

(C-H 2) as B 3134.8 6.4 3147.5 w 3145.5 w 

(C-H 3) as A 3123.2 8.5 3073.7/3070.4 w 3070.0 w 

(C-H 3) as B 3123.1 16.0 3073.7/3069.5 w 3070.0 w 

(C-H 4) as B 3106.0 12.6 3064.6/3060.4 w 3058.4/3053.7 w 

(C-H 4) s A 3106.0 2.4 3064.6/3060.4 w 3051.8/3050.6 w 

(C-H 1) s A 3087.1 11.3 3017.2 w 3015.5/3009.7 w 

(C-H 1) as B 3087.0 14.6 3017.2 w 3015.5/3009.7 w 

(C=O) s A 1733.8 225.8 1728.2/1726.8/1713.4 S/S/sh 1727.7/1726.4/1723.0/1721.6/ 

1712.4/1709.6 

sh/S/S/sh 

(C=O) as B 1723.5 169.5 1703.6/1702.2 sh/S 1702.5/1701.2 sh/S 

(ring 3) as B 1585.2 9.2 1594.7/1589.5 sh/m 1591.0/1589.2/1587.7 sh/sh/S 

(ring 3) s A 1585.2 22.3 1594.7/1589.5 sh/m 1591.1/1587.8 sh 

(ring 4) s A 1577.1 5.3 1573.4 w 1591.1/1574.7 sh 

(ring 4) as B 1575.6 7.1 1573.4 w 1571.9 w 

(ring 6) s; (C-H 4) s A 1463.6 2.0 1467.7 sh 1466.3 sh 

(C-H 4) as; (ring 6) as B 1462.6 1.6 1466.1 w 1465.4/1464.5 w/w 

(C-H 3) s A 1434.3 0.7 1444.7 sh 1443.2/1444.7 sh/sh 

(C-H 3) as B 1431.7 13.2 1440.5/1431.4 S/sh 1439.1 m 

(ring 5) s A 1307.1 19.7 1321.3/1317.2 m/sh 1330.1/1323.3/1322.0/1314.6 sh/sh/m/sh 

(ring 5) as B 1291.6 2.4 1294.4 w 1294.5 w 

(C-H 4) s A 1282.1 6.1 1284.3/1282.6 m/sh 1284.5/1282.3 m/m 

(ring 2) as B 1277.8 8.7 1273.2/1268.3 sh/m 1270.8/1269.2 m/sh 

(ring 2) s; (ring 5) s; (C-C) s A 1255.5 28.4 1246.3 m 1248.9/1246.4/1240.4 m/sh/w 

(C-C) as B 1218.7 131.2 1231.7/1227.4/1213.5 w/S/w 1232.7/1228.5/1210.2 sh/S/sh 

(C-H 2) s A 1145.7 1.0 1149.5 w 1147.4 w 

(C-H 2) as B 1145.2 0.9 1149.5 w 1147.4 w 

(ring 2) s; (C-H 3) s; (C-H 1) s A 1088.6 1.3 1088.8 m 1094.2/1089.5/1087.3 sh/sh/m 

(ring 2) as;(C-H 3) as;(C-H 1) as B 1087.8 16.3 1088.8 m 1094.2/1089.5/1087.3 sh/sh/m 

(ring 6) s; (C-C) A 1052.3 4.4 1060.3 w 1063.3/1061.1 w 

(ring 6) as B 1037.6 6.3 1040.8 w 1043.2/1040.2 w/w 

(ring 6) s, (ring 1) s A 1030.8 2.0 1037.1 w 1036.0 w 

(C-H 3) as B 996.6 0.1 996.8 S 998.0 sh 

(C-H 3) s A 996.1 0.1 996.8 S 998.0 sh 

(ring 1) s; (ring 2) s A 992.2 0.1 996.8/985.5 S/w 996.3/985.4 S/w 

(ring 2) as; (ring 1) as B 991.9 19.9 996.8/985.5 S/w 996.3/985.4 S/w 

(C-H 4) as B 966.1 1.2 970.0/967.8/955.3 sh/w/w 968.3/967.4/965.7/957.2 sh/w/w/w 

(C-H 4) s A 965.8 0.2 970.0/967.8/955.3 sh/w/w 968.3/967.4/965.7/957.2 sh/w/w/w 

(C-H 2) as B 906.8 16.5 910.7 m 912.0/908.6 sh/m 

(C-H 2) s A 904.8 0.2 907.5 sh 903.3 w 

Skeletal B 891.0 80.3 897.8/895.6 m/sh 897.0/894.6/890.5 m/sh/sh 

(ring 1) s; (C=O) s A 816.2 3.5 819.7/812.7 w/w 816.7 w 

(ring 1) as; (C=O) as B 791.2 21.3 790.6 w 792.9/791.5/789.3/788.1 w/sh/sh/sh 

   (C-H 1) s A 742.5 36.9 746.8 sh 748.4/747.0/744.3 m/m/m 

(C-H 1) as; (ring 3) as B 739.6 28.8 745.2/742.2 m/m 741.4 m 

(ring 1) s A 732.4 0.4 745.2/742.2 m/m 740.2 sh 

(ring 1) as B 707.2 11.7 709.5 m 710.2/708.5 m/m 

(ring 3) s; (C=O) s A 706.7 18.2 707.0 m 706.5 m 

Skeletal B 653.9 98.6 655.9/654.3/652.1/645.6 m/m/m/sh 657.1/654.7/650.9/646.6 sh/m/m/sh 

(ring 3) s A 617.9 0.2 613.5 S 613.7/613.1/612.1 S/sh/sh 

(ring 3) as B 614.2 39.9 613.5 S 613.7/613.1/612.1 S/sh/sh 

Skeletal A 474.8 4.4 479.7 w 483.4/478.0 w/w 

(ring 4) as B 472.0 11.3 476.3/469.6 w/sh 473.6 w 

(ring 2) s; (ring 4) s  A 422.5 1.9 424.2 sh 423.9 w 

(ring 2) as B 422.1 9.2 422.2/420.5/417.8 w/sh/w 422.4/421.4/419.6 sh/w/w 

(ring 4) s; (ring 2) s  A 399.4 1.5     

(ring 4) as; (ring 2) as B 395.4 0.9     

(C=O) s A 325.9 4.7     

(C=O) as; w(ring) as B 263.8 27.4     

w(ring) s A 258.6 3.2     

(ring 1) s A 148.5 0.1     

(ring 1) as B 145.8 1.7 n.i.  n.i.  

(CCC) as B 120.8 0.0     

(CCC) s A 111.3 0.1     

(C-C) s A 52.4 0.4     

(C-C) as B 41.6 4.1     

(C-C) A 24.0 3.5     

a
 Frequencies (cm

-1
, scaled by 0.978), calculated intensities in km mol

-1
. , bond stretching; , bending; w, 

wagging; , rocking; , torsion; s, symmetric; as, asymmetric; n.i., not investigated. See Table S2 for definition 

of symmetry coordinates. Only bands assigned to fundamental modes are presented in the Table. 
b 
Experimental 

intensities are presented in qualitative terms: S= strong, m= medium, w= weak, sh= shoulder. 
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UV irradiation (  235 nm) of matrix-isolated -pyridil resulted in a decrease 

of intensity of the bands of the initial spectrum and appearance of new bands due to 

photoproducts. The intensity of the bands due to the reactant decrease only by ca. 

20%, indicating that the observed photoprocesses have a relatively low efficiency. In 

argon matrix, the process is even less efficient, what points to a photochemical 

mechanism involving an n  * excitation and a triplet state.  

In order to identify the chemical species formed by irradiation of the matrix, a 

series of theoretical calculations of the spectroscopic signatures of possible 

photoproducts was carried out. The following putative general types of 

photoprocesses could a priori be considered: (i) intercarbonyl bond cleavage, leading 

to formation of 2-pyridylcarbonyl radicals, that can then loose carbon monoxide 

followed by recombination to form either di-(2-pyridyl) ketone or 2,2’-bipyridine 

(pathway A in Scheme 1); (ii) isomerization of the pyridine rings to the valence 

Dewar or Hückel (aza-benzvalene) isomers (B and C in Scheme 1). 

The first type of reaction was observed for 1-phenyl-1,2-propandione isolated in 

cryogenic inert matrices,
3
 leading to single decarbonylation and production of 

acetophenone. In turn, efficient isomerization of Kekulé ring structures to their Dewar 

analogues have been found to take place in matrices for related compounds, like  

-pyrones and -thiopyranones,
50-53

 while some Dewar pyridines, including the 

unsubstituted one, could also be observed experimentally as result of photochemical 

transformation of their most stable Kekulé isomers.
54-62 

On the other hand, to the best 

of our knowledge, experimental observation of Hückel pyridine isomers was only 

reported once, in a study where the ultrafast dynamics of isomerization of pyridine 

(and a few other analogue compounds) was investigated by femtosecond-resolved 

mass spectrometry complemented by DFT/ab initio calculations.
62

 Nevertheless, some 

Hückel isomers of pyridine have been consistently predicted by theoretical methods to 

be most stable than the Dewar forms,
62-65

 so that the possibility of their photochemical 

formation under the present experimental conditions could not be excluded. Moreover, 

according to Zong et al.,
62

 conical intersections appear to be fundamental in driving 

the valence photoisomerization reactions of pyridine, which then take place partially 

in the ground-state potential energy surface. This fact enabled us to exclude a priori 

other valence isomerization reactions within the pyridine rings (e.g., to the prismane 
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and bicyclopropyl-2,2’-diene like species), since the energies required for these 

processes to take place are too much high to make them possible under the present 

experimental conditions (the maximum energy available in our experiment is ca. 500 

kJ mol
-1

 and those required for those isomerization processes are over 630 kJ mol
-1

, 

ref. 62). 
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Scheme 1. A priori possible photochemical pathways for -pyridil. The arrows in the Dewar (Dew) and 

Hückel (Hück) type pyridine structures show the possible places for the bonding of these groups to the 

dicarbonyl moiety in -pyridil. Pathways A and B were not observed experimentally. 
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In the specific case of isomerization of the pyridyl groups of -pyridil to their 

Dewar forms, subsequent photochemical processes could be expected to take place, in 

a similar form to what has been observed for -pyrones and -thiopyranones,
50-53

 

resulting in the production of cyclobutadiene (or aza-cyclobutadiene, or a mixture of 

these compounds, depending on the specific pyridine Dewar isomer initially formed) 

and cyano- or ethyne-substituted ethanediones (see Scheme 1). In turn, if they were 

formed, these ethanediones could also undergo single or double decarbonylation to 

form the corresponding ketones or dicyano (or diethyne, or cyano-ethyne) derivatives. 

Other a priori possible secondary photochemical reactions starting from Dewar 

pyridines would be the release of HCN or ethyne and formation of cyclobutadien- or 

aza-cyclobutadien-ethanediones (see Scheme 1), in consonance with the known 

photochemistry of Dewar pyridine.
62

 However, the spectroscopic results doubtlessly 

show that the photochemistry of matrix isolated -pyridil is considerably simpler than 

it could be expected. In fact, none of the characteristic bands of carbon monoxide {at 

2138 (Ar) or 2133 (Xe) cm
-1

, see ref. 66,67}, HCN {3306, 2098, 721 (Ar) cm
-1

;  

ca. 3280, 2090, 718 (Xe) cm
-1

, see ref. 68}, ethyne {3303/3289 (Fermi resonance 

doublet) and 737 (Ar) cm
-1

, see ref. 69} and cyclobutadiene {1241, 575 (Ar); 1239, 

574 (Xe) cm
-1

, see ref. 51,70} were observed in the spectra of the photolysed matrix, 

implying that all putative reaction steps implying the production of these species did 

not take place and could be promptly discarded. This significantly reduces the number 

of possible photoproducts and, in particular, excludes the intercarbonyl bond cleavage 

reaction path and all reactions putatively occurring after formation of the pyridine 

valence isomers’ based products.  

In addition, comparison of the experimental spectra of the photolysed matrix 

with those of Dewar pyridine containing species also showed unambiguously that the 

isomerization of the pyridine rings of -pyridil to Dewar forms did not take place. On 

the other hand, the results are in consonance with the presence in the photolysed 

matrix of Hückel pyridine containing compounds. 

It is worth to note that the number of possible a priori chemical species derived 

from -pyridil containing the Hückel pyridine moiety is still very large. Unsubstituted 

Hückel pyridine may exist in three different structures: 1-aza-benzvalene, 2-aza-

benzvalene and 3-aza-benzvalene (see Scheme 1). Upon single substitution in a 

position vicinal to the nitrogen atom (a requirement for a derivative of -pyridil), 
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there are three possible different isomeric forms derived from 1-and 2-aza-benzvalene 

and 2 different isomeric forms derived from 3-aza-benzvalene. Considering then that 

the isomerization reactions might occur in one or in both of the pyridine rings of  

-pyridil, and taking into account the conformational degrees of rotation around both 

the intercarbonyl bond and the two C-C bonds linking the dicarbonyl moiety to the 

pyridine rings, the possible structures quickly grow up to a non-manageable number. 

However, though the identification of the precise Hückel-type pyridine containing 

species obtained in the described photolysis experiments appeared a priori an 

impossible task, the type of Hückel structures produced under the present 

experimental conditions could still be guessed. First of all, extensive molecular 

rearrangements in a matrix are not favoured due to the geometric constraints imposed 

by the matrix cage. This means that the formed Hückel pyridine containing species 

shall be directly related with the initially trapped TTG conformer of -pyridil. In 

addition, the dominant stabilizing interactions existent in this conformer shall be kept 

in the photoproducts, in particular, the nearly syn-periplanar arrangement of the  

H-C-C-C=O fragment. Finally, we can expect that singly substituted species (i.e., 

species containing just one Hückel type pyridine ring) are prevalent. Under these three 

structure constraints, the number of relevant species reduces to 2 (!): forms 2C and 3A 

in Figure 3. 

In Figure 4 (A and B), we compare the spectroscopic changes resulting from 

irradiation of the xenon matrix during 5 h with the calculated spectra for the Hückel 

pyridine containing forms 2C and 3A. There is a good general agreement between 

these spectra, allowing to conclude that, as predicted, 2C and 3A are the main (if not 

the sole) photoproducts of -pyridil under the used experimental conditions. The 

proposed assignments for the bands given rise by the two observed photoproducts are 

provided in Table 2. Table S4 gives the optimized geometries and full set of 

calculated frequencies and infrared intensities for these species. For 2C, 26 out of the 

35 infrared bands predicted with intensities greater than 5 km mol
-1

 in the 500-1800 

cm
-1

 region were observed experimentally (23 out of 34, in the case of 3A); see Tables 

2 and  S4. 
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1A (41.8)        1B (36.2) 

 

            
1C (36.8)        2A (85.4) 

 

            
2B (86.2)       2C (83.8) 

 

 

                                                 
3A (0.0)       3B (6.0) 

 

 
Figure 3. Calculated structures of the a priori possible mono-substituded Hückel pyridine containing 

-pyridil isomers derived from the TTG conformer of -pyridil. The two forms that keep the syn-

periplanar arrangement of the H-C-C-C=O fragment are included in boxes and are those observed 

experimentally. Numbers in parentheses are relative energies (with zero point corrections) in kJ mol
-1

. 

The pyridine ring is, in all cases, perpendicular to the plane of the sheet. Note that form 1C is a special 

case where the structure directly related with TTG conformer of -pyridil is not stable; the structure 

presented corresponds to that matching as closer as possible the remaining forms shown in the figure.  
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An interesting observation is the apparently similar amount of the two 

photoproducts obtained (see Figure 4), in spite of the considerably higher relative 

energy of 2C compared to 3A. This result can, however, be promptly rationalized 

taking into account the findings of Zong et al.
62

 that conical intersections are 

fundamental in driving the valence photoisomerization reactions of pyridine rings, 

which then take place partially in the ground-state potential energy surface. Indeed, 

the predicted energy barriers for conversion of pyridine into all its possible Hückel-

type isomers, in the ground electronic state, were found to be similar, ranging from  

ca. 385 to about 420 kJ mol
-1

 (311-284 nm).
62
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Figure 4 (A: 1000-500 cm

-1
 spectral range) – Bottom: experimental difference spectrum for -pyridil 

isolated in xenon matrix [(irradiated sample after 5 h of irradiation with UV light, > 235 nm) minus 

(as-deposited sample)]. Top: Calculated spectra for the TTG conformer of -pyridil (bands pointing 

down) and for photoproducts 2C and 3A (bands pointing up). The calculated intensities of the bands 

due to the photoproducts assume a 1:1 ratio of these species; those of the reactant bands were arbitrarily 

chosen in order to reproduce approximately the experimental difference spectrum shown in the figure. 
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On the other hand, it can easily be assumed that the isomerization reactions of 

the pyridine rings of -pyridil leading to formation of 2C and 3A do also have similar 

energy barriers [in particular because the valence isomerization rearrangement is 

localized in the side of the pyridine ring that is more distant from the substituent (see 

Figure 3)], thus justifying the nearly equal amount of 2C and 3A formed in the 

photolysis experiments. 
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Figure 4 (B: 1800-1000 cm

-1
 spectral range) – Bottom: experimental difference spectrum for -pyridil 

isolated in xenon matrix [(irradiated sample after 5 h of irradiation with UV light, > 235 nm) minus 

(as-deposited sample)]. Top: Calculated spectra for the TTG conformer of -pyridil (bands pointing 

down) and for photoproducts 2C and 3A (bands pointing up). The calculated intensities of the bands 

due to the photoproducts assume a 1:1 ratio of these species; those of the reactant bands were arbitrarily 

chosen in order to reproduce approximately the experimental difference spectrum shown in the figure. 
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Table 2 – Assignment of the observed infrared bands of the photoproducts 2C and 

3A.
a
 

Approximate  Obs.   Calculated     

Description
b
  Xe matrix  2C   3A 

C=O p  1716   1725   1731 

C=O h  1695   1693   1712 

C=C h  1608/1599  1599    

C=N h  1592      1592 

ring p  1584   1584   1584 

C-H/ring p 1478/1470  1463   1462 

C-H p  1443   1432   1432 

C-H h  1370      1372 

C-C h  1341      1350 

 ring/C-H p 1299   1299    

C-H/ring p 1280   1280   1280 

C-C sym  1252   1255    

C-C p  1243      1243 

C-H h  1215/1206  1204   1204 

C-N h  1168   1174    

 ring h  1168      1169 

C-H h  1153      1148 

C-H p  1143      1144 

 ring/C-H h 1104   1121    

C-H h  1077   1070    

C-C intercarbonyl 1046   1053    

ring p  1030   1035    

C-H h  1030   1032   1032 

ring p    994     992    

ring h    930     945    

ring h    887     874    

C=O p    883        861 

C=O p    795     798    

skeletal    765        778 

C=O h    753     752     755 

C-H p    736     740     739 

C-H h  ~723     727    

 ring h    712        719 

 ring h    689     680    

skeletal    665     669    

ring p    615     616     616 

C=N h    586        591 

 ring p    512        504   
a
 Wavenumbers (scaled by 0.978) in cm

-1
. 

b
 The approximate descriptions of the vibrations were made 

by examining the composition of the modes in terms of internal coordinates through their animation 

using a graphical interface. , stretching; , bending; , rocking; , torsion; sym, symmetric; p, pyridine 

ring; h, Hückel-pyridine (aza-benzvalene) ring. See Table S4 for complete calculated spectra.  
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Infrared spectroscopy: -pyridil low temperature crystalline and glassy states 

 

Figure 5 presents the infrared spectra of -pyridil in the neat low temperature 

amorphous phase and crystalline state, together with the calculated spectrum of the 

TTG conformer. The assignment of the recorded spectra is provided in Table 3. 

As described in the Materials and Methods section, the amorphous phase of the 

compound was prepared by deposition of its vapors directly onto the cold (20 K) CsI 

substrate of the cryostat. As expected, the spectrum of the amorphous phase is 

constituted by relatively wide bands, with maximum frequency values fitting nicely 

those calculated for the TTG conformer (in vacuum), which is the conformer present 

in the vapor prior to deposition of the solid layer. The crystal was obtained after 

heating the amorphous layer up to 250 K. Subsequently, the CsI substrate was cooled 

down to 10 K and a new spectrum of the crystalline phase was collected. Compared 

with the spectrum of the amorphous phase, the bands in the spectrum of the crystal are 

much narrower. However, the positions of the bands do not differ significantly in both 

spectra. Indeed, the spectrum of the crystal fits very well those obtained for the 

matrix-isolated compound and also that calculated for the TTG form. All these 

observations indicate that the intermolecular interactions in the solid state are rather 

weak in -pyridil, in consonance with its low melting point 154-156 ºC in comparison 

with isomeric compounds like, for example, (2,2')bipyridinyl-4,4'-dicarbaldehyde (188 

ºC), 3-nitrocarbazole (212-214 ºC), 4,7-dihydroxy-1,10-phenanthroline (> 300 ºC) or 

4-amino-1,8-naphthalimide (360 ºC).
71
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Figure 5. Infrared spectra of -pyridil in the low temperature crystalline and glassy states (see the 

Materials and Methods section to detailed description of the experimental conditions) and the spectrum 

of the TTG conformer calculated at the DFT(B3LYP)/ 6-311++G(d,p) level of theory. 
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Table 3 – Observed frequencies of -pyridil in the low temperature crystalline and glassy states.
a 

  Calculated Experimental b 

Approximate Description   Intensity Glass (20 K)   Crystal (10 K)   

(C-H 2) s   A 
3134.9 0.9 3112.8 w 3094.5/3083.0 w 

(C-H 2) as B 3134.8 6.4 

(C-H 3) as A 3123.2 8.5 
3061.1 w 3060.4/3048.6 w 

(C-H 3) as B 3123.1 16.0 

(C-H 4) as B 3106.0 12.6 
3056.6 w 3045.4 sh 

(C-H 4) s A 3106.0 2.4 

(C-H 1) s A 3087.1 11.3 
3013.9 w 3013.6 w 

(C-H 1) as B 3087.0 14.6 

(C=O) s A 1733.8 225.8 1716.2 S 1716.4/1708.2 S/sh 

(C=O) as B 1723.5 169.5 1694.7 S 1693.0 S 

(ring 3) as B 1585.2 9.2 
1587.0 m 1584.5 S 

(ring 3) s A 1585.2 22.3 

(ring 4) s A 1577.1 5.3 
1570.6 w 1565.9 w 

(ring 4) as B 1575.6 7.1 

(ring 6) s; (C-H 4) s A 1463.6 2.0 
1465.7 m 1467.6/1463.8 m/m 

(C-H 4) as; (ring 6) as B 1462.6 1.6 

(C-H 3) s A 1434.3 0.7 
1439.5 m 1443.4/1438.3 m/S 

(C-H 3) as B 1431.7 13.2 

(ring 5) s A 1307.1 19.7 1328.5 m 1333.4/1330.3 sh/m 

(ring 5) as B 1291.6 2.4 1299.3 w 1298.5 w 

(C-H 4) s A 1282.1 6.1 1286.2 m 1288.0 m 

(ring 2) as B 1277.8 8.7 1272.1 m 1277.6 m 

(ring 2) s; (ring 5) s;(C-C) s A 1255.5 28.4 1248.9 w 1248.7 w 

(C-C) as B 1218.7 131.2 1227.0 m 1230.2/1227.4/1218.8 m/m/w 

(C-H 2) s A 1145.7 1.0 
1152.4 w 1151.7 w 

(C-H 2) as B 1145.2 0.9 

(ring 2) s; (C-H 3) s; (C-H 1) s A 1088.6 1.3 
1089.8 m 

1093.5 sh 

(ring 2) as;(C-H 3) as;(C-H 1) as B 1087.8 16.3 1087.0 m 

(ring 6) s; (C-C) A 1052.3 4.4 1061.3 w 1067.7 w 

(ring 6) as B 1037.6 6.3 
1043.4 w 

1043.6 w 

(ring 6) s; (ring 1) s A 1030.8 2.0 1037.8 w 

(C-H 3) as B 996.6 0.1 

996.0 m 

1006.7/1002.7 w/w 
(C-H 3) s A 996.1 0.1 

(ring 1) s; (ring 2) s A 992.2 0.1 
996.1/993.4 m/m 

(ring 2) as; (ring 1) as B 991.9 19.9 

(C-H 4) as B 966.1 1.2 
975.4 m 984.2/976.6/971.1 w/w/w 

(C-H 4) s A 965.8 0.2 

(C-H 2) as B 906.8 16.5 
909.0 sh 918.8 m 

(C-H 2) s A 904.8 0.2 

Skeletal B 891.0 80.3 897.8 m 899.5/894.8 S/m 

(ring 1) s; (C=O) s A 816.2 3.5 798.6 w 788.1 m 

(ring 1) as; (C=O) as B 791.2 21.3 
748.6 m 

  756.2 S 

(ring 1) as; (C=O) as A 742.5 36.9 748.3 sh 

(C-H 1) s; (C-H 1) as; (ring 3) as B 739.6 28.8 
710.8 sh 

741.9/735.8 S/w 

(ring 1) s A 732.4 0.4 722.3 w 

(ring 1) as B 707.2 11.7 
707.9 m 

711.8 m 

(ring 3) s; (C=O) s A 706.7 18.2 705.5 m 

Skeletal B 653.9 98.6 661.0 m 654.1 S 

(ring 3) s A 617.9 0.2 
613.4 w 

617.0 w 

(ring 3) as B 614.2 39.9 612.8 S 

Skeletal A 474.8 4.4 470.3 w 470.8 w 

(ring 4) as B 472.0 11.3 480.3 m 483.8/480.9/478.7/477.4 w/w/w/sh 

(ring 2) s; (ring 4) s  A 422.5 1.9   
422.0 w 

(ring 2) as B 422.1 9.2   
(ring 4) s; (ring 2) s  A 399.4 1.5 408.5 w 408.5 w 
(ring 4) as; (ring 2) as B 395.4 0.9 404.2 w 404.2 w 
        

a Frequencies in cm-1, calculated intensities in km mol-1. , bond stretching, , bending,  rocking,  torsion, w, 

wagging, s, symmetric, as, asymmetric, n.o., not observed. See Table S2 for definition of internal symmetry 

coordinates. b Experimental intensities are presented in qualitative terms: S= strong, m= medium, w= weak, sh= 

shoulder. 
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Conclusion 

 

-Pyridil was, for the first time, isolated in low temperature noble gases (argon, 

xenon) matrices, and its molecular structure and vibrational signature probed by FTIR 

spectroscopy, supported by DFT(B3LYP)/6-311++G(d,p) calculations. Calculations 

predicted the existence of three different conformers (TTG, TCG and CCSk), all of 

them exhibiting skewed conformations around the intercarbonyl bond and the two 

C5H4N-C(=O) fragments nearly planar, and differing in the orientation of the pyridine 

rings relatively to the carbonyl groups. The TTG form was predicted to be the most 

stable conformer, accounting for more than 99 % of the total population at 125 ºC, 

whereas the two higher energy forms, TCG and CCSk were estimated theoretically to 

be respectively 21.0 and 35.1 kJ mol
-1

 higher in energy than the most stable form.  

Accordingly to these results, the TTG conformer was found to be the sole form of  

-pyridil present in the studied low temperature Ar and Xe matrices. 

The TTG form was also found to be the unique conformer of -pyridil present 

in both the neat amorphous and crystalline phases of the compound. The IR spectra of 

the low temperature neat solid samples were found to match very closely those 

obtained for the matrix-isolated compound (and also with the calculated data for 

TTG), indicating that the intermolecular interactions in the solid state are rather weak 

in -pyridil. 

Irradiation of matrix-isolated compound with UV light (  235 nm) led to its 

isomerization to unusual molecular species bearing a Hückel-type pyridine (aza-

benzvalene) ring (forms 2C and 3A), which are directly structurally correlated with 

the TTG conformer of -pyridil, in particular where the syn-periplanar arrangement of 

the H-C-C-C=O fragment is kept in order to preserve the stabilizing CH…O 

intramolecular H-bond type interaction prevalent in the reactant species. 

 

 

Appendix A. Supplementary data: Table S1 – Experimental and calculated 

[DFT(B3LYP)/6-311++G(d,p)] bond lengths and angles for the three conformers of 

-pyridil; Table S2 – Definition of internal symmetry coordinates used in the normal 

mode analysis of -pyridil; Table S3 – Calculated [scaled, DFT(B3LYP)/6-

311++G(d,p)] wavenumbers, IR intensities and Potential Energy Distributions (PED) 
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for the most stable conformer of -pyridil; Table S4 – Calculated geometries and 

infrared spectra (non-scaled) for observed Hückel pyridine containing photoproducts 

(2C and 3A forms). Supplementary data associated with this article can be found in 

the online version, at doi:10.1016/j.jphotochem.20 08.07.0 05. 
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4 Case Studies 

 

 
In this Chapter, the studies performed on monomers and dimers of formic and acetic 

acids are presented: 

 

Formic and Acetic Acids in a Nitrogen Matrix: Enhanced Stability of the Higher 

Energy Conformer, S. Lopes, A. Domanskaya, R. Fausto, M. Räsänen and L. 

Khriachtchev, J. Chem. Phys., 2010, 133, 144507-7.  

 

Acetic Acid Dimers in Solid Nitrogen Matrix, S. Lopes, A. Domanskaya, R. Fausto, 

M. Räsänen and L. Khriachtchev (to be submitted)   
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ABSTRACT 

 

Formic acid (HCOOH, FA) and acetic acid (CH3COOH, AA) are studied in a 

nitrogen matrix. The infrared (IR) spectra of cis and trans conformers of these 

carboxylic acids (and also of the HCOOD isotopologue of FA) are reported and 

analyzed. The higher-energy cis conformer of these molecules is produced by 

narrowband near-IR excitation of the more stable trans conformer, and the cis-to-trans 

tunneling decay is evaluated spectroscopically. The tunneling process in both 

molecules is found to be substantially slower in a nitrogen matrix than in rare-gas 

matrices, the cis-form decay constants being ca. 55 and 600 times smaller in a 

nitrogen matrix than in an argon matrix, for FA and AA respectively. The stabilization 

of the higher-energy cis conformer is discussed in terms of specific interactions with 

nitrogen molecule binding with the OH group of the carboxylic acid. This model is in 

agreement with the observed differences in the IR spectra in nitrogen and argon 

matrices, in particular, the relative frequencies of the OH and COH modes and the 

relative intensities of the OH and C=O bands.  

 

 

 

 



 211 

1. Introduction 

 

Formic acid (HCOOH, FA) and acetic acid (CH3COOH, AA) are simple 

carboxylic acids both identified in the interstellar medium.
1,2 

Carboxylic acids have 

biological value and provide an insight into prebiotic organic chemistry in the 

protoplanetary nebula.
3
 Acetic acid is of particular importance due to its structural 

proximity to glycine, the simplest amino acid. Formation of acetic acid was detected 

upon irradiation of binary mixtures of methane (CH4) and carbon dioxide (CO2) ices 

by energetic electrons at 12 K.
4
 Electron bombardment mimics the energy transfer 

processes that occur in the track of the trajectories of MeV cosmic-ray particles.  

Organic acids in the gas phase can partition into aerosol particles
5
 with the aid 

of foreign nuclei, such as alkaline mineral particles and elemental carbon, and by 

condensation and co-condensation with NH3. It is hypothesized that organic acids are 

at least one of the primary sources of CCN in the atmosphere, especially over the 

continental forested areas, due to their ubiquitous presence in the troposphere.
6
 

FA and AA have two conformers (cis and trans), which differ by the orientation 

of the OH group (Figure 1). They are good model systems for fundamental studies of 

conformational changes and intramolecular energy redistribution. The cis form is 

higher in energy than the trans form by ca. 1365 cm
–1

 for FA (gas-phase experimental 

data),
7
 and ca. 1880 cm

–1
 for AA (theoretical value).

8
 The calculated trans-to-cis 

conversion barriers are 44 kJ mol
–1

 (3921 cm
–1

)
9
 and 49 kJ mol

–1
 (4400 cm

–1
)
8
 for FA 

and AA, respectively. Detailed infrared (IR) spectroscopic data for trans and cis 

conformers of these acids and their isotopomers have been reported in rare-gas 

matrices.
10-14

 

The cis form of carboxylic acids can be obtained by vibrational excitation of the 

trans form.
10,13,15

 Once obtained, the higher-energy cis conformer converts back to the 

ground-state trans form. At low temperatures, quantum tunneling dominates the over–

barrier reactions. Hydrogen tunneling in FA and AA has been the subject of several 

studies.
9,15-19

 

cis-CH3COOH has a shorter lifetime in rare-gas matrices than cis-HCOOH 

(approximately 50 s
18 

versus 8 min
16

 in solid argon at 8 K). Deuteration of the OH 

group influences greatly the tunneling process, slowing it down by about four orders 

of magnitude. The conversion process of cis-CH3COOD and cis-HCOOD to the trans 

forms in an argon matrix at 8 K takes about 15 days.
18,19

 On the other hand, the 
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tunneling rates in formic
16

 and acetic acids
18

 increase upon deuteration of CH or CH3 

groups. This secondary isotopic effect is very interesting but lacks an explanation.  

The tunneling rates in these species are strongly dependent on the matrix 

material. The cis-HCOOH decay rates increase with the matrix polarizability as 

NeArKrXe kkkk  .
15,16

 However, the decay of cis-HCOOD follows almost the 

opposite trend: NeArKrXe kkkk  .
19

 With respect to the reaction barrier height, 

which increases in more polarizable hosts, the order of the rate constants in HCOOD 

is anomalous.
15,16

 Similar “anomalous” behavior was also reported for AA 

( KrArXe kkk  ).
18

 Clearly, in addition to the barrier change upon solvation in 

polarizable media, other factors can also influence the cis-to-trans conversion.
15,16,19 

 

O

O H

R

O

O

HR

trans                                            cis
 

Figure 1 – Trans (most stable) and cis (higher energy) conformers of formic acid (R= H) and acetic 

acid (R= CH3). 

 

 

 Some experimental results suggest that the cis conformers might be stabilized in 

media resembling interstellar and atmospheric environments. An experimental study 

of AA and FA aerosol nanoparticles generated at 78 K and investigated using in situ 

rapid-scan FTIR spectroscopy shows that the spectra of the particles have the same 

characteristic splitting of the (C=O), (CH), and (C–O) bands as the crystalline 

bulk.
20

 One possible explanation for the observed splitting is the coexistence of the 

trans and cis conformations in the chains, which would presumably destroy the 

planarity of the chains; however, the polymorphism of molecular chains made from 

trans subunits cannot be excluded. Crystalline acetic acid shows similar spectral 

splitting which might also be attributed to the inclusion of cis-oriented subunits.
21

  

The tentative observation of the cis conformation in hydrogen-bonded systems 

agrees well with the general idea that complexation, dimerization, or solvation of 

higher-energy conformers can significantly decelerate or even stop the tunneling 

decay process.
15

 For example, the cis-HCOOH
…

H2O complex is stable at 9 K on a day 
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scale. The lifetime of cis-FA in this complex might be practically infinite at low 

temperatures, i.e., tunneling to the trans conformer is efficiently suppressed.
15

 Studies 

of the interaction of carboxylic acids with nitrogen might lead to a better 

understanding of the role of conformational isomerism in dark interstellar clouds
23

 and 

the Earth’s atmosphere. 

In the present work, we report new results on spectroscopy of formic and acetic 

acids in a nitrogen matrix and on the stabilization of higher-energy cis conformers in 

this medium. The stabilization effect is discussed in terms of specific interactions 

between the matrix and embedded molecules.  

 

 

2. Computational details and results 

 

The quantum chemical calculations were performed using Gamess, version R1 

(24-Mar-2007)
24

 at the MP2 level of theory
25

 using the 6-311++G(2d,2p) basis set.
26,27

 

This basis set has been shown to reproduce the experimental structural and vibrational 

properties of FA with an acceptable accuracy.
11,28,29 

The optimization criteria 

parameter OPTTOL was set to 0.00001 hartree/bohr. This parameter corresponds to 

the maximum value allowed to the energy gradient and also controls the maximum 

allowed value of the root mean square gradient, which is given by 1/3 of OPTTOL. 

The optimized structures of all FA
…

N2 and AA
…

N2 complexes were confirmed to 

correspond to the true energy minima on the potential energy surfaces by inspection of 

the Hessian matrices. The vibrational spectra were computed at the same level of 

theory. The calculated MP2/6-311++G(2d,2p) vibrational frequencies and intensities 

of the fundamental modes for the cis and trans forms of HCOOH, HCOOD and 

CH3COOH are listed together with the assignments of the observed fundamental 

transitions (Tables I and II). The calculated spectra of FA and AA are shown in 

Figures 2 and 3 (lower traces). 

The most stable complex has the N2 molecule interacting with the OH bond of the 

carboxylic acid (Figure 4). This result is in agreement with the previous study on the 

trans-FA
…

N2 system.
28

 All optimized complexes are presented in Figures S1-S4.
29

 

Most of the trans-FA
…

N2 structures (Figure S2) were not detected previously by 

Lundell et al.
28 
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Table I. Assignment of the spectra of the trans and cis forms of HCOOH and HCOOD 

isolated in argon and nitrogen matrices. The calculated fundamental frequencies (in  

cm
-1

) and intensities (in km mol
-1

, in parenthesis)
 
for trans and cis conformers of 

HCOOH and HCOOD were obtained at the MP2/6-311++G(2d,2p) level of theory. 

Frequencies in italic indicate tentative assignments. 

  

N2 matrix 

  

Ar matrix
a
 

  

Calculated 

 

Assignment trans cis trans cis trans cis 

HCOOH       

OH  3528.2 3598.1 3549 3617 3777.9 (81.8) 3844.5 (81.6) 

CH  2967.5 2900.6 2955 2898 3127.2 (33.6) 3039.4 (64.8) 

C=O 1762.2 1803.0 1768 1808 1784.2 (334.3) 1824.4 (268.3) 

CH 1342 w 1391w 1383 1392 1424.4 (1.5) 1439.3 (0.1) 

CO–COH def. 1265 w 1275.9 1215 1246 1314.3 (9.0) 1285.5 (294.4) 

COH–CO def. 1119.4 ~1120 1103 1106 1119.9 (284.2) 1109.4 (81.6) 

wCH 1040.5 1047.0 1038 – 1060.8 (3.8) 1038.8 (0.2) 

COH   672.3   536.2   635   504   674.7 (143.5)   535.2 (88.1) 

OCO   637.0   667.8   629   662   629.9 (39.1)   659.1 (11.7) 

 

HCOOD       

OD  2602.5 2657.4 2619.5 2668.7 3127.7 (30.0) 3039.3 (63.1) 

CH  2973.7 2899.4 2961.2 2895.3 1777.5 (317.7) 1816.8 (297.1) 

C=O 1749.6 1790.6 1767.2 1799.3 1415.5 (1.4) 1437.9 (0.6) 

CH – – 1374.3 1395.4 1191.7 (179.6) 1172.6 (303.2) 

C–O 1187.9 1176.8 1181.7 1164.0 1058.2 (1.3) 1038.8 (0.1) 

wCH 1038.2 – 1036.4 1041.0 1000.1 (85.0)   925.7 (2.9) 

COD 989.8 929.5 971.0 910.5   564.6 (40.1)   631.9 (12.1) 

OCO–COD def. 571.3 641.2 559.7 633.6   530.2 (88.7)   402.5 (33.1) 

COD 528.9 – 506.7 – 3127.7 (30.0) 3039.3 (63.1) 

a
 From refs. 11,19 (averaged value of two sites). 
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Table II. Assignment of the spectra of the trans and cis forms of CH3COOH isolated in 

argon and nitrogen matrices. The calculated fundamental frequencies (in cm
-1

) and 

intensities (in km mol
-1

, in parenthesis)
 
for trans and cis conformers of CH3COOH were 

obtained at the MP2/6-311++G(2d,2p) level of theory. 

 CH3COOH (N2)  CH3COOH (Ar)
14

 Calculated 

Assignment trans  cis trans cis trans cis 

 Site I Site II      

OH 3544.1 3551.9 3610.7 3563.8 3622.6 3787.3 (77.5) 3852.9 (63.3) 

HCH2 s 3035.8 3035.8 - 3051 - 3228.7 (2.6) 3221.6 (1.9) 

HCH2 a 3002.4 2995.6 2990.0 2996 - 3187.8 (1.8) 3169.8 (3.8) 

CH3 2965.4 2954.0 

2947.4 

2942.3 2944 - 
3107.6 (1.2) 3091.7 (3.5) 

C=O 1775.1 1777.6 1797.2 1779.0 1807.4 1801.0 (290.3) 1828.1 (247.4) 

HCH2 a 1445.5 1441.0 1445.7 1438.8 1448.3 1505.4 (8.4) 1513.2 (7.8) 

HCH2 s 1435.7 1435.7 1438.8 (?) 1433.6 1444.5 1500.3 (16.2) 1500.5 (7.4) 

CH3 1387.6 1385.7 1371.9 

1370.2 

1379.4 

1324.4 

1368.3 
1432.7 (48.9) 1420.4 (44.3) 

CO-COH def. 1275.9 1280.5 1234.0 

1210.4 (?) 

1259.4 1192.9 
1350.3 (39.0) 1215.0 (7.6) 

COH-CO def. 1205.9 

1183.9 

1196.5 

1177.4 

1301.7 

1290.5  

1179.8 1285.4 

1271.9 
1208.1 (212.8) 1306.3 (373.5) 

CH3 a 1048.1 - 1044.1 1047.2 1042.4 1082.7 (5.1) 1076.8 (3.3) 

CH3 s 990.9 - - 985.5 982.2 1009.4 (82.4) 1000.4 (11.9) 

C-C 856.3 - 857.4 - 848.6   867.8 (7.9)   860.6 (40.5) 

COH 663.2 656.1 489.3 637.8 458.0   661.0 (90.3)   465.1 (101.3) 

OCO 588.3 585.7 600.6 580.4 -   584.6 (36.3)   602.3 (1.4) 

C=O 554.2 

546.4 

556.0 

549.4 

- 534.2 - 
  550.7 (30.9)   598.6 (7.4) 

CC=O 430.2 

(?) 

- - 428 - 
  425.4 (4.1)   434.4 (3.7) 

CH3 - - - - -     75.4 (0.2)     92.2 (1.2) 

a
 Fermi resonance with C-C+C-O.  

 

 

a a 

 
 

 

 



 216 

4000 3500 3000 2500 2000 1500 1000 500

-60

-30

0

30

60

4000 3500 3000 2500 2000 1500 1000 500

-0.30

-0.15

0.00

0.15

0.30

Calculated

Irradiated - as-deposited

 

 

A
b

s
o

rb
a

n
c
e

Wavenumber/ cm
-1

R
e

la
ti
v
e

 I
n

te
n

s
it
ie

s

(a
rb

it
ra

ry
 s

c
a

le
)

 

 

 trans

trans

cis

cis

 

Figure 2. Top: FTIR difference spectrum of FA in solid N2. Result of irradiation at 5288 cm
–1

, showing 

conversion of trans-FA into cis-FA. Bottom: MP2/6-311++G(2d,2p) calculated infrared spectra of 

trans-FA (downward peaks) and cis-FA (upward peaks). In the calculated spectra, bands were 

represented by Lorentzian functions centered at the calculated wavenumbers and with FWHM (full 

width at half maximum) equal to 4 cm
1

. 

 

 

The interaction energies of the FA
…

N2 and AA
…

N2 complexes were evaluated 

(see Figure 4). For the trans species, the interaction energy of approximately  

–4.0 kJ mol
1

 (zero point and basis set superposition error corrected energy) was 

obtained for both FA and AA. This value agrees fairly with the interaction energy 

reported by Lundell et al.
28

 for the trans-FA
…

N2 complex (–5.3 to –6.2 kJ mol
1

 

depending on the basis set). The interaction is slightly stronger in the complexes of the 

cis conformers. The calculations reveal a stronger stabilization for AA than for FA  

(–5.1 kJ mol
1

 in AA vs. –4.4 kJ mol
1

 in FA; Figure 4). 

The calculated characteristic vibrational frequencies and intensities for the 

strongest complexes are compared with the data for the monomers in Table III. 

According to the calculations, the OH stretching frequency decreases by ca. 20 to 30 

cm
1

 and substantially intensifies (three to four times) for both acids in both 
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conformational states. The OH torsional mode shows blue shifts (approximately 60 to 

80 cm
1

) and its intensity slightly decreases upon complexation except for trans 

AA
…

N2 complexes. The C=O mode red shifts by ca. 5 cm
1

 and slightly gains 

intensity for the cis conformers, whereas the intensity slightly decreases for the trans 

forms. The changes of both frequency and intensity upon complexation of FA and AA 

are in agreement with the expectations for an H-bond type interaction.
31-34

 The 

spectral data for other complexes are presented in Table S-I.
35 
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Figure 3. Top: FTIR difference spectrum of AA in solid N2. Result of irradiation at 4724.5 cm
–1

, 

showing conversion of trans-AA into cis-AA. Bottom: MP2/6-311++G(2d,2p) calculated infrared 

spectra of trans-AA (downward peaks) and cis-AA (upward peaks). In the calculated spectra, bands 

were represented by Lorentzian functions centered at the calculated wavenumbers and with FWHM 

(full width at half maximum) equal to 4 cm
1

. 
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Figure 4. Schematic structures of the strongest complexes of formic and acetic acids in cis and trans forms with 

molecular nitrogen at the MP2/6-311++G(2d,2p) level of theory. The interaction energies of the complexes are 

given in parenthesis and correspond to zero point and basis set superposition error (BSSE) corrected values. The 

calculated BSSE for cis and trans complexes amount to –2.6 and –2.3 kJ mol–1, respectively. Optimized structures 

for the complexes are provided in Figures S1-S4 (Supplementary Material). Calculated NH distances are 2.199, 

2.209, 2.218 and 2.223 Å, for trans-HCOOH…N2, cis-HCOOH…N2, trans-CH3COOH…N2 and cis-CH3COOH…N2, 

respectively. 

 

 

 

Table III. Calculated OH, C=O and COH wavenumbers ( in cm
-1

) and infrared intensities (IIR in km 

mol
-1

) for monomeric cis and trans forms of FA and AA and their most stable complexes with N2.
a
 

 OH C=O COH OH C=O COH 

  IIR  IIR  IIR  IIR  IIR  IIR 

  

cis-HCOOH 

 

 

trans-HCOOH 

Monomer 3844.5    81.6 1824.4 268.3 535.2   88.1 3777.9    81.8 1784.2 334.3 674.7 143.5 

Complex 3820.3  292.3 1820.6 297.9 620.9    79.0 3747.6  282.1 1779.1 321.0 747.7  118.5 

b 
-24.2 3.6 -3.8 1.1 85.7 0.9 -30.3 3.4 -5.1 0.96 73.0 0.8 

  

cis-CH3COOH 

 

trans-CH3COOH 

 

Monomer 3852.9    63.3 1828.1 247.4 465.1  101.3 3787.3    77.5 1801.0 290.3 661.0    90.3 

Complex 3833.6  233.1 1824.6 270.0 537.5    72.3 3762.6  266.8 1795.2 277.1 718.6    96.9 

b 
-19.3 3.7 -3.5 1.1 72.4 0.7 -24.7 3.4 -5.8 0.95 57.6 1.1 

a
 See Figures 1-4. 

b
 The values presented in this row correspond to frequency shifts (complexmonomer) or intensity 

ratios (Icomplex/Imonomer)  
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Experimental details and results 

 

Gaseous mixtures of FA (HCOOH, KEBO LAB, 99%) and AA (CH3COOH, 

KEBO LAB, 99%) with nitrogen (AGA/Linde 6.0) were prepared with a typical ratio 

of 1:1200. The acids were purified by a few freezing-pumping cycles. Nitrogen was 

used as supplied. The mixtures were deposited onto a CsI window at 8.5 K in a close–

cycle helium cryostat (APD, DE 202A). The spectra were recorded with a Nicolet 

60SX FTIR instrument by co–adding 200 interferograms with 1 cm
–1

 spectral 

resolution. HCOOD molecules were produced by an H/D exchange with deuterated 

surfaces in the deposition line. The obtained deuteration degree (~15%) was sufficient 

to observe and assign the main fundamental frequencies.  

The trans–to–cis conversion was promoted by selective vibrational excitation by 

using an optical parametric oscillator with IR extension (Sunlite Continuum, FWHM 

~ 0.1 cm
–1

).  cis-AA was produced by exciting the OH+COH combination mode of 

trans-AA at 4724.5 cm
–1

. cis-FA was prepared by exciting the OH+C=O 

combination mode of trans-FA at 5288 cm
–1

. The cis-HCOOD was produced by the 

IR light source of the spectrometer (Globar).  

In the kinetic measurements, the cis-conformer decay was monitored by 

measuring the intensity of the CO–COH def. fundamental band of cis-HCOOH 

(1275.9 cm
–1

) as a function of time. In the case of cis-CH3COOH, the split COH–CO 

def. band (1301.7 and 1290.5 cm
–1

) and the CH3 band (1370.5 cm
–1

) were used. A 

long–pass optical filter (>1500 cm
–1

) was inserted between the sample and the Globar 

source in order to suppress high frequency light components which could accelerate 

the cis–to–trans conversion process.
 
The Globar light was blocked between the 

measurements. The OD form of the cis-FA is very stable over time due to the well-

known mass effect on the tunneling rate
12,15-19

 and its decay was not studied here. 

The spectra of FA and AA in a nitrogen matrix at ca. 8.5 K are presented in 

Figures 2 and 3. The results of vibrational excitation (at 5288 cm
–1

 for FA and at 

4724.5 cm
–1

 for AA) are shown. The assignments of the observed fundamental 

transitions are given in Tables I and II, together with the calculated MP2/6-

311++G(2d,2p) vibrational frequencies and intensities of the fundamental modes for 

the cis and trans forms of HCOOH, HCOOD and CH3COOH. 
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The cis–to–trans decay curves for FA and AA are shown in Figures 5 and 6. 

The decay rates obtained in a nitrogen matrix at different temperatures are compared 

with the rates previously measured in an argon matrix
16,18

 in Figure 7.  
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Figure 5 – Decay of cis-HCOOH in a nitrogen matrix at different temperatures. 
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Figure 6 – Decay of cis-CH3COOH in a nitrogen matrix at different temperatures. 
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Figure 7 – Tunneling rate constants for cis-HCOOH and cis-CH3COOH in nitrogen (this work) and 

argon (data from Refs. 16,18) matrices. 

 

 

4. Discussion 

 

A. Spectral assignment 

For both acids, the experimental IR spectra are reproduced well by theory, 

which allows a straightforward identification of the bands (Figures 2 and 3). The 

assignments of the observed fundamental transitions are given in Tables I and II, 

where they are compared with the experimental data obtained in an argon 

matrix.
11,14,19

 

The assignments for trans-HCOOH are doubtless except for the low intensity  

CO-COH def. and CH modes, which are tentatively assigned to the weak bands at 

1265 and 1342 cm
-1

 in a nitrogen matrix (1215 and 1383 cm
-1

 in an Ar matrix).
11 

For 

cis-HCOOH, CH is also predicted to have low intensity (see Table I), and it is 

tentatively ascribed to the band observed at 1391 cm
-1

, appearing at almost the same 

frequency as in Ar matrix (1392 cm
-1

).
11

 The assignment of the COH-CO def. mode of 

cis-HCOOH is complicated by a fact that this vibration almost coincides with the 

analogous vibration of the trans conformer. The band of the cis form is hidden by the 

wing of the trans-FA band and even in the difference spectrum is not easy to be 

noticed. Nevertheless, the theory predicts this band to be intense (see Table I), so that 

there is no other possibility for assignment. 
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In the case of HCOOD, the very weak CH and wCH modes (see Table I) could 

not be observed experimentally. The assignment of the OCO–COD def. mode of the 

cis form is uncertain also due to its low intensity. 

The results for trans-AA indicate trapping into two main matrix sites (named I 

and II) in a nitrogen matrix. In our experiments, only molecules in site II were 

vibrationally excited by IR radiation and consequently converted to the cis form. 

 

 

B. Interaction with nitrogen 

The potential energy surfaces (PES) of the FA
…

N2 and AA
…

N2 systems reveal 

that the 1:1 hydrogen-bonded complexes feature the most important interaction in a 

nitrogen matrix. If a specific interaction dominates one can consider the 1:1 complex 

surrounded by a matrix. For an Ar matrix, this approach is validated by calculations of 

FA
…

Ar complexes by Wawrzyniak et al.
35,36

 They found that the FA
…

Ar structures 

with an Ar atom bonded to the OH group of FA have substantially smaller interaction 

energies (1.5 to 2.0 kJ mol
1

) than in the present case of similar nitrogen 

complexes. Thus, the substitution of the Ar atom by a nitrogen molecule is 

energetically favorable. If the OH
…

N2 interaction is dominant, the result of 

complexation will be accordingly reflected in the vibrational spectra. Adding 

additional N2 molecules to the 1:1 complexes to describe the matrix effect is 

computationally difficult and, in the present case, does not seem to be strictly 

required.   

The data obtained in solid nitrogen can be compared with less perturbing hosts 

such as neon and argon matrices.
11,14,22

 The experimental observations in a nitrogen 

matrix agree with the spectral predictions for the strongest 1:1 complexes. The OH 

frequency of FA decreases by 19 and 21 cm
1

 for cis and trans forms, respectively, 

from values in an argon matrix (Table IV) and by 39 and 41 cm
1

 compared to a neon 

matrix. The COH frequency increases by 32 (cis) and 37 cm
1

 (trans) from values in 

an argon matrix and by 39 and 34 cm
1

 compared to a Ne matrix. For AA, OH shows 

red shifts by 12 cm
1

 (cis), 20 cm
1

 (trans, site I) and 12 cm
1

 (trans, site II), and 

COH shifts by +31 (cis), +25 cm
1

 (trans, site I) and 12 cm
1

 (trans, site II) 

compared to an Ar matrix. These trends are in agreement with the calculations for the 
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strongest complexes (Table III). The 1:1 interaction with nitrogen produces larger red 

shifts compared to interaction with argon, as calculated for FA.
35,36

 

Analysis of the experimental intensities leads to similar conclusions. We assume 

that the OH/C=O intensity ratio is a fingerprint of the OH
…

N2 interaction in a 

nitrogen matrix because the C=O stretching intensity does not change much upon 

complexation. For FA, this ratio in a nitrogen matrix increases by a factor of ca. 2 

compared to an argon matrix (see Table IV). It should also be remembered that the 

relative band intensities are already changed in an argon matrix. Wawrzyniak et al.
35,36

 

reported a two-fold increase of the OH stretching intensity for the hydrogen bonded 

FA
…

Ar complex.
 
Combining these data, one may estimate that complexation with 

nitrogen leads to a 4-fold increase of the OH-stretching intensity, which is in 

reasonable agreement with our theoretical value for the strongest complexes (ca. 3.5). 

The results for AA follow the same general trends. However, for this compound the 

uncertainties in the determined experimental intensities are considerably larger due to 

band overlapping in the carbonyl stretching region making impossible the quantitative 

analysis. It is also probable that the rest of the matrix (in addition to the specific 

interaction) somewhat affects the vibrational intensities. Perhaps this leads to the large 

effect observed for the torsional intensities, which is not so well predicted by the 

model of specific interactions. 

 

Table IV. Experimental relative intensities of FA and AA in nitrogen and argon
14

 

matrices and the corresponding matrix shift (cm
1

). 

 N2 matrix Ar matrix Shift N2 matrix Ar matrix Shift 

 cis-FA trans-FA 

OH 0.83 0.45 19 0.57 0.32 21 

C=O 1 1 5 1 1 6 

COH 0.45 0.28 +32 0.21 0.50 +37 

 cis-AA trans-AA
a
 

OH 0.73 0.09 12 0.53 0.47 12 (20) 

C=O 1 1 10 1 1 1 (4) 

COH 0.21 1.02 +31 0.63 0.82 +18 (+25) 

a
 Data for site II; shifts for site I in parenthesis. 
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C. Tunneling rates 

At the lowest temperatures, the cis-HCOOH decay rate in a nitrogen matrix is 

smaller by 55 and 10000 times compared to argon and neon matrices, 

respectively.
16,22

 For CH3COOH, the cis–to–trans conversion in a nitrogen matrix is 

slower by a factor of 600 than in an argon matrix. At ca. 8.5 K, the cis-HCOOH 

decay in a nitrogen matrix is about 5 times slower than the decay in a xenon matrix
16

 

and ca. 30 times slower than in a krypton matrix. For CH3COOH, the tunneling rate is 

very similar in argon and krypton matrices, but it is 5 times faster in a xenon matrix.
18

 

The tunneling rate of AA in a Xe matrix is ca. 3000 times greater than in a nitrogen 

matrix. Cis–to–trans conversion accelerates at elevated temperatures (Figure 7), 

which suggests the influence of the matrix phonons to the tunneling process.
16

 The 

observed temperature dependence in a nitrogen matrix has a plateau for both acids 

where the tunneling rate remains practically constant. Such behavior demonstrates that 

up to a certain temperature (ca. 15 K in our case) the conversion process goes solely 

by tunneling.  

We emphasize three experimental observations: (i) faster decay of cis-AA 

compared to cis-FA in all matrices; (ii) slower decay of the cis conformers in solid 

nitrogen than in rare-gas matrices; and (iii) closer decay rates of cis-AA and cis-FA in 

a nitrogen compared to argon matrix.  

The faster decay of of cis-AA compared to cis-FA can be explained by the lower 

cis–to–trans barrier for AA. The calculated cis–to–trans barriers are 4400 and 3921 

cm
1

 for AA and FA, respectively.
8,9

 Indeed, the barrier height is the most important 

factor controlling the tunneling rate. The different barriers also explain why the decay 

slows down in solid nitrogen compared to an Ar matrix. As discussed above, the 

spectroscopic data indicate the importance of the specific interaction between the 

hydrogen atom of the OH group and a nitrogen molecule. This interaction lowers the 

total energy of the system. On the other hand, this interaction is not efficient in the 

transition state for the case of a short tunneling time when the coordinates of the 

atoms are fixed (except the tunneling hydrogen). It follows that the cis–to–trans 

barrier becomes higher within the model of specific interactions approximately by the 

value of the dissociation energy of the corresponding hydrogen-bonded complex. This 

interaction is substantially weaker for an argon atom than for a nitrogen molecule. In 

agreement with the model of specific interactions, Marushkevich et al. have found 
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recently that the cis-FA
…

N2 complex in an argon matrix has a lifetime of 48 min, i.e., 

6.5 times longer compared to the cis-FA monomer.
37

 The same discussion is relevant 

to the third experimental observation that the decays of cis-AA and cis-FA in solid 

nitrogen become closer compared to an Ar matrix. Indeed, the hydrogen bonding to 

nitrogen is stronger for AA than for FA (by 0.7 kJ mol
1

); hence the cis–to–trans 

barriers become similar for these molecules. It should be mentioned that additional 

factors exist which influence the tunneling rates.
15,16,18,19

 

 

 

Conclusion 

 

Formic and acetic acids have been studied in nitrogen matrices. The IR spectra 

of the cis and trans conformers of these species are assigned (Tables I and II). The 

higher energy cis conformer of these molecules is produced by vibrational excitation 

of the more stable trans conformer. The decay of the cis forms is observed and 

explained by tunneling of hydrogen through the cis–to–trans torsional barrier, 

similarly to these species in rare-gas matrices.
16,18

 On the other hand, the tunneling for 

both molecules is considerably slower in a nitrogen matrix than in rare-gas matrices, 

for example, the cis–to–trans conversion of HCOOH slows down in a nitrogen matrix 

by four orders of magnitude  compared to a neon matrix. 

Both spectroscopic and tunneling data indicate that the OH
…

N2 specific 

interactions are important for both acids in a nitrogen matrix. Within the model of 

specific interactions, the tunneling barrier height should be higher in a nitrogen matrix 

than in an argon matrix. This conclusion is in agreement with the experimental 

observations on tunneling decay of AA and FA in a nitrogen matrix.  
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ABSTRACT 

Acetic acid (CH3COOH; AA) dimers were studied in a nitrogen matrix. The 

infrared spectra of three trans-trans and two trans-cis acetic acid dimers are reported 

and analyzed. Among these, one trans-trans and both trans-cis forms have been 

observed for the first time. One of the trans-cis AA dimers (D2’_TC), bearing an 

eight-membered ring with one C-H
…

O= and one OH
…

O= intermolecular H-bond, was 

produced by selective vibrational excitation (at 6896 cm
–1

) of the structurally related 

trans-trans dimer. The second one (D2_TC), with a single OH
…

O= intermolecular 

hydrogen bond and the two monomeric units in a nearly perpendicular position, was 

obtained by thermal mobilization of a mixture of trans and cis monomers of AA, the 

latter being produced from the first by excitation of the OH +COHcombination 

mode at 4724.5 cm
–1

. Interpretation of the experimental data was helped by an 

extensive theoretical study of the various possible structures of acetic acid dimers 

(trans-trans and trans-cis), carried out at the MP2/6-311++G(2d,2p) level of 

approximation. The tunneling decay rate at 8.5 K of the D2’_TC trans-cis dimer was 

estimated as ~7.5 h. 
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1. Introduction 

 

Hydrogen bonds are among the most well-known intermolecular interactions, 

which are of essential importance in many fields of chemistry and molecular 

biology.
1,2

 Nowadays, the term “hydrogen bonding” portrays a much vaster 

significance due to the ubiquitous occurrence of hydrogen bonds in nature, as it 

includes interactions in the gas, liquid and solid states. Understanding the nature of 

this interaction is fundamental in determining molecular conformation and crystal 

packing,
3
 in molecular recognition

4
 and self-assembly of nanomaterials,

5
 and in the 

activity of biological molecules.
6
 Therefore, the properties of hydrogen bonding 

interaction have been studied both theoretically and experimentally.
7-9

 For instance, 

hydrogen bonds such as N-H
…

O play a crucial role in the structure and properties of 

double hydrogen bonded systems such as proteins or nucleic acid base pairs.
10-12

  

Dimers of carboxylic acids such as formic (HCOOH, FA) or acetic 

(CH3COOH, AA) acids represent interesting model systems where C-H
…

O and  

O-H
…

O hydrogen bonds are present in cyclic and open dimers. In particular, in cyclic 

centrosymmetric dimers of carboxylic acids the two intermolecular O-H
…

O=C 

hydrogen bonds are coupled and strengthened.
13-15

 In the gas phase, acetic acid exists 

in a mixture of two species, monomeric acetic acid and the cyclic dimer (with C2h 

symmetry) as determined by electron diffraction
16

 and other methods,
17-19

 while X-ray 

diffraction studies indicate that in the crystalline state acetic acid crystallizes in long 

polymer chains that involve C-H
…

O=C as well O-H
…

O=C hydrogen bonds.
20

 The 

structure of acetic acid in the liquid phase still seems to be a controversial issue, some 

studies suggesting that besides the presence of the cyclic dimer, linear chains are also 

present.
21,22

 However, Monte Carlo simulations have suggested that liquid acetic acid 

consists mainly of hydrogen-bonded chains, not the cyclic dimer.
23

 The nature of 

hydrogen bonding between acetic acid and water and in different environments as well 

as complexes formed between acetic acid and other polar molecules have also been 

the subject to many theoretical and experimental studies.
24-28

   

Acetic acid has only two conformers (trans and cis) which can interconvert in 

one another through internal rotation around the CO bond (Scheme 1). The cis form 

is higher in energy than the trans form by ca. 1880 cm
–1

 (theoretical value)
 
and the 

trans-to-cis conversion barrier was predicted to be ca. 49 kJ mol
–1

 (4400 cm
–1

).
29
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The infrared spectra of matrix-isolated monomeric forms of acetic acid (trans-

AA and cis-AA) have been reported previously in different cryogenic matrices.
30-33

 

The higher energy conformer, cis-AA, was obtained by selective vibrational excitation 

of the lower energy trans form using narrowband tunable infrared radiation. The cis 

form subsequently converts to the lower energy conformer via dissipative proton 

tunneling through the torsional barrier, which limits their lifetime. The tunneling 

process is a strongly anharmonic motion. The cis to trans decay rate depends on the 

noble gas being used, isotopic substitution and working temperature.
31

 In addition to 

AA, the higher energy cis forms of formic, propionic and other carboxylic acids 

derivatives have also been investigated in noble gas matrices.
34-38

 

Previous theoretical studies of AA dimers carried out using semi-empirical and 

ab initio quantum chemical calculations undertaken at different levels of theory (from 

Hartree-Fock to MP2) and different basis sets have focused mainly on the most stable 

cyclic dimer, however, higher energy dimers have been considered.
15,22,24-26,39-44

 Xu 

and Yang
41

 reported eight trans-trans acetic acid dimers optimized by the PM6 

method, while in an earlier publication by Chocholousová et al.
24

 only six minima 

were calculated at the DFT and MP2 levels. Furthermore, the possibility of a linear 

open dimer formed by keeping one AA monomer in trans orientation and another 

monomer positioned in cis, with one O-H
…

O=C hydrogen bond has also been 

addressed.
15

 

The matrix isolation infrared spectra of the two most stable dimeric forms of 

acetic acid, the centrosymmetric cyclic dimer (C2h symmetry) and the Cs symmetry 

dimer bearing one O-H
…

O=C and one C-H
…

O=C intermolecular bonds were first 

assigned by Grenie et al.
45

 in an argon matrix, following the work by Redington and 

Lin,
46

 which reported only the cyclic dimer. The gas phase infrared spectrum of the 

AA cyclic dimer provided a useful basis in the assignment of the matrix-isolated 

cyclic dimer.
17-19

 In a more recent work,
42

 the presence of the two previously
45

 

identified AA trans-trans dimers was confirmed, and a much more complete 

assignment of the main vibrations was produced for these species in an argon matrix. 

Interestingly, these two dimeric forms of acetic acid were also detected in interstellar 

ice analogs,
47

 upon irradiation of binary mixtures of methane (CH4) and carbon 

dioxide (CO2). Using matrix isolation together with supersonic jet expansion, and 

replacing one acetic acid unit by its methyl ester, Emmeluth and Suhm
44

 suggested the 
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possibility of observation of three trans-trans dimers. The additional dimer would be 

formed by one O-H
…

O-H and one O-H
…

O=C intermolecular bonds.  

The Raman spectra of monomeric acetic acid and of their most stable dimers 

isolated in solid argon have also been studied by Olbert-Majkut et al.
44

 Besides the 

most stable cyclic dimer, two less stable dimers were also identified. One of these 

latter is characterized by O-H
…

O and C-H
…

O intermolecular interactions, while the 

other has an O-H
…

O-H intermolecular hydrogen bond.   

In contrast to formic acid,
36,48,49

 where trans-trans and trans-cis dimers could 

be experimentally identified in noble gas matrices, the number of the hitherto 

observed dimers of acetic acid is, as described above, still very reduced. In particular, 

no trans-cis acetic acid dimers have been observed hitherto. 

   

In the present work, an extensive theoretical study of the various possible 

structures of acetic acid dimers (trans-trans and trans-cis) was carried out using 

quantum chemical calculations (at the MP2 level). These data were used to help 

interpretation of the experimental results obtained for the compound in nitrogen 

matrix. We report the first assignment of 3 trans-trans and 2 trans-cis acetic acid 

dimers in this matrix media. Among these, one trans-trans and both trans-cis forms 

have been observed for the first time. The tunneling decay rate of one of the observed 

trans-cis dimer into its trans-trans counterpart was also estimated. 

 

O

O H

CH3

O

O

CH3 H

trans cis
 

 

Scheme 1 – Trans (most stable) and cis (higher energy) conformers of acetic acid. 

 

 

2. Computational details and results 

 

The quantum chemical calculations were performed using Gamess, version R2 

(24-Mar-2010)
50

 at the MP2 level of theory
51

 using the 6-311++G(2d,2p) basis set.
52,53
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This basis set has been shown to reproduce the experimental structural and vibrational 

properties of FA with an acceptable accuracy.
54-56 

The optimization criteria parameter 

OPTTOL was set to 0.0001 hartree/bohr. This parameter corresponds to the maximum 

value allowed to the energy gradient and also controls the maximum allowed value of 

the root mean square gradient, which is given by 1/3 of OPTTOL. The optimized 

structures of all reported trans-trans and trans-cis dimers were confirmed to 

correspond to true energy minima by inspection of the corresponding Hessian matrix. 

The calculated structures were not constrained to planarity. The vibrational spectra 

were computed at the same level of theory. The calculated MP2/6-311++G(2d,2p) 

vibrational frequencies and intensities of the fundamental modes for the trans-trans 

and trans-cis forms of CH3COOH are listed in the Supplementary Material (Tables 

S1-S2).  

Figures 1 and 2 shows the optimized structures for the trans-trans and trans-

cis dimers of acetic acid. The basis set superposition error (BSSE) was calculated as 

described by the counterpoise method proposed by Boys and Bernardi.
57

 The 

computed interaction energies for each dimer and calculated hydrogen bond and angle 

lengths are listed in Tables 1-3. 

 

 

Trans-trans dimers 

 

Besides the well-known centrosymmetric cyclic (C2h) dimer with two strong 

O-H
…

O= hydrogen bonds, which corresponds to the global minimum, the potential 

energy surface of acetic acid dimer shows that other open or cyclic dimers of the 

compound with higher energies can be formed with either a strong O-H
…

O= or 

weaker C-H
…

O= and O-H
…

O-H hydrogen bonds. AA trans-trans dimers can then be 

classified in four families (Figure 1): a) centrosymmetric cyclic dimer, with two 

OH
…

O= hydrogen bonds; b) dimers bearing one strong OH
…

O= hydrogen bond; c) 

dimer without any OH
…

O= bond, but possessing one OH
…

OH bond; d) dimers 

without any OH
…

O= or OH
…

OH bonds. On the whole, 9 different AA trans-trans 

dimers were predicted to exist. 
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Group a) 

 

 

 

D1_TT (C2h) 

 

 

Group b) 

    

 

                                                    

D2_TT (Cs)                      D2’_TT (C1)                 D2’’_TT (Cs)              D2’’’_TT (Cs)

  

 

Group c) 

 

 

 

D3_TT (C1) 

 

 

Group d) 

                                  

 

 

 

D4_TT (Ci)                            D4’_TT (C1)                           D4’’_TT (C1) 

 

 

Figure 1. Calculated structures for AA dimers (trans-trans), and their classification in groups: a) cyclic centrosymmetric 

dimer, with two OH
…

O= hydrogen bonds; b) dimers bearing one OH
…

O= hydrogen bond; c) dimer without any OH
…

O= 

bond, but possessing one OH
…

OH bond; d) dimers without any OH
…

O= or OH
…

OH bonds.  

    

 

The most stable cyclic dimer (D1_TT, in Figure 1) has a centrosymmetric 

eight-membered ring structure with two symmetrical O-H
…

O= bonds (1.677 Å long). 

This is the predominant dimer in the gas phase,
16-19

 with a calculated interaction 

energy of 60.2 kJ mol
-1

 (Table 1). Members of family b) have a single OH
…

O= bond 
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and can be converted to each other essentially by rotation about this hydrogen bond. 

Their close energies and structural similarity point to low energy barriers separating 

these forms from each other. Dimer D2_TT is the most stable member of this family, 

with an interaction energy of 33.0 kJ mol
-1

. In this dimer, which belong to the Cs 

symmetry point group, besides the strong O-H
…

O= hydrogen bond (1.796 Å), one 

weak C-H
…

O= hydrogen bond exists (2.295 Å). By moving one monomer unit to a 

nearly perpendicular orientation in relation to the other, the two equivalent-by-

symmetry D2’_TT forms (C1 point group) can be obtained from dimer D2_TT, with 

an interaction energy of 32.5 kJ mol
-1

. Dimers D2’’_TT and D2’’’_TT (both having 

a planar heavy atom skeleton) possess, in addition to the strong O-H
…

O= hydrogen 

bond weaker O-H
…

O-H (1.940 Å) or C-H
…

O-H (2.587 Å) hydrogen bonds, 

respectively. These dimers have calculated interaction energies of 29.2 and 24.5  

kJ mol
-1

. Dimer D3_TT (with C1 symmetry; interaction energy: 23.7 kJ mol
-1

) is the 

only form belonging to group c). It exhibits a hydrogen bond between the two 

hydroxyl groups (1.893 Å) and an additional one between the methyl group and the 

carbonyl group (2.347 Å). Three dimers were found that belong to group d). Dimer 

D4_TT (with Ci symmetry), being the most stable form within this group (interaction 

energy: 16.6 kJ mol
-1

), shows a stacked structure where dispersion forces are the 

main stabilizing factor. Dimer D4’_TT (C1 symmetry) contains a weak C-H
…

O 

hydrogen bond (2.375 Å) between the two monomers, and the two units are located 

nearly perpendicularly to each other (interaction energy: 16.6 kJ mol
-1

). The third 

dimer belonging to group d) (D4’’_TT) has one C-H
…

O=C (2.350 Å) and one  

C-H
…

O-H (2.492 Å) bond and has an interaction energy of 11.3 kJ mol
-1

. On the 

other hand, the calculations showed that trans-trans dimeric structures having all 

heavy atoms in a single plane and exhibiting only C-H
…

O or/and dispersion 

interactions are not minima. 

The six AA trans-trans dimers previously predicted (at the DFT and MP2 

levels) by Chocholousová et al.
24

 and by Xu and Yang
41

 (PM6) correspond to dimers 

D1_TT, D2_TT, D2’’_TT, D2’’’_TT, D3_TT and D4_TT calculated in present study, 

while those reported by Olbert-Majkut et al.
44 

[B3LYP/6-311++G(2d,2p) calculations] 

have correspondence in D1_TT, D2_TT, D2’’_TT, D3_TT and a dimer closely related 

to D4_TT but exhibiting a planar heavy atom skeleton. Two of the structures obtained 

by the PM6 method by Xu and Yang
41

 (C and D, of C2h and Ci symmetry, with two  
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C-H
…

O-H hydrogen bonds and two O-H
…

O-H interactions, respectively) were found 

not to correspond to minima at the MP2 level.  

 

 

 

 

Trans-cis dimers 

 

Twelve different AA trans-cis dimers were predicted by the MP2/6-

311++G(2d,2p) calculations in the present study (Figure 2). Like in the case of the 

trans-trans dimers, one can classify the trans-cis dimers in four main families: a) 

dimers with one O-H
…

O= and one O-H…O-H hydrogen bond; b) dimers bearing a 

single O-H
…

O= bond; c) dimer without any O-H
…

O= bond, but possessing one  

O-H
…

O-H bond; d) dimers without any O-H
…

O= or O-H
…

O-H bonds. 

 

 

 

Table  1   –   Interaction energies ( IE/  kJ mol - 1 ) including zero - point energy  and basis set  
superposition error  correction s for  trans - trans   dimers , obtained in the present study, and  
previously reported interaction energy values .   

  
Dimer   
trans - trans a   

  
IE   

      

  T his study   Ref.   24 b   Ref.41 c   Ref.44 d   
  

D1_TT   

  

– 60.2   

  

– 66.3   

  

– 43.2   

  

– 59.2   

          

D2_TT   – 33.0   – 3 6.6   – 32.5   – 29.0   

D2’_TT   – 32.5   -   -   -   

D2’’_TT   – 29.2   – 32.2   – 28. 7   – 23.8   

D2’’’_TT   – 24.5   – 26.0   – 20.8   -   

          

D3_TT   – 23.7   – 21.7   – 25.3   – 16. 5   

          

D4_TT   – 16.6   – 17.2   – 24 . 4   – 8.6   

D4’_TT   – 15.8   -   -   -   

D4’’_TT   – 11.3   -   -   -   

          
a 
  See Figure  1   for structures of the dimers.   

b 
  BSSE corrected RI MP2/augTZVPP calculations.   

c 
  PM6 calculations.   

d 
  B SSE and zero point energy corrected B 3LYP/6 - 311++G(2d,2p)   calculations.   
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Group a) 

         

 

 

D1_TC (Cs)                             D1’_TC (C1) 

 

Group b) 

               

 

 

D2_TC (C1)                    D2’_TC (Cs)        D2’’_TC (C1)      D2’’’_TC (Cs)  

  

 

 

 

D2’’’’_TC (Cs)  

Group c) 

 

 

 

 

D3_TC (C1) 

Group d) 

                         

 

 

 

 

      

D4_TC (C1)            D4’_TC (Cs)                  D4’’_TC (C1)                   D4’’’_TC (C1) 

 

Figure 2. Calculated structures for AA dimers (trans-cis), and their classification in groups: a) dimers with 

one OH
…

O= and one OH
…

OH hydrogen bond; b) dimers bearing a single OH
…

O= hydrogen bond; c) 

dimer without any OH
…

O= bond, but possessing one OH
…

OH bond; d) dimers without any OH
…

O= or 

OH
…

OH bonds.   
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The most stable trans-cis dimers belong to type a), having simultaneously one 

O-H
…

O= and one O-H
…

O-H hydrogen bond, forming a six-membered ring. Dimer 

D1_TC (with Cs symmetry) is the most stable form (interaction energy: 40.4 kJ 

 mol
-1

). In this form, the O-H
…

O= and O-H
…

O-H hydrogen bonds are predicted to be 

1.807 and 1.930 Å long, respectively. Dimer D1’_TC is structurally similar to D1_TC, 

but has the monomeric units in a nearly perpendicular orientation; it has also similar 

interaction energy (40.2 kJ mol
-1

) and hydrogen bond lengths (1.813 and 1.930 Å) to 

those of D1_TT. With the exception of D2’’’_TC, all members of family b) have the 

trans monomeric unit as donor in the O-H
…

O= bond. These forms can be converted to 

each other essentially by rotation about this hydrogen bond. In turn, the OH group of 

the cis unit does not take part in any hydrogen bond. On the other hand, dimer 

D2’’’_TC has the cis unit involved as donor in the O-H
…

O= bond and the OH group 

of the trans unit free. The interaction energies of group b) dimers are the second 

largest ones, ranging from 24.6 to 35.9 kJ mol
-1

 (see Table 2). Weak C-H
…

O= or  

C-H
…

O-H interactions can be devised to take place in type b) dimers (see Figure 2 

and Table 3) which shall also partially account to determine their relative energies.  

 

Table 2 – Interaction energies (IE/ kJ mol
-1

) 

including zero-point energy and basis set 

superposition error corrections for trans-cis 

dimers. 

Dimer 

trans-cis 

 

IE 

  

D1_TC –40.4 

D1’_TC –40.2 

  

D2_TC –35.9 

D2’_TC –35.6 

D2’’_TC –34.7 

D2’’’_TC –34.7 

D2’’’’_TC –24.6 

  

D3_TC –22.5 

  

D4_TC –23.7 

D4’_TC –16.0 

D4’’_TC –15.4 

D4’’’_TC –12.2 

  
a
 See Figure 2 for structures of the dimers. 
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Dimer D3_TC is the only member of family c), with the cis unit acting as 

donor in its O-H
…

O-H hydrogen bond. The calculated interaction energy of this dimer 

is 22.5 kJ mol
-1

. In members of family d), the dominant interactions are of dispersive 

type and weak C-H
…

O hydrogen bond like interactions. In none of these dimers the 

OH groups are involved in H-bonds as donors, and only in D4’’’_TC one of the OH 

groups acts as H-bond acceptor. Furthermore, with exception of D4’_TC, all d) type 

acetic acid trans-cis dimers have the heavy atom skeleton of the two monomeric units 

in different planes. Their calculated interaction energies range from 12.2 to 23.7 kJ 

mol
-1

. 

 

 

Table 3 – Calculated hydrogen bond lengths (Å) and angles (degrees) of the trans-trans 

and trans-cis acetic acid dimers.  

 

Dimer
a
 

  

Bond length  

 

 

 

Bond angle 

   

OH
…

O 

 

CH
…

O 

  

OH
…

O 

 

CH
…

O 

 

D1_TT 

  

1.677 

 

 

  

178.5 

 

 
D2_TT  1.796 2.295  169.8 161.8 

D2’_TT  1.776   176.8  
D2’’_TT (O=) 1.918   137.7  
 (OH) 1.940   153.1  
D2’’’_TT  1.831 2.587  161.0 134.2 

D3_TT  1.893 2.347  171.1 153.2 

D4_TT       
D4’_TT   2.375   146.5 

D4’’_TT (=O)  2.350   169.6 

 (OH  2.492   168.0 

       

D1_TC (O=) 1.807   145.0  
 (OH) 1.930   149.8  
D1’_TC (O=) 1.813   146.6  
 (OH) 1.930   150.7  
D2_TC  1.845   169.5  
D2’_TC  1.785 2.245  170.7 163.0 

D2’’_TC  1.777   174.7  
D2’’’_TC  1.795 2.555  168.9 133.9 

D2’’’’_TC  1.842 2.492  158.0 135.9 

D3_TC  1.900   162.5  
D4_TC       
D4’_TC 

b 
 2.326   177.7 

 
c 

 2.349   176.1 

D4’’_TC   2.484   134.9 

D4’’’_TC (O=)  2.334   169.0 

 (OH)  2.458   170.8 
a
 See Figures 1 and 2 for structures of dimers. 

b
 Acceptor atom: carbonyl oxygen of the trans unit. 

c
 Acceptor atom: carbonyl oxygen of the cis unit. 
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3. Experimental details and results 

 

Gaseous mixtures of acetic acid (KEBO LAB, 99%) with nitrogen 

(AGA/Linde 6.0) were prepared with a typical ratio of 1:1500. The acid was purified 

by a few freezing-pumping cycles. Nitrogen was used as supplied. The mixtures were 

deposited onto a cooled CsI window at 8.5 K in a close–cycle helium cryostat (APD, 

DE 202A). The spectra were recorded with a Nicolet 60SX FTIR instrument, by co–

adding 200 interferograms with 1 cm
–1

 spectral resolution. 

The trans–to–cis conversion was promoted by selective vibrational excitation 

by using an optical parametric oscillator with infrared extension (Sunlite Continuum, 

FWHM ~0.1 cm
–1

). The trans-cis acetic acid dimer D2’_TC was produced by 

excitation of the 1
st
 overtone of the OH free OH group of the trans-trans dimer 

D2_TT at 6896 cm
–1

. D2_TC was produced by thermal mobilization of a mixture of 

trans and cis monomers of AA, the latter being produced from the first by excitation 

of the OH +COHcombination mode at 4724.5 cm
–1

. 

In the kinetic measurements, the trans-cis dimer (D2’_TC) decay was 

monitored by measuring the intensity of the COH-CO def fundamental band at 1306.8 

cm
–1

 as a function of time. A long–pass optical filter (> 1500 cm
–1

) was inserted 

between the sample and the Globar source in order to suppress high-frequency light 

components which could accelerate the cis–to–trans conversion process.
 
The Globar 

light was blocked between the measurements. 

 

Trans-trans dimers present in the as-deposited matrices and after 

annealing of the matrices to 28 K (D1_TT and D2_TT): spectral assignments 

 

Figure 3 shows a selected region (2000-1550 cm
-1

) of the spectra of two 

samples of acetic acid in N2 matrix with two different concentrations. Spectrum a) 

corresponds to a highly diluted matrix (<1:2000) and shows essentially bands due to 

the trans-AA monomer,
33

 while spectrum b) is of a more concentrated sample, where 

bands due to a minor amount of dimers could be easily identified. Comparison of the 

experimental spectra with those calculated for the different dimers obtained from the 

MP2/6-311++G(2d,2p) calculations indicates that the dominant dimers in the matrix 

are D1_TT and D2_TT (see Figure 1), i.e., the two most stable AA trans-trans dimers. 

The characteristic bands that can be used as fingerprint of these two dimers (in the 
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shown spectral region) are marked in the Figure. The infrared active C=O stretching 

mode of D1_TT is predicted by the calculations to be shifted in relation to the 

monomer by 40 cm
-1

, and is observed at 1720.9 cm
-1

 in N2 matrix, i.e., red-shifted in 

relation to the average position of the absorptions due to trans-AA monomer in the 

two main matrix sites
33

 by ca. 55 cm
-1

. On the other hand, the two C=O bands of 

D2_TT were observed at 1762.6 and 1733.4 cm
-1

, shifted by ca. 14 and 43 cm
-1

 

relatively to the average position of the bands of the monomer. The predicted shifts 

for these vibrations are 17 and 38 cm
-1

, respectively. 
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Figure 3. 2000-1550 cm

-1
 spectral range of AA in N2 matrix (as-deposited; two different experiments: 

a) M:S ratio <1:2000; b) M:S ratio ~1:1500) and MP2/6-311++G(2d,2p) calculated spectra for trans 

monomer (M), D1_TT and D2_TT in the same spectral region. The dotted line separates the 

experimental from the calculated spectra. 
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The spectrum of the most stable dimer (D1_TT) is much simplified because of 

the C2h symmetry of this dimer, which reduces the number of IR active vibrational 

modes to half. On the other hand, dimer D2_TT is of Cs symmetry, so that all modes 

are expected to be IR active. The complete lists of assignments made for D1_TT and 

D2_TT in N2 matrix are given in Table 4 and Table 5. A few illustrative examples are 

discussed below. These assignments took also into account the annealing and 

irradiation experiments described later in this paper and improve upon the 

assignments previously proposed by Sander and Gantenberg,
42

 Redington and Lin
46

 

and Grenie et al.
45 

(in argon matrix), and Emmeluth and Suhm
43

 (in supersonic jet 

expansion). 

 

Table 4.  MP2/6-311++G(2d,2p) calculated infrared spectra for dimer D1_TT (C2h), 

wavenumber shifts in relation to the monomer and observed wavenumbers and shifts in N2 

matrix. 
a
 

 

Calculated 

 

N2 matrix 

  

 I
IR

   b Assignment
c
 Symmetry 

 

3303.4 

 

2979.0 

 

483.9 

 

 

  

O-H  

 

Bu 

3228.2 12.8 0.5   HCH2 s Bu 

3187.1 2.9 0.7   HCH2 a Au 

3107.0 1.9 0.6   CH3  Bu 

1760.9 716.0 40.1 1720.9 55.4 C=O  Bu 

1504.8 17.0 0.6 1434.0 9.2 HCH2 a Au 

1499.7 59.5 0.6 1434.0 1.7 HCH2 s Bu 

1479.0 123.4 +270.9 1422.2 +231.3 COH-CO def Bu 

1416.0 43.8 16.7 1362.4 24.2 CH3  Bu 

1336.2 392.2 14.1 1303.8 +25.6 CO-COH def Bu 

1087.6 6.5 +4.9 1052.3 +4.2 CH3 a Au 

1042.3 41.1 +32.9 1018.6 +27.7 CH3 s Bu 

1033.4 169.7 +372.4 972.2 

967.2 

+312.5 

+307.5 

C-O Au 

909.9 7.2 +42.1   C-C Bu 

635.3 44.0 +50.7 632.8 +45.8 OCO Bu 

604.2 0.5 +53.5   C=O  Au 

483.6 45.9 +58.2 484.6 +54.4 CC=O Bu 

a 
Wavenumbers () and shifts in wavenumbers () relatively to the monomer in cm

-1
; 

Infrared intensities (I
IR

) in km mol
-1

. 
b
 Average wavenumber shifts in relation to the position 

of the observed bands of the trans-AA monomer
33

 in the two matrix sites. 
c
 , stretching; , 

bending; , rocking; , torsion; a, antisymmetric; s, symmetric.  



 242 

Table 5. MP2/6-311++G(2d,2p) calculated infrared spectra for dimer D2_TT (Cs), wavenumber 

shifts in relation to the monomer and observed wavenumbers and shifts in N2 matrix. 
a
 

 

Calculated 

 

N2 matrix 

  

 I
IR

   b Assignment
c
 Symmetry 

3780.0 83.7 7.3 3532.5 15.5 O-H (2) A´ 

3515.7 1016.7 271.6   O-H (1) A´ 

3224.7 5.6 4.0   HCH2 s (1) A´ 

3223.6 15.0 5.1   HCH2 s (2) A´ 

3185.1 2.9 2.7   HCH2 a (1)   A´´ 

3183.4 1.1 4.4   HCH2 a (2)   A´´ 

3105.2 2.1 2.4   CH3  (1) A´ 

3100.9 13.3 6.7   CH3 (2) A´ 

1784.0 620.0 17.0 1762.6 13.8 C=O a A´ 

1762.8 76.2 38.2 1733.4 42.9 C=O s A´ 

1518.4 7.9 +13.0 1442.8 0.45 HCH2 a (2)   A´´ 

1505.4 7.7 0.0   HCH2 a (1)   A´´ 

1500.8 27.7 +0.5   HCH2 s (1) A´ 

1499.4 0.5 0.9   HCH2 s (2) A´ 

1448.8 38.7 +16.1 1400.2 +13.5 CH3 (1) A´ 

1442.7 63.2 10.0 1392.4 +5.7 CH3 (2) A´ 

1398.7 16.6 +190.6 1342.7 +151.7 COH-CO def (1) A´ 

1368.3 92.2 +160.2 1318.0 +127.0 COH-CO def (2) A´ 

1271.0 268.2 79.3 1246.0 

1243.6 

32.2 

34.6 

CO-COH def (1) A´ 

1227.5 219.4 122.8 1202.7 75.5 CO-COH def (2) A´ 

1093.7 5.9 +11.0 1056.3 +8.2 CH3 a (2)   A´´ 

1083.1 4.4 +0.4 1049.0 +0.9 CH3 a (1)   A´´ 

1029.9 53.5 +20.5 1014.6 

1012.6 

+23.7 

+21.7 

CH3 s (2) A´ 

1028.1 69.4 +18.7 1003.2 +12.3 CH3 s (1) A´ 

903.7 85.0 +242.7 860.3 +200.6 C-O (1)   A´´ 

890.6 4.2 +22.8 855.5 0.8 C-C (1) A´ 

882.2 6.3 +14.4 843.7 

836.6(?) 

12.6 

19.7 

C-C (2) A´ 

673.8 92.9 +12.8 676.8 +17.1 C-O (2)   A´´ 

609.9 32.7 +25.3 606.4 +19.4 OCO (1) A´ 

600.5 38.8 +53.9 604.4 +17.4 OCO (2) A´ 

599.4 0.5 +48.7   C=O (1)   A´´ 

558.7 26.5 +8.0 550.9 0.6 C=O (2)   A´´ 

447.9 16.5 +22.5 440.5(?) +10.3 CC=O (1) A´ 

434.1 3.1 +8.7   CC=O (2) A´ 
a 

Wavenumbers () and shifts in wavenumbers () relatively to the monomer in cm
-1

; Infrared intensities 

(I
IR

) in km mol
-1

. 
b
 Average wavenumber shifts in relation to the position of the observed bands of the 

trans-AA monomer
33

 in the two matrix sites. 
c
 , stretching; , bending; , rocking; , torsion; a, 

antisymmetric; s, symmetric; (1), molecule 1 in the dimer (OH
…

O bond donor molecule); (2), molecule 2 in 

the dimer (CH
…

O bond donor molecule).  
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The calculations predict a very large red-shift (484 cm
-1

) for the IR active OH 

stretching vibration of D1_TT in relation to the monomer. This band is predicted to be 

very intense (2979 km mol
-1

) and could be anticipated to be very broad. Indeed, 

experiment demonstrates that it extends for a so wide range of frequencies that it is 

not possible to distinguish it from the spectral baseline. The same happens to the OH 

stretching band of the H-bonded OH group in D2_TT, which is predicted to be shifted 

by 272 cm
-1

 in relation to the monomer.  On the other hand, the  OH vibration of 

the unbounded OH group of D2_TT is predicted by the calculations to be shifted by 

7 cm
-1

 in relation to the monomer, and could be easily assigned to the experimental 

band at 3532.5 cm
-1

 (average shift: 15 cm
-1

). 

The frequencies of the COH-CO def modes undergo significant blue-shifts in 

the dimers: +271 cm
-1

 for D1_TT, and +191 and +160 cm
-1

 for D2_TT. The band 

observed at 1422.2 cm
-1

 and the two bands at 1342.7 and 1318.0 cm
-1

 were then 

ascribed to the COH-CO def modes in D1_TT and D2_TT, respectively, with average 

shifts of +231, +152 and +127 cm
-1

, in good consonance with the theoretical 

predictions.  

In the case of the CO-COH def modes, the calculations predict red-shifted 

frequencies for the dimers (14 cm
-1

 for D1_TT, and 79 and 123 cm
-1

 for D2_TT), 

the experimental bands being observed at 1303.8 cm
-1

 (D1_TT) and at 1246.0/1243.6 

and 1202.7 cm
-1

 (D2_TT), i.e., exhibiting shifts of +26, 33 and 75  

cm
-1

, respectively. 

The pair of bands at 972.2/967.2 cm
-1

 can be assigned to the C-O torsion of 

D1_TT which shows, as it could be anticipated, a large blue-shift in relation to the 

monomer (+310 cm
-1

; predicted: +372 cm
-1

). For D2_TT, the C-O torsional 

vibrations are observed at 860.3 and 676.8 cm
-1

, with blue-shifts of +201 and 17 cm
-1

, 

which compare well with the theoretical predictions (+243 and +13 cm
-1

, 

respectively). 

Annealing of the matrices to 28 K (see Figure 4) after deposition led to an 

increase of the population of the two dimers, D1_TT and D2_TT, at expenses of the 

monomer. This means that annealing of the matrix to this temperature is enough to 

lead to the thermodynamically more stable dimers, overpassing any putative 

kinetically favored higher-energy dimer. 
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Production of the trans-cis dimer D2’_TC from selective vibrational 

excitation of D2_TT ( = 6896.0 cm
-1

) and assignment of its IR spectrum 

 

Irradiation of a matrix containing monomeric trans-AA as well as D1_TT and 

D2_TT dimers at = 6896.0 cm
-1

 was found to lead to conversion of dimer D2_TT 

into the analogous trans-cis dimer (D2’_TC; see Figure 2), by rotation of the non-

hydrogen bonded OH group of D2_TT. Irradiation was performed at the wavenumber 

corresponding to the 1
st
 overtone of the O-H stretching mode of the “free” OH group 

of the D2_TT dimer, exciting selectively this species, while both the D1_TT dimer 

and the trans-AA monomer were stable upon irradiation at this wavenumber. This 

corresponds to the first experimental observation of a trans-cis dimer of acetic acid. 

Figure 4 shows an illustrative region of the spectra obtained by subtracting the 

spectrum of a AA matrix annealed to 28 K to that of the same matrix after irradiation 

at = 6896.0 cm
-1 

(30 min.). In the Figure, the calculated spectra for D2_TT and 

D2’_TC, as well as that of trans-AA monomer, are also shown for comparison. The 

bands ascribed to D2’_TC in this spectral region are due to its C=O vibrations and 

appear at 1775.8 and 1742.2 cm
-1

, shifted by 21 and +34 cm
-1

, respectively, in 

relation to the corresponding bands in cis- and trans-AA monomers. The observed 

shifts agree very well with those predicted by the calculations (21 and +35 cm
-1

). 

Table 6 shows the proposed assignments for the D2’_TC dimer in N2 matrix. The 

dimer is of Cs symmetry, so that all the modes are IR active. The bands originated in 

the OH stretching vibrations of the D2’_TC dimer are observed at 3598.2 cm
-1

 and 

3174.0 cm
-1

 (for the cis and trans monomeric units). These bands show shifts of 12 

and 374 cm
-1

, respectively, in relation to the corresponding bands in the AA 

monomers, in good agreement with the theoretical predictions: 6 and 285 cm
-1

. The 

bands observed at 1306.8 cm
-1

 (COH-CO def (cis)) and 1247.0 cm
-1

 (CO-COH def 

(trans)) have shifts of +11 and –29 cm
-1

, which can be compared with the theoretically 

predicted shifts of +18 and –76 cm
-1

. The COH-CO def (trans) and CO-COH def (cis) 

vibrations are predicted to have a low intensity and could not be observed 

experimentally. The C-O torsion of the H-bonded trans unit in D2’_TC (observed at 

862.4 cm
-1

) is blue-shifted in relation to trans-AA by +267 cm
-1 

(calculated shift; 

+248 cm
-1

), while in the cis unit the observed blue-shift amounts to +12 cm
-1

, which 

can be compared with the theoretical predicted value of +34 cm
-1

. Globally, the 
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predicted spectrum for this dimer shows a quite good agreement with the experimental 

bands formed upon irradiation at = 6896.0 cm
-1

 at expenses of those belonging to 

D2_TT, thus making doubtless the identification of the in situ produced trans-cis 

dimer.  
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Figure 4. Bottom to top: calculated spectrum (1900-1675 cm
-1

 spectral range) of AA monomer (trans 

form; M), spectrum of the compound isolated in N2 matrix and annealed to 28 K minus spectrum of the 

as-deposited matrix, calculated spectrum of D2_TT dimer, spectrum of the irradiated matrix at 6896.0 

cm
-1

 minus spectrum of the matrix annealed to 28 K, and calculated spectrum of D2’_TC (trans-cis 

dimer).  
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Table.6. MP2/6-311++G(2d,2p) calculated infrared spectra for dimer D2’_TC (Cs), 

wavenumber shifts in relation to the monomer and observed wavenumbers and shifts in 

N2 matrix. 
a
 

 

Calculated 

 

N2 matrix 

  

 I
IR

   b Assignment
c
 Symmetry 

3846.9 77.2 6.0 3598.2 12.4 O-H (c) A´ 

3502.4 1055.8 284.9 ~3174.0 374.0 O-H (t) A´ 

3224.8 5.1 3.9   HCH2 s (t) A´ 

3209.6 24.5 12.0   HCH2 s (c) A´ 

3185.1 2.8 2.7   HCH2 a (t)   A´´ 

3165.3 2.7 4.5   HCH2 a (c)   A´´ 

3105.2 2.1 2.4   CH3  (t) A´ 

3084.0 25.1 7.7   CH3 (c) A´ 

1807.6 471.7 20.5 1775.8 21.4 C=O (c) A´ 

1765.6 160.7 35.4 1742.2 34.1 C=O (t) A´ 

1527.1 6.9 +13.9   HCH2 a (c)   A´´ 

1505.3 7.7 0.1   HCH2 a (t)   A´´ 

1500.9 20.6 0.6   HCH2 s (t) A´ 

1499.4 1.1 1.1   HCH2 s (c) A´ 

1450.1 53.3 +17.4 1379.0 7.6 CH3 (t) A´ 

1432.0 36.9 +11.6 1350.3 20.7 CH3 (c) A´ 

1398.7 12.7 +190.6   COH-CO def (t) A´ 

1324.4 506.2 +18.1 1306.8 +10.7 COH-CO def (c) A´ 

1274.5 238.6 75.8 1247.0 28.9 CO-COH def (t) A´ 

1239.8 2.8 +24.8   CO-COH def (c) A´ 

1089.6 4.0 +12.8   CH3 a (c)   A´´ 

1083.4 4.4 +0.7   CH3 a (t)   A´´ 

1029.6 37.6 +20.2 1005.9 +15.0 CH3 s (t) A´ 

1023.5 12.8 +23.1 990.1  CH3 s (c) A´ 

909.0 87.5 +248.0 862.4 +266.6 C-O (t)   A´´ 

892.3 2.3 +24.5   C-C (t) A´ 

879.8 36.8 +19.2 872.2 +14.8 C-C (c) A´ 

613.6 10.2 +11.3   OCO (c) A´ 

610.9 2.8 +12.3   C=O (c) A´´ 

610.2 20.7 +25.6 608.8 +21.8 OCO (t) A´ 

600.5 0.2 +49.8   C=O (t)   A´´ 

499.2 95.9 +34.1 501.7(?) +12.4 C-O (c)   A´´ 

a 
Wavenumbers () and shifts in wavenumbers () relatively to the monomer in cm

-1
; 

Infrared intensities (I
IR

) in km mol
-1

. 
b
 Average wavenumber shifts in relation to the 

position of the observed bands of the trans-AA monomer in its two matrix sites or cis-

AA monomer.
33

 
c
 , stretching; , bending; , rocking; , torsion; a, antisymmetric; s, 

symmetric; (t), trans molecule in the dimer; (c), cis molecule in the dimer.
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Production of the trans-cis D2_TC dimer from thermal mobilization of 

trans- and cis-AA monomers and of D2’_TT from decay of D2_TC, and 

assignment of their IR spectra 

 

A different experiment was undertaken, involving thermal mobilization of 

trans- and cis-AA monomers (this latter previously produced by vibrational excitation 

of the N2 matrix isolated trans-AA monomer by in situ irradiation at = 4724.5 cm
-1

), 

and resulting in the observation and positive identification of two hitherto unobserved 

AA dimers: D2’_TT and D2_TC (see Figures 1 and 2 for structures).  

In these experiments, AA was isolated in N2 matrix at 8.5 K. This matrix 

contained the low-energy trans-AA monomeric form (together with traces of D1_TT 

and D2_TT dimers). The matrix was subsequently irradiated at = 4724.5 cm
-1

, i.e., at 

the OH +COHcombination mode wavenumber of trans-AA, to partially convert 

this species into the cis monomer. These results are illustrated in Figure 5, where a 

representative spectral region is depicted. In this Figure (trace b), the positive peaks 

correspond to the emerging bands of cis-AA and the negative peaks to the decreasing 

bands of trans-AA.
33

 From the band intensities, the relative amount of cis and trans-

AA in the matrix after irradiation could be roughly estimated as being in a ~1:1 

proportion. Subsequent annealing of the matrix to 28 K led to decrease of the bands 

due to both trans and cis monomers, which indicates the consumption of these forms, 

and to the appearance of new bands belonging to a new species, which could be 

identified as being the D2_TC dimer. Formation of this species implies the thermal 

mobilization of the monomers upon increase of the temperature of the matrix.  

D2_TC dimer is the most stable trans-cis dimer possessing the strong  

O-H
…

O= hydrogen bond formed with the trans-AA unit as H-bond donor, and has the 

calculated interaction energy of 36 kJ mol
-1

. This interaction energy results mainly 

from the establishment of the H-bond, since no other energetically relevant 

interactions are present in this dimer. Dimers D1_TC and D1’_TC have larger 

interaction energies than D2_TC. However, the preferential formation of D2_TC over 

both D1_TC and D1’_TC can be easily explained considering that upon annealing, 

molecular diffusion lead to the preferential initial formation of the strongest possible 

single hydrogen bond, which is present in D2_TC (O-H(trans)
…

O=) but absent in both 

D1_TC and D1’_TC. Both these two forms have interaction energies of ~40 kJ mol
-1

, 
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but this energy results from the establishment of two H-bonds (O-H(cis)
…

O= and  

O-H(trans)
…

O-H), which must then be individually considerably weaker than that 

present in D2_TC. Once the strongest O-H(trans)
…

O= bond is established, access to 

D1_TC and D1’_TC is blocked, so that among the accessible forms the most stable 

one is formed (D2_TC). 
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1762
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1797

1775

1778

1813

a)

b)

c)

d)
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Figure 5. 1875-1600 cm

-1
 spectral range of the: a) calculated spectrum of AA-trans monomer, b) 

spectrum of the compound isolated in N2 matrix and irradiated at 4724.5 cm
-1

 minus spectrum of the as-

deposited matrix (T= 8.5 K), c) calculated spectrum of AA-cis monomer, d) spectrum after annealing to 

28 K the irradiated (4724.5 cm
-1

) matrix minus spectrum of the irradiated matrix (T= 8.5 K), e) 

calculated spectrum of D2_TC dimer, f) spectrum of the annealed to 28 K irradiated sample let in the 

dark (T=8.5 K) for 7 h. minus spectrum of the annealed to 28 K irradiated matrix, and g) calculated 

spectrum of D2’_TT dimer. Note that the intensity scales of the experimental spectra (b, d, f) were 

successively expanded by a factor of ~10. 



 249 

Table 7. MP2/6-311++G(2d,2p) calculated infrared spectra for dimer D2_TC (C1) 

wavenumber shifts in relation to the monomer and observed wavenumbers and shifts 

in N2 matrix. 
a
 

 

Calculated 

 

N2 matrix 

  

 I
IR

   b Assignment
c
 Symmetry 

3847.3 76.9 5.6 3587.1 23.6 O-H (c) A 

3563.9 619.3 223.4 3385.1 

3377.5 

162.9 

173.5 

O-H (t) A 

3224.4 4.2 4.3   HCH2 s (t) A 

3221.8 1.7 +0.2   HCH2 s (c) A 

3185.4 2.4 2.4   HCH2 a (t) A 

3176.1 2.3 +6.3   HCH2 a (c) A 

3105.2 1.9 2.4   CH3  (t) A 

3093.2 4.4 +1.5   CH3 (c) A 

1804.0 378.0 24.1 1777.3 19.9 C=O (c) A 

1767.5 182.7 33.5 1741.5 34.8 C=O (t) A 

1513.5 5.1 +0.3   HCH2 a (c) A 

1505.3 8.0 0.1   HCH2 a (t) A 

1500.1 19.9 0.2   HCH2 s (t) A 

1497.9 13.1 2.6   HCH2 s (c) A 

1443.2 73.5 +10.5 1379.3 7.3 CH3 (t) A 

1419.0 72.8 1.4 1351.9 19.5 CH3 (c) A 

1389.0 4.4 +180.9   COH-CO def (t) A 

1324.6 342.6 +18.3 1310.1 +14.0 COH-CO def (c) A 

1266.8 205.5 83.5 1239.0 39.2 CO-COH def (t) A 

1237.3 4.1 +22.3   CO-COH def (c) A 

1083.0 3.7 +0.3   CH3 a (t) A 

1078.4 10.2 +1.6 1055.0 

1051.6 

+9.2 

+5.8 

CH3 a (c) A 

1027.6 40.2 +18.2   CH3 s (t) A 

1016.1 9.0 +15.7   CH3 s (c) A 

888.1 4.3 +20.3   C-C (t) A 

879.6 26.5 +19.0 871.0 

862.8 

+13.6 

+5.4 

C-C (c) A 

818.0 63.7 +157.0 802.7 +143.0 C-O (t) A 

615.8 7.6 +13.5   OCO (c) A 

608.7 19.6 +24.1 611.3 +24.3 OCO (t) A 

595.4 0.7 +44.7   C=O (t) A 

589.8 4.7 +0.2   C=O (c) A 

472.2 113.3 +7.1 539.6 +50.3 C-O (c) A 

a 
Wavenumbers () and shifts in wavenumbers () relatively to the monomer in cm

-1
; Infrared 

intensities (I
IR

) in km mol
-1

. 
b
 Average wavenumber shifts in relation to the position of the 

observed bands of the trans-AA monomer
33

 in the two matrix sites and of the cis-AA monomer. 
c
 , stretching; , bending; , rocking; , torsion; a, antisymmetric; s, symmetric; (t), trans 

molecule in the dimer; (c), cis molecule in the dimer.
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The proposed assignments for observed bands of D2_TC are given in Table 7. 

In the selected spectral region shown in Figure 5, the bands due to D2_TC are 

observed  at 1777.3 and 1741.5 cm
-1

, corresponding to the two C=O stretching modes 

(see traces d and e). The observed shifts of these bands are 20 and 35 cm
-1

, in very 

good agreement with the predicted shifts of 24 and 33 cm
-1

. 

The agreement between the experimental and calculated spectra for D2_TC in 

other spectral regions is also fairly good. For example, in the OH stretching region the 

bands at 3587.1 cm
-1

 and the doublet at 3377.5/3385.1 cm
-1

, with experimental shifts 

of 24 and 163/173, are easily ascribed to the vibrations of the unbound OH group 

of the cis-AA unit in the dimer and the H-bonded trans-AA unit, respectively, which 

have predicted shifts of 6 and 223 cm
-1

. Additional bands due to the produced 

species were observed at 1379.3 (CH3 (trans)), ~1352 (CH3 (cis)), 1310.1 (COH-

CO def (cis)), 1239.0 (CO-COH def (trans)), 1055.0/1051.6 (CH3 (cis)), 871.0/862.8 

(C-C (cis)), 611.3 (OCO (trans)) and 539.6 (C-O (cis)) cm
-1 

and correspond well to 

the bands with the highest calculated intensities for D2_TC. 

Another piece of information supporting the dominant formation of D2_TC in 

the experiment described above resulted from the analysis of the product of the decay 

of the formed dimer when the sample is kept in the dark. D2_TC has a free OH cis 

fragment and can then decay to a trans-trans dimer, in particular for D2’_TT, whose 

formation from D2_TC requires the smallest structural rearrangement among all 

trans-trans dimers (see Figures 1 and 2). Indeed, the product resulting from decay of 

the initially formed trans-cis dimer has a spectral signature that fits well that of 

D2’_TT (see traces f and g in Figure 5), and is here tentatively assigned to this 

species. In the shown spectral region, for D2’_TT gives rise to the bands 

1763.5/1755.7 cm
-1

 and 1726.8 cm
-1

, assigned to the C=O vibrations. The observed 

(13/21 and 49 cm
-1

) and predicted (19, 39 cm
-1

) shifts for these bands are in 

good agreement.    

Though the low intensity of the experimental bands made the analysis of the 

spectrum of D2’_TT difficult, still the experimental and calculated spectra for this 

dimer show a general good agreement also in other spectral regions, as shown in 

Table 8, where the band assignments for this dimer are provided. For example, the 

“free” OH stretching mode of D2’_TT is tentatively attributed to the band at 3556.7 

cm
-1

 (shifts:  +9 experimental; 11 cm
-1

 calculated). Other observed bands 
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corresponding to intense predicted bands appear at 1389.1, 1373.7, 1341.5, 

1252.1/1250.4, 1241.2/1230.0, 1053.4, 1005.1, 1001.1, 869.0/865.0, 658.7, 614.9, 

601.5 and 557.3 cm
-1

 (see Table 8 for details). Note also that as for D1_TT and 

D2_TT, the stretching vibration of the H-bonded OH group of D2’_TT is not 

observable. 

 

Table 8. MP2/6-311++G(2d,2p) calculated infrared spectra for dimer D2’_TT (C1) 

wavenumber shifts in relation to the monomer and observed wavenumbers and shifts 

in N2 matrix. 
a
 

 

Calculated 

 

N2 matrix 

  

 I
IR

   b Assignment
c
 Symmetry 

3776.5 85.1 10.8 3556.7 +8.7 O-H (2) A 

3489.7 956.0 297.6   O-H (1) A 

3224.5 4.7 +36.7   HCH2 s (1) A 

3223.3 4.0 +35.5   HCH2 a (2) A 

3195.5 3.3 +7.7   HCH2 s (2) A 

3185.1 2.9 2.7   HCH2 a (1) A 

3108.2 4.3 +0.6   CH3  (2) A 

3105.1 2.1 2.5   CH3 (1) A 

1781.7 604.7 19.3 1763.5 

1755.7 

12.8 

 20.6 

C=O a A 

1761.6 43.8 39.4 1726.8 49.5 C=O s A 

1511.8 11.7 +6.4   HCH2 a (2) A 

1505.8 7.9 +0.4   HCH2 a (1) A 

1500.2 18.1 0.1   HCH2 s (1) A 

1493.7 21.5 6.6   HCH2 s (2) A 

1448.4 40.1 +15.7 1389.1 +2.4 CH3 (1) A 

1434.5 88.8 +1.8 1373.7 12.9 CH3 (2) A 

1399.2 6.9 +191.1   COH-CO def (1) A 

1369.0 73.0 +160.9 1341.5 +150.5 COH-CO def (2) A 

1273.6 248.9 76.7 1252.1 

1250.4 

26.1 

27.8 

CO-COH def (1) A 

1223.2 241.7 127.1 1241.2 

1230.0 

40.3 

44.9 

CO-COH def (2) A 

1087.1 8.2 +4.4   CH3 a (2) A 

1082.8 4.2 +0.1 1053.4 +5.3 CH3 a (1) A 

1032.7 55.7 +23.3 1005.1 +14.2 CH3 s (2) A 

1027.3 43.5 +17.9 1001.1 +10.2 CH3 s (1) A 

910.4 80.8 +249.4 869.0 

865.0 

+203.8 

+210.9 
C-O (1) A 

887.7 5.5 +19.9   C-C (1) A 

881.5 4.6 +13.7   C-C (2) A 

692.7 95.9 +31.7 658.7 0.8 C-O (2) A 

610.8 11.8 +26.2   OCO (1) A 

602.0 26.1 +17.4 614.9 +27.4 OCO (2) A 

597.0 31.8 +46.3 601.5 +50.0 C=O (1) A 

550.4 22.4 0.3 557.3 +5.8 C=O (2) A 

445.4 12.7 +20.0   CC=O (1) A 

435.7 0.7 +10.3   CC=O (2) A 
a 

Wavenumbers () and shifts in wavenumbers () relatively to the monomer in cm
-1

; 

Infrared intensities (I
IR

) in km mol
-1

. 
b
 Average wavenumber shifts in relation to the position of 

the observed bands of the trans-AA monomer
33

 in the two matrix sites. 
c
 , stretching; , 

bending; , rocking; , torsion; a, antisymmetric; s, symmetric; (1), molecule 1 in the dimer 

(OH
…

O bond donor molecule); (2), molecule 2 in the dimer (CH
…

O bond donor molecule).  
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   Tunneling decay rate of the D2’_TC trans-cis dimer at 8.5 K 

 

As already mentioned, the two observed trans-cis dimers (D2’_TC and 

D2_TC) were found to decay in the dark to the structurally closely related D2_TT and 

D2’_TT, respectively, by tunneling. The tunneling decay rate of D2’_TC into D2_TT 

was evaluated at 8.5 K (Figure 6). According to the performed relaxation studies, 

D2’_TC has a slow tunneling decay constant (~7.5 h, at 8.5 K).  
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Figure 6.  Decay of the band at 1306.8 cm

-1
 assigned to the COH-CO def (c) mode of D2’_TC in N2 

matrix at 8.5 K. 

 

 

The cis–to–trans conversion in a nitrogen matrix has been previously studied 

for monomeric formic and acetic acids.
33

 At ca. 8.9 K, the cis-AA lifetime is ~8 hours, 

whereas the cis-HCOOH lifetime is ~11.4 hours, in a nitrogen matrix. The faster 

decay of monomeric cis-AA compared to cis-HCOOH was explained by the lower 

cis–to–trans barrier for AA.
33

 The D2’_TC lifetime, being approximately 7.5 h, is 

then identical to that of monomeric cis-AA, indicating similar stabilization of the cis 

arrangement in the monomer and in the dimer. 

The measurement of the tunneling decay rate of D2_TC was also attempted, 

but the small amount of this form produced and the consequent low signal-to-noise 
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spectroscopic ratio precluded made our efforts unsuccessful. However, considering 

both the similarity of D2_TC and D2’_TC dimers and the analogous values found for 

the decay rates of this latter dimer and the monomer, we can expect that the tunneling 

decay rate of D2_TC in a nitrogen matrix shall also be close to 7-8 h. 

 

 

4. Conclusion 

 

In this study, dimers of acetic acid were investigated in a solid nitrogen matrix. 

Three trans-trans (D1_TT, D2_TT, D2’_TT) and two trans-cis (D2_TC and D2’_TC) 

AA dimers were observed experimentally, the D2’_TT, D2_TC and D2’_TC forms 

being reported for the first time. D2’_TC, was produced by selective vibrational 

excitation (at at 6896 cm
–1

) of the structurally related D2_TT trans-trans AA dimer. 

D2_TC was obtained by thermal mobilization of a mixture of trans and cis monomers 

of AA, the latter being produced from the first one by vibrational excitation at 4724.5 

cm
–1

. The D2’_TT dimer was tentatively identified as resulting from tunneling decay 

of D2_TC. Interpretation of the experimental data was helped by an extensive 

theoretical study of the various possible structures of acetic acid dimers (trans-trans 

and trans-cis), carried out at the MP2/6-311++G(2d,2p) level of approximation. The 

tunneling decay rate at 8.5 K of D2’_TC into D2_TT was estimated as being ~7.5 h, a 

value close to that found previously for the decay of cis-AA monomer into the trans 

form in the same matrix. 

 

 

Supplementary Material: Tables S1 and S2 with calculated infrared spectra for AA 

dimers. This material can be obtained at http://dx.doi.org/... 
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5 Conclusion and Perspectives 

 

 In the first part of this work, a matrix-isolation infrared spectroscopy and 

quantum chemical calculations were used in a combined way as main techniques to 

investigate a series of criteriously selected examples of nitrogen containing 

heterocycles.  

Theoretical calculations carried out at contemporary levels of theory revealed 

the low energy minima and the transition states associated with the preferred 

conformational interconversion pathways for each molecule studied. This allowed 

making predictions about the species which should be present in the cryogenic 

matrices of the compounds. For all compounds studied, the precise structural and 

spectroscopic characterization of the conformers present in the initially deposited 

matrices could be performed, in most of the cases taking into account results of 

temperature variation studies.  

The identification and assignment of the spectra of the photoproducts of the 

different systems investigated was also carried out in argon and xenon matrices. For 

methyl 4-chloro-5-phenylisoxazole-3-carboxylate (MCPIC) and methyl (Z)-2-azido-

3-chloro-3-benzoylpropenoate (MACBP), the photochemical transformations 

resulting from broadband in situ irradiation of the matrices with ultraviolet light ( > 

235 nm) yielded the corresponding azirine (methyl 2-benzoyl-2-chloro-2H-azirine-3-

carboxylate, MBCAC), which subsequently undergoes ring expansion to the oxazole 

(MCPOC) as final photoproduct; other photoproducts were also observed resulting 

from cleavage of both C−C and C−N bonds. In particular, in the case of MACBP this 

primary reaction is accompanied by a second one leading to formation of the 

ketenimine C-chloro-C-benzoyl-N-methoxycarbonylketenimine (CBMK). In the case 

of the oxazole heteroclycle no photoreactions were observed. This work demonstrated 

that methyl 2-benzoyl-2-halo-2H-azirine-3-carboxylates undergo thermal ring 

expansion to give 4-halo-5-phenyl-1,3-oxazole-2-carboxylates and not the isomeric 

isoxazoles. The performed studies gave some important clues regarding the 

importance of the vinyl nitrene intermediate in azirine reactions. For the compounds 

studied, there are indications that this putative intermediate is not involved in the ring 

opening reactions. Of course it must be noticed that the studied molecules bear 
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voluminous electron attractor substituents and the reactions took place for the 

compounds under the volume constrains imposed by the matrices. Nevertheless, the 

results now obtained open interesting perspectives for the examination of the role of 

the vinyl nitrene intermediate in the general type of reactions investigated. 

For methyl aziridine-2-carboxylate (MA2C), narrowband tunable laser light 

irradiation (λ = 235 nm) let to the preferred photochemical breakage of the C−C bond. 

The primary photoproduct, methyl 2-(methyleneamino)-acetate (MMAA), was 

positively identified and found to undergo further bond-breaking reactions to other 

photoproducts (methyl formate; acetonitrile). Photoproducts resulting from the C−N 

cleavage of the aziridine ring have also been observed. One interesting result was the 

conformational dependence of the photochemistry of MMAA. Conformationally 

dependent photochemical processes are nowadays an active area of research in 

Coimbra, and the observed conformational photo-selectivity can be explored in more 

detail in the future.  

In the case of pyridil, the compound was found to prefer to isomerize into 

unusual molecular species bearing Hückel-type pyridine (aza-benzvalene) rings. The 

study of this type of substances is simultaneously a challenge and a very interesting 

subject. It appears to be important to look to the behavior of other molecules similar to 

-pyridil, bearing, for instance, diazine or triazine rings. 

 

 In the second part of this study, formic and acetic acids were investigated. 

These simple carboxylic acids are interesting systems capable of forming hydrogen 

bonds with themselves or with other small molecules. The higher-energy cis 

conformers of the monomeric forms of these molecules were produced by vibrational 

excitation of the more stable trans conformers. The decay of the cis forms is observed 

and explained by tunneling of hydrogen atom through the cis–to–trans torsional 

barrier, similarly to these species in rare-gas matrices.   

For acetic acid, three trans-trans dimers and two trans-cis dimers were observed 

experimentally in a solid nitrogen matrix, three of them being novel species observed 

experimentally for the first time here. 

The continuation of these studies is planned for the next few years. Other simple 

carboxylic acids, like propionic, propiolic and oxalic acids, are planned to be studied.  
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Figure S1. Top: Infrared spectrum of MCPOC isolated in solid argon (as-deposited matrix; temperature 

of the vapor, 323 K; substrate temperature 10 K). In the 1650-1550 cm
-1

 region, in addition to the bands 

of the compound there are bands due to traces of monomeric water impurity present in the matrix. 

Bottom: Simulated spectrum obtained by summing the DFT(B3LYP)/6-311++G(d,p) predicted spectra 

of the experimentally relevant conformers I and II, weighted by their expected populations (0.75 : 

0.25). In the simulated spectrum, bands were represented by Lorentzian functions centered at the 

calculated wavenumbers scaled by 0.9835 and with fwhm (full width at half maximum) equal to 2 cm
-1

. 
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Figure S2. From bottom to top: Infrared spectrum (3200-600 cm

-1
) of MCPOC (i) in the amorphous 

layer resulting from fast deposition of the vapor of the compound at 343 K onto the cold substrate  

(10 K) of the cryostat; (ii) in the room temperature crystalline phase, as a KBr pellet; (iii) in the 

crystalline phase resulting from warming the amorphous layer at 280 K; (iv) in the crystalline phase 

resulting from warming the amorphous layer to 280 K, subsequently cooled down to 10 K; (v) and (vi) 

DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra of conformers I and II, respectively. In the 

calculated spectra, bands were represented by Lorentzian functions centered at the calculated 

wavenumbers scaled by 0.9835 and with fwhm (full width at half maximum) equal to 2 cm
-1

.  
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Figure S3. Top: Raman spectrum of MCPOC room temperature crystalline phase. Middle and bottom: 

DFT(B3LYP)/6-311++G(d,p) calculated Raman spectra of conformers I and II. In the calculated 

spectra, bands were represented by Lorentzian functions centered at the calculated wavenumbers scaled 

by 0.9835 and with fwhm (full width at half maximum) equal to 10 cm
-1

. Theoretical Raman intensities 

were obtained from the calculated Raman scattering activities as described in the text. 
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Table S1 (Supporting Information) - DFT(B3LYP)/6-311++G(d,p) calculated bond lengths 

(pm) and angles (º) for the two most stable conformers of MCPOC.
a
 

 
Conformer 

I 

Conformer 

II 

 Conformer  

I 

Conformer 

II 

Bond lengths /pm 

C1=C2 137.9 137.9 C21–H24 109.1 109.1 

C1–C3 136.9 137.0 C5–C6 140.5 140.5 

C1–C5 145.5 145.6 C5–C10 140.7 140.7 

C2–Cl4 172.6 172.5 C6–C7 139.1 139.1 

C2–N16 136.3 136.2 C6–H11 108.1 108.1 

O3–C17 135.4 135.7 C7–C8 139.4 139.4 

N16=C17 129.9 129.8 C7–H12 108.4 108.4 

C17–C18 148.2 148.3 C8–C9 139.5 139.5 

C18=O19 120.7 120.4 C8–H13 108.4 108.4 

C18–O20 133.7 134.4 C9–C10 138.9 138.9 

O20–C21 144.1 144.2 C9–H14 108.4 108.4 

C21–H22 109.1 109.1 C10–H15 108.2 108.2 

C21–H23 108.7 108.7    

      

Angles / º 

C2=C1–O3 105.2 105.1 C8–C7–H12 120.1 120.1 

C2=C1–C5 137.5 137.5 C7–C8–C9 119.6 119.6 

O3–C1–C5 117.3 117.4 C7–C8–H13 120.2 120.2 

C1=C2–Cl4 129.0 129.0 C9–C8–H13 120.2 120.2 

C1=C2–N16 110.7 110.8 C9–C10–H15 120.0 120.0 

Cl4–C2–N16 120.2 120.2 C8–C9–C10 120.4 120.4 

C1–O3–C17 106.0 106.0 C8–C9–H14 120.1 120.1 

C1–C5–C6 121.7 121.7 C10–C9–H14 119.5 119.5 

C1–C5–C10 119.4 119.5 N16=C17–C18 129.8 126.6 

C2–N16=C17 104.4 104.5 C17–C18=O19 123.4 123.6 

O3–C17–N16 113.7 113.6 C17–C18–O20 111.1 111.2 

O3–C17–C18 116.6 119.8 O19=C18–O20 125.5 125.3 

C6–C5–C10 118.9 118.8 C18–O20–C21 115.6 115.5 

C5–C6–C7 120.3 120.3 O20–C21–H22 110.3 110.3 

C5–C6–H11 120.2 120.2 O20–C21–H23 105.2 105.3 

C5–C10–C9 120.4 120.5 O20–C21–H24 110.3 110.3 

C5–C10–H15 119.6 119.5 H22–C21–H23 110.8 110.8 

C7–C6–H11 119.5 119.6 H22–C21–H24 109.4 109.4 

C6–C7–C8 120.5 120.5 H23–C21–H24 110.8 110.8 

C6–C7–H12 119.4 119.4    

      

Dihedrals / º      

C18–O20-C21–H22   –60.5   –60.5 C18–O20–C21–H24    60.5    60.5 

C18–O20–C21–H23  180.0   180.0    

      
a 
See Figure 1 for atom numbering. 
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Table S2 (Supporting Information) – Optimized geometries of the MCPOC minimum 

energy conformations in Cartesian coordinates (Å). 

Atom Coordinates 

 X Y Z 

Conformer I 

C1 0.000000 0.544650 0.000000 

C2 1.366375 0.357952 0.000000 

O3 -0.533861 -0.715795 0.000000 

Cl4 2.624522 1.539194 0.000000 

C5 -0.930456 1.663776 0.000000 

C6 -0.483523 2.995902 0.000000 

C7 -1.399546 4.042438 0.000000 

C8 -2.769183 3.784248 0.000000 

C9 -3.220873 2.464752 0.000000 

C10 -2.314470 1.411858 0.000000 

H11 0.574771 3.214497 0.000000 

H12 -1.038995 5.064666 0.000000 

H13 -3.478607 4.603770 0.000000 

H14 -4.284066 2.253613 0.000000 

H15 -2.671571 0.390217 0.000000 

N16 1.672535 -0.970562 0.000000 

C17 0.518345 -1.567595 0.000000 

C18 0.200019 -3.014983 0.000000 

O19 -0.927362 -3.446723 0.000000 

O20 1.314524 -3.753497 0.000000 

C21 1.116627 -5.181199 0.000000 

H22 0.565455 -5.487212 0.890015 

H23 2.116637 -5.607372 0.000000 

H24 0.565455 -5.487212 -0.890015 

Conformer II 

C1 0.000000 0.543343 0.000000 

C2 -1.342606 0.858111 0.000000 

O3 0.046704 -0.825920 0.000000 

Cl4 -2.093879 2.411273 0.000000 

C5 1.268591 1.256780 0.000000 

C6 1.325440 2.660844 0.000000 

C7 2.553854 3.312983 0.000000 

C8 3.742147 2.584775 0.000000 

C9 3.694686 1.190928 0.000000 

C10 2.472796 0.529612 0.000000 

H11 0.414472 3.242050 0.000000 

H12 2.580309 4.396595 0.000000 

H13 4.696680 3.098313 0.000000 

H14 4.613327 0.615449 0.000000 

H15 2.443134 -0.552201 0.000000 

N16 -2.104696 -0.271167 0.000000 
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C17 -1.244127 -1.243382 0.000000 

C18 -1.549202 -2.694588 0.000000 

O19 -2.667509 -3.139681 0.000000 

O20 -0.422519 -3.427188 0.000000 

C21 -0.611605 -4.856502 0.000000 

H22 -1.161406 -5.165283 0.889771 

H23 0.390459 -5.278218 0.000000 

H24 -1.161406 -5.165283 -0.889771 

Conformer III 
a
 

C1 -0.428980 0.106042 -0.014933 

C2 0.336232 1.251512 -0.050384 

O3 0.467880 -0.925554 -0.004281 

Cl4 -0.167248 2.901297 -0.088368 

C5 -1.842947 -0.238125 0.011765 

C6 -2.842161 0.748414 0.060993 

C7 -4.184378 0.385023 0.084406 

C8 -4.553455 -0.958756 0.060862 

C9 -3.567268 -1.943841 0.013338 

C10 -2.223463 -1.592125 -0.010978 

H11 -2.574270 1.795203 0.081727 

H12 -4.944135 1.157116 0.122301 

H13 -5.601007 -1.236583 0.079346 

H14 -3.844976 -2.991383 -0.005314 

H15 -1.462654 -2.360955 -0.048688 

N16 1.664039 0.939118 -0.057168 

C17 1.699639 -0.362377 -0.029573 

C18 2.841673 -1.322275 -0.054621 

O19 2.632881 -2.503724 -0.156249 

O20 4.098626 -0.861601 0.025397 

C21 4.474783 0.516033 0.240530 

H22 4.191407 1.136459 -0.607879 

H23 5.557366 0.484562 0.344604 

H24 4.020061 0.909602 1.148978 

Conformer IV 
a
 

C1 0.306297 0.292749 -0.048653 

C2 -0.246045 1.549482 0.035790 

O3 -0.765535 -0.562525 -0.162836 

Cl4 0.548593 3.071190 0.192051 

C5 1.639317 -0.291320 -0.072514 

C6 1.807595 -1.630204 -0.468013 

C7 3.073424 -2.202867 -0.496062 

C8 4.192859 -1.455621 -0.131305 

C9 4.034964 -0.128220 0.263190 

C10 2.772124 0.453548 0.295912 

H11 0.945114 -2.214448 -0.761930 

H12 3.186349 -3.234963 -0.807506 
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H13 5.179347 -1.903903 -0.155424 

H14 4.898771 0.459425 0.551872 

H15 2.667040 1.482098 0.611084 

N16 -1.608894 1.489594 -0.040135 

C17 -1.873924 0.226057 -0.151351 

C18 -3.223999 -0.389285 -0.351304 

O19 -4.065502 0.173525 -0.993524 

O20 -3.456231 -1.607618 0.177161 

C21 -2.672949 -2.150437 1.259470 

H22 -1.787049 -2.657376 0.878673 

H23 -3.328329 -2.865547 1.752552 

H24 -2.384895 -1.373019 1.969392 
a
 The geometry provided corresponds to that of one of the symmetry equivalent 

minimum energy structures (see text for discussion). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 268 

Table S3 (Supporting Information) – Definition of symmetry coordinates used in the normal 

coordinate analysis of MCPOC (conformers I and II). 

  

Nº  Definition a                        Approximate Symmetry 
                      description 

 

S1  (C17–C18)                    (C–Cα)  A  ́

S2  (C18=O19)                    (C=O)   A  ́

S3  (C18–O20)                   (C–O)    A  ́

S4  (O20–C21)                   (O–CH3)  A  ́

S5  (C21–H23)+(C21–H24)+(C21–H22)            CH3 s   A  ́

S6   2(C21–H23)–(C21–H24)–(C21–H22)            CH3 as  ́  A  ́

S7  (C21–H24)–(C21–H22)                CH3 as´´  A´´ 

S8  (C2–Cl4)                    (C–Cl)  A  ́

S9  (C1–C5)                    (C–CIR)  A  ́

S10  (H22–C21–H24)+(H23–C21–H24)+(H23–C21–H22)–(H23–C21–O20)– 

  –(H24–C21–O20)–(H22–C21–O20)             CH3 s   A  ́

S11  2(H22–C21–H24)–(H23–C21–H24)–(H23–C21–H22)         CH3 as´  A  ́

S12  (H23–C21–H24)–(H23–C21–H22)             CH3 as´´  A´´ 

S13  2(H23–C21–O20)–(H24–C21–O20)–(H22–C21–O20)         CH3´   A  ́

S14  (H24–C21–O20)–(H22–C21–O20)             CH3´´   A´´ 

S15  (H23–C21–O20–C18)+(H22–C21–O20–C18)+(H24–C21–O20–C18)     CH3   A´´ 

S16  (C2–C1–C5–C10)+(O3–C1–C5–H6)+(C2–C1–C5–C6)+(O3–C1–C5–H10)   (C–CIR)  A´´ 

S17  (O3–C17–C18–O20)+(N16=C17–C18=O19)+(O3–C17–C18=O19)+ 

   +(N16=C17–C18–O20)               (C–C)  A´´ 

S18  (O19=C18–O20–C21)+(C17–C18–O20–C21)           (C–O)   A´´ 

S19  2(O19=C18–O20)–(O19=C18–C17)–(C17–C18–O20)         (OCO)   A  ́

S20  (O19=C18–C17)–(C17–C18–O20)             (CC=O)   A  ́

S21  (O19=O20–O18–C17)                (C=O)   A´´ 

S22  (C1=C2)+(C2–N16)+(N16=C17)+(C17–O3)+(O3–C1)       Ox1   A  ́

S23  3(C1=C2)+3(C2–N16)–2(N16=C17)–2(C17–O3)–2(O3–C1)      Ox2   A  ́

S24  (C1=C2)–(N16=C17)                Ox3   A  ́

S25  2(C2–N16)–(O3–C1)–(C17–O3)             Ox4   A  ́

S26  (O3–C1)–(C17–O3)                Ox5   A  ́

S27  (N16=C17–C18)–(O3–C17–C18)             w(Ox–E)  A  ́

S28  (C2=C1–C5)–(O3–C1–C5)               w(Ox–Ph)  A  ́

S29  (C17–O3–C1)–0.809(N16=C17–O3)–0.809(O3–C1=C2)+ 

+0.309(C2–N16=C17)+0.309(C1=C2–N16)           Ox1   A  ́

S30  –1.118(N16=C17–O3)+1.118(O3–C1=C2)+1.809(C2–N16=C17)– 

–1.809(C1=C2–C16)                Ox2   A  ́

S31  (C1=C2–N16=C17)–0.809(O3–C1=C2–N16)–0.809(C2–N16=C17–O3)+ 

+0.309(C17–O3–C1=C2)+               Ox1   A´´ 

  +0.309(N16=C17–O3–C1) 

S32  1.118(O3–C1=C2–N16)–1.118(N16–C2=C1–O3)–1.809(C1–O3–C17=N16)+ 

+1.809(C2=C1–O3–C17)               Ox2   A´´ 

S33  (C5–C6)+(C6–C7)+(C7–C8)+(C8–C9)+(C9–C10)+(C10–C5)     Ph1   A  ́

S34  (C5–C6)+(C7–C8)–(C8–C9)–(C10–C5)           Ph2   A  ́

S35  –(C5–C6)+2(C6–C7)–(C7–C8)–(C8–C9)+2(C9–C10)–(C10–C5)    Ph3   A  ́

S36  (C5–C6)–(C7–C8)+(C8–C9)–(C10–C5)           Ph4   A  ́

S37  (C5–C6)–(C7–C8)–(C8–C9)+(C10–C5)           Ph5   A  ́

S38  (C6–C7)–(C9–C10)                Ph6   A  ́

S39  (C6–H11)                    (C–H1)  A  ́

S40   (C8–H13)+(C7–H12)+(C9–H14)             (C–H2)  A  ́

S41   (C7–H12)–(C9–H14)                (C–H3)  A  ́

S42  2(C8–H13)–(C7–H12)–(C9–H14)             (C–H4)  A  ́

S43  (C10–H15)                   (C–H5)  A  ́

S44  (C6–C5–C10)–(C5–C10–C9)+(C10–C9–C8)–(C9–C8–C7)+      Ph1   A  ́

   +(C8–C7–C6)–(C7–C6–C5)              

S45  (C5–C10–C9)–(C10–C9–C8)+(C8–C7–C6)–(C7–C6–C5)       Ph2   A  ́

S46  2(C6–C5–C10)–(C5–C10–C9)–(C10–C9–C8)+2(C9–C8–C7)–      Ph3   A  ́

  –(C8–C7–C6)–(C7–C6–C5)               

S47  (C6–C5–C10–C9)+(C6–C5–C10–H15)+(C1–C5–C10–C9)+(C1–C5–C10–H15)–  Ph1   A´´ 

  –(C1–C5–C10–H15)–(C5–C10–C9–C8)–(C5–C10–C9–H14)–(H15–C10–C9–C8)–  
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  –(H15–C10–C9–H14)+(C10–C9–C8–C7)+(C10–C9–C8–H13)+(H14–C9–C8–C7)+ 

  +(H14–C9–C8–H13)–(C9–C8–C7–C6)–(C9–C8–C7–H12)–(H13–C8–C7–C6)– 

  –(H13–C8–C7–H12)+(C8–C7–C6–C5)+(C8–C7–C6–H11)+(H12–C7–C6–C5)+ 

  +(H12–C7–C6–H11)–(C7–C6–C5–C10)–(C7–C6–C5–C1)–(H11–C6–C5–C10)– 

  –(H11–C6–C5–C1)  

S48  (C6–C5–C10–C9)+(C6–C5–C10–H15)+(C1–C5–C10–C9)+(C1–C5–C10–H15)–   Ph2   A´´ 

  –(C10–C9–C8–C7)–(C10–C9–C8–H13)–(H14–C9–C8–C7)–(H14–C9–C8–H13)+ 

  +(C9–C8–C7–C6)+(C9–C8–C7–H12)+(H13–C8–C7–C6)+(H13–C8–C7–H12)– 

  –(C7–C6–C5–C10)–(C7–C6–C5–C1)–(H11–C6–C5–C10)–(H11–C6–C5–C1)       

S49  –(C6–C5–C10–C9)–(C6–C5–C10–H15)–(C1–C5–C10–C9)–(C1–C5–C10–H15)+   Ph3   A´´ 

  +2(C5–C10–C9–C8)+2(C5–C10–C9–H14)+2(H15–C10–C9–C8)+2(H15–C10–C9–H14)– 

  –(C10–C9–C8–C7)–(C10–C9–C8–H13)–(H14–C9–C8–C7)–(H14–C9–C8–H13)– 

  –(C9–C8–C7–C6)–(C9–C8–C7–H12)–(H13–C8–C7–C6)–(H13–C8–C7–H12)+ 

   +2(C8–C7–C6–C5)+2(C8–C7–C6–H11)+2(H12–C7–C6–C5)+2(H12–C7–C6–H11)– 

  –(C7–C6–C5–C10)–(C7–C6–C5–C1)–(H11–C6–C5–C10)–(H11–C6–C5–C1)  

S50  (C10–C5–C1)–(C6–C5–C1)               w(Ph–Ox)  A  ́

S51  (C1–C6–C5–C10)                  (Ph–Ox)  A´´ 

S52  (H11–C6–C5)–(H11–C6–C7)+(H12–C7–C6)–(H12–C7–C8)+(H13–C8–C7)–   (C–H1)  A  ́

  –(H13–C8–C9) +(H14–C9–C8)–(H14–C9–C10)+(H15–C10–C9)–(H15–C10–C5)   

S53  (H11–C6–C5)–(H11–C6–C7)+(H12–C7–C6)–(H12–C7–C8)–(H14–C9–C8)+   (C–H2)  A  ́

  +(H14–C9–C10)+(H15–C10–C9)+(H15–C10–C5)           

S54  (H11–C6–C5)–(H11–C6–C7)–2(H13–C8–C7)+2(H13–C8–C9)+(H15–C10–C9)–  (C–H3)  A  ́

  –(H15–C10–C5)                   

S55  (H11–C6–C5)–(H11–C6–C7)–(H12–C7–C6)+(H12–C7–C8)+(H14–C9–C8)–   (C–H4)  A  ́

  –(H14–C9–C10)+–(H15–C10–C9)+(H15–C10–C5)           

S56  2(H11–C6–C5)–2(H11–C6–C7)–3(H12–C7–C6)+3(H12–C7–C8)+2(H13–C8–C7)–  (C–H5)  A  ́

  –2(H13–C8–C9)–3(H14–C9–C8)+3(H14–C9–C10)+2(H15–C10–C9)–2(H15–C10–C5)  

S57  (H11–C5–C6–C7)+(H12–C6–C7–C8)+(H13–C7–C8–C9)+(H14–C8–C9–C10)+   (C–H1)  A´´ 

  +(H15–C9–C10–C5)   

S58  (H11–C5–C6–C7)+(H12–C6–C7–C8)–(H14–C8–C9–C10)–(H15–C9–C10–C5)   (C–H2)  A´´ 

S59  (H11–C5–C6–C7)–2(H13–C7–C8–C9)+(H15–C9–C10–C5)        (C–H3)  A´´ 

S60  (H11–C5–C6–C7)–(H12–C6–C7–C8)+(H14–C8–C9–C10)–(H15–C9–C10–C5)   (C–H4)  A´´ 

S61  2(H11–C5–C6–C7)–3(H12–C6–C7–C8)+2(H13–C7–C8–C9)–3(H14–C8–C9–C10)  (C–H5)  A´´ 

  +2(H15–C9–C10–C5)   

S62  (Cl4–C1=C2–N16)                  (C–Cl)  A´´ 

S63  (C5–C2=C1–O3)                  (Ox–Ph)  A´´ 

S64  (C18–N16=C17–O3)                  (Ox–E)  A´´ 

S65  (Cl4–C2–N16)–(C1=C2–Cl4)               w(C–Cl)  A  ́

S66  (C21–O20–C18)                   (C–O–CH3) A  ́

       
a 

Normalization factors not shown. , bond stretching; , bending;  , rocking; w, wagging; , torsion; 
IR, inter–ring; Ox, oxazole ring; Ph, phenyl ring; E, ester group. See Figure 1 for atom numbering.  
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Table S4 (Supporting Information): Calculated scaled, DFT(B3LYP)/6–311++G(d,p) 

wavenumbers, IR and Raman intensities and Potential Energy Distributions (PED) for 

conformer I of MCPOC. 
a
 

Approximate  

description 
Symmetry Wavenumber 

b
 

Infrared 

Intensity 

Raman 

Intensity PED 
c
 

(C–H1) A´ 3168 1.9 8.2 S39(96) 

(C–H5) A´ 3153 2.5 11.6 S43(88) 

(C–H2) A´ 3138 17.5 35.5 S40(91) 

(C–H3) A´ 3127 10.8 18.4 S41(95) 

(C–H4) A´ 3117 0.2 7.4 S42(98) 

CH3 as´ A´ 3113 11.5 12.9 S6(97) 

CH3 as´´  A´´ 3075 16.3 9.3 S7(100) 

CH3 s A´ 3003 35.9 38.6 S5(97) 

(C=O) A´ 1750 265.1 147.0 S2(86) 

Ph3 A´ 1616 1.1 430.1 S35(65), S55(22), S46(10) 

Ph4 A´ 1589 5.7 24.4 S36(65), S54(16) 

Ox3 A´ 1561 33.9 205.7 S24(65), S9(13) 

Ox1 A´ 1526 112.5 890.2 S22(21), S23(17), S53(14), S9(11) 

(C–H2) A´ 1487 87.0 224.6 S53(43), S37(18) 

CH3 as´ A´ 1471 20.5 16.3 S11(81), S13(10) 

CH3 as´´  A´´ 1459 10.4 9.2 S12(93) 

(C–H3) A´ 1452 57.5 128.4 S38(21), S54(22), S52(13) 

CH3 s A´ 1447 6.7 14.8 S10(77) 

(C–H1) A´ 1351 61.4 114.3 S52(50), S25(10) 

Ph2 A´ 1337 65.8 20.7 S52(24), S38(16), S34(15) 

Ox2; (C–Cα) A´ 1308 233.8 26.3 S34(29), S1(10), S23(10) 

Ox4 A´ 1275 88.5 91.1 S34(18), S25(17), S30(13) 

C-CIR A´ 1215 1.9 219.5 S25(43), S23(16), S9(11) 

(C–O), CH3´ A´ 1203 299.6 73.4 S13(38), S3(26) 

(C–H4) A´ 1194 15.1 48.6 S55(73), S35(23) 

CH3´, (C–O) A´ 1169 209.0 12.0 S13(35), S3(14) 

(C–H5) A´ 1167 8.8 15.5 S56(68), S54(11) 

CH3´´  A´´ 1151 0.8 2.7 S14(92) 

Ox5 A´ 1112 15.6 92.4 S26(34), S54(14), S38(12) 

Ph6 A´ 1082 23.8 58.7 S26(20), S38(25), S54(19), S34(11) 

Ph5 A´ 1036 7.6 8.4 S37(54), S53(22), S33(14) 

Ox1 A´ 1007 50.8 66.9 S29(29), S4(23), S22(12) 

Ph1 A´ 999 1.6 86.1 S44(71), S33(25) 

(C–H5)  A´´ 984 0.1 0.6 S61(61), S47(28) 

Ph1 A´ 982 19.6 83.1 S33(35), S30(23) 

(C–H4)  A´´ 973 0.1 0.0 S60(69), S49(26) 

(O–CH3) A´ 954 5.9 59.2 S4(51), S29(15), S30(13) 

(C–H3)  A´´ 922 2.3 0.0 S59(75), S48(13) 

(C–H2)  A´´ 842 0.1 0.1 S58(99) 

(OCO) A´ 813 17.1 8.6 S19(33), S3(19), S66(13) 

(C=O)  A´´ 786 5.5 2.3 S21(62), S64(21), S32(10) 

(C–H1)  A´´ 762 34.7 6.1 S57(54), S51(23) 

Ph3 A´ 693 11.1 8.4 S46(52), S9(11) 

Ox1  A´´ 685 34.6 2.6 S57(29), S31(23), S47(11), S63(13) 

Ph1  A´´ 682 7.1 0.9 S47(36), S31(27), S62(17) 

Ox2  A´´ 654 23.4 0.1 S32(50), S21(22), S31(15) 

Ph2 A´ 623 <0.1 10.6 S45(86) 

w(Ox–Ph) A´ 588 0.7 1.0 S28(24), S27(23), S65(17), S20(11) 

(C–Cl) A´ 556 2.4 5.1 S8(36), S1(12), S29(11) 

(Ph–Ox)  A´´ 495 3.4 1.7 S51(39), S48(18) 

(CC=O) A´ 429 2.0 2.1 S46(18), S20(21), S9(11) 

Ph3  A´´ 399 <0.1 0.1 S49(72), S60(28) 

Ox2 A´ 366 3.5 13.4 S8(27), S30(18), S1(12), S19(11) 

(C–Cl)  A´´ 339 1.3 5.9 S62(32), S64(20), S48(18), S63(16) 

(C–O–CH3) A´ 309 18.3 6.8 S66(55) 
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(C–Cα), 

 w(Ph–Ox) 

A´ 267 0.3 8.5 S50(26), S1(12) 

w(C–Cl) A´ 230 3.3 11.4 S65(35), S20(12) 

Ph2  A´´ 230 1.8 8.9 S48(23), S62(17), S32(16), S31(12), 

S63(11) 

(C–O)   A´´ 186 1.8 0.2 S18(44), S62(21) 

w(Ph–Ox) A´ 141 0.6 18.5 S28(27), S65(23), S27(13), S50(13), 

S20(12) 

CH3  A´´ 127 0.1 4.0 S15(73) 

(Ox–Ph)  A´´ 114 1.5 13.0 S18(29), S15(18), S63(14), S48(12) 

w(Ox–E) A´ 80 1.7 32.5 S27(36), S28(28), S50(13), S20(12) 

(Ox–E)  A´´ 69 <0.1 12.7 S64(36), S63(13), S17(13), S18(12) 

(C–C)  A´´ 41 2.7 5.6 S17(75), S63(12) 

(C–CIR)  A´´ 21 <0.1 193.8 S16(99) 
a 

Wavenumbers in cm
–1

; infrared intensities in km mol
–1

; Raman intensities were calculated from 

the Raman activities produced by Gaussian as described in the text and then normalized to the 

most intense band among those of conformers I and II: Ox1 in form II (1529 cm
–1

; see Table 

S5); , bond stretching; , bending; , rocking; w, wagging; , torsion; s, symmetric; as, 

asymmetric; IR, inter–ring; Ox, oxazole ring; Ph, phenyl ring; E, ester. See Table S3 for 

definition of internal coordinates and Figure 1 for atom numbering. 
b 
Scaled (0.9835). 

c 
Only PED 

values greater than 10 % are given. 
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Table S5 (Supporting Information): Calculated scaled, DFT(B3LYP)/6–311++G(d,p) 

wavenumbers, IR and Raman intensities and Potential Energy Distributions (PED) for 

conformer II of MCPOC. 
a
 

Approximate  

description 
Symmetry Wavenumber 

b
 

Infrared 

Intensity 

Raman 

Intensity PED 
c
 

(C–H1) A´ 3169 1.8 8.2 S39(96) 

(C–H5) A´ 3153 2.9 11.9 S43(88) 

(C–H2) A´ 3138 17.5 35.0 S40(91) 

(C–H3) A´ 3126 10.6 18.4 S41(94) 

(C–H4) A´ 3116 0.4 7.5 S42(98) 

CH3 as´ A´ 3112 10.0 9.0 S6(97) 

CH3 as´´  A´´ 3077 15.2 10.1 S7(100) 

CH3 s A´ 3004 34.0 34.9 S5(97) 

(C=O) A´ 1764 430.3 157.5 S2(88) 

Ph3 A´ 1616 1.1 417.7 S35(65), S55(22), S46(10) 

Ph4 A´ 1589 4.4 24.4 S36(65), S54(16) 

Ox3 A´ 1564 8.9 133.7 S24(68) 

Ox1 A´ 1529 101.3 1000.0 S22(21), S23(16), S53(14), S9(13) 

(C–H2) A´ 1487 86.7 213.6 S53(44), S37(19) 

CH3 as´ A´ 1472 9.3 22.6 S11(81), S13(10) 

CH3 as´´  A´´ 1459 10.2 8.0 S12(93) 

(C–H3) A´ 1452 46.3 123.0 S54(23), S38(22), S52(14) 

CH3 s A´ 1446 4.8 14.6 S10(82) 

(C–H1) A´ 1347 2.0 64.9 S52(70) 

Ph2 A´ 1329 4.4 42.5 S34(30), S38(19) 

Ox2,  

(C–Cα) 
A´ 

1294 

271.4 14.8 S23(27), S34(15), S1(17), S3(11) 

Ox4 A´ 1276 127.3 103.9 S25(19), S34(18), S30(12) 

(C–CIR) A´ 1219 0.5 142.6 S25(37), S9(11) 

CH3´,  

(C–O) 
A´ 

1196 

156.9 107.5 S13(45), S3(18) 

(C–H4) A´ 1193 14.7 71.5 S55(68), S35(22) 

(C–H5) A´ 1167 0.1 10.5 S56(70), S54(10) 

(C–O), 

CH3´ 
A´ 

1158 

189.1 44.5 S13(22), S3(20), S22(11), S19(11) 

CH3´´  A´´ 1152 0.9 2.6 S14(92) 

Ox5 A´ 1108 20.7 57.6 S26(33), S54(16), S38(14) 

Ph6 A´ 1080 18.6 60.2 S38(22), S26(25), S54(17), S34(10) 

Ph5 A´ 1036 15.3 8.2 S37(53), S53(22), S33(14) 

Ox1 A´ 1014 72.4 46.4 S4(39), S29(20), S22(10) 

Ph1 A´ 999 1.4 81.8 S44(71), S33(25) 

(C–H5)  A´´ 981 <0.1 0.5 S61(63), S47(29) 

Ph1 A´ 981 31.6 86.9 S33(35), S30(26) 

(C–H4)  A´´ 972 0.2 0.0 S60(72), S49(28) 

(O–CH3) A´ 947 9.1 68.1 S4(41), S29(23) 

(C–H3)  A´´ 920 2.2 0.0 S59(76), S48(13) 

(C–H2)  A´´ 841 <0.1 0.1 S58(100) 

(OCO) A´ 809 19.9 7.1 S19(32), S3(21), S66(13) 

(C=O)  A´´ 780 5.9 2.3 S21(63), S64(20) 

(C–H1)  A´´ 760 36.9 6.0 S57(56), S51(23) 

Ph3 A´ 693 9.6 8.4 S46(51), S9(11) 

Ox1  A´´ 683 28.0 2.9 S31(29), S57(26), S63(17) 

Ph1  A´´ 681 11.9 0.3 S47(43), S61(21), S31(17) 

Ox2  A´´ 653 22.3 0.1 S32(48), S21(23), S31(18) 

Ph2 A´ 623 <0.1 10.8 S45(84) 

w(Ox–Ph) A´ 592 2.5 4.3 S28(24), S27(18), S65(12) 

(C–Cl) A´ 537 0.4 2.7 S8(35) 

(Ph–Ox)  A´´ 496 3.7 1.7 S51(39), S48(17) 

(CC=O) A´ 450 2.5 3.7 S20(22), S46(14), S30(11) 

Ph3  A´´ 398 <0.1 0.1 S49(72), S60(28) 
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Ox2 A´ 347 10.4 14.5 S66(24), S8(18), S30(12), S20(12) 

(C–Cl)   A´´ 336 1.1 5.1 S48(18), S62(32), S64(20), S63(16) 

(C–O–CH3) A´ 303 3.0 5.6 S66(17), S19(22) 

(C–Cα), 

(C–O–CH3) 

A´ 286 4.5 4.1 S66(22), S9(13), S1(12), S50(11) 

Ph2 
 A´´ 

229 

1.7 10.0 S48(23), S32(16), S62(16), S31(12), 

S63(11) 

w(C–Cl) A´ 225 1.7 22.0 S65(41), S20(12), S50(17) 

(C–O)  A´´ 187 2.0 0.3 S18(49), S62(21) 

w(Ph–Ox) 
A´ 

146 

0.4 9.6 S28(26), S65(23), S27(15), S50(14), 

S20(11) 

CH3  A´´ 132 0.1 4.0 S15(62) 

(Ox–Ph)  A´´ 112 0.8 9.9 S15(31), S18(25), S63(11) 

w(Ox–E) A´ 77 0.6 43.6 S27(36), S28(29), S20(13), S50(12) 

(Ox–E)  A´´ 68 0.1 10.1 S64(33), S63(23), S18(10) 

(C–C)  A´´ 41 1.9 8.2 S17(87) 

(C–CIR)  A´´ 10 0.1 425.7 S16(100) 
a 

Wavenumbers in cm
–1

; infrared intensities in km mol
–1

; Raman intensities were calculated 

from the Raman activities produced by Gaussian as described in the text and then normalized 

to the most intense band among those of conformers I and II: Ox1 in form II (1529 cm
–1

); , 

bond stretching; , bending; , rocking; w, wagging; , torsion; s, symmetric; as, asymmetric; 

IR, inter-ring; Ox, oxazole ring; Ph, phenyl ring; E, ester. See Table S3 for definition of 

internal coordinates and Figure 1 for atom numbering. 
b 

Scaled (0.9835). 
c 

Only PED values 

greater than 10 % are given. 
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Figure S1. High energy conformers of MCPIC, optimized at the DFT(B3LYP)/6-311++G(d,p) level of 

theory. Relative energies (to the most stable conformer, I), including zero point corrections (Eº/ kJ 

mol
-1

) are given in parenthesis. The values of dipole moments ( ) for these conformers are: 5.07 and 

5.12 D (1 D= 3.33564 x 10
-30

 C m), respectively. The picture was made using the Ortep-3 for Windows 

program (Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565). Atoms color code: carbon, hydrogen: black; 

nitrogen: blue; chlorine: green; oxygen: red. 
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Table S1 - Calculated bond lengths (pm) and angles (º) for the three most stable conformers of MCPIC.
a
 

Parameter I II III Parameter I II III 

Bond 

lengths 
  

 

Bond angles 

   

C1C2 137.3 137.3 137.3 C17C18C19 120.4 120.4 120.5 

C1O5 135.7 135.6 135.7 C17C18H23 120.1 120.1 120.1 
C1C14 146.1 146.1 146.1 C19C18H23 119.5 119.5 119.4 

C2C3 142.8 142.8 142.9 C14C19C18 120.2 120.2 120.2 

C2Cl13 172.3 172.6 172.6 C14C19H24 120.2 120.2 120.2 
C3N4 131.3 131.2 131.3 C18C19H24 119.6 119.6 119.5 

C3C6 149.3 149.7 149.7 Dihedrals 
   

N4O5 138.0 138.0 137.9 O5C1C2C3 -0.2 -0.5 0.4 

C6O7 120.6 120.2 120.2 O5C1C2Cl13 -177.6 -176.7 -179.6 

C6O8 133.7 134.2 134.2 C14C1C2C3 178.5 178.1 179.4 
O8C9 144.2 144.2 144.2 C14C1C2Cl13 1.2 2.0 -0.6 

C9H10 109.1 109.1 109.0 C2C1O5N4 0.3 0.7 -0.5 

C9H11 109.1 109.0 109.1 C14C1O5N4 -178.7 -178.3 -179.8 
C9H12 108.7 108.7 108.7 C2C1C14C15 -160.2 -159.5 -163.0 

C14C15 140.5 140.5 140.6 C2C1C14C19 20.3 21.1 17.5 

C14C19 140.4 140.3 140.4 O5C1C14C15 18.5 19.0 16.0 
C15C16 139.0 139.0 138.9 O5C1C14C19 -161.0 -160.4 -163.5 

C15H20 108.2 108.2 108.2 C1C2C3N4 0.1 0.2 -0.2 

C16C17 139.5 139.5 139.5 C1C2C3C6 179.1 -179.3 179.7 
C16H21 108.4 108.4 108.4 Cl13C2C3N4 177.5 176.4 179.8 

C17C18 139.4 139.4 139.3 Cl13C2C3C6 -3.5 -3.2 -0.3 

C17H22 108.4 108.4 108.4 C2C3N4O5 0.1 0.2 -0.1 
C18C19 139.1 139.1 139.1 C6C3N4O5 -179.0 179.8 180.0 

C18H23 108.4 108.4 108.4 C2C3C6O7 -10.8 153.7 -156.1 

C19H24 108.1 108.1 108.1 C2C3C6O8 169.3 -26.9 24.5 

Bond angles 
  

 
N4C3C6O7 168.1 -25.8 23.8 

C2C1O5 107.5 107.5 107.4 N4C3C6O8 -11.7 153.6 -155.7 
C2C1C14 136.0 136.0 136.3 C3N4O5C1 -0.3 -0.5 0.4 

O5C1C14 116.5 116.5 116.3 C3C6O8C9 178.6 179.8 -179.9 

C1C2C3 104.9 104.9 104.9 O7C6O8C9 -1.2 -0.8 0.6 
C1C2Cl13 128.0 127.6 127.7 C6O8C9H10 -60.5 -59.7 -61.0 

C3C2Cl13 127.1 127.4 127.4 C6O8C9H11 60.4 61.1 59.8 

C2C3N4 111.1 111.0 110.9 C6O8C9H12 180.0 -179.3 179.4 

C2C3C6 127.8 131.2 131.5 C1C14C15H16 -179.8 -179.7 -179.8 

N4C3C6 121.1 117.8 117.6 C1C14C15H20 0.4 0.5 0.3 

C3N4O5 105.8 105.9 105.9 C19C14C15C16 -0.3 -0.3 -0.3 
C1O5N4 110.8 110.8 110.9 C19C14C15H20 179.9 179.9 179.8 

C3C6O7 123.3 124.3 124.2 C19C14C1O5 -161.0 -160.4 -163.5 

C3C6O8 111.8 110.7 110.9 C1C14C19C18 179.8 179.7 179.7 
O7C6O8 124.9 124.9 124.9 C1C14C19H24 0.4 0.3 0.3 

C6O8C9 115.8 115.8 115.8 C15C14C19C18 0.3 0.3 0.2 

O8C9H10 110.3 110.2 110.2 C15C14C19H24 -179.1 -179.0 -179.2 
O8C9H11 110.3 110.2 110.3 C15C14C1O5 18.5 19.0 15.6 

O8C9H12 105.2 105.3 105.3 C14C15C16C17 0.1 0.1 0.1 

H10C9H11 109.4 109.4 109.4 C14C15C16H21 -179.8 -179.8 -179.8 
H10C9H12 110.8 110.8 110.8 H20C15C16C17 179.9 179.9 -180.0 

H11C9H12 110.8 110.8 110.8 H20C15C16H21 0.0 0.0 0.1 

C1C14C15 119.4 119.3 119.2 C15C16C17C18 0.2 0.2 0.1 
C1C14C19 121.6 121.6 121.8 C15C16C17H22 -180.0 -180.0 -180.0 

C15C14C19 119.1 119.1 119.0 H21C16C17C18 -179.9 -180.0 -179.9 

C14C15C16 120.3 120.3 120.4 H21C16C17H22 -0.1 -0.1 -0.1 
C14C15H20 119.6 119.6 119.6 C16C17C18C19 -0.2 -0.2 -0.2 

C16C15H20 120.1 120.1 120.0 C16C17C18H23 179.6 179.5 179.6 

C15C16C17 120.3 120.3 120.3 H22C17C18C19 179.9 179.9 179.9 

C15C16H21 119.6 119.6 119.6 H22C17C18H23 -0.3 -0.3 -0.3 

C17C16H21 120.1 120.1 120.1 C17C18C19C14 -0.1 -0.1 0.0 
C16C17C18 119.7 119.7 119.7 C17C18C19H24 179.3 179.3 179.4 

C16C17H22 120.2 120.1 120.2 H23C18C19C14 -179.8 -179.8 -179.8 

C18C17H22 120.1 120.1 120.2 H23C18C19H24 -0.4 -0.4 -0.4 
        

a 
See Figure 1 for atom numbering and Figure 2 for examining the position of the different minima 

corresponding to each conformer in the PES. The dihedral angles provided in this table correspond to those 

of the minima located in the 1
st
 quadrant of Figure 2 for conformers I and III and in the 4

th
 quadrant for 

conformer II (i.e., central valley, top right side; C15C14C1O5 ca. 20º). 
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Table S2 –  Definition of internal coordinates used in the normal coordinate analysis 

of MCPIC. 
 

Nº  Definition a                   Approximate  
                        description 

S1  (C3–C6)                      (C–Cα) 

S2  (C6=O7)                      (C=O) 

S3  (C6–O8)                     (C–O)  

S4  (O8–C9)                     (O–CH3) 

S5  (C2–Cl13)                      (C–Cl) 

S6  (C1–C14)                      (C–CIR) 

S7  (C9–H12)+(C9–H10)+(C9–H11)               CH3 s 

S8   2(C9–H12)–(C9–H10)–(C9–H11)               CH3 as  ́

S9  (C9–H10)–(C9–H11)                  CH3 as´  ́

S10  (H10–C9–H11)+(H12–C9–H10)+(H12–C9–H11)–(H12–C9–O8)–(H10–C9–O8)–   CH3 s 

  –(H11–C9–O8)     

S11  2(H10–C9–H11)–(H12–C9–H10)–(H12–C9–H11)           CH3 as  ́

S12  (H12–C9–H10)–(H12–C9–H11)                CH3 as´  ́

S13  2(H12–C9–O8)–(H10–C9–O8)–(H11–C9–O8)            CH3  ́

S14  (H10–C9–O8)–(H11–C9–O8)                CH3´  ́

S15  (H12–C9–O8–C6)+(H10–C9–O8–C6)+(H11–C9–O8–C6)         CH3 

S16  (N4=C3–C6=O7)+(C2–C3–C6=O7)+(N4=C3–C6–O8)+(C2–C3–C6–O8)     (C–Cα) 

S17  (O7=C6–O8–C9)+(C3–C6–O8–C9)               (C–O) 

S18  (C2=C1–C14–C19)+(O5–C1–C14–C19)+(C2=C1–C14–C15)+(O5–C1–C14–C15)    (C–CIR) 

S19  2(O8–C6=O7)–(O8–C6–C3)–(O7=C6–C3)             (OCO)  

S20  (O8–C6–C3)–(O7=C6–C3)                 (CC=O)  

S21  (O7=O8–O6–C3)                   (C=O)  

S22  (C1=C2)+(C2–C3)+(C3=N4)+(N4–O5)+(O5–C1)          Isox1 

S23  3(C1=C2)+3(C3=N4)–2(C2–C3)–2(N4–O5)–2(O5–C1)         Isox2 

S24  (C1=C2)–(C3=N4)                  Isox3 

S25  2(C2–C3)–(N4–O5)–(O5–C1)               Isox4 

S26  (N4–O5)–(O5–C1)                  Isox5 

S27  (N4–O5–C1)–0.809(C3=N4–O5)–0.809(O5–C1=C2)+0.309(C2–C3=N4)+  Isox1 

+0.309(C1=C2–C3) 

S28  –1.118(C3=N4–O5)+1.118(O5–C1=C2)+1.809(C2–C3=N4)–1.809(C1=C2–C3)   Isox2 

S29  (C3–C2=C1–O5)–0.809(N4=C3–C2=C1)–0.809(C2=C1–O5–N4)+       Isox1 

+0.309(O5–N4=C3–C2)+0.309(C1–O5–N4=C3) 

S30  1.118(C2=C1–O5–N4)–1.118(N4=C3–C2=C1)–1.809(C1–O5–N4=C3)+     Isox2 

+1.809(O5–N4=C3–C2) 

S31  (C14–C15)+(C15–C16)+(C16–C17)+(C17–C18)+(C18–C19)+(C19–C14)     Ph1 

S32  (C14–C15)+(C16–C17)–(C17–C18)–(C19–C14)           Ph2 

S33  –(C14–C15)+2(C15–C16)–(C16–C17)–(C17–C18)+2(C18–C19)–(C19–C14)    Ph3 

S34  (C14–C15)–(C16–C17)+(C17–C18)–(C19–C14)           Ph4 

S35  (C14–C15)–(C16–C17)–(C17–C18)+(C19–C14)           Ph5 

S36  (C15–C16)–(C18–C19)                  Ph6  

S37  (C15–H20)                      (C–H1) 

S38   (C16–H21)+(C17–H22)+(C18–H23)              (C–H2) 

S39   (C16–H21)–(C18–H23)                  (C–H3) 

S40  2(C17–H22)–(C16–H21)–(C18–H23)              (C–H4) 

S41  (C19–H24)                     (C–H5) 

S42  (C15–C14–C19)–(C14–C19–C18)+(C19–C18–C18)–(C18–C17–C16)+       Ph1 

  +(C17–C16–C15)–(C16–C15–C14)   

S43  (C15–C14–C19)–(C19–C18–C18)+(C17–C16–C15)–(C16–C15–C14)       Ph2 

S44  2(C15–C14–C19)–(C14–C19–C18)–(C19–C18–C18)+2(C18–C17–C16)–      Ph3 

  –(C17–C16–C15)–(C16–C15–C14)   

S45  (C15–C14–C19–C18)+(C15–C14–C19–H24)+(C1–C14–C19–C18)+(C1–C14–C19–H24)–  Ph1    

  –(C14–C19–C18–C17)–(C14–C19–C18–H23)–(H24–C19–C18–C17)–(H24–C19–C18–H23)+       

  +(C19–C18–C17–C16)+(C19–C18–C17–H22)+(H23–C18–C17–C16)+(H23–C18–C17–H22)– 

  –(C18–C17–C16–C15)–(C18–C17–C16–H21)–(H22–C17–C16–C15)–(H22–C17–C16–H21)+       

  +(C17–C16–C15–C14)+(C17–C16–C15–H20)+(H21–C16–C15–C14)+(H21–C16–C15–H20)–    

  –(C16–C15–C14–C19)–(C16–C15–C14–C1)–(H20–C15–C14–C19)–(H20–C15–C14–C1)   
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S46  (C15–C14–C19–C18)+(C15–C14–C19–H24)+(C1–C14–C19–C18)+(C1–C14–C19–H24)–   Ph2 

  –(C19–C18–C17–C16)–(C19–C18–C17–H22)–(H23–C18–C17–C16)–(H23–C18–C17–H22)+       

  +(C18–C17–C16–C15)+(C18–C17–C16–H21)+(H22–C17–C16–C15)+(H22–C17–C16–H21)–      

  –(C16–C15–C14–C19)–(C16–C15–C14–C1)–(H20–C15–C14–C19)–(H20–C15–C14–C1)       

S47  –(C15–C14–C19–C18)–(C15–C14–C19–H24)–(C1–C14–C19–C18)–(C1–C14–C19–H24)+   Ph3 

  +2(C14–C19–C18–C17)+2(C14–C19–C18–H23)+2(H24–C19–C18–C17)+2(H24–C19–C18–H23)+     

  –(C19–C18–C17–C16)–(C19–C18–C17–H22)–(H23–C18–C17–C16)–(H23–C18–C17–H22)– 

  –(C18–C17–C16–C15)–(C18–C17–C16–H21)–(H22–C17–C16–C15)–(H22–C17–C16–H21)+       

  +2(C17–C16–C15–C14)+2(C17–C16–C15–H20)+2(H21–C16–C15–C14)+2(H21–C16–C15–H20)–  

  –(C16–C15–C14–C19)–(C16–C15–C14–C1)–(H20–C15–C14–C19)–(H20–C15–C14–C1)  

S48  (C15–C14–C1)–(C19–C14–C1)                 w(Ph–Isox) 

S49  (H20–C15–C14)–(H20–C15–C16)+(H21–C16–C15)–(H21–C16–C17)+(H22–C17–C16)–   (C–H1) 

  –(H22–C17–C18)+(H23–C18–C17)–(H23–C18–C19)+(H24–C19–C14)–(H24–C19–C18) 

S50  (H20–C15–C14)–(H20–C15–C16) +(H21–C16–C15)–(H21–C16–C17)        (C–H2) 

  +(H23–C18–C17)–(H23–C18–C19)+(H24–C19–C14)–(H24–C19–C18) 

S51  (H20–C15–C14)–(H20–C15–C16)–2(H22–C17–C16)+2(H22–C17–C18)+        (C–H3) 

  +(H24–C19–C14)–(H24–C19–C18)  

S52  (H20–C15–C14)–(H20–C15–C16) –(H21–C16–C15)+(H21–C16–C17) +       (C–H4) 

  +(H23–C18–C17)–(H23–C18–C19)–(H24–C19–C14)+(H24–C19–C18) 

S53  2(H20–C15–C14)–2(H20–C15–C16)–3(H21–C16–C15)+3(H21–C16–C17)+2(H22–C17–C16)–  (C–H5) 

  –2(H22–C17–C18)–3(H23–C18–C17)+3(H23–C18–C19)+2(H24–C19–C14)–2(H24–C19–C18) 

S54  (H20–C14–C15–C16)+(H21–C15–C16–C17)+(H22–C16–C17–C18)+(H23–C17–C18–C19)+   (C–H1) 

  +(H24–C18–C19–C14)  

S55  (H20–C14–C15–C16)+(H21–C15–C16–C17)–(H23–C17–C18–C19)–(H24–C18–C19–C14)   (C–H2) 

S56  (H20–C14–C15–C16)–2(H22–C16–C17–C18)+(H24–C18–C19–C14)        (C–H3) 

S57  (H20–C14–C15–C16)–(H21–C15–C16–C17)+(H23–C17–C18–C19)–(H24–C18–C19–C14)   (C–H4) 

S58  2(H20–C14–C15–C16)–3(H21–C15–C16–C17)+2(H22–C16–C17–C18)–3(H23–C17–C18–C19)+  (C–H5) 

  +2(H24–C18–C19–C14) 

S59  (Cl13–C1=C2–C3)                    (C–Cl) 

S60  (C6–C2–C3=N4)                    (Isox–E) 

S61  (C14–C2=C1–O5)                    (Isox–Ph) 

S62  (C1–C15–C14–C19)                    (Ph–Isox) 

S63  (C6–O8–C9)                     (C–O–CH3) 

S64  (Cl13–C2–C3)–(Cl13–C2=C1)                 w(C–Cl) 

S65  (C2–C3–C6)–(N4=C3–C6)                  w(Isox–E) 

S66  (C2=C1–C14)–(O5–C1–C14)                 w(Isox–Ph) 

       
a 
Normalization factors not shown. , bond stretching, , bending, , rocking, w, wagging, , torsion, IR, 

inter–ring; Isox, isoxazole ring; Ph, phenyl ring; E, ester. See Figure 1 for atom numbering. The 

molecule belongs to the C1 symmetry point group (all coordinates belong to the A symmetry species).  
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Table S3 - Calculated scaled, DFT(B3LYP)/6-311++G(d,p) wavenumbers, IR intensities and Potential 

Energy Distributions (PED) for conformer I of MCPIC.
a
 

Approximate  

description Wavenumber Intensity PEDb 

(C-H1) 3159 1.7 S37(95) 

(C-H5) 3146 3.0 S41(86) 

(C-H2) 3132 16.9 S38(84) 

(C-H3) 3121 9.9 S39(93) 

(C-H4) 3111 0.1 S40 (94) 

CH3 as´ 3107 11.0 S8(97) 

CH3 as´´ 3070 16.3 S9(100) 

CH3 s 2998 34.3 S7(97) 

(C=O) 1753 237.5 S2(87) 

Ph3 1614 1.0 S33(63), S44(10) 

Ph4 1591 4.8 S34(55), S22(11) 

Isox3 1570 13.1 S24(44), S6(13), S34(12) 

(C-H4) 1499 1.8 S35(26), S49(14), S24(12), S52(16), S50(11) 

CH3 as´ 1469 5.2 S11(73), S10(13) 

(C-H1), Isox1 1459 83.7 S10(12), S49(11), S22(11), S11(11), S1(10) 

CH3 as´´ 1457 11.6 S12(90) 

CH3 s 1448 29.7 S10(35), S36(14), S49(12), S51(12) 

Isox2 1446 53.1 S2324), S10(14), S22(12) 

Isox4 1416 25.5 S25(29), S10(24), S1(15) 

(C-H2) 1339 5.6 S50(31), S52(28), S49(16) 

Ph2 1312 12.1 S32(51), S36(16) 

Isox2,(C-CIR) 1258 94.7 S23(16), S6(13), S28(10), S32(10) 

(C-O) 1215 465.5 S3(38), S13(11) 

(C-H3) 1190 5.8 S33(24), S50(19), S52(18), S49(15), S51(12), S53(12) 

CH3´ 1182 34.2 S13(65) 

(C-H5) 1165 0.5 S53(48), S51(24) 

CH3´´ 1149 0.9 S14(92) 

Isox1 1121 19.6 S26(22), S22(17) 

Ph6 1084 14.7 S36(29), S32(13), S49(12), S52(10) 

Isox2 1060 111.5 S28(25), S4(15), S5(12) 

Ph5 1031 0.5 S35(45), S31(20) 

Ph1, Ph1 997 0.6 S42(61), S31(38) 

(C-H2) 989 0.1 S45(26), S56(23), S57(21), S55(16) 

Isox5 978 53.5 S26(32), S25(17), S4(14) 

(C-H4) 973 1.0 S47(26), S53(21), S58(17), S57(17), S54(16) 

(O-CH3) 953 5.5 S4(48), S26(18) 

Isox1 932 8.1 S27(44), S23(12) 

(C-H5) 924 2.6 S56(28), S54(28), S58(26), S46(12) 

(C-H1) 840 0.4 S54(28); S58(26), S57(24), S55(22) 

(OCO) 809 31.9 S19(36), S3(17), S63(14) 

(C=O) 791 9.5 S21(62), S60(22) 

(C-H3) 769 23.2 S56(29), S62(24.1) 

Ph3 696 6.1 S44(46), S6(11), S27(10) 

Ph1 691 44.0 S45(41), S57(23), S55(23) 

Isox1 680 23.4 S29(35), S61(25) 

Isox2 632 4.3 S30(72), S21(10) 

Ph2 621 0.1 S43(86) 

w(Isox-E),w(Isox-Ph),w(C-Cl) 573 1.1 S66(16), S65(16), S64(16), S20(11) 

(C-Cl) 540 2.7 S5(39), S20(10), S22(12) 

(Ph-Isox) 485 2.7 S62(34), S46(19), S29(11) 

(C-Cα) 447 0.02 S1(22), S44(16), S19(10) 

Ph3 401 0.05 S47(72) 

(CC=O) 362 10.3 S20(22), S63(18), S5(13), S48(11) 

(Isox-E) 326 4.2 S46(19), S61(16), S60(13) 

(C-O-CH3) 302 13.7 S63(38), S60(10), S19(10) 

(C-Cl) 278 3.0 S59(51), S60(10) 

(C-Cα),(C-CIR) 250 0.4 S6(19), S1(14), S44(12), S28(12) 

w(C-Cl) 215 1.1 S64(47), S20(15), S48(11) 

Isox1, (C-Cl) 178 0.8 S17(26), S29(16), S59(15), S46(13) 

w(C-Cl),w(Ph-Isox) 150 1.1 S64(18), S65(17), S66(15), S48(12), S20(10) 

CH3 135 0.1 S15(75) 

(C-O) 116 1.1 S17(42), S15(16) 

w(Isox-Ph) 85 1.8 S66(29), S65(28), S48(13, S20(10) 

(Isox-E), (Isox-Ph) 45 0.5 S60(28), S61(27), S29(20) 

(C-CIR) 29 0.1 S18(95) 

(C-Cα) 20 2.6 S16(100) 
a Wavenumbers (cm-1, scaled by 0.9817), , bond stretching, , bending, , rocking, w, wagging, , torsion, s, symmetric, as, anti-

symmetric, IR, inter–ring; Isox, isoxazole ring; Ph, phenyl ring; E, ester. See Table S2 for definition of internal coordinates. b Only 
PED values greater than 10% are given.   
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Table S4 - Calculated [scaled, DFT(B3LYP)/6-311++G(d,p)] wavenumbers, IR intensities and 

Potential Energy Distributions (PED) for conformer II of MCPIC.
a 

Approximate  
description Wavenumber Intensity PEDb 

(C-H1) 3159 1.7 S37(95) 

(C-H5) 3146 3.2 S41(84), S40(10) 

(C-H2) 3132 16.5 S38(83) 

(C-H3) 3122 9.7 S39(93) 

(C-H4) 3111 0.1 S40(94) 

CH3 as´ 3107 9.6 S8(97) 

CH3 as´´ 3073 14.4 S9(100) 

CH3 s 2999 32.1 S7(97) 

(C=O) 1769 316.2 S2(88) 

Ph3 1614 0.8 S33(63), S44(10) 

Ph4 1591 4.5 S34(54), S22(13) 

Isox3 1572 6.8 S24(44), S34(13), S6(12) 

Ph5 1500 0.7 S35(25), S52(15), S24(11), S49(12), S50(11) 

CH3 as´ 1469 9.0 S11(73), S10(11) 

Isox1 1461 102.1 S22(16), S23(15), S49(13) 

CH3 as´´ 1456 10.1 S12(90) 

(C-H3) 1448 45.8 S51(20), S36(19), S49(12) 

CH3 s 1442 7.7 S10(70) 

Isox4 1392 18.7 S25(42), S1(14) 

(C-H2), (C-H4) 1339 0.7 S50(30), S52(28), S49(15) 

Ph2 1310 11.8 S32(51), S36(16) 

Isox2 1259 129.4 S23(20), S6(12), S3(10) 

(C-O) 1213 356.0 S3(36), S13(14) 

(C-H4) 1190 4.4 S33(24), S50(19), S52(18), S49(15), S51(12), S53(12) 

CH3´ 1180 45.9 S13(63) 

(C-H5) 1165 0.1 S53(48), S51(24) 

CH3´´  1150 0.9 S14(91) 

Isox5,Isox1 1123 14.0 S26(21), S22(18) 

Ph6 1084 14.9 S36(31), S32(13), S49(12), S52(10) 

Isox2 1055 48.0 S28(28), S4(15), S5(12) 

Ph1 1031 0.7 S35(44), S31(20), S42(10) 

Ph1 997 0.9 S42(61), S31(38) 

Isox5 992 70.8 S4(27), S26(24), S25(11) 

(C-H5) 987 0.3 S58(55), S45(26), S56(14) 

(C-H4) 972 0.2 S57(76), S47(26) 

(O-CH3) 940 4.1 S4(43), S25(25), S3(10) 

Isox1 936 0.5 S27(43), S23(15), S25(13) 

(C-H3) 923 2.3 S56(55), S58(16), S54(13), S46(12) 

(C-H2) 840 0.4 S55(98) 

(OCO) 808 41.0 S19(34), S3(18), S63(14) 

(C=O) 786 9.7 S21(61), S60(20) 

(C-H1) 768 23.6 S54(34), S62(24), S56(19) 

Ph3 699 2.8 S44(41), S6(11), S27(10) 

Ph1 689 50.1 S45(37), S54(31), S58(17), S62(10) 

Isox1 683 18.5 S29(35), S61(23), S45(12) 

Isox2 641 4.4 S30(58) 

Ph2 620 0.1 S43(87) 

w(Isox-Ph), w(C-Cl) 572 3.2 S66(15), S64(14), S30(11) 

(C-Cl) 526 2.8 S5(32), S20(10) 

(Ph-Isox) 482 2.2 S62(32), S46(18), S29(11) 

(C-Cα) 429 0.5 S1(22), S44(14) 

Ph3 401 0.03 S47(73), S57(27) 

(CC=O) 375 8.2 S20(26), S5(12), S63(10) 

Ph2 327 2.8 S46(19), S61(16), S60(13) 

(C-O-CH3) 302 8.0 S63(44), S19(16), S59(14) 

(C-Cl) 269 1.1 S59(22), S28(11) 

(C-Cα), (C-CIR) 264 1.7 S59(21), S6(13), S1(10) 

w(C-Cl) 211 0.6 S64(49) 

Isox1, (C-Cl) 182 1.0 S17(32), S29(16), S59(16), S46(12) 

w(Ph-Isox),w(Isox-E),w(Isox-Ph) 149 0.4 S48(16), S66(16), S65(16), S20(14) 

CH3 128  0.03 S15(66) 

(C-O) 114 0.7 S17(32), S15(27) 

w(Isox-E) 81 1.0 S65(30), S66(25), S48(11), S20(10) 

(Isox-E) 47 0.3 S61(28), S60(24), S29(22) 

(C-CIR) 28 0.2 S18(53), S16(36) 

(C-Cα) 21 1.6 S16(57), S18(41) 
a Wavenumbers (cm-1, scaled by 0.9817), , bond stretching, , bending, , rocking, w, wagging, , torsion, s, symmetric, as, anti-   

symmetric, IR, inter–ring; Isox, isoxazole ring; Ph, phenyl ring; E, ester. See Table S2 for definition of internal coordinates.  
b Only PED values greater than 10% are given.  
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Figure S1. High energy conformers of MACBP, optimized at the DFT(B3LYP)/6-311++G(d,p) level 

of theory. The picture was made using the Ortep-3 for Windows program (Farrugia, L. J. J. Appl. Cryst. 

1997, 30, 565). Atoms color code: carbon, hydrogen: black; nitrogen: blue; chlorine: green; oxygen, 

red. 
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MBCAC

CBMK

 
 

 
Figure S2. Lowest energy conformers of MBCAC and CBMK, optimized at the DFT(B3LYP)/6-

311++G(d,p) level of theory. The picture was made using the Ortep-3 for Windows program (Farrugia, 

L. J. J. Appl. Cryst. 1997, 30, 565). Atoms color code: carbon, hydrogen: black; nitrogen: blue; 

chlorine: green; oxygen, red. 
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Figure S3. Top: Simulated IR spectrum of CBMK (most stable conformer); Middle top:  IR spectrum 

of MCPOC in argon matrix (as deposited; 10 K); Middle bottom: IR difference spectrum of irradiated 

Ar matrix of MACBP (> 235 nm irradiated matrix during 90 min minus > 235 nm irradiated matrix 

during 10 min; before subtraction, residual bands due MACBP were subtracted from the spectra of the 

irradiated matrix); Bottom: simulated IR spectrum of MBCAC (most stable conformer). In the 

simulated spectra, bands were represented by Lorenztian functions centered at the DFT(B3LYP)/6-

311++G(d,p) calculated wavenumbers (scaled by 0.978) and with fwhm (full width at half maximum) 

equal to 2 cm
-1

 (in case of MBCAC, the spectrum was multiplied by –1). 
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Table S1. Calculated Bond Lengths (Pm) and Angles (º) for the Three Most Stable Conformers of 

MACBP.A 

Parameter I II III Parameter I II III 

Bond lengths     Bond angles    

C1=C2 134.9 134.9 135.0 C18–C19–H24 119.9 119.9 120.0 

C1–Cl6 174.3 173.8 173.5 C20–C19–H24 119.9 119.9 119.9 
C1–C14 152.1 152.5 152.6 C19–C20–C21 120.0 119.9 119.9 

C2–N3 139.9 140.5 140.7 C19–C20–H25 120.0 120.1 120.1 

C2–C7 150.0 149.9 149.7 C21–C20–H25 120.0 119.9 119.9 
N3=N4 123.9 123.4 123.4 C16–C21–C20 120.2 120.2 120.2 

N4=N5 112.9 113.1 113.0 C16–C21–H26 118.7 120.0 120.1 

C7=O8 120.8 120.6 120.7 C20–C21–H26 121.1 119.8 119.7 
C7–O9 133.7 134.2 134.2     

O9–C10 144.5 144.5 144.4 Dihedrals    

C10–H11 109.0 109.0 109.0     
C10–H12 108.7 108.7 108.7 Cl6–C1=C2=N3 2.4 3.8 –3.4 

C10–H13 109.0 109.0 109.0 Cl6–C1=C2–C7 178.7 –179.7 –178.8 

C14=O15 121.3 121.2 121.1 C14–C1=C2–N3 –169.6 –168.7 –179.2 
C14–C16 148.8 148.6 148.7 C14–C1=C2–C7 6.8 7.8 5.4 

C16–C17 140.0 140.2 140.2 C2=C1–C14=O15 69.3 78.1 94.3 

C16–C21 140.2 140.0 140.0 C2=C1–C14–C16 –114.1 –106.6 –91.0 
C17–C18 139.2 138.9 138.9 Cl6–C1–C14=O15 –103.2 –95.0 –81.8 

C17–H22 108.4 108.3 108.3 Cl6–C1–C14–C16 73.4 80.4 92.9 

C18–C19 139.4 139.7 139.7 C1=C2–N3=N4 –171.0 –160.1 154.9 
C18–H23 108.4 108.4 108.4 C7–C2–N3=N4 12.5 23.6 –29.9 

C19–C20 139.7 139.4 139.4 C1=C2–C7=O8 –155.8 19.6 –2.8 
C19–H24 108.4 108.4 108.4 C1=C2–C7–O9 25.5 –160.4 176.8 

C20–C21 138.9 139.2 139.2 N3–C2–C7=O8 20.6 –164.0 –178.0 

C20–H25 108.4 108.4 108.4 N3–C2–C7–O9 –158.1 15.9 1.6 
C21–H26 108.3 108.4 108.4 C2–N3=N4=N5 178.0 –179.6 –179.7 

    C2–C7–O9–C10 –174.3 179.7 179.5 

Bond angles    O8=C7–O9–C10 7.0 –0.3 –0.9 
    C7–O9–C10–H11 61.3 59.5 61.9 

C2=C1–Cl6 120.5 120.9 120.8 C7–O9–C10–H12 –179.4 179.2 –178.6 

C2=C1–C14 126.5 126.1 126.7 C7–O9–C10–H13 –59.8 –61.3 –59.0 
Cl6–C1–C14 112.5 112.6 112.3 C1–C14–C16–C17 14.0 –171.1 –180.0 

C1=C2–N3 119.1 119.1 118.8 C1–C14–C16–C21 –167.5 9.6 –0.6 

C1=C2–C7 122.2 118.3 118.3 O15=C14–C16–C17 –169.6 4.0 –5.6 
N3–C2–C7 118.6 122.5 122.7 O15=C14–C16–C21 8.9 –175.3 173.8 

C2–N3=N4 121.1 121.5 122.2 C14–C16–C17–C18 178.4 –179.5 179.7 

N3=N4=N5 169.0 170.3 170.0 C14–C16–C17–H22 –1.2 0.4 –0.6 
C2–C7=O8 122.8 124.1 124.1 C21–C16–C17–C18 0.0 –0.2 0.2 

C2–C7–O9 112.5 111.5 111.7 C21–C16–C17–H22 –179.7 179.7 180.0 

O8=C7–O9 124.8 124.5 124.2 C14–C16–C21–C20 –178.8 179.4 –179.4 
C7–O9–C10 116.2 116.1 116.2 C14–C16–C21–H26 1.3 –0.3 0.2 

O9–C10–H11 110.0 110.2 110.0 C17–C16–C21–C20 –0.3 0.1 0.0 

O9–C10–H12 105.2 105.2 105.2 C17–C16–C21–H26 179.9 –179.6 179.6 
O9–C10–H13 110.1 109.9 110.1 C16–C17–C18–C19 0.3 0.1 –0.3 

H11–C10–H12 110.8 110.9 110.9 C16–C17–C18–H23 –179.8 –179.9 179.7 

H11–C10–H13 109.7 109.6 109.5 H22–C17–C18–C19 179.9 –179.8 180.0 
H12–C10–H13 111.0 110.9 111.0 H22–C17–C18–H23 –0.2 0.2 0.0 

C1–C14=O15 118.7 117.9 117.9 C17–C18–C19–C20 –0.2 0.1 0.1 

C1–C14–C16 118.3 118.4 118.4 C17–C18–C19–H24 179.7 180.0 –179.9 
O15=C14–C16 122.9 123.5 123.5 H23–C18–C19–C20 179.9 –179.9 –179.9 

C14–C16–C17 122.0 118.4 118.3 H23–C18–C19–H24 –0.2 0.0 0.1 

C14–C16–C21 118.4 122.0 122.1 C18–C19–C20–C21 –0.1 –0.2 0.2 
C17–C16–C21 119.6 119.6 119.6 C18–C19–C20–H25 179.8 179.8 –179.8 

C16–C17–C18 120.2 120.1 120.1 H24–C19–C20–C21 180.0 179.9 –179.9 

C16–C17–H22 120.0 118.7 118.7 H24–C19–C20–H25 –0.1 –0.1 0.2 
C18–C17–H22 119.8 121.2 121.2 C19–C20–C21–C16 0.3 0.1 –0.2 

C17–C18–C19 120.0 120.0 120.0 C19–C20–C21–H26 –179.8 179.8 –179.8 

C17–C18–H23 119.9 120.0 119.9 H25–C20–C21–C16 –179.6 –179.9 179.7 
C19–C18–H23 120.1 120.0 120.0 H25–C20–C21–H26 0.3 –0.2 0.1 

C18–C19–C20 120.1 120.1 120.1     

        
 a See Figure 1 for atom numbering. 
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Table S2. Definition of Internal Coordinates Used in the Normal Coordinate Analysis of MACBP. 

 

Nº  Definition a                         

                         Approximate 

                         description 

S1  (C1=C2)                       (C=C) 

S2  (C2-N3)                       (C-N) 

S3  (N3=N4)+(N4=N5)                   (N=N) s 

S4  (N3=N4)-(N4=N5)                   (N=N) as 

S5  (C2-C7)                       (C-Cα) E 

S6  (C7=O8)                       (C=O) E  

S7  (C7-O9)                      (C-O) 

S8  (O9-C10)                      (O-CH3) 

S9  (C10-H12)+(C10-H11)+(C10-H13)                CH3 s 

S10   2(C10-H12)-(C10-H11)-(C10-H13)                CH3 as´ 

S11  (C10-H11)-(C10-H13)                   CH3 as´´ 

S12  (C1-Cl6)                      (C-Cl) 

S13  (C1-C14)                      (C-C) 

S14  (C14=O15)                      (C=O) Ph 

S15  (C14-C16)                      (C-CPh) 

S16  (C16-C17)+(C17-C18)+(C18-C19)+(C19-C20)+(C20-C21)+(C21-C16)       Ph1 

S17  (C16-C17)+(C18-C19)-(C19-C20)-(C21-C16)             Ph2 

S18  -(C16-C17)+2(C17-C18)-(C18-C19)-(C19-C20)+2(C20-C21)-(C21-C16)      Ph3 

S19  (C16-C17)-(C18-C19)+(C19-C20)-(C21-C16)             Ph4 

S20  (C16-C17)-(C18-C19)-(C19-C20)+(C21-C16)             Ph5 

S21  (C17-C18)-(C19-C20)                   Ph6  

S22  (C17-H22)                        (C-H1) 

S23   (C18-H23)+(C20-H25)                   (C-H2) 

S24   2(C19-H24)-(C18-H23)-(C20-H25)                (C-H3) 

S25  (C18-H23)+(C19-H24)+(C20-H25)                (C-H4) 

S26  (C21-H26)                      (C-H5) 

S27  (H12-C10-H13)+(H12-C10-H11)+(H13-C10-H11)-(H13-C10-O9)-(H11-C10-O9)-(H12-C10-O9) CH3 s 

S28  2(H13-C10-H12)-(H12-C10-H13)-(H12-C10-H11)            CH3 as´ 

S29  (H12-C10-H11)-(H12-C10-H13)                  CH3 as´´ 

S30  2(H12-C10-O9)-(H13-C10-O9)-(H11-C10-O9)             CH3´ 

S31  (H11-C10-O9)-(H13-C10-O9)                 CH3´´ 

S32  (H11-C10-O9-C7)+(H13-C10-O9-C7)+(H12-C10-O9-C7)           CH3 

S33  (C17-C16-C21)-(C16-C21-C20)+(C21-C20-C19)-(C20-C19-C18)+(C19-C18-C17)-(C18-C17-C16) Ph1 

S34  (C17-C16-C21)-(C21-C20-C19)+(C20-C19-C18)-(C18-C17-C16)         Ph2 

S35  2(C17-C16-C21)-(C16-C21-C20)-(C21-C20-C19)+2(C20-C19-C18)-(C19-C18-C17)-    Ph3 

  -(C18-C17-C16) 

S36  (C17-C16-C21-C20)+(C17-C16-C21-H26)+(C14-C16-C21-C20)+(C14-C16-C21-H26)-    Ph1 

  -(C16-C21-C20-C19)-(C16-C21-C20-H25)-(H26-C21-C20-C19)-(H26-C21-C20-H25)+        

  +(C21-C20-C19-C18)+(C21-C20-C19-H24)+(H25-C20-C19-C18)+(H25-C20-C19-H24)- 

  -(C20-C19-C18-C17)-(C20-C19-C18-H23)-(H24-C19-C18-C17)-(H24-C19-C168-H23)+        

  +(C19-C18-C17-C16)+(C19-C18-C17-H22)+(H23-C18-C17-C16)+(H23-C18-C17-H22)-       

  -(C18-C17-C16-C21)-(C18-C17-C16-C14)-(H22-C17-C16-C21)-(H22-C17-C16-C14)  

S37  (C17-C16-C21-C20)+(C17-C16-C21-H26)+(C14-C16-C21-C20)+(C14-C16-C21-H26)-    Ph2 

  -(C21-C20-C19-C18)-(C21-C20-C19-H24)-(H25-C20-C19-C18)-(H25-C20-C19-H24)+        

  +(C20-C19-C18-C17)+(C20-C19-C18-H23)+(H24-C19-C18-C17)+(H24-C19-C168-H23)-        

  -(C18-C17-C16-C21)-(C18-C17-C16-C14)-(H22-C17-C16-C21)-(H22-C17-C16-C14)        

S38  -(C17-C16-C21-C20)-(C17-C16-C21-H26)-(C14-C16-C21-C20)-(C14-C16-C21-H26)+    Ph3 

  +2(C16-C21-C20-C19)+2(C16-C21-C20-H25)+2(H26-C21-C20-C19)+2(H26-C21-C20-H25)-    

  -(C21-C20-C19-C18)-(C21-C20-C19-H24)-(H25-C20-C19-C18)-(H25-C20-C19-H24)- 

  -(C20-C19-C18-C17)-(C20-C19-C18-H23)-(H24-C19-C18-C17)-(H24-C19-C168-H23)+     

  +2(C19-C18-C17-C16)+2(C19-C18-C17-H22)+2(H23-C18-C17-C16)+2(H23-C18-C17-H22)-       

  -(C18-C17-C16-C21)-(C18-C17-C16-C14)-(H22-C17-C16-C21)-(H22-C17-C16-C14)  

S39  (H22-C17-C16)-(H22-C17-C18)+(H23-C18-C17)-(H23-C18-C19)+(H24-C19-C18)-    (C-H1) 

  -(H24-C19-C20)+(H25-C20-C19)-(H25-C20-C21)+(H26-C21-C20)-(H26-C21-C16) 

S40  (H22-C17-C16)-(H22-C17-C18)+(H23-C18-C17)-(H23-C18-C19)-         (C-H2) 

  -(H25-C20-C19)+(H25-C20-C21)-(H26-C21-C20)+(H26-C21-C16) 

S41  (H22-C17-C16)-(H22-C17-C18)-2(H24-C19-C18)+2(H24-C19-C20)+(H26-C21-C20)-    (C-H3) 

  -(H26-C21-C16) 
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S42  (H22-C17-C16)-(H22-C17-C18)-(H23-C18-C17)+(H23-C18-C19)+       (C-H4) 

  +(H25-C20-C19)-(H25-C20-C21)-(H26-C21-C20)+(H26-C21-C16) 

S43  2(H22-C17-C16)-2(H22-C17-C18)-3(H23-C18-C17)+3(H23-C18-C19)+2(H24-C19-C18)-  (C-H5) 

  -2(H24-C19-C20)-3(H25-C20-C19)+3(H25-C20-C21)+2(H26-C21-C20)-2(H26-C21-C16) 

S44  (H22-C18-C17-C16)+(H23-C19-C18-C17)+(H24-C20-C19-C18)+(H25-C21-C20-C19)+   (C-H1) 

  +(H26-C16-C21-C20) 

S45  (H22-C18-C17-C16)+(H23-C19-C18-C17)-(H25-C21-C20-C19)-(H26-C16-C21-C20)    (C-H2) 

S46  (H22-C18-C17-C16)-2(H24-C20-C19-C18)+(H26-C16-C21-C20)        (C-H3) 

S47  (H22-C18-C17-C16)-(H23-C19-C18-C17)+(H25-C21-C20-C19)-(H26-C16-C21-C20)    (C-H4) 

S48  2(H22-C18-C17-C16)-3(H23-C19-C18-C17)+2(H24-C20-C19-C18)-3(H25-C21-C20-C19)+  (C-H5) 

  +2(H26-C16-C21-C20) 

S49  (N3-C2=C1-C14)+(N3-C2=C1-Cl6)+(C7-C2=C1-C14)+(C7-C2=C1-Cl6)      (C=C) 

S50  (C1=C2-N3=N4)+(C7-C2-N3=N4)               (C-N) 

S51  (C1=C2-C7=O8)+(C1=C2-C7-O9)+(N3-C2-C7=O8)+(N3-C2-C7-O9)      (C-Cα) E 

S52  (C2-C7-O9-C10)+(O8=C7-O9-C10)               (C-O) 

S53  (C2=C1-C14=O15)+(C2=C1-C14-C16)+(Cl6-C1-C14=O15)+(Cl6-C1-C14-C16)    (C-Cα) Ph 

S54  (C1-C14-C16-C17)+(C1-C14-C16-C21)+(O15=C14-C16-C17)+(O15=C14-C16-C21)    (C-C) Ph 

S55  2(O8=C7-O9)-(O8=C7-C2)-(O9-C7-C2)             (OCO) 

S56  (O8=C7-C2)-(O9-C7-C2)                 (CC=O) 

S57  (C10-O9-C7)                    (C-O-CH3) 

S58  (O8=O9-O7-C2)                   (C=O) E 

S59  (N5=N3=N4)                    (NNN) 

S60  2(C1-C14-C16)-(O15=C14-C16)-(O15=C14-C1)            (CCCPh) 

S61  (O15=C14-C16)-(O15=C14-C1)                (C=O) 

S62  (O7=C16-C14-C1)                   (C=O) 

S63  (C17-C16-C14)-(C21-C16-C14)                w(Ph) 

S64  (C14-C17-C16-C21)                   (Ph) 

S65  2(C2=C1-C14)-(C2=C1-Cl6)-(C14-C1-Cl6)             (C-Cl) 

S66  (Cl6-C1-C14)-(C2=C1-C14)                (CCC) 

S67  (Cl6-C14-C1=C2)                   (C-Cl) 

S68  2(C1=C2-C7)-(N3-C2=C1)-(N3-C2-C7)             (CC2C) 

S69  (N3-C2=C1)-(N3-C2-C7)                 (Azide)  

S70  (C2-N3=N4)                    (CNN) 

S71  ( N5=N3=N4)                    (NNN) 

S72  (N3-C7-C2=C1)                   (Azide) 

       
a Normalization factors not shown. , bond stretching, , bending, , rocking, w, wagging, , torsion, Ph, phenyl 

ring; E, ester. See Figure 1 for atom numbering. The molecule belongs to the C1 symmetry point group (all 

coordinates belong to the A symmetry species). 
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Table S3. Calculated Scaled, DFT(B3LYP)/6-311++G(D,P) Wavenumbers, IR Intensities and 

Potential Energy Distributions (PED) for Conformer I of MACBP.
A
 

Approximate  

description 

Wavenumber Intensity PEDb 

(C-H5) 3129 7.8 S26(83), S25(22) 

(C-H1) 3124 7.4 S22(80), S25(34) 

(C-H4) 3115 15.5 S25(41), S24(28), S26(27) 

(C-H2) 3107 5.6 S23(100) 

CH3 as´ 3100 6.9 S10(98) 

(C-H3) 3097 0.1 S24(66), S22(26) 

CH3 as´´ 3067 10.0 S11(100) 

CH3 s 2991 24.1 S9(98) 

(N=N) as 2213 981.5 S4(91) 

(C=O) E 1734 274.2 S6(89) 

(C=O) Ph 1696 215.0 S14(90) 

Ph3 1603 81.2 S18(56), S42(18), S1(12), S35(10) 

(C=C) 1596 140.2 S1(66), S18(11) 

Ph4 1583 16.5 S19(62), S41(16), S34(10) 

(C-H2) 1486 0.8 S40(62), S20(33) 

CH3 as´ 1461 10.6 S28(83), S30(10) 

CH3 as´´ 1451 7.5 S29(92) 

Ph6, (C-H3) 1447 18.3 S21(30), S41(29), S39(18) 

CH3 s 1437 25.2 S27(87) 

(N=N) s 1370 194.6 S3(48), S2(34) 

(C-H1) 1323 3.5 S39(48), S17(32), S43(10) 

Ph2 1309 17.1 S17(55), S39(30) 

(C-O), (C-Cα) E 1251 323.7 S7(36), S5(24), S55(11) 

(C-CPh) 1231 413.1 S15(37), S13(11) 

CH3´ 1185 8.5 S30(70), S28(10) 

(C-H4) 1171 55.2 S42(72), S18(18) 

(C-H5) 1159 1.5 S43(65), S41(14), S17(12), S19(11) 

CH3´´ 1144 1.7 S31(91) 

(C-O), (O-CH3) 1119 72.5 S7(15), S8(11), S2(10) 

Ph6 1082 6.7 S21(59), S41(31), S43(10) 

Ph5, (C-C) 1041 53.8 S20(28), S13(25), S40(12) 

Ph1 1019 29.2 S20(30), S16(22), S33(18), S40(14) 

Ph1 994 1.1 S33(54), S16(45) 

(C-H5) 992 0.1 S48(62), S36(24) 

(C-H4) 977 0.6 S47(65), S38(24) 

(O-CH3) 958 26.1 S8(68), S2(10) 

(C-H3) 935 1.3 S46(64), S37(11) 

(C-Cl) 889 16.5 S12(23), S5(10) 

(C-H2) 843 0.8 S45(98) 

(C=O), (C-N) 834 40.1 S61(13), S2(12) 

(C=O) 795 33.1 S62(19), S44(15), S64(14), S55(10) 

(C=O) E 775 15.4 S58(49), S72(11) 

(C=O) E, (OCO) 742 17.4 S44(21), S58(15), S55(11) 

(C-H1) 690 91.9 S44(44), S36(16), S62(10) 

Ph1 677 11.9 S36(36), S62(16), S48(16) 

Ph3 665 46.3 S35(38), S60(14) 

(NNN) 643 33.7 S71(39), S70(21) 

Ph2 617 0.4 S34(78), S19(10) 

(C-Cl) 614 5.0 S60(27), S67(22), S34(14) 

(NNN) 516 4.0 S59(65), S72(10) 

(NNN) 485 8.3 S59(40), S72(16) 

(Ph), Ph2 438 0.3 S64(28), S37(28) 

(CC=O) 425 0.2 S56(15), S35(10) 

Ph3 403 0.1 S38(72), S47(26) 

(C=O) 399 5.6 S61(18), S71(11), S5(10) 

(OCO), (Azide) 354 7.1 S55(15), S69(12), S72(12), S56(10), S5(10) 

(C-O-CH3), (CC2C) 310 12.5 S57(37), S68(17), S12(11) 

(CNN) 285 2.5 S70(18), S13(12), S57(11), S69(10) 

w(Ph) 255 7.5 S63(43), S67(13) 

(C-Cl) 214 0.3 S66(20), S65(15) 

(CCC) 193 0.8 S66(40), S65(15), S37(11) 

(C=C) 180 0.4 S52(31), S49(20) 

Ph2 141 0.2 S37(21), S64(17), S62(11), S69(10), S70(10) 

(CNN), (Azide) 138 1.8 S69(19), S70(18), S51(16) 

CH3 108 1.1 S32(64) 

(CCCPh) 106 0.4 S60(21), S67(19), S68(11) 

(C-O) 96 2.4 S52(25), S50(19), S51(15), S32(12) 



 290 

(C=C) 78 0.7 S49(33), S50(25), S52(19) 

(C-Cα) E 50 1.6 S51(38), S54(29), S50(19) 

(C-C) Ph 42 0.3 S54(47), S50(12), S51(10) 

(C-N) 37 0.3 S50(30), S49(21) 

(C-Cα) Ph 18 0.3 S53(79), S51(16) 

    
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), , bond stretching,  bending,  rocking, w, wagging, 

, torsion, s, symmetric, as, asymmetric, Ph, phenyl ring, E, ester. See Table S2 for definition of internal coordinates. b Only PED 

values greater than 10 % are given.  
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Table S4. Calculated scaled, DFT(B3LYP)/6-311++G(d,p) wavenumbers, IR intensities and 

Potential Energy Distributions (PED) for conformer II of MACBP.
a
 

Approximate  

description 

Wavenumber Intensity PED
b
 

(C-H1) 3131 7.2 S22(77), S25(15) 

(C-H4) 3123 8.6 S25(43), S22(29), S26(26) 

(C-H5) 3115 18.2 S26(50), S25(38), S23(20), S24(16) 

(C-H2) 3107 5.5 S23(82), S26(15) 

CH3 as´ 3100 8.5 S10(98) 

(C-H3) 3097 0.2 S24(77), S22(13) 

CH3 as´´ 3067 11.3 S11(100) 

CH3 s 2991 25.2 S9(98) 

(N=N) as 2212 972.7 S4(92) 

(C=O) E 1739 156.0 S6(85) 

(C=O) Ph 1699 252.4 S14(88) 

Ph3 1603 71.2 S18(59), S42(19) 

(C=C) 1595 162.4 S1(71) 

Ph4 1584 14.7 S19(62), S41(16) 

(C-H2) 1487 0.9 S40(62), S20(33) 

CH3 as´ 1463 8.7 S28(81), S30(10) 

CH3 as´´ 1451 10.8 S29(92) 

(C-H3) 1447 16.8 S41(29), S21(28), S39(18) 

CH3 s 1439 21.5 S27(87) 

(N=N) s 1372 265.6 S3(54), S2(31) 

(C-H1) 1323 3.8 S39(46), S17(34), S43(10) 

Ph2 1310 16.3 S17(53), S39(32) 

(C-O), (C-Cα) E 1238 595.2 S7(24), S5(22), S15(10) 

(C-CPh) 1230 141.9 S15(28), S7(17) 

CH3´ 1186 18.9 S30(71), S10(28) 

(C-H4) 1172 52.4 S42(73), S18(25) 

(C-H5) 1158 1.0 S43(65), S41(14), S17(12), S19(11) 

CH3´´ 1147 0.9 S31(91) 

(C-O), (O-CH3) 1115 33.5 S7(12), S8(12), S2(10) 

Ph6 1082 5.5 S21(56), S41(32), S43(10) 

Ph5, (C-C) 1036 50.5 S20(24), S13(21), S40(15) 

Ph1 1018 40.6 S20(29), S16(22), S33(20), S40(11) 

Ph1 994 1.1 S33(54), S16(45) 

(C-H5) 990 8.6 S48(54), S36(21) 

(O-CH3) 986 57.4 S8(61) 

(C-H4) 975 0.2 S47(64), S38(23) 

(C-H3) 933 0.2 S46(68), S37(11) 

(C-Cl) 865 12.1 S12(19), S7(16) 

(C-H2) 841 0.5 S45(99) 

(C-N) 829 67.7 S2(14), S7(12), S55(11) 

(C=O) 792 20.7 S62(19), S44(17), S64(15) 

(C=O) E 771 17.6 S58(52), S72(13) 

(C=O) E, (C-Cl) 737 8.5 S44(21), S58(14), S12(12) 

(C-H1) 686 74.4 S44(39), S36(26), S48(12) 

Ph1 674 20.6 S36(22), S35(19), S62(13), S48(10) 

(NNN), (OCO) 664 25.4 S71(14), S55(14), S12(12) 

Ph3 655 68.6 S71(23), S70(14), S35(13) 

(CCCPh), (C-Cl) 622 8.0 S60(25), S67(25) 

Ph2 616 2.4 S34(79) 

(NNN) 522 7.5 S59(90) 

(Azide) 489 6.2 S72(18), S56(15), S59(14) 

(NNN) 452 5.0 S71(18), S72(11) 

(Ph), (C-H4) 435 0.2 S64(37), S37(37) 

Ph3 403 0.0 S38(72), S47(25) 

(C=O) 397 4.3 S61(23), S35(16), S15(13), S72(11) 

(C-O-CH3) 337 21.6 S57(42), S56(13), S69(10) 

(OCO) 305 4.3 S12(19), S68(14), S55(12), S5(10) 

(Azide), (CNN) 279 5.5 S69(14), S70(14), S13(13) 

w(Ph) 253 9.3 S63(45), S67(13) 

(CC=O) 230 0.8 S66(15), S56(13), S65(12), S57(10) 

(CCC) 191 0.8 S66(44), S65(12) 

(C-O) 179 0.9 S52(38), S49(11) 

Ph2 146 0.4 S37(26), S64(20), S62(12) 

(C-Cα) E, (C-Cl) 133 0.6 S51(14), S65(13), S49(12), S32(10) 

CH3 121 0.4 S32(61), S70(11), S69(10) 

(CC2C) 109 0.3 S68(25), S32(15), S52(15), S65(11), S56(10) 
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(C-Cl), (CCCPh), 

(CC=O) 101 0.9 

S67(17), S60(16), S56(16), S72(12) 

(C=C) 81 0.5 S50(54), S49(40) 

(C-Cα) E 58 0.7 S51(45), S54(21), S53(15) 

(C-C) Ph 41 0.3 S54(67), S51(11) 

(C-N) 37 0.6 S50(49), S49(24) 

(C-Cα) Ph 21 1.7 S53(75), S51(20) 

    
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), , bond stretching,  bending,  rocking, w, wagging, 

, torsion, s, symmetric, as, asymmetric, Ph, phenyl ring, E, ester. See Table S2 for definition of internal coordinates. b Only PED 

values greater than 10 % are given.  
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Table S5. Optimized Geometries of Conformers I, II and III of MACBP and of the Global Minima of 

MBCAC, CBMK and MCPOC in Cartesian Coordinates (Å) and Their Absolute Energies (A.U.). 

Atom Coordinates 

 
X Y Z 

Conformer I (E = -1274.2737893 a.u.; E(+ZPE) = -1274.095012 a.u.) 

C1 0.450876 -0.856122 -0.478543 

C2 1.627216 -0.317439 -0.095126 

N3 2.702603 -1.164202 0.192490 

N4 3.743600 -0.727104 0.703182 

N5 4.756017 -0.536225 1.164832 

Cl6 0.251920 -2.586454 -0.555601 

C7 1.846834 1.164966 -0.042590 

O8 2.942185 1.666400 -0.124667 

O9 0.708066 1.844429 0.130248 

C10 0.807671 3.284237 0.065920 

H11 1.165961 3.588855 -0.917647 

H12 -0.202048 3.647768 0.237950 

H13 1.489190 3.647788 0.834950 

C14 -0.747878 -0.107503 -1.039224 

O15 -0.662396 0.382179 -2.146041 

C16 -1.999942 -0.076644 -0.235299 

C17 -2.024542 -0.451739 1.113204 

C18 -3.210157 -0.377785 1.838387 

C19 -4.378465 0.064953 1.219621 

C20 -4.360722 0.439427 -0.125745 

C21 -3.177155 0.372796 -0.849704 

H22 -1.117578 -0.794862 1.596641 

H23 -3.223609 -0.666451 2.882976 

H24 -5.302820 0.117650 1.783996 

H25 -5.270562 0.780970 -0.605892 

H26 -3.141971 0.661781 -1.893024 

Conformer II (E = -1274.2723887 a.u.; E(+ZPE) = -1274.093509 a.u.) 

C1 -0.235867 0.933089 -0.498263 

C2 -1.425040 0.419963 -0.122765 

N3 -2.483056 1.295226 0.175455 

N4 -3.448608 0.932946 0.853492 

N5 -4.398097 0.779662 1.447612 

Cl6 0.028420 2.650387 -0.521845 

C7 -1.586082 -1.070302 -0.118577 

O8 -0.665392 -1.849372 -0.094275 

O9 -2.880019 -1.424514 -0.144573 

C10 -3.151001 -2.843493 -0.150228 

H11 -2.729753 -3.310097 0.740416 

H12 -4.234621 -2.927387 -0.156922 

H13 -2.719594 -3.300664 -1.040730 

C14 0.934719 0.151247 -1.085604 

O15 0.877322 -0.163586 -2.254835 

C16 2.123700 -0.090954 -0.228173 

C17 3.271093 -0.639300 -0.817433 

C18 4.398942 -0.889265 -0.046587 

C19 4.390721 -0.596790 1.319061 

C20 3.251411 -0.054773 1.912070 
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C21 2.120937 0.198537 1.141067 

H22 3.255835 -0.862238 -1.877193 

H23 5.285453 -1.311757 -0.505480 

H24 5.271904 -0.792648 1.919857 

H25 3.244207 0.169245 2.972470 

H26 1.235268 0.616150 1.605093 

Conformer III (E = -1274.271764 a.u.; E(+ZPE) = - 1274.092954 a.u.) 

C1 -0.307078 -1.115149 0.279929 

C2 -1.397259 -0.372623 -0.006789 

N3 -2.467706 -0.977469 -0.690535 

N4 -3.625295 -0.560217 -0.599504 

N5 -4.730333 -0.326419 -0.638850 

Cl6 -0.257153 -2.806629 -0.104620 

C7 -1.369851 1.087025 0.324812 

O8 -0.450248 1.637662 0.879601 

O9 -2.489031 1.708768 -0.078264 

C10 -2.569144 3.122903 0.204690 

H11 -1.767398 3.652943 -0.309749 

H12 -3.541609 3.433999 -0.168100 

H13 -2.489901 3.294885 1.278085 

C14 0.942320 -0.652427 1.024461 

O15 0.994012 -0.847157 2.218856 

C16 2.073819 -0.099761 0.232827 

C17 3.220320 0.323914 0.918517 

C18 4.301740 0.839354 0.216355 

C19 4.251587 0.930990 -1.176588 

C20 3.116173 0.507218 -1.864948 

C21 2.028457 -0.004657 -1.162799 

H22 3.239046 0.243763 1.998367 

H23 5.185293 1.170329 0.750046 

H24 5.097683 1.331807 -1.723619 

H25 3.078538 0.574437 -2.946089 

H26 1.148906 -0.335652 -1.702509 

MBCAC (E = -1164.752016 au.; E(+ZPE) = -1164.583098 a.u.) 

C1 -1.727897 0.294156 0.628145 

C2 -0.429893 0.504132 0.058603 

N3 -0.940385 0.866532 1.431269 

C4 0.543176 -0.666375 -0.080371 

O5 0.060162 -1.773754 -0.204531 

C6 2.006659 -0.428080 -0.012714 

C7 2.543878 0.741044 0.542333 

C8 3.923379 0.891125 0.647782 

C9 4.772648 -0.113324 0.186043 

C10 4.242899 -1.279796 -0.369771 

C11 2.866753 -1.441790 -0.459897 

H12 1.890389 1.523887 0.905407 

H13 4.334982 1.791727 1.088169 

H14 5.847240 0.010581 0.261052 

H15 4.904560 -2.060534 -0.726793 

H16 2.436897 -2.345740 -0.873701 

Cl17 -0.172961 1.849869 -1.103664 

C18 -3.144266 -0.165803 0.589574 

O19 -3.790626 -0.385732 1.578305 

O20 -3.552004 -0.287618 -0.673110 

C21 -4.916428 -0.728193 -0.858223 
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H22 -5.046406 -1.722653 -0.430750 

H23 -5.604218 -0.030327 -0.380062 

H24 -5.066122 -0.746184 -1.934232 

CBMK (E = -1164.781548 a.u.; E(+ZPE) = - 1164.612234 a.u.) 

C1 -0.066305 1.617132 0.024486 

C2 0.854185 0.757504 0.418609 

N3 1.709157 0.035343 0.884834 

Cl4 0.468518 3.270811 -0.210964 

C5 2.555870 -0.862857 0.179299 

O6 2.159176 -1.769938 -0.500834 

O7 3.820581 -0.570616 0.459847 

C8 4.811396 -1.427414 -0.153345 

H9 4.733624 -1.375876 -1.239409 

H10 5.768011 -1.037913 0.184268 

H11 4.671507 -2.456221 0.178283 

C12 -1.524212 1.336575 -0.132101 

O13 -2.300407 2.263063 -0.252120 

C14 -1.997958 -0.081396 -0.082977 

C15 -3.268228 -0.314195 0.464866 

C16 -3.779205 -1.604179 0.525223 

C17 -3.036990 -2.674846 0.021820 

C18 -1.784594 -2.448426 -0.543154 

C19 -1.263184 -1.156989 -0.595753 

H20 -3.837470 0.528087 0.838349 

H21 -4.756150 -1.777666 0.961837 

H22 -3.438833 -3.681006 0.064836 

H23 -1.209799 -3.272343 -0.949328 

H24 -0.299241 -1.003776 -1.063265 

MCPOC (E = -1164.817323 a.u.; E(+ZPE) = - 1164.645452 a.u.) 

C1 0.000000 0.544650 0.000000 

C2 1.366375 0.357952 0.000000 

O3 -0.533861 -0.715795 0.000000 

Cl4 2.624522 1.539194 0.000000 

C5 -0.930456 1.663776 0.000000 

C6 -0.483523 2.995902 0.000000 

C7 -1.399546 4.042438 0.000000 

C8 -2.769183 3.784248 0.000000 

C9 -3.220873 2.464752 0.000000 

C10 -2.314470 1.411858 0.000000 

H11 0.574771 3.214497 0.000000 

H12 -1.038995 5.064666 0.000000 

H13 -3.478607 4.603770 0.000000 

H14 -4.284066 2.253613 0.000000 

H15 -2.671571 0.390217 0.000000 

N16 1.672535 -0.970562 0.000000 

C17 0.518345 -1.567595 0.000000 

C18 0.200019 -3.014983 0.000000 

O19 -0.927362 -3.446723 0.000000 

O20 1.314524 -3.753497 0.000000 

C21 1.116627 -5.181199 0.000000 

H22 0.565455 -5.487212 0.890015 

H23 2.116637 -5.607372 0.000000 

H24 0.565455 -5.487212 -0.890015 
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Figure S1. High energy conformers of MA2C, optimized at the DFT(B3LYP)/6-311++G(d,p) level of 

theory. Color codes: carbon – grey, hydrogen – white, oxygen – red, nitrogen – blue. 
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MMIA III MMIA IV

MMIA I MMIA II

 
 
Figure S2. DFT(B3LYP)/6-311++G(d,p) optimized structures of the four most stable conformers of 

methyl 2-(methyleneamino)-acetate (MMIA). Color codes: carbon – grey, hydrogen – white, oxygen – 

red, nitrogen – blue. 
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Figure S3. Potential energy map showing the position of the three low energy conformers of M3IP as a 

function of N=CCC and CCC=O dihedral angles. Calculations were carried out at the DFT/B3LYP/6-

311++G(d,p) level. These dihedral angles were incremented in steps of 20º and all remaining internal 

coordinates were optimized at each point. Each conformer correspond to equivalent-by-symmetry 

minima and are represented by black circles () corresponding to conformer I (135.3 and 21.2º), II 

(123.9 and –137.4º) and III (–1.9 and –95.5º). Their respective mirror-like counterparts are also 

represented. 1
st
 order transition states interconnecting the conformers are represented by crosses (x). 

Energies are relative to the most stable conformer (I) and do not include zero-point vibrational 

corrections. The corresponding one-dimensional potential energy profiles are shown in different colors 

(III, dark blue); (III’ and III’, pink); (II’, green) and (IIII’, blue). Isoenergy levels are 

spaced by 2 kJ mol
-1

. See Figure S5 for conformer structures. 
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I

HN=CH Cis

II

III  
 
Figure S4. DFT(B3LYP)/6-311++G(d,p) optimized structures of the three most stable conformers of 

methyl 3-iminopropanoate (M3IP) with the HN=CH fragment in cis position. Color codes: carbon – 

grey, hydrogen – white, oxygen – red, nitrogen – blue. 

 

 

 

M3AA  I M3AA  II

M3AA  III M3AA  IV  
 
Figure S5. DFT(B3LYP)/6-311++G(d,p) optimized structures of the four most stable conformers of 

methyl 3-aminoacrylate (M3AA). Color codes: carbon – grey, hydrogen – white, oxygen – red, nitrogen 

– blue. 
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M2IP I M2IP II  
 
Figure S6. DFT(B3LYP)/6-311++G(d,p) optimized structures of the two most stable conformers of 

methyl 2-iminopropanoate (M2IP). Color codes: carbon – grey, hydrogen – white, oxygen – red, 

nitrogen – blue. 

 

 

 

M2AA I M2AA II
 

 
Figure S7. DFT(B3LYP)/6-311++G(d,p) optimized structures of the two most stable conformers of 

methyl 2-aminoacrylate (M2AA). Color codes: carbon – grey, hydrogen – white, oxygen – red, nitrogen 

– blue. 
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Table S1 - DFT(B3LYP)/6-311++G(d,p) calculated bond lengths (Å) and angles (º) of the 

eight conformers of MA2C.
a
 

 I II III IV V VI VII VIII 

Bond lengths /Å         

C1=O2 1.211 1.207 1.205 1.215 1.206 1.202 1.203 1.203 

C1–C3 1.491 1.491 1.497 1.492 1.501 1.513 1.505 1.505 

C1–O10 1.344 1.355 1.352 1.344 1.351 1.354 1.367 1.367 

C3–N4 1.470 1.472 1.480 1.482 1.466 1.479 1.476 1.476 

C3–C5 1.498 1.498 1.492 1.492 1.502 1.477 1.497 1.497 

C3–H8 1.083 1.083 1.084 1.085 1.082 1.087 1.083 1.083 

N4–C5 1.458 1.459 1.461 1.470 1.457 1.476 1.461 1.461 

N4–H9 1.019 1.017 1.017 1.019 1.020 1.017 1.016 1.016 

C5–H6 1.084 1.084 1.086 1.086 1.085 1.085 1.084 1.084 

C5–H7 1.085 1.085 1.084 1.083 1.085 1.083 1.082 1.082 

O10-C11 1.442 1.441 1.440 1.436 1.436 1.437 1.432 1.432 

C11–H12 1.091 1.090 1.091 1.091 1.093 1.091 1.092 1.092 

C11–H13 1.087 1.088 1.088 1.088 1.088 1.088 1.089 1.089 

C11–H14 1.091 1.091 1.091 1.091 1.092 1.093 1.093 1.093 

Angles / º         

O2=C1–C3 124.5 124.2 125.7 123.5 122.0 123.2 119.4 119.4 

O2=C1–O10 124.0 123.6 123.9 124.3 119.3 119.5 117.9 117.9 

C3–C1–O10 111.5 112.2 110.4 112.2 118.7 117.3 122.3 122.3 

C1–C3–N4 117.4 121.6 115.5 117.2 116.7 115.8 123.9 123.9 

C1–C3–C5 116.7 119.3 119.3 121.8 116.1 119.7 126.8 126.8 

C1–C3–H8 115.9 112.5 114.9 112.6 118.2 114.7 108.8 108.8 

N4–C3–H8 116.1 115.6 118.3 118.2 114.6 118.0 113.4 113.4 

C5–C3–H8 119.8 119.2 118.4 117.9 118.7 118.0 117.0 117.0 

C3–N4–H9 108.1 109.0 108.9 107.8 107.7 110.1 110.8 110.8 

C5–N4–H9 109.3 109.7 110.8 109.5 109.4 110.7 111.5 111.5 

C3–C5–H6 118.3 118.2 117.2 116.8 118.6 117.8 117.3 117.3 

C3–C5–H7 117.1 117.5 118.0 118.4 116.9 118.6 119.7 119.7 

N4–C5–H6 115.6 115.5 119.5 118.8 115.7 118.5 114.8 114.8 

N4–C5–H7 118.6 118.8 114.3 114.0 118.6 114.9 119.8 119.8 

H6–C5–H7 116.0 115.7 116.1 116.7 115.9 115.6 114.6 114.6 

C1–O10–C11 116.1 116.1 115.8 114.2 121.6 121.0 125.3 125.3 

O10–C11–H12 110.4 110.3 110.4 110.3 111.3 110.9 111.1 111.1 

O10–C11–H13 105.4 105.5 105.5 105.3 105.2 105.2 105.1 105.1 

O10–C11–H14 110.3 110.3 110.3 110.5 111.5 111.4 112.9 112.9 

H12–C11–H13 110.7 110.7 110.7 110.7 109.2 109.9 108.9 108.9 

Dihedrals / º 
        

O2=C1–C3–N4 -21.2 158.3 -42.3 141.6 -12.5 -100.6 140.9 140.9 

O2=C1–C3–C5 45.8 -132.3 24.8 -149.4 53.9 -32.1 -145.0 -145.0 

O2=C1–C3–H8 -164.6 14.7 174.4 -0.6 -155.6 116.7 3.6 3.6 

O10–C1–C3–N4 158.6 -21.7 138.5 -39.1 167.5 80.9 -32.5 -32.5 

O10–C1–C3–O5 -134.4 47.8 -154.3 30.0 -126.1 149.4 41.5 41.5 

O10–C1–C3–H8 15.2 -165.2 -4.7 178.8 24.4 -61.8 -169.8 -169.8 

O2=C1–O10–C11 -0.7 1.4 0.2 -2.6 -175.3 173.9 147.8 147.8 

C3–C1–O10–C11 179.5 -178.7 179.3 178.0 4.7 -7.6 -38.7 -38.7 

C1–C3–N4–H9 3.6 4.8 -145.9 -144.7 2.8 -146.3 12.1 12.1 

H8–C3–N4–H9 146.9 147.3 -4.0 -4.7 147.1 -4.9 147.7 147.7 

C1–C3–C5–H6 148.0 144.1 146.2 145.6 148.6 147.0 144.5 144.5 

C1–C3–C5–H7 1.4 -2.4 -0.3 -2.1 2.1 -0.5 -2.0 -2.0 

H8–C3–C5–H6 -0.4 -0.7 -2.3 -1.6 -1.7 -0.8 -2.0 -2.0 

H8–C3–C5–H7 -146.9 -147.2 -148.9 -149.3 -148.2 -148.3 -148.4 -148.4 
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H9–N4–C5–H6 -150.1 -149.3 5.7 6.1 -150.4 5.5 -148.9 -148.9 

H9–N4–C5–H6 -5.7 -5.3 149.7 149.8 -5.8 148.1 -6.5 -6.5 

C1–O10–C11–H12 -61.2 -59.9 -60.1 -59.9 -70.6 -57.7 -52.1 -52.1 

C1–O10–C11–H13 179.2 -179.5 -179.7 -179.3 171.3 -176.5 -169.7 -169.7 

C1–O10–C11–H14 59.7 60.9 60.7 61.0 53.0 65.6 72.3 72.3 

         
a
 See Figure 1 for atom numbering. 
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Table S2 – Definition of symmetry coordinates used in the normal mode analysis of 

the conformations of methyl aziridine-2-carboxylate (MA2C)
a
.  

S1 = r1,2 (C=O) 

S2 = r1,3 (C1C3) 

S3 = r3,4 (CN) 

S4 = r4,5 (NC) 

S5 = r3,5 (C3C5) 

S6 = 2
-1/2

 (r5,6 + r5,7) s(CH2) 

S7 = 2
-1/2

 (r5,6 - r5,7) a(CH2) 

S8 = r3,8 (CH) 

S9 = r4,9 (NH) 

S10 = r1,10 (CO) 

S11 = r10,11 (O-CH3) 

S12 = 3
-1/2

 (r11,13 + r11,14 + r11,12) s(CH3) 

S13 = 6
-1/2

 (2r11,13 - r11,14 - r11,12) a(CH3)´ 

S14 = 2
-1/2

 (r11,14 - r11,12) a(CH3)´´ 

S15 = 6
-1/2

 (12,14,11+13,14,11+13,12,11-13,10,11-14,10,11-12,10,11) 1(CH3) 

S16 = 6
-1/2

 (212,14,11-13,14,11-13,12,11) 2(CH3) 

S17 = 2
-1/2

 (13,14,11-13,12,11) 3(CH3) 

S18 = 6
-1/2

 (213,10,11-14,10,11-12,10,11) 4(CH3) 

S19 = 2
-1/2

 (14,10,11-12,10,11) 5(CH3) 

S20 = 3
-1/2

 (13,11,10,1+12,11,10,1+14,11,10,1) CH3 

S21 = 6
-1/2

 (23,10,1-2,3,1-2,10,1) (OCC) 

S22 = 2
-1/2

 (2,3,1-2,10,1) (CC=O) 

S23 = 2,10,1,3 (C=O) 

S24 = 1,11,10 (C-O-CH3) 

S25 = 2
-1/2

 (8,4,3+8,5,3) (CH8) 

S26 = 2
-1/2

 (8,4,3-8,5,3) (CH8) 

S27 = 2
-1/2

 (1,4,3+1,5,3) (C1C3) 

S28 = 2
-1/2

 (1,4,3-1,5,3) (C1C3) 

S29 = 2
-1/2

 (3,9,4+5,9,4) (NH) 

S30 = 2
-1/2

 (3,9,4-5,9,4) (NH) 

S31 = 20
-1/2

 (46,7,5-6,4,5-7,4,5-6,3,5-7,3,5) (CH2) 

S32 = 1/2(6,4,5+7,4,5-6,3,5-7,3,5) wag(CH2) 

S33 = 1/2(6,4,5-7,4,5-6,3,5+7,3,5) twist(CH2) 

S34 = 1/2(6,4,5-7,4,5+6,3,5-7,3,5) rock(CH2) 

S35 = 2
-1/2

 (3,1,10,11+2,1,10,1) (CO) 

S36 = 6
-1/2

 (5,3,1,10+5,3,1,2+4,3,1,10+4,3,1,2+8,3,1,10+8,3,1,2) (CC) 
a See Figure 1 for atom numbering. rm,n is the distance between atoms Am and An; m,n,l is the angle between 

vectors AlAm and AlAn; γm,n,l,o is the angle between the vector AlAm and the plane defined by atoms An, Al, Ao; 

τm,n,l,o is the dihedral angle between the plane defined by Am, An, Al and the plane defined by An, Al, Ao atoms; s = 

symmetric; a = antisymmetric; ν = stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = 

rocking; wag = wagging; twist = twisting. The molecule belongs to the C1 symmetry point group (all coordinates 

belong to the A symmetry species). 
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Table S3 - Calculated scaled, DFT(B3LYP)/6-311++G(d,p) wavenumbers, IR intensities and 

Potential Energy Distributions (PED) for conformer I of MA2C.
a
 

Approximate  

description  IIR PED
b
 

(NH) 3402.3 11.4 (NH) (100) 

a(CH2) 3129.8 9.6 a(CH2) (97) 

(CH) 3107.7 4.2 (CH) (97) 

a(CH3)´ 3091.4 12.6 a(CH3)´ (97) 

a(CH3)´´ 3058.4 17.7 a(CH3)´´ (100) 

s(CH2) 3039.6 17.8 s(CH2) (100) 

s(CH3) 2986.0 29.6 s(CH3) (98) 

(C=O) 1733.3 220.1 (C=O) (86) 

(CH2) 1467.7 5.7 (CH2) (90) 

2(CH3) 1464.2 8.8 2(CH3) (80), 4(CH3) (10) 

3(CH3) 1451.5 10.0 3(CH3) (92) 

1(CH3) 1440.9 30.4 1(CH3) (81) 

(CH8) 1378.6 83.8 (CH8) (44), (C1C3) (14) 

(NH) 1274.3 2.4 (NH) (35), twist(CH2) (12), (NC) (12), (CN) (11) 

(NH) 1251.3 52.8 (NH) (60), rock(CH2) (13) 

(CO) 1203.3 399.3 (CO) (42), 4(CH3) (18) 

4(CH3) 1177.1 66.0 4(CH3) (58) 

(CH8), (NH) 1149.3 7.6 (CH8) (27), (NH) (22), (NH) (11), (C3C5) (11), 

wag(CH2)(10) 

5(CH3) 1145.2 1.9 5(CH3) (89) 

(CH8) 1108.4 14.4 (CH8) (54), twist(CH2) (17), rock(CH2) (12) 

wag(CH2) 1088.6 13.4 wag(CH2) (80) 

(O-CH3) 1003.0 19.0 (O-CH3) (31), (C1C3) (14), s(CH3) (12), twist(CH2) (10) 

(O-CH3), 

twist(CH2) 

978.9 6.5 (O-CH3) (33), twist(CH2) (31), (NH) (11) 

rock(CH2) 948.4 6.9 rock(CH2) (47), (NH) (12), (CH8) (11), (O-CH3) (11) 

(NC) 878.8 38.9 (NC) (34), (CO) (14), (C1C3) (12), (O-CH3) (12) 

(CN) 846.6 1.2 (CN) (46), (NC) (18) 

(C3C5) 802.2 56.8 (C3C5) (34), (CN) (15), (NC) (11) 

(C=O) 750.5 8.8 (C=O) (70) 

(CC=O), (C1C3) 665.5 9.5 (CC=O) (43), (C1C3) (16), (C1C3) (15) 

(OCC) 412.2 2.4 (OCC) (31), (C1C3) (15), (C-O-CH3) (14) 

(C-O-CH3) 319.9 25.7 (C-O-CH3) (41), (OCC) (26), (C1C3) (20) 

(C1C3) 293.6 13.2 (C1C3) (60), (CO) (20) 

(C1C3) 200.0 0.6 (OCC) (43), (C1C3) (31), (C-O-CH3) (22) 

(CO) 159.3 1.2 (CO) (45), CH3 (21), (CC) (14), (C1C3) (11) 

CH3 123.8 0.4 CH3 (77), (CO) (19) 

(CC) 75.7 2.8 (CC) (83), (CO) (10) 
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), s = symmetric; a = antisymmetric; ν = 

stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = rocking; wag = wagging; twist = 

twisting. See Table S2 for definition of symmetry coordinates. b Only PED values greater than 10 % are given.  
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Table S4 - Calculated scaled, DFT(B3LYP)/6-311++G(d,p) wavenumbers, IR intensities and 

Potential Energy Distributions (PED) for conformer II of MA2C.
a
 

Approximate  

description  IIR PED
b
 

(NH) 3434.6 10.9 (NH) (100) 

a(CH2) 3129.2 11.1 a(CH2) (96) 

(CH) 3108.0 3.6 (CH) (96) 

a(CH3)´ 3089.1 11.8 a(CH3)´ (98) 

a(CH3)´´ 3058.3 17.1 a(CH3)´´ (100) 

s(CH2) 3041.0 17.9 s(CH2) (100) 

s(CH3) 2985.6 30.8 s(CH3) (98) 

(C=O) 1751.7 333.4 (C=O) (87) 

(CH2) 1470.9 0.4 (CH2) (94) 

2(CH3) 1465.7 9.4 2(CH3) (80), 4(CH3) (10), 1(CH3) (10) 

3(CH3) 1450.0 9.6 3(CH3) (93) 

1(CH3) 1438.7 15.6 1(CH3) (86) 

(CH8) 1354.0 17.1 (CH8) (51), (C3C5) (11) 

(NH) 1268.6 39.4 (NH) (29), (CH8) (19), (NC) (12), (CN) (11) 

(CO), (C1C3) 1252.9 222.1 (CO) (25), (C1C3) (20), (C1C3) (11), (OCC) (11) 

(NH) 1241.1 23.5 (NH) (53), rock(CH2) (16), (C3C5) (10) 

4(CH3) 1179.2 10.6 4(CH3) (78), 2(CH3) (11) 

5(CH3) 1146.9 11.0 5(CH3) (72) 

5(CH3), wag(CH2) 1143.7 39.8 5(CH3) (20), wag(CH2) (20), (NH) (15) 

(CH8) 1108.3 37.0 (CH8) (54), twist(CH2) (17), rock(CH2) (12) 

wag(CH2) 1080.9 73.5 wag(CH2) (69) 

(O-CH3) 1023.3 55.6 (O-CH3) (52), (NH) (11) 

rock(CH2) 955.8 9.1 rock(CH2) (34), twist(CH2) (22), (NH) (15), (NH) (13) 

twist(CH2) 946.0 9.0 twist(CH2) (25), rock(CH2) (18), (O-CH3) (17) 

(NC) 883.6 28.6 (NC) (48), (CN) (13) 

(CN) 814.4 55.9 (CN) (43), (CO) (17), (C3C5) (12) 

(C3C5) 797.3 21.2 (C3C5) (26), (NC) (16), (CO) (14), (CC=O) (10) 

(C=O) 743.5 7.5 (C=O) (70) 

(C1C3), (C1C3) 615.3 9.2 (OCC) (21), (C1C3) (19), (C1C3) (18), (CC=O)(11), (O-CH3)(10) 

(CC=O) 466.8 7.6 (CC=O) (35), (C1C3) (18), (C1C3)(13), (OCC)(11), (CN)(10) 

(C-O-CH3) 317.4 18.6 (C-O-CH3) (58), (CC=O) (17), (C1C3) (16) 

(C1C3) 291.7 11.3 (C1C3) (64), (CO) (18) 

(OCC) 195.3 0.2 (OCC) (47), (C1C3) (31), (C-O-CH3) (16) 

(CO) 142.5 1.0 (CO) (50), CH3 (29) 

CH3 119.6 1.0 CH3 (64), (CO) (25) 

(CC) 85.7 1.1 (CC) (92) 
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), s = symmetric; a = antisymmetric; ν = 

stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = rocking; wag = wagging; twist = 

twisting. See Table S2 for definition of symmetry coordinates. b Only PED values greater than 10 % are given.  

 

 

 

 

 

 

 

 

 

 

 

 



 308 

 

 
 

Table S5  DFT(B3LYP)/6-311++G(d,p) calculated relative energies (E/ kJ mol
-1

) 

including zero-point vibrational contributions for relevant structures of possible 

photoproducts resulting from different ring-opening reactions of MA2C (see Figure 5). 

MMAA
a
 EDFT Symmetry 

I 0.0 C1 

II 1.3 C1 

III 6.0 C1 

MMIA
b
   

I 0.0 Cs 

II 2.1 Cs 

III 11.3 Cs 

IV 17.5 Cs 

M3IP (HN=CH cis)
c
   

I 0.0 C1 

II 3.4 C1 

III 6.9 C1 

M3IP (HN=CH trans)
d
 

  

I 0.0 C1 

II 0.1 C1 

III 0.4 C1 

IV 3.9 C1 

M3AA
e
   

I 0.0 Cs 

II 12.4 Cs 

III 14.7 C1 

IV 19.1 C1 

M2IP
f
   

I 0.0 Cs 

II 1.6 Cs 

M2AA
g
 

  

I 0.0 C1 

II 4.8 C1 
   a

 See Figure 6 for structures of the conformers. 
b
 See Figure S2 for structures of conformers. 

c
 See 

Figure S4 for structures of the conformers. 
d
 See Figure 11 for structures of the conformers. 

e
 See 

Figure S5 for structures of the conformers. 
f
 See Figure S6 for structures of the conformers. 

g
 See 

Figure S7 for structures of the conformers. 
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Table S6 - DFT(B3LYP)/6-311++G(d,p) calculated values for the main conformational 

dihedral angles (º) for relevant structures of possible photoproducts resulting from different 

ring-opening reactions of MA2C (see Figure 5). 

 MMAA I MMAA II MMAA III  

Dihedral angles / º     

O2=C1–C3–N4 35.2/(35.2) 138.3/(138.3) 46.8/(46.8)  

C1−C3−N4=C5 111.5/(−111.5) 122.4/(122.4) 0.9/(0.9)  

 MMIA I MMIA II MMIA III MMIA IV 

O2=C1–C3=N4 180 0 0 180 

C5–N4=C3–C1 180 180 0 0 

 M3IP I (HN=CH cis) M3IP II M3IP III  

N4=C5–C3–C1 135.3 123.9 1.9  

C5–C3–C1=O2 21.2 137.4 95.5  

 M3IP I (HN=CH 

trans) 
M3IP II M3IP III M3IP IV 

N4=C5–C3–C1 16.0 134.6 120.4 23.4 

C5–C3–C1=O2 41.2 48.2 119.4 60.9 

 M3AA I M3AA II M3AA III M3AA IV 

N4=C5–C3–C1 0.0 0.0 180.0 180.0 

C5–C3–C1=O2 0.0 180.0 0.0 180.0 

 M2IP I M2IP II   

H9=N4–C3–C1 0.0 0.0   

N4=C3–C1=O2 0.0 180.0   

 
M2AA I MAA II   

H9=N4–C3–C1 19.001 24.289   

N4=C3–C1=O2 -9.440 9.107   

     
a
 See Figure 6 for atom numbering. 

b
 See Figure S2 for structures of conformers. 

c
 See Figure S5 

for structures of the conformers. 
d
 See Figure 11 for structures of the conformers. 

e
 See Figure S5 

for structures of the conformers. 
f
 See Figure S6 for structures of the conformers. 

g
 See Figure S7 

for structures of the conformers. 
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Table S7 – Definition of symmetry coordinates used in the normal mode analysis of 

the conformations of methyl (methyleneamino) acetate (MMAA)
a
.  

S1 = r1,2 (C=O) 

S2 = r1,3 (CC) 

S3 = r3,4 (CN) 

S4 = r4,5 (N=C) 

S5 = r5,6 (CH6) 

S6 = r5,7 (CH7) 

S7 = r3,8 (CH8) 

S8 = r4,9 (CH9) 

S9 = r1,10 (CO) 

S10 = r10,11 (O-CH3) 

S11 = 3
-1/2

 (r11,13 + r11,14 + r11,12) s(CH3) 

S12 = 6
-1/2

 (2r11,13 - r11,14 - r11,12) a(CH3)´ 

S13 = 2
-1/2

 (r11,14 - r11,12) a(CH3)´´ 

S14 = 6
-1/2

 (12,14,11+13,14,11+13,12,11-13,10,11-14,10,11-12,10,11) 1(CH3) 

S15 = 6
-1/2

 (212,14,11-13,14,11-13,12,11) 2(CH3) 

S16 = 2
-1/2

 (13,14,11-13,12,11) 3(CH3) 

S17 = 6
-1/2

 (213,10,11-14,10,11-12,10,11) 4(CH3) 

S18 = 2
-1/2

 (14,10,11-12,10,11) 5(CH3) 

S19 = 3
-1/2

 (13,11,10,1+12,11,10,1+14,11,10,1) CH3 

S20 = 6
-1/2

 (23,10,1-2,3,1-2,10,1) (OCC) 

S21 = 2
-1/2

 (2,3,1-2,10,1) (CC=O) 

S22 = 2,10,1,3 (C=O) 

S23 = 1,11,10 (C-O-CH3) 

S24 = 6
-1/2

 (26,7,5-6,4,5-7,4,5) (C5H2) 

S25 = 2
-1/2

 (6,4,5-7,4,5) wag(C5H2) 

S26 = 3,5,4 (CN=C) 

S27 = 6,4,5,7 (CH) 

S28 = 20
-1/2

 (48,9,3-8,9,1-9,1,3-8,4,3-9,4,3) (CH2) 

S29 = 1/2(8,9,1+9,1,3-8,4,3-9,4,3) wag(CH2) 

S30 = 1/2(8,9,1-9,1,3-8,4,3+9,4,3) twist(CH2) 

S31 = 1/2(8,9,1-9,1,3+8,4,3-9,4,3) rock(CH2) 

S32 = 1,4,3 (CCN) 

S33 = 2
-1/2

 (3,1,10,11+2,1,10,1) (CO) 

S34 = 6
-1/2

 (4,3,1,10+4,3,1,2+8,3,1,10+8,3,1,2+9,3,1,10+9,3,1,2) (CC) 

S35 = 3
-1/2

 (1,3,4,5+8,3,4,5+9,3,4,5) (CN) 

S36 = 2
-1/2

 (3,4,5,6+3,4,5,7) (N=C) 
a See Figure 6 for atom numbering. rm,n is the distance between atoms Am and An; m,n,l is the angle between 

vectors AlAm and AlAn; γm,n,l,o is the angle between the vector AlAm and the plane defined by atoms An, Al, Ao; 

τm,n,l,o is the dihedral angle between the plane defined by Am, An, Al and the plane defined by An, Al, Ao atoms; s = 

symmetric; a = antisymmetric; ν = stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = 

rocking; wag = wagging; twist = twisting. The molecule belongs to the C1 symmetry point group (all coordinates 

belong to the A symmetry species). 
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Table S8 - Calculated scaled, DFT(B3LYP)/6-311++G(d,p) wavenumbers, IR intensities and 

Potential Energy Distributions (PED) for conformer I of MMAA.
a
 

Approximate  

description  IIR PED
b
 

a(CH3)´ 3089.9 13.2 a(CH3)´ (97) 

(CH7) 3067.2 24.1 (CH7) (92) 

a(CH3)´´ 3057.1 17.9 a(CH3)´´ (100) 

(CH9) 3028.0 5.4 (CH9) (98) 

s(CH3) 2985.0 29.9 s(CH3) (98) 

(CH6) 2922.5 59.4 (CH6) (92) 

(CH8) 2884.6 38.0 (CH8) (98) 

(C=O) 1767.4 235.9 (C=O) (87) 

(N=C) 1699.7 27.5 (N=C) (85), (C5H2) (11) 

2(CH3) 1464.3 8.4 2(CH3) (79), 4(CH3) (10) 

(C5H2) 1463.8 18.4 (C5H2) (78) 

3(CH3) 1450.8 10.2 3(CH3) (93) 

(CH2) 1439.3 2.9 (CH2) (66), 1(CH3) (22) 

1(CH3) 1436.8 19.8 1(CH3) (66), (CH2) (23) 

wag(CH2) 1345.3 40.4 wag(CH2) (74) 

twist(CH2) 1241.2 54.5 twist(CH2) (67), wag(C5H2) (17) 

wag(C5H2) 1196.2 248.8 (CO) (28), wag(C5H2) (27), 4(CH3) (15) 

4(CH3) 1180.7 2.4 4(CH3) (52), wag(C5H2) (22) 

wag(C5H2),twist(CH2) 1161.1 170.5 wag(C5H2) (21), (CO) (17), twist(CH2) (17), 4(CH3) (11) 

5(CH3) 1145.5 2.6 5(CH3) (91) 

(CH) 1049.0 18.3 (CH) (100) 

(O-CH3) 1023.8 26.0 (O-CH3) (39), (CN) (28) 

rock(CH2) 1000.9 1.2 rock(CH2) (51), (CN) (18), (C=O) (14) 

(CN) 950.7 16.5 (O-CH3) (35), (CN) (28), (CC) (13) 

(CO) 893.3 7.1 (CO) (19), (CC) (17), (O-CH3) (14) 

(N=C) 765.6 19.3 (N=C) (34), (CC=O) (19), (CO) (16) 

(C=O) 639.0 7.0 (N=C) (36), (C=O) (35) 

(CC=O) 589.3 10.9 (C=O) (23) (CC) (20) (CC=O) (18) (CN=C) (12) 

(CN=C) 458.2 2.3 (CN=C) (55), rock(CH2) (13), (OCC) (10), (CC=O)(10) 

(C-O-CH3) 380.7 4.5 (OCC) (22), (CN=C) (18), (C-O-CH3) (18), (CC) (10) 

(CCN) 312.9 10.9 (CCN) (35), (C-O-CH3) (30), (CC=O) (21) 

(OCC) 230.9 6.1 (OCC) (37), (C-O-CH3) (25), (CCN) (16), (CO) (13) 

(CO) 166.8 5.3 (CO) (62), CH3 (10) 

CH3 121.6 0.6 CH3 (89), (CO) (10) 

(CN) 68.2 9.7 (CN) (86) 

(CC) 36.7 3.2 (CC) (90) 
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), s = symmetric; a = antisymmetric; ν = 

stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = rocking; wag = wagging; twist = 

twisting. See Table S7 for definition of internal coordinates. b Only PED values greater than 10 % are given.  
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Table S9 - Calculated scaled, DFT(B3LYP)/6-311++G(d,p) wavenumbers, IR intensities and 

Potential Energy Distributions (PED) for conformer II of MMAA.
a
 

Approximate  

description  IIR PED
b
 

a(CH3)´ 3089.9 12.4 a(CH3)´ (98) 

(CH7) 3065.4 24.4 (CH7) (92) 

a(CH3)´´ 3057.4 17.5 a(CH3)´´ (100) 

(CH9) 3031.5 3.7 (CH9) (98) 

s(CH3) 2985.3 30.4 s(CH3) (98) 

(CH6) 2921.4 59.4 (CH6) (92) 

(CH8) 2886.0 38.0 (CH8) (98) 

(C=O) 1755.0 339.5 (C=O) (87) 

(N=C) 1694.9 7.0 (N=C) (84), (C5H2) (11) 

2(CH3) 1463.7 8.6 2(CH3) (80), 4(CH3) (10) 

(C5H2) 1462.3 13.4 (C5H2) (80) 

3(CH3) 1451.1 10.0 3(CH3) (93) 

(CH2) 1440.4 3.7 (CH2) (60), 1(CH3) (28) 

1(CH3) 1435.6 14.0 1(CH3) (65), (CH2) (28) 

wag(CH2) 1330.3 14.7 wag(CH2) (84) 

twist(CH2) 1273.4 166.3 twist(CH2) (40), (CO) (23), (CC=O) (10) 

wag(C5H2),twist(CH2) 1209.0 171.7 wag(C5H2) (24), twist(CH2) (23), (CO) (21) 

4(CH3) 1180.6 4.2 4(CH3) (64), wag(C5H2) (13) 

wag(C5H2) 1178.5 21.4 wag(C5H2) (45), twist(CH2) (26), 4(CH3) (11) 

5(CH3) 1145.2 0.9 5(CH3) (92) 

(CH) 1046.3 10.9 (CH) (99) 

(O-CH3) 1027.7 76.4 (O-CH3) (52), rock(CH2) (25) 

(CN) 988.4 9.3 (CN) (64) 

rock(CH2) 977.9 6.3 rock(CH2) (37), (O-CH3) (18), (CC) (15) 

(CO) 843.7 22.0 (CO) (40), (O-CH3) (15), (CC) (10) 

(N=C) 769.3 16.9 (N=C) (37), (CC=O) (14), (C=O) (10) 

(C=O) 648.2 6.7 (C=O) (41), (N=C) (34), rock(CH2) (10) 

(CC) 596.2 10.0 (CC) (25), (CC=O) (21), (CN=C) (14), (C=O) (11), (N=C) (10) 

(CN=C) 438.1 3.8 (CN=C) (40), (OCC) (20), rock(CH2) (10) 

(CC=O) 414.3 2.7 (CN=C) (31), (CC=O) (25), (CC) (11) 

(C-O-CH3) 309.1 19.6 (C-O-CH3) (49), (CCN) (27) 

(OCC) 232.4 3.4 (OCC) (35), (C-O-CH3) (19), (CO) (16), (CCN) (16), (CN) (11) 

(CO) 152.3 7.0 (CO) (54), CH3 (19), (C=O) (10) 

CH3 124.5 1.4 CH3 (79), (CO) (18) 

(CN) 81.2 5.4 (CN) (84) 

(CC) 39.9 3.1 (CC) (95) 
a Wavenumbers (cm-1, scaled by 0.978), calculated intensities (km mol-1), s = symmetric; a = antisymmetric; ν = 

stretching;  = in-plane bending; γ = out-of-plane bending; τ = torsion; rock = rocking; wag = wagging; twist = 

twisting. See Table S7 for definition of internal coordinates. b Only PED values greater than 10 % are given.  
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Table S1 – Experimental and calculated [DFT(B3LYP)/6-311++G(d,p)] bond lengths 

and angles for the three conformers of -pyridil.
a
 

 

 

Experimental 

X-ray 27b 

Caculated [DFT(B3LYP)/6-311++G(d,p)] 

 
 

TTG TCG CCSk 

E / kJ mol-1 
 

0.0 21.0  35.1 

Bond length / pm 

 
   

     

C1-C3   152.1 (4) 154.7    154.5 154.4 

C1=O2 / C3=O4 121.8 (4) / 121.6 (4) 121.0 120.7 / 121.3 121.1 

C1-C5 / C3-C6 147.8 (4) / 149.4 (4) 149.5 150.2 / 149.6 150.7 

C5-N7 / C6-N8 135.3 (4) / 134.7 (4) 133.9 134.0 / 133.9 134.2 

C5=C15 / C6=C16 137.9 (5) / 137.7 (4) 139.6 139.8 / 139.6 139.9 

N7=C9 / N8=C10 134.6 (5) / 133.8 (4) 133.3 132.9 / 133.2 132.8 

C9-C11 / C10-C12 136.2 (6) / 137.7 (5) 139.6 139.9 / 139.6 139.9 

C9-H17 / C10-H21 100.0 (4) / 103.0 (3) 108.6 108.7 / 108.6 108.7 

C11=C13 / C12=C14 137.3 (6) / 138.5 (5) 139.3 138.9 / 139.3 138.9 

C11-H18 / C12-H22   99.0 (4) /   99.0 (3) 108.4    108.4 / 108.4 108.4 

C13-C15 / C14-C16 140.2 (6) / 139.5 (5) 139.0 139.3 / 139.0 139.3 

C13-H19 / C14-H23   96.0 (4) / 100.0 (3) 108.4    108.4 / 108.4 108.4 

C15-H20 / C16-H24 105.0 (3) / 102.0 (3) 108.3 108.2 / 108.3 108.1 

     

Bond angle /º     

     

O2=C1-C3 / C1-C3=O4 118.7 (3) / 118.8 (3) 119.3 116.2 / 119.7 117.8 

O2=C1-C5 / O4=C3-C6 124.0 (3) / 123.6 (3) 123.6 124.3 / 123.1 123.2 

C3-C1-C5 / C1-C3-C6 117.1 (3) / 117.4 (3) 117.0 119.4 / 117.0 118.9 

C1-C5-N7 / C3-C6-N8 114.5 (3) / 114.7 (3) 115.8 116.1 / 115.7 115.2 

C1-C5=C15 / C3-C6=C16 120.9 (3) / 120.5 (3) 120.5 123.0 / 120.5 122.0 

N7-C5=C15 / N8-C6=C16 124.6 (3) / 124.7 (3) 123.7 123.0 / 123.7 122.8 

C5-N7=C9 / C6-N8=C10 116.3 (3) / 117.0 (3) 117.7 117.8 / 117.6 118.0 

N7=C9-C11 / N8=C10-C12 123.7 (3) / 122.4 (3) 123.1 123.5 / 123.1 123.5 

N7=C9-H17 / N8=C10-H21 112.0 (2) / 114.0 (2) 116.3 116.2 / 116.3 116.2 

C11-C9-H17 / C12-C10-H21   124.0 (2) 120.6 120.3 / 120.6 120.4 

C9-C11=C13 / C10-C12=C14 119.1 (4) / 120.1 (3) 118.8 118.4 / 118.8 118.4 

C9-C11-H18 / C10-C12-H22 120.0 (2) / 122.0 (2) 120.1 120.2 / 120.1 120.2 

C13=C11-H18 / C14=C12-H22 120.0 (2) / 117.0 (2) 121.2 121.3 / 121.2 121.4 

C11=C13-C15 / C12=C14-C16 119.8 (4) / 118.5 (3) 118.7 118.6 / 118.7 118.8 

C11=C13-H19 / C12=C14-H23 125.0 (2) / 126.0 (2) 120.7 120.9 / 120.7 120.9 

C15-C13-H19 / C16-C14-H23   115.0 (2) 120.7 120.5 / 120.6 120.3 

C5=C15-C13 / C6=C16-C14 116.6 (3) / 117.4 (3) 118.1 118.6 / 118.1 118.5 

C5=C15-H20 / C6=C16-H24 119.0 (2) / 123.0 (2) 119.4 120.8 / 119.6 120.8 

C13-C15-H20 / C14-C16-H24 124.0 (2) / 119.0 (2) 122.5 120.6 / 122.4 120.6 

     

Dihedral angle /º     

     

O2=C1-C3=O4         82.0    82.3     102.1 118.3 

O2=C1-C3-C6 / C5-C1-C3=O4        -97.6 /  -97.4  -93.6   -73.1 /  -73.4 -58.2 

C5-C1-C3-C6         86.5    90.5     111.4 125.2 

O2=C1-C5-N7 / O4=C3-C6-N8      -179.0 / -179.1  180.0     6.0 /  164.7    5.2 

O2=C1-C5=C15 / O4=C3-C6=C16           1.3 /      1.5      0.2   -174.9 /  -13.6        -176.5 

C3-C1-C5-N7 / C1-C3-C6-N8          -3.3 /     -3.1    -4.3   -178.9 /  -20.3        -178.5 

C3-C1-C5=C15 / C1-C3-C6=C16       176.9 /  177.5  176.0       0.3 /  161.5  -0.2 

C1-C5-N7=C9 / C3-C6-N8=C10      -178.6 / -179.4 -179.8    179.1 / -178.4         178.7 

C15=C5-N7=C9 / C16=C6-N8=C10           1.1 /    0.1     -0.1       -0.1 /    -0.2   0.3 

C1-C5=C15-C13 / C3-C6=C16-C14       179.0 /  179.5   179.8 -179.2 / 179.0        -178.6 

C1-C5=C15-H20 / C3-C6=C16-H24         -0.2 /      4.1     -0.2      1.8 /    -1.2    2.8 

N7-C5=C15-C13 / N8-C6=C16-C14         -0.7 /      0.1      0.1       -0.1 /     0.9  -0.4 

N7-C5=C15-H20 / N8-C6=C16-H24     -179.9 / -175.3   180.0 -179.1 /-179.3        -179.0 
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C5-N7=C9-C11 / C6-N8=C10-C12         -0.5 /    0.1      0.0        0.1 /    -0.6  -0.1 

C5-N7=C9-H17 / C6-N8=C10-H21     -174.3 / -175.7 -179.9 -179.8 / 179.7         180.0 

N7=C9-C11=C13 / N8=C10-C12=C14         -0.5 /     -0.4      0.0     0.0 /     0.7  -0.1 

N7=C9-C11-H18 / N8=C10-C12-H22     -178.7 /   179.3 -180.0   179.9 / -179.2         179.9 

H17-C9-C11=C13 / H21-C10-C12=C14      172.5 /   174.9  180.0   179.9 / -179.6         179.8 

H17-C9-C11-H18 / H21-C10-C12-H22         -5.7 /     -5.4      0.0       -0.1 /     0.5   -0.2 

C9-C11=C13-C15 / C10-C12=C14-C16          1.0 /      0.6      0.0     -0.1 /    0.0    0.0 

C9-C11=C13-H19 / C10-C12=C14-H23     -179.5 / -179.3 -180.0   179.7 / 180.0 179.8 

H18-C11=C13-C15 / H22-C12=C14-C16      179.2 / -179.1  179.9   179.9 / 180.0        -180.0 

H18-C11=C13-H19 / H22-C12-C14-H23         -1.3 /      1.0      0.0     -0.2 /     0.0   -0.2 

C11=C13-C15=C5 / C12=C14-C16=C6         -0.5 /     -0.5      0.0        0.2 /    -0.8    0.2 

C11=C13-C15-H20 / C12=C14-C16-H24      178.7 /  175.2 -180.0   179.2 / 179.5          178.8 

H19-C13-C15=C5 / H23-C14-C16=C6     -180.0 /  179.5  180.0 -179.7 /  179.2        -179.6 

H19-C13-C15-H20 / H23-C14-C16-H24         -0.8 /     -4.9      0.0     -0.7 /     -0.5  -1.0 
     

a
 See Figure 1 for atom numbering. 

b
 In the crystalline state, the molecules adopt a 

conformation similar to that of the TTG conformer (in particular in what concerns the  

O=C-C=O dihedral angle and relative arrangements of the pyridyl and carbonyl groups), but 

with the C2 symmetry broken.
27
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Table S2 – Definition of internal symmetry coordinates used in the normal mode 

analysis of -pyridil. 

  Definitiona                  Symmetryb       Approximate  

                          description 
 

S1  (C1-C3)                    A   (C-C) 

S2  (C1=O2)+(C3=O4)                 A   (C=O) s 

S3  (C1=O2)-(C3=O4)                B   (C=O) as 

S4  (C1-C5)+(C3-C6)                  A   (C-C) s  

S5  (C1-C5)-(C3-C6)                  B   (C-C) as 

S6  (C15-C13)+(C13-C11)+(C5-C15)+(C9-N7)+(N7-C5)+(C11-C9)+     A   (ring 1) s 

  +(C16-C14)+(C14-C12)+(C6-C16)+(C10-N8)+(N8-C6)+(C12-C10) 

S7  (C15-C13)+(C13-C11)+(C5-C15)+(C9-N7)+(N7-C5)+(C11-C9)-     B   (ring 1) as 

  -(C16-C14)-(C14-C12)-(C6-C16)-(C10-N8)-(N8-C6)-(C12-C10) 

S8  (C15-C13)-(C13-C11)+(C5-C15)-(C9-N7)+(N7-C5)-(C11-C9)+           A   (ring 2) s 

  +(C16-C14)-(C14-C12)+(C6-C16)-(C10-N8)+(N8-C6)-(C12-C10) 

S9  (C15-C13)-(C13-C11)+(C5-C15)-(C9-N7)+(N7-C5)-(C11-C9)-     B   (ring 2) as 

  -(C16-C14)+(C14-C12)-(C6-C16)+(C10-N8)-(N8-C6)+(C12-C10) 

S10  2(C15-C13)-(C13-C11)-(C5-C15)+2(C9-N7)-(N7-C5)-(C11-C9)+     A   (ring 3) s 

  +2(C16-C14)-(C14-C12)-(C6-C16)+2(C10-N8)-(N8-C6)-(C12-C10) 

S11  2(C15-C13)-(C13-C11)-(C5-C15)+2(C9-N7)-(N7-C5)-(C11-C9)-     B   (ring 3) as 

  -2(C16-C14)+(C14-C12)+(C6-C16)-2(C10-N8)+(N8-C6)+(C12-C10) 

S12  (C13-C11)-(C5-C15)+(N7-C5)+(C11-C9)+(C14-C12)-(C6-C16)+     A   (ring 4) s  

   +(N8-C6)-(C12-C10) 

S13  (C13-C11)-(C5-C15)+(N7-C5)+(C11-C9)-(C14-C12)+(C6-C16)-     B   (ring 4) as  

  -(N8-C6)+(C12-C10) 

S14  (C13-C11)+(C5-C15)-(N7-C5)-(C11-C9)+(C14-C12)+(C6-C16)-     A   (ring 5) s 

  -(N8-C6)-(C12-C10) 

S15  (C13-C11)+(C5-C15)-(N7-C5)-(C11-C9)-(C14-C12)-(C6-C16)+     B   (ring 5) as 

  +(N8-C6)+(C12-C10) 

S16  (C13-C11)-(C5-C15)-(N7-C5)+(C11-C9)+(C14-C12)-(C6-C16)-     A    (ring 6) s 

  -(N8-C6)+(C12-C10) 

S17  (C13-C11)-(C5-C15)-(N7-C5)+(C11-C9)-(C14-C12)+(C6-C16)+           B   (ring 6) as  

  +(N8-C6)-(C12-C10) 

S18  (C9-H17)+(C10-H21)                A   (C-H 1) s 

S19  (C9-H17)-(C10-H21)                B   (C-H 1) as 

S20  (C15-H20)+(C16-H24)                A   (C-H 2) s 

S21  (C15-H20)-(C16-H24)                B   (C-H 2) as 

S22  (C11-H18)+(C13-H19)+(C12-H22)+(C14-H23)          A   (C-H 3) s 

S23  (C11-H18)+(C13-H19)-(C12-H22)-(C14-H23)          B   (C-H 3) as 

S24  (C11-H18)-(C13-H19)+(C12-H22)-(C14-H23)          A   (C-H 4) s 

S25  (C11-H18)-(C13-H19)-(C12-H22)+(C14-H23)          B   (C-H 4) as 

S26  (C5-C1=O2)-(C3-C1=O2)+(C6-C3=O4)-(C1-C3=O4)        A   (C=O) s 

S27  (C5-C1=O2)-(C3-C1=O2)-(C6-C3=O4)+(C1-C3=O4)        B   (C=O) as 

S28  2(C5-C1-C3)-(C5-C1-C2)-(C3-C1-C2)+           A   (CCC) s 

  +2(C6-C3-C1)-(C6-C3-C4)-(C1-C3-C4) 

S29  2(C5-C1-C3)-(C5-C1-C2)-(C3-C1-C2)-           B   (CCC) as 

  -2(C6-C3-C1)+(C6-C3-C4)+(C1-C3-C4) 
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S30  (C15-C5-C1)-(N7-C5-C1)+(C16-C6-C3)-(N8-C6-C3)        A   w(ring) s 

S31  (C15-C5-C1)-(N7-C5-C1)-(C16-C6-C3)+(N8-C6-C3)        B   w(ring) as 

S32  4(C15-C5-N7)-2(C15- C5-C1)-2(N7-C5-C1)-2(C13-C15-C5)+(C13-C15-H20)+  A   (ring 1) s 

  +(C5-C15-H20)-2(C11-C13-C15)+(C11-C13-H19)+(C15-C13-H19) +4(C9-C11-C13)- 

  -2(C9-C11-H18)-2(C13-C11-H18)-2(N7-C9-C11)+(N7-C9-H17)+(C11- C9-H17) – 

  -2(C5-N7-C9)+4(C16-C6-N8) -2(C16- C6-C3)-2(N8-C6-C3)-2(C14-C16-C6)+ 

  +(C14-C16-H24)+(C6-C16-H24)-2(C12-C14-C16)+(C12-C14-H23)+(C16-C14-H23)+ 

  +4(C10-C12-C14)-2(C10-C12-H22)-2(C14-C12-H22)-2(N8-C10-C12)+(N8-C10-H21)+ 

  +(C12-C10-H21)-2(C6-N8-C10) 

S33  4(C15-C5-N7)-2(C15- C5-C1)-2(N7-C5-C1)-2(C13-C15-C5)+(C13-C15-H20)+  B   (ring 1) as 

  +(C5-C15-H20)-2(C11-C13-C15)+(C11-C13-H19)+ (C15-C13-H19) +4(C9-C11-C13)- 

  -2(C9-C11-H18)-2(C13-C11-H18)-2(N7-C9-C11)+(N7-C9-H17)+(C11- C9-H17) – 

  -2(C5-N7-C9)-4(C16-C6-N8)+2(C16- C6-C3)+2(N8-C6-C3)+2(C14-C16-C6)- 

  -(C14-C16-H24)-(C6-C16-H24)+2(C12-C14-C16)-(C12-C14-H23)-(C16-C14-H23)- 

  -4(C10-C12-C14)+2(C10-C12-H22)+2(C14-C12-H22)+2(N8-C10-C12)-(N8-C10-H21)- 

  -(C12-C10-H21)+2(C6-N8-C10) 

S34  2(C15-C5-N7)-(C15- C5-C1)-(N7-C5-C1)-2(C13-C15-C5)+(C13-C15-H20)+  A   (ring 2) s 

  +(C5-C15-H20)+2(C11-C13-C15)-(C11-C13-H19)- (C15-C13-H19) -2(C9-C11-C13)+ 

  +(C9-C11-H18)+(C13-C11-H18)+2(N7-C9-C11)-(N7-C9-H17)-(C11- C9-H17) – 

  -2(C5-N7-C9)+2(C16-C6-N8) -(C16- C6-C3)-(N8-C6-C3)-2(C14-C16-C6)+ 

  +(C14-C16-H24)+(C6-C16-H24)+2(C12-C14-C16)-(C12-C14-H23)-(C16-C14-H23)- 

  -2(C10-C12-C14)+(C10-C12-H22)+(C14-C12-H22)+2(N8-C10-C12)-(N8-C10-H21)- 

  -(C12-C10-H21)-2(C6-N8-C10) 

S35  2(C15-C5-N7)-(C15- C5-C1)-(N7-C5-C1)-2(C13-C15-C5)+(C13-C15-H20)+  B   (ring 2) as 

  +(C5-C15-H20)+2(C11-C13-C15)-(C11-C13-H19)- (C15-C13-H19) -2(C9-C11-C13)+ 

  +(C9-C11-H18)+(C13-C11-H18)+2(N7-C9-C11)-(N7-C9-H17)-(C11- C9-H17) – 

  -2(C5-N7-C9)-2(C16-C6-N8)+(C16- C6-C3)+(N8-C6-C3)+2(C14-C16-C6)- 

  -(C14-C16-H24)-(C6-C16-H24)-2(C12-C14-C16)+(C12-C14-H23)+(C16-C14-H23)+ 

+2(C10-C12-C14)-(C10-C12-H22)-(C14-C12-H22)-2(N8-C10-C12)+(N8-C10-H21)+ 

+(C12-C10-H21)+2(C6-N8-C10) 

S36  2(C13-C15-C5)-(C13-C15-H20)-(C5-C15-H20)-2(C11-C13-C15)+(C11-C13-H19) + A   (ring 3) s 

  +(C15-C13-H19)+2(N7-C9-C11)-(N7-C9-H17)-(C11- C9-H17) –2(C5-N7-C9)+ 

  +2(C14-C16-C6)-(C14-C16-H24)-(C6-C16-H24)-2(C12-C14-C16)+(C12-C14-H23)+  

  +(C16-C14-H23)+2(N8-C10-C12)-(N8-C10-H21)-(C12-C10-H21)-2(C6-N8-C10) 

S37  2(C13-C15-C5)-(C13-C15-H20)-(C5-C15-H20)-2(C11-C13-C15)+(C11-C13-H19) + B   (ring 3) as 

  +(C15-C13-H19)+2(N7-C9-C11)-(N7-C9-H17)-(C11- C9-H17) –2(C5-N7-C9)- 

  -2(C14-C16-C6)+(C14-C16-H24)+(C6-C16-H24)+2(C12-C14-C16)-(C12-C14-H23)-  

  -(C16-C14-H23)-2(N8-C10-C12)+(N8-C10-H21)+(C12-C10-H21)+2(C6-N8-C10) 

S38  (C5-C15-H20)-(C13-C15-H20)+(C6-C16-H24)-(C14-C16-H24)      A   (C-H 1) s 

S39  (C5-C15-H20)-(C13-C15-H20)-(C6-C16-H24)+(C14-C16-H24)      B   (C-H 1) as 

S40  (C15-C13-H19)-(C11-C13-H19)-(C13-C11-H18)+(C9-C11-H18)+      A   (C-H 2) s 

  +(C16-C14-H23)-(C12-C14-H23)-(C14-C12-H22)+(C10-C12-H22) 

S41  (C15-C13-H19)-(C11-C13-H19)-(C13-C11-H18)+(C9-C11-H18)-      B   (C-H 2) as 

  -(C16-C14-H23)+(C12-C14-H23)+(C14-C12-H22)-(C10-C12-H22) 

S42  (C15-C13-H19)-(C11-C13-H19)+(C13-C11-H18)-(C9-C11-H18)+          A   (C-H 3) s 

  +(C16-C14-H23)-(C12-C14-H23)+(C14-C12-H22)-(C10-C12-H22) 

S43  (C15-C13-H19)-(C11-C13-H19)+(C13-C11-H18)-(C9-C11-H18)-      B   (C-H 3) as 

  -(C16-C14-H23)+(C12-C14-H23)-(C14-C12-H22)+(C10-C12-H22) 

S44  (C11-C9-H17)-(N7-C9-H17)+(C12-C10-H21)-(N8-C10-H21)       A   (C-H 4) s 

S45  (C11-C9-H17)-(N7-C9-H17)-(C12-C10-H21)+(N8-C10-H21)       B   (C-H 4) as 

S46  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)+   A   (ring 1) s 

  +(C5-C15-C13-C11)+(C5-C15-C13-H19)+(H20-C15-C13-C11)+(H20-C15-C13-H19)+ 

  +(C15-C13-C11-C9)+(C15-C13-C11-H18)+(H19-C13-C11-C9)+(H19-C13-C11-H18)+  

  +(C13-C11-C9-N7)+(C13-C11-C9-H17)+(H18-C11-C9-N7)+(H18-C11-C9-H17)+ 

  +(C3-C6-C16-C14)+(C3-C6-C16-H24)+(N8-C6-C16-C14)+(N8-C6-C16-H24)+  
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+(C6-C16-C14-C12)+(C6-C16-C14-H23)+(H24-C16-C14-C12)+( H24-C16-C14-H23)+ 

  +(C16-C14-C12-C10) +(C16-C14-C12-H22)+(H23-C14-C12-C10)+( H23-C14-C12-H22)+ 

  +(C14-C12-C10-N8)+(C14-C12-C10-H21)+(H22-C12-C10-N8)+( H22-C12-C10-H21) 

S47  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)+   B   (ring 1) as 

  +(C5-C15-C13-C11)+(C5-C15-C13-H19)+(H20-C15-C13-C11)+(H20-C15-C13-H19)+ 

  +(C15-C13-C11-C9)+(C15-C13-C11-H18)+(H19-C13-C11-C9)+(H19-C13-C11-H18)+  

  +(C13-C11-C9-N7)+(C13-C11-C9-H17)+(H18-C11-C9-N7)+(H18-C11-C9-H17)- 

  -(C3-C6-C16-C14)-(C3-C6-C16-H24)-(N8-C6-C16-C14)-(N8-C6-C16-H24)- 

  -(C6-C16-C14-C12)-(C6-C16-C14-H23)-(H24-C16-C14-C12)-( H24-C16-C14-H23)- 

  -(C16-C14-C12-C10) -(C16-C14-C12-H22)-(H23-C14-C12-C10)-( H23-C14-C12-H22)- 

  -(C14-C12-C10-N8)-(C14-C12-C10-H21)-(H22-C12-C10-N8)-( H22-C12-C10-H21) 

S48  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)+   A   (ring 2) s 

  +(C5-C15-C13-C11)+(C5-C15-C13-H19)+(H20-C15-C13-C11)+(H20-C15-C13-H19)- 

  -(C15-C13-C11-C9)-(C15-C13-C11-H18)-(H19-C13-C11-C9)-(H19-C13-C11-H18)-  

  -(C13-C11-C9-N7)-(C13-C11-C9-H17)-(H18-C11-C9-N7)-(H18-C11-C9-H17)+ 

  +(C3-C6-C16-C14)+(C3-C6-C16-H24)+(N8-C6-C16-C14)+(N8-C6-C16-H24)+ 

  +(C6-C16-C14-C12)+(C6-C16-C14-H23)+(H24-C16-C14-C12)+( H24-C16-C14-H23)- 

  -(C16-C14-C12-C10) -(C16-C14-C12-H22)-(H23-C14-C12-C10)-( H23-C14-C12-H22)- 

  -(C14-C12-C10-N8)-(C14-C12-C10-H21)-(H22-C12-C10-N8)-( H22-C12-C10-H21) 

S49  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)+   B   (ring 2) as 

  +(C5-C15-C13-C11)+(C5-C15-C13-H19)+(H20-C15-C13-C11)+(H20-C15-C13-H19)- 

  -(C15-C13-C11-C9)-(C15-C13-C11-H18)-(H19-C13-C11-C9)-(H19-C13-C11-H18)-  

  -(C13-C11-C9-N7)-(C13-C11-C9-H17)-(H18-C11-C9-N7)-(H18-C11-C9-H17)- 

  -(C3-C6-C16-C14)-(C3-C6-C16-H24)-(N8-C6-C16-C14)-(N8-C6-C16-H24)- 

  -(C6-C16-C14-C12)-(C6-C16-C14-H23)-(H24-C16-C14-C12)-( H24-C16-C14-H23)+ 

  +(C16-C14-C12-C10) +(C16-C14-C12-H22)+(H23-C14-C12-C10)+( H23-C14-C12-H22)+ 

  +(C14-C12-C10-N8)+(C14-C12-C10-H21)+(H22-C12-C10-N8)+( H22-C12-C10-H21) 

S50  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)-   A   (ring 3) s 

  -(C5-C15-C13-C11)-(C5-C15-C13-H19)-(H20-C15-C13-C11)-(H20-C15-C13-H19)+ 

  +(C15-C13-C11-C9)+(C15-C13-C11-H18)+(H19-C13-C11-C9)+(H19-C13-C11-H18)-  

  -(C13-C11-C9-N7)-(C13-C11-C9-H17)-(H18-C11-C9-N7)-(H18-C11-C9-H17)+ 

  +(C3-C6-C16-C14)+(C3-C6-C16-H24)+(N8-C6-C16-C14)+(N8-C6-C16-H24)- 

  -(C6-C16-C14-C12)-(C6-C16-C14-H23)-(H24-C16-C14-C12)-( H24-C16-C14-H23)+ 

  +(C16-C14-C12-C10)+(C16-C14-C12-H22)+(H23-C14-C12-C10)+( H23-C14-C12-H22)- 

  -(C14-C12-C10-N8)-(C14-C12-C10-H21)-(H22-C12-C10-N8)-( H22-C12-C10-H21) 

S51  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)-   B   (ring 3) as 

  -(C5-C15-C13-C11)-(C5-C15-C13-H19)-(H20-C15-C13-C11)-(H20-C15-C13-H19)+ 

  +(C15-C13-C11-C9)+(C15-C13-C11-H18)+(H19-C13-C11-C9)+(H19-C13-C11-H18)-  

  -(C13-C11-C9-N7)-(C13-C11-C9-H17)-(H18-C11-C9-N7)-(H18-C11-C9-H17)- 

  -(C3-C6-C16-C14)-(C3-C6-C16-H24)-(N8-C6-C16-C14)-(N8-C6-C16-H24)+ 

  +(C6-C16-C14-C12)+(C6-C16-C14-H23)+(H24-C16-C14-C12)+( H24-C16-C14-H23)- 

  -(C16-C14-C12-C10)-(C16-C14-C12-H22)-(H23-C14-C12-C10)-( H23-C14-C12-H22)+ 

  +(C14-C12-C10-N8)+(C14-C12-C10-H21)+(H22-C12-C10-N8)+( H22-C12-C10-H21) 

S52  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)-   A   (ring 4) s 

  -(C5-C15-C13-C11)-(C5-C15-C13-H19)-(H20-C15-C13-C11)-(H20-C15-C13-H19)- 

  -(C15-C13-C11-C9)-(C15-C13-C11-H18)-(H19-C13-C11-C9)-(H19-C13-C11-H18)+  

  +(C13-C11-C9-N7)+(C13-C11-C9-H17)+(H18-C11-C9-N7)+(H18-C11-C9-H17)+ 

  +(C3-C6-C16-C14)+(C3-C6-C16-H24)+(N8-C6-C16-C14)+(N8-C6-C16-H24)- 

  -(C6-C16-C14-C12)-(C6-C16-C14-H23)-(H24-C16-C14-C12)-( H24-C16-C14-H23)- 

  -(C16-C14-C12-C10)-(C16-C14-C12-H22)-(H23-C14-C12-C10)-( H23-C14-C12-H22)+ 

  +(C14-C12-C10-N8)+(C14-C12-C10-H21)+(H22-C12-C10-N8)+( H22-C12-C10-H21) 

S53  (C1-C5-C15-C13)+(C1-C5-C15-H20)+(N7-C5-C15-C13)+(N7-C5-C15-H20)-   B   (ring 4) as 

  -(C5-C15-C13-C11)-(C5-C15-C13-H19)-(H20-C15-C13-C11)-(H20-C15-C13-H19)- 

  -(C15-C13-C11-C9)-(C15-C13-C11-H18)-(H19-C13-C11-C9)-(H19-C13-C11-H18)+  

  +(C13-C11-C9-N7)+(C13-C11-C9-H17)+(H18-C11-C9-N7)+(H18-C11-C9-H17)- 

  -(C3-C6-C16-C14)-(C3-C6-C16-H24)-(N8-C6-C16-C14)-(N8-C6-C16-H24)+ 

  +(C6-C16-C14-C12)+(C6-C16-C14-H23)+(H24-C16-C14-C12)+( H24-C16-C14-H23)+ 

  +(C16-C14-C12-C10)+(C16-C14-C12-H22)+(H23-C14-C12-C10)+( H23-C14-C12-H22)- 

  -(C14-C12-C10-N8)-(C14-C12-C10-H21)-(H22-C12-C10-N8)-( H22-C12-C10-H21) 
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S54  (O2=C1-C3=O4)+(O2=C1-C3-C6)+(C5-C1-C3-C6)+( C5-C1-C3=O4)     A   (C-C) 

S55  (N7-C5-C1-C3)+(C15-C5-C1-C3)+(N8-C6-C3-C1)+(C16-C6-C3-C1)+    A   (C-C) s 

  +(N7-C5-C1=O2)+(C15-C5-C1=O2)+(N8-C6-C3=O4)+(C16-C6-C3=O4) 

S56  (N7-C5-C1-C3)+(C15-C5-C1-C3)-(N8-C6-C3-C1)-(C16-C6-C3-C1)+    B   (C-C) as 

  +(N7-C5-C1=O2)+(C15-C5-C1=O2)-(N8-C6-C3=O4)-(C16-C6-C3=O4) 

S57  (O2=C3-C1-C5)+(O4=C1-C3-C6)             A   (C=O) s 

S58  (O2=C3-C1-C5)-(O4=C1-C3-C6)             B   (C=O) as 

S59  (H17-N7-C9-C11)+(H18-C9-C11-C13)+(H19-C11-C13-C15)+(H20-C13-C15-C5)+  A   (C-H 1) s 

  +(H21-N8-C10-C12)+(H22-C10-C12-C14)+(H23-C12-C14-C16)+(H24-C14-C16-C6) 

S60  (H17-N7-C9-C11)+(H18-C9-C11-C13)+(H19-C11-C13-C15)+(H20-C13-C15-C5)-  B   (C-H 1) as 

  -(H21-N8-C10-C12)-(H22-C10-C12-C14)-(H23-C12-C14-C16)-(H24-C14-C16-C6) 

S61  (H17-N7-C9-C11)+(H18-C9-C11-C13)-(H19-C11-C13-C15)-(H20-C13-C15-C5)+  A   (C-H 2) s 

  +(H21-N8-C10-C12)+(H22-C10-C12-C14)-(H23-C12-C14-C16)-(H24-C14-C16-C6) 

S62  (H17-N7-C9-C11)+(H18-C9-C11-C13)-(H19-C11-C13-C15)-(H20-C13-C15-C5)-  B   (C-H 2) as 

  -(H21-N8-C10-C12)-(H22-C10-C12-C14)+(H23-C12-C14-C16)+(H24-C14-C16-C6) 

S63  (H17-N7-C9-C11)-(H18-C9-C11-C13)+(H19-C11-C13-C15)-(H20-C13-C15-C5)+  A   (C-H 3) s 

  +(H21-N8-C10-C12)-(H22-C10-C12-C14)+(H23-C12-C14-C16)-(H24-C14-C16-C6) 

S64  (H17-N7-C9-C11)-(H18-C9-C11-C13)+(H19-C11-C13-C15)-(H20-C13-C15-C5)-  B   (C-H 3) as 

  -(H21-N8-C10-C12)+(H22-C10-C12-C14)-(H23-C12-C14-C16)+(H24-C14-C16-C6) 

S65  (H17-N7-C9-C11)-(H18-C9-C11-C13)-(H19-C11-C13-C15)+(H20-C13-C15-C5)+  A   (C-H 4) s 

  +(H21-N8-C10-C12)-(H22-C10-C12-C14)-(H23-C12-C14-C16)+(H24-C14-C16-C6) 

S66  (H17-N7-C9-C11)-(H18-C9-C11-C13)-(H19-C11-C13-C15)+(H20-C13-C15-C5)-  B   (C-H 4) as 

  -(H21-N8-C10-C12)+(H22-C10-C12-C14)+(H23-C12-C14-C16)-(H24-C14-C16-C6) 

 

a
 Normalization factors not shown. , bond stretching, , bending, , rocking, w, wagging, , torsion, s, 

symmetric, as, asymmetric. See Figure 1 for atom numbering. 
b
 C2 symmetry point group.  
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Table S3 - Calculated [scaled, DFT(B3LYP)/6-311++G(d,p)] wavenumbers, IR intensities and Potential Energy Distributions (PED) 

for the most stable conformer of -pyridil.a 

Approximate Descriptionb Sym Wavenumber Intensity PEDc 

(C-H 2) s A 3134.9 0.9 S20(88), S22(10) 

(C-H 2) as B 3134.8 6.4 S21(89) 

(C-H 3) s A 3123.2 8.5 S22(78) 

(C-H 3) as B 3123.1 16.0 S23(78) 

(C-H 4) as B 3106.0 12.6 S25(81), S23(10) 

(C-H 4) s A 3106.0 2.4 S24(81), S22(10) 

(C-H 1) s A 3087.1 11.3 S18(92) 

(C-H 1) as B 3087.0 14.6 S19(92) 

(C=O) s A 1733.8 225.8 S2(92) 

(C=O) as B 1723.5 169.5 S3(93)  

(ring 3) as B 1585.2 9.2 S11(40), S13(26) 

(ring 3) s A 1585.2 22.3 S10(37), S12(28) 

(ring 4) s A 1577.1 5.3 S12(41), S10(32), S40(10) 

(ring 4) as B 1575.6 7.1 S13(44), S11(29), S41(11) 

(ring 6) s; (C-H 4) s A 1463.6 2.0 S16(40), S44(35), S38(17) 

(C-H 4) as; (ring 6) as B 1462.6 1.6 S45(44), S17(40), S39(17) 

(C-H 3) s A 1434.3 0.7 S42(51), S8(26), S14(15) 

(C-H 3) as B 1431.7 13.2 S43(54), S9(27), S15(14)  

(ring 5) s A 1307.1 19.7 S14(26), S4(14) 

(ring 5) as B 1291.6 2.4 S15(39), S45(26)  

(C-H 4) s A 1282.1 6.1 S44(37), S8(15), S10(12), S38(10) 

(ring 2) as B 1277.8 8.7 S9(35), S45(17), S11(13), S15(11) 

(ring 2) s; (ring 5) s; (C-C) s A 1255.5 28.4 S8(31), S14(27), S4(16)  

(C-C) as B 1218.7 131.2 S5(31), S9(19), S35(15), S7(12) 

(C-H 2) s A 1145.7 1.0 S40(62), S38(13) 

(C-H 2) as B 1145.2 0.9 S41(61), S39(15), S15(10) 

(ring 2) s; (C-H 3) s; (C-H 1) s A 1088.6 1.3 S8(33), S42(28) ,S38(18), S14(12) 

(ring 2) as; (C-H 3) as; (C-H 1) as B 1087.8 16.3 S9(30), S43(26), S39(18), S15(11) 

(ring 6) s; (C-C) A 1052.3 4.4 S16(37), S1(18), S38(14), S26(11) 

(ring 6) as B 1037.6 6.3 S17(65), S7(16), S39(12) 

(ring 6) s; (ring 1) s A 1030.8 2.0 S16(31), S6(29), S34(23) 

(C-H 3) as B 996.6 0.1 S64(56), S51(28) 

(C-H 3) s A 996.1 0.1 S63(56), S50(29) 

(ring 1) s; (ring 2) s A 992.2 0.1 S6(49), S34(48) 

(ring 2) as; (ring 1) as B 991.9 19.9 S35(52), S7(45) 

(C-H 4) as B 966.1 1.2 S66(68), S47(14) 

(C-H 4) s A 965.8 0.2 S65(68), S46(12)  

(C-H 2) as B 906.8 16.5 S62(79)  

(C-H 2) s A 904.8 0.2 S61(82) 

Skeletal B 891.0 80.3 S27(23), S53(13), S7(12), S58(12), S47(12), S5(10) 

(ring 1) s; (C=O) s A 816.2 3.5 S46(37), S57(27), S52(17), S59(10) 

(ring 1) as; (C=O) as B 791.2 21.3 S47(33), S60(22), S53(11)  

(C-H 1) s A 742.5 36.9 S59(63), S50(20) 

(C-H 1) as; (ring 3) as B 739.6 28.8 S60(50), S51(29), S64(11), S49(10) 

(ring 1) s A 732.4 0.4 S32(43), S4(13) 

(ring 1) as B 707.2 11.7 S33(22), S51(17), S58(16), S64(12)  

(ring 3) s; (C=O) s A 706.7 18.2 S50(26), S57(22), S63(17), S59(10) 

Skeletal B 653.9 98.6 S27(17), S33(15), S37(13), S29(12), S31(11)  

(ring 3) s A 617.9 0.2 S36(85) 

(ring 3) as B 614.2 39.9 S37(75)  

Skeletal A 474.8 4.4 S52(23), S32(20), S4(17), S30(11), S28(11), S58(11) 

(ring 4) as B 472.0 11.3 S53(29), S33(17), S5(15),  S29(13), S31(10)  

(ring 2) s; (ring 4) s A 422.5 1.9 S48(27), S52(27), S61(23), S50(11) 

(ring 2) as B 422.1 9.2 S49(29), S62(20), S53(19), S51(10)  

(ring 4) s; (ring 2) s A 399.4 1.5 S52(36), S48(29), S65(21) 

(ring 4) as; (ring 2) as B 395.4 0.9 S53(39), S49(26), S66(21) 

(C=O) s A 325.9 4.7 S26(51), S1(32) 

(C=O) as; w(ring) as B 263.8 27.4 S27(31), S31(29), S58(13) 

w(ring) s A 258.6 3.2 S30(42), S4(11) 

(ring 1) s A 148.5 0.1 S46(61), S48(16), S54(14) 

(ring 1) as B 145.8 1.7 S47(61), S49(18), S31(11) 

(CCC) as B 120.8 0.1 S29(35), S31(24), S56(21) 

(CCC) s A 111.3 0.1 S28(52), S30(24) 

(C-C) s A 52.4 0.4 S55(79)  

(C-C) as B 41.6 4.1 S56(73), S29(12)  

(C-C) A 24.0 3.5 S54(73) 
a Frequencies (cm-1, scaled by 0.978), calculated intensities in km mol-1. , bond stretching; , bending; w, wagging; , rocking; , 

torsion; s, symmetric; as, asymmetric. See Table S2 for definition of symmetry coordinates. b Skeletal approximate descriptions 

corresponds to vibrations with more than three PED values identical within 15 units. c Only PED values greater than 10 % are given.  
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 Table S4 – Calculated geometries and infrared spectra (non-scaled) for observed Hückel pyridine 

containing photoproducts (2C and 3A forms) 

 

2C 

 

 
 

 

 

 

 

Optimized Geometry (Angstroms) 

----------------------------------------- 

            X           Y           Z 

----------------------------------------- 

C       -0.344783   -0.631278    1.211377 

O       -0.466592   -0.406100    2.395152 

C        1.063569   -0.889445    0.631516 

O        1.504919   -2.021785    0.667788 

C        1.817136    0.270597    0.158600 

C        3.080974    0.371448   -0.275958 

C        2.277918    2.594299    0.304747 

H        2.311245    3.439999    0.975452 

H        3.824629   -0.405607   -0.365198 

C        3.231443    1.820333   -0.612440 

H        4.140433    2.267811   -0.998281 

N        1.186152    1.594266    0.101452 

C        1.844707    2.329009   -1.020431 

H        1.392642    2.878004   -1.833067 

C       -1.505267   -0.753113    0.275428 

C       -2.813987   -0.688762    0.758308 

C       -3.855827   -0.798472   -0.154639 

H       -2.982764   -0.557558    1.819763 

C       -2.206637   -1.007320   -1.885466 

H       -4.887413   -0.758301    0.176296 

H       -1.933566   -1.131945   -2.929248 

C       -3.548266   -0.961048   -1.503742 

N       -1.198874   -0.907873   -1.019014 

H       -4.328640   -1.051563   -2.250093 

----------------------------------------- 

 

 

 

 

 

 
 

 

IR Spectrum (cm
-1
; km mol

-1
) 

------------------------
Frequency Intensity 

------------------------ 
  22.0    3.86 

  45.1    3.51 

  56.6    1.52 

 106.9    0.50 

 121.5    0.03 

 147.8    0.31 

 152.6    0.38 

 265.4   25.66 

 275.1    3.36 

 337.2    4.82 

 405.9    1.60 

 430.0    2.42 

 458.6    9.65 

 470.9    1.55 

 510.5    5.41 

 585.3    0.69 

 630.2   16.77 

 684.7  104.62 

 695.7   20.81 

 721.1    5.54 

 727.4   10.13 

 743.4    6.27 

 756.3   36.82 

 769.7   34.47 

 787.4    4.38 

 815.8   33.65 

 864.4   29.56 

 874.3   12.75 

 890.5   12.95 

 894.3   66.48 

 924.2    1.22 

 966.2   27.96 

 971.7    0.13 

 986.4    0.81 

 998.3    8.24 

1014.0   11.17 

1017.0    0.10 

1055.8   23.24 

1058.8    5.56 

1077.6   12.99 

1094.1    9.85 

1112.1    9.32 

1146.1    2.45 

1170.6    1.23 

1200.4   28.00 

1231.4  128.01 

1277.5    5.39 

1283.6   23.40 

1309.3    7.88 

1328.7   12.64 

1421.5    4.48 

1464.6    6.84 

1495.6    1.80 

1611.4    6.99 

1620.2   15.51 

1635.6  196.29 

1731.4  179.27 

1764.7  189.55 

3155.3   13.48 

3175.4    7.70 

3176.1   18.07 

3193.1   12.51 

3204.8    3.85 

3210.0    2.96 

3229.7    5.79 

3250.1    0.08 

------------------------  
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3A 

 

 

 
 
 

 

 

 

 

Optimized Geometry (Angstroms) 
----------------------------------------- 

             X           Y           Z 

----------------------------------------- 

C        3.959311   -0.296172   -0.441812 

C       -0.642976    1.333131   -0.175415 

O       -0.691422    2.334095   -0.853323 

C        0.605979    1.067614    0.695425 

O        0.706414    1.591529    1.783823 

C        2.991201   -0.121503    0.727182 

H        3.317346    0.191984    1.708376 

C        1.676287    0.239756    0.102398 

H        4.964982    0.033563   -0.655158 

C        3.359740   -1.480633    0.135941 

C        2.848950   -0.994822   -1.214211 

N        1.583290   -0.284076   -1.066834 

H        3.727413   -2.412729    0.538029 

H        3.035380   -1.535261   -2.131335 

C       -1.762934    0.349169   -0.069450 

C       -2.943925    0.538146   -0.789923 

C       -3.950501   -0.410912   -0.656943 

H       -3.045480    1.407820   -1.426854 

C       -2.518910   -1.596916    0.861425 

H       -4.884159   -0.305635   -1.197639 

H       -2.321095   -2.433293    1.525229 

C       -3.736025   -1.499787    0.185025 

N       -1.545837   -0.694643    0.740936 

H       -4.493681   -2.262840    0.318789 

----------------------------------------- 

 

 

 

 

 

 

 

 

 

 
IR Spectrum (cm

-1
; km mol

-1
) 

------------------------ 

Frequency Intensity 

------------------------ 

  25.1    3.82 

  43.7    4.90 

  55.4    0.68 

 109.8    0.48 

 122.4    0.25 

 148.4    2.59 

 149.0    0.32 

 240.9   14.65 

 271.0   16.51 

 336.1    3.82 

 409.6    1.80 

 435.8    2.92 

 456.2   10.07 

 515.7   12.42 

 548.6    0.92 

 604.3   16.42 

 630.1   16.76 

 670.9   86.99 

 717.3    1.16 

 733.3    7.57 

 735.2   31.71 

 756.2   28.41 

 768.2    8.69 

 772.1   31.87 

 795.7   19.49 

 823.4    6.49 

 854.4    9.74 

 880.1   62.95 

 900.1    4.39 

 921.7    0.26 

 926.0    1.33 

 987.6    1.31 

 990.4   12.60 

1003.2    0.22 

1014.2   10.08 

1018.6    0.16 

1039.0    4.24 

1055.6    7.80 

1064.3    2.00 

1111.1   17.01 

1112.6    9.50 

1115.0   10.02 

1170.7   12.71 

1174.1   32.63 

1195.7   24.73 

1231.4   22.19 

1271.4   54.00 

1308.7    8.11 

1324.9    7.25 

1380.9   20.69 

1402.2    1.55 

1464.7    8.11 

1495.8    1.69 

1611.9    5.53 

1620.1   17.23 

1627.4   36.87 

1750.5  193.46 

1769.9  211.81 

3157.1   12.42 

3176.6    7.47 

3193.0   11.98 

3205.7    3.46 

3212.3    2.90 

3215.3    1.09 

3221.4    1.09 

3232.6    1.11 

----------------------- 
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Figure S1 – Optimized structures of the cis-HCOOH

…
N2 complexes calculated at the MP2/6-

311++G(2d,2p) level of theory. Complexes A, C, D and F are planar. Complexes B and E are non-

planar forms. For these two latter cases, different views are shown for better perception of the relative 

position of the HCOOH and N2 molecules. Numbers in parenthesis are relative energies (with zero 

point and BSSE corrections). 
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A

C (2.5 kJ mol-1)

D (3.1 kJ mol-1)

B (2.3 kJ mol-1)G (2.7 kJ mol-1)

A

C (2.5 kJ mol-1)

D (3.1 kJ mol-1)

B (2.3 kJ mol-1)G (2.7 kJ mol-1)

 
 

 
Figure S2 – Optimized structures of the trans-HCOOH

…
N2 complexes calculated at the MP2/6-

311++G(2d,2p) level of theory. Complexes A, C, D and G are planar. Complex B is non-planar. For 

this latter case, different views are shown for better perception of the relative position of the HCOOH 

and N2 molecules. Numbers in parenthesis are relative energies (with zero point and BSSE corrections). 
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Figure S3 – Optimized structures of the cis-CH3COOH

…
N2 complexes calculated at the MP2/6-

311++G(2d,2p) level of theory. Complexes A, C, D, F and H have the heavy atoms in the same plane. 

For complexes B and E, which have a non-planar heavy atoms skeleton, different views are shown for 

better perception of the relative position of the CH3COOH and N2 molecules. Numbers in parenthesis 

are relative energies (with zero point and BSSE corrections). 
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Figure S4 – Optimized structures of the trans-CH3COOH

…
N2 complexes calculated at the MP2/6-

311++G(2d,2p) level of theory. Complexes A, C, D, H and I have the heavy atoms in the same plane. 

For complexes B, G and J, which have a non-planar heavy atoms skeleton, different views are shown 

for better perception of the relative position of the CH3COOH and N2 molecules. Numbers in 

parenthesis are relative energies (with zero point and BSSE corrections).
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Table S1 (Supporting Information)   MP2/6-311++G(2d,2p) calculated IR spectra 

(wavenumbers,  in cm
-1

; infrared intensities, I
IR

 in km mol
-1

) for AA dimers (trans-

trans).  

D1_TT (C2h) D2_TT (Cs) D2’_TT (C1) 

 

 

 

I
IR

 

 

 

 

I
IR

 

 

 

 

I
IR

 

3303.4 2979.0 3780.0 83.7 3776.5 85.1 

3229.0 0.0 3515.7 1016.7 3489.7 956.0 

3228.2 12.8 3224.7 5.6 3224.5 4.7 

3204.7 0.0 3223.6 15.0 3223.3 4.0 

3187.1 2.9 3185.1 2.9 3195.5 3.3 

3187.1 0.0 3183.4 1.1 3185.1 2.9 

3107.0 1.9 3105.2 2.1 3108.2 4.3 

3107.0 0.0 3100.9 13.3 3105.1 2.1 

1760.9 716.0 1784.0 620.0 1781.7 604.7 

1720.1 0.0 1762.8 76.2 1761.6 43.8 

1510.9 0.0 1518.4 7.9 1511.8 11.7 

1504.8 0.0 1505.4 7.7 1505.8 7.9 

1504.8 17.0 1500.8 27.7 1500.2 18.1 

1499.7 59.5 1499.4 0.5 1493.7 21.5 

1486.0 0.0 1448.8 38.7 1448.4 40.1 

1479.0 123.4 1442.7 63.2 1434.5 88.8 

1420.9 0.0 1398.7 16.6 1399.2 6.9 

1416.0 43.8 1368.3 92.2 1369.0 73.0 

1336.2 392.2 1271.0 268.2 1273.6 248.9 

1317.8 0.0 1227.5 219.4 1223.2 241.7 

1087.6 6.5 1093.7 5.9 1087.1 8.2 

1086.6 0.0 1083.1 4.4 1082.8 4.2 

1042.3 41.1 1029.9 53.5 1032.7 55.7 

1038.7 0.0 1028.1 69.4 1027.3 43.5 

1033.4 169.7 903.7 85.0 910.4 80.8 

993.4 0.0 890.6 4.2 887.7 5.5 

910.9 0.0 882.2 6.3 881.5 4.6 

909.9 7.2 673.8 92.9 692.7 95.9 

635.3 44.0 609.9 32.7 610.8 11.8 

627.2 0.0 600.5 38.8 602.0 26.1 

609.5 0.0 599.4 0.5 597.0 31.8 

604.2 0.5 558.7 26.5 550.4 22.4 

483.6 45.9 447.9 16.5 445.4 12.7 

444.0 0.0 434.1 3.1 435.7 0.7 

179.8 0.0 145.8 12.9 164.2 17.9 

177.6 29.6 110.6 0.1 125.2 1.6 

155.7 0.0 108.0 0.3 118.9 0.3 

123.1 0.0 99.2 4.0 85.9 1.4 

73.9 0.2 94.2 0.4 65.1 0.3 

58.6 1.6 62.9 0.01 49.5 0.9 

45.0 0.0 35.0 3.5 28.6 3.0 
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D2’’_TT(Cs) D2’’’_TT(Cs) D3_TT (C1) 

 

 

 

I
IR

 

 

 

 

I
IR

 

 

 

 

I
IR

 

3672.0 637.4 3778.2 88.5 3776.0 81.9 

3561.2 330.8 3539.5 868.3 3627.9 634.7 

3229.3 2.2 3227.2 0.4 3227.7 2.3 

3226.5 3.9 3223.9 5.4 3226.5 3.2 

3187.6 1.3 3187.9 0.7 3185.7 2.2 

3184.6 2.4 3183.8 3.7 3179.8 11.2 

3107.3 0.8 3106.6 1.4 3105.9 1.6 

3104.7 1.5 3104.1 2.7 3098.9 11.1 

1804.4 151.2 1792.2 125.3 1817.6 312.9 

1770.7 475.6 1774.1 571.3 1781.1 282.6 

1506.4 8.7 1506.8 2.9 1509.2 24.5 

1504.7 8.6 1506.1 13.1 1505.6 8.0 

1500.2 21.6 1501.3 24.4 1503.1 9.0 

1499.2 13.1 1500.4 9.4 1499.9 22.2 

1445.5 44.7 1442.6 70.9 1442.3 59.0 

1430.1 40.9 1437.1 30.4 1436.1 36.0 

1396.5 11.8 1387.5 0.5 1388.9 3.1 

1349.2 11.5 1368.4 43.4 1328.9 24.0 

1270.7 384.5 1250.4 269.2 1262.4 270.1 

1204.7 471.0 1219.0 463.5 1199.7 207.1 

1085.6 5.4 1087.7 6.4 1089.5 5.4 

1081.6 3.8 1081.3 4.2 1083.5 4.6 

1027.6 55.8 1025.5 57.7 1025.7 56.5 

1015.1 134.0 1021.3 109.2 1005.4 82.1 

887.6 4.6 882.0 7.4 883.5 11.2 

869.9 2.5 877.4 4.9 851.0 33.1 

851.5 168.3 876.6 80.0 825.7 91.4 

742.2 12.7 672.7 94.0 646.5 66.7 

620.3 56.6 611.9 7.5 605.5 34.7 

603.3 17.6 597.8 87.5 594.5 2.5 

592.1 0.8 595.6 0.6 585.8 19.4 

589.0 1.2 557.1 26.6 543.1 38.6 

453.4 4.2 442.4 0.6 441.5 7.7 

436.2 13.2 434.3 6.1 428.6 1.6 

186.1 22.1 164.4 16.9 143.6 0.7 

116.1 0.2 95.3 0.5 131.8 8.1 

102.6 0.04 82.2 0.1 111.6 3.2 

86.1 0.04 71.2 0.1 94.4 3.6 

63.7 0.01 64.7 0.6 76.7 0.2 

53.7 2.1 42.9 0.7 65.0 1.4 

53.2 1.7 31.2 1.4 21.9 1.2 

32.6 0.1 17.3 0.2 21.3 0.5 
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D4_TT (Ci) D4’_TT (C1) D4’’_TT(C1) 

 

 

 

I
IR

 

 

 

 

I
IR

 

 

 

 

I
IR

 

3789.5 0.0 3790.7 68.0 3784.8 79.3 

3789.1 134.9 3784.2 75.1 3781.3 74.9 

3223.7 0.0 3229.5 3.2 3226.5 2.8 

3223.7 8.2 3227.3 3.4 3224.8 3.1 

3193.9 0.0 3194.9 2.2 3183.6 1.7 

3193.6 3.0 3186.2 2.3 3180.6 13.6 

3108.2 0.0 3107.9 3.3 3103.0 5.9 

3108.1 4.9 3103.4 6.2 3098.5 14.8 

1797.6 555.0 1796.6 507.0 1802.9 263.9 

1790.1 0.0 1790.5 102.8 1792.1 372.2 

1506.2 0.0 1515.0 8.5 1516.4 21.8 

1506.0 18.1 1504.2 9.5 1511.3 4.2 

1496.7 0.0 1498.6 7.2 1504.4 7.2 

1496.0 49.1 1495.3 19.3 1500.8 16.1 

1432.8 101.8 1435.1 28.2 1438.6 27.9 

1430.9 0.0 1432.3 72.0 1436.7 54.5 

1352.5 76.8 1354.5 53.7 1355.1 53.8 

1350.7 0.0 1351.5 41.0 1343.9 36.0 

1212.4 0.0 1214.8 265.4 1213.3 245.5 

1208.7 415.5 1209.5 169.9 1207.2 174.3 

1084.5 0.0 1087.7 4.7 1089.7 6.7 

1084.0 18.7 1083.8 14.3 1086.4 3.5 

1014.8 152.8 1019.7 83.6 1018.0 76.7 

1014.3 0.0 1013.8 72.6 1010.3 98.2 

872.8 10.5 873.3 7.4 871.5 8.1 

871.1 0.0 870.2 5.9 863.2 14.7 

660.4 190.1 671.4 76.5 666.0 99.6 

659.6 0.0 658.0 112.3 660.9 74.1 

586.8 71.8 588.4 48.2 588.6 48.9 

586.3 0.0 586.4 21.5 585.0 21.6 

547.9 0.0 550.2 22.7 552.7 37.9 

545.0 59.6 545.2 36.0 551.5 24.6 

428.0 8.1 432.4 7.7 431.6 7.8 

427.9 0.0 428.3 3.5 428.1 2.3 

121.7 0.0 117.5 1.2 141.9 0.4 

114.7 9.5 109.2 5.2 104.3 1.0 

78.7 0.0 86.7 0.2 95.6 3.4 

71.2 0.2 80.7 0.6 69.7 1.0 

63.7 0.0 56.2 0.1 46.1 1.2 

35.7 0.0 48.9 1.6 28.3 1.4 

29.6 1.7 19.0 1.9 15.1 0.2 

15.6 1.5 14.2 0.1 8.8 0.2 

See Figure 1 for structures of the dimers. 
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Table S2 (Supporting Information) - MP2/6-311++G(2d,2p) calculated IR spectra 

(wavenumbers,  in cm
-1

; infrared intensities, I
IR

 in km mol
-1

) for AA dimers (trans-cis). 

D1_TC (Cs) D1’_TC (C1) D2_TC (C1) 

 

 

 

I
IR

 

 

 

 

I
IR

 

 

 

 

I
IR

 

3646.4 736.8 3620.5 818.9 3847.3 76.9 

3533.4 418.2 3519.8 305.7 3563.9 619.3 

3229.7 2.2 3229.9 2.1 3224.4 4.2 

3221.7 3.8 3221.3 3.6 3221.8 1.7 

3188.4 0.9 3187.9 0.9 3185.4 2.4 

3172.2 2.7 3171.8 2.5 3176.1 2.3 

3107.9 0.4 3107.8 0.4 3105.2 1.9 

3094.1 1.8 3093.8 1.5 3093.2 4.4 

1822.8 253.5 1824.1 260.5 1804.0 378.0 

1762.5 294.1 1759.1 303.6 1767.5 182.7 

1511.1 8.0 1511.1 7.3 1513.5 5.1 

1504.3 8.8 1504.3 9.0 1505.3 8.0 

1500.0 4.2 1500.1 4.4 1500.1 19.9 

1498.2 14.5 1498.0 17.0 1497.9 13.1 

1452.0 46.5 1452.7 48.2 1443.2 73.5 

1422.5 95.6 1423.3 111.3 1419.0 72.8 

1409.8 144.4 1412.0 134.2 1389.0 4.4 

1339.4 701.4 1357.8 467.6 1324.6 342.6 

1262.7 326.5 1270.9 187.3 1266.8 205.5 

1240.9 23.5 1242.2 123.1 1237.3 4.1 

1086.6 5.1 1086.5 4.9 1083.0 3.7 

1079.5 2.3 1078.8 3.0 1078.4 10.2 

1031.6 39.2 1032.0 37.0 1027.6 40.2 

1014.9 7.5 1014.4 14.6 1016.1 9.0 

894.6 4.6 895.1 6.8 888.1 4.3 

878.2 49.8 874.4 75.4 879.6 26.5 

839.5 154.5 831.7 181.6 818.0 63.7 

728.4 8.7 760.6 54.3 615.8 7.6 

624.6 7.8 624.0 23.6 608.7 19.6 

622.6 30.6 614.1 15.1 595.4 0.7 

596.5 0.7 598.2 1.5 589.8 4.7 

583.5 10.5 583.5 17.8 472.2 113.3 

462.5 1.5 456.3 7.9 447.4 13.7 

441.1 17.9 440.7 12.0 437.5 2.0 

206.9 9.3 198.1 14.2 162.5 26.2 

123.5 0.4 155.1 0.7 129.4 3.4 

114.4 1.4 110.7 1.0 101.2 5.1 

86.5 0.1 90.8 2.3 96.4 2.9 

60.5 3.0 65.0 8.2 83.0 12.7 

56.8 17.3 57.3 2.2 71.4 0.7 

55.2 0.4 53.9 8.9 62.4 0.8 

28.2 1.7 19.0 0.4 37.1 5.2 
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D2’_TC (Cs) D2’’_TC(C1) D2’’’_TC(Cs) 
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3846.9 77.2 3847.1 78.1 3778.7 86.6 

3502.4 1055.8 3497.7 892.1 3583.1 877.1 

3224.8 5.1 3224.1 5.3 3226.3 0.5 

3209.6 24.5 3224.0 2.7 3219.4 5.8 

3185.1 2.8 3185.1 2.7 3187.9 0.3 

3165.3 2.7 3179.9 2.1 3172.3 4.2 

3105.2 2.1 3105.0 2.0 3106.4 1.2 

3084.0 25.1 3095.2 5.7 3094.5 2.8 

1807.6 471.7 1806.1 433.7 1815.6 243.8 

1765.6 160.7 1768.9 142.7 1770.0 440.9 

1527.1 6.9 1509.0 8.9 1510.7 7.1 

1505.3 7.7 1505.7 7.8 1505.7 9.4 

1500.9 20.6 1500.2 21.0 1504.1 44.1 

1499.4 1.1 1489.6 16.1 1495.8 13.0 

1450.1 53.3 1447.3 56.2 1445.9 67.9 

1432.0 36.9 1427.2 63.0 1423.6 175.0 

1398.7 12.7 1398.2 5.2 1409.7 127.8 

1324.4 506.2 1325.1 453.8 1365.3 259.3 

1274.5 238.6 1274.7 228.0 1264.7 143.1 

1239.8 2.8 1237.5 1.2 1225.6 256.8 

1089.6 4.0 1083.1 3.0 1088.9 6.1 

1083.4 4.4 1081.3 6.6 1078.7 3.5 

1029.6 37.6 1028.2 38.8 1029.4 69.6 

1023.5 12.8 1016.4 10.0 1017.1 19.3 

909.0 87.5 896.1 71.1 883.9 8.7 

892.3 2.3 888.2 3.7 877.7 23.4 

879.8 36.8 879.6 39.6 803.1 54.2 

613.6 10.2 613.5 3.5 673.7 94.4 

610.9 2.8 609.8 11.2 620.7 7.3 

610.2 20.7 608.3 12.2 600.6 52.9 

600.5 0.2 598.8 0.7 588.6 12.6 

499.2 95.9 496.5 95.2 558.5 26.8 

452.8 5.9 447.4 4.8 449.6 1.1 

440.4 5.7 439.5 10.2 438.4 6.6 

148.2 22.9 170.9 35.4 177.6 5.2 

130.6 1.0 131.6 3.9 109.3 1.4 

111.0 8.3 124.8 1.1 91.6 0.7 

103.5 2.6 103.1 1.1 71.6 0.5 

96.1 0.2 82.0 3.7 59.5 0.4 

61.4 0.1 67.4 0.5 48.6 7.5 

36.4 8.1 31.9 5.9 34.6 0.7 

18.1 3.8 23.7 2.3 25.5 4.5 
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D2’’’’_TC(Cs) D3_TC (Cs) D4_TC (C1) 
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3847.8 78.0 3779.2 77.0 3846.4 67.7 

3540.8 819.1 3721.9 510.3 3786.3 71.1 

3224.2 5.3 3230.7 2.0 3230.2 2.9 

3220.1 0.9 3219.2 4.0 3219.0 2.3 

3183.7 3.9 3186.3 0.2 3190.1 2.5 

3169.7 2.0 3168.2 4.5 3177.1 1.4 

3104.1 2.9 3107.4 0.02 3104.8 4.1 

3090.9 6.3 3090.1 4.6 3093.9 4.2 

1810.8 140.4 1822.5 11.4 1819.0 282.8 

1786.5 488.6 1818.8 561.4 1782.6 210.9 

1515.9 6.7 1511.6 9.2 1515.5 6.5 

1506.3 8.6 1505.4 9.9 1503.8 9.1 

1502.1 8.7 1500.3 8.1 1498.8 1.8 

1500.5 13.5 1494.5 5.4 1498.2 32.5 

1435.1 41.9 1435.2 17.3 1432.6 62.7 

1429.6 46.9 1418.4 80.2 1417.7 47.1 

1381.2 0.2 1377.0 356.4 1356.7 58.4 

1325.3 290.7 1317.9 224.2 1312.5 314.8 

1243.5 446.8 1255.0 66.4 1225.7 14.4 

1228.8 226.6 1201.0 216.6 1212.6 196.3 

1082.9 4.1 1082.1 5.9 1085.0 8.1 

1081.0 4.5 1079.1 3.1 1078.8 11.9 

1020.7 104.7 1012.3 2.4 1021.4 71.2 

1018.5 3.8 1002.5 104.1 1007.5 8.4 

880.0 10.3 873.4 31.3 874.2 8.9 

873.3 31.2 847.7 44.8 866.5 27.2 

870.3 83.9 709.0 46.6 671.0 89.2 

617.2 6.0 646.4 79.7 603.6 4.6 

607.9 2.6 612.5 3.0 598.1 3.3 

603.8 46.0 586.9 30.2 588.9 35.6 

595.1 0.4 579.4 20.3 545.3 30.0 

486.8 96.7 538.4 36.4 459.5 125.7 

445.6 4.3 445.5 2.0 436.4 4.7 

441.4 0.03 431.0 0.5 432.2 3.7 

164.9 29.6 148.8 2.2 128.5 5.8 

97.5 0.3 105.4 0.3 114.4 8.7 

87.4 0.2 103.6 0.2 99.6 0.7 

85.4 0.3 84.5 0.2 89.6 4.9 

70.5 0.01 70.5 0.5 87.3 5.1 

48.9 4.2 40.4 9.2 53.9 3.7 

32.2 2.0 27.6 5.3 35.9 5.1 

19.0 1.3 19.0 4.5 26.5 5.1 
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D4’_TC (Cs) D4’’_TC(C1) D4’’’_TC(C1) 

 

 

 

I
IR

 

 

 

 

I
IR

 

 

 

 

I
IR

 

3850.3 67.7 3849.7 65.8 3851.5 69.9 

3786.0 76.7 3777.4 68.5 3780.2 70.2 

3223.7 17.3 3223.5 2.5 3225.5 3.8 

3211.8 17.4 3216.6 2.6 3217.8 4.9 

3181.7 2.0 3185.7 2.8 3179.8 15.0 

3163.2 4.2 3173.4 3.0 3164.6 3.5 

3100.9 12.6 3101.2 4.4 3098.5 17.7 

3084.0 20.8 3091.9 3.6 3086.5 10.4 

1820.8 348.7 1824.7 246.9 1820.8 253.3 

1788.8 234.7 1807.6 271.9 1803.9 326.1 

1526.3 8.4 1515.5 3.8 1521.6 10.0 

1517.4 4.3 1508.1 11.2 1512.2 12.7 

1504.6 1.0 1502.2 15.6 1504.4 10.0 

1500.3 17.3 1498.6 6.4 1501.6 7.6 

1439.3 37.5 1427.5 51.0 1439.0 33.4 

1429.0 40.7 1417.3 51.2 1426.3 42.8 

1354.0 42.3 1347.0 16.0 1343.0 27.3 

1309.0 432.2 1309.8 376.8 1310.0 434.3 

1221.8 2.7 1220.6 25.5 1222.4 5.5 

1213.8 247.2 1207.1 154.3 1206.9 194.1 

1089.8 5.3 1084.5 9.3 1089.4 6.0 

1083.8 1.7 1075.4 8.8 1081.1 2.4 

1017.4 83.4 1009.9 70.9 1012.4 48.6 

1009.5 32.0 1003.6 7.7 1006.9 51.2 

871.9 2.7 863.5 27.5 865.9 45.4 

864.9 54.2 861.8 24.6 861.4 14.8 

664.7 88.3 655.6 79.9 661.4 85.3 

606.4 1.4 602.5 3.5 605.8 2.2 

601.6 8.0 596.6 3.7 601.4 7.6 

588.3 38.8 587.7 26.5 585.4 27.5 

554.3 30.8 535.4 22.6 551.6 34.7 

480.8 97.3 462.2 129.9 475.8 97.3 

443.0 1.6 436.5 4.0 440.7 2.6 

433.0 8.2 426.8 13.2 428.1 4.7 

137.0 1.2 132.7 0.6 141.1 0.6 

116.1 0.2 105.5 2.5 120.0 0.7 

86.7 4.8 99.4 12.1 97.9 7.4 

84.2 12.3 82.6 0.2 72.9 4.4 

53.9 1.6 72.6 7.5 47.2 5.2 

29.1 9.1 62.9 1.8 29.1 3.0 

24.4 3.9 29.2 2.1 18.0 3.9 

12.5 0.3 21.6 1.0 12.3 0.3 

See Figure 2 for structures of the dimers. 
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