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ABSTRACT

An unified formalism allows the reliability analysis of sweiching plates, plates in bending and
shallow curved plates discretized in riangular finite elements o be treated in a similar fashion, By
using the first order second-moment approxination, the identification of the reliability index
associated with the stochastic dominant collapse mode is formulated as a concave quadratic
program. A enumerative technique is employed to solve this problem,

INTRODUCTION

The general case of a three-dimensional continuous structure could be first studied and any
particular case would then bederived by the introduction of the relevant simplificalions, but far
the sake of brevity the plate suewhing problem is here directly considered.The formulation
describing the fundamenlal relatdons of the problem reflects the Anite element connectivity across
the inierelement boundaries and it is thereby called kinematic description, The matedal is assumed
stable in Drucker's sense and the canvex hypersurface is replaced by a set of hyperplanes. The
reliability index of the structure s obtained using the first order second-moment approximation.
The identification of the reliability index is formulated as the mirimization of a concave quadratic
funetion over a linear domain, the Jocal solutions of which are vertices of the domain. A branch
and bound strategy is employed, each nede of the combinatorial tree being associated with a linear

program.

GOVERNING RELATIONS OF PLATE STRETCHING

Kinematic Description

In the furmulation of the finite element methed, three distingt Jevels (i) the infinitesimal element
level, (i) the finite element level and (iii) the structural level - are defined [1]. For plastic collapse,
the interelement equilibrium may be achieved if new nodes ¢ are selected o define the independent

stress field Ty in terms of the nodal values o€ as follows:

g =I5 o* ‘ (1)
The strain-resultant/displacement relations at the infinitesimal element level are (by omitting the
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initial imposed straik
—Ag + DTBu = D {2)
where D is the 204 order differential operator. By dividing the finite element volume iato
subdomains asscciated with the control nodes, we have

Iv ro't e dv = thi,fc I\rj Tt 82 dv (3)
The transposed field matrix T' is assumed to have inside each subdomain the constant value
(T O‘_t)j that it takes at the corresponding ¢; control node.The conditions of compatibility at finite
element level read,
(rg®1% 4g€ - & au* =0
where the tetal nodal strains Ag® and the compatibility matrix E are given by:
Ag® = Tyoq, e Ivj s dv : E =1, T4 DTy av (1)
At the structural level, if the relevant coordinate transformation matrices Tg®, Tyd.are

intreduced, the cempatibility equations becorne,

(T ETe®IE 1% 4g%° = (Tg™1 T & Ty? 4uS = 0 (5)
or in a more compact form,
RS AgES - ES AuAS = 0 16)

Plasticity Relations
Only the plastic phase of the stuctural material behavior has 1o be characterized. The

eenditions of yielding to cecur may be defined by an inequality involving a function of the stress
state, Tf such a hypersurface is replaced by a set of hyperplanes, the yield conditions for every
control node,

{ aF Tot Tyl 0% - 6s £ 0 {7)
If the conditions are stated for all cs nodes, their assemblage can be written,
655 = 6.3 = [ 1RCH1E (RFF ] 0% 0" <0 (8

where RS is given as in (6). For a stzble material, the Kirematic variables are defined by an
assoeiated flow rule, that for a control node ¢ is
Agy = _[V_j sey dv = I‘,i Q (Ags)y dv = Q tAgw) g (9
where (Agx)j are the total plastic parameters associated with the subdemain of unspecified volume
vj inside witich the material properties (expressed through matrix () are assumed constant. For all
es control nodes,
AgSS = QOF Ag,CS (1)
If the assumption of constant Stress field and of constant strain field is introduced, the total
plastie dissipation energy ADSS becomes,
ADC? = (OB T AgCT = (47T AgkSE 20 {11)
For simplicity, superseripts §, c, a and e will be dropped.

RELIABILITY ASSESSMENT

Computation of the reliability index
By adding the finite elerent strains associated with stresses in half space represented by the

same random variables, one has,
Agst = J,7 daw : Ags™ = Iy Ags 112}
If the displacements of the point loads (er in the case of uniformly distributed Joad, deflecdens
of the finite element centroids) linked to dead and live loading, respectively, are sumrmed up,
ssd = 3,9 Au : T A - (13)
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For statistically independent random normal variables, the mathematica  ogram that.gives the

~ reliability index £ associated with the stochastic most important collapse mode is [2],

et Agwt + po= dox® - ng Amd -y Aue)

(14)
Vioghi2 (Aga’) 241050 2 (Aga7) 24 (og) 2 (Ausd) 24 (o) 2 (Aus]) 2

subject to the linear incidence equations (12-13), the compatibility relations (6) and sign

constraints on the varables. This mathematical program belongs to the class of fraciional

programming problems and shares its solations with,

min B =

min ~1/82 = —togh 2 (8g.1) 2 og-) 2 (Agu ") 2= (o) 2 (Bus®) 2= tay) 2 (Bus1) 2 (15)
subject to (12-13),(6), sign constrainis and:
Hgt Agyt + Ho Agst - Ha Augd - by Ansl = 2 {16}

that is a quadradtic concave minimization.This type of problem cannot be solved by convex
programming techniques because of the possibility of norglebal local minima. The global
optimurh of these programs gives the plastic deformations for the stochastic most important

mechanism and the reduced random variables are,

at’ = - ogt Agst B2 : o7 = - gg- Ags~ B? (17
d' = -y BAud p? : 1t = - gy Auat 8? (18

Branch and bound technique lor quadrafic concave minimzation

The general nonconvex domain is transformed inthe branch and bound (B & B) strategy into a
sequence of intersecting convex domains by the use of convex underestimating funciions. The
two main ingredients are a combinatorial ree where the nodes are associated with linear programs
and some upper and lower bounds to the final solution related to cach node of the tree. For a
quadratic concave function its convex underestimate is the affine function (linear plus a constant)
passing through the endpoints of the given function graph. Tight bounds on the nenlinear
variables can be found by solving a multiple row linear program.

RELIABILITY ASSESSMENT OF TIHIN FLEXURAL PLATES

The formulation liold unaltered just by re-interpretation of symbols for the class of above
mentioned discrete plastic models. The material is considered to satisfy a yield critedion formulated
by Nielsen for reinforced concrete plates. In order to obtain linearized yield conditians, a safe
linearization suggested by Wolfensberger which considers an octaedrum is adopted.

RELJABILITY ASSESSMENT OF SHALLOW CURVED PLATES

The mathematical characterization of the plastic behaviour of a general shell would require an
vield criterion involving ten stress-resultants and ten strain-resultants. However, as for flexural
plates the effect of the two transverse shear forces is penerally negligible. Also, since every finite
element is shallow, the planar shear forces and the twisting moments are regarded as equal. The
kinematic model under copsideration can be taken as the supperposition of stretching and bending
madels and the feld functions required for the kinematic and static independent variables may be
obtained through the supperposition of the field functions defined for those models.

The yield criterion used considers separately the stzetching and bending problems with no
interaction between them. Both for the in-plane forces and for the moments, the linearized Nielsen

criterion is adopted.

NUMERICAL EXAMPLES

Plate stretching: Concrefe pier

The prablem consists in determining the reliability index of the dominant mode for the conerete
pizr of Fig. I simply supporting a bridge deck. If any change of geometry is neglected, the pier
can be regarded as a plane stress state. Three nodai finite elements are used in order to define the
compatibility matrix. A linear displacement field where nodes a are the corner nodes js assumed.
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A constant stress fie!* is censidered, where the nodal stresses are at a single node anywhere
inside the finite elemes -, Thus, the single node e is coincident with the single contrel node ¢.
Matrix Q is embodiga in the yield criterion that considers the two-dimensional stregs-space where
the yield function is assumed to correspond to the ellipse of Fig.1.This example was solved in
ref.[1] for plastic limit analysis. The unsafe linearization is performed by means of the three

planes represented. The carrying capacity of the concrete is (g, Q¢)=(20 kN/m2,0.11). The live
loading acting on the top of the pier is (11, Q)=(8 kN/m2,0.25). The dead loading due to the
bridge deck (g, Qq)=(3 kN/m2.,0.10) plus the self-weight of the pier is considered uncorrelated

1o the live load. The following solutien has been found:
B = 2.95 ; c'=:2.1? ; d'=.314 ; 1°=1.873 ; g=15.226 ; d=3.094 : 1=11.446

Figure 1 Finite element mede! Vield function and linearizing planes

Thin flexural plate: Reinforeed concrete floor
Fig, 2 represents the [inite element modelling of an octant of a uniformly loaded clamped

square plate (1=10m} and a cireular sector of a circular plate (d=10m), respectively. The bendin g
moment capacities are (Lyh QmH)=(lm = 2m-) =(100kNm/m,0.05). (M Q=010 kN/mZ,0.10)
and (U.Q)=(18 kKN/mZ,0.25) are the dead and live transversal loading. The plate discretization is
done by means of wiangular finite elements with a quadratic deflection field and thus six nodal
displacement valoes must be specified (in these examples: vertical deflections at element corners
and mid-side normal rotations) and a constant moment field is considersd. These examples werg
solved in ref.[3] for plastic limit analysis. The solutions,

B=2.003 5 w*=07914 ;m = 97.914; d = 10438 : | = 26.870

f=3.124 ; m*=96533 :m™=96,533 1 d = 10.643 ;1 =31.026
were found for the square and circular plate, respectively.
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Figure2 Square plate FE model Circular Plate FE mopdel
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