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Cable nets structures exhibit highly non-inear behaviour under applied static loads. Non-linearities are
caused by the changes in configuration necessary to equilibrate applied loads and by the slackening and/or
yielding of the cables. In order Lo stiffen such cable net structures and reduce displacements under applhied
loads the cables are often pretensioned. Such pretensioning, however, requires more substantial cables,
stronger connections and stronger supporiing siructures. Tt is therelore desirable to be able to design a cable
net structure which satisfies all displacement and stress performance criteria with as small a level of
pretensioning as possible:

This paper deseribes 2 method which sets the above design problem in a multicriteria optimization context
with goals of minimum prestressing force, displacement and stress. A minimax solution is found by means of
anentropy-based optimization algorithm. Hlustrative examples are solved showing the applicability of the
method.

KEY WORDS: Structural optimization, cable net structures, presiressing, entropy, multicriteria
optimization, minimax optimization.

1 INTRODUCTION

This paper is concerned with aspects of the optimum design of prestressed cable net
structures subjected to multiple independent quasi-static loads. The behaviour of
cable net structures is characterized by 2 combination of geometrical and physical
non-linearities. Geometric non-linearities arise from the fact that such structures
respond to changes in applied loading by large changes in shape (but small strains).
Physical non-linearities are caused by the fact that cables can only carry tension forces
and become slack under compressive loads: Additional physical non-linearity may be
present if yielding occurs in the tension cables. Consequently, the behaviour of cable
net structures may be described as grossly non-linear. This makes the analysis of such
structures particularly difficult and very few attempts to optimize the design of cable
nets have been reported in the literature.
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Two recent books'+? provide a comprehensive conspectus of cable net structures. In
respect of their structural analysis the gross non-linearities have been handled by two
main approaches. Buchholdt* places particular emphasis on methods which directly
minimize the total potential energy of the structure. In an optimization context this is
an attractive approach and consists of an almost unconstrained minimization of the
total potential function expressed in terms of the nodal coordinates of the cable net
(loads are assumed to be applied only at the nodes). The minimization is not
completely unconstrained because checks on the cable strains during the optimization
process must be incorporated to identify cable slackening or yielding and the energy
function must be altered accordingly. The other approach, described in Krishna?,
consists of solving the governing non-linear equations iteratively by the Newton-
Raphson method or variants. This is the method used in the present work.

In practice cable nets are usually prestressed in order to reduce the magnitudes of
displacements under applied loading, This presents added difficulties in analysis and
design. The designer has to solve two conceptually distinet problems. Firstly, he must
address the so-called form-finding problem: starting with a design consisting of
individual cable segment lengths which correspond to some desired net shape, called
the reference configuration. when prestressing is applied to this net its shape will
change from that desired in order to equilibrate the prestressing forces. Consequently,
the designer must first calculate the configuration of the prestressed but otherwise
unloaded net; this is called the zero configuration. Secondly, he must analyse what
happens to this zero configuration when various design load cases are applied to the
net, calculating cable stresses, shape changes and nodal displacements which can be
compared with performance requirements for the structure.

As was noted above, the magnitudes of nodal displacements can usually be reduced
by increasing the levels of prestressing forces. However, this implies the use of larger
diameter cables, more robust connections and much stiffer supporting structures.
Censequently, highly prestressed cable nets are much more expensive than lightly
prestressed nets. As a design goal it is desirable to satisfy performance requirements
for a cable net with as low a level of prestressing as possible. The aspect of optimum
design which is studied in this paper is that of attempting to find the minimum level
and optimum distribution of prestress which can be used in a cable net whilst
satisfying prescribed limits upon cable stresses and nodal displacements from the
reference configuration. Cinquini and Contro® have studied this prestress minimiza-
tion problem and used linear programming to solve iteratively the optimality
conditions corresponding to a non-linear and non-convex mathematical program-
ming problem. In the present work it has been found that the linearization of the
compatibility relationships in Ref. [3] can introduce significant errors into the
analysis process for such grossly non-lincar cable nets. Moreover, the present authors
have found that the structural behaviour of the optimized cable nets can sometimes be
very sensitive to small variations of some of the design variables. The results described
in this paper for the example problems solved by Cinquini and Contro are quite
different from those reported in Ref. [3].

In this paper the prestressed cable net design problem is posed in a vector
(multicriteria) optimization format and a minimax solution is sought. An entropy-
based technique® is used to determine the minimax solution via the minimization of a
convex non-linear scalar function. The results of several test problems are presented
and show that considerable savings can be made by using an optimized distribution of
prestressing forces rather than a uniform distribution.
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2 PROBLEM FORMULATION

2.1 Element Equilibrium Fquations

Figure 1 shows a node ¢ in a general space cable network connected to adjoining
nodes p by cable elements i. The cable net is pretensioned but otherwise unloaded. Let
F; and s; be the pretension force and length of a particular cable element i. The
coordinates of the nodes p and g are x, y,, z, and x,, y,, z, respectively. If a system of
forces P, p,g P, is now applied at node ¢, the nodes p and g will displace through u,,
v, w, and u, v, w, respectively in the x, y and z directions. The force F; and the length
s5; will change by amounts AF; and As;, becoming ¥/ and s/ respectively. For a linearly
elastic cable material

AF; = EA, ([si/s] — 1) (1

where EA, is the extensional stiffness of the ith cable element.

The equations of equilibrium at node g before the application of the nodal loads can
be written as

i % (x,—x,)=0 (2a)
i=1 i

m R

Y 50—y =0 (2b)
=1 Vi

L

Y Sz, -z)=0 (2¢)

where m is the number of cables connected at node g. This set of equations (2)
implicitly assumes that the cable net is in equilibrinm with the pretension forces. On

— — — initial position

deflected position

Figure 1 Cable net definitions.
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the application of the nodal loads, Eqs. (2) will change to

Z”Is._;(xp+up_xq_“c)+Pxe=O (3a)
i=19
Y, Wt v —y— ) + By =0 (3b)
=1t
y ?,_‘(z,, +w,—z,—w)+P,=0 (3¢)
i=1 "

By substituting the original cable length s, given by
§; = [(xp - xg)l + (yp - yq‘)z + (Zp - zq)Z]l.fZ (4)
into the final cable length s/, given by
si= [0, +u, — x, — w? iy, o P, vqu
+ (2, + w, — 2, — W) 12 (5)
it can be shown that
si = s[1 + 2a;, + b} (6)

where

&= glf [(x, — %), — ) + (¥p — ¥, — 1) + (2, — 2)(w, — W)l (N

3

1
b= 52 [(u, — uq)z + (¥ — vq)z + (W, — 'wrj)z] @)
Expanding Eq. (6) by the binomial theorem and substituting into Eq. (1) gives

bl' aibi aiz a‘is
'AFE:EAi(ai+§_T—2+—2_+“' (9)

Similarly, expressing Eq. (6) as

I 1 .
E,_=;{[1+2ai+bi]_”2 (10)

and expanding by the binomial theorem gives
1—aq ¥ ...

s

i $;

(11)

2t Y272

Noting that F; = F, + AF;, Egs. (9) and (11) may be substituted into Egs. (3) to
express the equilibrium of the nodally loaded and pretensioned net in terms of the
unloaded but pretensioned forces and lengths. If these equations are then rearranged
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so that only the first order terms in u, v and w are retained on the left-hand side they
become

i |: (u, — uy) + (EA; — F)X(x, — xq)a,-] = —P,+R, (12a)
i=1
Zl [ (I.? q) + (EA: - F:)(yp - .vq)ai:l = - qu + qu (IZb)
i [ (w, —wy) + (EA; — F,-)(zp — zg)ai:l = —P,,+R, (12c)
i=1
where
o (EA; — F;
Ry= — _Zl ES—) [(u, — ue; + (x, — x)d;] (13a)
" (EA; — F,
Ro= = 3 CAT0 10, — o6 + 0, — 4] (13)
EA; — .
R, = _Z ( ) [z, — z)c; + (w, — wp)d,] (13¢)
¢; = (2a; + b, — 3&,--2)/2 (14)
= (b; — 3ab, — 3a? + 5a%)2 (15)

The expressions l‘or R, R,, and R__ are obtained by retaining terms up to the third
order of », v and w and neglecting terms of higher order. The R terms may be
considered as residual forces corresponding to the difference between this non-lingar
analysis and the results which would have been obtained by a strictly linear analysis.

2.2 Structural Analysis

Consider a cable structure in service conditions and a set of 1 loading cases. If the
number of nodal degrees of freedom is denoted by n, the nodal displacements and
nodal loads for the jﬂl load condition can be represented by the n vectors u; = [u; »

wi]'and P, = [P,; P,; P.;]" The problem of analysing the cable structure reduces to
the solution of a system of non-linear equilibrium equations that, when assembled for
the whole structure, can be represented in matrix form as:

where K is the stiffness matrix consisting of the coefficients of the unknowns u, v, w
and R; is a column vector containing terms R, ,, R, and R,. For a space cable
structure three equations will be required per joint and this will lead to a set of 3n
simultaneous equations where » is the total number of free joints, the supporting
structure being treated as rigid. The solution of these equations by a suitable iterative
method will give values for u, v, w. The substitution of these values into Eq. (9) will
give ithe changes in the forces.
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2.3 Newton-Raphson Method

There can be no direct solution of Eq. (16) since the right-hand side contains the terms
R which are functions of the unknowns. An iterative numerical procedure has
{herefore to be adopted. The computations in the Newton-Raphson method are based
on the instantaneous stiffnesses of the structure derived anew in each iterative cycle.
Although a fast convergence rate can be obtained by the use of this method, it entails a
considerable amount of computational effort because the stiffness matrix has to be
computed in every cycle of the iteration. On the other hand, any changes in the elastic
or physical properties of the structure can be easily introduced to the stiffness matrix.
The steps involved in this scheme are:

1) Initialization: Iteration k = 0. Assume u{” = R{” =0
2) k= 1. Solve K™V = — P, to evaluate ul"
3) Compute R using u'*

a) If R < &,, Stop.

b) Otherwise, go to step 4.
4) Solve K¥-Aul = R® to obtain Au#

a) If Aul® < e;, Stop.

b) Otherwise, iteration k = k + 1. Evaluate:

u‘{fk.fl e Augk‘lj + u-(ik—l:l

and go to step 3.

2.4 Determination of the Zero Configuration

When the reference geometry of the structure is not in equilibrium with the applied
forces, a zero configuration needs to be computed. The problem can be tackled by a
suitable modification of the equations given in Section 2.1. Assuming that the
geometry of the supporting structure as well as the pretensioning forces in the cables
are specified, the nodal coordinates in the network have to be set and suitably
modified by a process of successive iterations to be finally in equilibrium with the
forces. In the beginning of this procedure, Eqs. (2) are assumed not to hold good since
it is not assumed that the given geometry is in equilibrium. Cable pretension is given a
constant value and so,

AF;=0 and F;=F; (17)
Equations (12) then become:
nF

T < [, — up) — (xp — xa] = Ry (18a)
i=1 "1

» F, .

Z ? [(vp - Uq) - U"p - yq)ai] = qu (ISb)

i=1 i

m

F-
Z ?r [(wp - wq) - (zp - 'q)ai] = qu (186)

t=1"
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where

m F, _

Ry= ¥ o [y — ude,— (x, — x )1 — d))] (192)
i=1 "
m F‘_

Ryy= 3 5 [v, — vp)ei — (3 — yo)1 — )] (19b)
o Fi _

Ry= Y - [w, — wei— (2, — z,)(1 — d))] (19¢)

The Newton-Raphson method can be used to determine a solution of the non-linear
system of Eq. (18). If the initial geometry before pretensioning is used to start the
iterations the risk of converging to a completely different equilibrium configuration
will be small, and a nearby configuration of stable equilibrium will be found.

3 OPIIMIZATION

3.1 Minimax Formulation

Assume that the zero configuration has been found and is in equilibrium with some
known initial prestress. Reducing the value of this initial pretensioning would be
desirable since this would permit the use of less substantial supporting structures and
anchorages. Let the cable net have a total of N anchorage points and let D, denote the
horizontal component of the pretensioning force in a cable where it meets an
anchorage point. Then D is a vector of cable-end horizontal pretensioning force
components. D;, i=1,..., N, These are design variables for the optimization.
Non-negativity must be imposed upon each of these variables since cables cannot
carty compressive forces. One goal for the optimization i$ that some measure
representing the total amount of prestressing force on the anchorages should be as
small as possible. The measure chosen in this work is the sum of the cable-end
pretensioning forces at the anchorage points, each weighted by the horizontal
component of the appropriate cable length, ie,

W=D (20)

A second set of goals arises from the requirement that under both pretensioning and
applied loads the displacement of some specified nodes should all be as small as
possible. This raises the question of which configuration the displacements should be
measured relative to: the initial reference surface or the zero configuration. In this
work it was decided that a maximum desirable value of the displacement u_,, of any
node under both pretensioning and applied loads from the reference surface should
be imposed. If u; is the displacement of node j relative to the reference surface caused
by pretensioning and u,;is the displacement of node j relative to the zero configuration
caused by the addition of the applied loads then the displacement goal for node j can
be written as:

"j = upj + usj "<'- Umax (2])

Further goals come from the imposition of a lower limit on the total force in a cabie
which ensures that cable elements do not become slack under any form of loading,. If
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F_,. is the value of this minimum desirable tensile force in any cable element this goal
can be written in the form:

D+ AF 2 Fy, (22)

where AF is the difference between the total force in a particular cable element and the
pretensioning force in the anchorage end of that cable. Similarly, the maximum force
in cable element may be limited to some desirable maximum value F ., by means of
the goal

D+AF<F,, (23)

The optimization method used in this work and described in the next section requires
that ail these goals should be cast in a normalized form. If some reference cost Wis
specified the goals (20) to (23) may be written in the form

D
g, (D) = W 1<0 (24)

“i_1<0  j=2....T+1 (25)

g{D)=

umax

F_. g = =
g.k(D)Eﬁr%’ﬁ.;—lé,O k=J+2,....J4+4K+1 (26)

D + AF
o(p) =~ 7

max

—1<0 1=T+28+1 27

where T is the total number of nodal displacement restrictions and K is the total
number of cable segments. The objective of this work is to minimize all of these goals
over variables D. This is achieved by the minimax optimization problem:

mi-nmaX(gl:---!giu""gJ+2k+1> (28)
B i

32 Minimax and Multicriteria Optimization

The method used to solve the minimax optimization problem (28) with goals defined
by (24) to (27) is a recently developed entropy-based approach®. The minimax
problem (28) is discontinuous and non-differentiable, both of which attributes make
its numerical solution by direct means difficult. In Ref. [4] it is shown that the
minimax solution to problems such as (24) to (28) may be found indirectly by the
unconstrained minimization of a scalar function which is both continuous and
differentiable, and is thus considerably easier to solve. In this section some of the
theory behind this entropy-based approach to mimimax and multicriteria optimiza-
tion is briefly described and a solution algorithm for problem (28) is outlined.

For any set of real, positive numbers U, j=1,..., J and real p > g = 1, Jensen’s
inequality (pth norm inequality) states that,

7 7 \
( Ui-’) g (Z U‘})”“ (29)
\i=1 j=1
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Inequality (29) states that the pth norm® of the set U decreases monotonically as its
order, p, increases. Another important property of the pth norm is its limit as p tends
towards infinity:

s 1
lim ( U;.’) = Max(U > (30)
P i=1 jed
Consider the minimax optimization problem,
Min Max {g/{(x)> (31)
xeX JjeJ

and Jensen’s inequality, Let U; = exp[g(x)], j = L,..., J thus ensuring that U; > 0
for all positive, zero or negative g,(x). Then

J 1/p J
{ 21 UL,”} = { 2 em[pg,(x)]}“" 32)
i= i=1

And from (30),

J 1ip
lim {Z exp[pg(x)]} — Max Cexplg (1) (33)

p~w (j=1 Jed
Taking natural logarithms of both sides and noting that,
log im(f) = lim log (f) and log Max(f) = Max log (/) (34)

Equation (33) becomes.

g
lim (i/p) 103{2 CXP[PQ,-(x)]} = Max (g(x)> (35)
P =1 jed

Result (35) holds for any set of vectors g(x), including that set which results from
minimizing both sides of (35) aver x € X. Thus (35) can be extended to:

Min Max {g,(x); = Min (1/p) log{

xeX jeJ xeX

=13XP[P9',(X)]} (36)

J

with increasing p in the range 1 < p < 0.
Result (36) shows that the minimax optimization probléem may be solved by the
minimization of the scalar function,

/) 1og{_§1exp[pg,{x)1} @7

over variables x € X with a sequence of values of increasingly large positive p = 1,

Reference [4] explores further the relationships between the minimax optimization
problem (31) and the scaiar optimization function (37), and extends the equivalences
to general multicriteria optimization. It is shown in Ref. [4] that the Shannon/Jaynes
maximum eniropy principle®” plays a key role in these classes of problems, hence the
characterization of these methods as entropy-based.

For the purposes of this paper these entropy considerations are incidental so this
aspect is not pursued further. In this work the minimax optimization problem (28) for
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the cable net structure with goals defined by Egs. (24) to (27) was solved by the scalar
minimization of function (37) in the form:

J+2K+1

Min (1/p) log{ 3 expng;{m]} (8)

j=1

over an increasing positive sequence of values of p.

3.3 Secalar Optimization

Problem (38) is unconstrained and differentiable which, in theory, gives a wide choice
of possible numerical solution methods. However the goal functions g (D) in (38) do
not have explicit algebraic forms in most cases. In particular #; and AF, in goals (25),
(26) and (27) are only calculable numerically and are found from the analysis results of
a particular design. This presents a considerable impediment to the optimization
Process.

The strategy adopted was to solve the implicit optimization problem (38) by means
of an iterative sequence of explicit approximation models. An explicit approximation
to problem (38) can be formulated by taking Taylor serics expansions of all the goal
functions g2 in problem (38), truncated after the linear terms. This gives:

F+2KE+1

N7
Min (1/p) log{ Y. exp p[g_,-(D°) # 3, (%) (D - DDJ]} (39)
n i=1 De

ji=1 i

where N is the total number of design prestressing force variables D, and D° is the
current vector of those variables at which the Taylor series expansion is made.
Problem (39) is now an explicit approximation to problem (38) if values of all the
g{D°) and (8g;/6D;)po are known numerically. Given such values (and Section 4
addresses this aspect), problem (39) can be solved directly by any standard uncon-
strained optimization method. In the examples presented later, a quasi-Newton
algorithm (the NAG Library routine EO4JAF) was used to solve (39).

Solving (39) for particular numerical values of g(D") and (dg;/8D;)po forms only
one iteration of the complete solution of problem (38), however. The solution vector
D! of such an iteration represents a new design which must be analysed, checked for
feasibility, altered if necessary, and gives new values for g{D") and (dg;/0D,)y: to
replace those corresponding to D° in (39). Iterations continue until changes in the
design variables D become small. Also, during these iterations the parameter p must
be increased in value to ensure that a minimax optimum solution is found.

Section 5 describes the optimum design algorithm in more detail, but first the
determination of numerical values for the goal functions and their derivatives in
problem (39) is considered.

4 SENSITIVITY ANALYSIS

To formulate and solve the explicit approximation problem (39) numerical values are
required for all the goal functions g (D) and all their first derivatives with respect to
the design variables D. Goal (25) is explicit and need not be considered further. Goals
(26), however, contain all the nodal displacement under all loading cases and these are
implicit functions of D. Given some design variabie values a full analysis of the cable
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net will yield numerical values for all the u;. The first derivative of each element of u;
with respect to each design variable is also required, and their calculation is a
considerable task. One way of evaluating these derivatives is to calculate them from
analytical expresssions, as follows.

The cable net equilibrium equations (16) may be differentiated with respect to a

particular design variable D, as below:

K K(’f‘uj B apP; 2 OR;
a0, %t %3p,~ ~ap, T ap,
Hence
dw, . P, @&R; 3K .
@, ¥ {m+aﬁ.‘a—a“i- 0

the &P;/@D, terms in (40) are all zero as the P, are transverse applied loads. Analytical
expressions for the @R /D, terms in (40) can be written by direct differentiation of
Egs. (13) or (19), and the terms 2K /2D, come from an analytical differentiation of the
left-hand sides of Eqs. (12) or (18). Care must be taken, particularly with the stiffness
matrix derivatives, that the appropriate equations from (12) or (18) are differentiated
and combined together according to the structure of the stiffness matrix itsell. Note
also that design sensitivities must be calculated for both the zero configuration and for
the zero configuration plus each applied load case.

The evaluation of design sensitivities for cable net structures by the above analytical
approach is computationally efficient, but requires great care, programming skill and
time to write the necessary coding. An alternative means of calculating sensitivities
which is much simpler to implement but uses much more CPU time is to use finite
difference approximations for the derivatives. This was the method used in this work
since the number of design variables in the examples (¥ = 8) is not very large. The
scheme adopted used backward finite differences in order to give a check on the
possibility of slackening of a cable.

For finite difference sensitivity analysis the current design is first analysed in full
and then a further N complete analyses are performed, reducing each design variable
in D in turn by a small amount, AD. Approximate values for the derivatives of nodal
displacements, for example, are then given by

du;  u(D) —uD — AD;)

i

éD, "~ AD,
Goals (26) and (27) contain quantities AF,, and represent the forces in all individual
segments of the cable net. Values of these for any particular design are given by a full
analysis but derivative values are also needed by problem (39). Tn the present work
they were obtained through the backward finite difference scheme but they may also
be calculated analytically by differentiation of Eq. (9).

(41)

5 THE OPTIMUM PRETENSION DESIGN ALGORITHM
The previous sections have examined the major elements of the design method—the

non-linear analysis of the net, the minimax optimum design formulation and its
solution, and the sensitivity analysis of the structure. All three major elements are

EQ.—-C
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complicated and time-consuming to perform. Fach of the clements is iterative. To
combine these elements together into an automatic optimum design program of
general applicability to cable net structures would be a major task and the use of such
a program on a large cable net structure would require a large amount of CPU time.
This was not attempted in this work.

Instead, an interactive strategy was used in combining the elements together, with
the operator carefully monitoring iterations, guiding the desigh process towards a
feasible and pseudo optimum solution, and terminating the process when satisfactory
results were obtained. No guarantees of optimality can be given for such a strategy.
Indeed the strategy did not aim at finding an accurate, unique solution: the overall
aim was to take an initial design for a cable net structure and to make successive
improvements to that design by the methods described until the rate of improvement
became too small to warrant further computational effort. Viewed in the context of
this strategy the algorithm outlined below was very successful.

5.1 Initiglization

For the given cable net structure a uniform pretensioning force distribution in all
cables was assumed for initial design purposes. Complete prestressing plus applied
load analyses of the cable net for different values of this uniform pretension force
enabled an approximate lowest value to be found which gave a just-feasible design.
The cost ¢'D of this prestressing formed the reference cost Wagainst which improve-
ments in cost were measured.

The minimax optimization algorithm requires a sequence of positive values of p
increasing towards infinity. Many different schemes are possible. One way of
estimating a value for p is to iterate to that value which makes the objective function of
problem (38) stationary with respect to p; i.c. to iteratively solve

JA2K+ 1 J+2K+1
{ Y explpg ,-(D)]Hlog Y explpg ;(D)]}
i=1

_ i=1
= JFIE+1

2. afD)explpg(D)]

(42)

From this expression it can be seen that p increases as the infeasibility of the current
design decreases, i.e. increasing p tends to enforce feasibility. Also, expression (42)
requires the starting point to be infeasible in order to generate p > 0. In practice it was
found that the optimization algorithm works well even when the starting point is
feasible though is improved by the use of an infeasible starting point. In the present
work a value of p in the range 30 < p < 50 was used for the first iteration of problem
(39). For subsequent iterations p was increased to 100 then 200 by the operator.

5.2 The Algorithm
1) Find the zero configuration for the structure loaded by the pretension forces
only, and the deviations of the zero configuration from the reference configuration.

2) Analyse the structure for pretension plus each applied load system using the zero
configuration as the initial geometry.
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3) Perform the sensitivity analysis of the structure by backward finite differences
for all types of loading. This gives numerical values of all goal functions and their first
derivatives for use in problem (39).

4) Choose a value for p and selve problem (39) by any unconstrained optimization
method (such as NAG EO4JAF). This gives new estimates for all the pretension
forces.

5) Repeat steps 1 and 2 for the new pretension forces,

At this point the results of the iteration are assessed and a choice is made from several
alternative strategies for further iterations, as follows.

A) If the new design is feasible with reduced cost, retain it as an incumbent
optimum design. Use it as a starting point for a further iteration of problem (39) with
the same value of p, starting with a new sensitivity analysis, step 3.

B) If the new design is feasible with only a small reduction in cost, retain it as an
incumbent design. Use it as a starting point for a further iteration of problem (39) with
an increased value of p, starting with a new sensitivity analysis, step 3.

C) 1II the starting design is feasible and the new design leads to a cable structure
design of higher cost, increase the value of p and repeat the iteration of problem (39)
with the same data.

D) If the starting design is feasible but the new design is infeasible, scale up the
pretension forces in order to restore feasibility. Use this as a starting point for a further
iteration of problem (39) with the same value of p, starting with step 1.

E) If the starting design is infeasible and the new design is less infeasible, reduce the
value of p and repeat the iteration of problem (39) with the same data. If the new
design is more infeasible stop the algorithm and use the incumbent design as the
optimum.

6 NUMERICAL EXAMPLES

The algorithm described in Section 5 has been used to find the optimum distribution
of prestressing forces in the hyperbolic paraboloid cable net first described by
Krishna? who used it as an analysis example, and which was subsequently used as a
design example by Cinquini and Contro®. The geometry of the reference surface is
shown in Figure 2. The extensional stiffnesses (EA) of the sagging and hogging cables
are 293.6 MN and 197.5 MN respectively. Three loading cases were chosen from Ref.
[2] for design purposes and are shown in Figure 3.

Symmetry of the cable layout implies that this nel may have eight different
pretension forces in the different cables so the design problem has eight design
variables D, to Pg. Four different design problems were studied corresponding to four
different combinations of minimum permissible cable force and maximum permissible
nodal displacement. Target values used were 190 kN and 335 kN for minimum cable
force F_. and 0.8 m and 1.0 m for maximum nodal displacement u,, from the
reference surface. As a starting point for all designs a uniform prestressing force of 670
kN in all cables was used. This represents an infeasible design for three of the four
examples. The cost cocfficients used were ¢’ = (146.4. 219.6 146.4 73.2 146.4 219.6
146.4 73.2).



134 L. M. C. SIMOES AND A. B. TEMPLEMAN

Sagging
D,
T 5
De DN
D3 Ds _ Ds D}\
2P | 07 D2
73-2m Dy|Ps " Ds|n, HEEING
Ds e Dy
0y D,|2
D D
\3 Og | Ds| 2
D.|D.
¥ Dy
I 73‘2 m ‘_J
"~ =

3-66m
3-66m

Figure 2 Hyperbolic paraboleidal cable net example.
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Table 1 Optimization results for the four exam-

ples.

Example No. 1 2 3 4
Dy (kN) 906 438 945 890
D, 567 711 607 821
Dy 364 360 368 485
D, 407 106 408 184
Dy 722 868 712 240
D, 677 775 643 756
D, 460 592 456 591
Dy 278 387 204 399
Fin (KN) 199 335 206 335
B (M) 0.89 0.99 077 0.77

W(kNm x 10% 686 751 688 800

Example 1

For this example target values of F;, and u,,, were 190 kN and 1.0 m respectively.
The solution for a uniform prestressing force distribution has a cost of 776 x 10> kNm
units corresponding to a horizontal component of D = 663 kN prestressing in each
cable. The final design is tabulated in Table 1 and its cost 1§ approximately 129, less
than that of the uniform design. Figure 4 shows the reference. zero and leaded
configurations of the sagging and hogging cables under the uniform load case 1. Such
configurations are typical for all the examples. Figure 5 shows diagrammatically those
cable segments in the final design in which the axial force is between F,_;, and
1.1 % F, (indicated by heavy lines) under each load case and those cable segments in
which the lower bound is exactly attained (indicated by stars).

Sagging

Hogging

— reference configuration

—-— zero configuration

— — = pretensioned and loaded
configuration.

Figore 4 Typical cable configurations.
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Figure 5 Cable minimum force maps. Example 1.

This example had a feasible starting point and the selution of Table 1 was obtained
after two iterations of problem (39) with p = 50. Further iterations produced no
further improvements.

Example 2

In this example target values of F_, and u_,,, were 335 kN and 1.0 m respectively, i.e.
cable elements may not be as lightly loaded as in the first example. The uniform
prestressing solution for this example has D = 790 kN in all cables and a cost of
925 % 10® kNm units. The final design given in Table 1 is 199 cheaper than the
uniform design. Figure 6 shows maps of cable segments which are near or at their
minimu force limits under each applied load case.

In this example two iterations of problem (39) were carried out with p = 50, two
with p = 100 and two with p = 200. The starting point is infeasible for this example,
but the first iteration leads to a feasible design which is 14 9/ cheaper than the uniform
design. The subsequent iterations raise this saving to 19%, It was noted that the
prestressing force distribution changed very little after the second iteration. Thus the
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Figure 6 Cable minimum [orce maps. Example 2.
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Figure 7 Cable minimum force maps. Example 3.

sensitivity information used for the second iteration could also have been used for
subsequent iterations with little effect upon accuracy but with very large savings of
CPU time.

Example 3

Target values of F;, and u,,,, were 190 kN and 0.8 m respectively, i.e. more stringent
nodal displacement limits than in the first example. The uniform prestressing force
solution has D = 978 kN and a cost of 1145 x 10° kNm units. Table 1 gives the final
design results and cable minimum force maps are shown in Figure 7.

The Table 1 solution was obtained after two iterations of problem (39) with p = 50.
From an infeasible starting point the first iteration resulted in a feasible design with a
saving of 35 % over the uniform design. The second iteration raised this cost saving
figure to 40%, but very little further savings were made in subsequent iterations.
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| 3 | N
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Figure 8 Cable minimum force maps. Example 4.
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Example 4

This example had the most stringent set of limits among the examples studied: F;,
was 335 kN and u_,, was 0.8 m. The uniform prestressing force solution is as for
Example 3. The final design is tabulated in Table 1 and Figure 8 shows maps of cable
segment minimum forees,

In this example the usual starting point of p = 50 had to be reduced to p = 30 in
order to reduce the infeasibilities in the starting design. Eventually the Table 1 result
was obtained after two iterations at p = 100. The final design represents a saving of
309 over the unilorm design.

In all four examples load case 1 dominated the final optimum design in the sense
that a design optimized for load case 1 only also satisfied load cases 2 and 3. It is noted
that the greatest savings were made in the last two examples, both of which had
stringent displacement limits. More examples would be needed to confirm whether
this is a significant result but it may indicate that prestressing force optimization is
particularly valuable in cable nets in which small displacements are required. Cinquini
and Contro? also give solutions for all these four examples but direct comparison with
the results presented here is not possible. Their results for examples 1 and 3 seem to be
in error since a full non-linear analysis of their optimum designs reveals that some
cable segments not only violate the minimum force limit but are actually slack. In
examples 2 and 4 similar full analyses reveal that although the nodal displacement
limit is satisfied at node 13 (where a maximum displacement might intuitively be
thought to occur), at nodes 12 and 14 the displacement is actually greater than at node
13 and the limii is exceeded by a considerable amount.

7 DISCUSSION AND CONCLUSIONS

This paper has shown that the optimization of cable net structures must be classed as
a difficult problem. The prestress optimization process has three major elements:
analysis, sensitivity analysis and optimization. Each of these elements is significantly
difficult and requires considerable computational effort. A completely automatic
optimum design program which combines all three is currently not an achievable goal
but the use of optimization in a user-interactive mode is feasible and can result in
considerable reductions of prestress levels over a uniformly prestressed design.

The non-linear analysis of pretensioned cable net structures involves considerable
computation because the shape-finding problem must be done iteratively. With
pretensioned nets at least two shape-finding problems must be solved in each analysis:
one to find the shape of the zero configuration under pretension forces only, and one
more for each applied load case. The Newton Raphson method used in the present
work proved efficient and acecurate.

Because the non-linear analysis can only be done numerically it is not possible to
obtain closed form algebraic expressions for most of the functions needed in the
optimization model. Consequently the optimization must be based upon approximate
models which employ numerical function values and first derivative values calculated
for particular designs. The non-linear and iterative nature of the analysis process
means that the calculation of the necessary sensitivity information must inevitably be
expensive in programming effort and CPU time by whatever means it is done.
Analytical sensitivities were not used in this work although they might be preferable in
terms of accuracy and CPU time to the backward finite difference method used here.
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The minimax formulation adopted in this work is satisfying in that it allows the
simultaneous optimization and control of many different engineering goals. The
entropy-based approach to solving minimax optimization formulations also proved
very successful in transforming the problem to a scalar optimization with just one
control parameter, p. In another application® it proved fairly easy to develop rules for
choosing a suitable increasing sequence of values for p which caused smooth
convergence to an optimum solution. In this cable net optimization it proved more
difficult to provide clear-cut rules for up-dating p. This is probably because of the
highly nion-linear nature of cable net structures. However, with care and experiment
suitable values for p can be found. Tt is worth neting in this context that all the
examples solved gave very substantial reductions in total cost of pretensioning after
only the first iteration with a preset value of p between 30 and 50. In all cases the first
iteration was responsible for approximately 807%; of the total savings made.

The examples solved in the course of this work provided considerable insights into
the behaviour of prestressed cable net structures. Nodal displacements and individual
cable segment forces were sometimes very sensitive fo comparatively small changes in
the initial pretensioning forces. Structural intuition was very poor at predicting which
cable segments might become slack or which node would have the largest displace-
ment. Cable net structures appear to resist very similar loading cases by very different
structural actions. This is disturbing from a design point of view and needs further
investigation. It also suggests that many local optima may exist in this design
optimization problem. This would not be surprising but has not been investigated.
However, experience with the current algorithm in respeet of its convergence shows
that the initial iterations reach the general area of an optimum quickly and smoothly
but further iterations do not home in on a solution as would be expected if only a
single solution were present: the final convergence of the algorithm may be affected by
the presence of several different local optima.

Finally, this work has only touched the surface of the general area of optimizing the
design of cable net structures. It is possible to criticise many aspects of this work.
Nevertheless it has shown that there are considerable potential savings to be made
through the use of optimization in the design of pretensioned cable systems and has
raised more questions than it has answered about the behaviour of such structures
under load.
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