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In two previous papers [1,-2] the dynamic polarizabilities of the hydrogen
and helium atoms and the long-range dispersion energy coefficients between
pairs of these atoms have been calculated by the variation—perturbation method
proposed by Karplus and Kolker [3]. The calculations were performed within
a one-centre model approach. It was shown that simple first-order wave-
functions built up from one or two Slater-type functions with frequency-
dependent exponents optimized by the differentiation of the Karplus and
Kolker functionals [3] and subject to the conditions used in [1], vielded good
values for the dynarmc polarlzablhtles and the long-range dispersion energy
coefficients. In our opinion, this approach provides a simple and quick method
of estimating long-range interatomic parameters with reasonable accuracy. In
this work we apply the same method to the calculation of the dynamic polariza-
bilities and long-range dispersion energy coefficients of the alkali-metal atoms.

It is well known that the differentiation of the functionals

L= _ {(ﬁi‘“(r)fH‘m B 4 ﬁzw/:f W)y
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with respect to the variational parameters included in the expression of ¢, M)(r),
(8L, )=0, provides approximations to the first-order time-independent functions
$ . B(r}y [3] (G™(r) is the 27-pole operator and iw represents the imaginary
frequency). In particular, if

pM(ry= ¥ *6, (2)

where the functions 8, diagonalize the unperturbed hamiltonian, K%, and are
orthogonal to the ground-state eigenfunction ¢0r), the stationary values of
L, with respect to variations in the the coefficients ¢;* yield
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The atomic model used to calculate (3) consists of a non-polarizable inert-atom
core plus the valence electron whose ground-state wavefunction is represented
analytically by the SCF Clementi function [4]. The excited pseudostate used
in the basis for the variational calculation is a single Slater-type orbital with

(3)

4 Some of these results were first reported at a seminar on * Computational Methods in
Molecular Physics ", held at Strasbourg an 3-3 September 1975).

41,2




1192 Research Notes

the frequency-dependent exponent, {. It is also assumed that the functional
dependence between the energy of the excited pseudostate and  is given by the
hydrogenic value for that orbital as the effective charge experienced by the
“ excited electron ’ should be close to one [5]. Hence, the optimized exponent
obtained from (2L /), =0 accounts also for the departure between the hydro-
genic potential and the self-consistent potential of the core as well as for the
neglect of the requirements of the antisymmetry in the wavefunction.

A question that now arises consists in deciding how to choose the frequency-
dependent excited pseudostates to include in the basis for the variational
calculation. One could consider the effective principal guantum number, #¥,
of the frequency-dependent Slater-type orbital, as a variational parameter, and
optimize L, with respect to both { and »n*. However, the inclusion of n* as an
additional non-linear parameter to optimize requires numerical integrations
in the evaluation of (3) and increases very much the computing time, In view
of the simplicity of the wavefunctions we use and of the discrepancies among
the previously reported values of the static polarizabilities and dispersion
energy coefficients, we think that an optimization of L,({, n*) with respect to a*
would only increase the labour of the caleulation.

We have chosen the Slater-type functions to include in the basis for the
variational calculation of «%(iw) from an inspection of the values they give to
the excitation energies, oscillator strengths and static polarizabilities. Before
we pass on and look at these values, it is perhaps important to mention that the
values of the static dipole and quadrupole polarizabilities of the alkali-metal
atoms are dominated by the contributions of the first resonance transitions [6-8].
If a two-term representation of the dipole polarizability at imaginary frequencies,
i) = [LI(AE 2+ 202 + LI A E,* + #%w?), is used to reproduce optical data of
the alkali-metal atoms and the value of 7, is fixed at the oscillator stréngth value
of the first resonance transition, then the first term gives a contribution which
exceeds, at zero frequency, 98 per cent in all cases {6]. Im table 1 we present the

Pseudostates
Atom and referénces AR, i o = f AR,

Li 2p:(0-4848) 0-0714 0-805 158-0
3p:(0-6822) 0:0775 0-892 1485
[6] 0068 (0:75 162

Na 3p(0:6627) 0-0637 0-569 2142
4p:(0-8279) 0-0730 1000 187-6
5p:(0-9848) 0-0821 1:112 1650
[6] 0077 0-98 165

K 4p((-7618) 0-0399 0-802 5036
3pa(0-8852) 00487 0-997 420-2
6pz(1-0085) 00564 14154 3628
Tp:(1-1323) 00631 1:275 32041
Bp=(1-2587) 00693 14176 2449
[6] 0059 1-01 290

Table 1. The excitation energy (AE;,) and the oscillator strength (f,) of the pseudo dipole
transition at zero frequency, and the static dipole polarizability compared with the
values of wy, f; and f,/w,? taken from table 3 of [6]. The numbers in parentheses are
the exponents optimized at zero frequency.
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values of the excitation energies, oscillator strengths and static dipole polariza-
bilities calculated using different Slater-type functions to represent the excited
pseudostates orbitals, and the corresponding values of those quantities taken
from the first term in the analytical representation of a«''(iw) [6]. From this
table we have selected the orbitals which are then used to represent the single
excited pseudostates in the calculation of the optimized exponents at each
separate frequency and of the dipole polarizabilities at imaginary frequencies
(table 2).

As to the quadrupole polarizabilities, the results we present in table 3 show
that the choice of the Slater-type function used to represent the excited pseudo-
state in the quadrupole transition is not so critical as it was for the evaluation of
the dipole properties. Moreover, there are few accurate values of the quadru-
pole polarizabilities reported in the literature which can be used for comparison.

fas Cnpr(zpz) writ D (i) Lopt(Spz) -“Nam(iw) Lopt(Tp2) OtK(l)(i_m)

00 04848 1-580 (2) 0-9848 1:650  (2) 1-1323 3201 (2)
02 04752 1794 (1) 09798 2:382 (1) 1:1169 2:609 (1)
D4 04727 4908 (0 0:9787 6679 (0) 1:1141 7-808 (D)
06 04715 2:221 () 0-9781 3037 () 1-1130 3519  (0)
D8 04708 1257 (0) 0-9778 1722 () 11123 1-989  (0)
1.0 04704 8:072 (—1) 09776 1106 (D) 1-1119 1276 ()
20 04694 2:027 (—1) 0:9772 2780 (- 1) 1-1111 3200 (=13
40 04689 5073 (—2) 0-9770 6958 (—=2) 1-1106 8006 (—2)
6:0 (4687 2-255 (—2) 0-9769 3093 (—2) 11103 3559 (—2)
80 (4636 1:269 (—2) 0:9769 1:740{ —2) 11104 2002 (=2)
10:0  (-4686 812 (=3) 0:9769 1114 (=2) 11103 1:281 (—2)
10040 04684 80D (—35) 0-9768 -1 (—4) 1-1102 143 (=4

Table 2. The dipole polarizabilities of atomic lithium, sodium and potassium at imaginary
frequencies. The Slater-type functions used in the basis for the variational calcula-~
tion were optimized at each separate frequency. All the values are in atomie units.
The numbers in parentheses under x are powers of 10 by which « is to be multiplied.
a.u. dipole polarizability = $mega,® = 0-164878 x 10-4° C? m* [,

Pseudostates .
Atom and references AEy, fa a®=f AE2

Li 3da+(0-4634) 0:1492 324 1453
4d+(0-6062) 0-1497 32-8 1466
18] — 36-9+£0:6 1413 £26

Na 4dl.(0-5809) 0:1333 39.3 2211
5d::(0-7140) 01356 399 2167

K 5d(0-6297) 0:0964 61:8 6650
6d.4{0-7437) 0-0989 63:0 6442
7d:2(0-8360) 0-1016 640 6193

Table 3. The excitation energy (AE;) and the oscillator strength (‘fg) of the pseudo
quadrupole transition at zero frequency, and the static quadrupole polarizability.
The rumbers in parenthesis are the exponents optimized at zero frequency.
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fres Lopt(3d ) aritP(iw) Lan(5de) e (i) Copt(7de)  ar®(iw)

00 4634 1453 (3) 07140 2167 (3) 08560 6193 (3)
02 (4868 5307 (2) 07416 6934 (2)  0:8814 1:286  (3)
04 04953 1:850 (2)  0-7504  2:298 (2) 08878 3822 (2)
06 0:4997 8901 (1) 07548 1089 (2}  0-8907 1762 (2)
0-8 05024 3164 (1) 07574 6275 (1) 08924 1004 (2)
10 0:5042 3356 (1} 07592 4064 (1)  0-8935 6469 (1)
20 0-5083 8586 (0)  0-7632 1033 (1) 08959 1632 (1)
40 0-5111 2163 (D)  0-7655 2:597  (0) 0-8972 4090  (0)
60 05120 9631 (—1) 07663 1156  (0)  0-8976 1819 (0)
80 0-5124 5422 (1) 0:7667  6504(-1)  0-8979 1023 (0)
100 05127  3-472(—1]  0:766%  4164(—1)  0-8980  &550(—1)
1000 05138 348 (—=3) 07679 417 (=3)  0-8985 655 (—3)

Table 4. The quadrupocle polarizabilities of atomic lithium, sodium and potassium at
imaginary frequencies. The Slater-type functions used 1n the basis for the variational
caleulation were optimized at each separate frequency. All the values are in atoraic
urits. The numbers in parentheses under « are powers of 10 by which x is to be

multiplied.
a.u. guadrupole polarizability = 4meya,® = 0461705 x 10-5 C* m* L.

Table 4 shows the optimized exponents and the quadrupole polarizabilities at
imaginary frequencies ealculated with the functions we have chosen.

The integrals which relate the long-range dispersion energy coefficients with
the polarizabilities at imaginary frequencies have been caleulated for 2w 2 100 a.u.t
using the trapezoidal rule. Both the static polarizabilities and the long-rarnge
dispersion energy coefficients agree reasonably well with previously reported
values (tables 5 and 6). In particular, the values we obtained for Cy and €
(quad—quad) agree well with the results obtained by Kultzelnigg using a two-
centre approach where the influence of the core electrons was represented by a
“eut-off * pseudopotential [9].

Atorn aM(w=0) D {w=0) References

Li 1580 1453 This work
167-9+0-3 1413+ 26 [7, 8]
135:0+20 [10], exp.
1629 [6]

Na 1650 2167 This work
135 +£17 [10], exp.
166:1 [61

K 3201 6193 This work
243 + 30 [10], exp.
290-9 [6]

Table 3. The static dipole and quadrupole atomic polarizabilities compared with previously
reported values, All the results are in atorhic units.

+ a.u. frequency = hartree/fi~4-134138 « 107 Hz,
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Interaction C; Cy Clguad—guad) References
Li...Ti 1340 34 x10% 2-8 % 100 This wark

1458+ 8 84070 + 2883 (7, 8]

1230 84 x 104 2:8x 108 9]

1380 (9) — = (6]
Na...Na 1679 1-4 %108 56 % 10° This work

1588 1:2 x 10° 43 % 10° [9]

1580 (40) — — [6]

920 — — [11], exp.

K...K 4859 53-8 x 10% 34 x 107 This worlk

4040 4-0 % 107 204 % 107 (91

3680 (420) — — (6]

1590 — — f117, exp.

Table 6. The long-range dispersion energy coefficients for pairs of lithium, sodium and
porassium atoms. The values given in parentheses are estimates of the core contribu-

tions,

All values are in atomic units.

REFERENCES

(1] Temxema-Dras, J. J. C., and Varanoas, A, J. C., 1973, Molec, Phys., 25, 1185.
2] Teixerra-Dias, J. J. C., and Varanpas, A. J. C., 1974, Chem. Phys. Left,, 26, 197.
[3] Karprus, M., and Kovxer, H. J., 1963, ¥. chem. Phys., 39, 1493,

[4] Crementt, E., 1965, IBM F. Res. Develop., 9, 2.
[53] Dugranm, P., and Barvuerar, J. C., 1973, Theor. chim. Acta, 38, 283,
[6] DaLcarNo, A., and Davison, W. D, 1967, Melec. FPhys., 13, 479.

[7} Kousa, . E., and Mgatsa, W. ]., 1973, Molec. Phys., 26, 1397,
[8] Kousa, J. E., and Mgarr, W. J., 1974, Molec. Fhys., 28, 829,
[9] Kurtzeinice, W., 1969, Chem. Phys. Lett., 4, 433,
[10] Savoe, A., PorLack, E., and BepersoxN, B., 1961, Phys. Rewp., 124, 1431.
[11] Buck, U., and Pavry, H., 1965, Z. Phys., 185, 155.



