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An clastic-perfectly plastic discretized structure subjected to given proportional
loads. undergoes displacements, some of which are measured. On the basis of this
experimental data the yield limits and the hardening coefficients are sought,
whereas the elastic properties are known. A number of possible ways of tackling
this inverse problem are outlined and’ discussed. The present paper contains
results on the sensitivity analysis for elastoplastic problems in the case of discrete
structures modeled by finite elements. This formulation covers situations where
inaccuracies of practical significance with known statistical properties affect both
the measurements and the modeling of the real system.

INTRODUCTION

Little attention has been paid to inverse problems in
quasi-static elastoplasticity. However, there are practical
reasons for the indirect identification (through in situ
measurements on the overall response) of parameters
which characterize the local resistance of complex
systems, such as rock masses and other geotechnical
formations. The calibration in this sense of an
elastoplastic mathematical model embodying the Mohr-
Coulomb yield criterion has been investigated.' A quite
natural measure of discrepancy between the measured and
the theoretical displacements is provided by the Euclidean
norm of the difference vector. The minimization of this
error with respect to the parameters appears to provide a
way of identifying these parameters. Direct search
techniques have been applied but involve, by its very
nature, the solution of a sequence of analysis problems of
the system for given parameters and, hence, turns out to
be generally time consuming and costly. This special
problem of identification under a suitable hypothesis of
piecewise linear yield surfaces, and no local unstressing
under increasing loads, is amenable lo the minimization of
a convex quadratic function under linear and comple-
mentary constraints. Exploiting this circumstance, thé
resistance identification was rediced to a particular
problem in non-convex quadratic programming.2 How-
ever, this algorithm is limited to structures where the
hardening coefficients are assumed as constants.
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The formulation proposed here treats the hardening
moduli as parameters to be identified (together with the
vield). In the inverse problem, it is convenient to have a
suitable method for obtaining the sensitivity of the
elastoplastic deformation, i.e. direciional derivatives of
response with tespect to variation of design parameters.
The sensitivity result can be used in its own right for the
solution of the inverse problem and a sequential
quadratic programming algorithm is suggested.

Alternatively, this mathematical program is set as a
multicriteria optimization and a Pareto solution is sought.
By using the maximum entropy formalism a solution may
be found indirectly by the unconstrained minimization of
a scalar function which is both confinuons and
differentiable and thus considerably easier to solve. The
post-optimality analysis also shows the sensitivity of the
parameters to identify with respect to perturbations of the
measured displacements. The procedure developed is
tested by means of a 50 element elastoplastic beam on an
elastoplastic unilateral foumdation.

THE ANALYSIS PROBLEM

The problem of elastoplastic analysis of structures
modeled by finite elements ean, under the usual
assumptions of small displacements and deformations,
be formulated as quadratic programming problems. For
the sake of simplicity, reference will be made to truss-

like structures. The matrix relations which govern the

elastoplastic response of these structures are known to
cover implicitly, just by re-interpretation of symbols, a
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Fig. 1. Stress-strain relation.

broader category of discrete structural models of
continua with piecewise vield loci. For the ith element,
a reversible (path independent or holonomic) siress-
strain relation of the type depicted in Fig. 1 is fully
described analytically by the equations:

d=é+p=(SV'0+p—p (1a)
#=—0 + (i +Hipi) >0 (1b)
gh=0"+ (rh+ Hyph) 2 0 (1c)
Pz 0 #ipl=0; $pr=0 (1d)

where ¢ is the total generalized strain, S' denotes the
elastic stiffnéss, Q' the generalized stress. pj are nomn-
negative measures of the inelastic strain termed plastic
multipliers. r,b} are auxiliary variables, referred to as yield
functions. r; and Hj arc non-negative constants, which
define the vield limits and the hardening modulus for
each i and j= 1,2, respectively. Plastic flow implies
energy dissipation and hence non-negative pj. It can
occur in a yield mode if, and only if, the corresponding
yield limit is reached.

Holonomic elastoplastic deformability laws which are
represented, for one-component two yield mode ele-
ments, by the relation set (1) will be considered here in
finite (not incremental) quantities. Such laws cover both
truly reversible non-linear elastic cases and irreversible
elastoplastic situations susceptible to the non-local-
unstressing hypothesis under proportional loads. The

relations for i=1,...,m will be assembled lor conve-

nience in the following matrix relations,
4=(S)"'Q+Np (2a)
=-NQ+Hp+r=>0 (2b)
p=0; ¢'p=0 (2c)

where 8 and H are diagonal matrices and N is a diagonal
[I-1] matrix. Let u and F denote respectively vectors of
the displacements of the free nodes (n degrees of
freedom) and of the corresponding given independent
nodal loads; Q and q will represent the m-veetors of
generalized stresses and strains, respectively. The
geometric compatibility and equilibrium equations

~ip—
p!
1g"Hi2 12
read:
q==Cn (3)
C'Q=aF (4)

where C is an m by n matrix which depends only on the
given layout of the structure and « is the load factor.
For structures described by an elastoplastic stress-strain
law with workhardening and for a given «, the resulting
stress vector (O is given by the minimizer of

Min 1/2Q'S7'Q + 1/2p"Hp (5a)
subject 1o,

C'Q =aF (Sb)

b= NQ+Hp+r>0 (5¢)

Qreal: p>0 {5d)

This problem has a solution if the design makes the
structure capable of carrying the given loads. The dual
of equs (5) is the convex quadratic program

o C'SC  —C'SN ||a
Min1/2[u" p']
N'SC N'SN+H||p
Hlaptr]|" (6a)
subject to,
u real; p>Q (6b)

By substitution of vectors g and Q, the relationships
(2a), (3) and (4) lead to the following expression for the
displacements:

u=ou" +Gp (7a)
where,
=K 'F, K=C'SC and G=K 'C'SN (7b)

The vector u° represents the elastic displacement vector
and marix G transforms vector p into the vector of
plastic displacements. By seiting

Q° =SCK™'F (8a)
A=H+NSN-GKG (8b)
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ong oblains the quadratic program,

Min 1/2p'Ap — p'(eN'Q" — r)p (9a)
subject to,
p=0 (9b)

that is equivalent to eqn (6). At the optimum solution of
the elastoplastic analysis problems, egns (8) and (11), all
the matrices and vectors involved are differentiable.
Moreover Lhe active constraints columns are linearly
independenl.

SENSITIVITY ANALYSIS

Elastoplastic analysis problems formulated as quadratic
programming problems involve eénergy functionals,
equilibrivm and yield constraints that depend on the
structural data and loading. The problem of determining
the variation of structural response subject to variation
of these parameters is considered in this section. A
general result for discrete structures is presented and
implications for the elastoplastic inverse problem dre
discussed. The general parametric quadratic program in
the form

Min(x,€) = 1/2x'Q(e)x —f(e)'x (10a)
suhject to,

A(€)x —ble) =0 (10b)

As(€)'x —Dble) <0 (10c)

will be considered, where ¢ is & real positive parameter, x
are real and the matrices Qe) are symmetric and
positive definite. Also, it is assumed that the matrices
Q(e),Ale)" = [4 () 4:(e)'] and the vectors f(e),b(e)
are differentiable at € = 0, with derivatives ', A and 1,
I'. The Lagrange multipliers for problem (10) are given
by the dual problem

Miny(x,€) = 1/2 ' Ple)p — gle)'p (11a)
with,
yreal; g, >0 (11b)

where the matrix P{e) and the wvector gle) are
differentiable with respect to e and are given by,

P(e) = A(e)'Q(e) ™ Ale);
gle) = A(e)'Q(e) '(e) — ble) (12)

In the dual problem P(e) and g(e) have derivatives P’
and g/, respectively. For ¢ > 0 small enough, the right-
derivative (sensitivity) p' of the Lagrange multipliers is
given as the unique solution of

Min1/2v'P(o)v— [¢ — P'u(o)]'v (13a)
subject to.
wreal Tor g {e);real (13b)

v:>0 for afo)ix—b(o);=0 and py(e);>0

{13¢)
v; >0 for ale)ix—»5(e);=0 and py{o);=0

(13d)
=0 for ale)ix—bla);, <0 (13¢)

The stationarity conditions can be used to find
sensitivities of the primal variables x/,

¥ = 0(0) ' [~Q'x(0) + 1 — Aplo) — Ale)']  (14)

It should be emphasized that this procedure gives the
right-derivatives. The left derivatives are the symmetric
solutions if the set of active constraints with zero
Lagrange multipliers 18 empty. In elastoplastic analysis
of structures with positive strainhardening, the solution
is unigue and the active vield constraints are associated
with positive plastic multipliers. The optimization
procedure for the elastoplastic analysis problem can be
nsed to provide the sensitivities as well.

NUMERICAL EXAMPLE

As an example, the plastic deformations and associated
sensitivities are computed for the elastoplastic founda-
tion represented in Fig. 2. The model has 26 degrees of
freedom and consists of 50 deformable elements.
Precisely 24 hinges where the flexural deformability of
the beam is lumped, and 26 springs, account for the
foundation deformability. The structural model is
subjected to live loads only.

For the elastic hardening behaviour characteristic of
the elements indicated in' Fig. 3, the hardening stiffness
equals 5% of the elastic stiffness specified for each
element.

The deformation profile at a = 2-13 for the beam

foundation 15 shown in Fig. 4, where the springs

undergoing plastic strains are indicated as straight
lines. It is worth noting that only the 20th hinge has
been activated (in sagging bending), whereas the upper
yield limit is just reached only in the 17th hinge, but no
plastic rotation has developed here.

Figure 5 represents the nodal displacements obtained
at different locations by using the sensitivity information
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Fig. 2. Elastoplastic beam on ¢lastoplastic foundation.
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for variations of the beam sagging moment, foundation
yield limit and hardening moduli.

The approximations agree with actual results, given
that the derivatives of the beam deformations do not
change significantly. Since the quadratic coefficients for
the sensitivity problem are the same as for the analysis
problem, it is necessary to assemble only one stiffness
matrix.

THE INVERSE ELASTOPLASTIC PROBLEM

The inverse elastoplastic problem can be described as
(ollows. Whereas the elastic stiffnesses are all known, the
strainhardening coefficients defining the diagenal matrix
H and the element resistances » will be the parameters to
identify. The yield limits depend linearly on some
unknown parameters gathered in vector R,

r=BR (15)

For instance, the m structural members might be 'a

priori’ subdivided into g groups of equal members, in
cach of which the 2 g resistances are unknown; then R
becomes an identification or colocation matrix of order
Zm % 2g with binary entries. The diagonal elements of
matrix A in egn (8b) are directly related to the
hardening matrix H. Some (say d) displacements
are measured in 1 tests performed on the structure along
4 loading process, say at levels a,...q,. This experi-
mental information (wy; h=1,...,dik=1,...,1) on
the overall response of the system to be exploited to
determine the unknown parameters R governing the
local elemental strength. Let uf, indicate the calculated
displacements, ie. the values which would be supplied
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Fig. 5. Nodal displacements.

by the governing relations set (mathematical model)
under the same loads for the same displacement compo-
nents subjected to measurements, generally depends on
the values of parameters fed into those relations.

A quite natural measure of discrepancy between the

-

Fig. 4. Deformation profile at o = 2-13.
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measured and the theoretical displacements is provided
by the Euclidean norm of the difference vector or its
square (should measures exhibit different levels of
confidence, then different weighting coeflicients would
be appropriate).

F = Dy i B (W — 1) (16)

The minimization of this error with respect to the para-
meters appears to provide a way of identifying them.

Entropy-based weighting coefficients

The maximum entropy formalism is a fundamental
concept in information theory.” In general terms it is
concerned with establishing what logical, unbiased
inferences can be drawn from available information,
On the basis of the information available, there is no
logical justification for a criterion which unduly favours
one specific coefficient rather than another. In view of
Shannon’s interpretation of the entropy function it is
entirely logical to maximize the entropy of the weighting
coefficients wy,. These are obtained by solving the
maximum entropy mathematical problem:

Max S/K = —Zj | qp—1 W In Wy (17a)
subject to,

Epmt k=t Wae = 1 (17b)

V=1 d5k=1 Whk ik = € (17¢)

Wi = 0 (17d)

S is the Shannon entropy, K is 4 positive constant and
the g,z represent the levels of confidence (or the square
of the digerepancy between measured and theoretical
displacements).

Equatien (17¢) has an unexpected value of zero. The
entropy maximization problem has an algebraic solution
for wy:

o exp[ﬁghk] 18
g = Yt gDk s XD O] (18)

in which f, the Lagrange multiplier for eqn (17¢) is
closely related to ¢ and can be found by substituting
result (18) into eqn (17¢). It may be deduced that for ¢
to approach zero from above, 8 must be chosen as
positive.

VARIOUS APPROACHES TO THE INVERSE
PROBLEM

In this section a number of possible ways of tackling the
identification problem formulated earlier is envisaged
and briefly outlined. Let D denote a binary ¢ x # matrix
which selects, among the » displacement components,
those subjected to measurements; thus, through egn (7a)
the d vector of caleunlated values for the kih test can be

éxpressed in the form,
g = D{eyn® + Gpy) (19)

Making use of eqn (19) in (16), the function to minimize
becomes a quadratic form in the plastic multipliers only.

MinF = B (pkMpy + bipy + cx) (20)
where,
M=G'DDG; by = 2G'D (a,Du" — u');

o = (" — ogu” D' ) (o, Du® — u)

It is worth noting that F is convex (as matrix M is
positive semidefinite) and does not depend on the
parameters R. These intervene in the minimization
constraints, which are directly supplied by eqn (2) on
the analysis problem and read:

ér = —uN'Q° + A(H )p, +BR >0 (21a)
Pe=0; dppe=0 (21b)

The constrained optimization problem to which the
identification of the local resistance parameters has been
cast, is characterized by a complementary constraint
requiring that between a certain pair of corresponding
variables at least one component must vanish. Its
peculiarity rests on the fact that the constraints are all
linear except the complementary condition. Besides the
non-linearity siemming from the product A(H )p; in eqn
(21a), the complementary condition makes the para-
meter identification problem non-linear and non-
convex. For simplicity sake, the experimental data is
assumed to be derived from a single loading condition in
the following sections.

Nonconvex parametric quadratic program

If the hardening coefficients in matrix H are assumed as
given constants and the identification problem is
conceived as a constrained minimization with respect
to vectors p and R, the only real source of mathematical
and numerical difficulties is represented by the com-
plementary requirement. At first, a quite natural way of
trying to circumvent this difficulty is to augment the
objective function with the complementary condition,
removing it from the constraints:

e [4550 2|2
+(b— pN'Q%)p+¢c (22a)
subject to,
Ap+BR > N'Q* (22b)
p=0 (22¢)

where p is a real positive constant. Tt can be stated that
problem (20) subject to (21) is equivalent to the non-
convex QP problem (22) in the sense that both
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minimum points coincide. Reference 2 provides a
two-phase method for obtaining the global optimum.
Now, if the hardening coefficients are regarded as
parameters to be identified, then inequality constraints
(22b) become non-linear and the non-lineasity of the
objective function increases in view of the parametric
naturc of A(H). The sensitivity analysis procedure
described previously for the general convex parametric
QP can be adapted here to identify a (at least) local
solution.

Sequential quadratic programming

The minimization of the guadratic error (unction F in
eqn (16) with respect to both R and H can be done
numerically. The objective function F(R,H) is given
implicitly via ‘the elastoplastic analysis programis.
u{R®, H")" is the displacement vecior of the structure
characterized by the vield limits R and hardening moduli
H in the dual program (6) (or in eqn (9)}. Therefore, F is
a continuously differentiable function of #°. The
derivatives of F with respect to the parameters can be
computed by using the results of the parametric
quadrati¢ program {13).

: ou
MinF =,_,, [aﬁ — (R H) S, (%‘) AR,
pEd
‘A, J1° .
+Sein () Al (23)
! “ aH.’ © :

For this problem where there arc only simple range
constraints imposed on (AR, AH;), computational
resulls can be obtained by the use of standard
sequential quadratic programming, By letting ¥ =
[R'H'], eqn (23) can be written,

. au;) (811?,\
=YL gl =) | =] AxAx
MinF i=152=1n h_l.d(axi’ J _"3’-’6,‘)0‘31(! X
o 81{(7 ] ANE
+ Ei—l-.nl‘hl‘a‘(a);)olwh — ay(x*)" ] Ax;
+ By altlf — ()T (24)

Solving eqn (24) for particular numerical values of
u, (X)) and (0w, (’ dx;)y0 forms only an iteration. The
solution vector x' of such an iteration represents a new
set of parameters which must be analysed and gives new
values for auy(x!)¢ and (8uj/dx,),] to replace those
corresponding to x in (24). Tterations continue until
changes in the design variables become small.

Minimax formulation

The information provided by the plastic multipliers and
yield functions reduces the dependence on the stipulated
bounds for the parameter changes in each ileration, The

mathematical programming algorithm described in this
section consists of solving a minimax problem that is
found by rewriting the objective function (16) and the
constraints (21) as goals in a normalized form. If F
represents a reference error, and p. ¢ the corresponding
plastic multipliers and yield functions, relation (16)
becomes

Cne1,dltly —ui ) < F=g(x)

I (€42
:@L:?@i_4go (250)

The sign constraints which imipose limits on the
varitions of non-zero multipliers p and yield functions
¢ lead 1o,

gﬂm=~Af“—lso (25b)
@m:+¥§sto (25¢)

where ¢ is given in eqn (2b). The sensitivity result is
obtained by considering the primal as well as its dual
problem and sensitivities are given for both the primal
and dual variables. The components of dp/dx and
¢/ dx are obtained from the piecewise solution of the
quadratic program and hence are discontinuous picce-
wise functions of x, The complementary constraint 1
checked after each iteration.

The problem of finding values for the cross sectional
areas which minimize the maximum of the goals has the
form,

+Bic - - Be) (26)

and belongs to the class of minimax optimization. The
procedure used to solve this problem is a recently
developed entropy-based approach. The minimax
problem (26) is discontinuous and non-differentiable.
of which both attributes make its numerical solution by
direct means difficult. In Ref. 4 it is shown that the
minimax solution may be found indirectly by the
unconstrained minimization of a scalar function which
is both continuous and differentiable, and is thuos
considerably easier to solve:

min, max,— (g, ...

Min, Max, . g(gi(x)) = Min (1/p)
log{¥ . exploge(x)]} (27)

over variable x with a sequence of values of increasingly
large positive p > 1. The scalar function minimization
allows the use of algorithms for convex optimization.
The strategy adopted was to solve the implicit
optimization problem by means of an iterative sequence
of explicit approximation models. An explicit approxi-
mation can be *formulated by taking Taylor series
expansions of all the goal functions in problem (27),
truncated after the linear term for g,(x) and gy(x) and
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the guadratic term in the case of gy (x):

. . ?
Min(1/p) log{ Y 2.€XPp [gk (x") + 2w (;;f) Ax,}
5 L/a

o]+ () 2]

X

1 Oz B
+5PesaTrein (), (‘a—)A &) 5

that is solved iteratively unmtil changes in the design
parameters become smalil.

Discussion

In order to identify R+ H parameters, one obviously
needs at least (R -+ H)r independent measured values.
This condition is not sufficient: if in the experiments the
plastic properties are not activated, the yield limits are
nowhere reached and lower bounds on the parameters
are provided by the elastic stresses related to the
solution. Practically, the solution is highly dependent
upen the number and positions of the measnrements.
Measurements should be made where the discrepancies
are potentially higher: in the neighborhood of the most
critical points both in compression and tension in an
unsymmetrical way.

Normally the number R+ H of independent para-
meters to identify is much less than the number (2m):
of the variables p which characterize the dimensions of
the non-convex quadratic parametric program. Clearly
the size of this identification problem Increases almost
proportionally with the number of 7 different tests and
should be ruled out. This is in contrast with both the
sequential gquadratic programming technique and the
minimax formulation which are¢ rather insensitive to
the test number. In the sequential quadratic program-
ming approach, the nodal displacements n are
approximated by first order Taylor series at the
current parameters (R°,H”) yielding a quadratic
program in the parameter changes (AR, AH). Since
the solution largely depends on the assumed bounds,
move limits should be small to avoid an erratic
behaviour. The minimax problem is less dependent
on the bounds stipulated for the parameter changes,
providing a smoother convergence. Hence the number
of cycles of analysisfoptimization in SQP is potentially
greater than in the case of the minimax approach. On
the other hand, the quasi-Newton algorithm used to
solve eqn (28) is less efficient than the routine used for
guadratic programming. The algorithm used 1o
minimize quadratic functions is subject ouly to upper
and lower bounds employed for the elastoplastic
analysis, sensitivity analysis and SQP uvses partial
LDL! factorization, The compuiational times are
comparable to those required for the factorization of
the quadratic coeflicients matrix.

INFLUENCE OF INACCURACIES IN
MEASUREMENTS

As long as it is ‘a priori’ known that there are no
inaccuracies in measurements and modeling of the
identification problem is treated in purely deterministic
terms, the minimum of the error function is zero. In real-
life situations inaccuracies of practical significance affect
both the measarements and the modeling of the real
system, One of the procedures for filtering such ‘noises’
is the post-optimality analysis of the quadratic program
giving the error function (24) with respect to each
parameter in furn. If the coeflicients ¢, represent such
sensitivities, the parameter changes can be obtained by
the linear approximation:

Ax = Yy gapAuy (29)

If the inaccuracies have known statistical properties,
the mean and variance of the parameter changes are
given by

Max = =14 G, (30a)
2
Taxt = Dp=1,4@Tax2
+ = Ld)::‘: 1 i 2 CuiPni O Ay, T Ax, (30b)

where p;; is the correlation coeflicients between Auw;, and
Ay, Inaceuracies due to other instrumental errors and
modeling can be treated in a similar way.

NUMERICAL EXAMPLE

The vertical displacements of the hinge points of the
beam on elastoplastic foundation represented in Fig. 2
are assumed to be measurable and the two yield limits of
the hinges, the compressive strength of the springs and
the hardening coefficients are to be identified on the
basis of those measurements. In principle it should be
possible to identify the yield limits, if the corresponding
yield modes are activated and if the number of measured
displacements is not Jess than the number of unknowns.
Different starting points were used and both the
sequential quadratic programming and the minimax
formulation gave results in two to three iterations. As
stated before, the quality of these solutions depends on
the location and number of the measurements and this
can be seen in Table 1. It should be noted that the
hogging vield limit of the beam cannot be identified
corzectly on the basis of the available information, since
there are no positive plastic rotations in the simulated
experiment.

Since the parameter identification process depends on
the precision of the measures, it is appropriate to test the
sensitivity of the method with respect to possible
measurement errors. An investigation has been carried
out by giving a 5% increment to every measurement.
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Table 1 information on displacement response to given loads has
Mensired Foundation Beam sagging Hardening been tackled here in the context of discrete structural
displacements yield limit moment moduli models with holonomic elasto-plastic piecewise-linear
Al 00% 01% 01% laws governing the local deformability. As the dual
17,19,21,23,24.26 00 0-1 o1 variables in the elastoplastic analysis problems have &
14,15,16,17 0-4 1-0 54 physical interpretation, (eg. displacements and plastic
17,18,19,21 01 03 16 strains) the sensitivities for the dual variables are also of
18,20.21,22 00 0 01 interest in the parameter identification context. Various
]1 ?]‘fgﬁ{ g? 8; ?é solution procedures resting on mathematical program-

The resulting errors in the parameters are 0-6, 1-3 and
3:4%, respectively. It can be seen that the effect on the
parameter identification is much less than the order of
magnitude of the measurement errors in the case of the
foundation yield limit and the sagging [imit moment and
smallerin the case of the hardening coeflicient. For some
other combinations of measurement discrepancies. the
error invelving this parameter might be higher, because
the displacements are rather insensitive with respect to
hardening moduli changes (as can be seen in Fig. 5). In
order to partially simulate measurement errors the
generated ‘measured’ displacements were rounded off
at the first decimal point. Also in this case the distur-
banees on the identified parameters proved to be
negligible (07, -1 and (-1%. respectively). The
procedure has also worked in a subsequent numerical
test, where the number of parameters to be identified is
increased by also assuming the zero tensile yield limit of
the spring to be unknown.

CONCLUSIONS

The present paper contains reésults on the sensitivity
analysis for elastoplastic problems in the case of discrete
structures and structures modeled by finite elements.
The result shows that determination of the sensitivities
can be based en the solution of an associated quadratic
programming with an unchanged guadratic term but
with changed linear terms and constrainis which are
given by the derivatives of the matrices involved ag well
as by the solution of the primal analysis problem. The
inverse problem of identifying yield limits on the basis of

ming methods, all capable of exploiting the peculiar
mathematical features of the proposed formuldation have
been devised and discussed. Inaccuracies primarily doe
to the approximations embodied in the model and
instrumental ‘noises’ affecting the measures have been
considered by the procedure employed for the sensitivity
analysis. The examples reported show that the yield
limits and hardening moduli are relatively insensitive
with respect to perturbation of the measured displace-
ments, provided these are chosen in location and
number such that they are affected by the local yielding
processes.
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