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Abstract

This work presents the Two-phase method for fuzzy
optimization of structures. In the first phase the fuzzy
solution is obtained by using the Leve] Cuts Method and in
the second phase the crisp solution, which maximizes the

ambership function of fuzzy decision-making, is found by
_sing the Bound Search Method. Illustrative numerical
examples involving skeletal structures and reinforced
concrete slabs are solved.

1 Introduction

In design and optimization problems material constants,
leading and structure geometry are usually considered as
given data, but in real world assumed values do not
correspond with actual ones. Therefore there may be
differences between nominal and real geometry, materials
may behave in a different way than the assumed one,
constant loading may actually vary during the structure
litetime. All of this is accounted by safety factors, which
amplify load magnitude, or reduce material strength, leading
in general to over-conservative siructures.
As an alternative to safety factors one may try to describe
the uncertain data and use this information during the
stimization, which in general leads to better results in
-rm of optimal design [1-2]. Probabilistic deseription is
nowadays common and very simple uop to very
sophisticated PDF can be wused to describe uncertain
parameters. However these procedures face serious
difficulties when being implemented in engineering
applications. This lead to nonprobabilistic deseription of
uncertainty, in particular the fuzzy-set based analysis and
the anti-optimization methods. The latter fixes bounds for
the uncertain variables instead of defining probability
functions needing much less information than the
probabilistic approach [3]. The Two-Phase Method for
fuzzy optimization of structures is based on the fuzzy-sel
methodl first proposed by Zadel in Rel [4] is proposed in
fﬁis work. In the first phase, the sequential fuzzy solution
15 obtained by using the Level Cuts Method, in which a
fuzzy optimization problem is transformed into 4 series of
ordinary optimlzanon problems using different o-level cuts
n fuzzy constraints so as 1o determine a fuzzy optimization
domain in the design space. This procedure has been
Suggested in Ref.[5-6]. In the second phase, the particular
Crisp solution is obtained by the Bound Search Mecthod, in
Which having obtained the supremum and the infimum of
the sequential fuzzy solution the particular optimum level

a* is tound using the bound search so as to pravide a crisp
optimization solution in the design space. This method
differs from that suggested in [6] on the basis of an
alyernative interpretation of the Belman-Zadeh optimality
criteria {7] which does not require the use of an arliflicial
fuzzy objective. Finally, the Twe-Phase Method is
illustrated by numerical examples of the fuzzy plastie limit
design of frames and slabs.

2 Fuzziness in Structural Design

A fuzzy information problem of structures can be stated as:
Find the design vector x which minimizes the objective
funiction W(x) subject to fuzzy constraints on perfermance
characteristics and dimeénsions. This is a fuzzy mathematical
programming problem, which can be expressed in a standard
form as follows (MP1):

min W(x)
stoglx) < b1L j=1,2, wem-1 (1)
gx)> j=m ..p

where the wave symbols 111d=can, that the constraints
contain fuzzy information, and b h are allowable upper
and lower limits of the jih constramt re:,pectlve]y

The membership function p(x) of the fuzzy allowab]e
mterval may he characterized as shown in Fig. 1. where b
and b are réspectively the Jower and upper limits of the
al]owah!e interval for the highest (most rigorous) design
level. These nray even be more strict than the spemﬁcat:ons
Cc:dcs (to be chosen by engineering requirements). d and
d are lengths of transition stages, namely the perml<51ble
dCV!allOﬂb or wlerances for the lower and upper limits.
Thus, MP| can be rewritten in the following form (MP2):

min W(g(_')

stog(x )<b +d j=1L2, pom-1 (2)
(x)>b d j=m, . p
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A proper function may be selected for tne tansition
stage curves of the membership function in the light of the
character of the physical variable g Usually, inclined
straight lines may be adopted for simplification.

Membership degree |L(x) may be defined as “degree of
satisfaction™ of the fuzzy constraint. When (x) =1, the
constraint is satisfied completely: when [(x) = 0 is not:
while its value lies between 0 and 1, the constraint is
satisfied to the relevant degree.

Some fuzzy information may also be contained in the
objective function W(x). For example, in objective
function

W(x) = C(x) + E(x) (3)
C(x) is the initial fabrication cest of the structure, E(x) is
the expected value of additional expenses during its
operation, such as maintenance cost, damage losses under
disaster and restoration cost.

3 Two-Phase Method

3.1. First phase (Level Cuts Method): For the sake
of simplicity only the method of solving problems with
fuzzy constraints is discussed in this work. If the
membership function of inclined straight lines may be
adopted, as shown in Fig.2, MP2 can be transformed into &
non-fuzzy mathematical programming at o-level as follows
(MP3):

min W(x) )
stogl b +d” (o) j=1,2 .., m]
gx) = bt -d" (J-w)  j=Emo..p
o € [0,1]
Hj K
U 1
’ 0 L. 41
bYj+dY bli-dl;

Figure 2: Membership function

This is a parametric mathematical programming in o e
[0,1], which can be solved by means of an algorithm for
optimization so as to determine the fuzzy optimization
solution x*(ct) and W{x*(a)) with different o values. It is
noted that a fuzzy optimization problem may have mixed
fuzzy and crisp constraints. In this case we shall accept
tolerances only on the realization of fuzzy constraints, but
erisp ones will completely satisfied. As shown in Fig.3,
the W (x*(c)) curve defines a fuzzy solution to the fuzzy
optimization problem of structures, which is a monotone
increasing function of ot

3.2. Second phase (Bound Search Method): The
Bellman-Zadeh criterion [7] of decision-making in a fuzzy
environment gives the grade of membership of a decision
specified by variables x as

Hy(x) = Min, wy(x) (5)

where i ranges over the complete set of constraints. The
function W{x) subject 1o fuzzy constraints, the fuzzy goal
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fuzzy constraints C and the fuzzy goal G in MP3 are defined
as fuzzy sets in the space of alternatives, characterized by
their membership functions pC and pp respectively.
Generally speaking, the fuzzy decision D characterized by
its membership function pD may be viewed as the
intersection of the fuzzy constraints and the fuzzy goal.

W

M

0

Figure 3: Fuzzy solution

The optimal decision is to select the best alternative from
those contained in the fuzzy decision space, which
maximizes the membership function of the fuzzy decision,
..

HD(x*) = max xeRp HD(X) (6)
In order to illustrate the above principle, consider one fuzzy
goal G with one fuzzy constraint C. The membership
functions I, L and their intersection p;, are plotted for
this case in Fig.4. This figure also shows that the point A
represents the optimal decision which has the maximum
degree of membership in the fuzzy decision set.
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Figure 4

From eq.(6), as demonstrated in [7], the particular optimum
Jevel a* and the optimum point x* are such that:
UG(x*) = max xeCo HG(X) (7

where o 18 the o®-level cut of the fuzzy constraint set C.
Now it is necessary to establish the fuzzy goal jlg(x) and its
upper and lower limits. It can be seen from Fig.3 that the
supremum and the infimum in the sequential fuzzy solatien
arg given by

M = W(x'(1)) = mine; W(x) (8
m = W(x (0)) = min,.ci W(x)

where C,, C, are the level cuts of & = 1 and 0 of the fuzzy
constraint set C.

In the problem of finding x which maximizes the ohjective
st [g(x) = W(x)/M. Similarly. in a fuzzy optimization




prroblem of structures to find x which minimizes the
objective function W(x) subject to fuzzy constraints, the
fuzzy goal can be established as follows:

LG (x) = m/W(x) &3]

As expected, this fuzzy goal shows that when W reaches its
infimum m the full membership (Ug=1) is obtained; as W
increases g approaches the non-membership (g=0).
Clearly, the upper and lower limits of the fuzzy goal are
given hy:

e (10)

u =1
l.lGL = m/M

As mentioned in [7), the optimum level can be derived
from eq.(7) as:

% %k
o = ug(x (@ ) (11)

4 Structural Relations

4.1 Frames: For the plastic limit design of a steel frame,
the simplest class of problems is when (1) the geometry and
topology are fixed; (ii) single loading state is considered;
(iii) the constitutive relations are those of perfect plasticity;
(iv) the plasticity is controlled by a single stress-resultant.
The mesh primal L, takes the following form:

Min z=(1' 0] [d] (12)
P
e Blie]
d = 0

where d are the design variables and 1 are the lengths of the
members associated with the corresponding design
variables. The mesh actions (indeterminacies) are dencted
by p and B is the mesh static matrix. The matrix J
describes the incidence of the design variables with respect
to the critical sections and m, is the vector of the particular
solution stress-resultant at the i-th critical section. If the
stipulations of the constraint set are fuzzified the problem
becomes the parametric linear program:

Min z=1{1' 0] (d (13)
p
st T -Blfd]=( m,-d, (-0
[J B][pjz[-mﬂ-du (1 -0 ]
d = 0

The solution gives a deterministic design d together with a
level of acceptability © in the face of fuzziness of the load
_ and plastic moment capacities.

4.2. Reinforced concrele slabs

For the class of problems indicated before, the primal LP
f_“" Pl"clstic limit synthesis in the nodal description using a
linearized yield condition incorporating finite elements are:

Minz={c¢ 0] [d] (14)
m
st o dl = |0
34 B2 ]
I 0 > | d

The program seeks the “best” yield-line pattern that can be
attained when the yield-lines are confined o the F.E.
boundaries. As for skeletal structure problems, the
constraints represent the static admissibility. For any
selected F.E. pattern, the plastic flexural deformations are
confined to the element boundaries whilst the interiors of
the elements remain undeformed plastically. Such
deformations correspond to the collapse mode. This method
automates the yield-line search within the selected FE.
system.

The vector ¢ is defined by,

d=rattst (15)
where J™ and I are the incidence matrices relating the plastic
moment capacity of the finite elements m**, m*” to the
design variables d for positive and negative bending
moments respectively.
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Figure 5

a’(or a’) are vectors of known constants S/(f,h") and
Si!(f,hi”) for positive (or negative) bending where S; is the
area of element i, T, the yield stress of the reinforcement and
h*, h¥ are the lever arms

I = [J.* ]
I

where I.' =[ A B]I* andJ, = [A B1J The elements of
matrices A and B are |; sinzﬁ_i and |; cos’®, respectively
where 0, is the angle between the interelernent side of
length 1, and the x axis (Fig.5).

Matrix U is defined hy,

(16}

U=[I1-1-] (17)

where 1 is the identity matrix.

The matrix E relates the vector of applied nodal forces 1, 10
the vector of total bending moments m across the FE
boundaries in the static equation:

ro = E'm (18)

d is the lower bound on the design variables d. The
elements of the matrices J* and I are fixed a priori by the
designer while the elements of the matrices B, A and B are
deterniined from the slab geometry.

In general, the overall geometry of the slab and the
reinforcement strength are known deterministically, whilst
the magnitudes of the applied loading and the lower bound
on d can only be stated imprecisely. Thus the primal LP
hecomes one in which the stipulations are imprecise and
can be readily tackled by the techniques of FLF. Al the ith




— S —— S

node, the deterministic equilibrium conditions Caw be
written as

(i) X ejimj < roj {19)
(ii) 2j e j imj 2 Toi
The vertical nodal forces r, are now considered to be fuzzy
numbers. By combining the above conditions with the
fuzziness indicated in Fig.6. the following inequalities
result:

(i) Tj e j imj < Toi + wis (1-0) (20)

(i1) ZJ' €jimj ZToi - lfi] (1-a)
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Figure 6: Membership Furclion for the Applied Nodel
Foree

Similary. the lower bounds on the design variables may be
fuzzifield as indicated in Fig.7.

=1

dy

Figure 7: Membership Funciion for the Lower Bound on
the Design Variable. d

The designier might accept a design variable of value & but
would miuch prefer it to be equal or greater than d,

d=2d -1 (10

5. Numerical Examples

5.1 Prismatic Beam

The fixed-end beam of Fig 8 is to be designed so it resists
the single applied leading without collapsing plastically.
Figure 8: A Fixed-ended Beamn
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Figure 8: Fixed-ended Beam

The design process consists of fixing the cross sectional
properties and the single design variable is the plastic
moment capacity of beam d. The designer may prefer the
structure to resist a load A of 80 while he would accept a
lower collapse load with dimishing support as indicated in
Fig.9.
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Figure 9: Membership Function for Load

The particular solution bending moment diagram and the
complementarily solution diagrams are shown in Fig.10.
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According to MP3 the fuzzy optimization problem can be
formulated as follows

Mindd
st od-py 20
d-p. 2 0
d+0.25p, +0.75p. 20795 g0 [1-0.25(1-00]
g e j0:1]

where p, and ps are the bending moments at the supports
In first phase constraints in this problem are always in the
4 interval of variation so'that:

d=p,=p=225+750

In the second phase the progess (O find the ¢risp solution
using the Bound Search method is as follows:




m=W[d(1)]=9 M=W[d0)]=120
Kald) = 0.75
ae [0.75;1]
pG(d) = 3 /7 (3+0)

In this case there is an analytical expression of the fuzzy
solution. The optimum level can be derived from eq.(11)
and the crisp solution is:

@*=0791 pp=p2=d=2843 Wld(o ))=113.73

5.2. Alternatively if one considers uncertainly in the
mechanical properties of the design variable d represented in
Fig.11 together with the uncertainty of the loading, the
fuzzy optimization problem becomes: Min 4 d

st a1 +015(1-a)]-p, 20
d{1+0.15(1-0)] -ps 20
d[1+0.15 (1- )] + 0.25 p, +0.75 p, 2 0.75 * 80
[1 - 025 (1-0%)]
oell;1]

Constraints are always critical when & _ [0 1] s0 that:

. 225+ 7.5x

d: 1: —
PL=Pe= 15 0150

In the second phase bound search method leads to ¢t e
[0.652 : 1] the crisp solution is
o*=0728 p,=p.=d=2687 Wld(e)]=107.47
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Figure 11
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Figure 12 - Portal Frame

The three story three bay frame represented In Fig.12 is
designed to resist horizontal and vertical loads without
collapsing plastically, The moment capacities of the beams
and columns are the four design variables involved.

The particular solution and complementarity solution

bending moments are shown in Fig.13. If the loads are
fuzzified as shown in Fig,14, the first phase corresponds (0
solving LP with the maximum and minimum a values:

(¢4 d| d2 dq dq W(U.)
0.0 0324 0.865 0135 0622 10.757
1.0 0924 1874 0571 1.143  24.084

In the general case the active set of constraints changes with
. The limits of the ¢ value are:

m = 10.7568 M =24.0840 o & [0.4466;1]
It can be seen from Table 1 that the crisp solution obtained
by the bound search method is:

a*=05813 d,=0673 d,=1452 d;= (.383
d,=0.925 W*=18504

Table 1
k. o k) W(X(k)) LLG“J
1 0,7233 20,396 0,5274
2 0,6253 19,090 0,5635
3 05943 18,677 0,5759
4 0,5851 18,555 0,5797
Bhal +Asly AL
2 2 2
T
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Figure 13 - Particular Solution Bending Maoments
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Figure 14 - Fuzzy Loading

5.4 Reinforced Concrete Slab

Consider the square slab with four edges clamped in Fig.15
which is to be design to resist the uniformly distributed
load without ¢ollapsing plastically.
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Figure 15 - Uniformaly Loaded Square RC Slab with Four
Edges Clamped

The top and bottom reinforcements will be allowed to be
different, but within each slab region equal reinforcement is
imposed a priori (Fig.16). The symetric features of the slab
geometry and loading enables reinforcements in the x and y
axes to be assumed equal hence only eighth of the slab need
be considered.

2.5m Sm 2.5m 2.5m Sm 2.5m
T A Sl S
T T 1
i
da di dsy i 5m
|
d o "
?4| 13 [ - 20

Bottom Reinforcemnent  Top Reinforcement

Figure 16 - Arrangement of Design Variable d; in Design
Regions, identical for both x and y Directions

Both top and bottom reinforcement will have 2 design
variables. The selected one eighth (ABC in Fig.15) is
discretized with 4 finite elements in such a way that each
element will be located in only one design region so as to
have a constant design variable, Fig.17.
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Figure 17 - Discretization of the One - Eighth (ABC) of the
Square RC Slab

The constraint on deflection requires for 2 continuous span

of 10m and reinforcement (mild steel, f, = 250 N/mm’)
ratio of 0.5, the total depth h, of the slab 10 be at least
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218.5mm. Here h; = 230mm will be used.

With a characteristic live load gy = 5 KN/m® and unit
weight of reinforced concrete 24 KN/m’, the ultimate load
on the slab is 1.4q, + 1.6g, = 15.728 KN/m’. The nodal
load vector 1, can be obtained easily for the three free nodes
as

'y = [16.3833 49.15 49.15)

From the static equations (18), the tranformation matrix E
is given by

0 0 0.2828-04 0 0 0 0 o
E=| 0.40-0.56570.4 0.2828-0.4 =0.4 0 0
—0.4 0 0.2828 0.4 —0.5657 0 0.4 0.2828 - 0.4

Matrix J*(or]) relates the positive (or negative) plastic
moment capacity of the 4 elements m’.;, m".,, m",; and

M g (Or M.}, My, M azand m'y,) to the 2 design variables d,
and dl (Or d] and dj‘).

[10] [00]
01 00
01 00
.01 {01
Flioj oo
10 10
10 10
01 01

Matrix A, (or B,) relates plastic moment capacity m across
the interelement sides to the plastic moment capacity in x-
(y) direction, m*, (or m* ) of one of theire connected
elements whilst A, (or B,) relates m to m*, (or m*,) of the
elements on the other side. A, (or A;) has elements of
Iisinge_i and B, (or B,) has choslei.

25 0 007 0 0 00]
0 2500 0 000
17678 0 0 0 17678 0.0 0
0 000 25 000
A;=|017678 00| B ={0 L7678 0 0
0 0 00 0 25 00
0 025 0 0 0 00
0 0 0 1.7678 000 1.7678
o 00 ol |000 25

The sizes of the matrices A, and B, will be reduced by
deleting those rows associated with boundary sides which
are connected to the clamped edge.

00 0 O 0o 25 O
A, =00 17678 0} B, =|00 17678 0
0o 0 0 00 0 25

B

Similar detection will be performed on the matrix U for
consistency.

i




35355 o (o 0
25 of (o 0
17678 1.7678 | [1.7678 0
25 0 2.5 0
0 25| |o 2.5
0 35355 [0 3.3355
0 a5 |0 15
2.5 ol 125 0
1.7678 1.7678{ |1.7678 0
K 25| {0 2.5 |

I e
J= .
s J

If the thickness ht of the slab is assumed uniform and if the
lever arms h,", h,". h," and h," are assumed to be all equal
to h = 0.85h,. the total reinforcement can be determined as

+
Hh‘

m,

=085k f,[57S'S"ST] 1)

Ml

m*;

where §' = [8, S; Sy 4]

Since the ares of the 4 elements are equal to 5 = 3.125m’
and f,=2.5 10°KN/m” is used, eq.(21) becomes:

v=6.39107 (e » m)
which can be expressed in termis of design variables (d) as

v=63910" (e + J) d
=12788°10"12 2 1 1 1d

where ¢ is a row vector, all of whose elements are unity.
The oblective function z in LP (14) will be expressed as

z={2 2 1 1Nd=Vip
where p = 1.2788° 10"
If the amount of main {ensile reinforcement in a slab should
be at least 0.25% bh,. Hence
Min A,= 5.75 107"'m’ per m length

The equivalent plastic moment capacity can be evaluated as

Min m. = 28,1031 KN.m/m
=d

Now let the characteristic live load g, be the fuzzy number
in Fig.18.

e (kN/m2)
) }
V=t
| 2 b,
Figure 18 - Membership Funelion ol Characteristic
w A
| =+
Uttimate UDL
(kN/m2)
i
R VI T G IR 7 T

3232
Figure19 — Membership Function of the Live Load.
Ultimate UDL.

ULD on the slab will then be the fuzzy number in Fig.19
and the vertical nodal forces can be shown to be the fuzzy
numbers in Fig.20. For simplicity, assume no fuzziness in
the value of the lower bound d.

w A w A
1T 1T
fa.f3
f1(kN) (kN)
’ " >" 5015 >
13.05 7167 39.15 .
30500, 38337 18 49.15
b R
333 333 10 10

Figure 20 - Membership Functions of the Applied Nodal
Forces on the Discrétized Slab.

The additional matrices for the data are the vector for the

softness of the nodal forces,
)y =) = (333 10 10]

and the vector for the nodal forces,

(r)" =1[16.383 49.15 49.15)

The optimal solutions with o = 0 and 1 are, respectively:

. -

d'\=dy=d,=d";=28.1031 kN.m
) £ =vio= 3212503 m'
d',=dy,=d,=281031 kN.m, d,=46.7697 kN.m

7 = vl 374.5703 m?
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Therefore, the limits of the o value are [0.858 ; 1] and the
crisp solution obtained by the iterative bound search
method described before is:

i

d’,=d’, = 28.1031 kN.m,
44.423 XN.m

viim = 369.877.

o =0913 d’
d

*

T

Z

It will be noticed the same trends displayed by the frame
examples are demonstrated in this RC slab example. The
optimal weight for the deterministic calculation (374.5703)
was reduced to a smaller namber (369.877) for the first
fuzzy calculation which corresponds to an acceptability
measure of 0.913.

CONCLUSIONS

It is pointed out that the fuzzy optimization has the
advantage of ordinary optimization with a more realistic
model of fuzzy constraints taken into account, the structural
design should be more reasonable and beneficial. The
illustrative numerical examples given here show that the
Two-Phase Method based on fuzzy set theory seems to be
rational and effective approach for fuzzy optimization of
structures with plastic or elastic material behaviour. The
fuzzy solution is obtained in the first phase in accordance
with the Ralescu point of view that a fuzzy problem should
have a fuzzy solution [6]. The crisp solution which
maximizes the membership function of fuzzy decision-
making can then be found from the fuzzy solution in the
second phase. As a result, the proposed approach provides
favourable condition for selection of structural design
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schemes so as to have a higher o-level and to save
materials.
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