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Abstract—A new test is described 1o verify the existence of an isolated local constrained minimum and
to ensure that it is a global minimum for a nonconvex program such 4s the least-volume design of elastic
trusses. Tllustrative examples covering most of the situations found in engmeering practice are giveil.

1. INTRODUCTION

Many efficient computer codes have been proposed
for minimum velume/weight design with continuous
sizing variables. These methods can be divided mto
two categorics: the optimality criteria and the math-
gmatical programming approach. The first category is
based on the minimization of the Lagrangian and the
second on the application of nonlingar parameter
optimization methods. (The literature is extensive,
and has been reviewed in [1].) These methods need
some starting point which essentizlly prescribes
both computational effort and optimization perfor-
mance. As, in most of these problems, the solution
domain is nonconvex and has many subminima,
the algorithms tend to converge to a minimum
near the starting point. Therefore, the possibility of
muliiple optima and the risk of achieving a sub-
optimal (locally optimum) selution still remain, Com-
binatorial optimization methods [2] can be expected
to overcome this problem zlthough they are compu-
tationally expensive.

Matiy theories are available to characterize the
local minima, Perhaps the most suitable theor-
etical development for our purpeses is that of
MgCormick [3]. Unfortunately, it happens to be
rather absiruse. [t has been quoted to reflect its full
scope, but successful applications of the theory
depend on problem-specific simplifications.

In this paper a condition is given which, il satisfied,
guarantees that a local optimum is the global opti-
mum for the optimal sizing of trusses. Before mean-
ingful resulis applicable to this problem are given,
some conditions and theorsms will be stated.

2. CHARACTERIZATION OF LOCAL SOLUTIONS

In nonlinear programming problems a local mim-
mum of the objective function in the constraint set is
often obtained. The question that naturally arises is
whether this minimum is the globil minimum. For
convex programming problems a local minimum is
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also the ‘global minimum. Without convexity it is
difficult to say much about global properties of the
solution. Many theories are available, however, to
characterize local minima. The approach in local
theory is to suppose that the mathematical program-
ming problem

min f(x;) (la)

such that
gx)=0; j=1,...8 i=L..n (Ib)
gx)=z0 j=B+1...0 (1c)

has a local extremum at point x* and then find
conditions among f(x) and g(x) that must hold at
this point. In this way, many points in the constrained
region can be climinated as candidates for a relative
minimum. Such conditions are therefore considered
necessary. In some problems it is possible to obtain
a set of conditions guaranteeing that a pomnt yields
a local minimum. Conditions of this kind will be
termed ‘sufficient’, This paper describes a test which
ensures that an isolated local constrained mimimum
(‘isolated’ meaning it is not a limit point of local
minima) is a global minimum for a nonconvex
program. Before meaningful results may be given for
eqn (13, some conditions are given, which must be
satisfied by the objective function (la) and the
constraints (1b) and (1¢).

2.1 Regularity asswmption

Definition [4]. A feasible point x is called a regular
point of the domain if f{x) is differentiable at x
and if the gradients V,g(x) for only those i=B
with g;(x) = 0 {(active inequality constraints) and all
V.g(x) for j=1,...f (equality constraints) are
linearly independent.

This definition is equivalent to the requirement that
the g x n matrix of the active constraints’ derivatives
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C(x)" has full rank, where the first § rows are the
derivatives g,(x) for j=1,...f and the remaining
rows refer to j> B with g(x)=0(/=1,...4)

2.2 Karush—Kuhn—Tucker (K-K-T) necessary con-
ditions

Theorem [4]. Let the functions f(x) and g(x).
for j=1,...q, where the first f§ constraints and
the remaining g —f are the equality constraints
and the active ineguality constraints, respectively,
be differentiable and let x be a feasible regular point.
For x to be a local minimum of eqn (1) it is necessary
that there exist multiplier vectors y € R, peRg — B
such that '

w0, forj=f+1...q (2a)

ng)=0 forj=l...f ()

V. Zx v p)=0 fori=1....n (2¢)

where

LX) :f(x) == E;‘: z.;}.?’_f&,‘(—‘f) - E_,-:UH_‘,#;&(X)
is termed the Lagrangian.

2.3 Implicit fumction theorem

A resull of matnx calculus concerning the solv-
ability of the systems of equations defined by the
K-K-T necessary conditions is required. Defining
the function,

[V, p) .
¢(Z)—|: —C() :|, (3)

where z'=[x'y'y] and C(x) is a g-vector whaose
elements are the active constraints at the regular
point x. to satisfy the K—-K-T conditions at a local
minimum it is necessary to have

$Z)=0 and v,20 for f<j<qg 4

Theorem [5]. If at z =z there i a solution
d(@)=n="0 and the (7 -+q)x(n+q) derivative
matrix of ¢(z) has an inverse at every point z, then
there is a continuously differentiable solution to the
equations # = ¢{(z) in the neighbourhood of z.

This theorem allows investigation of the effect
of variations of z on the solution n =¢(z), and
in particular on the objective function value f{x),
caused by variations in x.

2.4 Second-order sufficiency conditions for local opti-
mality

Theorem [4]. Let f(x) and g,(x). j =1,...g, where
the first § constraints and the remaining ¢ — f ate
the equality constraints and the active inequality

L. M. C. S1MOEsS

constraints, respectively, have two continuous deriva-
tives. Let x be a feasible regular point satisfying the
K-K~T necessary conditions for eqn (1).

For every v # (0 in R such that V_tgj_(x)v =0, for
j=l....pand V g (x)p=0,forj =8+ 1,...q for
each j > f§ with g, >0, let

sVEL(R, v, ) > 0, (3)

where V2#(x,y,p) is the matrix representing the
second derivative of the Lagrangian. Then x is an
isolated local minimum.

The following development will allow us to express
eqn (3) in more general terms. Suppose N{x) denotes
a continuously differentiable n x (k —¢) matrix
function giving the null space of the active constraint
derivative matrix C(x). A necessary and sufficient
condition for C(x)v =0 is that p=N(x)u for
some .

It is therefore possible to express the condition (5)
s0 as to have the matrix '

H(x.y. ) = NxYVIL(x. v, p))N(X) (6)
positive definite.
Also associated with C(x) is a generalized inverse
C(x), . Note that when the rank of C(x)" is ¢, C{x);
is given by

Clix)# = Cx)[CEYCXx)YT . (7)

and C(x)C(x), =1,. Further, it is assumed that
N(x) and C(x), are related in that

[1,— Cx), C(x)] = N(x)W(x) (3)
for some matrix W(x).

2.5 Isolated global optimality

Theerem. Define for x e R,

0<r<]l and 0=<s<1 (9a}
P =x(1—1) 4 (9b)
¥is, ) =x(l —8) 4 [x(1 — £} +xt]s. (9¢)

Let f(x) and g(x), j=1,...q, where the first §
equalities and the remaining ¢ — f are the equality
constraints and the active imequality constraints,
respectively, have two continuous derivatives, and let
x* be a feasible point satisfying both the K-K-T
necessary conditions and the second-order sufficiency
conditions. Assume further that

L
(1) J Cly(r)]"dt has rank g.
0
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Al
(ii) 2’ J J Vi, Zlvls, 1), 7. #1ds diw >0
0 Jo
for all » # 0, where
A
j Cly(0) dte =0,

o

then

The difference between the objective function values
at x and x may be found by integrating the gradients
of the objective function along the incremental path
Ax.

1
SEx)—f(x)= J FTy(o] de Ax
[}

1
= j FLAOF NN 0,9, A1
i

i 1
j j. VEZ[y(s,1),7, plds dz —J Cly(e)]"dr
/ o Jo 9
b= ] {10}
ﬁj Cly(r))ds 0
0
. 3 |
has an inverse. Denote this by 5 N[y”)}.j V. Zy(t), y, u]de
()
A B
qb'-‘-[B D} an 1
—J SO deP'CTix).
o
where 4 is n x n and B'is n X g.
(iii) The guantity Now
1 ; 1
—J Fly()]deB >0 (12) J Cly () dtNy(1)] =0,
bl &0
component by component. 5o that

Then f(x) > f(x) for any feasible x. If (i)}-(iii) hold
for all x e B, then x is the unique global minimum
of fig-

Proof. Consider the following [recall V.£(x, 1. p)
=0, C(x)=0]

1 |
J STy@y deN[y (@)= j @) =l ICly e’}
J0 0

x dtN[y(1)]

| ] 1 l
[ P A I:O ,[ L V2Lly(s, 1), y, p]ds dt _[ Clyp(eN*dr | [Ax]
Ja - + (/] b S0
4

—Cx) =

1
j Cly ()" di 0 Ap
1t}

where
Ax=(x —x), Ay ={y—y)=Ap = —p)=0

The existence of the above inverse is guardnieed
by the theorem hypothesis. It can be written explicitly
after the following notational considerations are
given. Let N be any n x(n—g) matrix giving
the aull space of P = [} C[y(1)]" d¢. Let

L
H=.[ J. V2P[y(s. 1), v, u) ds de.
9 Jo

The explicit inverse, which is invariant to the choice
of the particular null space matrix ¥ and generalized-
inverse P, of Pis then

= j‘ul V, Ly, ¥, w] deNy ()]
Finally,
fix) = fx) = Li v, Zly(e),y, n]de' Nz ()]
x Hly(s. £),y. g1~ 'N[p)l

1
xJ V. LIyt v, gl e

i
—J- f[y(.')_]'diP“C(x).

H =P N(N'HN)'N'
—P 0 | —PL[I — HN(N'HN)"'N'|

—[I = N(N'HN) 'N'H]P,
—PLIH — HN(N'HN) 'N'HIP, |
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As xe R, C(x)=0. Thus both terms on the right
hand side above are non-negative. If

I
J V. ZLly(0), v, p1dr'N #0,
0

the first term above i§ positive. The second term is
positive if C;(x}> 0 for one of j = 1....g. The only
way both termis can be equal to zero is if

]
j V. Ly@).y.p]di'N =0
[}

and C(x) = (. If both these conditions hold, it is easy
to show that Ax = x —x = 0. Thus f{x) > f(x) when
x #x QED.

3. MINIMUM VOLUME TRUSS DESIGN

Under the assumption that the cost of each section
is proportional to its area, it is desirable to find the
minimum volume of an elastic truss,

min /7a, (13)
subject to bounds on nodal displacements, allowable
stresses, member areas and buckling constraints.
The topology of the truss is assumed to be given and
this is achieved by imposing lower bounds on the
member areas. It is also assumed that there will be
no geometrical effects to be taken into account. The
equilibrium equations in the nodal-stiffness format
involve m design variables (cross-sections) and ff state
variables {nodal displacements):

Kd =i, {(14)
where A is the § vector of the nodal loads (f is the
degree of kinematic freedom) and d is the vector of
nodal displacements. X is a square matrix function
linearly dependent on the design variables, derived
from

K = AkA', (15)
where A4 is the direction cosine f§ x m matrix of rank
f and k is an m-diagonal matrix whose elements are

member stiffnesses.
The equilibrium egns (14) can also be written

A =4, (16)
where n is the m vector of member forces and
(17)

n=_>8a,

where S is a diagonal matrix whose ¢lements are the
member stresses.

The bounds on member areas, nodal displace-
ments and member stresses can be wrikten, respec-
tively,

(18a)

—a =z —a, (18b)

d<d<d,=>d=d (19a)

—d > —d, (19b)
s<s=LAdd<s,>LAd =z (20a)
—LA'dzs,. (20b)

L is an m-diagonal matrix whose elements are the
Young's modulus divided by the member lengths.

As the equality constraints are nonlinear, this
consirained optimization is fionlinear or a mathemat-
ical program. The least volume design of elastic
trusses has » =m + f variables x' =[g'd"] and it is
intended to minimize egn (13), subject to the equi-
librium constraints (14) and the linear inequalities
(18)(20) that can be seen as an mstance of egns (1b)
and (1c), respectively.

3.1 Regularity assumpiion

The ohjective function (13) and the constraints
(18)-{20) are linear and therefore differentiable.
The only nonlinearity stems from the equilibrium
eqns (14), which are also differentiable functions.
The local optimum that is going 10 be tested for
isolated global aptimality is obtained by using convex
programming techniques. Therefore it satisfies the
regularity assumption, the K-K-T necessary con-
ditions and second-order conditions for isolated
local optimality. In the truss optimization problem
only the equilibriym constraints are nonlinear, and
are therefore liable to cause nonconvex behaviour
To test the assumptions of the theorem given in
Sec. 2.5 it is necessary to work out the properties of
the points that belong to the domain of the truss
sizing problem.

By operating in the curved manifold defined by the
equality constraints (14), the active constraint vector
Cla, d) has f elements. To form its derivative matrix
C'(a, d), it is necessary to evaluate

Cla.d) = [V.Cla, d)V,Cla. d)}; (21)
assuming that the columns of C'(a, d) are numbered
so that the first m columns would correspond to
derivatives with respect to the design variables @ and
the remaining § are associated with the derivatives
with respect to the state variables ¢

Cla, dy =[AS K]. (22)
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Premultiplying eqn (22) by K~' yields

K='Cla,d)y =[K 45 I} (23)
Therefore C(a, d) has rank B for any point (a, 4)
satisfying the equilibrium equations, and any such
point i a tegular point. The rank f of Cla dY
could also be reached from the matrix produce AS,
because .4 has rank fi and S is an m % m diagonal
matrix,

A matrix function giving the null space of the
B < (m + B) matrix C'(a. ) is a matrix N(a, d) such
that

C’(ﬂ, d)N(a, d) = OB KWy (24)

or

I
Na,d)= [_ o S} 25)

Nfa, d) is a choice of all solutions satisfying these
homogeneous equations and has rank .,

By including an active inequality corresponding to
the lower area bound &, C'(a, d) would be increased
by one row from the matrix previously defined. In
this row the element of the column 7/ will be unity and
all other elements will be zero. The rank of C'(a, d)
is increased by one, as this new row is linearly
independent of the rows of the basis defined by the

K matrix:
K
. 2
ol o) ®

The matrix that gives its null space can be derived
from N(a, d) by suppressing the ith column:

AS

C(“‘d)’=[u._.0-1o...o

Cla, dYNla,d)=0, (27)
or
A'S K
0...010...0 0...0
Ip‘—l OfAL*ﬂ—’
O 0 0 (28)
x = om> 7
On—lx(fl In‘?}fl A
K-'4'sT

where 47 and §' are obtained by deleting column / in
4 and row i and column 7 in S.

A similar argument is valid when the bounds on
the stresses and/or nodal displacements are active
constraints. The new rows would be linearly indepen-
dent of the matrix 4S that has rank § and the rank
of C(a, d)’ would then become § plus the number of
independent active stress/displacements. It is usually

considered in the design of a truss that this structure
is able to sustain alternative Joading conditions.
Each loading condition is associated with # equi-
librium relations, giving a set of nodal displacements
d by fixing the design variables a. If the alternative
loading conditions are /, the number of variables for
the lesst volume design becomes n =m + 1 x # and
the number of hilinear equilibrium equations is./ x .
Suppose there are two alternative loading conditions.
In the curved manifold defined by the equilibrium
equations, the active constraint derivative matrix

becomes
K 0
0D K|

where % apd $% are diagopal matrices whose
elements are the member stresses corresponding fo
loading conditions (1) and (2), respectively, and its
rank is 2 X fi.

Another requirement sometimes imposed concerns
variable Hnking, This is done to reduce the number
of cross-sections with different sizes. The active con-
straint derivative matrix preserves its rank (unless the
numbier of different design variables in < §) although
the number of columns is reduced, hecause the
columns corresponding to the same design variable in
the matrix product A4S are added.

ASW

ASuJ (29)

Cla, dy = [

3.2 Second-order sufficiency conditions of the reduced
Hesslan matrix

The only nonlinearity stems from the equilibrium
eqns (14), which are also differentiable functions.
It is therefore necessary to understand the influence
of these equations on the behaviour of the math-
ematical program to verify the applicability of the
theory.

The local eptimum that is going te be tesied
for isolated global optimality is obtained by using
convex programming techniques, satisfying the
second-order conditions for isolated local optimality.
It remains to be seen if the points lying on the
equality constrained subspace also satisfy these
conditions. The (m + B8) % (m + B) second-derivative
matrix of the Lagrangian is a copositive matrix
function of the values assumed by the Lagrange

multipliers:
} (30)

where P is an m x m diagonal matrix whose ele-
ments p, are a lincar combination of the f Lagrange
multipliers corresponding to the bilingar equilibrium
equations y and is independent of the multipliers
related to the remaining linear constraints of the
problem u:

0 —PA

; d)y, 1) =
Vi Z{(a d),7, 1 [_ AP 0

P =LAY. (1)
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It is well known that a copositive matrix has a set
of symmetric eigenvalues. It is required that the
matrix Hf(#, d). ¥, #] should be positive definite,
to satisfy assumption (i) of the theorem for iso-
lated global optimality. Therefore it is necessary 1o
establish whether the points lying on the equality
constrained manifold make H[(a,d), . 4] positive
definite:

Hl(a.d), 7. 1}
= N(a,d) Vi, #(a.d), y. p)N(a. d) (32a)
=[7—S4'K"] [—?41: —‘;A }
I
x [_K—us] (32b)
—SA'K VAP + PA'KTAS. (320)

H](a.d), ¥, p] is a symmetric matrix given by the sum
of two matrices, where the second is the transpose of
the first. The stiffness matrix K is a § x f§ symmetric
positive definite matrix of rank §. Thus the same
holds true for K.

At a local minimum [(a, d), y, p] it is easy to check
the second-order sufficiency conditions and the posi-
tive definitiveness of H.

By enforcing the K-K-T necessary conditions
for local optimality related to the design variables, a
relationship is obtained, linking the elements of the
diagonal matrices § and P!

V. #la, d), v, t]=0.
Thus,
[—pht =S4Ty =0

=S4Ty = —pl+pi, (33)
where / is the m-vector of member lengths and
4t pu 30 are the Lagrange multipliers correspond-
ing to the constraints associated with the lower and
upper bounds on the design variables.
From eqns (31) and (33) we have

Pp=1— il + uiil (34)
Suppose any [—plL/l<0, ie. at least one of
the Lagrange multipliers corresponding to active
lower hounds on the area exceeds the member
length. A necessary condition for the positive
definitiveness of a real symmetric matrix states that

all diagonal elements must be positive. As h, is
negative, this condition is not met. In this case,
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the manifold defined by the equilibrium constraints
makes H indefinite. Tt is therefore necessary to
investigate the effect caused by the insertion of
any active area bound inequality in the aciive con-
straint vectar C(g, ). Using N{a.d) given by (28),
Hl(a. d). 7, #] becomes an (m — 1) x (m — 1) matrix
given by

Hi(a.d).y, p]= S' 4K~ AP
+ PAKA'S, (39)

where P is an (m — 1) x (m — 1) diagonal matrix
derived from P by suppressing its row j and column
i, In H the row and column corresponding to the
index of the active area constraint vanish. Therefore
the negative cigenvalue due to the negative diagonal
element should 1o longer be considered. 1If more than
one lower bound on the areas is active, they can be
equally inserted in the active constraint derivative
matrix. The final matrix H is obtained from the
matrix derived in the equality constraint manifold by
deleting all the rows and columns corresponding, to
indices of active areas.

Assuming as in Sec. 2.5 a fixed set of Lagrange
multipliers, the matrices P and § would remain
unchanged, i.e. if the stresses in matrix 5 are fixed and
the design variables are allowed to vary, the matrix
H is positive definite because it results from a simitar-
ity transformation on K,

3.3 Second-order estimate of the multipliers

From the proof of the theorem given in Sec. 2.5
the difference f(x)—f(x) considering the paths
defined by y(¢) and y(s, 1) is made up of two contri-
butions:

1
Six) —I(X)=J V. Zp).y, ] dr' Ny (0]
o
x H[y(s, 60, 4, 6] ' Np(e)

Y
xj V LIyt y p]de
1]

1
= J FIv(], dev X (z). (36)

Thé fitst contribution is a step from x to xg which
drives the Lagrangian derivative to 0. The second
contribution, from X, to X, seeks to satisfy the active
constraints violated in the first step. In terms of the
inverse function approach, x, consists of the first n
comporents of @[07g(x)""". The exact difference
¢an be computed by integrating from [x%'p] to
fxiy‘n] along ¢ '[tV,#(x. 7, uYglx)]. The other
term is obtained by integrating from [xg'u] to
[x'yp’} along the curve ¢[0'g(x i s
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There are two estimates of the generalized
Lagrange multipliers associated with a local mini-
mum. The first is

[y =R C(X) - (37)
This is used in the computation of the Lagrange
Hessian matrix. The second estimate 1§

J&Y = NN (x)H (%, 9, p)N(x)

—INEVL (R 7, i C(X), . (38)
This estimate determines whether or not a constraint
is to be considered binding at the local solution. The
importance of this second-order estimate was first
pointed out in[6]. It is really the estimate of the
multiphiers (38) at the minimum of fin the subspace
Cix)= C(x).

This result is used here in a different context to
prove the theorem for isolated global optimality. Its
third assumption requires that the quantity given by
the product

jf [y()}B’ d (39)

should be positive term by term. This results in
a ¢ vector given by the product of the constant
vector

Jf’[y(ﬂ] dr =[/'07 (40)
times the matrix
—[7— S(xyH(x,y.8) "
X SEVIZ(x, p, p)]C (). (A1)

We note that the first f components can always be
taken Lo be positive, as they are related to equality
constraints. Therefore the test corresponding to the
third assumption of the theorem for isolated global
optimality must be performed only on the active
lower area bounds.

4. APPLICATIONS

The following examples are referred to in the
literaiure @s a basis for comparison of the efficiencies
of several algorithms. They will be used here to make
statements ‘about the validity of the solutions found
by a convex programming technique.

4.1 Three-bar truss subject to a single loading con-
dition

Using the nodal-stiffness description, the minimum
volume design of the three-bar truss represented in

CAS 212--E

Fig. 1 undergoing two alternative loading conditions,
subject to stress constraints and allowing continuous
variation of the area variables, can be stated as
follows:

min (2)'%a, + s + (2)ay (42a)
such that (2)'°2a,4, + 1/2axd, +dy) =40 (42b)
112a(d, + d) + (2)"22a:d; =20 (42¢)
0<s =(2"2d <5 (42d)
05 =(2)"2d +d) <5 (42e)
—S€H=2)"2d.:<0 (421}
al=0lga<al=11 Ol<asd
0l<a;<5. (42g)
Optimum solution:
a & i 5 5 B d d,
40 3657 0.1 50 30 0. 7.071 0

The Lagrange multiplier corresponding to the lower
bound on a;, 15, s (2)'2.

If alt active constraints were to be considered,
the rank of ihe active constraint derivative matrix
would be # and the matrix giving the null space of
C(a, d) does not exist. The sccond-order estimate
of the Lagrange multipliers would coincide with the
first-order estimate and the third assumption in the
theorem for global optimality is meaningless.

As the nontinearity results from the equilibrium
equations, it is necessary to understand the influence
of the latter in the behaviour of this mathematical
program. If only the cquilibrium constraints are
included in the active set, the reduced Hessiah matrix
H becomes singular because the i, equals the corre-
sponding member length and the inverse of A does
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not exist. Again, the third assumption of the theorem
cannot be checked.

It is therefore necessary to include the lower
area bound corresponding 10 a; in the active set. A
becomes a 2 % 2 positive definite matrix. It is only
pecessary 1o verify the third component of the vector
given by the product

—[ 011 — S(a. dH (a, ), p, 11"
% S(a, dYVEL(a. ).y, 1]} O’ d)s  (43)

because the first two componenis are related to
equality constraints and they can always be made
positive. The minimum found is unique because the
third component is positive.

4.2 Three-bar truss subject to two alternative loading
conditions

The least-volume solution for the truss represented
in Fig. | subjected to two alternative loading con-
ditions, lower limits on the cross-sectiona! areas {0.1)

L. M. C.
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The Lagrange multipliers corresponding to the lower
bounds on the variables are

P"Za=0'62 H"Sa= 10’ lu"&a:()é- #iﬂ:::(-)-z'

As the Lagrange multipliers corresponding to the
lower bounds on the areas do not exceed the
corresponding member length, this can be regarded
as a special case of positive semidefinitiveness in
H(a. d). 7, #] and the locus of points satisfying the
equilibrium equations define a convex domain. Thus
the minimum found is unique, The active lower
bounds. could also be incorporated in the active
constraint matrix C(a, ), satisfying the third assum-
tion of the theorem for isolated global optimality.

4.4 Ten-bar truss with ane member stronger

It is possible to have an indefinite matrix H in the
subspace defined by the equilibeium equations and
the local optimum to be unique in the problem
domain. When the stress limit on bar 9 is increased
to 3.75 an optimal solution of 41.6 is found:

a ay a3 ay a5 g @ g ay o
7.9 0.1 5.1 39 0l 0.1 5.8 55 37 0.t
% i 5 S £ S 85 Sy s S
25 25 =25 —-2.5 00 2.5 25 —25 37 =25
d] dg dg d& d’C dﬁ di dP.
50 —200 =50 -—-225 25 =75 =235 —17.5
and the same stress limits in all bars (+5.0) is
a a; ay 5 i} 8 st 8} 5 d! d} di a3
700 2.1 2.8 3.0 32 —18& —0% 49 50 7l —25 —12 171

Here the lower bounds on the member areas are not
active. As, for multiple loading conditions, the nature
of the matrix H remains unaltered,

Hla, ),y wl= 3, [SWATKTAPY

k=12

4+ PUATETAS®],  (44)

we may infer that the optimum found is unique.

4.3 Ten-bar truss

The ten-bar truss represented in Fig, 2 is subjected
to a sinple loading condition. If the member stresses
in all bars are limited to + 2.5 and the lower bounds
on all cross-sectional areas are 0.1, the problem yields
an optimal solution of 44.2, corresponding to

The Lagrange multipliers corresponding to the lower
bounds on the variables are

ﬂ£a=0'05 .uéa= 101 luga= 1'7‘

The matrix H in the subspace defined by the equi-
librium relations would have one negative eigenvalue
corresponding 10 2 negative diagonal clement in the
second row of this real symmetric matrix. To check
whether this minimum is unique il is pecessary to
include the active constraints related to the lower
bounds on @, a; and @, The rank of the active
constraint derivative matrix C{a, d) is increased by
three. To verify the third assumption of the theorem
for global optimality, it is necessary to verify the three

4 &y a3 ay a5 dg i az @y ayp
7.9 0.1 8.1 39 01 0.1 5.7 56 356 0.1
5 5 3! 4 £ o & Sy Sq S
25 16 =25 —25 00 |.6 25 =235 25 22
d dy 4, dy s ds iy &

40 —185 —50 —200 25 —75 =25 =73
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components corresponding to a), i and ag of the
.. vector given by the product (43),

~[I0{1 — S(a, d)H[(a, d), 3, ]’
x Sa, )Vi&(a, d), y, u]}C(a. d),,

because the first eight components are related to
equality constraints and can always be made positive.
The minimum found is unique because all compo-
nents are positive.

4.5 Ten-bar truss with maximum displacements. pre-
scribed

If the absolute value of the displacement is limited
to +3.5 fully nonconvex behaviour would occur.
Two solutions arise corresponding to the OF values
219.9 and 223.3:

Fig. 3.

It is necessary to verify the corresponding compo-
nents of the vector given by the product (43),

~[10){7 — S(a, ) H [(a, d). y, u]™"
x S(a, d)ViZ[a, ). 7. u]}C'(a, d),.

The first eight components are related to equality
constraints and they can always be made positive.
The components related to a;, and a4, respec-
tively, are negative in the two cases presented. This
appears to be a mnecessary condition for multiple
optimality.

ap ay a a, as, a5 a, a g g,
48.7 0.1 35.6 24.1 0.1 1.2 94 343 341 0.1
. 5 a, 83 5 S5, K 5 &, 5 Sio
04 =03 —-06 =04 22 00 29 —-08 08 07
d, i ds 4, ds d d: dy
02 =35 —16 35 04 —13 —06 —35

The Lagrange multipliers corresponding to lower
bounds on the areas for the lower local solution are

”12:.-= 4'9-1 nu.é'u= 9.9, “";Du: 12.5.

The second local optimum is associated ‘with

4.6 Twenty-five-bar tower

A tower, whose configuration is shown in Fig. 3,
is subjected to two alternative loading conditions.
By imposing the four-fold symmetry on the struc-
ture explicitly, the 25 members may have their

&y 2] ay Ay s g ] g g O
48.7 0.1 38.1 233 0l 0.t 137 331 330 0.l

i a3 5z 54 %5 S & 3 Sa ]

04 0.0 —D5 04 L3 0.0 20 =09 0% 00

& dy d i ds dy dy dy

04 =35 10 =35 04 —13 —-05 =26

vho= 10, pl =51 k=10 agl,=14
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cross-sectional areas linked to eight design variables.
The structure is ‘designed against stiffness require-
ments in thHat the nodal displacements are not permit-
ted to exceed 0.35 and the topology is fixed by impos-
ing a minimum limit on the cross-sectional areas of
0.01.

The test for isolated global optimality is suceessful
and we may infer that the optimum obtained in this
case is also the unigue oplimum.

Direction of load

Load condition  Nodg x ¥ -4
I L 1.0 10.0 —-5.0
2 0.0 100 —5.0
3 0.5 0:0 0.0
4 0.5 a.0 0:0
2 1 0.0 10.0 —350
2 —10 10.0 —5.0
4 —0.5 0.0 0.0
3 —0.5 0.0 0.0

Member areas for the optimum design are

of the feasible domain are formed by the stress
and displacement constraints. In statically determi-

nate structures these would be hyperplanes in an

appropriately chosen set of co-ordinates, whereas
in indeterminate problems the boundaries become
slightly curved, and the curvatures may be of the
pnonconvex type. This has been found in a ten-bar
truss with prescribed maximum displacements. A
condition is given here, which, if satisfied, guarantees
that a local optimum is the global optimum for
the optimal sizing of trusses. It has been shown that
if no lower bounds on the areas are active constrain(s
of an isolated local minimum given by convex pro-
gramming, thi§ point is an isolated global minimum
for the least-volume design of trusses. If the con-
straints associated with lower bounds are active a test
consisting of obtaining second-order estimates of
the Lagrange multipliers must be performed. If each
element of the resulting vector is non-negative, then
the local mimimum is alse the isolated global solution.
If this is not the case, the problem may possess
multiple optima.

1 2345 6,789 1,11 12,13 14,15,16,17 [8,19.20,21 22,232425
001 2.043 3.003 0.0 0.01 0.683 1.623 2.672
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