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Absiract—Optimum design conceived as weight' minimization is formulated with reference to discrete
(truss-like) physically nonlinear structures under constraints concerning displacements, deformations and
design parameter distributions. Basic assumptions are: i) the cost function is linear in the design variables;
(ii) no local unstressing oceurs under the given proportional loading so that holonomic plastic laws can
be adopted. This work presents a method that solves the corresponding complementarity programming
problem by solving a minimax problem using the maximum entropy formalisth. Some simple, but

significant examples, illustrate the proposed method.

L INTRODUCTION

In the literature dealing with optimization problems,
minimum weight design was widely studied for both
elastic and perfectly plastic structures; comprehensive
surveys on both subjects can be found in [1, 2],
respectively. Nevertheless, some cases deriving from
nonlinear physical laws of materials were nol treated.
In this work, the elastoplastic linearly hardening
model is considered and relevant constitutive re-
lations are taken into account. A basic assumption,
which is reasonably accepiable under proportional
loading, is that the plastic constitutive law is holo-
nomic, that is reversible and history-independent (no
local unloading hypothesis). It is considered that the
design variables will affect local strength and stiffness
simultaneously. The assumed cost function linearly
depends on strength parameters, the distribution of
which results from the minimization under con-
straints grouping fundamental mechanics laws,
bounds on displacements and possible technological
-and ductility constraints. For the sake of simplicity,
theoretical developments are referred to trusses. A
noteworthy aspect of the class of optimal design
problem under consideration is that the mathematical
formulation of the problem is characterized by a
complementarity constraint requiring that between a
certain pair of corresponding variables, at least one
component must vanish. The research concerning
the application of mathematical programming tech-
higues in this area of siructural engineering scems to
be very limited. This class of problem has been solved
in [3] where a branch and bound method asseciated
with a quadratic programming approach was
suggested. Since each node of the branch and bound
combinatorial tree was associated with a member
behaviour, its efficiency reduces exponentially as the
number of potentially yielding members grow (NP
hard problem). In [4] the elastoplastic design problem
was tackled by an optimality criteria-based procedure
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and a small-scale example solved. Since nonlinearity
and nonconvexity are a peculiar feature of this optim-
ization problem; this latter approach is unable to
guarantee the result of a global, as opposed t6 merely
a local, solution.

This paper presents a method for elastoplastic truss
sizing that has distinctive features. It is based on
entropy and is a radically different alternative to
mathematical programming techniques. Entropy is
a natural measure of the amount of disorder (or
information) in a system, High entropy values corre-
spond to chaos and low entropy values to order. A
similar definition of the entropy is known in infor-
mation in information theory where it can be viewed
as a quantitative measure of the information content
of a system. In the case of optimization in general, the
entropy can be interpreted as a quantitative measure
for the degree of optimality. The objective function
and the constraints define several criteria that need
to be met: find values for the design vanables
which minimize the maximum violated criterium. The
¢lastoplastic synthesis problem is set as a multicriteria
optimization and a Pareto solution is sought. This
minimax problem is discontinuous and nondifferen-
tiable, both of attributes makes its numerical solution
by direct means difficull. By using the maximum
entropy formalism it is shown that its solution may
be found indirectly by the unconstrained minimiz-
ation of a scalar function which is both continuous
and differentiable and thus considerably easier to
solve,

2, PROBLEM FORMULATION

2.1, Fundamental relations

Let a truss-like structure be considered with the
usual assumnptions of small displacements and defor-
mations. Let u and F denote respectively vectors of
the displacements of the free nodes (n degrees of
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freedom) and of the corresponding given independent
nodal leads; Q0 and ¢ will represent the m-vectors
of -the bar forces and bar elongations, respectively.
With these symbols, geometric compatibility and
equilibrium can be expressed, respeclively in the
forms

qg="Cu (§H)

C'Q=F, @

where (C is a m xn matrix which depends only
on the given layout of the structure. For each
structural member 7, the assumed piccewise linear
holomomic constitutive law relating force to
elongation is depicted in Fig. | and can be described
as follows:

g =e+p' =()'Q+pi-p2 (3
di=—0'+ (i +Hip)) 20 (3b)
¢i= Q'+ i+ Hipy) 20 (3c)
pLpiz 0 9ipi=0; ¢ipi=0 (3d)

where p}, ¢ represents the plastic multiplier and yield
function, respectively. H}is a nonnegative hardening
modulus for each i and j=1,2 given by a'E%k}/l
where kj,a', E. I represent work hardening co-
efficients, cross-sectional area, Young's modulus and
length of member i, respectively. The element §”is the
elastic stiffness a’EY/{’, r}, j = 1,2 are the yield forces
given by ¢ia’ where o} are the compressive and tensile
yield stresses for member i. It is convenient 1o assem-
ble the above relationships for i = I,...,m into the
matrix form

g=8)"'Q+p—p (4a)
$=—Q+ @+ Hp)z0 (4b)
$r=Q+(n+Hyp) 20 {4c)
Pispr 20 dip+ Gop=0. (4d)

Substituting vectors ¢ and Q, the relationship (1), (2)
and (4) can be written as

Ku = CrSpl + CISPE = F (53)
—N'SCu+(N'SN+H)p+r=0 (5b)
20, pz20, ¢p=0, (5¢)

where K = C'S C is the nonsingular stiffness matrix
of the structure and N = [I —7]. From (5a) it follows
that

u=u*+GNp (6)

where

u'=K"'F and G=K"'C'S. (7
The vector u* represents elastic displacements and
matrix G consists of the influence coefficients of the
displacements due to imposed strains {elongations in
the case of trusses).

The analysis of structures described by an elasto-
plastic stress—strain law with work-hardening can be
formulated as a convex quadratic programming
problem. It is intended to minimize the resulting force
vector @ and the plastic multiplier vector p in the
structure

MinQ'S™'Q +ipiHp +ipiHip,  (82)
subject to

c'g=Fr (8b)
ohy=—-0+Hp+nz0 (8¢c)
$=0 +Hyp+1,20 (8d)
QOreal, p20; p=0 (8e)

or in the more compact form
MinlQ's'Q +1p'Hp (9a)



Least weight design of elastoplastic trusses

subject lo
C'Q=F (9b)
$p=—NQ@-+Hp+rz=0 (9¢)
Qreal; p=0, (9d)

We remark that for an elastic—perfectly plastic model
with nonhardening behaviour H = 0 and (9) becomes

MintQ's~'Q (10a)

subject to
C'Q=F (10b)
¢=—-NQ+r=0 (10¢)
0 real. (10d)

This problem has a solution if the design makes the
structure capable of carrying the given loads what-
ever p may be.

The dual of (8) is the convex quadratic program-
ming problem

c'sC —C'S C's
Mini{u'pipt]l| —SC S+H -8
sc -5 S+H
u u
x| p H[Frirdl p (11a)
§ 253 i)
subject to
wreal p =20 ;=20 (116)

the solution of which is the vector of nodal displace-
ments « and the plastic multipliers p, and p,. At the
optimum solution of the elastoplastic analysis prob-
tems (8) and (11) all the matrices and vectors involved
are differentiable. Moreover the columns of the
simultaneously active constraints are linearly inde-
pendent.

3, SYNTHESIS PROBLEMS

3.1. Elastoplastic synthesis of trusses

The synthesis problem arises when the cross-sec-
tional area @ are regarded as design variables. The
cost function w is assumed to depend lingarly on the
design variables, through a given coeficient vector c.
Thus, the oplimum design problem is to minimize the
function

Min w = ¢'a. (12a)
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The design variables are possibly subject to variable
linking (to reduce the number of different sections).
These technological constraints are linear and can be
expressed as

{12b)
The constrainis,

azat (12c)

impose lower bounds a* on the cross-sectional areas.

The bar stiffness is composed of elastic stiffness
represented by § and, in the gemeral, of plastic
stiffiness (hardening) denoted by H. It vames with
a because all the parameters defining the member
behaviour depend in general on the geometric charac-
tenistics of the cross-section

@i+ 0 —(r -+ Hip) =0 (12d)
¢2_Q —(ry+ Hyp,)=0 (12¢)
P]gP;!_?O; ‘.ﬁ]: ‘7"330' (12f)

A noteworthy aspect of the class of optimal design
problem under consideration is that the mathematical
formulation ‘of the problem is characterized by a
complementarity constraint requiring that between a
certain pair of corresponding variables, ¢, p, and ¢,
p» at least one component must vanish

D 1P+ ap =0 (12g)
Serviceability conditions can be considered by placing
upper bounds U/ on some or all of the displacement
components

Bu=Bu' + BG,p, + BG,p, < U (12h)

Bu= Bu®+ BGp,+ BG,p, = — U, (121)
where B is a binary matrix. In the presence of limited
ductitity of the material, upper bounds A on the
plastic multipliers (sach of which measures the
amount of yielding generated with respect to each
vield mode) might also be imposed

msA; PS4y, 12p
Besides the ronlinearity steaming from the con-
straints (12d, ) and (12h), the complementary con-
dition (12g) makes the optimum design problem (12)
nonlinear and nonconvex.

This formulation covers situations where the
design varables defining local strength parameters
do and do not affect the elastic and hardening
stiffness.
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3.2. Minimax formulation

In the context of the elastoplastic synthesis prob-
Iem defined above, it is intended to minimize a whole
set of goals such as the cost; nodal displacements, etc.
by finding an optimal set of cross-sectional areas. The
technological constrainis (12b) are used in order to
rewrite ‘the problem in terms of the independent
design variables. All the goals need to be cast in a
normalized form. If w represents a reférence cost, the
relation (12a) becomes

c'as‘w:>g;(a)=%—l-.<.,0. (13)

The lower bounds on cross-sectional areas (12c)
become

@)= ——+1<0. (13b)

Similarly, one has for the upper and lower bounds on
the nodal displacements (12h, 1)

'gs(a)=%f =1<0 (13¢)

B .
gle)=—— —1<0. (13d)

In the presence of limited ductility of the material

L 2
gle)= ~T—=1<0  gla)= -2 -1<0.

2

(13e)

The sign constraints on ¢, ¢, and p,, p, lead to

Ad, ; Ad; )
g(a)= ——1<0; fa)=——""—1<0
g(a) S gj( ) .
(13f)
A A
Zla) = TR <0; gwla) = _8h <.
P s

(13g)

The complementarity constraint in normalized form
becomes

(@1 +Ad ) (p+ Ap) + (@ + A) (2 + As)
€

gula)=
—1<0 (13h)

and it is satisfied for sufficiently small ¢ (say 0.001).

The problem of finding values for the cross-sec-
tional areas which minimize the maximum of the
goals has the form

MR, MAXy o o Eran e s Qoo -+ 0 8 (14)
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and belongs to the class of minimax optimization.
Several other optimum design problems, such as the
minimization of plastic deformations with a con-
straint on weight can be transformed in similar
niinimax problem.

4. ENTROPY IN QPTIMIZATION PROCESSES

4.1, Constrained nonfinedr programming

Entropy can be used to deduce desired results when
only limited information is available. The general
inequality constrained nonlinear programming prob-
lem

Min f(x), (152)

j=lsucn. i

stg(x) <0 or glx)+s5=0, j=1....m
(15b)

was examined in [5). An initial point was chosen and
information is calculated about the objective and
constraint functions, typically their numerical values
and gradients at the design point. This numerical
information was then wvsed in a mathematical pro-
gramming algorithm to infer where the next trial
point should be placed so as to get closer to the
constrained optimum of the problem. The new trial
generates more information from which another
point is inferred and eventually the solution is
reached by this process of gathering better infor-
mation and using it in an inference based algorithm.
The essence of the method consisted in transforming
problem (15) into an equivalent surrogate form

Min f(x) (16a)

St B kg (=10 (16b)
B k=1 (16c)

Az0 (16d)

and using maximum entropy to obtain least biased
estimates of the optimum values of the surrogate
multipliers 4;. In this two-phase method the absence
of an explicit surrogate dual objective function is
overcome by introducing the Shanon entropy [6] as 2
means of forcing iterations towards a saddle point.
Each estimate lead to a new problem in the space of
the x variables and generated information upon
which to base an improved estimate of the optimum
surrogate muliipliers. The work was later extended by
combining the two phases into a single phase consist-
ing of solving a single unconstrained problem. The
Lagrangian of problem (16) was augmented with an
entropy term

Pr=flx)+aZi,Agx) +plE . L — 1)

—1pE, iy InCh), (17)
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where the negative sign of the entropy term was
necessary because of the nonnegativity of the sum-
miation. p is a positive constant. Using the stationar-
ity conditions this reduces to
Min, f(x) + 1/p InE,_,, explpag;,(x)], (18)
p is an arbitrary positive constant with the entropy
augmentation term and px should be an increasing
positive quantity. The In Z exp () form of the penalty
term is particularly interesting, although it has not
appeared before among many suggested penalty func-
tions in the mathematical programming literature.
The work was pursued further to remove the
difficulties associated with p =pa having to start
small and increase positively, possibly causing
overflow in exp [pg;(x)] [7]. The constrained nonlin-
gar programming problem is treated as

Min f(x) (19a)

st 4,(x) =0, (19b)
where the single constraint 4,(x) is called aggregate
constraint

A (x)=1/pInZ,_ exp[pg(x)]

= gk(.x) +1ljpn Ej:l.M exp {P[g}(x)_gk(x)]}s.
(20)

where g, () is the maximum constraint. Prablem (19)
is then solved by an augmented Lagrangian algor-
ithm. The exponents are now all nonpositive and p
can be made very large immediately, without bother-
ing with an increasing sequence for p.

For some time the validity of the above entropy-
. based methodsupon whether it was valid to interpret
the surrogate multipliers as probabilities. The proof
of the validity of all the assumptions and of the
methods turned out to be very simple requiring only
the use of Canchy's inmequality (the arithmietic—
geometric mean inequality). In censequence all the
results can tow be proved entirely deterministically
and without recourse to probabilistic interpretation.
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4.2. Geometric interpretation

The single phase entropy-based method (18) can be
interpreted as a generalized Lagrangian method
which fills duality gaps in nonconvex problems. If the
mathematical programming (15} is considered and
assuming for the sake of simplicity that only one
constraint is active at the optimum solution. For any
A the mimimization of f(x) + A[g(x) + ] corresponds
to an hyperplane that supports the shaded domain
represented in Fig. 2.

Also one cannot find a linear support of lower
envelope of the set at a point having [g(x) + 3]
between —¢, and ¢, On the other hand, if the
Lagrangian

L =f(x)+Loimh(g+s) =fx)+ g —5) Q1)

is considered, # corresponds to the intercept of
supporting lines with slope —21 on the f-axis
and from Fig. 2 it can be seen that Max.%
is strictly less than f(x*). This explains why no
duality gap exists in convex problems. By using
a nonlinear support, such ‘as augmenting the
Lagrangian' with the Shanon entropy term, the
duality gap can be eliminated. The Lagrangian
(17) is equivalent to

P =f(x)+ p InE,_ , exp {pafg(x) + 5]} (22)

and for values of A, between 0 and 1, & (and &)
becomes an exponential support which closes the
duality gap as it ean be shown in Fig. 3.

4.3. Minimax optimization

Following from the above work on scalar optimiz-
ation [8] examined the role of maximum entropy in
vector (multiobjective and multicriteria) and minimax
optimization. Specifically it is shown that the
minimax problem (14) can be solved indirectly by
minimizing a continuous differentiable scalar optim-
ization problem. In this section some of the theory
behind this approach o minimax optimization is
briefly described.

pa increases

\

Max Lg' A pval

~

Fig. 3.
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For any set of real, positive numbers U,
JF=1,....4, and real p = ¢ > 1, Jensen’s inequality
states that

czj=lm

Un'® < (Zjoy m UM (23)

Inequality (23) means that the pih norm [9] of the set
U/ decreases monotonically as its order, p, increases,

Another important property of the pth norm is its
limit as p tends towards infinity

lim, . (1, US)'" = Max;_ <UD, (24)
Consider the minimax optimization problem
Min, Max;_, {g{x)> (25)

and Jensen’s inequality. Let U =-explg(x)]
Jj=1,..., mthusensuring that I/, > 0, for all positive
g,(x). Then

(Bpr U= {Z,_ exp [pg ()T}, (26)
From (23)

lim, o, {2 exp [pg (o)} 77 = Max;. (g, (x)).
@n

Taking logarithms of both sides and noting that,

log lim( ) = lim log(/) and

log Max(f) = Maxlog(f). (28)
eqn (27) becomes
lim, ., (1/p}log {Z;_ . exp [pg (X1
=Max,_ . {(g(x)>. @9

Results (29) holds for any set of vectors g(x), includ-
ing that set which results from minimizing both sides
of (25) over x. Thus (29) can be extended to:

Min, Max,n:: Lon (gj(x)>
= Min,(1/p) log {Z,. . exp [pg,(x)]} (30)
with increasing p in the range 1 < p < . Result (30)
shows that a Pareto solution of the minimax optimiz-

ation problem can be obtained by the scalar minimiz-
ation

Min, (1/p) log {Z,_  mexp [pg,()} (3D

with a sequence of values of increasingly large posi-
tive p = 1.

L. M. C. SiMOE8

4.4. Scalar function optimization

Problem (31) is unconstrained and differentiable
which, in theory, gives a wide choice of possible
numerical solution methods. However, since the goal
functions g;{x) do not have explicit algebraic form in
most cases, the strategy adopted was to solve (31) by
means of an iterative sequence of explicit approxi-
mation models. An explicil approximation can be
formulated by taking Taylor series expansions of all
the goal functions g:(x) truncated after the linear
term. This gives

min 1/p log E,_y exp {plgia,)
+ 2 yullgf0a), @ —a)l), (32)

where d and ¢ are the number of design variables a
(member cross-sections) and goal functions g(a),
respectively.

5. SENSITIVITY ANALYSIS

To formulate and solve the explicit approximation
problem (32), numerical values are required for all the
goal functions and their derivatives with respect to
the design variables. The truss volume is known
explicitly and need not be considered further. How-
gver, member forces, plastic multipliers and nodal
displacements are implicit functions of g. Given some
design variables the analysis of the truss will yield
numerical values for &, p and ». One way of evaluat-
ing the derivatives is to a postoptimality analysis, as
follows.

The matrices S, H,, H, and vectors r;, r, are
differentiable with respect to each of the design
variables with derivatives §%, H{, HY'. By consider-
ing the dual problem of elastoplastic analysis and its
solution [’ p} pi], the right-derivative [u* p{" p§'] for
@ positive Aa' is given as the unique solution of the
guadratic programming problem

c'sc —-C'S c's
Min i [ p¥' ps’ -8SC S+H, -5
s —5 B4+
u® u®
< | opf | HIFCT—n)f—n)] | e
b4 P
(33a)
subject to
u®is real

pi=0 for ¢{=—-0'+(i+Hp)>0 (33b)

pi=0 for $i=0'+(i+Hipi)>0 (330
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pi<0 for ¢\=—-Q'+(ri+Hip))=0 (33d

pi <0 for dh=0'+ (@, +Hipl)=0 (33
The sensitivity O can be directly evaluated from the

compatibility equations

Q*=SCu”+ Sp{ — Sps (34
and the yield functions are given by
@Y= —N'Q* + H*p* +r°. (35)

It should be emphasized that this procedure gives the
right-derivatives. The left-derivatives are the symmet-
ric solutions but with the same constraint set. There-
fore, the sensitivity analysis programming problem is
dealing with differentiable plastic multipliers when
the set defined by the corresponding yield functions
N'Q+ Hp+r>0is empty and with differentiable
yield functions when the set of corresponding plastic
multipliers is empty. Since this is not generally the
case, this procedure is only able to generate one-sided
derivatives and (32) should be solved by an algorithm
for nondifferentiable optimization. But since both p
and ¢ are semismooth [10], methods for nondifferen-
tiable optimization can be employed.

6. ALGORITHM FOR THE OPTIMIZATION OF
ELASTOPLASTIC TRUSSES

6.1. Control parameter p

The previous sections have examined the major
elements of the design method—the minimax opti-
mum design formulation, the entropy-based Pareto
solition and the sensitivity analysis of the structure.
The minimax optimization algorithm requires a se-
quence of positive values of p increasing towards
infinity. Many different schemes are possible depend-
ing on the convergence rate and stability of the
algorithm upon the particular sequence chosen. In
particular, an analogy with the physical process of
annealing can be made. Annealing consists of beating
up a solid until it melts followed by cooling it down
until it cristallizes in a state with a perfect iattice.
During the process the free energy of the solid is
minimized. Practice shows that the cooling must be
done carefully in order not to trap locally optimal
lattice structures with crystal imperfections. Now, by
establishing a correspondence between the cost func-
tion and the free cnergy and between the solution and
the physical states one can introduce a solution
method based on a simulation of this process. In the
ctase of optimization in general, the entropy can be
interpreted as a quantitative measure for the degree
of optimality. During the execution of the algorithm
the expected cost and entropy decreases monotoni-
cally providing optimality is.reached at each value of
the control parameter. The value of p is estimated by
an iterative procedure which makes the objective

function of problem (31) stationary with respect to p;
i.e. to iteratively solve

o= {log Z;_,, exp [pgla} {Z.- 1. €% [pg (ay )]}
;- .8(a,) exp [pglap)] '

(36)

From this expression it can be seen thal p increases
as the unfeasibility of the current design decreases, i.e.
increasing p tends to enforce feasibility. Also ex-
pression (36) requires the starting point to be un-
feasible in order to make p =0. This is a very
restrictive condition, because the algorithm works
even when it starts from a point that meets all the
criteria. It has been observed that a satisfactory
‘behaviour for the procedure is to set 1 < p < 50 in the
first iteration, and this value was increased in sub-
sequent iterations. The choice of p should reflect the
number of violated criteria and its algebraic values.
A large p would produce a solution with smaller cost
but ‘more unfeasible and a smaller p needs to be
chosen to deal with large criteria violations.

6.2, The algorithm

(0. Take as an initial design a uniform force distri-
bution—fully-stressed design. This method also
works with other starting points and its performance
improves when some of the criteria are not met.

1. Do the sensitivity analysis. Consider only the
affine terms of the Taylor series of the ¢ criteria with
respect to the starting point g;. The quasi-Newton
routine NAG E04JAF proved to be more efficient to
solve the explicit problem (32) than the other algor-
ithms tried. Tt uses differences on the gradients of the
function and its first derivatives to cormputer the
approximations required. The evaluation of the de-
rivatives by analytic means is not competitive because
they are given by sums of combinations of exponen-
tial terms, being computationally expensive.

2. Analyse the truss subject to the loading con-
ditions.

(a) If the starting point is feasible and the solution
of the optimization leads to a wunfeasible
design, make a linear interpolation in order to
find a solution closer to the boundary of the
domain and use it in the next iteration, The
nearly feasible design required can also be
achieved either by limiting the design variable
changes or by reducing the parameter p.

If the solution of the optimization leads to a

truss with least cost and that meets all criteria

keep it as the new optimum solution. Use this
solution as a starting point for the next iter-
ation.

(b,) If the starting point is feasible, the solution
found is feasible and the difference in costs is
small, increase p. If the difference in costs is
still negligible, stop the algorithm and use the
incumbent design as the optimum.

(by)
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Fig. 4.

{c) I the starting point is feasible and the result
of the optimization leads to a structure of
higher cost, increase the parameter p and
repeat the iteration of problem (32) with the
same data.

(d,) If the starting point is not feasible and the
result of the optimization violates more the
criteria stop the algorithm and use the incum-
bent design as the optimum.

(d,) ¥ the starting point is not feasible and the
result of the optimization violates less the
criteria reduce the parameter p and repeat the
iteration of problem (32) with the same data.

7. NUMERICAL EXAMPLES

Some numerical examples were solved in order to
illustrate the procedure described above.

7.1. Example 1
The isostatic truss depicted in Fig, 4 and described

in [4] is considered. The elastoplastic synthesis prob-
lem consists of
Min 2./2/3a, ++/56; + a3
subject to
(@F, + F;)\/2/3 —ola,
— Ha, [(21,/2/3)p} + §1 =0
—(=F,+ F)/5/3 =634,
— Hay (/5303 + $3 =0
(F, — Fy)/3 — olay — Has[lpi + 61 =0
1w, = 0.9428[(2F, + Fy)4 [(9Ea,) + pi]
— 0.7454((— F: + F,)51/(9-Eay) —p3]

4+ 0.3333((F, — F)l/(9Ea,) +pi1< U

w; = 0.4T14[(2F, + F>)41[(9Ea,) + pi]
+0.7454]( — F, + F,)51(9.Ea,) — p3)
—0.3333[(F, — F)V/(9Ea;) + pil< U
uy = (F, — P, [(9Eas) +pigU
pidi+pted+piel=0
all @t @/ =001
and the sign consiraints
plli ¢|1-P%: ¢g1p?! ¢':: ; 0‘
The following parameters are assumed
F,=0.04%10"% F,/F,=09
Ul =1/400; HIE=1/6; o, /E=0,/E =0.0015

For each bar the hardening branch possibly activated
may be selected. Take for starting point the elastic
truss such that all bars are at their yield limits. In this
problem, the sensitivities can be directly derived.
Take as starfing point
a,/P=7364; &/ =2.0; ajF=09; w/P=3671
is infeasible because # = 1.07U. A design satisfying all
the constrainis could be found by increasing propor-
tionally all the member sizes to

a /I =38.69; aF=212; & 12 =10.96;

w/l = 39.208.

By making p = 10 in the first iteration of the algor-
ithm, the solution

@ [P =3493; a/'=3.0; a/F=135

wil=137.42
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is feasible. p 15 increased to 100 in the second iteration
because the new base point is feasible giving
aj[I*=35.9,

a[F=2.68;, a/F=119;

wil? =37.12,

This solution satisfies the constraints and is not far
from the exact optimum

@ F=354; a,)i*=3.0, ai? =133
Wil = 3691.

The purely elastic solution that complies with the
suitable constraints on the stresses and displacements
is
allP=365 afl*=23; afl*=10; w/i*=37.1
If the algorithm is started with a feasible point where
the member areas are proportional to the member
forces

a/B=50; a/f=3; ajF=125 wi’=3671

‘the algorithm (with constant p = 100) would con-
verge in five iterations to
a,{I*=3589;

a /P =281 asfl*=120;

wil’ =37.13,

7.2. Example 2

Examples 2-4 refer to the six-bar truss depicted in
Fig. 5 and used in [3] as a testbed. An elastic—perfectiy
plastic member behaviour was adopted. Bach bar has
a single yielding mode, with H in compression that
is representative of the Euler buckling load in the
plane of the axes and has unlimited tensile sirength.
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Assuming that for sandwich cross-sections the force
r, and the elastic stiffness §; are proportional to g,

and it is assumed that all bars possess unlimited
tensile strength. Lower bounds on the cross-sectional
areas a’ =0.01 were imposed on all bars and all
displacements cannot exceed in modulus 4,
U=[4444]. In this example, it is required that all
bars of the same length have the same cross-sectional
area. Therefore, the structural optimization problem
has only two independent design variables.

The cost function will be defined by the vector,

[3332,/22,/22./2).
The truss carries the load [9000]

ay=ay= '3370’

"

a,=a;=a,=a".

The feasible design [’ a"]=[24] with the corre-
sponding cost 51.941 is assumed as the starting point.
Since the initial design is inside the feasible domain
it is desirable to use a large p. By keeping a constant
p =350 throughout the algorithm, the solution
[0.904 1.405] with cost 20.082 and where bars 2 and
4 develop plastic behaviour is obtained at the fourth
iteration. This result could bé improved further (less
than 1%) in the subsequent iterations by increasing
p to 100 and 200, respectively.

The elastoplastic solution has a cost 35.7% lower
than the purely elastic solution complying with the

7
*®
1
w=l0 X
|
o t 2
o
Fig. 7. Movement of trial solution in the plane of the design
variables.
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250 cm (100")

Fig. 8. Twenty-five-bar space truss,

suitable constiraints on the stresses and displacements
is [0.01 3.173] with the cost w =27.01. The plastic
limit synthesis LP leads to [1.4950.01] with the cost
w=13.54.

7.3. Example 3

This problem is similar to example 2, but now the
loading vector is [7 —300] and the initial feasible
design [a’ a"]=[23] with the corresponding cost
43.456 was adopted.

The solution [0.617 1.167] with cost 15450 and
where bars 2 and 4 yield is obtained in the fourth
iteration. The parameter p was 50 except in the third
iteration where it was reduced to 5 in order to
produce a feasible design. Alternatively, it is possible
to use p = 50 throughout the procedure. The nearly
feasible design required in the third iteration can be
achieved either by limiting the design variable
changes or by interpolating the results of the third
and fourth iterations. The purely elastic solution is

Table 1. Details regarding 25-bar truss

Stress limits
Upper Lower
stress limit stress limit
Member number (pai) (psi)

1 40.000 —35.092
2-5 40.000 —11.5%0
&9 40.000 —17.305

10-13 40,000 —135,092
14-17 40.000 —6.759
18-21 40.000 —6.959
22-25 40.000 —11.082

[1.128 1.276] with the cost w = 20.991 and the plastic
limit synthesis gives [1.1620.01] with the cost
w = 10.54 (see Fig. 6).

7.4. Example 4

In this example, the truss was considered under the
same load vector as in example 2, but the cross-sec-
tional areas of all six bars were assumed as indepen-
dent design variables. The procedure started with an
initial feasible design a =[22 241 1] with the corre-
sponding cost 34.970 was assumed as the starting
point. The design [0.010.01 0.01 3:202 0.01 0.675]
with cost 11.085 that is also the solution in the
elastic range was obtained after five iterations
by using p=>50. The plastic limit design is
[0.010.01 0.01 3.161 0.01 0.01] with the cost w = 9.08
(see Fig. 7).

7.5. Example 5

Figure § shows the 25-bar truss and its design
specification, Table 1, gives member grouping and
compressive stress limits. This truss carries the
load,

[110 -5010—50.5000.500000000].

The cost function is defined by the wector of
bar lengths and an elastic—perfectly plastic member
behaviour was assumed. The truss was solved for
the same stress constraints and minimum Cross-
sectional areas and for different nodal displacement
limits.
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Imposing displacement limits of 0.50" on all free
nodes, the solution (in%)

0.071 0.673 1.974 0.01 0.646 0.553 0.398 2.720

with weight 3649 was found after five iterations by
using a constant value for p = 100. We remark that
although an elastoplastic behaviour was possible, this
design is entirely elastic. The algorithm is able to start
from a feasible point inside the domain. The elastic
design,

0.071 0.673 1.9740.01 0.646 0.5530.398 2.72

with weight 3439 was taken as the starting point and
it was intended to find the truss with least weight such
that the maximum nodal displacements are litnited to
0.75". The solution

0.060.337 1.540.183 0.80 0.4950.274 1.694

with weight 2449 develops a plastic behaviour, the
bars 14, 16 and 19 yielding under compression. Three
iterations were required to find this design where p
was 100, 20 and 100, respectively. The reduction of p
in the second iteration results from obtaining a design
with p =100 which is unable to carry the applied
loading.

The algorithm also works when the starting point
is an infeasible solution. Consider the nodal displace-
ments limited to 0.65" and take for starting point the
solution for 7 = 0.75. The solation

0.056 0.437 1.620 0.1350.739 0.544 0.236 2.085

with weight 2733 develops 4 plastic behaviour in bar
19. It was found after four iterations where p was
made 20 in the first three iterations and was reduced
to 10 in the last in order to find a feasible solution.

8. CONCLUSIONS

This paper explored the possibility informational
entropy maximization processes may have a place in
the development of new algorithms for solving math-
ematical programming problems. The present work
represents one new direction which might possibly
result in improved techniques in the future.

The least weight design of materially nonlinear
trusses was cast as a minimax problem that allows
the simultaneous optimization and contro! of many
different goals. The entropy-based solution method
solves this problem by an unconstrained scalar op-
timization involving only one control parameter. The

multipliers are automatically evaluated by maximiz-
ing the entropy, that is: by reducing the uncertainty
in their evaluation based on the previous behaviour
of the mathematical model. The p parameter is
chosen according to the position of the current design
with respéct to the problem domain. It is not possible
to guarantee that this algorithm converges to more
than a local optimum of this nonconvex probiems.
The remaining local solutions can be enumerated
either by selecting a different sequence for the control
parameter or by trying out different starting points.
However, in all the cxamples tred out, these
procedures lead to designs with approximately the
same cost. In conclusion, the performance of the
maximum entropy based algorithms for the optimal
design of trusses with elastoplastic behaviour is very
encouraging providing a smooth convergence.

Rigid hardening models have a practical interest
when the real local behaviour exhibits a sirong
hardening and when plastic strains prevail over
elastic strains. They can be also dealt with by the
method described in this work.
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