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Abstract—An integrated form of yietd line theory incorporating finite elements and concave quadratic
programming is developed, The branch and bound strategy used ta solve this mathematical program is
simple to opefate because it involves only linear programming algorithms. It provides either an upper
bound to the reliability index of the stochastic most relevant mechanism for continuous slabs or an exact
solution when the yield lines of the callupse mods of the continuous model lie along element boundaries
of the finite elerment model. Algorithms that enumerate other stochastic dominant modes are described
and applied to assess the reliability of slabs. Tlustrative examples are given.

1. INTRODUCTION

In the vield method [1] for the plastic limit analysis of
" slabs, potential ¢ollapse mechanisms are postulated
and the corresponding load parameters evaluated
using well-known methods. However, the task of
generating suitable trial mechanisms for relatively
complicated problems is far from simple and it is
therefore desirable to develop an automatic pro-
cedure for deriving the collapse mechanism without
first giiessing such trial mechanisms. When the plastic
limit analysis of slabs is tackled in mathematical
programming form by means of finite elements, the
programs are proven to be linear [2]. The solution of
the linear program is the value of the load which
causes plastic collapse of the finite element model.
Since these models are based on deterministic be-
haviour, it is only possible to guarantee by using them
that the structure resists up to a static loading
assumed to represent the most unfavourable loading
supposed to act during its life and the behaviour of
the constituenit materials. Most important in calcu-
lating the failure probability ef struciural systems—
as the number of failure modes for large systems can
be extraordinarily high—is the search for the stochas-
tic most relevani failure mechanism. In order to avoid
the difficult numerical integration of the probability
density functions involved, the reliability index is
obtained from the limit state equation using the
first-order sccond moment approximation. Plastic
limit analysis yields the deterministic relevant mech-
anism, which is not necessarily identical to the
stochastic most important mechanism, that is; the
mechanism’ with the smallest reliability index f
and the highest probability of failure p. A re-
inforced concrete slab example is given to support
this statement.
The impartant role of mathematical programming
is being increasingly recognised in terms of both
computational ‘convenience and ‘theoretical formu-

lations. The assessment of the reliability of frames
with plastic behaviour has been tackled in this way [3]
and an extension is made in this paper to cover the
finding of the stochastic most important mechanism
of plates with linearised yield conditions through
finite element models. It turns out that this non-
convex functional programming is equivalent to a

‘quadratic concave programming that can be solved

through a branch and bound strategy where the
nodes of the combinatorial tree are linear programs.
Examples are given that show the effectiveness of this
technique. The yield line theory can be associated
with @ form of finite element representation in which
the yield lines are restricted to element boundaties.
Thus the natural kinematic variables for this model
are the mechanism deformations. The global solution
of this problem is the minimum distance from the
limit-state surface to the origin of the reduced normal
variables, applied load and bending moment resis-
tances.

2. STRUCTURAL RELATIONS

2.1. Nodal description of kinematics

As the deformations are to be described through
the displacements of the nodes of triangular finite
elements, it follows that such deformations are neces-
sarily compatible. According to the hypothesis of the
yield line theory, when the collapse mechanism is
dctivated, the finite elements behave as rigid, but
angular discontinuities may be generated across the
element sides whilst providing for continuity of verti-
cal displacements. The rotations @ of the outward
notmals to the three edges of the single element of
Fig. | may then be expressed in terms of the corner
vertical displacements i, in the following manner:
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For an interelement side the total angular discon-
tinuity @, is clearly the algebraic sum of the rotations
8¢ of the two outward normals with respect to the two
finite elements sharing such a side. If the boundary
conditions are taken into account, then the number
of nodal vertical displacements to be considered is
merely the number (NC) of corner nodes fice to
undergo that form of displacement, and the vector 4
will contain ‘on¢ component for each finite element
side which can sustain the corresponding bending
moment. I there are NS such angular discontinuities,
the assemblage of relations (1) for all finite ¢lements
is thus readily performed and may be written in the
following compact form:

0 ="Cu. (2)
where C is an (NS x NC) kinematic transformation
matrix. Since these modal deformations are obtained
as functions of the linearly independent displace-
ments # it follows that such deformations are neces-
sarily compatible and the rotation/displacement
relations may be taken as the compatibility
conditions.

2.2. Constitutive relations

A causal relationship between the statics and kin-
ematics is encoded in the constitutive relations which
model the material properties. In the present case,
these constitutive relations consist of the vield con-
ditions, The yield line theory considers a very simple
yield criterion involving solely the normal bending
moment and the normal angular discontinuity at
every element side. The yield conditions impose limit
values to the magnitudes of the total bending mo-
ments at the element side. Tf the unit length positive
and negative bending moment capacities are. respect-
ively, m* and m+; for the ith element side, where
the unit length bending moment is m;, then

-, +
—m ks m S m .

3)

Now, if such an element side has a length {,, the yield
conditions in terms of total moments for the whole

element side are:

— Ri%; =

i —m sl s m<mts L =mtw,

4
If &, is the angle between the boundary side of length
I; and the y axis

mxt =l (cos® a)m + I (sin® a)m, (5a)

ma; = l(cos® aym 7 + L{sin’ o). {5b)
The mechanism' deformation can only take place at
the element sides where the normal bending moment
reaches one of its limiting values. That is to say, the
angular discontinuity 8, at the element side can only
take a positive value, 8, when m;, is equal to m»
and it ean only take a negative value, 8-, when m, is
equal to mx].

The kinematic variables of this model are associ-
ated with mechanism modal deformations that are
notl necessarily total deformations before or after
collapse. The modal deformations become total de-
formations when, in addition to identifying the col-
lapse mechanism, the assumption is made that the
element deformations are confined to plastic defor-
mations at their boundaries. However, it should be
emphasised that the latter assumption of element
rigidity is unnecessary for the purposes of perfect
plastic behaviour. Providing that at the incipient
plastic collapse the displacements are small enough
for the plastic analysis to be based on the undeformed
geometry of the structure previous to the loading,
elastoplastic deformations need not be considered.
The plastic behaviour of slabs is not necessarily
rastricied to the finite element sides. Thus, the finite
element modelling leads to a representation which is
approximate for the stab.

3. RELIABILITY ASSESSMENT

3.1. Collapse of ductile structural systems

Since neither the loading nor the materials are
deterministic, the reliability assessment of a structure
has to take into account that duning its design life the
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structurs is generally subjected to a number of vary-
ing loads and their combinations and that its resi-
dence may deteriorate with time. In this coniext the
problem arises of evaluating the conditional failure
probability of the structural system given a certain
load eyent, Variation of the parameters of the prob-
ability distributions, the respective types of distri-
buiions and the correlation among the variables
involved has quite a significant effect on the results.

In the case ol structures composed of ductile
members such as components with elastic-perfectly
plastic behaviour, the structural sirength would be
independent of the failure sequences of the com-
ponent. For this class of structural systems, the
collapse of a system would be through the formation
of plastic mechanisms. In this regard, the perform-
ance function for the ith plastic mechanism for a
frame may be defined as

Z= Z ampk — z by Airs 6)
J k

where j includes all the hinge moment capacities
active in mechanism i, whereas & includes all loads
active in mechanism i The collapse of a system
through mechanism 1§, therefore, is the event
F,=(Z,<0). Then, if there are m possible failure
mechanisms the probability of system collapse can be
written as

2o(C) = P{Z,<0uZ,<0u---Z,<0) (7a)

=P(Fufw --uF,). (7b)
In general, Z, are correlated random variables; conse-
quently, calculation of the collapse probability,
p(C,), will require the multiple integration of joint
probability distributions of the correlated random
variables Z,, i=1,2...m. The mathematical pro-
gram corresponding to the finding of the more im-
portant mechanism will be analysed next. The
first-order second moment method [4] only requires
the mean and standard deviation of the random
variables probability distribution functions, namely
loading and structural resistance. The reliability in-
dex, f,, for the performance function Z, is given by

Br= /02 %)
where uy; and o are the mean and standard devi-
ation of Z;, respectively. As Z, is a linear function of
the number of random variables m+ and Ag, the
distribution of Z, tends to normal (hased on central
limit theorem) irrespective of the individual distri-
butions of the variables. Hence, using normal distri-
bution for Z;, the failure probability for mechanism i,
Pis 18 given by

pr=P(—B)=1-2(8) 9
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where @ is the cumulative probability of a standard-
1zed nhormal variable.

3.2. Computation of the reliability index

By associating the rotations of the element sides
with the rotations of the members represented by the
same random variables 8%, 0+~ through the inci-

dence matrices J; , J, and the displacements of the

point loads {or in the case of uniformly distributed
load, deflections of the iriangular elements centroids)
linked by the same random variable u» through J,

G+ =g, 8"
fs—=Jy 0~
wx =J . (10)

For statistically independent random normal vari-
ables, the identification of the stochastic most impori-
ant mechanism consists of finding the position of the
limit-state equation closer to the origin of the reduced
normal variables. This amounts to minimizing the
distance-reliability index, f [5]

min = /(s Y+ )2+ (00D, (1)
The relationships linking the reduced normal vari-
ables to the normal variables are

mat = Hoe T+ gm-v-m*Jr'

’

maT =, O, e

iy = Hp+ OpAf, (12)
whete f,.v s o+ pr 0d 0,y , G, , T dre the mean and
standard deviation of the random variables mix™,
m«~ and -4, respectvely. The limit-state function
equates the external and internal work produced by
each mechanism

Zlms*,me ) =me" Ot 708 —Afus
=0. (13

Substituting m= and 7 for eqn (9) in the limit-state
equation yields

O, O™ kg, e 0% — gl

= —fly 05" — p, Ox" ppux. (14)
In eqn (11) the plastic modal deformations of the
mechanism are present as staté variables. Since it is
required to find the minimum distance from the
origin of the reduced normal variates to the yield
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surface, the values of mx*", m* " and A given by its
minimum norm solution are

=G OV, G 4, O™ — poux]

mat’ = (6,4 POV + (0= Y(O* ) 4 (o) ()
(152)
B L T e
(G (O3 ) + (0 PO P + (0 (n)
(15b)
I oruk[it, . Ot +,u,,r.6'*”,ufu¢]
T 0, OV + (o YO )+ (o) )
(15¢)

For positive [u,. 0% + g, 8% — ppu+], the identifi-
cation of the stochastic most relevant mechanism
consists of finding

min [3 =
(e 0% + tyy 0% — ppus]
SO YA Y + (0, (A8 Y + (05 s}

(16)

If there are more random variables to be considered
and the matrices C,., Cs. and C, represent the
correlations between the vield lines and between the
loads, respectively, the reliability index is given by

g= (s 1027 + plin 102~ — pipits]
~ J(0%7 g, Cy 0, 85T
+(9*_am- C&’— Jm—g*—) =1 u*afcua-}’“*)

LD

For random variables that are not correlated, the
original variates may be transformed to a set of
uncorrelated variables. The required transformation
is necessarily dependent on the covariance matrix of
the original variates, whose elements are the covari-
ances between the pairs of variables. The required set
of uncorrelated transformed variates can be obtained
through an orthogonal transformation f6).

4, MATHEMATICAL PROGRAMMING FORMULATION

4.1, Fractional programming

The following optimisation problem is termed
fractional programming [7]:

min{g (x) = n(x)/(d{x)|x € $}, (18a)

where
{xeR"h(x)<h, i=1..

.m},  (18b)

n(x); dix) are non-negative, d(x) is linear and h(x)
is convex.

Theorem. The fractional program (18) can be re-
duced to the program (19)

L. M. C. SimM0Es

min{m(p/t)|t > 0, th(y/t)— b, <0, td(y/£) 2 1,
i=1...m} (19a)
by applying the variable transformation

¥ =(1/d(x))x (19b)
and 7=1/d(x) can be any positive number (say
1 =1).

4.2. Hentification of the stochastic most relevant
mechanism

For positive [g,, 0= 4+ p, 8%~ — upus] and the
uncorrelated random variables ma™, m+" and 4, the
identification of the stochastic most relevant mech-
anism consists of minimising the reliability index
given by eqn (16)

(s 0% + po 0% — prus]

I = T @ F + (0 YO 7 + (0 )
(20a)
subject to the linear incidence equations (10)
Gt =Jro+
G =Jy0"
ux =J,u, (20b)

the compatibility relations of the nodal description
(2)

#=Cu (20c)
and the sign constraints

8+ 20,020,uz20,8+" 20,0« 20,ux=0.
(20d)

This mathematical program belongs to the class of
fractional programming problems, Moreover, the
minimisation of § shares its solutions with

SR WV (G0 (L e GO L e 29 Coo
B [tte 0%+ g, B%~ — ppu

@1

subject to the same constraints. Since [p..fs" +
Hore 8%~ — ppus] is positive, and using the theorem
stated in Sec. 4.1, eqn (20) shares its solutions with

max 1B = (7,4 (O * ) + (6 O+

+ (o), (22)

i.e.

min — 1/f* = — (0, Y (O@+7F + (0, ) (0+7)

(ol sy (23a)
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i 15 m -
subject to
Mo 05" g 0%~ — ppune =1 (23b)
Ot =FF0"
G =J50"
wx = Ju (23¢)
0 = Cu (23d)

07200 20,u20,0T20,0« 20, ux>=0,
(23e)

which is a quadratic concave minimisation. This type
of problem cannot be solved by convex programming
techniques because of the possibility of nonglobal
local minima. The global optimum of these programs
gives the plastic deformations for the stochastic most
important mechanism and the reduced random vari-
ables can be evaluated by using eqn (15) or

m** = —g,., 0x* B (24a)
mE~ = —a, 0% f* (24b)
Ap=opunft (24¢c)

4.3. Example of a slab where the deterministic most
important wechanism &5 not nécessarily identical to
the stochastic relevant mode of collapse

Limit load analysis at mean values yields the
deterministic relevant mechanism, which may not be
the same as the mechanism with the highest failure
probability. ‘As an example, consider a rectangular
slab subject to a uniformly distributed load and with
the top and bottom made of steel. If the top steel is
curtailed, it is necessary to consider the alternative
yield line mechanisms shown in Fig. 2. For
m*x =mxt =ms", the deterministic load for the
mechanism on the left is iy = 0.2716m, whereas the
mechanism on the right leads to 4, = 0.2889mx. If
the most important stochastic mechanism is intended,
it is necessary to consider random vartables such

as the load 4; and the bending moment resistances
m**, ma—. Assuming they are not correlated and
Gaussian,

s =35kNm/m Q,.=0.15
- =35kNm/m g,.=0.15

tr=5 kN/m® QF=0.30,
the mechanism on the lefit of Fig. 2 associated with
f=2.493 is less likely than the alternative collapse
mode giving § =2.397.

It is possible 10 guarantee ihat the deterministic
relevant mode is equal to the stochastic most relevant
mechanism only if &,,,, Q. and € are smali.

5. BRANCH AND BOUND SOLUTION PROCEDURE

5.1. General methodelogy

Two major classes of algorithms are appropriate to
deal with nonconvexities. One belongs to the class of
cutting plane methods [8] and, although being very
elegant from a mathematical point of view, this
technique requires a lot of expertise concerning the
generation of the cutting planes. Alternatively, a
branch and bound (B & B) solution procedure is
described next in some detail. A similar B & B
technique was employed by Phillips and Rosen [9] to
solve concave quadratic minimisation problems with
up to 50 nonlinear variables and 400 linear variables
on a CRAY2. The general nonconvex domain is
transformed in the B & B strategy into a sequence of
intersecting convex domains by the use of under-
estimating convex functions. It is well known that a
local solution to a problem possessing a convex
objective function and being restricted by a convex
domain 1s also its global solution.

The two main ingredients are a combinatorial tree
with appropriately defined nodes and some upper and
lower bounds to the final solution associated with
each node of the tree. It is then possible to eliminate
a large number of possible solutions without evalu-
aling them. As the implicit enurneration program relies
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on an upper bound, its efficiency can be greatly
improved by providing a good feasible initial
solution.

A partial solution is said to be fathomed if the best
feasible completion of the solution can be found or
if it can be determined that, no matter how the design
variables are chosen, it will be impossible to find a
feasible completion of smaller distance than that
previously found. If a partial solution is fathomed
this means that all possible completions of this partial
solution have been implicitly enumerated and there-
fore need not be explicitly enumerated. When the last
riode is fathomed the algorithm terminates with the
oplimum solution, Backtracking in the tree is per-
formed so that no solution is repeated or omitted
from consideration.

5.2. Convex underestimates of quadratic concave
Sunctions

The convex envelope of a function over a closed
convex set is the highest convex function which
everywhere undercstimates the function. For a quad-
ratic conicave function —x* given in the interval [/, L]
its convex underestimate is the affine function (linear
plus a constant) passing through the endpoints of the
given function graph (Fig. 3)

e(x)=—( +L)x x IL, @5

5.3. Qutside-in approdch

In the following the algorithm originally presented
by Falk and Soland [10] for separable functions is
oullined. Considering the quadratic concave program

minz(x) = —x'x (26a)
st Ax= b (26b)
lgx<L, (26c)

=
=
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Fig. 3.

where x = [@*u+], let x" be the solution of the linear
underestimating subproblem (P,), with & =1

mine(x) =d,x +k, (27a)
stAx = b {27b)
L<x=gl,. (27¢)

If e(x?) does not coincide with z(x"), one may try
to restrict the domaim of the subproblem (P,) in
order to have a tighter objective function. Take
as incumbent bound v the objective function of
the original problem z{(x?). {(P,) is replaced by a
set of problems that bound the original problem
in the sense that there exists one optimal solution
x* for at least one problem je W*. Suppose an
optimal solution to each such problem is obtained
and let

X = miny y e(xY) = d'x/ + k. (28)

If e(x?) does not coincide with z(x®), one of the
problems of the bounding set is replaced by a set of
new problems. If z{x*) is lower than the incumbent
p, this upper bound will be updated. Let p =p + 1.
The problem is repeated by a set W?, such that
wr = (Wr~!—{s}H)uW* contains an optimal sol-
uiion of the original problem for at least one
problem /7.

For each problem j e W7, either although getting
closer e(x') does not coincide with z(x"), or
e(x’) >, This is a condition ensuring that some
progress towards the final solution is made.

The combinatorial tree has ¢dch node identified
with a subproblem /. The problems that replace j in
the bounding set W? are pointed to by the branches
directed outward from that node. At any intermedi-
ate point in the calculations, the set of the current
bounding problem is identified with the set of nodes
that are the leaves of the tree. Any leaf node of the
trée whose bound is strictly less than v is active.
Otherwise it is designated as terminated and need
not be considered in any further computation. The B
& B tree will be developed until every leaf can be
terminated.

5.4, Rule for splitting the intervals

When the underestimate taken does not coincide
with the function true value, it is also required to
define (in an heuristic way) a refining rule for split-
ting the bounds on the selected variable: choose the
index i of the variable that maximises the difference

between the quadratic concave term and its affine

underestimate. The corresponding imterval is divided
into new intervals [1, x,] and [x;, L;]}. Therefore, as
soon as a node is selected to be branched, the
partition of its interval is only dependent on its
solution value and is not related to other partitions
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at the same level of the tree. This corresponds to a
weaker form of Falk’s convergence theorem not
requiring the completion of the intervals partitioned
(Fig. 4).

The intuitive motivation for these rules is that the
convex envelopes computed for the new feasible
regions will be brought closer to the value of the
function at x” by using this splitting rule than by
using any other.

5.5. Examples

The following examples have been solved in [2] for
plastic limit analysis and are used here to illustrate the
reliability assessment procedure.

5.5.1. Uniformly loaded isotropic square slab sup-
ported by columns at the four corners. The first
example is presented in some detail. The plate dis-
cretisation can be done in such a way thatthe correct
yield lines may be activated, and conseguently, the
exact reliability index is obtained. The discretisation
of Fig. 5 is then described by the following data:

B

a)

14 13 4

5.0

10 ik 3

o
[43]

!

|
e

No. of finite elements = 8§
No. of corner nodes= 9
No. of element sides = 16.

The bounddry conditions are easily faken into ac-
coun! by identifying the fixed corner nodes and the
boundary element sides free to rotate. Thus

NC = no. of free corner nodes =35
NS = no. of element sides not free to rotate = §.

Assuming that the applied load and the moment
resistances are random normal variables

e = 100kNm/m €, . =0.13
R = 100 kN m/m

iy = 3.5 kN/m’

B

o —0

Fig. 5.
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If they are uncorrelated, the quadratic concave pro-
gramming is

minz =6, 0%+ a, 0+ 4+ ahus®

st Moo et — g 0% — poux =1
gt — 1,0% =0

g — 16" =0

U —Ju=0

w200t 200" 20 ux=00xT 20,8+ 20,

which has M = 12 constraints and N = 24 variables.
If the coordinates of all corner nodes are provided, all
data can be calculated.

The incidence vectors are simply

Jy=[1111111]

I, =[16.67 16.67 16.67 16.67 16.67],

“The kinematic transformation matrix for every finite
clement may be first determined, and then assémbled
according to the element connectivity. Considering,
for example, finite element 2 (Fig. 5), and using
eqn (1), the kinematic transformation reads

L. M. C, SIMOEs

The reduced normal variables can be obtained using
eqn (24)
fx" =0.01778

%~ =0; wx=0.222222

m*t = —g, 0 pi=—212

mx— = —a, 0% 7 =0.0

I =oruxh® =186
and from eqn (12) the normal variables are
mxt =g . ta,. msT =68.14
myx—=p,_ +o,_me =100
Ap= pptopdp = 5.45.

A yield line is formed along sides 12 and 13, as
represented in Fig. 5, associated with the reliability
index B = 1.932. Another optimal solution with the
same safety factor exists with a yield line formed
along sides 10 and 14. No use was made of the
symmetric features of the problem, but it is readily
seen that it would have been sufficient to consider 1/8
of the slab.

5.5.2. Centrally loaded isotropic clamped square
stab. Due to the symmetry of the problem, only 1/8
of the slab need Lo be considered. Take as stalistically
independent and Gaussian the random variables

61 —1/5 0 /5 Hpr =100kNm/m Q,, =0.15
B, |=| 0 —1/5 15 | _
_ =100 kN Q,.=0.15
6, | 152 152 =205 m o mjm - R,
=650k Q,=0.30.
The kinematic transformation matrix € is then Hp=650 kN =3
assembled for the system of finite elements.
fo, [ 28 J25 0 0 =25
by, —1/5 0 =15 © 2/5 .
0, 0 J215 S5 0 =25 .
B | 0 —L/5 —1/5 25 .
I 0 15 —1/5 25 L
014 -5 0o —=15 0 2/5 u"
By 0 0 J25 S 25 :
|_91|s N l_ \/ZfS 0 2/5 _\/2/5_

The results of the branching strategy known as
breadth first (choosing the node with lower bound)
are represented in the combinatorial tree of Fig. 6.
The non-zero vertical displacements at corner

nodes are
uy = 0.00444;

;= 0.00444;  u,=0.00444,

The norn-zero element side angular discontinuities are

0,, = 0.00178; 6,5=0.00178.

Since a circular yield line pattern is expected, the
very simple discretisation of Fig, 7 is sufficient
for an estimate, § =2.927, of the reliability index,
along with the yield line pattern represented in
Fig, 8.

The discretisation in Fig. 9 gives a lower reliability
index, f =2.6366, which is closer to the value
f§ = 2.568 that can be obtained from an analysis using
a circular yield line.
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A8'8L0.;0,04]
AB &10.;0.041
UELD,; 0,401

AB e[0.;0.043
A E[0.;0,041
VELQ,;0,337

A =1.901
€2 3.556

ABTEL0,27;0.043
A8 ECO.;0.041 A=1,932
UEBLO,;0.33]1 ¢:=0,0

B=1.750
€=22.264

A8*ero,;0.041
AB™ELD,;0.041
u&[0.33,0.401

A=1.901
€=3.556

Fig. 6.

5.5.3. Bickiund slab. The previous examples were
relatively simple but illustrated the main features of
the procedure. The uniformly loaded isotropic slab
shown in Fig. 10 contains much of the complexity of
real design problems. Its plastic limit analysis with
determinate behaviour has been previously studied by
Biicklund [11], who used a step-by-step procedure,
and in [2], where linear programming was employed
te find the collapse load. As an illustration of the
quadratic concave programming solution procedure
described in the present paper when applied to this
refatively complex example, the discretisation of
Fig. 11 was adopted, using 60 finite elements.
Consider the uncorrelated and Gaussizn random
variables

b =20kNm/m  Q,, =0.15
fu-=20kNm/m Q_ =015

Hp=4kN/m? Q= 0.30,

Since the supporting walls can be taken as a
clamped edge. this slab can be divided into three
distinct parts. The finite element modelling of these
and the corresponding yield line patterns are repre-
sented in Figs 12-14.

Q
la}
_—Clamped
edge
FL SR
<
[ip]
I
a4 |
& |
50 ! 5.0 |
¢
Fig. 7. NS=3 NC=Z WN=15 M =9 no iter-

ations = 15; CPU time = 2 se¢.

7Yie_ld Lines

If the discretisation of Fig. 11 is used one is
penalised in the CPU time by the larger size of edach
LP that has to be solved in each node: NS =77,
NC =31 N = 188; M = 81; no. iterations = 16; CPU
time = 8 min; f =2.674.

The minimum intervals of variation of the non-
linear variables can be found by solving a multiple-
cost-row linear program. When these smaller
intervals are used, the procedure becomes much more
efficient.
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Fig. 9. N§=17. NC=6; N =43; M=21: no. iter-
ations = [3; CPU time = 12 sec,
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Fig. 14. N§ =24; NC =8; N = 359; M =28; no. iterations = 17; CPU fime = 26 sec; f = 6.667.

6. OVERALL PROBABILITY OF FAILURE WITH
RESPECT TO PLASTIC COLLAPSE

6.1. First- and second-order bounds

In reliability analysis with respeet to plastic
collapse, the reinforced concrete siructure can be
modelled as a system with the individual collapse
modes in series (the structure will fail if any col-
lapse mode occurs). An individual collapse mode can
be modelled as a parallel system of yicld lines (a
failure mode will oceur if all the yield lines related to
this mode occur).

Collapse mode events are usually correlated
through loading and resistances, so an exact evalu-
ation of the probability (7) is impractical, or ¢ven
impossible to perform numerically. For this reason,
several investigators considered this problem by find-
ing cither bounds for p,. or approximate solutions. A
first estimate of pr can be found through the well-
known first-order bounds proposed by Corneli[12]

max [P(E) <7< 1 r[ [0—PEN  (29)

The lower bound, which represents the probability of
occurrence of the most critical mode (dominant
mode) is obfained by assuming the mode failure
events £, to be perfectly dependent, and the upper
bound is derived by assuming independence between
mode failure events.

The bounds (29) can be improved by taking into
account the probabilities of joint failure events such
as P{F,nF,), which means the probability that both
events Fand F; will simultaneously oceur. The result-
ing closed-form solutions for the lower and upper
bounds are as follows:

Pz P(E)+ Y, maX{[P(F.-) . P(F.nF,)];o }

i=2 j=1

(30a)

P(F)— Y, max P(F,uF).

1 i=7 4=lL

Prs (30b)

s

I

The above bounds can be further approximated using
Ditlevsen’s method of conditional bounding [13].
This is accomplished by using a Gaussian distribution
space in which it is always possible to determine three
numbers B;, §, and p; for each pair of collapse modes

CAS 35/6—F

F, and F, such that if py>0 (ie. if 7 and F; are
positively dependent)

y

& ﬂ_ﬁxp
—gy-pf =N i
o(~ ) ( (1;,,2))} (31a)

i

¥

"6‘_‘8‘”"'). (31h)

—gy-@| —
+(—£8) ( Ja=el)

in which £, and §; are the salety indices of the ith and
the jth failure modes, p;; is the correlation coefficient
between the ith and the jth failure modes, and @()
is the standardised normal probability distribution
function.

The probabilities of the joint events P(F,~ F)) in
eqns (30a) and (30b) are then approximated with the
appropriate sides of eqns (31a) and (31b). For ex-
ample, if’ F, and F) are positively dependent, for the
lower bound (30a) it is necessary to use the approxi-
mation given by the upper bound (31b) and for the
upper bound (30b) it is necessary to use the approxi-
mation given by the lower bound (31a).

Moses and Kinser [14] have shown that the overall
probability of collapse of a system, can be expressed
in the following way:

pe=PF )+ i a P(F}), (32a)

=2
where

a=P(Sin S 1S |F) (32b)
is the conditional probability that the first i —1
modes survive given that mode i occurs. Note that
the failure modes are arranged so that
P(F)2P(F) 22 PF)=->=P(F,) because
the value of the conditional probability (32a) depends
on the ordering of failure modes.

The method introduced by Vanmarcke [15] reduces
the number of survival events in felation (32a) to one,
such that

a< rjmim P(S|F)=a*. (33)
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Therefore, t4¥ =a,=1,af =a; and

P(F)+ ), aP(F) (34)

is an upper bound to the overall probability of
collapse. Using a first-order approach, Vanmarcke
introduced a wseful approximation of the conditional
probability P(.S}]F,) in terms of the safety indices f;
and f, and of the coefficient of correlation p; between
the failure modes F; and ¥}, as follows:

emax(Bijoy): BN

opy

P(S|Fy=1—

in which it is assumed thar the probability of occur-
rence of the ith mode P{F,)=®[B,] depends on §,
only.
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The identification of all the significant collapse
methods of a ductile structural system is necessary in
the analysis and evaluation of the system reliability,
including the evalvation of the corresponding
bounds. The dominant modes are easily selecied if the
fajlure probabilities of all possible modes of ductile
structural systems can be evaluated. The modes of a
small system can be found by simple investigation,
but this may be very tedious or even impossible
for large systems. Methods which automate the
search for other stoclhiastic dominant mechanisms will
be described next.

6.2. Vertex erumeration and ranking

Murty’s method [16] can be used for ordering the
extreme points of a linear domain. It is based on a
theorem which states thatif x'. .. x"are r best points,
2+ will be an adjacent point of one of the first
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Fig. 15. Design regions for the steel reinforcement.
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extreme points. The new point is distinct from the
first r and minimizes the objective function giving
—1/B* among all the remaining extreme points. All
the adjacent extréeme points are found from the
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canonical tableay corresponding to the lincar domain

Ax =b—i.e. eqns (23b)(23e)—by bringing one by

one all the nonbasic variables—only those corre-
sponding to rotations in the critical sections—into the

B:=2.896.

B=3.479

Fig. 16. Finite element discretisation most relevant mechanisms,
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basis. The procedure is repeated until either a
prespecified number of extreme points is found
or all the extreme points in the ranked sequence
whose objective value gives a reliability index which
is less than a prespecified value of 5, are obtained.
This method amounts to an implicit enumeration
of the basis corresponding to different collapse
mechanisms and its efficiency reduces as the
number of kinematically admissible mechanisms
increases.

6.3. Branch and bound tree

This strategy is an adaptation of Soland’s algor-
ithm for separable piecewise convex programming
problems [17], where a strong branching rule is
employed: the number of podes created at each
stage from an intermediate node is equal to the
number of critical sections participating in the
‘mechanism associated with the intermediate node.
The result obtained at any node is a lower bound on
those obtained by branching from it and, if the
reliability index associated with that node is larger
than a prespecified value, that the leaf of the
combinatorial tree can be terminated. Nothing pre-
vents the same mode being obtained by branching at
different nodes. Nevertheless, the data available
concerning mechanisms already obtained can be used
to predict the solutions of a large number of noncon-
vex problems created by branching at intermediate
nodes and this makes the procedure reasonably
efficient.

6.4, Example: uniformly loaded clamped square slab

The isotropic symmetry of the material properties
and the symmetric features of the slab geometry,
reinforcement and loading allow for the consider-
ation of one only quarter of the slab (! = 10 m). Three
regions are considered in the layout of the steel
reinforcement, as represented in Fig. 15, in the total
of 12 random bending moments of resistance
(Nm/m): o =d,=1333, d=ds=dy=d,,=20;
dy=d,=15; d;=dy; = 2667, dy=d);, = 0.

It is assumed that random loading (uy= 5 kN/m?;
Q.= 0.3) and the design variables (. = Q- =0.15)
are Gaussian and statistically independent. The dis-
cretisation of the selected quarter of the slab is
achieved using 16 finite elements in such a way that
the interelement sides are located along lines of
reinforcement transition, i.e. along the lines in be-
tween distinet regions. Out of the 17 stochastic most
important mechanisms considered, only those for
which # < 3.5 are represenied in Fig. 16.

The probabilities of failure of the reinforeed
concrete slab given by the Cornell, Ditlevsen and
Vanmarcke methods are, respectively, 0.00208 <
pr<0.00894, 0.00225 < pr<0.00403, and pp<
0.00375. These results indicate that the last of these
gives a narrow upper bound on the reliability of the
slab.

L. M. C. Sim8zs

7. CONCLUSIONS

According to the yield line theory the slab collapses
due to the formation of lines (yield lines) along which
the slab folds when a mechanism can be activated.
When the finding of the stochastic most relevant
mechanism of slabs, discretised by a triangular finite
element representation in which the yield lines are
restricted to element sides, is tackled in mathematical
programming form, linear programming algorithms
can be employed in each iteration of the branch and
bound strategy.

The global solution of this problem is the minimum
distance from the limit-state surface to the origin of
the reduced normal variables that are applied load
and bending moment resistances. This is the exact
value of the reliability index of the continuous model
stochastic most relevant mechanism, when the yield
lines of the collapse mode of the latter lic along
element boundaries of the former model. If this is not
the case, the finite element model reliability index is
an upper bound to the § value corresponding to the
continuous model. All the remaining local solutions
of the algorithm correspond to collapse mechanisms
with a lower probability of failure and algorithms
that enumerate other stochastic dominant modes
were described. Due to the high correlation between
modes of failure, Vanmarcke’s method is ideally
suited to assessment of the reliability of slabs; giving
4 narrow upper bound.
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