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Abstract—This papier describes a new methed that can be used as a basis for the sizing of trusses and
frames behuving elastically. Since in redundant structures the number of equations that need’s 1o be solved
is far smaller than the number of undeterminacies one takes for solution the structure giving the least
norm. Its implementation is simple.and the results obtained are reasonably close to the optimum design.

1. INTRODUCTION

A problent that has been much studied in the past
decade is the weight minimization of a structure with
fixed geometry and subjected to multiple constraints.
As in the majority of the problems the solution
domain is nonconvex and has plenty of subminima,
the mathematical pregramming routines generally
used 1o solve it can only guarantee convergence to a
local minimum since they employ a convex approxi-
mation to the domain. Moreover, most of the algor-
ithms generally available that linearize the domain
do not allow an easy manipulation, the operator’s
help being needed at several stages of the solution
procedure,

The grillage represented in Fig. [ consists of two
beams loaded as shown and subject to stress con-
straints. The interesting feature of the weight mini-
mization problem is that it has several well-known
optima [1].

The development of an alternative methodology
that includes a few algebric concepts and vields, after
a reduced member of reanalysis, a structure whose
cost is close to the minimum volume solution, seems
Jjustified.

In' this paper the author does not wish either to
obtain the global optimum of the mathematical pro-
gramming problem (that can only be achieved by
adopting strategies more appropriate for nonconvex
programming [2-3]) or study conditions under which
an algorithm that linearizes the domain converges to
the global optimnim [4). The procedure described here
finds & structure such that under imposed behav-
joural constraints its velume is close to least volume
design. It 1s based on the solution of an undetermined
system of equations whose norm is smaller.

2, ELASTIC SYNTHESIS OF
UNDETERMINED TRUSSES

The equations of static equilibrium are not by
themselves sulficient for the evaluation of the member

forces in a redundant structure. The problems of
sizing undetermined trusses, besides possessing a
large field of applications, are themselves of intrinsic
importance. In fact this one stress resultant problem
can be extended to include the members” elasto-
plastic behaviour and the solution of both plate and
frame problems.
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Fig. 1. (a) and (b) Grillage (altowable stresses 140 N/mm?).
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In this structural type one only considers member
forces and it is intended to minimize the volume
{weight/cost) of material Lo use, ie:

min {{}7 {a}, {n

where {1} is the vector of member lengths and {a}
is the s vector representing the design variables:
member cross-sections.

This objective is restricted by conditions associated
with the structural topology that is kepl constant by
imposing lower limits en the member areas.

{a} = {a- Q)

In the nodal-stiffness format the nodal displacemeénts
caused by the external loading 4 are given by

[Aik][4]7 1} = [K]{d} = {4}, (3)

where [A] is the direction cosine (f x m), [k] is a
diagonal (m x m) matrix whose clements are member
stiffnesses (Ea,/l;), where E is Young's modulus—
a constant—and {d} is the f-vector of the state
variables (nodal displacements).

Alternatively in the mesh-flexibility method the
equilibrium eguations can be derived by expressing
the member forces {n} separately in terms of the
external loads and the unknown hyperstatic forces

{p}-
ni=[Bl{A} + [Bl{p} (4)

A special feature of structures is that the product of
the direction cosine matrix [4] times [B] is singular,
1e.;

[4][8]=0. (3)

The rows of [4] span & subspace of dimension f
whereas the columns of [B] span a subspace of
dimension a(x is the degree of static undeterminacy).

Under the assumption that the member behaves
elastically, the member stresses satisfy their allowable
limifs:

{o} < {o} = [S]{A]"{d} < {o.}- (6)

The vector |} is @ linear combination of nodal
displacements, when the elements of the diagonal
(m x m) matrix [S)] are Efl,.

The buckling constraints for the compressed mem-
bers may be defined by the Euler—Johnson stability
criterion. In long columns the lower bound constraint
on o, on member j can be substituted by:

—oy—(ya Ea))/l; < 0. )
If the nodal displacements are limited,

—{d<{di<{d,} (8)

therefore in the weight optimization of trusses one
optimizes the linear objective function (1) subject to
a set of bilinear equations (3). linear inequalities (2),
(6). (8) and quadratic inequalities (7).

The minimum volume ‘design of frames is essen-
tally the same as for trusses. Here the matrices [A]

and [k} are suitably adapted although keeping the

game type of vectorial equations. Now the member
stresses will be given by the quotient of the bending
moment in the critical section divided by the section
modulus. In some instances it is also nccessary to
impose restrictions related to the structural elements
and often with the column footings,

In universal beams the cross sectional areas can be
related 1o the section properties: section modulus and
moment of inertia.

@=077=z"; a=0.5591" (9

These expressions, although not changing one type of
problem, just increase the nonlinearity,

3. MINIMUM NORM SOLUTION

[n the system

[A){x} = {b], (10)
where [A] is'a (§ x m) matrix (m > §) of rank ff and
[x}. (b) arem and f vectors respectively, there is an
infinite number of sclutions satisfying the equalities,
Any inverse [4,] such that

[A][A41[4]=[4] (11)
is called pseudo-inverse of A [8]. A pseudo-inverse
will produce the minimum norm solution to the sys-
tem (independently of {b}) if [4,1{b} has the mini-
mumn norm among, all solutions to the system. ie.

[ Ayb ] =min]x| (12)
if the norm of [|x 1 is defined by the form
e I| = S/UxFICT{x ], (13)

where [C] is a positive definite matrix of rank f. The
minimum porm solution is unigue [9].
The pseudo-inverse giving the minimum norm
solution is:
[, ]=[CI AT AANCT A1)~ (14)
The solution of [4){x}={b} under the norm
is equivalent to the mathematical programming
problem:
min 1/2{x }7[C]{x} (15)
st [A]{x} ={b}

{x} unrestricted.
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Therefore the pseudo-inverse giving the least norm
can also be obtained from Lhe Lagrangian.

4. PHYSICAL INTERPRETATION

4.1 Cauchy—Schwarz inequality

If x and y are any two vectors in an inner product
space,

(x, Ly < (xh DUy D (16)

4.2 Decomposition of a vector space

Theorem 1. A closed convex subset of a Hilbert
space H contains a unique vector of smallest norm.
Theorem 2. Let M be a closed linear subspace of a
Hilbert space, let {x} be a vector not in M and let d
be the distance for {x} to M. Then therc exists a
unique vector {x;} in M such that;
| — Xl = . (17)
“Theorem 3. If [P] and [T] are projections on closed
linear subspaces M and N of H, then M is orthogonal
to N if [P][T])=[T][F]=9. Noting that the equi-
librium equations can be expressed in both the nodal-
stiffness format

[4){n} = {i} (18)
and employing the mesh-flexibility relations;
{n} =[B1{i} +[Bl{p}. (19

any set {n} can be decomposed into two orthogonal
components [P}{a} and [T]{n} so that the ranks of
[P] and [T] are » and §; respectively.

Henee,
(P1{n}, [T1{n}) =0 20)

and

Plin} +[T]{n} ={n} 2n

Premultiplying (19) by [P] and [T], where T is
given by

[T1=[AF(AA)) " [A]) = [4,], (22)

vields
[P1{n} =1P1{Bs} 14} + [Bl{r; (23)
[T1{n} = [T][Bo) {4}, (24)

since [A][P] =0, [A](T] = [4] and [4][B] = 0. There-
[ore the vector [P]{n} is self equilibrated and in
particular the vector [P][B,]{4} is self equilibrated at
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the load level {1}. Also the vector [T]{n} = {n/} isin
equilibrium with {4} as it is shown in Fig, 2.

{n} =[THn} =[T1IBs]{1}
=41 ([A][A]) ' [Al{n}
=[AF([ANATY {4}, (25

Furthermore, {n;| is uniquely determined given

either {4} or any {n}. Clearly the vector [T]{n} =

{n;} in the subspace M is the vector of smallest length

stated in Theorem L. In fact, using the Cauchy-

Schwartz inequality with {x}={n}=[T]{n} and

{y} equal to an arbitrary {nr}, yields

(Tin}, (p )P <ATHnL [T1nDUnL {n})  (26)
or
P11 {n} = {nd {n} < {n}Tin}, @D
where
(T {nt = 3, () = Il (28)

=l

According to relation (27) in a statically determinate
structure [[n]| attains its maximum value, ie.
n}=n"=n, which implies that |n}] = [|=#°]. It may
be infered that in a statically redundant structure the
area defined by the {a} distribution is a minimum
among all alternative distributions {#} in equilibrium
with {i}.

5. REANALYSIS

Since the procedure presented here is iterafive it is
convenient 1o use a form allowing one to obiain easily
an approximation to the inverse of the positive
definite structural matrix [K], . Due to the peo-
metric layout of the members and because for the
statics case the loading is assumed not to change, the
values of [4], {4} remain the same.

Note that:
[AK] = [KT.y: — [K]. (29
Formulating the expansion
(Kl =KL ' = [K) ' TAKLIK) !
+ [K] AR MK AKLK] — - (30)

)

n=Tn=TByA

Fig. 2
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will avoid the costly inverse operations, since [K], ' i5
obtained in the basic analysis [6]. The rate of con-
vergence of (30) will depend on the individual element
stiffness changes Ak;. In order to assure convergence
for values of Ak, above some cutoff, say 0.4, a scheme
can be derived that compounds the change at a
particular rate for a finite humber of times until the
total Ak; is achieved. If ¢; is the compounding rate
then:

¢;=1—(1—Ak)'" 31

The use of this allows reduction of the CPU needed
to irivert the structural matrix several times [7].

One of the most basic properties of a trussed type
of structure is the ‘scaling invariance’ of the stress-
resultants vector {n}. The member loads of a stat-
ically determinate truss are obtained from the equi-
librium equations and are independent of the member
cross-sections {a}. If the structure is redundant the
internal forces are a function of the cross-sections
{a}. However, the forces remain unchanged if all
the areas are multiplied by the same scaling factor p
(p >0

{n}(plah)={n}({a}). (32)

The stress-resultants are thus homogeneous fung-
tions of degree n =0 in the design variables. The
stress in any member j of the structure o,=nla; is
thercfore @ homogeneous function of degree # — | in
{a} 5]

a(plaj)=1/po/{a}). (33)

The nodal displacements would also be affected by
a factor of 1/p since they can be represented by a
linear combination of the member stresses.

Therefore, by fixing a set {a} of areas, a unique set
of stresses can be determined by inverting the equi-
librium equations. Assuming that a feasible set of
state variables was determined by using a scaling
factor of 0 < p < 1, the structure’s volume could be
reduced until it eventually touches the boundary of
the stress/displacement space. Alternatively, if the
stress/displacements are outside their rectangle of
bounds, the design variables could be multiplied by
p > 1 and the stress resultant vector would be linearly
reduced uniil it fits its bounds. Therefore the vector
of areas p{a} has at least one member fully stressed
or a displacement at its boundary.

6. ALGORITHM

The algorithm presented here gives approximations
close to the optimal design given by mathematical
programming routines.

Step 1
(1.1) Tteration 1

By making y; = /#; a starting point the minimum
norm {p} obtained from the undeterminate system of
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equilibrium equations is

[41{n} = {4}, (34)
which 15 equivalent to
[Bli{r}=1{4}. (35)

The solution of the latter is in equilibrium with {1}
and has its least norm given by the product

{h=[B1'(BYIBI)) {4},

where the elements of [B)], are equal to the quotient
of the corresponding elements belonging to the direc-
tion cosine matrix [4 ] divided by the member lengths
I, associated to the column j of [4]. The initial set of
design variables is given by

(36)

a;=max { y/(hoy), y,/(03.)5- (37
With these cross-sections it is possible to analyse the
truss and proportionate the size in order to have a
number fully stressed (or a nodal displacement at a
boundary).

Step 2

(2.1) Iteration 1

Using the vectors {a}; and {a}; obtained at iter-
ation j, find the minimoum norm solution {x};, , of the
systém:

[Bl{x}={i} (38)
where [B],=[4][D), and [D] is a diagonal matrix
whose elements are the products of the member
stresses at iteration i, ¢, times the square root of the
varigbles x; and divided by the member length /.
Using {x},,, the new set of areas {a },, , can be easily
aceessed, 1.e.

T xflflj' (39)
(2.2) Reanalyse the structure using {a},,, and pro-
portionate il in order to find a new solution within
tire domain.

(2.3) Convergence:
(a) If

z (@1 — aji)2 <€

i=lm
or _th‘e solution deteriorates, terminate.
{b) Else, go to (2.1).

7. APPLICATIONS

The following examples are referred to in the
literature as a basts for comparison of the efficiencies
of algorithms used.
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7.1 Three bar truss subjecied to a single loading
condition

Congider ke structure represented in Fig, 3.

STEP |
A=|1 22 0
0 22 1)
Let
B =22 212 0
0 Jxr Sl
hence

pT=[283 283 00]=a”

=[40 57 00]

¢T=[50 50 0.0)

By imposing lower bounds on the members’ cross-
sections in order to keep the topology fized and
proportionating the areas such as to have a feasible
design:

a"=[4.0 57 0.4
eT=T50 50 0.0]

STEP 2
B,=|84 84 00|
00 84 #§

leads 1o
a’=[40 57 00]

o7 =[50 50 00],

that is coincident with the value obtained previously,

itsell’ leading to the true optimum.

7.2 Three bar truss undergoing two alternative loading
conditions

In this preblem in the first iteration take as an
estimate for the member forces

n,=max {yp/l, v/}

The [Bly;y matrix is composed of two matrices
[B]i., and [B,, F that are defined using the stresses
arising in the members due to each of the loading
conditions;
{x} =[Bly:) 1 {4}
= [B1T ([BI}; | [B1T  +[BT([BFE ) {4}
+ [BIT.([BY\(B)%
+ [BY, [BEL,) (AN (40)

The solution obtained after three iterations is 1.5%
greater than the optimal solution:

a ay as
6.97 228 2.81
‘Optimum 7.02 214 2.76

7.3 Ten bar truss

Consider the truss represented in Fig. 4.

Let ay=0.1 and |6, =g, = 2.5.
After four iterations one reaches a solution 2%
greater than the optimum:

4 O T T T T T T

82 01 84 39 01 01 60 56 56 01
Optimum

79 01 81 39 04 0@l 37 356 56 Ot

7.4 Ten bar truss where the displacements are limited

This is a well-known nenconvex problem, where
|{d;}| =1{d,} =3.5. After three iterations one reaches

LTI
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a solution 15% greater than the

optimum:

a; ay s a, I g ay ag a4y
46 01 47 23 01 01 3B 32 32 0l
Optimum

49 01 36 24 01 10 9 34 34 01

7.5 Space truss

Consider the truss represented in Fig. 5.
The solution obtained after three iterations is 3%
greater than the optimal solution.

7.6 Frame (see Fig. 6)

After threc iterations one reaches a solution 3%
greater than the optimum.

8. CONCLUSIONS

In this paper a new methodology was presented
for the sizing of structures. It reveals itself to be of
great simplicity, leading to very good approximations
‘to the optimum given by mathematical programoung
routines [10]. If accuracy is desired it provides them
with a good starting point. Slabs can also be designed
in this way by adapting the Mindlin theory for its
description.

i0.
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