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Abstract 
This paper concerns the application of the so-called Finite Volume Method (or Control Volume 
Method) to the evaluation of Scanlan coefficients used in aeroelastic analysis, using the forced 
oscillation method. The results obtained by applying this Computational Fluid Dynamics algorithm are 
presented and compared with some available in the literature, concerning the application to the study 
of rectangular cross sections. 
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1 Introduction 

Long span bridges are very flexible structures that can be affected by different aeroelastic phenomena, 
like buffeting, vortex-shedding / lock-in or flutter. 
The analysis of the dynamic behaviour of such bridges submitted to wind excitation is usually 
performed on the basis of experimental tests under physical models in wind tunnels. 
Although an increasing tendency for the development of alternative numerical approaches has 
occurred in the recent past, the application of such numerical methods usually depends on the 
knowledge of some coefficients (e.g. shape coefficients and Scanlan coefficients), whose evaluation is 
still made on the basis of experimental tests. 
However, an attempt to overcome such limitation can be made by using different types of algorithms 
from Computational Fluid Dynamics (CFD), that permit the numerical simulation of the wind flow 
around the deck cross-sections. 
According to this context, the main objective of this paper is to present one application of the so-called 
Finite Volume Method to the evaluation of several Scanlan coefficients adopted in aeroelastic analysis 
by using the forced oscillation method. The results obtained by applying this CFD algorithm, 
implemented in the computer code PCAMVF, are presented and compared with some available in the 
literature, concerning its application to the study of rectangular cross sections. 

2 Fluid Flow Simulation 

The computer program PCAMVF, based on the Finite Volume Method [1-3], is suitable to simulate 
incompressible and isotherm bidimensional unsteady fluid flows around obstacles. It is assumed that 
the flow domain may be discretised in a control volume mesh, whose faces have orthogonal directions. 
Differential forms of the general transport equations are discretised using a hybrid differentiation 
scheme. To reduce false diffusion, the quick differentiation scheme is also used in deferred correction 
context. Alternate value fields are avoided on the basis of a staggered grid approach. Solution 
procedures for transient calculations are implemented adapting under-relaxation factors depending on 
time increment. The high Reynolds number k – ε  turbulence model is applied to simulate the flow 
turbulence [4-7]. 
The iterative solution procedures for every time increment are the TDMA line-by-line solver of the 
governing mass, momentum and turbulence conservation algebraic equations of unsteady turbulent 
flow, and the SIMPLE algorithm to ensure correct linkage between pressure and velocity. 
The convergence criterion for pressure-correction equations is set up by 

 4101 −≤∑
n

i

U

b

n ρ
 (1) 

where n  is the number of control volumes, ib  is the source term at the ith iteration, ρ  is the fluid 
density and U is the flow velocity out of domain. 
For the remaining equations, the convergence criterion is given by 
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where  iφ  is the field value calculated at the ith  iteration and φinlet  is the field value in the inlet domain. 



 WCCM V, July 7-12, 2002, Vienna, Austria  
 

 
 

3 

3 Aeroelastic Analysis 

3.1 Scanlan Model 

A structural system is submitted to several forces when immersed in a wind flow [8,9]. They depend 
on three fundamental effects: 

− External flow instability, by velocity field flutuations in external domain; 
− Internal flow instability, by structural geometry and flow characteristics; 
− Structural movements. 

Those forces are called self-excited (or aeroelastic) forces when these structural movements play an 
important role in terms of forces characteristics. Initially, Scanlan proposed an analytical model to 
describe those aeroelastic forces: he considered that external flow is permanent and structural 
movements are incipient and periodic with constant frequency. For a slender horizontal structure, 
aeroelastic forces were only dependent on three kinematic variables of cross-section: rotation, vertical 
displacement and angular velocity. Afterwords, this aeroelastic forces model was generalised to all 
displacements and velocities of cross-section [10,11]. 
Let us take into account a cross-section of a slender horizontal structure (B = along-flow dimension) 
immersed in a wind flow, which is normal to the span (U = mean velocity; ρ = fluid density). If the 
section is assumed to be in oscillatory motion at an angular frequency (ω = 2πf ), the generalised 
aeroelastic forces model can be expressed by a linear relation between the aeroelastic forces (Fa1 = 
drag; Fa2 = lift and Fa12 = moment) and the movements (a = displacements and a!  = velocities) with 
regard to the three orthogonal directions (Ox1 = horizontal; Ox2 = vertical and Ox12 = angular) 
 aPHACFFa .. *=  (3) 

where 
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In the above equations *
iP , *

iH  and *
iA  are the Scanlan coefficients (or flutter derivatives), and 

K=Bω/U is the reduced frequency. 
In Wind Engineering practice, it is assumed that Scanlan coefficients have the advantage of being 
purely aerodynamic. This means that they depend only on the geometrical shape of the cross-section 
and reduced frequency (structural movements). Instead of this reduced frequency, they are commonly 
presented in graphic form as a function of the reduced velocity Ur=U/fB=2π/K. 
Using Fourier transform, the loading model (eq. 3) can be transformed into the frequency domain as 
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where frequency functions F~  and A~  represent the Fourier transforms of the time functions f and a. 

3.2 Identification of Scanlan Coefficientes by the Forced Oscillation Method  

Forced oscillation method was used by Nakamura [12] to identify Scanlan coefficientes. Let us take 
into account a cross-section oscillating in sinusoidal motion along one direction with a particular 
amplitude (a0) and frequency (ω), the displacement (a) and velocity ( a! ) being defined by 
 ( )taa ωcos0= ; ( )taa ωωsin0−=!  (9) 

Further, it is said that the aeroelastic forces (Fa) can also be described by a sinusoidal function with an 
amplitude (Fa0) and the same frequency, given by 
 ( )Laa tFF ϕω += cos0  (10) 

where ϕL represents the phase angle in relation to motion. 
If the cross-section oscillates in the horizontal direction (Ox1), the corresponding Scanlan coefficients 
can be estimated, taking into account the forces model in the frequency domain (equations 6 to 8), by  
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Now, considering that the cross-section oscillates in the vertical direction (Ox2), it is possible to 
calculate related Scanlan coefficients by 
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In the same way, if the cross-section oscillates in the angular direction (Ox12), the associated Scanlan 
coefficients can be calculated by 
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The computer program for fluid flow simulations PCAMVF was adapted to compute Scanlan 
coefficientes considering the above equations. 
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3.3 Simulation of Structural Movements in Fluid Flow 

Consider an obstacle imerse in a bidimensional fluid flow with the corresponding movements being 
characterized by the displacement functions aij in correspondence with Oxij directions.  
These movements can be indirectely modeled by changing the velocity components (v1 and v2) of fluid 
flow at external inlet boundary domain. For example, one obstacle translation ai, matching with Oxi 
axis, can be modeled by specifying the velocity components of fluid flow at inlet boundary domain 
through 
 ijijj avv δ!−→  (14) 

where ia!  is the velocity of the obstacle translation. 
On the other hand, one obstacle rotation a12, matching with Ox12 axis, can be modeled by specifying 
the velocity components of fluid flow at inlet boundary domain by 
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where T  is the transformation matix  
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In this previous case, the aeroelastic forces have to be determined according to Oxij axes, which 
represent general directions for structural analysis and for drag, lift and moment aeroelastic forces. 
This can be done by modifying the aeroelastic forces obtained through the transformation 
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4 CFD based Evaluation of Scanlan Coefficients 

In order to compute Scanlan coefficients, it was considered three fluid flow simulations around a 
rectangle (B = 4m; D = 1m): one considering laminar flow (L500 with Re=5E2), and two others 
considering turbulent flows (T5E4, with Re = 5E4, and T5E6, with Re = 5E6). It was adopted a time 
interval of 2s, 2E-2s and 2E-4s for the corresponding time increments. The air at standard conditions 
was the considered fluid. 
The fluid flow mesh (see Figure 1) was built using 88x53 control volumes (with a minimum dimension 
of 5E-2m and a maximum of 77E-2m). Some static results (Re = Reynolds number; CF = force 
coefficient, St = Strouhal number and Ur_equiv = reduced velocity equivalent to Strouhal number) are 
presented in Table 1. 
Every simulation were performed assuming four phases: in the first one, the cross-section is fixed and 
the flow velocity out of domain is incresed to the corresponding Reynolds number simulated; then, if 
necessary, some parameters (e.g. time interval) are adapted; afterwards, the cross-section is forced to 
move under sinusoidal motion (equation 9) and it is expected that a stable condition about aeroelastic 
forces is reached; at last it is stored aeroelastic forces and movements to compute Scanlan coefficients 
(throughout 20 000 time increments or five waves of forced movements at least). This computation 
considers the maximum waves of forced movements registered. 
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Moreover, it is necessary to set some limitations for time interval and forced movements. In order to 
get a good temporal discretization of high frequency movements, it was set up that one period of 
forced movement has at least to be described in 500 time increments. Therefore, the time increment 
step has to be not greater than 0,002BUr/U. 
On the other hand, the evaluation of Scanlan coefficients has to consider incipient movements. This 
consideration can be done indirectly by limiting velocity amplitude of forced movement. In this case, 
the maximum velocity of forced movement was set up to 3% of flow velocity out of domain. 
Therefore, the maximum displacement amplitude has to be 0,005BUr for translation movement or 0,03 
rad for angular movement. 
Figures 2 to 10 present the most significant Scanlan coefficients taken when the cross-section was 
oscillating in Ox1, Ox2 or Ox12 direction. The maximum values of the remaining Scanlan coefficients 
are indicated in Table 2. 
Through experimental tests performed in a wind tunel, Nakamura [12] has evaluated some results, 
which can be used to compare with some computed equivalent coefficients based on PCAMVF 
program. The wind tunnel used was 3m height and the cross-section had D=0,09m (3% of free height). 
The Reynolds number used was between 1E4 and 6E4. The Strouhal number calculated was 0,118. 
One of the forced oscillation amplitudes was set up to 0,06D with frequencies varing from 0,5Hz to 
7Hz. Those presented values can be translated in terms of Scanlan coefficient *

1H . In Figure 11 are 
presented the tansformed Nakamura values and the values computed by PCAMVF program. In this 
case, it was set up the Reynolds number of fluid flow equal to 2E4. The remaining adimensional 
parameters were modeled. 

 
Figure 1: Control volume mesh for fluid flow simulation. 

 

Table 1 – Static results for fluid flow around a Rectangle (B/D=4).  

Simulation L500 T5E4 T5E6 

Re ρUD/ν 5E2 5E4 5E6 
CF1 Fa1/0,5ρDU2 1,34±0,19 1,38±0,043 1,22±0,0 
CF2 Fa2/0,5ρBU2 ±0,51 ±0,46 ±0,0 
CF12 Fa12/0,5ρDBU2 ±0,33 ±0,31 ±0,0 
St fD/U 0,134 0,142 0,127 
Ur_equiv U/fB 1,87 1,76 1,97 
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Figure 2: L500 simulation; Ox1 oscillation. Figure 3: T5E4 simulation; Ox1 oscillation. 
  

Figure 4: T5E6 simulation; Ox1 oscillation. Figure 5: L500 simulation; Ox2 oscillation. 
  

Figure 6: T5E4 simulation; Ox2 oscillation. Figure 7: T5E6 simulation; Ox2 oscillation. 
  

Figure 8: L500 simulation; Ox12 oscillation. Figure 9: T5E4 simulation; Ox12 oscillation. 
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Figure 10: T5E6 simulation; Ox12 oscillation. Figure 11: Nakamura simulation; Ox2 oscillation. 
 

 
The results presented in Figures 2 to 11 and Table 2 allow to draw the following particular 
conclusions: 

− The small values associated to coefficients presented in Table 2 indicate that the aeroelastic 
moment is independent from horizontal oscillations, and vertical or angular motions do not 
influence aeroelastic drag; 

− Aeroelastic drag is only dependent on horizontal oscillations; 
− Aeroelastic lift is significantly influenced by vertical and angular motions and is weakly 

conditioned by horizontal oscillations; 
− Aeroelastic moment is strongly dependent of angular oscillations and it is moderately influenced 

by vertical motions; 
− Although the calculated coefficients can be softly changed by several simulation parameters 

(e.g. time interval registered, wave number of forced oscillation considered), it is possible to 
conclude that the flow velocity has a large influence on several values, mainly for bigest 
reduced velocities; 

− Except for L500 simulation at Ur=7, the *
1P  coefficient is always less than zero. If this cross-

section belongs to a long span structure, this negative value contributes to increment aeroelastic 
damping and, consequently, the total structural damping (or dynamic stability) in horizontal 
direction increases; 

− The *
1H  coefficient has positive values at about Ur=1.0 and almost zero at about Ur=2.0. In 

Figure 11, it is seen that the maximum value happens at about Ur=2.0. This means that the lift 

Table 2 – Maximum values of smaller Scanlan Coefficients.  

Coeff  \ Simulation L500 T5E4 T5E6 
*
5A  -0,105 (Ur=2,8) -0,036 (Ur=28) 0,005 (Ur=1,6) 
*
6A  0,145 (Ur=2,8) -0,068 (Ur=28) -0,005 (Ur=10) 
*

5P  -0,10 (Ur=28) -0,07 (Ur=28) 0,02 (Ur=28) 
*

6P  1,05 (Ur=28) -0,06 (Ur=28) 0,01 (Ur=28) 
*

3P  -1,37 (Ur=10) -0,33 (Ur=28) 0,07 (Ur=28) 
*

2P  1,91 (Ur=10) 0,27 (Ur=28) -0,02 (Ur=28) 
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increases when the frequency oscillations is close to Strouhal frequency, which can amplify the 
vertical oscillation amplitude or else can origin instability on structural system; 

− The *
1H  coefficient becomes strongly negative at higher reduced velocities, which contributes 

positively for vertical aeroelastic damping of this cross-section and also for dynamic stability. 
However, T5E6 simulation shows that this contribution can be smaller than it is expected 
considering T5E4 simulation; 

− The *
2A  coefficient becomes positive at about Ur=2.0. This means that the aeroelastic angular 

damping becomes negative, which can lead to the structure instabilization by incresing angular 
oscillations amplitude; 

In Figure 11 are compared the results calculated by the PCAMVF program and those presented by 
Nakamura [12]. Ignoring several differences bettween experimental tests and this numerical simulation 
(e.g. real dimensions of cross-section, velocities at boundary domain, forced oscillation frequency, 
flow Reynolds number), this graphic shows a good agreement of values for higher reduced velocities 
and considerable differences when reduced velocity is close to equivalent Strouhal number. 
 

5 CONCLUSIONS 

In forced oscillation method context, the evaluations of Scanlan Coefficients were made by applying a 
Computational Fluid Dynamics algorithm (Finite Volume Method) to simulate the fluid flow around a 
rectangular cross-section. It is considered one laminar and two turbulent fluid flow simulations to 
evaluate all Scanlan Coefficients. These computed results are compared with some referred by 
Nakamura, which were obtained from experimental tests in a wind tunnel. 
Although the Scanlan Coefficients depend on some parameters like oscillation amplitude, recording 
time interval, forced oscillation wave number considered and fluid flow simulation (e.g. mesh, 
differention scheme used, deferred correction), it is possible to conclude that the flow velocity 
simulation has a high influence on those coefficients, mainly for higher reduced velocities. 
From the aeroelastic point of view, and assuming that this rectangular cross-section belongs to a long 
span structure, the main conclusions about these results presented herein are: 

− The horizontal dynamic stability is incremented by aeroelastic damping; 
− The vertical oscillation amplitude increases or else it may become unstable when the frequency 

oscillation is close to the Strouhal frequency; 
− The structure may become unstable in terms of rotation for higher reduced velocities. 
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