
1 INTRODUCTION 
 
Wind action is one of the most determining factors 
for the safety of large and flexible structures. As it is 
well known, since the famous Tacoma Narrows 
Bridge failure of 1940, the design of long span 
cable-stayed and suspension bridges requires careful 
study of their aeroelastic behaviour under wind 
loads.  

Traditionally, this kind of work has been based on 
physical models tested in wind tunnels. More 
recently, an alternative numerical approach has been 
developed and refined. This empirical theory, based 
on the so-called Scanlan model for the evaluation of 
the wind forces (aeroelastic forces), involves 
important simplifications, which depend on the 
aeroelastic phenomena to be considered. However, 
this analytical approach requires the identification of 
some coefficients (drag, lift, moment coefficients 
and flutter derivatives). They are usually obtained 
from experimental studies on sectional bridge 
models in wind tunnels, though recent developments 
of Computational Fluid Dynamics (CFD) allow an 
alternative numerical approach.  

In this context, the main objective of this paper is 
to present a new methodology for the integral 
aeroelastic analysis of slender structures, based on 
the appropriate conjugation of an algorithm of 
Computational Fluid Dynamics (Finite Volume 
Method) with an algorithm of linear or geometrically 
non-linear analysis of structures. The computer code 
developed on the basis of this new methodology was 
applied to the aeroelastic study of a simply supported 
slender bridge deck, with rectangular cross-section. 

2 INTEGRAL AEROELASTIC ANALISYS 
 
The computational algorithm developed to simulate 
aeroelastic phenomena in slender structures is a time 
incremental approach based on two numerical 
algorithms working together: one of them 
determining the fluid flow action and the other one 
evaluating the structural response. The numerical 
procedure used to calculate the fluid flow and its 
action on structures is based on the Finite Volume 
Method. The Finite Element Method is used to 
model the structural dynamic behaviour, which can 
be idealised as geometrically non-linear. 

2.1 Fluid flow simulation 

The program, based on the Finite Volume Method 
(Patankar 1980, Versteeg 1995, Ferziger 1996), is 
suitable to simulate incompressible and isotherm 
bidimensional unsteady fluid flows around obstacles. 
It is assumed that the flow domain may be 
discretised in a control volume mesh, whose faces 
have vertical and horizontal directions. Differential 
forms of the general transport equations are 
discretised using a hybrid differentiation scheme. To 
reduce false diffusion, the quick differentiation 
scheme is also used in deferred correction context. 
Alternate value fields are avoided on the basis of a 
staggered grid approach. Solution procedures for 
transient calculations are implemented adapting 
under-relaxation factors depending on time 
increment. The high Reynolds number k – ε  
turbulence model is applied to simulate the flow 
turbulence (Rodi 1980, Tennekes 1980, Hossain 
1982 and Oliveira 1990). 
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The iterative solution procedures for every time 
increment are the TDMA line-by-line solver of the 
governing mass, momentum and turbulence 
conservation algebraic equations of unsteady 
turbulent flow, and the SIMPLE algorithm to ensure 
correct linkage between pressure and velocity. 

The convergence criterion for pressure-correction 
equations is set up by  
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where n is the number of control volumes, ib is the 
source term at the ith iteration, ρ  is the fluid density 
and U is the flow velocity out of domain. 

For the remaining equations, the convergence 
criterion is given by  
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where iφ is the field value calculated at the ith 
iteration and φinlet is the field value in the inlet 
domain. 

2.2 Structural analysis 

The Finite Element Method is used to model the 
structural behaviour (Bathe 1982, Zienkiewicz 1989, 
Clough 1993). The simulation of the dynamic 
behaviour is based on incremental Newmark Method 
and the corresponding integration parameters are set 
up according to Newmark initial proposal (constant-
average-acceleration-method). Structural damping is 
introduced assuming a Rayleigh damping matrix, 
where the mass and stiffness matrix coefficients are 
evaluated by adopting the two first modal damping 
factors.  

The numerical procedures, based on an Updated 
Lagrangian formulation, permit the domain of global 
large displacements consideration (geometrical non-
linear behaviour). The convergence criterion for 
non-balanced forces is  

6
1

101 −
−

≤
−

∑
n ref

ii

L

aa

n
                                           (3) 

where n is the number of degrees of freedom, ia is 
the displacement value calculated at the ith iteration 
and Lref  is a reference dimension. 

Small element deformations were adopted to 
evaluate the structural response. 

2.3 Aeroelastic algorithm 

A structural system is submitted to several forces 
when imersed in a fluid flow (Simiu 1986 and 
Naudasher 1994). They depend on three fundamental 
effects: 

− External flow instability, by velocity field 
flutuations in external domain; 

− Internal flow instability, by structural geometry 
and flow characteristics; 

− Structural movements. 
When the structural movements play an important 

role in terms of force characteristics the 
correspondent forces are named self-excited. If the 
structure is flexible, these forces have a significant 
influence on the structural movements. The forces 
associated to the structure-flow interaction are called 
aeroelastic forces, and they depend, not only on the 
flow characteristics around the structural system, but 
also on the structural flexibility. 

Therefore, the numerical algorithm to simulate 
aeroelastic phenomena in an incremental form must 
consider this correspondence between aeroelastic 
forces and structural movements at every time step 
(Lopes 2001). It should be considered that in any 
new time step, the values of both aeroelastic forces 
and structural movements are unknown. However, it 
is possible to use an iterative subprocess to achieve 
the convergence at the end of the time step. When 
compared with incremental structural analysis, the 
time interval used in normal fluid flow simulations 
is very short. In such case, the rates of forces change 
are higher than those of movement changes. In order 
to consider the structural inertia, it is possible to 
have a very good prediction about the movements at 
the end of each time step, by using linear 
extrapolation such as 
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It’s worth noting that only structural transversal 
velocities and rotations are important to be 
quantified in the fluid flow simulation context. So, 
by using the Newmark Method formulation, it is 
possible to obtain velocity and displacement 
predictions. 

The iterative subprocess associated to each time 
increment begins based on those predictions. Then 
the algorithm solves the flow equations and 
calculates the aeroelastic forces. Now, it is possible 
to determine the corresponding structural 
movements. If those movements are not in good 
agreement with the predictions, these predictions 
must be corrected and this subprocess is reinitiated 
until convergence is achieved. Due to the 
characteristics of bidimensional fluid flow 
simulation, this algorithm considers several 
transversal cross sections along the slender part of 
the structure where the aeroelastic forces are 
calculated. This simplified procedure assumes that 
the flow is normal to the longitudinal axis of the 
slender structure. Moreover the flow around one 
section may be simulated by itself and is 
independent from the other sections. Due to 
computational limitations, it is only possible to 
simulate the flow in a reduced number of sections. 



2.4 Simulation of structural movements in fluid flow 

Consider a free obstacle imerse in a bidimensional 
fluid flow, with the corresponding movements being 
characterized by displacement functions aij in 
agreement with Oxij axis directions.  

These movements can be modeled indirectely by 
changing the velocity components (v1 and v2) of fluid 
flow at external inlet boundary domain. For 
example, one obstacle translation ai, in 
correspondence with Oxi axis, can be modeled by 
specifying the velocity components of fluid flow at 
an inlet boundary domain through 
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where ia!  is the velocity of the obstacle translation. 
On the other hand, one obstacle rotation a12, in 

correspondence with Ox12 axis, can be modeled by 
specifying the velocity components of fluid flow at 
inlet boundary domain through 
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where T  is the  transformation matix  
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In this previous case, the aeroelastic forces have to 
be determined according to Oxij axes, which 
represent general directions for structural analysis 
and for drag, lift and moment aeroelastic forces. This 
can be done by modifying the aeroelastic forces 
obtained while using the transformation 
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3 NUMERICAL SIMULATION OF 
AEROELASTIC INSTABILITY 

This new methodology was applied to the aeroelastic 
analysis of a simply supported slender bridge deck, 
with rectangular cross-section (Fig. 1). This structure 
was modeled with 10 beam elements, with the same 
length, whose mechanical characteristics are 
presented in Table 1. Table 2 shows the first nine 
natural frequencies and respective mode types. 
Structural damping was idealized on the basis of a 
Rayleigh damping matrix, whose composition was 
determined assuming modal damping factors of 
0.5% for the first vertical bending and torsional 
modes. The evaluation of the aeroelastic forces was 
made by simulating the fluid flow around sections 3, 
6 and 9. The fluid flow mesh was built using 88x53 
control volumes (with a minimum dimension of   

5E-2m and a maximum of 77E-2m). The air at 
standard conditions was the fluid considered. 

The simulations consider four different flow 
velocities (70, 75, 80 and 85m/s). Before releasing 
the structure, the simulation assumed that the fluid 
flow leads to a stable condition with oscilatory 
characteristics considering each velocity flow. 
Figures 3-22 present some more significant results 
concerning displacements and aeroelastic forces at 
the midspan section. 

 
 
Figure 1. Geometry of simply supported slender bridge deck. 
 

Figure 2. Control volume mesh for fluid flow simulation. 
 

Table 1.  Characteristics of beam elements. _____________________________________________ 
Axial stiffness (EA)      3E7 kN 
Ox1 flexural stiffness (EI1)    6E6 kN.m2 
Ox2 flexural stiffness (EI2)    6E7 kN.m2 
Torsional stiffness (GIp)     1E6 kN.m2 _____________________________________________ 

 
Table 2. Natural frequencies.  

Mode nº Mode type Frequency (Hz) 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 

1st vertical 
1st horizontal 
2nd vertical 
1st torsional 
3rd vertical 

2nd torsional 
2nd horizontal 

4th vertical 
3rd torsional 

0.68 
2.14 
2.70 
3.57 
6.09 
7.22 
8.55 

10.33 
11.06 
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Figure 3. Rotation at midspan section. Flow velocity: 70m/s. 
               Interval 10-20s. 
 

 Figure 4. Moment coefficient at midspan section.  
                Flow velocity: 70m/s. Interval 10-20s. 
 

Figure 5. Rotation at midspan section. Flow velocity: 70m/s. 
               Interval 70-80s. 

 

Figure 6. Moment coefficient at midspan section.  
                Flow velocity: 70m/s. Interval 70-80s.  
 

Figure 7. Vertical displacement at midspan section.  
               Flow velocity: 70m/s. Interval 70-80s 
 

 

 Figure 8. Rotation at midspan section. Flow velocity: 75m/s. 
                Interval 10-20s. 
 

  Figure 9. Moment coefficient at midspan section.  
               Flow velocity: 75m/s. Interval 10-20s. 
 

Figure 10. Rotation at midspan section. Flow velocity: 75m/s. 
                 Interval 70-80 seconds. 
 

Figure 11. Moment coefficient at midspan section.  
                 Flow velocity: 75m/s. Interval 70-80s. 
 

Figure 12. Vertical displacement at midspan  section.  
                 Flow velocity: 75m/s. Interval 70-80s. 
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Figure 13. Rotation at midspan section. Fluid flow: 80m/s. 
                 Interval 70-80s. 
 

Figure 14. Moment coefficient at midspan section.  
                 Fluid flow: 80m/s. Interval 70-80s. 
 

Figure 15. Rotation at midspan section. Fluid flow: 80m/s. 
                 Interval 110-120s. 
 

Figure 16. Moment coefficient at midspan section.  
                 Fluid flow : 80m/s. Interval 110-120s. 
 

Figure 17. Moment spectrum at midspan section.  
                 Fluid flow: 80m/s. Interval  110-120s. 
 

 

Figure 18. Rotation at midspan section. Fluid flow: 85m/s. 
                 Interval 10-20s. 
 

Figure 19. Moment coefficient at midspan section.  
                 Fluid flow : 85m/s. Interval 10-20s. 
 

Figure 20. Rotation at midspan section. Fluid flow: 85m/s. 
                 Interval 70-80s. 
 

Figure 21. Moment coefficient at midspan section.  
                 Fluid flow: 85m/s. Interval 70-80s. 
 

Figure 22. Moment spectrum at midspan section.  
                 Fluid flow: 85m/s. Interval 70-80s. 
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Inspection of these results permit to draw  the 
following particular conclusions: 
− The structure will not become unstable for a flow 

velocity of 70m/s, because the amplitude of 
rotations, as well as aeroelastic moments do not 
increase when compared to the response in the 
time intervals 70-80s and 10-20s; 

− The structure may eventually become unstable for 
a flow velocity of 75m/s, after a long time, as the 
amplitude of rotations show some incipient 
increase in the interval 70-80s with regard to 10-
20s; 

− The structure will become unstable for a flow 
velocity of 80m/s, because undergoes a clear 
increase of rotations in the time interval 110-
120s. Beyond that, the amplitude of the 
aeroelastic moments increase continuously in that 
same period of time, showing an oscilatory 
dominant frequency coincident with the 
frequency of rotations; 

− After a short period of time the structure will 
become unstable for a flow velocity of 85m/s, as 
the amplitude of rotations increases much faster 
from the period 10-20s to 70-80s. In this case, the 
amplitude of aeroelastic moments quickly 
increases in the interval 10-20s, whereas the 
aeroelastic moments show a continuous growing 
in the period 70-80s, and also an oscilatory 
dominant frequency coincident with the 
frequency of rotations. Moreover, the amplitude 
of aeroelastic moments grows much faster than 
rotations when compared with the simulation for 
a flow velocity of 80m/s. 

4 CONCLUSIONS 

The results presented here illustrate a new numerical 
methodology for the integral aeroelastic analysis of 
slender structures, based on the appropriate 
conjugation of an algorithm of Computational Fluid 
Dynamics (Finite Volume Method) with an 
algorithm for the geometrically non-linear analysis 
of structures.  

The computer code developed on the basis of this 
new methodology was applied to the aeroelastic 
study of a simply supported slender bridge deck, 
with rectangular cross-section, which enabled the 
characterisation of possible forms of aeroelastic 
instability for different flow velocities. 

Further research will be now carried out to more 
complex structures, particularly to long span bridges, 
and the results can be confronted with existing data. 
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