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SUMMARY

The use of entropy-based algorithms for optimizi ng the configuration of trusses is investigated in this
paper. Two methods are proposed: the multi-level optimization in which the problem size is reduced
by iterating between two distinct but coupled design spaces. Alternatively, in the direct design
formulation that treats simultaneously sizing and coordinate variables the problem is solved by
minimizing a linear convex function over side constraints, Numerical results for examples with stress
and displacement constraints are given 1o illustrate the methods.

1. INTRODUCTION

A problem which has received much attention in structural optimization is the optimization of tryss
structures. One reason is that these structures are naturally discrete and easily lend themselves for use
In testing new optimization algorithms. In most cases, the truss geometry is fixed and only the
member sizes are optimized. This problem has been solved under various types of constraints using
a variely of methods. A more difficult problem is the optimization of a truss where the nodal
coordinates are not fixed but are also design variables along with the member sizes. This problem is
much more cumbersome than the pure sizing problem for two reasons. First, the different types of
variables have highly different characteristics. The other reason is that the truss configuration
variables are much more nonlinear in the behavior constraints than the sizing variables. In 1970,
Pedersen [1] presented an iterative technique for the design of trusses using a sequence of linear
programs with move limits. Both member sizes and nodal coordinates were used as design variables.
The method utilized a sensitivity analysis of the partial derivatives with respect to the member areas
and joint coordinates and also accounted for self-weight, stress, Euler buckling and deflection
constraints. An alternative multi-level approach was described in ref.[2,3]: The method of feasible
directions was used to optimize the structure with fixed geometry and the steepest descent method
was employed to move the nodal coordinates to an optimum position. The algorithm used these two
techniques, one after another in an iterative fashion keeping the design spaces separate and reducing
the number of design variables considered at dny one ume. Imai and Schmit {4] developed an
advanced primal-dual method called the multiplier method, which is an extension of the quadratic
penalty function approach. To avoid the severe non-linearity of these truss problems, second-order
Taylor-series expansions in terms of the reciprocal sizing and nodal coordinates are used along a
search direction. As opposed to the early methods that were not in general well conditioned, their
method showed good convergence properties, although requiring many analysis to find a solution.
Two methods [5,6] were recently proposed to solve the truss configuration optimization. In both of
these methods one replaces the design problem with a sequence of mixed variable approximations of
the problem. The convergence properties are controlled by adjusting the convexity and therefore the
degree of conservativeness of the approximate subproblem. This paper presents a new class of
optimization methods based on informational entropy concepts simple to operate and specially
recommended in a personal computer environment. In the first case,the multi-level optimization
operates by iterating between two coupled design spaces, one for member sizing variables and one
for geometric variables. The optimization phase for the truss sizing reduces to the finding of the
parameter which maximizes the (concave) dual volume and from which (e Lagrange multipliers and
member sizes are evaluated using a simple algebraic expression. Polynomial fitting was employed to
move the nodal coordinates 10 an optimun position. Alternatively, the truss configuration problem is
posed in a multicriteria optimization format and a minimax solution 1s sought. The entropy-based
approach to solving minimax optimization formulation Ltanstorms the problem to 4 scalar
minimization with just one control parameter.

161



2. TRUSS CONFIGURATION OPTIMIZATION

Using the displacement method of analysis, the optimal design problem of truss geometry and cross
sections can be formulated as follows: Find the cross sectional areas x, the joint coordinates y and
the corresponding displacements d, such that:

Min V = I(y)x (1a)
xb < x (1b)
yb<y<yY (1c)

d<dV (1d)
ocl<og=Spd<al (le)

where V represents the volume (or weight) of the truss and 1 is the vector of member lengths, which
are functions of joint coordinates. Eq.(1b) and (lc) are bounds on the design variables x and y.
Design variable linking was used to meet symmetry requirements and to reduce the number of design
variables. Eq.(1d) represent displacement constraints and Eq.(le) are stress constraints. The
displacements d are computed for any given design by solving the displacement analysis equilibrinm
equations:
Kx,y)d=R (2)

The elements of the load vector R are constants and the elements of the stress-transformation matrix
S are functions of only the vanables y. In general, upper and lower bounds on design vanables and

stresses are assumed to be constant. If stability of members is considered, the lower bound O L can
be defined as,

O’Lzmax{o’c,db} (3)
in which O, is the lower siress limit and Oy, is the allowable stress for Euler buckling given by,
m2E
Opi = — S
n (I; /1G)?

in which E is the Young's modulus, n is a safety factor, 1; is the length of the member i and rg; is the

radius of giration of the cross section. Eq.(4) indicates that the buckling stress depends on the
properties of the cross section selected. Since the area of the section is a design variable, it is
necessary to express rc; in terms of x. This expression is:

rg=axP (5)
in which a and b are constants. For tubular sections with a nominal diameter to thickness ratio of
D/1=10, the buckling stress was given as [2],
10.1 1 E x4
dbi = - ’ (6)
812

3. MULTI-LEVEL OPTIMIZATION

For the purposes of applying the multi-level strategy to problem (1), the minimum volume (weight)
design for the initial geometry is first obtained. Next, when moving each coordinate design variable
y slightly, the member areas x must be modified in such a way that the minimum volume design is
maintained subject to the requirements that all constraints remain satisfied. That is, the analytic
gradient of the objective function is determined. with respect to the coordinate variables, such that the
optimum design is maintained. In a sense, the optimization proceeds in two separate design spaces.
One is the member size variables and the other is the geometric variables.

3.1 Truss sizing problem

The truss sizing problem is usually solved iteratively and this strategy is used here. The optimization
problem which must be solved in each cycle of iteration can be stated as:

min V= 2Zi=1 N lixi (7a)
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U 20=1,N i FijEie/ Bix) ¢ uge j=1,..1 (7b)
ol ¢ O’ij:ng/xi ¢ O’iU i k=1,..K (7c)
xj b x;l : i=1,..N (7d)
The N unknown bar sizes X, I=1,...,N comprise the design variable vector x. Iz E; are the length

and elastic modulus, respectively, of the i-th bar. In the displacement constraints (7b) Fij and Ky are

the force caused by the j-th load case and the virtual force caused by the k-th joint displacement in the
i-th bar and uy is the maximum permissible displacement of the k-th joint. At each optimization all

bar forces are known and are assumed to remain constant, so problem (7) can be stated in a
simplified form as:

min V=21 N lix (8a)
St =] N Cik/ Xj € 1 : o k=1,..M (8b)
Xi/xj ¢ 1 ; I=1,..,N (8c)

The displacement constraints (7b) correspond with Eq.(8b) with Cjj » J=1,...M representing general
displacement constants evaluated after each analysis. The stress and size constraints in problem (7)
have been merged into Eq.(8¢):; x; 1s the largest of either xiL or the minimum size necessary to satisfy
the stress constraints (7¢). Problem (8) has the following Lagrangean function,

LxB)=Ti=] Nljxj+ =1 M 0 L=, Neiidxg - 11 + Zi=1,N WM+ [xixi - 1] ()
Examining the stationarity of & (x, W) with respect to all x;, 1=1,...,N yields equations in x which
may be solved algebraically to give:

If an optimum set of multipliers | * exists, then the resulting bar sizes x* will also solve problem,
Such a set of optimal surrogate multipliers 1L * is, of course, not known "a priori" but found
iteratively. The problem then becomes one of developing a method whereby the 11 may be iteratively

updated towards L *, thus solving problem (8). Very many engineering optimization problems
essentially consist of iterativel y sorting out which ones of many constraints are active at the optimum
and which are inactive and then of iteratively estimating values for the active constraint multipliers.
Though such a strategy is theoretically valid, changes in the active set between iterations change the
optimization problem bein g solved in a discontinuous way and lead to erratic convergence behavior,
The maximum entropy-based algorithms avoid these difficulties by retaining and updating all
constraints at all times. Problem discontinuities are not introduced and consequently convergence is

smooth. Assuming that the Lagrange multipliers W are given by,
2= X .. 1
Hj=Ajy; (11)
where >\j 1 a entropy oultiplier and vi is a correction factor, these multipliers may be interpreted

probabilistically with each A j representing the probability that its corresponding constraint is active
at the optimum. With this probabilistic view of the multipliers it is then entirely logical and sensible
to calculate most likely or least biased values for them from the Jaynes maximum entropy formalism.
An initial set of values for v and A is chosen such that vj[0]:1 and )\_j[(’]=1/(M+N), j=le MEN
ie: all constraints are equally likely to be active at the optimum. The set of bar cross-sectional areas x
obtained from (10) forms an initial desi gn which is analyzed to give bar forces and virtual forces for
joint displacements. All bar areas are scaled to ensure that no constraint is violated. The correction

factors vector vl 1) Is assumed & unit vector in this iteration. New estimates of the multipliers A (1)
are then obtained by solving the maximum entropy mathematical problem:

Max— 8 = - K Zjmy v MU 1001 (12a)
s Zi=1.M KJ;{”:I (12b)
Zj:I,M )\j[ll g‘i(x[{)l) = E (12¢)
Ajtll=q (12d)



S is the Shannon entropy, K is a positive constant, Equation (12c), that represents the constraints:
gj(x) = Cjk/%i - 1 for j =1,..M (13a)
gj(x) = xj/xj-1 for j =M+I1,... ,M+N (13b)

has an expected value zero. If the left-hand side had contained g'j(x[”), then the right-hand side

would be zero, but since gj(x[l]) values are not yet known gj(x[o]) values are used as the best

currently available estimates and this introduces the error term € into Eq.(12¢). The entropy
maximization problem has an algebraic solution for A [,
exp(f g(clOlyK]
A = (14)

- Zi=1,M exp[p gj(x[0)K]

in which (3, the Lagrange multiplier for Eq. (12¢) can be found by substituting result (14) into Eq.
(12¢). However, since € is nor uniquely known and K is an arbitrary constant, p={ /K may be
viewed as a penalty parameter used to close the duality gap. Eq.(14) with a selected p yields new
constraint activity probabilities A [1]. At cach iteration, it is necessary to search for the value of p that
maximizes the truss volume given by (10) and using the new correction factor and multiplier values.
The new design is analyzed by the matrix stiffness method and all bar areas are scaled to ensure that
no constraint is violated. The correction factors vector are given by:

vi2Zl = plil, g = pllt @0 plHyT (15)
where | represents the member lengths vector and the elements of the matrix F are given by,

il = X5/ %2 for j=1,.,M i=1,.,N (16a)

£t = A /%2 for j=M+1,..,M+N (16b)

Using g(x[l]) in place of g(x[o]) in Eq.(14) with an appropriate p yields new multipliers A (2],

Using v[2] and X\ [2], values of x(2] follow from Eq.(10) and vi2] from Eq.(8a). Substituting x(2]
into Eq.(8b) and (8¢) yields values for the constraint functions and all bar areas are scaled to ensure
that no constraint is violated. In subsequent iterations, this scaled design and the previous scaled
design would be compared and checked against convergence criteria and iterations would be either
stopped here or continued. Assuming that convergence has not been achieved, the scaled design

enters the optimization phase.Further iterations continue to converge at v¥, A* and x*.which solve
both problems (26) and (25). A different iterative two phase algorithm based upon the maximum
entropy formalism is proposed in ref.[6]. The censtraints are first surrogated and the entropy
multipliers are obtained by setting values for p according 1o an empirical rule.,

3.2 Gepometry optimization

3.2.1 Direction vector
Assume that the fixed geometry problem has been solved for the current configuration. If a
coordinate variable yj is changed by an amount A Yio» the volume will change by
aXi d Ii 8 Xi o lj
AV =28V/[8y, Ay, = Ay Lo n G +%; + Ay (17)
8 yk 8 yk 8 yk 8 yk
in which @1;/3yy is the direction cosine of the bar corresponding to the displacement yj.. The last

term can be neglected if the variation A i 18 small. As Eq.(1b),(1d) and (1e) must be satisfied at all

times, it follows that for all such congtraints:

+Zi:l,N‘ — ) Ay <0 (18)
Ay ax; dyg

The derivatives a'gj/éB y) and d gjla X; cun be computed directly from the expressions of g using the

Ag; = dgj/dyy Ay =(



procedure described in Section 5. It is necessary to find the unknowns 3 xj/ 9y, which minimize the
linear function (17) subject to the linear constraints (18). This is a linear programming problem that
can be solved by the Simplex method. It is necessary to assume the sign of A Yi: if the volume is

not reduced then the sign of Ay is changed and the problem is solved again. If (3V/3y,) Ay is

stll positive, the volume cannot be reduced by changing this coordinate in either direction. In
problems where each constraint g is cansidered to be a function of only one area variable X; such as

problems with side conswaints on the design variables and stress constraints only, it is not necessary
to solve the LP. Assuming that the force redistribution in indeterminate trusses is negligible, Eq.(18)
reduces to

ng d g 9x '
Ag-j=dgj/dyk Ayk:( + ) Ay <0 (19
8 yk o xi o yk
Eq.(19) are a set of upper bounding constraints, each containing a single unknown 3x;/d Y and
may be solved by a simple comparison procedure.,
The preceding steps are repeated for each coordinate variable to yield the gradient of the objective
functon given by:
S9=[3V/8y; Ay; 3V/dyy Ay dV/dyp A}iﬁ,]L (20
If Yq i1s the vector of the independent coordinate variables at iteration g, the new coordinates are
found from,

YO+l = vq 4 o * 89 (21)

in which ¢c* is the scalar multiplier required to minimize V in direction S9 or to encounter some new
constraint of Eq.(1¢). If any component is such that a move in this direction would violate a currently
active side constraint on the coordinate variable, this component is set 1o zero.

3.2.2 Polynomial fitting

The step size o * is calculated by polynomial fitting techniques and the corresponding coordinates of
joints are computed by Eq.(21). The truss is reoptimized for this new geometry. A new gradient of
the objective function is then determined and the process is repeated until the objective function can
no longer be reduced. Polynomial fitting techniques require exact analyses or calculation of the
constraint derivatives for several designs. Since more information is used in this class of
approximate methods (compared with Taylor series), the quality of the approximations is higher at
the expense of more computational effort. Assuming, for example, the quadratic fitting for the truss
volume,

V(c)=a+box +c 2 (22)

the constants a, b, ¢ can be determined from results of analysis of two or three designs. Assuming
the conditions,

V¥=a and 38V*dcwx =b for @ =a* =() _ (23a)

V¥*=a+b+ec for x=x**=1 (23b)
and substituting in Eq.(22), one gets:

V(o) =V*+ V¥ o + (VFF- V¥ - 8V x) xx? (24)

This equation is based on two exact analysis and and calculations of the displacement derivatives at a
single point. Another possibility, which does not involve evaluation of the derivatives is to use the

results of three exact analysis. Substituting the computed values of V* (for & *=0), V** (for
Cc#%=0.5), V¥** (for & ***=]) into Eq.(22) and solving for a,b and ¢, one finds:

Vo= V¥4 (-3 V* 4 Vs _ VH#E#ER) o (2 V* 4 ¥k 4 ) VAR (XZ (25)
Although the optimal step & opt 1s given by,
X opt=-Db/(2¢) (26)

in upper imit is imposed 1o overcome the severe nonlinearity of the problem.
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4. DIRECT DESIGN

4.1 Minimax formulation

In the context of the truss configuration problem described above, it is intended to minimize a whole
set of goals such as the volume, nodal displacement, etc. by finding an optimal set of cross sectional
areas. All these goals need to be cast in a normalized form. If V represents a reference volume,
eq.(1a) becomes,

Hy)tx
INtx<¥ = gixy) = =T £ ) (27a)
A
The lower bounds on cross-sectional areas (1b) become,
X
g2(x)=-— +1<0 (27b)
i <L
Similarly, one has for the upper bounds on the nodal displacements(1d),
d
B3(xy) = — -1 <0 (27¢)
gy
For the upper and lower bounds on the joint coordinates (lc) and stresses (le):
y
ga(y) = —-1<50 (27d)
yU
y
gs(y) = -—+150 (27¢)
yL
g
ge(xy) = — -1<0 (271)
agU
g
BT(xy) = - —— +1 <0 27g)
o'L

The problem of finding values for the the cross sectional areas x and joint coordinates y which
minimize the maximum of the goals has the form,

Min X,y MaXJ (Byis «es gj - g7) = Min y MaijJ <gjlx.y) > (28)
and belongs to the class of minimax optimization.

4.2 Minimax optimi
The method used to solve the minimax optimization problem (27) with goals defined by (27a-g) is a
recently developed entropy-based approach. The minimax problem (27) is discontinuous and non-
differentiable, both of which attributes makes its numerical solution by direct means difficult. In ref
[7} it is shown that the minimax solution may be found indirectly by the unconstrained minimization
of a scalar function which is both continuous and differentiable, and is thus considerably easier to
solve:

Miny, y Maxjey <gj(xy)> = Min (1/p) log( £ j1 yexplp gi(x.y)]}  (29)
over variables x, y with a sequence of values of increasin gly large positive p=1.

4.3 Scalar optimization
The scalar function minimization in the form,

Min (1/p) log{ X j=1,5 explp gj(x,y)]) (30)

166



is a convex approximation of the criteria, what allows the use of algorithms for convex optimization.
The smategy adopted was to solve the implicit optimization problem by means of an iterative
sequence of explicit approximation models. An explicit approximation can be formulated by taking
Taylor senies expansions of all the goal functions 8j(x,y) in problem (27), truncated after the linear

term for the sizing variables and the quadratic term for the geometric variables. This gives Eq.(31):

Min (1/p) log{ Z j=1 s exp p [gj(xqyor + £ i1 N (Xi-xg) + Ly B (kyo) +

dx;lo OyKl o
1 52gj
+—— 212N Zk=1.0 YiYodVkyo) + Zioi N Zk=1.8 (Xi-Xg) (Yi-yo))
2 8yidyio 9x%idyKl o
Problem (31) is an approximation to problem (30) if values of all the gj(x,y), (3 gj/3 x;) and

2.
agJ

(a'gj/ayk_) are known numerically. Given such values, problem (11) can be solved directly by any

standard unconstrained optimization method. The quasi-Newton routine NAG E04JAF that uses
differences on the gradients of the function (30) and its first derivatives to compute approximations
to the first and second derivatives, respectively, has solved efficiently the scalar minimization.
Problem (31) must be solved iteratively, Xo and y, being redefined each time as the optimum

solution 1o the preceding problem. Tterations continue until changes in the design variables x,y
become small. During these iterations the parameter p must be increased in value to ensure that a
minimax optimum solution is found. In the present work, a value of p in the range 10 < p < 30 was
used for the first iteration, this value being increased to 100 in subsequent operations. Although the
selected move limits are not as eritical as in sequential linear programming, 1t iS necessary to ensure
that the approximations made to define the explicit problem (31) are realistic.

5. SENSITIVITY ANALYSIS

To formulate and solve the direction finding problem (17)-(18) required for geometry optimization in
the multilevel approach or the scalar function minimization (31) used for the direct design, numerical
values are required for all the functions gj(x,y) and their derivatives with respect to the design

variables. The truss volume is known explicitly and its first derivatives are:
aVv aVv al;

“—ll ' —_—— = Zi=1,in (32)

%) Xi ayk 8yk
in which 91;/d ¥ 18 the direction cosine of the bar corresponding to the displacement yy. The
second derivative of V with respect to Y 18 given by ratio of the square of the direction sine of the
bar corresponding to the displacement ¥ divided by the member length.

However, member stresses and nodal displacements are implicit functions of x and y. Given some
design variables the analysis of the truss will yield numerical values for u. One way of evaluating the
derivatives is to calculate them from analytical expressions, as follows. The displacement derivatives

dd°/dx; are computed by implicit differentiation of the equilibrium equations:
ado JKO :
KO = P (33)
a X5 3 X3
Since d% and K are known from analysis of the initial design, solution for dd®/dx; involves only
talculation of the r.h.s. veetor of Eq.(33) and forward and back substitutions. The stress derivatives
8 & /8 x; are then determined directly by explicit differentiation,
3o ade
— =5 - (34)
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The derivatives 8d%/8y, and d & °/3y}. are computed in a similar manner; however, it should be
remembered that the elements of S are functions of the joint coordinates y. The expressions for
9d% 3y and 3 09/ dyy are:

ado dKo
K© = - d® (35)
dyy dyx
8 oo ade  3s°
= § + d® (36)
Iy Oy Oy

To compute 3 K9/38x;, only elements of K associated with member i must be considered.
Furthermore, the elements of dK/3 X are constant, therefore the computation must not be repeated.

To find K®/3y| and 88%/dyj, only elements of K and § associated with the kth joint coordinate
must be considered. The second order derivatives with respect to yj can be calculated in a similar
manner,
32 3%ke 3KO 3do
KO — = 0.2 S (37)

2
3y 3y2 Ay By
It can be observed that the solution for each of the derivative vectors involves only the calculation of
the corresponding r.h.s. vector and forward and back substitutions.

The evaluation of the second order design sensitivities for all the geometric variables is
computationally costly. An alternative means is to employ a search direction, which can be obtained
by using the procedure described in section 3.2.1. The geometric variables are replaced by a single

parameter ¢, representing the scalar step along a search direction. The second order term of the
Taylor senies expansion is retained for the displacement response quantities,
8d° 1 82d°
d=do+ — ot +— — 2 (38)
d & 2 dx?
which are highly nonlinear with respect to changes in the configuration variables. The derivatives of
the displacements and the stresses with respect to & can be obtained in the way described above.

6. NUMERICAL EXAMPLES

Fig.1 represents the ground structure and loading of a truss bridge. The horizontal and vertical
deflections of the joints were limited to 10 m and 50 mm, respectively. The allowable stress in

tension and compression was 0.14 kN/mm2, The modulus of elasticity was 210 kN/mm?2. For
practical reasons, the joints 1, 3, 7 and 9 were only allowed to move horizontally. One of the
architectural requirement was that the final design should be symmetrical. Since the joints 5 and 6
were on the symmetry axes, their movement along the horizontal direction was not included in the
design variables. The bounds piaced on the coordinates of the joints were,

0< YH1:YH2 £6. , 6.< Y3 YH4 = 12, 5 B< YV6 <9 , 0= Yy, ¥Yy4 = 10. (in m units)

Design variable linking is used to reduce the number of different sizing variables to 5. The supports
A and B were fixed and the geometry of the bridge was optimized. The optimum shape shown in
Fig.2 was obtained after 7 iterations ( in the multicriteria and 11 in the multilevel approach) and it has

a volume of 161 m3.Gm'up areas of this design is given in Table 1. Its geometry is close to a
parabolic arch. Since the vertical displacement at joint 5 is at its upper limit, it appears that the bridge
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-design could be improved by combining joints 5 and 6. Regardless of possible weight savings, it
may be significant from a cost viewpoint that three members and a joint are eliminated.

[ :L.mm“?-a,ﬂ mm_n' %‘gw,n ml;'z{o mwm.m
o T o M o Ml
[ 3 B [

(O_Kil;

z X 2
(12,85} @

an 1s.7)

{20,551

(L 595

Figure 1 Initial design

Table 1 X1 X9 X7 X4 Volume
Optmum sizes 127cm?  3.6cm?  23cm?  155cm?  17.9m3

1‘”“‘ (6.0.6.0) (12,6 s 1278
O .0 4 @ @ 1 Oy

L
isss, 511 125 (8913908

Figure 2 Optimum geametry

@Twcﬁt_v five bar truss

The bridge truss shown in Fig,3 is subjected to five alternative loading conditions R =3 x 100 N at
the five fixed joints of the roadway. The geometrical variables are the coordinates of the five arch
joints, which lie initially on a parabolic arch. This optimization problem is treated with specified
displacement constraints (10 mm) and with or without stability constraints. The truss variables were
linked to enforce symmetry and the problem consists of 13 sizing variables and 5 nodal configuration
variables. The structure has the following preassigned parameters:

Fixed bounds on stresses, for the cases in which stability considerations are neglected,

oU=13x108Nm? ol=-104x108 Nm?
Modulus of elasacity,
E=2.1x 101} N/m?
Table 2 reproduces the optimum volumes obtained corresponding to the layout of Fig.3, 4 and 5.

® & O
| ‘
S e
Lo
1 /l_\ b é 12
> @ 3 5 N6 s @u o
e S e e R
Figure 3 Inital design
Table 2 without stability constraints ~ with stability constraints
initial configuration 0.449 m3 ©0.484 m3
optimum geometry 0.371 m3 10422 m?

(0., 8.9}

2y
YA i

Figure 4 Optimum geometry with displacement and without stability constraints

The convergence is fast (11 iterations in the muliicritena and 17 in the multilevel approaches,
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respectively) with a majority of the volume change coming from the initial iterations. For a constant
allowable compression stress the structure of minimum volume js a funicular polygon. For the data
used in the paper the geometric solutions shown have a a smaller volume than the funicular polygon.
Compressed member tend to be shorter and the horizontal changes of the positions of the joints are
towards the supports. (0.2 7.5)

(5.9; 6.6)

Figure 5 Optimum geometry with displacement and stability constraints

7 CONCLUSIONS

The addition of configuration {shape) variables to the design task creates a particularly difficult
problem because of inherent non-linearity. Although the efficiency of the minimizer is not
comparable to that in fixed-geometry design, configuration optimization is possible and justified by
considerable design improvements achievable by including these variables. Two entropy-based
methods are proposed to deal with configuration variables: a multi-ievel optimization that operates by
iterating between two coupled design spaces, one for member sizing variables and one for geometric
variables and a direct design including both member sizing and coordinate variables. Uniike
optimality criteria and other more recent methods, they do not require an active/passive set strategy.
The truss sizing phase is reduced in the former to calculating values for multipliers from an algebraic
expression similar in complexity to those used in stress ratio or optimality criteria methods. Although
polynomial fitting was employed to move the nodal coordinates to an optimum posttion, the rate of
convergence proved to be heavily dependent on this step. Alternatively, the truss configuration
problem is posed in a vector (multicriteria) optimization format and a minimax solution is sought.
The minimax solution is determined via the minimization of a convex non-linear scalar function. In
order to cope with the high nonlinearity of the response quantities, second-order Taylor series
approximations were used. As a result of the amount of information given, the latter approach has
shown better convergence properties. The solutions of several test problems indicate that: a) the
optimal solution is quite flat with respect to changes in the configuration variables; b) the final
lengths of heavily loaded compression members are shorter than their lengths in the initial
configuration; ¢) the optimal solution for combined configuration-sizing problems usually involves a
large number of critical constraints and the number of active constraints usually far exceed the
number of critical constraints in the corresponding pure sizing optimization.
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