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Reliability-Based Optimum Design of Glulam

‘ Cable-Stayed Footbridges

Luis M. C. Simdes' and Jo#o. H. O. Negrao®

" Abstract: This work presents a procedure for finding the reliability-based optimum design of cable-stayed bridges. The minimization
problem s stated as the minimization of stresses, displacements, reliability, and bridge cost. A finite-element approach is used for
structural analysis. It includes a direct analytic sensitivity analysis module, which provides the structural behavior responses to changes
in the design variables. An equivalent multicriteria approach is used to solve the nondifferential. nonlinear optimization problem, tuming
the original problem into sequential minimization of unconstrained cenvex scalar functions, from which a Pareto optimum is obtained,

Examples ate given illustrating the procedure.
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*oduction

The optimization of cable-stayed bridges can be stated as that of
the minimization of structural cost or volume and the maximum
stresses througheut the structure. Additional objectives are aimed
at the deflections or displacements and at guaranteeing that the
design variables are at least specified minimum values. The work
started with shape and sizing optimization by using a (two-
dimensional (2D) finite-elerent mode! for the analysis. The prob-
lem was extended to three-dimensional analysis and the consid-
eration of erection stages under static loading (Negrio and
SimBes 1997). Seismic effects were considered in the optimiza-
lion by both a modal-spectral approach and a time-history-based
procedure (Simdes and Negrdo 1999). In most of the previous
studies, a grid solution was adopted for modeling the deck, with
stiffening girders supporting transverse beams, although box-
girder sections were employed {Negrio and Simdes 1999). Pre-
stressing design variables were also considered for the problems
of optimal correction of cable forces during erection. Determinis-
" aptimization enhanced by reliability performance and formu-
- «d within the probabilistic framework is called reliability-based
optimuni design. These are cansidered important ingredients in
the design of advanced structural systems, Wider applications still
exhibit limitations mainly atiributed to the deeply nested architec-
lure of this procedure, involving analysis with finite elements,
reliability analysis, sensitivity analysis, and optimization.

The behavior of complex structures is often analyzed by
means of finite-element analysis (FEA). Stresses and deforma-
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tions of the structure can be computed given the (deterministic)
parameters of loads, geometry, and material behavier, Some strue-
tural eodes specify a maximum probability of failure within a
given reference period (lifetime of the structure). This probability
of failure is ideally translated into partial safety factors and com-
bination factors by which variables like strength and loud have to
be divided or multiplied to find the so-cafled design values. These
design values aze to be used s input for 4 finite-element analysis.
The outcome of the caleulations is compared with the limit siales
(for example, collapse or maximum deformation), The structure is
supposed to have mer the reliability reguirements when the limit
states are not exceeded. Reality is different. First of all, the (code
type) level T method using partial safety factors makes it only
plausible that the refiability requirements are met for average
struetures. Second, safety factors are often based on experience
only. A link with the required reliability on a theoretical basis
often does not exist. The third aspect is the system behavior of
structures. The safety factors are often derived for components of
the structure such as girders and columns. A structure as a whole
behaves like a system of these components. As a result, depend-
ing on the kind of system, the structure can be more or less
reliable than its components. The advanitage of the code type level
I method (using partial safety factors out of codes) is that the limit
states are to be checked (by means of an FEA) for only a rela-
tively small number of combinations of variables. A disadvantage
i5 the lack of accuracy. A code type level I method uses partial
safety factors that lead to sufficient reliability for average compo-
nents of structures. These problems can be overcome by using
more sophisticated reliability methods such as level I (FORM)
and level I (Monte Carlo) reliability methods. The problem with
these methods is the considerable computational effort when used
in combiration with FEA. The combination of directional sami-
pling and a response surface method is a kind of important direc-
tional sampling using a smaller number of limit state evaluations.
The improvement to the standard directional sampling procedure
lies in the use of FEA far the importast directions and a response
surface for less irmportant directions, In practice this means that,
after the response surface is constructed, only a few FEA compu-
tations have to be performed.

In this work, first-order reliability methods were used and the
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Fig. 1. Tyvpes (ideniified by numbers} of sizing design variables

sensitivity information was obtained analytically. In a forthcom-
ing paper. the advanced simulation method combined with the
response surface method will be praposed.

Structural Analysis

The finite-element-based open code MODULEF was used as the
basic ool for structural analysis, because code availability was a
fundamental reguirement for turther development, Out of the sev-
eral element types included in the element fibrary of the program,
only the finite element raquired for two- and three-dimensional
(3D} models of cable-stayed bridges were retained and adapted to
specific needs. These were 2D and 3D bar and beam (Euler-
Bernoulli formulation) elements and four- and eight-noded seren-
dipity plate-membrane (Reissner-Mindlin formulation) elements.

Design Variables

‘The structural response of a cable-stayed bridge is conditicned by
a large number of parameters, concerning eross-sectional shapes
and dimensions, overall bridge geometry, applied prestressing
forces, deck-to-pylon connections, etc. Some of them play only a
limited role on the bridge behavior while others, such as the cable
paitern and prestressing forces, are of major importance for both
safety and serviceability purposes. Three types of design variables
were considered: sizing, shape, and mechanical. Sizing design
variables are cross-sectjonal characteristics of the bar, beam, and
plate elements, such as web height, flange width, plate thickness,
ete. Changes of such variables do not imply the need for remesh-
ing. Shape design variables produce seametry changes that re-
quire a nodal coordinates update or even complete remeshing.
Other design variables can be characterized as hybrid, because
they define both the box-girder cross-section shape and the deck
geometry, requiring coordinates updating only. Finally, the fixed-
end prestressing force is a mechanical design variable not related
to any geometric quantity. The currently availdble types are
shewn in Figs. 1 and 2.

All these types play complementary roles in the process of
design optimization. Sizing design variables directly provide for
cost/volume decrease. Shape and mechanical design variables
have a neglectable direct relation te structural cost but allow for
batter stress distribution, which in trn leads to further decreases
in sizing variables. Prestressing force design variables are essen-
tial for achieving acceptable solutions when deflections are con-
sidered in the dead-load condition.

/ﬁ\?\\ “’I

,//1

4
Fig. 2. Types {identified by numbers) of shape design variables

The final behavior of cable-stayed bridges is deeply related 1
the erectinn, Among the various methods used for bridge erection
the cantilevering method has become the most popular, due to 1
suitability for building large spans under strict clearance d
mands. For the solution of this problem, it was assumed that t}
chranological sequence, corresponding to the erection stage se
might be thought of as a2 set of independent substructures, eac
corresponding to an erection Stage. This is done automarically b
the mesh and variable linking generator. The number of tigh
hand sides will bz usually that of the final stricture, due to log
combination involving wind, earthquake, and live Toad, acting
the several positions of the span.

Reliability-Based Optimization

A failure event may be described by a functional relation. th
limit state function, in the following way:

F=[g(x) =0] (1

The probability of failure may be determined by the followin
integral:

Fr= f fulx)dx e
glx)<0

where f.(x)=joint probability density function of the randor
variables x. This integral is, however, nontrivial to solve, Variou
methods for the solution have been proposed, including numeric:
integration technigues, Monte Carlo simulation, and asymptoti
Laplace expansions, Numerical integration techniques become it
efficient for increasing dimensions of the vectar x. Monte Carl
simulation teckniques may be used, but in the following the focu
will be an the first-order second moment methods (FORM
which are consistent with the solutions obtained by asymptoti
Laplace integral expansions. In the case where the limit stat
function g{x) is a linear functien of the normally distributed basi
randem variables x, the prabability of failure can be written i
terms of the linear safety margin M as:

Pe=Plg(x) = 0]=P(M <0) (2

which reduces to the evaluation of (he standard normal distribu
fion function

Pe=D(=f) (4
where B=reliability index, given as
B=play (3

The reliability index has the geometrical interpretation as th
smallest distance from the line (or the hyperplane) forming th
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poundary between the safe domain and the failure domain. The
alpatien of the probability of failure reduces to simple evalua-

when the limit state function is not linear in the random vari-
ables %, Hasofer and Lind (1974) suggest performing its linear-
jzation in the design point of the failure surface represented in
normalized space u:

u= (X;"“'xj)jo-,t‘ (6)

As one does not know the design point in advance, this las to be
found iteratively in a number of different ways. Pravided that the
limit state function is difterentiable, the following simple iteration
scheme may be followed:

n ~1/2

wi=—gg{Ballauni| X 8 g(Be)aui (7)

i=1

which will provide the design peint u” in terms of the hyperdi-
rection cosines. «;. as well as the reliability index B.

The reliability assessment requires an enumeration of the reli-
ability indices associated with limit state functions to evaluate the
structural system probability of failure. Collapse modes are usu-

“ly correlated through foading and resistances, so an exact evalu-

ation of the probability is impractical. or even impossible, to per-
form numercally. For this rsason.  several investigators
considered this problem either by finding bounds for pr or by
approximate solutions. In general, the admissible failure probabil-
ity for structural design is very low. A first estimate of p, can be
found through well-known first-order bounds proposed by Cor-
nell, (1967):

Max[PH{Z)] < py = 2, Pr{Z, < 0] 8)
all &

k=lun

The lower bound, which represents the probability of oceur-
rence of the most critical mode (dominant mode), is obtained by
assuming the mede failure events Z, to be perfectly dependent,
and the upper bound is derived by assuming incependence be-
tween ‘mode failure events. Hence, approximation by Comell's
first-grder upper bound is very conservative, because it neglects
the high correlation between failure modes. Improved bounds can
be obtained by taking inte account the probabilities of joint fail-
ure events such as P(F;M F)), which means the probability that

“~th events F; and F; will simultaneously occur, The resulting

b
wwosed-form solutions for the lower and upper bounds are as fol-

lows:

i i~

pr=(F)) + 2 max) | PUF) - X P(F,NF) |0 (9)

=2 =l
pr< 2 P(F)~ 2, MaxP(F; " F)) (10)
=l j=2 =i

The preceding bounds can be further approximated using
Ditevsen's method (1979) of conditional bounding to find the
probabilities of the joint events. This is accomplished by using a
Gaussian distribution space in which it is always possible to de-
termine three numbers B, B, and the correlation coefficient py;
for each pair of collapse modes F; and £

Improved bounds ean also be obtained by using Vanmarcke's
concept (Vanmarcke 1971) of failure mode decomposition, which
takes into account the conditienal probability that the (i—]) mode

survives given that mode 7 occurs. By assuming that the probabil-
ity of oecurrence of the ith mode, P(F,)=b(B,), depends on B,
onty, the conditional probability P(S;/F,) is evaluated in teems of
the safety indices B; and B; and the coefficient of correlation Pif
between the failure modes F, and F ;- A different approximate
method that avoids caleulating conditional probabilities resulting
frem conditions leading to failure via pairs of faiture modes is the
PNET. This method also requires the evaluation of the coeffi-
cients of correlation between any two failure modes i and joand is
based on the notion of demarcating correlation coefficient Po 5=
suming those failure modes with high correlation pyEpy 1o be
perfectly carrelated and those with low correlation Pi<py to be
statistically independent. This method is not very convenient, be-
cause the solutions will be heavily dependent on the assumed
demarcating coefficient py. A discrete reliability sensitivity analy-
sis is derived and used in the optimization algorithm.

Sensitivity Analysis

The analytic direct methed was adopted for the purpose of seusi-
tivity analysis, given the availability of the code, the discrete
structural patrern, and the large number of constraints under con-
trol. For ordinary linear statics problems, derivatives of kinermatic
constraints (displacements) are provided by solving a stiuctueal
system with pseudoloading. '

The stress derivatives are accurately determined from the
chain derivation of the finite-element stress matrix:

o=DB, u, (11)
‘o (DB Ju
do 208, +pp 2% (12)
dX; ax; ax;

The first term of right-hand side may be directly computed duriig
the computation of elemenr contribution for the slobal system, on
the condition that derivative expressions are preprogrammed and
called on that stage. The second term on the right-hand side is
somewhat more difficult to compute, because an explicit relation
between the displacement vector and design variable set does not
exist. Preprogramming and storing the stiffness matrix and tight-
hand side derivaiives in the samz way 45 deseribed for the stress
matrix, the displacement dervatives may be compiited by the
solation of & pseudoload right-hand sides. The stress derivatives
are then computed in a straightforward way. The explicit form of
mairix derivatives depends on the type of element. For 2D and 3D
bar and beam elemerts, their calculation is o straightforward task.
For plate-mentibrarne elements, differentiation of the whole finite-
element formulation is required.

Optimization

Pareto’s economic principle is gaining increasing acceptance for
multiobjective optimizalion problemis. In minimization problems,
a sotution vector is said o be Pareto optimal if no other feasible
vector exists that could decrease one objective function without
increasing at least another one. The optimum veetor usually exists
in practical problems and is not unigue, In regard to reliability-
based design, several altemnative formulations exist. A comprehen-
sive review can be found in Thoft-Christensen (1990). The mate-
rial cost together with the maximum probability of failure and
measures of the structural performance imposed by manufactur-
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Fig. 3. Geometry

ing and techaical considerations are ihe objectives o be tmini-
niuzed. Size. shape, marterial configurition, and loading param-
¢lers may be allowed to vary during the optimization process.
Bounds must be set for average eross-sectional and geometric
design varables in order 1o achieve executable solutions and re-
quired zestheric characteristics. The overal] objective of cable-
stayed bridge design is to achieve an economic and yet safe so-
lution. In this study. it is not intended ro include all factors
mfuencing the design cconomics. One factor cenventionally
adopted is (he cost of material used. A second set of goals arises
from the requirement that stresses should be as small as possible.
The optimization method requires that all these goals should be
cast & normalized form. Another sel of gouls arises from the
imposition af lower and ugper limits on (he sizing wvasiables,
namely, minimum cable eross seclions o preveni topology
thanges and exequible dimensions for the stiffness eirder and
Pylons cross sections: Similar botnds must be considered for the
geometric design variables. Additiona) bounds are set when geo-
metric design variables are considered, to ensure that no geometry
vielation occurs when these design variables are updated. Addi-
tional goals may be established in order 1 ensure the desired
Leometric requirernents curing the optimization process (mesh
discretization, ratios of variation of cable spacing on deck and
pyloas, ete.). For these, the chosen 4pproach was to initally sup-
ply all the necessary information by means of a Leomeiry coeffi-
clenis set describing such conditions.

"The ebjectve is to minimize all of these gouls over sizing and
Seometry variables x, This problem js discontinuous and nendif-
ferentiable and is therefore hard to solve, However, by using an
entropy-based approach, Templeman (1993} has shown that its
solution is equivalent to that of a1 unceonstrained convex scajar
funetion, depending enly on one contiol parameter, which may be
solved by conventional quasi-Newton methods. This parameter
mmust be steadily increased through the oplimization process. The
scalar function is very similar to thar of Kreisselmeyer
Stainhauser (Haftka and Gurdal 1992), derived for contrel prob-
lems:

of bridge model—starting triaf design

M
1
Fix)=~In E afliix)) (13
G =

Eq. (13) is unconstrained and differentiable, which, in theory.
gives a wide choice of possible numerical solution meéthods.
However, since the goal functions gix.z} do not have explici
algebraie form in most cases, the sirategy adopted was to solve
Eg. (13) by means of an lterative sequence of explicit approxinya-
tion models. An explicit approximation can be formulated by rai-
ing Taylor series expansiens of all the goal functions 2;(x,z) trun-
cated after the linear term, This gives

M g
Min Flx)= H Inf > e"‘“ﬂ“-"*‘_;i"’w‘-‘)’ Radi) (14)
P =

where NV and M =respeciively, the number of sizing plus geomet-
ric design variables and the number of goal functions; and 8y and
g,/ dx,=goals and their derivatives evaluated for the current de-
sign variable vecior (X5,24). at which the Taylor series expansion
is made,

Soiving Bq. (14) for particular numerical values of g, ; forms
ouly one iteration of the complele solution of Eq. (13). The solu-
tion vector (x,.%,) of such an ieration represents a new design
that must be analyzed and gives new values f{or Bij O/ dv; and
(X),2)). to 1eplace those corresponding ra (xg,z,) in Eq. (14),
Iterations continue until changes in the design variables become
small. During these iteratioss the control parameter p must not be
decreased to ensure that a multihjective solution is found.

Numerical Exampie

In order to illustrate the possibilities of the method, a numeric
example is presented in this section. The starfing trial design is as
shown in Fig. 3 apd corresponds (o an asymumetric tWo-spin
cable-stayed footbridge.

Twenty-eight design variables are considered of both sizing.
shape, and mechanical types. The former are those shown in Fig.
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4 and concern cross-sectional dimensions for glulam beams and
steel pylons and cross-sectional arcas for the stays. Shape design
variables are as illustrated in Fig. 2. while mechanical design
variables are the fixed-end presiressing forces and Young's modu-
{us for glued laminated timbet. Starting values of the shape design
variahles are given in Table 1 and their meaning is drawn from
Figs. 2 and 3.

Stiffening girdars are made up of swrength-graded GL24h glu-
la  The mechanical characteristics are set according to the Co-
mité Furopéen de Natienalisation’s prEN1194 (CEN 1993). The
fact that compressive strength is higher than tensile strength also

Table 1. Initial and Final (Optimizad) Values of Design (DesVMan)
Variables

DiesVar Type® Starting value Oprimized value
X1 L 0.50000 0.54349
X2 23 11.00000 10.00000
X3 I'l 0.40000 0.20000
X 12 040000 (.20000
X3 13 3.01200 0.01000
Xé 14 0.01200 0.01000
X7 I3 0.60000 0.30000
X8 16 0.01200 (L0 1060
X9 18 0.40000 0.20000
Xi0 12 (40000 0.20000
X 13 0.01200 0.01000
X I 0.01200 0.01000
X13 13 050000 0.30000
PR 16 0.01200 0.01G00
X153 3 0.00030 0.00042
X18é 3 0.00020 0.00015
X117 3 0.00030 0.00047
18 3 0.00030 0.00010
X9 19 50.00000 245.61128
X20 19 50.00000 &B.70783
xX21 19 50.00000 189.93720
x22 19 50.00000 3950334
X23 3 0.75000 1.54763
X2d 6 0.50000 ().30000
X235 7 7.50000 525733
X26 3 730000 364119
X27 2 5.50000 4.00000
Xz 10 9.00000 9.36154

Note: Units: variable 2 GPa; 15-18 m?; 19-22 kN; and others m.
*Design variable types as specified in Fig: 1.

favors the use of this material in cable-stayed bridges, because
compression 1s the dominating state of stress In this structural
system, A fixed width of 150 mm is considered, while the cross-
section depth is assigned o Design Variable 1. Given the com-
paratively thin depth of the laminations, it is assumned a continu-
ous variation of this parameter is possible. The same assumption
is made for Young's modulus, which is assigned to Design Vari-
able 2. Tf the optimuri design leads to a value 0f By, A0
comresponding to one of the glulam grades of prENLI94, an enu-
merative procedure may be used for the closest grades. This was
not the case in the examples presented here, because the algo-
rithm gives an optimum selution made up of GL20h. The sensi-
tivity analysis concerning this type of design variable must ac-
count for the change in parameters that direct or indirectly affect
the structural cost: the characteristic strength, the mass, and the
glulam cost itself. If the improvement of strength. associated 10 a
variation of the Young's modulus, is large enough to compensate
for the inerease in structural self-weight and in the cest ef
better—and thus more expensive—glulam beams, the algerithm
will lead o supertor quality material, For this relation to be prop-
erfy accounted in the process, approximate relations between
Young's madulus and compressive strength, mass, and cost were
assumed. These are as follows:

fr.().g.k =12 ISEO‘mcan.lr_' ( 15)
Pak = 0.16+ O-OEEO.mcanq {16)
€= E50(Ey meane— 1) (17

with f g, expressed in MPa; g pean in GPa; p, in tong; and
the cost in Buros, €.

Egs. (13) and (16) lead to values slightly different from those
specified in prEN1194, but the error is not large enough to change
the trend towards the decrease or increase of the Young's modui-
lus. Eq. (17) is an estimate that can be rewritten for a specific
country and market conditions. The essential goal of this study is
to find automarically a reliable solution in agreement with the
available data.

A volume unit cost of €10,000 was prescribed for mild steel
and one of €25,000 was prescribed for cable steel.

Pylons are assumed to be made up of welded steel asymmetric
I-shaped cross sections, the web plan being parallel to the longi-
tudinal plan of the bridge. A fictitious lattice girder simulates the
horizontal stiffness provided by the deck surface and required for
transverse or eccentric loading.

All stays are assigned a starting cross-sectional area of 3 cm®
(Design Variables 15-18) and a fixed-end prestressing force of 50
KN (Désign Variables 19-22). It must be remarked that these are
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Fig. 5. Parametric analysis on influence of varicus random param-
eters

the tensile forces necessary to connect the stays to the anchorage
devices in the undeflected structure and not those remaining in the
cables after removal of the tensioning equipment, which are
smaller due to the cable deformation recovery.

‘A uniform live load acting on the deck, with the characteristic
value of 4 kN/m’, was considered as the leading zction. It was
considered to act throughout the whole span or in either the left or
tight span only. For the seke of simplicity, each of these live-load
distributions was assumed o be an independent event. Structural
self-weight and a uniform load of 0.5 kN/m? on the deck were
prescribed as dead loads. The ECI rules were used to define three
load combinations for the purpose of ultimate strength limit state.
These comrespond to live load acting throughout the whole span or
in each side of the pylon only. Coefficients of variation (COV) for
the dead and live loads were assigned the values of 0.10 and 0.20,
réspectively. The comesponding safety factors for oltimate limit
state design were 1.35 and 1.50. Given its irrelevancy for the
issues focused in this paper, no strength reducing factor &,y was
considered.

Prescriptions of ENV 1995:2-Part 2: Bridges (CEN 1997) con-
straining the values of horizontal and vertical frequencies of the
bridge were not incloded either, because they are currently under
implementation in the code. The main problem concerning this
issue was the need for using the general procedure deseribed in
7.2.1(5), because the cable-to-deck connection prevents the use of
the simplified models listed m Table 7.1 of that standard.

A Gaussian probability density function with a cosfficient of
variation of 15% was assumed for the glued-laminated timber.
Consistent with the traditional ultimate limit state design (level |
approach), & design benging swrength of f,,,,;=18.5 MPa was
used for the glulam elements. Fe310 was considered for the py-
lons, and 4 high grade steel with £, ;=700 MPa was used for the
stay elements. With the usual safety factor of 1.30 for structural
timber and the assumed coefficient af variation. these correspand
to mean values of 31.9 MPa. Given the controlled production
conditions and for the sake of simplicity, COV=0 was generally
adopted for the steel, though a range of values was tested in the
parametric study, which led to Fig. 5.

The shape and sizing parameters refemred to in Table 1 were
also initially considered as random vanables, with coefficients of
variation of 0.01, However, the results have shown 1o significant
differences frem the situation in which these parameters were
considered as deterministic. Given the strong correlation between

the Youw's mopaniiee and Ronding strength, here assumed a:
tally correlazed, no simultaneous randomness was allowed
these two parameters for the reliability index evaluation.

In this example, the probability of failure concemns cri:
stresses throvghout the strocture, induced by the loadings, H
ever, other failure modes or criteria ¢ould be used as well, suc
the excessive deflection or ¢able undérstressing.

The initial design was optimized through the use of the n
ticriteria approach described previously to comparg the reliabi
index and bimodal bounds in both cases. Starting and optimi
values of design variables are listed in Table 1. The ove
achieved cost reduction was about 39%. For the starting desig
minimum reliability index of p=3.47, with an associate fail
probability of ®(—pP)=2.6E—04 and second-order bounds
2.55E~04=P=2.57E—04 were found. The values for the o)
mized solution were B=4.14; ®=175E—05; and |.75E-
<P£3.55E-05. The bound interval shows that most of
nearly 1.000 limit states considéred are highly correlated.

A parametric analysis was also condueted to evaluate the
fluence of the various random parameters involved. Fig. 5 su
marizes these results.
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