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1. Abstract

In the structural optimization of a ring-stiffened cylindrical shell the unknown variables are the shell thickness as well
as the thickness and the number of flat rings. The shell diameter enables to réalize a belt-conveyor structure inside of
the shell. The uniformly distributed vertical load consists of dead and live load. The design constraints relate to the
local shell buckling strength, to the panel ring buckling and 1o the deflection of the simply supported bridge. The cost
fimetion includes the material and fabrication costs. The fabrication cost function is formulated according to the
fabrication sequence and includes also the cost of forming of shell elements into the cylindrical shape as well as the
cost of cutting of the flat plate ring-stiffeners. As an alternative to safety factors one may try to describe the uncertain
data via a non-probabilistic deseription of uncertainty, i particular thie fuzzy-set based analysis. Several procedures
are described and the optimum design level can be obfained either based on failure possibility or of membership
value satisfaction. The fuzzy-based optimization becomes a sequential minimization of unconstrained convex scalar
functions, from which a Pareto solution is obtained, A branch and bound procedure is associated with this algorithm
to provide a discrete solution.
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3. Introduction

Stiffened shells are widely used in offshore structures, bridges, towers, etc. Rings and/or stringers can be used to
strenpthen the shape of cylindrical shells. Shells can be loaded by axial compression, bending, external or internal
pressure or by combined load. Design rules for the shell buckling strength have been worked out by ECCS [1], APL
[2] and DNV [3]. The optimum design of a stiffened shell belt-conveyor bridge has been treated in [4]. The buckling
behaviour of stifferied cylindrcal shells has been nvestigated by several 'authors, e.g. Harding [5], Dowling and
Harding [6], Ellinas et al [7], Frieze et al. [8], Shen et al. [9], Tian et el [10].

In the caleulation of shell buckling strength the initial imperfections should be taken info accomnt. These
imperfections are caused by fabrication and by shrinkage of circumferential welds. A calculation method for the
effect of welding has been worked out by the first author [11] and it is used in the caloulation of the local shell
buckling strength.
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Fig. 1. (e} Simply supported bell conveyor bridge
constructed as a-fing stiffened cylindrical shall,
i) Censs-section of & ring sliffener Inchuding
e effective width of the shell,




Fig. 2. Cross-nction of & belt conveyor hridge
with two belt conveyors and a service walkwey
; - i the middfe.

In the present study the design rules of Det Norske Veritas (DNV) are used for ring-stiffened cylindrical shells. The
shape of rings 1s'a simple flal plate, which is welded to the shell by double fillet welds. In the calculation of the
fabrication cost, the cost of forming the shell elements into the cylindrical shape and the cutting of the flat ring-
stiffeners is also taken into account.

In design and optimization problems material constants, loading, and structure geometry are usually considered as
given data but in real world assumed values do not correspond with actual ones. All this is accounted by safety
factors which amplify load magnitude or reduce material strength. As an alternative to safety factors one may try to
describe the uncertain data via a non-probabilistic description of uncertainty, in particular the fuzzy-set based
analysis. Wang [12] a-level culs strategy has been recognized as the standard method for solving general optimnm
structural desipn problems with fuzzy constraimts. Xu [13] proposed a 2™ phase optimization to obtain a particular o
by maximizing an established nonlinear fuzzy goal membership function. The former procedure obtains the optimum
design level based on faihure possibility instead of membership value satisfaction. Two alternative o-level cuts are
also described in this work. The crisp solutions are obtained by a procedure described in [14]. The fuzzy-based
optimization becomes a sequential minimization of uncanstrained convex scalar functions, fram which a Paréto
solution is obtained, A branch and bound procedure is associated with this algorithm to provide a discrete solution.

The shell is a supporting bridge for a belt-conveyor, simply supported with a given span length of L = 60 m and
radius of R = 1,800 mm (Figures 1 and 2). The infensity of the factored uniformly distdbuted vertical load isp = 16.5
N/mm + self-mass. Factored live load is 12 N/mm, dead load (belts, rollers, service-walkway) is 4.5 N/mm. For self-
mass a safety factor of 1.33 is used, which is prescribed by Eurocode 3 (note that ECCS gives 1.3). The safety factor
for variable load is 1.5. The fal plate rings are uniformly distributed along the shell. Note that the belt-conveyor
sopports are independent of the ring stiffeners, they can be realized by using local plate elements.

The unknown variables are as follows: shell thickness ¢, stiffener thickness r, and number of stiffeners n. To ensure a

stable cylindrical shape, a certain number of ring-stiffeners should be used. In the present study we consider a range
of ring numbers.n = 6 - 30. Those results for which the place of stiffeners coincides with the circumferential welds of
the shell segments (n = 9, 19)are not applicable for fabrication reasons. The range of thicknesses ¢ and 1, is taken as 4
— 20 mm, rounded o | mm.

4. Design Constraints
4.1 Local Buckling of the flat ring-stiffeners (Fig. 1)

According to DNV
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Considering this constraint as active, for £=2.1x10° MPa and yield stress /=355 MPa, cne obtains 7, =91, .

4.2 Constraint on local shell buckling (as unstiffened) (Fig. 3)
p=165+135p(2Rm +nd ) p=785x10" kg / mm 4, = hyt, (2)




(3)

Fig 3. Topview of the shall with local buckling.
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The: factor (1.5-50f) expresses the effect of the initial radial shell deformation caused by the shrinkage of
circumferential welds [11], Introducing the reduetion factor of B for which

8.1974,107
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001< = <0.02 (5)

When 1 < 10mm; A, =10t

When £ > L0mim, 4, = 3,05 %
For #<001 g=001,for g20.02 g=002
The imperfection factor for shell buckling strength should be multiplied by (1.5-50B).
Furthermore
-2 2 —0.5
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C=y +[ v J 2 =09539"2 1y =1,£=0702 Z.p 05\+300r] (6)
It can be seen that oy does not depend on L, , since in Eq. (4) 7% is the denominator and in C (Fq. 6) it is in the
numerator. The fact that the buckling strength does nol depend on the shell length is first derived by Timoshenko and
Gere [15]. Note that AP design rules [2] give another formula. On the contrary, in the case of external pressure the
distance between ring-stiffeners plays an important role [4,6].

4.3 Constraint on panel ring buckling (Fig. 4)
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Fig. 4. Topwiew of pansi ring buckling,

Requirements for a ring stiffener are as follows:

A =htp> (i + D.DS]er (7
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4.4 Deflection constraint
4
Spol’ L .
=g 10
M 3R4RT. 500 (10)
where 1, and the unfactored load p are, respectively:
Te=mR% " pp =12/L.5+4.5/135+ p(2Rat + nd, }=11.33+ p(2Rzt + n4, ) (11}

5. Cost Function
The cost function is formulated according to the fabrication sequence. A possible fabrication sequence 18 as follows:

(1) Fabricate 20 shell elements of length 3 m without rings (using 2 end ring stiffeners to assure the cylindrical
shape). For one shell element 2 axial butt welds are needed (GMAW-C). The welding of end ring stiffeners is not
calculated, sinee it does not influence the variables. The cost of the forming of the shell element to a cylindrical shape
is also included (Kjg). Accarding to the time data obtained from a Hungarian production company (Jaszberényi
Apritbgépgyar, Crushing Machine Factory, Jaszberény) for plate elements of 3m width, the times (7, +7;) can be
approximated by the following function of the plate thickriess (Eq. 12).

Kpo = kF®{212.18+42.824t ~ (2483 :2] (12)

The cost of welding of a shell element is
Kpy = rcF[@,/xle + 1.3x-0.2245x10*312(2x3,ooo)] (13)

where & is a difficulty factor expressing the complexity of the assembly and x is the number of elements to be
assembled

K =204 = ZRax3,000,8 = 2 (14)
The first term of Eq.{13)expresses the time of assembly and the second calculates the time of welding and additional
works [16].
(2) Welding the whole mnstiffened shell from 20 ¢lements with 19 circumferencial buft welds

Ky =kpl@200% +L3x0.2245x10*3z2x19szE) (18)
(3) Cutting of n flat plate rings with acetylene gas
K =kp®La; P L, (16)
Where @, , C.and I, are the difficulty factors for cutting, cutting parameter and length respectively,
®, =3,C, =1.1388, L, = 2Rm+ 2R~ h, Y. an
(4) Welding n rings into the shell with double-sided GMAW-C fillet welds. The number of fillet welds is 2n
Kps=kp (@JW +.1.3x0.3394x10*3a%x4Rm) (18)

ay, =051, but a0 =3mm .
' ;
Vy =200 +2[R—% hipn (19)

a,,1s taken so that the double fillet welded joint be-equivalent to the stiffener thickness.
The total material cost is
Ky = knepVs (20
The total cost is
K=K +200K g +E g J¥ K pa+ K ps +Kps (21)

where kj; =1$/kg;kp =18/ min.

6. Nonlinear Programming with Fuzzy Resources
The available general model of a nonlinear programming with fuzzy resources can be formulated as:
Min /(X) (22)
51 g; (Y) < b.,‘,i =12,..,m

xtexex?



where the objective function and the ith in-equality constrained function are indicated as f (X) and £ (X )
respectively. The fuzzy number &, ,Vi , are in the fuzzy region of [bi,bl + pllwith given fiizzy tolerance p, .

Assume the fuzzy tolerance p; for each fuzzy constraint is known, then, b; will be equivalent to (bj +6p,—),‘v'/i .
where £ is in {0,1]. Several a-level cuts methods for Fuzzy Linear Programming applied to Fuzzy Nonlinear
Programming are described in the following sections,

6.1 Verdegay's approach: a-level cuts method
Verdegay [17] considered that the membership function of the fuzzy constraint representing in Figure 5(a) has the
tollowing form:

! if gn<b,
o (XY= b
ug0={ "By b g s, 23)
0 i gi(X)>b+p;

Simultaneously, the membership functions of 44, (X), Vi, are continuous and menotonic functions, and trade-off
between those constraints aze allowed, then program (22) is equivalent to the following formulation:

Min /(X)) (24)

st Xelk,
where X, = {x| Hagi (X ) 2a,V;, X 20 , for each @ & [0,1] - This is the fundamental conecepts of a-level cuts

method of fuzzy mathematical programming. Furthermore, the membership function in Eq. (23) indicates that the
more resource consumed, the less satisfaction the decision makes feel. One can replace Eg, (23) into program (24)
and obtain the following formulation

Min f(X) (25)

st g,(X)Sb‘; +(l—a)pt,v,-
xt<x<xVamdaelp]]

Thus, program (25) is-equivalent to a parametric programming formulation while @ =1-@ . For each q; one will
have an optimal solution; therefore, the solution with o grade of membership function is fuzzy.

6.2 Wemer’s approach; max- o method
Wermer’s [12] proposed the objective function should be fuzzy because of fuzzy total resources (or fuzzy inequality

constraints). For solving program. (22), one needs to define 1, max and fmjn follows:
Smax=Min f(X) st g, (X)<b,,V,, md XL <x<xV 26)
Soiny SMin f(X) ;58 g (X)<b; +p;,¥;,and X < x < x¥ @7



The membership function g 7 (X ) shown on Figure 5(b), of the objective function is stated as:

1 i SX)< Fiin
X)= 1
pry ()= 1_% i fonin € SX)Z finax (28)
max mn ) .
0 if SX)> fooe
One can consequently apply the max-min operator to obfain optimal decision, Then, program (22) can be solved by
the strategy of max- o, where o= min [I;;J(X), Hei (X), Mg (X),...,ygm (X)] . That is:
Maximize o (29)
slas gy (X)
A fg (X ) v
e [0,1] and xtex<x?

By defining [0y — frin = Pr»and [ =5 ¢, Eq, (28) can be written as:
Maximize o (30)
st f(X)Sbf +(I—a’)pf
8i (X)sz +(1*a’)p£ .Y
aeof]and XL <x < xY

Program (30} coustruct a crisp NLP problem and an optimum solution can be obtained. This technique is considsred
as a practical method for engineering design.

6.3 Xu’s approach: bound search method
Suppose there are a fizzy goal finction fand a fizzy constraint C in a decision space X, which are characterized by
their membership functions g ¢ (X )and Le (X ) , respectively. The combined effect of those two can be represented

by the intersection of the membership fiinctions, as shown in Figure 6 and the following formulation.
1p(X)=pt e ()= 11 (X) 1 (X ) = min ) e (x) (31)

Fig. 6 Relationships of 7 i and up in fuzzy decision making

Bellman and Zadeh [18] proposed that a maximum decision could be defined as:
oo )= ma () 2
If gy (X)has a unique maximum at X M | then the maximizing decision is a uniquely defined crisp decision, From
Eq. (32)], one can obtain the particular optimum level ¢ * corresponding to the optimum point XM such that:
(v2r6) maxu.f(X)
By ¥ - %
XeCy
Where C,, *is the a *-level cut of the fuzzy constraint set C. Xu [13] used a goal membership function of /{X) as
following:

(33)

)= Smin_
Hy (‘X ) = f(X) (3%)



Where fu, is defined by Eq. (27). It is clearly to see upper and lower bound of this goal membership function 1s

between 1 and fiin / fipax - The optimum « * can be achieved through a simple iteration computation. This rnethod
has been called the 2™ phase of a<cut method.

6.4 Alternative Level Cut Methods for NLP Problems with Fuzzy Resources

As observed the original a-cut method (Verdegay’s approach) in which each o value can vield to a set of optimum
solution X', . Every constrained function in program (25) has the same o value; thus, it is single e-cut approach. In
Wemer's approach program (29) and Eq, (30) and Figure 5, lead to the value of final o * as the minimum aAmong
&g, 0, &y ... 80d &, . The actual value of a-level corresponding to @ rand each @; (i=12,....m) is different to

final design X*. This phenomenon means that each level cut among fuzzy domain is net necessarily identical. In
XKu’s approach in Eq. (33) and Figure 6 to maximize u 7 (X )15 equivalent to maximize « in program {29) of

Wermer’s approach; therefore, the final results should be very close to each other. However, a nonlinear finction
defined int Eq. (34) of design goal that is different from the linear one in Eq. (28).

For obtaining a single solution of the original o-level cut approach in NLP problem with fuzzy resoltrves, two
altemnative sirategies are presented next: single o-cut approach and double «-cuts approach [19]. Each approach
contains both linear membership function shown in Figure 5(b) and nonlinear membership fanction (Eq.35) of
objective function shown in Figure 7,

()= Lx =S Q) SO~ Fon -
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Fig.7 Nonlinear membership function g » of goal functions f(X)

6.4.1 Single a-cut approach
To obtain the unique solution for fuzzy problem en program (22), the mathematical formulation with directly single
i-cut approach can be writien as following;

Min f(X) (36)
s.t. f(X)_[fmax _a(fmax _fmjn)]: 0 (for linear ¢ (X))
S~ (frnin /@)= 0 (for nonlinear Ky 6g)!
g,—(X)sb-,- +(1—a)p,,v,.
S EF
a € [0.1] (for linear 424 (X))

ae Lfmjn /fmax,l] (for nonlinear p @)

The above formulation can compare with max-« method in Eq. (30) where 2 r (X ) can be nonlinear (Eq. 34) or
linear (Eq. 35) membership functions.

6.4.2 Double a-cut approach

When one observe membership functions 7 (X ) and g (X) (i=1,2,...;m) corresponding lo objective function and
constraints expressed in Figure 5, the value of [ (X Yaoes to Simijn direction as ¢ £ approaches to one, while the
value of g; (X ) goes 1o b; + p; as o, approaches to zero. This tendency in the optimization process pulls ¢ £ back

to an allowable lower limit and pushes ¢, up to an allowable upper limit. This consideration guiding us develops the

solution finding algorithm. Consequently, the fuzzy problem in program {22) can be solved by the following
formulation:



Min f(X)x3 37
o

st 700~ frnax =@ 5 (max = fonin )| =0 CGor tinear 42 ()
A~ (Fin lay )= 0 (for nontinear s )
g (X)<b; +(1-a)p;, v,
xl<x<x¥
ay e [O,I]Cfbr linear Ky (X))
ar e[fmjn /fmax_.ll(for nonlinear 4 ¢ (X))
0.01=e <1

The program (37) for nomlinear g r(X) can be viewed as minimizing f(X) and minimizing @/ /a
simultaneously.

7. Optimum Design

The shell thickness is determined in this example by the constraints on local shell buckting. Since the number of ring-
shileners does not influence these consiraints, in order to assure a stable circular shell shape, a certain number of
rings should be used, The minimum area requirement to avoid panel ring buckling is also dependent on the shell
thickness and fixes the stiffener thickness. Since the design rules do not give ‘any preseriptions for the minimum
number of ring stiffeners, for the investigated case a ring number domain of » = 6 - 30 was selected.

The optimisation results show that, due to the cutting and welding costs of stiffeners, the smaller number of stiffeners
is more economic, By fixing n and using the entropy-based algorithm described in [14] the optimum continuous
solution is;

Table 1. Number of stiffeners, thickness of stiffeners, shell thickness and total cost
1 f Cost

-

i 18.9 6.23 67300

Fuzzy goals were generated involving stress limits and loading: An increased tolerance of 25% is employed fo fuzzify
the loading. A membership function of inclined straight lines is adopted and (25) will become & parametric program.
In the first phase, by solving this program with different o values yield deterministic designs together with a level of
acceptability with respect to the stress hmits fuzziness. In the second phase, the cosp solution is obtained by
maximazing the membership value:

n Z, t Cost
& 19.7 6.78 E7500
M = W(1)=72570. m="W (0)= 67300, 0927<ax1

o= 0.932 W(a) = 72210, and jig = m/Wior) = 0.932

Once the optimum o, is known the sizing variables are obtainied. The fuzzy optimum is very close to the eriginal
deterministic solution.
The influence of 10% tolerance in the stress limits is even less significant:

n I 1 Cost
6 18.9 621 67140
M = W(1)=67300. m= W (0)=67140. 0998 < <1

However shell and stiffener thicknesses should be rounded to | mum. A branch and bound strategy is then used to find
the optimum discrete solution.

1 Cost
7 19 7 75320




Given it 1s not feasible to choose a shell thickness of 6 mm, the increase in t leads to more rings being needed to
ovserve the design requirements. Both 10 increase the nunber of rings (and reduce ;) and the opposite are associated
with more expensive solutions. Material cost is about half ef total cost and is insensitive 1o the vanation of the rings.
The forming cost of the shell elements is stgnificant.
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