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ABSTRACT

This paper describes an application of @ branch and bound method for eptimum
desiyn of remforced and prestressed conerete structures with diserete desivn vuriatles. The
approden infegrates mullicriteria optimization strategy with a commercial finile element
pragram. The design problem is posed directly as a multicriteria optimization with goaly of
mininten cost, stresses and displacements. The mudlicriteria problem is folded into o single
envelop funciivrn based on maximan enlropy forvidlation, where porets optinman achieve a
comprise ameng the objectivey and constraipts and vépresent niore meaningfud and rdfional
woslty ip weaptice. The approaeh provides the practival engineer with a direct and
systematical way fo design the structwre. The validity of the proposed design methed is
examined. by means of numerical examples.

INTRODUCTION

In really practical structural design, in the last three decades, much work has been done tn thie
structural optimization, in addition to considérable development in optimization theory|1].
However, structural optimization has not been used extensively for civil enginesring struciures
[3Has opposed to mechanical or aerospace structures). it is said that two réasons to cause the
situation are: firstly, the difficulty in choosing the meaningtul ohjective that mcludes all

relevant criteria; and secondly, different design répreséntations between the communications

of structurzl optimization and engineering practice.

In engineering practice of structural design, most fing! designs are based on
prefabricated products compoesed in different ways, Therefore, design variables consist to an
extent, from @ sét of prefabricated elements specified in specialized catalogues. In most of the
available Hterature of structural optimization, the very necessary practical requirement that
the gpfimum design should employ only the standasd discrete component is omitied, The
omission of this very practical requirement has been ong of several contributory factors 1o the
lack of nseof structural optimization in engineering practice,

Unlike mechanical or aerospace structures, it is not sasv nor obvious to find one
dominating criterion in the ¢ivil engineering structares bui several (possibly conflicting)




critena such as; minimum cost, maximum safety, minimuin stresses, mininium dellections and
so foith. The advantage of multicriteria is that it simultaneously considers all competing
abjectives and convergence to a Pareto solution for which it is not possible to improve one
thenit Function withiout seriously impairing others. It is very natural and snitable for the
practical design of civil engingering structures.

The eptimization of prestressed beams, which possesses a large number of constraints
and occasionally conflicting objectives, is dealt within this werk. The problem is posed as a
multicriteria optimization with goals of minimum cost, sizesses and displacements. The
problem s solved through the minimization of 2 convex fupction invelving one control
parameler chiained by folding all goals and consiraints into & single envelope. The single
objective optimization problem is approximated by first order Taylor's serdies expansion of
structural response and then solved by the public domain Non-Linear Programming NLP
program TN/GAMS!6] based on the iruncated-Newton algorithm, All structural responses are
sained by using the commercial finite element program (ADINAJ. The branch and bound
method is used 1o satisfy the practical requirement of discrete design variables.

The mimerical exaniples illustrated the religbility of the application of such a direct
desion methed of & prestressed beam with differem parameters. The comparison between
numerical tesiilts and real engineering show ifs considerable improvement of the practical
design. The design variables consist of the areas of prestiessing and mild steel, overall depth
and depth and web thickness. The actual cost construction is composed of presmessing, mild
stee), concrete and formwork costs, Other possible objectives such as iumal cantber, minimum
depth of girder were introduced also.

MULTICRITERIA OPTIMIZATION PROBLEM AND PARETO OPTIMUM

The multicriteria (millicrerion, multiohjective, vector) optimization problem may b
formulated as follows: 1o determine a vector of design variables that satisfy the constraints and
mimimize a vector of objective function. Mathematically, this can be stated as follow:

Min 7 =00 = L% 4, f®)]  xeQ (1)

where [ = vector of objective functions; £ = component vbjective function (i=1,2,,..0u) Q=
feasible set to which x belongs and is a subset of R

Q = ix £ B p(x)<0, hix)=0] (2)

Usually there exists mo unigue point which would give an oprimum for all m  eriteria
simultzneously, The concept of Pareto Optimiim is introduced as a solution to multicriteria
optmiization.

Avector X & € is Parero optimuia for problem (1) if, and only if, there exists no x € @ such
as Axy s fxy, fer i = 1,2, m with fi(x) < £(x7) for at least one j. In other words, x" is a
Pareto optimum if there is no feasible solution x, which decreases some objective without
simultaneously causing a sericus increase of at least another objective function.



SOLUTTON OF MULTICRITERIA OPTIMIZATION PROBLEM:
MAXIMUM ENTROPY FORMULATION APPROACH

The maximum entropy formulation, first published by Jaynes in {957[5], is recognized as a
fundamental coneept in information theery. It determines a less biased possibility for 4
problem in a random process via maximum entropy direction. In recent years, il has emerged
as ant important and powerful formulation in a wide variety of different fields, and it has found
applications inmany disciplines throughout science and technology as well 2s in the structural
optimization [8]. In the present paper, the maximum entropy formulation is ussd to achieve
the Pareto solution of a multicriteria optimization problerm.

Several approaches, already 2pplied in operation research and centrol theory, have been
proposed in the literature forthe sofution of multicriteria optimization probiems [2], In the
study, the approach based on the Maximum Entropy Formulation are accepred, because of its
concreté foundation,

Entropy is most commonly known in physics in comnection with the second law of
thermodynamics - the entropy law - which stares that entropy (or amount of disorder}, in any
clesed conservative thermodynamics system tends (o maximum. A fandamental slep in using
entropy in the new context unrelated 10 thermodynamics was provided by Shannon 7] who
realized that entropy: could be used to measure siher tvpes of disorder by using the following
algehraic form to measure the amount of uncertainty in any diserets prehahility distribution

§=-k¥Yplinp, (3)

where p; is the probebility of everit i , ks a constant

The Multicriterfa optimization process could be considered as 2 dedictive process.
Given 2 sei of objective function fand some constraint functions, the Process commences
without any numerical information. An initial poimt is then chosen and information is
caleulated about the gradient of objective function and constraint function. The nurnerical
information i then used to determine the cumrent sjtuation to infer where the next tial point
should be placed via the maxtmum entropy direction. x, = Dix.y)

The Kreisselmeier-Steinhauser function [4] defined in (4) could be considerad 4s the
iieasure of entrapy in the multicriteria optimization process of (1), The most rational direction
of the process miay be the maximum K8 nonn direction, o that the multicrileria optimization
problem (1) was replaced by maximizing z single KS norm function (4).

KS( ) :;";fﬂ-ffeﬁf'*fe”g*’ )
: e ffx I "

= % 5

! 7, (5)

where f*1ig the set of gradient of ¢hijective funciions.
It has been proved [4] that for any pesitive value of P, the K$ norm is always more
positive than the most positive constraint,

Min(f".g)<KSUf ") =< Min(f",g) ,ML';’*Q i
wiiere m 35 the number of objective functions, and # is the number of constraints

Because of the behaviour of the KS norm, it is obvious that when P becomes
sufficiently large, the resulrof



Minimium | KS{ F* g}l (N

is the Pareto-optimal solution of multicriteria optimization problem (1). Therefore the
multicriteria unconstraing optimization problem (1) can be solved by minimizing a single
continuous and differsntiable function (7).

Until now, the multicriteria optimization problem has been converted into a single
objective function optimization problem.

SOLUTION QF SINGLE OBJECTIVE OPTIMIZATION PROBLEM
WITH DISCRETE DESIGN VARIABLES

After the multicriteria oprimization is {ransferred intg 2n equivalent single-objective problem
based onthe maximum entropy formulation. the latter may be solved using stundard non-linear
programming(NLP) with discrete design variables constrained by the equilibrium equations
of finite element methods, The problem could be formulated as follows.

Minimize KS(x} (8a)
Such that: hix) = {Bb)
glx) < 0 (8c)
B L (&)

% €8 = (5p:m=1,..,M)

where h = vector of equal constraints, X = vecron of desipn variables in which each design
vaniables x, must be selected from the finite set §; which comaing M, discrete sizes.

It 5 obyious that equations(Ra-¢) are very complex nen-linear programming problem. As the
computational expensive results of (&), it isn't suitable to use the standard NLP directly. The
iterative Tnethod was employed in the study. At the stant of each iteration, the nonlinear K§
noim (84) was linearized at the current point x, using first-crder Taylor's series expansion, ie.

Minimize KS(x) = KS(x,) + K&{x) (x-x%) (92
(?KS Ag ﬂK‘S
KS fx) = i (3 d {9b)

The overall finite difference agpmach was implemented 1o caleulate the sensitivity
information.

The solution 1o the above discrete progranuming problem proceeds as follows, First the
requirament of discrete is relaxed, and a solution of continuous problems is obfained. If fhe
solution is such thar the fequiremant of discrete is satisfied, an optimal design is otsained. If
any one of design variable x; of the results in the first step violate the original requirement,
ie. the resalt locates between two discrete values of ordered discrete set (4, dy ..., d.)

d <p< d (1)
twonew subproblems are generated; one wuh a new lower bound &, = d,_,, and anather with
a new upper bound x; « ¢, . The procedure is carrisd out uniil all design variables satisty the
discrete Tequirement.



NUMERICAL EXAMPLE

The fully and partially prestressed concrete girder optimal design problem will be formulated
next as a mathematical program o access the efficiency of rwo procedures deduced above.
The requirements, based on the EUROCODE, include serviceability limit state (SLS)
constraints, nltimate flexural limit state (ULS) constrainis, as well as a guarantes of balanced
failure.

DESIGN VARTABLES

The prestressed concrete girders with the crass section, tendon layout and lozding in
FIG.1 is to be designed for two objective functions:(1) Minimize the total cost;(2} minimize
the imittal camsber. The nine design variables are the girder depth b, the arcas of prestressed
steel and reinforcement A, and A, the tendon eccentricity at support séetion e, and the
thicknesses of top and bottom slabs and web ¢ 1, and ¢, , ie.

T
F1G.1 Structure Geometry
X b X e+, X half of straight tendon
Xy fs Kl W, T 28,
b= i iy A Xyl A,
CONSTRAINTS:
2 Ellimate Timil state constraints

The Strength limit-states used in flexural design are evaluated according to EURDCODE. The
consaints could be expressed
My > 1.3M, + L5M, (y

where = the factored mament strength of the eross section; = the elastic moment due
to dead loads and worst arrangement of live loads, respectively.

For the full prestressed concrete design method, the prestressing steel is the only
cotitribution to the constraint. The partially preéstressed comicrete design concept was adopted,
where the remforcement makes contribution 1o the constraint.

Z Servicegbility limit-state constraints

Two working load cases are considered, ie,, the initial presiressing without live load and the
itve foad with prestressed force with 13% prestress loses. The commercial finite elemem
program ADINA was nsed 1o simulate simictural responses under the two leads cases. The



concrete is modeled using 9-node plane strain elements and the prestressed tendon and
reinforcement steel by 3-node truss elements (Fig.2). It was assumed that, the girder carries
9343 kNfm.Jane uniform design load, and concentrated design force 80 kNflane in fhe
midspan. Instead of practical design code, a general two ditnensional failure envelope under
principle stresses failure ‘criteria of concrete material in tepsion and compression in two
principle stresses directions as described in Fig.2 are employed as constraints. For each
selected point in the congrete elements, the following constraints were set:
o 10> 0.0

o,/ +1.0> 0.0 ik
1.0 - Ul/fr': > 00 e ""‘ i
1.0 - g/, > 0.0 - ;"f:/’-:

A SR O R P
S0y ¢ Ol t L0 U0 |
Similarly, Tor each prestressed tendon and mild steel 1 /

elements: I |
1.0-0 ffa® .0

el
1.0- 0, /f,> 00

FIG.1 SLS constrants

The concrete (C50/60) has £, =0.3333xI0* N/m* | £, = 20.2800%107 Njm® | p, =
(2650407 Non®, E = 03700 Nm®, = D35 210" Nm® ¢ =02 Prestressing el
has £, = 1785 10" N2, fg = fo ] ¥po = -1552x10" Njm® | E = 2.0%10" Njm. The mild stec)
has f, = AS00:10° Njm® , f, = £ [ v, = A910x10" Nfm? . Prestress losses of 15% belween
transfer and service are assnmed,
& Guarantee of balanced failure

The absolute lower and upper bounds were sét according o geometrical constraints,
and some pracrical experience. For example, the reinforcement area for a reinforced concrete
beam should be

0.15% < [00A, [A, < 4.0% (12)

The minimum. reinforcement 18 provided mainly to control thermal and shrinkage
cracking, while the maximum steel is determined largely from ihe practical need ro achieve
adequate compaction of the conerete around reinforcement.

Z Abselute upper and lower boundaries

In addition to the relative bounds, the following absolule hounds are set:
R (spanf24, spanf8) blos: (zy+thickness, x,-x;-thickness)
Ryl {spanfQ, 2% span(9) gt (0.5thickness, 1.5thickness)
Ne (Bwiclthf8, Swidthf8) X! (4.0rhickness, 6.0thickness)

e (1.Sthickness, 3.0thickness) =g (Q.0D0015A,, £.00044,)
xg  (0.0000154,, 0.00044,)

OBIECTIVE FUNCTIONS
The primary-objective function was the total cost per-unit length, which includes the costs of
conerete, mild steel, prestressing steel and formwork and it was stared 4

£ = LG+ V.G, + AC, +A,C,. (13)
where G €, €, and €, = unit cost of framework, conerete, mild steel and prestressed steel
per lengtl, volume, and areas tespectively. [n the paper, we assumed Cf = 76.0 ESG/m, C,
— IS0 ESCwY, €, = 5,000 ESC/ut?, € = 19,500 ESC/n® .

£




The ather ohjective function was designed as the minimization of the initia] camber
due to prestressing and own weight. The objective and all consiraints described after are
govemned by the finite element program, ie,

S = u=KPor explk{n,- )] (14}

NUMERICAL RESULT

The parameter p in (4) is 4 very important
paramerer in the algorithms[9]. In the following example]
P =200 is zssumed. %
Two sets of objecive functions (e, single

objective function of tonal éost of unit Tength, wd the
muiti-objeenve funguens o costand initdal canbier) witl:
different paratneters and objective functions  were, |
implemented. The overall geometrical scales are set 0.05 |
ni.; the internal one =, is considered as continuous. The
areas. of prestressed steel and reinforcement ate treated i

with scale of 5 em®. The results are showa in Table 1-2. W

B s bt el Jidi

1. .All parcto S?lu[lens in the table were ac-c\f:plz&blcFlG_2 Initial and Finial Design
and feasible;

2 More than one local optimum point could be achieved. All of them improved the real
practical design considerable (decreasing 25% total cost.):
3 All results wonkd be considered as real practical design.

Table 1. Single Objective Solutions

abjivin® 7l =2 =3 (2] x5 %6 5 2ha107 N_Aif"" Itemaiion,
Siim nr 1 m ni » #H it wm '
Initial 174 375 1330 6.00 30 3500 120 50 254 236
uro 2986 130 6874 | §.80 19 195 493 30 J50 190 X
Lapd 3051 JEETH B270 | 350 1o 303 85 ) 155 260 t
an 32 L4 w4 | s1s -to 293 0.88 A 175 45 it
Tnitial 4373 2150 230 | 400 2 .00 1.00 40 124 | 1224
M1 2964 .25 | 6265|600 10 2,08 093 36 165 (63 17
M20 3145 L 53 8465 | 485 10 2.95 1oe 30 350 030 ]
M30 3070 1.50 Fa2 | 440 e 295 000 At 133 495 g




Table 2. Multi- Objectives Pareto Sclutions

ok | <10 od =l 2 Ll % 13 26 =T 8" 2xiT Treration
Fim ] " m m m w m 3 s e
Initial 6179 1.360 3Ty 1:90 6.0 30 500 1.20 50 236 235
30 3084 T8 | 135 TR58 255 |20 305 125 50 20 445 8
U0 3052 7887 | 135 A9 220 |15 3.00 125 | .30 125 180 14
uig 3136 BO9L | L35 8521 215 | 35 295 125 .30 1:85 190 24
Initial 4373 1428 230 125 440 20 4.0 L0 AQ 1.224 1224
M0 3152 7e5& | 1 A0 9 2235 35 285 125 30 145 190 0
Mz0 3161 TREY | 13Y TASR 238 M RTINS &3 245 i
M3 3084 Jes7 | 135 | 3290 | aa |20 a0 | 145 | 30 135 do5 | 8
U/M: initial point on the Upper boundaries and in the Miadle of boundaries
Cbjeatlve Sbfaativee
roBn <= FOB6 ——n S = -
- @byic i
2 mawtia e
o Gomio = obles
— PR To o |
sooc DB[ZZOTAA T
: Qurpaatasis
soc0
sooo -
“0an *ral
,, AG0G
sono — i s i
. i " . !
e~ < = sbug T ’ ‘
o 1w =z B = e 20 e
nerelion ermton

F1G.4 Typical Multicriteria and Single Objecrive Optimization Processes
CONCLUSION

An ausomated comprehensive procedure in the study can be used to achieve a practieal
satutian for prostressed concrete beamy, without the need to guess the amount of initial points.
The multicriteria optimization based on the maximum entropy formulation approach, presented
in this paper, demanstrates the potential of (he advanced optimization strategy coupled with
filte element techniyues, tosolve o varicty of prestressed and reinforcement conerete design
prehlems in a guite efficient way. The major merits of the approach are: (1) discrete design
varjables are introdiced (o satisfy the practical requirements; (2) a very concrete theoretigal
foundation to determine the direction for 4 multicriteria problem 10 the non-unique Pareto
Solution which includes possible (even conflicting) objective functions for a given structural
design problem; (3) satisfaction of all constraints (very easy to convergence into feasible
designs): and (4) because a general FEM was employed, there is the suitability of a variety
aof structural designs in the civil engineering, which had been widely used in the mechanical
and AeTo-space engincering

Morz comprehensive structural design represertation should be investigated which
should consider separately strucrural details, such as anchorage, prestressed concrete bleck
and bridge bearing.
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NOTATION
Yoo Partial safety factor for concrete, reinforcement and prestressing steel
! Compressive strength of concrele
Jaa 1 Flexural compressive and tensile strength of concrete
S Initial Flexural compressive and tensile strength of conerete
Pe ; the density of concrete
Tpa - basic design shear strength of conerete
0 : Tensile strength of prestressing steel
S : Characteristic tensile strength of prestressing steel
» 5 design strength of reinforcing steel
£ : yield smress of reinforcing steel
Wy ; own weight
P, Conecentrated loan load
E, B By Steel and Cencrete Young's modulus
¥ : Poisson’s ratio of Concrete Material
(0] - Safety factor
¥ : Design variables
i ohjective functions
h,g = vectors. of consirainis
K ; stiffness matrix
P : load vector
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