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Abstract

This work presents the Two-phase method for fiuzzy optimization of cable stayed bridges. The
minimization problem is stated as the minimization of stressés, displacements and bridge cost. A
finite-element approach is used for structural analysis. It includes a direct analytic sensitivity
analysis module, which provides the sirucniral behaviour responses to changes in the design
variables. An equivalent multicriteria approach is used 1o solve the non-differentiable, non-linear
optimization problem, tuming the original problem into the sequential minimization of
ericonstrained convex scalar functions, from which a Pareto optimum is obtained.In the first
phase the fuzzy solution is obtzined by using the Level Cuts Method and in the second phase the
crisp solution, which maximizes the membership function of fizzy decision-making, is found by
using the Bound Search Method. Hlustrative numerical examples are solved.

Keywords: Fuzzy optimization, cable-stayed bridges
Résumé

Ce travail présente la méthode deux-phases pour I"optimisation floue des ponts & haubans. Le
probléme de minimisation est posé comme la minimisation des contrainies, des déplacements et
du ¢ofit. Une approche par éléments finis est utilisée pour I"analyse de structure. Elle contient un
module d’analyse de sensibilité. Les variables de conception sont modifiées en focntion des
réponses de comportement de Ja structure. Une approche équivalente multicritére est utilisée
pour résoudre le probiéme d’optimisation nen linézire, en transformant Je probléme en une
séquence de minimisation de fonctions connexes sans contraintes conduisant 2 un optimum de
Pareto. La solution floue est obtenue en utilisant Ja meéthode des coupes dans la premiére phase ;
dans Ja deuxiéme phase la solution maximisart Ja fonction d’appartenence floue est construite
par la miéthode “Bound Search”. Des exemples numériques illustratifs sont résolus.

Mots-clés : Optimisation floue, ponts & haubans
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1. Introduction

Cable-stayed bridges are large and expensive structures that are now being widely used, The
trend to increase the spans and the advent of innovative erection techniques make thus desirable
the development of computational tools to assist on the preliminary design stage and/or erection
control, which today relies mostly on the desipgn staff expertise. The authors have been involved
in the last few years in such a project, which led to the development of a programme dealing
with the aspects of design which can be objectively expressed by a numertcal merit measure. The
oplimization can be stated as that of the minimization of structural cost or volume, and. the
aximim stresses throughout the structure. Additional obj ectives are aimed at the deflections or
displacements and to guarantee that the design variables are af least specified minimum values.
This work started with the shape and sizing optimization by using a 2D finite-¢lement model for
the analysis. The problem was extended to three-dimensional analysis and the consideration of
erection stages under static loading (Negrio and Simdes, 1997). Seismic effects were considered
in the optimization both by a modal-spectral approach and a time-history based procedure
(Simdes and Negrio, 1999). In most of the previoys studies, a grid solution was adopted for
miodelling the deck, with stiffening girders supporting transverse beams, although box-girder
seclions were employed (Negrlo and Simbdes, 1999). Prestressing design variables were also
considered for the problems of optimal correction of cable forces during erection.

In design and optimization problems material constants, loading and structure geometry are
usually considered as given data, but in real world assumed values do tot correspond with actual
ones. Therefore there may be differences between nominal and real geometry, materials may
behave in a different way than the assumed orie, and constant loading may actually vary during
the structure lifetime: All of this is accounted by safety factors, which amplify load magnitude,
or reduce material strength, leading in general to gver-conservative structures.

As an alternative to safety factors one may try to describe the uncertain data and use this
information during the optimization, which in general leads to better results in term of optimal
design. Probabilistic descdption is nowadays comumon and very simple up to very sophisticated
PDF can be used to describe uncertain parameters, However these procedures face serious
disFcultics when being implemented in engineering applications. This lead to non-probabilistic
description of uncertainty, in particular the fuzzy-set based apalysis and the worst condition
produced on the constraints by a certain load condition also termed anti-cptimization (Barbieri et
al, 1997). The Two-Phase Method for fuzzy optimization of structures is based on the fuzzy-set
method is proposed in this work. In the first phase, the sequential fuzzy solution is obtained by
using the Level Cuts Method, in which a fuzzy optimization problem is transformed into a series
of ordinasy optimization problems using different a-level cuts in fuzzy constraints so as 10
deterniinie a fuzzy optimization domain in the design space. This procedure has been suggested
in (Wang and Wang, 1985). In the second phase, the particular erisp selution is obtained by the
Bound Search Method, in which having obtained the supremum and the infimum of the
sequential fuzzy solution the particular optimum level a* is found using the bound search so as
to provide a crisp optimization solution in the design space. This method differs from that
suggested by (Belmann and Zadeh, 1970) on the basis of an altemative interpretation of the
optimality criteria (Verdegay, 1982), which does not require to use an artificial fuzzy objective.

2. Fuzziness in Structural Design

A fuzzy information problem of structures can be stated as: Find the design vector x which
minimizes the objective function Wi{x} subject to fizzy constraints on performance
characteristics 2nd dimensions, This is a fuzzy mathematical programming problem, which can
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be expressed in a standard form as follows (MP1):

min W(x) (a)
st g® o' i=1,2.,0l (1)
g0 b i=m..p (1<)

where the * ™ and _" symbols indicate that the constraints contain fuzzy information, and bY,
b are allowable upper and lower limits of the jth constraint respectively.

The miembership function p(x) of the fuzzy allowable interval may be characterized as shown in
Figure 1. where b and by" are respectively the lower and upper limits of the allowable interval
for the highest (most rigorous) design level.

P Gm

1 ™
| |\gm

g]:_ glm Elm 0 &' g'nt dﬁm

Figure 1

These miay even be more strict than the specifications Codes (to be chosen by engineering
requirements). djL and 'd,-” are lengths of transition stages, namely the permissible deviations or
1olerances for the lower and upper limits. Thus, MP1 can be rewritten in the folowing form

{MPB2):

mhin W(x) (22)
st gi(x) b + dil’ i=hL2, .,m-l (P1))
g® 2 -4  j=m..p (2¢)

A proper function may be selected for the transition stage curves of the membership function in
the light of the character of the physical variable g Usually, inclined straight lines may be
adopted for simplification.

Membership degree ju{x) may be defined as “degree of satisfaction” of the furzy constraint.
When pi(x) = 1, the constraint is satisfied completely: when |(x) = 0 is not: while its value lies
between 0 and 1, the constraint is satisfied to the relevant degree.

An alternative formulation consists of expressing the objective function and constraints as
normalized goals. If some reference cost W, is specified, the goals may be written in the form

go(X) = WKV Wo-1<0 ()
EJCEVO’J'U + dJU) -i1<0 =12 .5m-l 3b)
- g/(B--41) S0 j=m..p 30)

The objective is to minimize all of theses goals over variables x. This can be achieved by the
minimax optimization (MP3):

Ming Max < go®), - G s BE > e
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3. Two-Phase Method
3.1. First phase (Level Cuts Method)

For the sake of simplicity only the method of solving problems with fuzzy constraints is
discussed in this work. If the membership function of inclined straight lines may be adopted, as
shown in Figure 2, MP2 can be transformed into a non-fuzzy mathematical programming at o=
lzvel as follows (MP4):

H3 Bj
1
1
| .
0 ] 0 I
by by +dy g bi-dj by &
Figure 2 - Membership fimetion
min W(x) (52)
st g)sb+4Y () j=1,2.,m-l (5b)
5" 4" 1«)  j=m,..p (5¢)
a£{0,1] (5d})

This is a parametric mathematical programming in @=[0,1], which can be solved by means of an
algorithm. for optimization so as to determine the fuzzy optimization solution x*{x) and
Wix*(a)) with different a values. It is noted that a fuzzy optimization problem may have mixed
fuzzy and crisp constraints. In this case we shall sceept tolerances only on the realization of
fuzzy constraints, but ¢risp ones will completely satisfied. As shown in Figure 3, the W(*(a))
curve defines a fuzzy solution to the fuzzy optimization problem of structures, which is a
monotone increasing function of a.

w

Figure 3 - Fuzzy solution
3.2, Second phase (Bound Search Method)

The Beilman-Zadeh criterion of decision-making in a fuzzy environment gives the grade of
membership of a decision specified by variables x as

Ba(x) = Min; pi(x) )]
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where i ranges over the complete set of constraints. The fuzzy constraints C and the fuzzy goal G
in MP4 are defined as fuzzy sets in the space of alternatives, characterized by their membership
functions pe and pp respectively. Generally speaking, the fuzzy decision D characterized by its
membership function pp may be viewed as the intersection of the fuzzy constraints and the fuzzy
goal.

The optimal decision is to select the best aliemative from those contained in the fuzzy decision
space, which maximizes the membership function of the fuzzy decision, i.e.:

#p(x*) = max yern pn(x) @]

In order to illustrate the above principle, consider one fuzzy goal G with one fuzzy constraint C,
The membership functions pg, pc and their intersection pp are plotted for this case in Figure 4.
This figure also shows that the point A represents the optimal decision which has the maximum
degree of membership in the fuzzy decision set.

B

ol

Figure 4
From eq.(7), the particular optimum level a* and the optimum point x* are such that;
HG(EY) = maX veca P60 (8)

where ¢q is the «®-level cut of the fuzzy constraint set C.

Now it is necessary to establish the fuzzy goal pg(x) and its upper and lower Jimits. Tt can be
seen from Figure 3 that the supremum and the infimum in the sequential fuzzy solution are given
by -

M = W(x'(1)) = mineec, W(X) (92)
m = W(x (0)) = minkeco W(X) (99)

where C, Cy are the level cuts of @ =1 and 0 of the fuzzy constraint se1 C.

In the problem of finding x which maximizes the objective function W(x) subject to firzzy
constraints, the fuzzy goal is: pg(x) = W(YM. Similarly, in a fuzzy optimization problem of
structures to find x which minimizes the objective function W(x) subject 1o fuzzy constraints, the
fuzzy goal can be established as follows:

1193




el =m/W(x) (10)

As expected, this fuzzy goal shows the full membership (j16=1) is obtained when W reaches its
infimum m; s W increases pg approaches the non-membership (kc=0). Clearly, the upper and
lower limits of the fuzzy goal are given by:

pe =1 (112}
gt =m/M (11b)

Tbe optimum level can be derived from equation (8) as:

o* = pe(x (@) (12)
4. Structural Relations

4.1. Finite element analysis

The finite elemient based open code MODULEF was used as the basic tool for stictural
analysis, because code availability was a fundamental requirement for further developments. Cut
of the several element types included in the element library of the programme, only the FE
required for two- and three-dimensional models of cable-stayed bridges were retained and
adzpted to specific needs. These were 2D and 3D bar and beam (Euler-Bernoulli formulation}
elements and 4- and 8-noded serendipity plate-membrane (Reissner-Mindlin formulation)
clements,

For some problems involving the cables and also for long or slender bridges, particularly at
the construction stage, the results of a linear analysis are not satisfactory and non-linear
characteristies must be accounted for. Non-linearity is introduced because of: a) The non-linear
axial force elorgation relationship for the inclinéd cable stays due to the sag caused by their own
weight; &) The non-linear axial force and bending moment deformation relationships for the
towers and longitudinal girder elements under combined bending and axial forces; ¢) The
geometry change caused by large displacements in this type of structure under normal as well as
environmental desipn loads; d) Non-linear constitutive stress-strain relationships for the
matenials of structural elements, It is assumed that Young’s modulus considered for the stays in
the analysis is the secant Emst value comresponding to the expected stress lével and stress
variation range. Since the stress level in the stays for service load conditions is considerably
high, this value differs very little from the instantaneous Young modulus and therefore non-
linear effects due to cause ) may be expected to be very small. Also, reason d) was discarded
from our research, once only linear elastic material behaviour was assumed for structural fand,
particularly, for stays-) steel.

4.2. Design variables

The structural response of a cable-stayed bridge is conditioned by a large number of parameters,
concerning cross-sectional shapes and dimensions, overall bridge geometry, applied prestressing
forces, deck-to-pylon connections, etc. Some of them play only a limited role on the bridge
bebaviour while others, such as the cable pattern and prestressing forces, are of major
importance for both the safety and serviceability purposes. Three types of design variables were
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considered: sizing, shape and mechanical. Sizing design variables are cross-sectional
characteristics of bar, beam and plate elements, such as web height, flange width, plate thickness,
cte. Changes of such variables do not imply the need for remeshing. Shape design vanables
produce geometry changes that require nodal co-ordinates update or even complete remeshing.
Other design variables can be characterized as hybrid, because shey define both the box-girder
cross<section shape and the deck geometry, requiring co-ordinates updating only. Finally, the
fixed-end prestressing force is a mechanical design’ variable not related to any geometric
quantity. The currently available types are shown in Figure 5.

Figuse 5 — Design varizble types

All these types play complementary roles in the process of design optimization. Sizing design
variables directly provide for cast/volume decrease. Shape and mechanical design variables have
a neglectable direct relation to structural cost but allow for better siress distnbutions, which in
turn lead 1o further decreases in sizing variables. Prestressing force design variables are essential
for achieving acceptable solutions when deflections are considered in the dead load condition.
4.3, Erection stages

The fina) behaviour of cable-stayed bridges is deeply related 1o the erection. Among the various
methods used for bridge erection, cantilevering method has become the maost popular, due 10 its
suitability for building large spans under strict clearance demands. For the solution of this
problem it was assumed that the chronological sequente, corresponding 1o the erection siage set,
might be thought of as a set of independent sub-structures, cach cormresponding 1o an erection
stage. Uncoupled blocks compose the overall stiffness matrix. Given the skyline algorithm used
for the analysis, the number of operations involved in solving the equation system increases only
linearly with the nusaber of degrees of freedom, because 4ll substructures show similar profiles.
Design variables intervening in an early erection stage may thus have their effects
sitnultaneously accounted for that and all subsequent stages. The only condition for a correct
problem processing is the proper variable linking of design variables to those elements of the
erection stages that represent the same actual element. This is done avtomatically by the mesh
and variable linking gencrator. The number of RHS will be usually that of the final structure, due
to 16ad combination involving wind, earthquake and live load, acting in the several positions of
the span. This will not interfere with the solution for the erection stages, due to the sub-structure
uncoupling, These will be solved for only one or a few significant load cases, the remaining
being assigned to null Toading.
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4.4, Sensitivity analysis

The analytic direct methed was adopted for the purpose of seasitivity analysis, given the
availability of the code, the discréte structural pattern and the large number of constraints under
control. For ordinary linear statics problems, derivatives of kinematic constraints (displacements)
are provided by solving a pseudo-load system.

du_ 8P 8K '
K_._—...=_—-_— =
o o B 3

where Q. is the virtual pseudo-load vector of the system with respect to the ith design variable,
The stress derivatives are accurately determined from the chain derivation of the finite element
stress matrix

=D Be s (14)
dc _8(DR) e
—_— s +DB¢ =
B e o s

The first term of right-hand side may be directly computed during the computation of element
contribution for the global system, on the condition that derivative cxpressitms are pre-
programmed and called on that stage. Those values may be recorded in the hard disk and
recovered after the current design solution is analysed and the displacement vector u is obtained.
The second term on ‘the right-hand side is somewhat more difficult to compute because an
explicit relation between displacement vector and design variable set does not exist. Pre-
programming and storing the stiffness matrix and right-hand side derivatives in the same way as
described for the siress matrix, the displacement derivatives may be computcd by the solution of
N psendo-load right-hand sides. The stress derivatives are then computed in a straightforward
way. This process involves the system solution of N+NP right-hand sides (where NP is the
number of loading cases), such as in the finite difference method, but it has the advantage that
the inversion of the stiffness matrix, which represents most of the computational effort, is done
just once. The explicit form of matrix derivatives depends on the type of element. For 2D and 3D
bar and beam elements their calculation is a straightforward task. For plate-membrane elements,
the differentiation of the whole finite element formulation is required.

4.5. Optimization

Pareto’s economic principle is gaining increasing zcceptance to multi-objective optimization
problems. In minimization problems a solution vector is said to be Pareto optimal if no other
feasible vector exists that could decrease one objective function without i.ncreasing at least
another onte. The optimum vector usually exists in practical problems and is not unique.
Cross-sectional (and geometric) design variables are considered, represented by x; and Zi
respectively, and the global design variable vector is

T = (xR X X2 o2, e} (16)

Bounds must be set for these variables in order to achieve executable solutions and required
aesthetic characteristics.
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The overall objective of cable-stayed bridges design is to achieve an economic and yet safe
solution. In this study it is not intended to inciude all factors influencing the design economics.
One of the factors conventionally adopted is the cost of material used. A second set of goals
arises from the requirement that the stresses should be as small as possible.

The optimization methiod described in the nexi section requires that all these goals should be cast
in a normalized form.If some reference cost V, is specified, this goal can be writien in the form

g(6y) = Vx7)/V.-1<0 (172)
A second set of goals arises from the imposition of lower and upper limits on the sizing
variables, namely minimum czble cross sections to prevent topology changes and exequible
dimensions for the stiffness girder and pylons cross sections:

)= xat150 (17b)
gX)=x/k-120 (17¢)

where ¥; is the i-th sizing variable and x and %u its lower and upper bounds. Similar bounds
miust be considersd for the geometric design variables:

glz)=-zn/ln+150 (17d)
glz)=zin-150 (17¢)

where z is the k-th geometric variable and z,, Z are its upper and lower bounds, respectively.
Additional bounds are set when geometric design variables are considered, 10 ensure that no
geometry violation occtrs when these design variables are updated. For example, when design
variables of types 4 or 5 (Figure 6) are considered, theirtotal length cannot exceed the side span
length. If i and § are the positions of those design variables in X vector, we write the condition

(z+z)s-1<0 (174)
where L, stands for side span length.

4 8

S

Figure 6 - Shape design variables

Additonal goals may be established in order 1o ensure the desired geomeiric Tequirements during
the optimization process (mesh discretization, ratios of variation of cable spacing on deck and
pylons, etc), For these the chosen approach was to initially supply ail the necessary information,
by means of 2 geometry coefficients set describing such conditions.

The objective is to minimize all of these objectives over sizing and geometry variables X, This
preblem is discontinuous and non-differentiable and is therefore hard to solve. However, by
using an entropy-based approach, Templeman has shown that its solution is equivalent to that of
an unconsirained convex scalar function, depending only ot one control parameter, which may
be solved by conventional quasi-Newton methods, This parameter must be steadily increased
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through the optimization process. The scalar function is very similar to that of Kreisselmeyer-
Stainhauser, derived for control problems:

Fz) = —é.lr{ie’(‘m] (18)

i=

Problem (18) is unconstrained and differentiable which, in theory, gives a wide choice of
possible numerical solution methods, However, since the goal functions gi(x,2) do not have
explicit algebraic form in most cases, the strategy adopted was to solve (18) by means of an
iferative sequence of explicit approximation models. An explicit ‘approximation can be
formulated by taking Taylor series expansions of all the goal functions g(x;Z) truncated after the
linear term. This gives:

Min F(g)=‘? Ye (19
=1

where N and M are tespectively the number of sizing plus geometric design variables and the
number of goal functions.g, and dg/0x, are the goals and their derivatives evaluated for the
current design variable vecter (x.,z,), at which the Taylor serles expansion is made.

Solving (19) for particular numerical values of g, forms oaly one iteration of the complete
solution of problem (1R). The solution vector (x,z.) of such an iteration represents a new design
which must be analysed and gives new values for gi, Sg/8x and (x,z), to replace those
corresponding to (x.z) in (19). Iterations continue uritil changes in the design variables become
small. During these iterations the cantrol parameter p must not be decreased to ensure that 2
multiobjective solution is found.

5. Numerical Example

The model represented in Figure 7 was considered. It consists of a symmetric three-span cable-
stayed bridge. Monosymmetric I-shaped cross-sections are prescribed for the stiffening girders,
while the pylops are made up of steel plates defining a rectangular hollow cross section. [-shaped
transverse beams support the wearing surface. Thiee load cases, corresponding to live Joad on
either side, central or whole span, were considered. A numerical éxample with sizing design
variables only and without erection stages will be presented next. An allowable stress of 1830MPa
was assumed for the deck and pylon elements, while 475MPa were prescribed for the stays.
‘Although it would be possible to generate fuzzy goals invelving section modulae, moments of
inertia, minimumn area limits and geometric design variables, the imprecision will be consirained
to the stress limits, for the sake of simplicity. If the tolerances are 40MPa and 50MPa for the
deck and pylon clements and the stays, respectively, the goals on the stress Limit will be
fuzrzified. A membership function of inclined straight lines is adopted and (18) will become a
parametric program. .

In the first phase, by solving (18) with different & values yield deterministic designs together
with a level of acceptability with respect to the stress limits fuzziness. In the second phase, the
ctisp solution is obtained by the iterative bound search method described in 3.2.

M=W(1)=15950 m=W(0)=140.79 0883<<1.00

For o = 0.89, W) = 157.13 and pg = m/W(e) = 0.39, that is, the fuzzy optimum Jed to a
solution 1.5% lighter than the original deterministic solution.
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Table 1 ~ Design variables at the optimum

Variable DESCRIFTION x(re=0) x{c=0.89) x{a=1)
3 Thickness of pirders’ woner flznec in_rerion | 001979 0:01923 002198
4 Thickness of girders” voper flenpe in region | 0.02621 0.03862 003964
5 Height of eirders’ cross section in yegion | 4.00000 4.00000 4.00000
& Th'd'nm g;- E‘l[ﬁm‘ ‘”Ih ].[I Eﬁ.m l g ﬂ]iﬂﬂ Q Q! ‘QQ n Q] iﬂﬂ
7 Wigdth of girders’ ynoer flanes in yegion 2 Q32767 087063 0.39535
&8  Widthofeinders' bottom flanee in region 2 150000 130000 150000
. i [ pirders’ ion2 0.0]1500 901500 £.01500
1o Thickness of girders” woper flanee in region 2 0.03288 004262 004314
11 . Height of girders” cross section in region 2 379072 4.00000 4,00000
12 Thickness of eirders” wehin nezion2 401500 Q01500 £.01500
1 Wi irders' i ion 3 1.10335 109243 1.09539
Width of gi > 2i 0.9488 ¢ I
— 15 . Thickness of eirders” upper flange in reion 3 091505 L0150 01506
; i ) fange i -
I Tan's &r i w 349459 402529 4.02650.
s w 1 w 0.01500 0.01500 001500
Thickne: 's fongit. wall w ¥ I 015

i 1 it he des 41 0150

a7 Cross-sectional aress of cables [apd 24 0 60974 Q001151 D.01163

28 Crosesectional arcssofcpbles2and23 600299 2 000100 000100
29 Cross-sectiongl greasofcables3and 22 000328 000244 0.00205
i Cross-sectional areas of eables 4 and 21 000590 00917 0.00952

31 Cross-sectigna! arcas of cables § and 20, 000204 0.00453 0.00450

32 Cross-sectional areas of cables 6 and 19 0.00604 0.00949 0.01016

23 Cross:sectional argas ¢fcables 7 and 18 0.00255 200185 0.0017%

34 Cross-sectional arcas of cables 82nd 17 0.00456 0.00535 000537

s Crossssectional gress of cables 9 and [6 000367 §.0435] 000388
36 Cross-sectional arces of ¢ables !0 and 15 0.0045] €.00491 [iX

ki Cress-sectiongl areas of cables 1] gnd 14 0.00200 0.00317 0.00311

38 Cross-sectional z ind 13 0.60710 00200 Qo807

39 Width of transverse beams' flanpes 0.40000 040000 Q4000
4 ight of Tram: ¢ i 0.52343 107734 1.08331

4 icknesses of franew ams” < and wi 001500 0015000 0.01500

Region | spreads from the side supports 1o the inner side cable, region 2 is limited by the inser
cables in each side of the pylon and region 3 is the remaining part of the central span.

If the tolerance of the stress limits is half and keeping the linear membership functions, the
results cbtained in the first phase are

M=W(1)=159.50 m=WO)=14916 0935<a<1.00
The crisp solution obtained in the second phase:
a=0.94, W{a) = 158.74 and pg =m/W(a) =054
These results are only 0.5% lighter than the deterministic solution.




Figure 7 — Geometry of the bridge model

CONCLUSIONS

It is pointed out that the furzy optimization has the advantage of ordinary optimization with a
mote realistic model of fuzzy constraints taken into account, the structural design should be more
reasonable and beneficial. The illustrative numerical examples given here show that the Two-
Phase Method based on fuzzy set theory seems to be rational and effective approach for fuzzy
optimization of structures with plastic or elastic material behaviour. The fuzzy solution is
obtained in the first phase in accordance with the Ralescu point of view that a fuzzy problem
should have a fuzzy solution (Ralescu, 1977). The crisp selution which maximizes the
miembership function of furzy decision-making can then be found from the fuzzy solution in the
second phase. As a result, the proposed approach provides favourable condition for selection of
structural design schemes so as to have a high « level and to save materials:
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