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RELIABILITY OF PORTAL FRAMES WITH
INTERACTING STRESS RESULTANTS?

Discussion by James I. Zimmerman,? Student Member, ASCE,
J. Hugh Ellis,* and Ross B. Corotis,* Fellow, ASCE

The author is to be commended for illustrating techniques for inciuding
axial force—moment interaction in rigid-plastic structural reliability analysis
and reliability-based design. Useful as well is the review of methods for
solving the associated nonconvex mathematical programs.

The discussers’ points for discussion are threefold. First, the author states
that an equivalence exists between the mathematical programs given by 21
and (23), and in particular, that z in (23) represents a vector of random
variables. No random variables exist in the original formulation [(21)]. so
the equivalence between the two programs is not obvious. The only random
variables under consideration are the loads and member capacities (L,X),
neither of which appear in (21). What is then the relationship between the
vector of random variables in (23), Z, the vectors of decision variables in
(21a), (©.,8,), and the random vectors (L,X)?

Next, the global solution of the mathematical program given by (18)—
(20} is the reliability index of the least reliable kinematically admissible
maode. The optimal values of the decision variables define that mode. The
limit state for this mode is a hyperplane in random variable space [(13)],
forming a portion of the system limit state. That is, the Ieast reliable ki-
nematically admissible mode is also statically admissible over a range of the
random variables. All other (local) optima identified by solution of this
mathematical program are guaranteed to be kinematically admissible due
1o the constraint set, but it is not clear whether static admissibility is also
guaranteed. Is it possible that some modes identified as local optima will
not form a portion of the system limit state? Modes not on the system limit
state are not physically realizable and typically not of interest.

Finally, the discussers (Ellis et al. 1991; Zimmerman et al. 1991) and
others (Ma and Ang 1981; Arnbjerg-Niclsen and Ditlevsen 1990) have solved
a ponconvex mathematical program to find the least reliable mode [(18)-
(20)] by solving the associated mathematical program repeatedly using a
set of starting points. A discussion of the advantages (computational or

otherwise) of using the author’s solution techniques as opposed to the mul-

tiple starting method would be most useful.
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Closure by Luis Miguel da Cruz Simoes®

The author wishes to thank the discussers for their valuable comments.
In response to the first query, vector z in the mathematical program (23)
contains the vectors 8, and &,. Each random variable in vector X is asso-
ciated with an element of the vector 8, which is obtained by adding all the
activation parameters corresponding to the critical sections represented by
the same plastic capacity in X. Similarly, the elements of vector 8, are sums
of displacement rates associated with the random variables in the applied
loading vector L. Vector y represents u,., which are mechanism activation
parameters. Although both z and y are deterministic, the random variables
are implicit functions of z: Local solutions of the mathematical program
(23) can be used to obtain reduced random variables X' and L’ given by
(22). The evaluation of the corresponding random variables is straightfor-
ward

X=Xo0ox I g vveevraniens FL wions @ sunis seu 2 TSk st st X svEe s (51a)
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where Py, 0%, and pg, o = the vectors of mean and standard deviation
of the piastic resistances X and applied loading L, respectively. Next, de-
terministic plastic limit analysis consists of minimizing the ratio of internal
to external work subject to kinematic admissibility. Traditionally, the nen-
Linearity of the objective function has been avoided by setting the external
work to unity. The external work is then included in the constraint set as
an equality constraint, and the objective function becomes the minimization
of the internal work (a linear function). The fractional programs and cor-
responding concave quadratic minimization problems that find the stochas-
tically most important mechanism must contain this normality constraimt to
avoid degeneracy, as it is indicated in the mathematical program [{13)—(19)]
(Simdes 1990).

‘With respect to the final point, optimization problems that arise in struc-
tural engineering are, in general, of the nonconvex type. Multiple optima
may exist due to the following:

1. Nonconvex feasible region.
2. Nonconvex objective function.
3. Disjoint feasible sets.

These features are of great significant when convex optimization is carried
out. By using this type of method only one local mimmum is guaranteed,
and when there are several, it depends on the initial design, which will be
found at the end of the process. In some cases, such as the least-weight
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design of elastic structures and opiimal shape design, a physical insight is
available. It is usual to begin the optimization procedure from very dissimilar
starting points 10 make distinct local minima easier to identify (multiple
starting methods). By using this procedure, one just tries to find an improved
solution with respect to the starting point, and it is assumed the nonconvex
behavior is mild. Unfortunately, this is not the case of concave guadratic
minimization, which possesses a local optimum at each vertex. To deal with
such nonconvexities, either stochastic or deterministic (such as the one
described in the paper) global optimization methods should be employed
(Pardalos and Vavasis 1991). In the deterministic methods, the search for
the global optimum is carried out by choosing the least objective function
value among all those within the boundary of the feasible region. This
procedure fits nicely in concave guadratic programming. Stochastic methods
(multistart, clustening, multilevel) aim to obtain the global optimum of the
function by probabilistic techniques. First, in the global phase the set of

" sampling points is defined in the domain, Then, alocal phase is accomplished

by working out with only a portion of the whole set of sampling points.
They are usually expensive {rom a computational point of view. An alter-
native procedure (Levy and Gomes 1984) employs convex algorithms to
locate the global optimum: After obtaining a local mimimum the algorithm
proceeds by finding only better minima. This tunneling method has not yet
been tried out for failure mode identification. Moreover, reliability-based
optimal design usually involves (all iterations considered) a large number
of critical collapse mechanisms. For & six-story, three-bay frame, itis unlikely
to list more than 200 important failure modes just by providing multiple
starting points in a nonsystematic way.
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UrLirr CAPACITY OF Z-PURLINS®

Discussion by Robert W. Dannemann®

The biaxial bending concept for uplift capacity evaluation of Z-purlins,
as proposed by the author, is a valuable contribution to the steel design
practice. For this effort and for the simplicity of this proposal, the author
deserve the recognition of the profession.

The discusser, based on the author’s idea, thinks a similar procedure may
be easily applicable to C-purlins. Instead of comparing with test results,
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