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Abstract 

Three types of hydrogenated amorphous carbon (a-C:H) coatings were synthesized on stainless 

steel substrates by a Plasma Assisted CVD process, containing hydrogen contents in the range from 

25 to 29 at.%. The effect of annealing up to 600 ºC in two different environments on both the 

structure and the mechanical properties of the coatings was investigated by means of Differential 

Scanning Calorimetry/Thermogravimetry (DCS/TG), Raman Spectroscopy and Depth Sensing 

Indentation. The results indicate that the structural modifications occurred in the coatings in both 

protective and oxidative atmospheres up to 400ºC were due to a complex atomic rearrangement 

involving the dehydrogenation reaction. A small weight loss, detected by isothermal TG analysis 

confirmed the H2 effusion. This dense effect proceeds without a change of hardness which was 

maintained in the diamond-like regime. The annealing in non-oxidative ambiance at temperatures 

above 500ºC causes both gaseous products effusion and sp3 to sp2 transformation. Raman 

parameters and hardness values were, under these conditions, similar to those known for a typical 

graphite-like regime. While the onset temperature of the graphitization process was found to be 

almost independent of the H content range investigated, the situation was completely different in 
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relation to the oxidation reaction. The highest oxidation resistance was found for coatings with the 
lowest H content.  

 

1. Introduction 

Literature on diamond-like carbon (DLC) films has become very extensive and widespread in the 

past decades. The combination of physical, chemical and mechanical properties, similar to diamond 

but without a crystalline lattice structure, together with the relatively easy to synthesize and lower 

cost of preparation, makes DLC a strong candidate as a surface engineering material. Nevertheless, 

and in spite of their popularity, DLC coatings present some basic disadvantages limiting their fully 

application in exploitation tribological contacts.  

One of the main drawbacks reported in literature is their low thermal stability. As the temperature 

is increased, the structure of DLC films, which is claimed to be a metastable form of carbon with 

mixture of sp3/sp2 bonds [1, 2], collapses into a more sp2-bonded network by a sp3 diamond-like 

domains conversion. This instability, denominated as graphitization process, is extremely 

noticeable in the one of the major DLC family, the H-containing form of amorphous carbon (a-

C:H) [3-11]. It is well known that hydrogen stabilizes the diamond structure by maintaining the sp3 

hybridization configuration. However, when the coatings are exposed to heat treatments in vacuum 

or in air, the effusion of hydrogen occurs. Concomitantly to thermal decomposition of a-C:H films 

into gaseous products, such as H2 and hydrocarbon CxHy, in particular CH4 and C2H6 
[12-14], the 

conversion of sp3 to sp2 bonds and the consequent loss of diamond-like properties have been 

observed. Typically for a-C:H coatings, the graphitization onset temperature ranges from 250 to 

500 ºC depending on the deposition and growth process [3-11]. Therefore, the study of the 

irreversible changes on the a-C:H coatings structure by annealing is an important issue for practical 

coatings applications. 

In the present work, the thermal stability up to 600ºC of commercially available a-C:H films was 

studied. In order to improve adhesion to substrate, another drawback of these materials, a 

functionally gradient type of coatings was deposited by Plasma Assisted Chemical Vapour 

Deposition (PACVD). Besides external hydrogenated amorphous carbon top layer, two 
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intermediate layers (a Ti layer adjacent to the substrate followed by a Si containing transition layer) 

were sequentially deposited on stainless steel substrates. The thermal behaviour of the films, 

prepared under similar conditions but with different precursor gases, is compared by selecting two 

different environments in the same temperature range. The motivation of the work is to describe the 

individual thermally induced effects and their interrelation, by annealing the coatings in a non-

oxidative environment and under real conditions of most practical importance for tribological 

applications, which will be attained by heat treatments in air. 

 

2. Experimental procedure 

Patented DLC-based coatings [15] were deposited by NV Bekaert SA Company onto stainless steel 

substrates (AISI 310) by PACVD process using an industrial scale R&D reactor 

(1370x1370x1522mm). Three different precursors gases were used with a H/C ratio between 1 and 

4 in order to achieve H contents up to 30 at.%. A compound interface consisting of a Ti interlayer 

and a Si containing transition layer were deposited sequentially before the final deposition of the a-

C:H top layer. Due to the rotation of the substrate holder, all the faces of the steel samples (5x5x1 

mm) were uniformly coated.  

The hydrogen concentration was determined by Elastic Recoil Detection Analysis, TOF-ERD, 

using a 63Cu beam operating at 12 MeV. Thermogravimetric (TG) and Differential Scanning 

Calorimetric (DSC) analyses were carried out in a Polymer Science Thermobalance STA-1500 of 

high-resolution (0.1 µg) up to 800 ºC. The coatings were characterized in two different 

environments: non-oxidative (Ar-5%H2) and oxidative (N2-20%O2) introduced in the 

thermobalance at a flow rate of 55 sccm. Isothermal annealing temperatures ranged from 250 to 

600 ºC and were held for 60 min. 

Several analytical techniques were used in this study to characterize the effect of annealing on the 

coatings. The identification of sp3/sp2 bond conversion was investigated by Raman Spectrometry 

using a Renishaw system 1000 at a wavelength of 514.5 nm at 50 mW Ar+ ion laser power. The 

Raman spectra obtained were deconvoluted in the D and the G bands by curve fitting using 

Gaussian lines. The morphological characteristics and the thickness variation of the annealed 
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coatings were established by cross-section observation in a Philips-SEM operated at 20 kV. The 

structural evolution was investigated by X-ray diffraction (XRD) in Bragg-Brentano configuration 

with a Philips X-Pert diffractometer (Co-Kα radiation). 

Mechanical properties were evaluated by Ultramicroindentation in a Fisherscope H100 apparatus. 

The results obtained are an average of 10 indentations performed under the applied load of 20 mN. 

The hardness values were corrected for the geometrical imperfections of the Vickers indenter, the 

thermal drift of the equipment, and the uncertainty in the zero position following the method 

proposed by Antunes et al. [16]. 

 

3. Results and discussion 

3.1. As-deposited coatings 

The fundamental characteristics of the three series of DLC-based coatings are presented in table 1. 

By changing the H/C ratio of the precursor gases used for deposition, the analyses made by TOF-

ERD revealed that the H-content in the external layer ranged from 25 to 29 at.%. Besides C and H 

only vestiges of O (< 0.2 at.%) and Ar were detected in the films. The use of argon as a carrier gas 

for some of the precursors gave rise to its incorporation during film formation with contents of up 

to 1.2 at. % (table 1). The coatings are chemically homogeneous with no significant variation of the 

composition, as is demonstrated by ERD elemental composition in figure 1a) for the as-deposited 

Film 1. 

Considering the structural bonding of the as-deposited coatings, figure 1b), all the films are 

characterized by two broad peaks centred at 1530-1570 cm-1 and 1350 cm-1, which are denoted as G 

and D bands, respectively [1, 2]. According to some authors [1, 4, 17], the main effect of H in an a-C:H 

film is to modify the C-C bonding, not by increasing their fraction but terminating the sites of 

double bonding of carbon as C(sp3)-Hx (x= 1,2,3) giving rise to higher sp3 contents in the film. 

Hence, with increasing H content, a drop in the extents of double bonds occurs and consequently 

the hardness of the coating decreases. The use of a recent empirical relation [18], based on Raman 

measurements, allows to correlate the hardness as a function of the hydrogen content in a-C:H films 

by,  
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[ ] ).(%93.0195.44 HatGPahardness ×−=    (1) 

Applying the equation (1) to the coatings in study, the hardness values vary from 17 to 21 GPa, 

which are in general good agreement with the experimental ones (see table 1), although, for the 

latter ones, the trend is opposite, i.e., the hardness drops with decreasing H content. It is important 

to point out that the equation authors [18] apply to Raman analysis based on the G-band position 

only (after fitting procedure with six Lorentzians and a linear background) and thus the reason for 

the observed mismatch. Analyzing the Raman spectra, figure 1b), no significant variations can be 

observed among the as-deposited films. However, the peak fitting of experimental data (see the 

deconvoluted Gaussian lines for Film 3 insert in figure 1b)) allows the detection of a small increase 

of the D/G peak ratio and a shift of the G band position to higher frequencies with decreasing H 

content. These evolutions suggest a tendency for a more graphitic structure. The measured 

mechanical properties (table 1) are kept in the diamond-like regime with Young’s modulus (≅ 160 

GPa) and hardness values (≅ 20 GPa) typical of hard a-C:H films containing 10-40 at.% H in 

opposition to soft or polymeric a-C:H which present high hydrogen content (40 < at.% H < 65) and 

lower hardness values (< 5 GPa) [19, 20]. 

In respect to the as-deposited morphology, the cross-section SEM micrograph of the coating with 

27 at.% H shown in figure 1a) present a continuous and smooth defect-free external a-C:H layer 

typical of featureless type morphologies. The surface roughness values are very low, with Ra 

values less than 10 nm in all films. 

 

3.2. Annealing Experiments 

3.2.1. Oxidative Environment 

a-C:H films were detached from the substrates and the resulting powders were examined by 

DSC/TG in continuous heating in air ambiance with a heating rate of 20 ºC.min-1 up to 800 ºC. An 

example of the thermal analysis curve is shown in figure 2a) for Film 3. As can be observed, the 

DSC signal revealed a well defined exothermal reaction which could be associated to the oxidation 

of carbon according to the reaction (2) proposed in literature [21, 22], 
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)(2)(2)( ggs COOC →+       (2) 

The TG signal is in agreement with the formation of gaseous oxidation products by showing a 

significant weight loss, 89 %, between 525 and 605 ºC. Based on these results, isothermal TG tests 

were performed at four different temperatures with films deposited on the SS (AISI 310) substrates. 

The weight variation (∆m/Area) obtained after heat exposure for 60 min are shown in figure 2 (b to 

d). The analysis of these evolutions allows us to conclude that independently of the H-content the 

mass loss is as greater as the oxidation temperature is. Below 400 ºC, all coatings maintain their 

integrity with no significant weight variation during the entire isothermal time duration. At 500 ºC 

the oxidation of carbon starts to take place with the consequent increasing weight loss with testing 

time.  

The outward diffusion of the gaseous compounds formed by oxidation and/or dehydrogenation 

processes, as was anticipated by DSC tests, become more and more evident at 600 ºC, particularly 

for the highest H-content film. At this temperature the resistance to oxidation is very low. In these 

films, the tendency for weight stabilization after 60 min annealing in air suggests that the external 

a-C:H layer is almost consumed, being now the behaviour determined by the adhesion graded 

transition layers. However, in opposition to others research works on oxidation behaviour of DLC-

type coatings [21, 22], the highest temperature used in this study was not enough to promote visible 

oxidation of the underlying layers and the steel substrate. In fact, XRD patterns did not reveal any 

oxide phases, as can be confirmed in figure 3 for Film 3. Up to 500 ºC only XRD peaks related to 

the SS310 substrate and to the Ti/Si interlayer could be detected. At 600 ºC, the new diffraction 

lines could be indexed as belonging to TiC, SiC or Ti5Si3 phases, indicating that some thermal bulk 

diffusion are enhanced, but never to any type of oxide phase. The formation of stable inter-

diffusion phases at the substrate-coating interface, by selecting both Ti and Si for the gradient 

transition composition, provides good results by avoiding the substrate oxidation. These results 

outstand those obtained by Wang et al. [21] who reports the oxidation of the underlying TiN/TiCxNy 

functional gradient layer, for temperatures as low as 450 ºC, in addition to a-C:H external layer 

oxidation. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 7 

TG results are in good agreement with the coating thickness measured by SEM cross-section after 

each isothermal annealing. Figure 4 plots the normalized thickness variation of the external a-C:H 

layer in relation to the as-deposited value, as a function of the oxidation temperature. Again, the 

superior resistance of Film 1 in relation to Film 2 and 3 can be stated by the maximum loss of about 

50 % at 600 ºC, whereas the a-C:H external layer of both Film 2 and 3 completely disappeared at 

this temperature. Moreover, for these two last coatings the trend is much steeper which confirmed 

their lower oxidation resistance in relation to Film 1 in addition to good uniform and homogenous 

adhesion. The surface morphology of the external a-C:H layers which were smooth after deposition 

(figure 1a)), becomes now rough as the oxidation temperature increases (see insert in figure 4 for 

Film 3) being this effect more patent on both Film 2 and 3. These morphological discrepancies 

could correspond to some recrystallization process of the sp2 clusters. Coatings having a quite high 

atomic surface roughness will be easily etched away on the clusters edges by H or O atoms. In 

opposition, homogeneous smooth more diamond-like coatings or surfaces of dense planes of 

graphite will present much lower oxidation rates. This is because the C-H and C-O bonds have 

energies of ~ 4.3 and ~ 3.8 eV [23], respectively, while C-C bonds can present much more different 

bonding values ranging from 7 down to < 1 eV [23]. Thus, it could be suggested that the oxidation 

behaviour will be dependent on the graphitic state developed by thermal effect on the non-oxidised 

a-C:H external layer. 

 

3.2.2. Protective Environment 

Following the same procedure used in oxidation tests, all films were analyzed in a mixture of Ar-

5% H2 atmosphere in order to study the single-handedly thermal effect. Figure 5a) presents the 

DSC/TG curves obtained for Film 3 in continuous heating of 40 ºC min-1 up to 800 ºC. The weight 

loss evaluated in the protective atmosphere is almost insignificant, ≅ 5 %, in opposition to that 

observed in oxidative environment, ≅ 90 % (see figure 2a) for the same coating). The weight does 

not decrease monotonously and two distinct trends can be associated with the simultaneous 

DSC/TG signals. For the first endothermic peak, with an onset temperature about 280 ºC, the TG 

curve slope is rather low and increases when the second endothermic reaction begins near 500 ºC. 
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Thus, isothermal TG tests were performed at the three typical temperatures involving DSC peaks: 

250, 400 and 600 ºC (see figure 5b) for Film 3). Besides the small shift for negative values of the 

starting isothermal points at 400 and 600 ºC, only a slight decrease of the weight is detected at 600 

ºC, while no significant variations are registered after annealing during 60 min to temperatures of 

250 and 400 ºC. Similar behaviour was obtained for samples 1 and 2, indicating that coatings 

thickness was maintained without significant variation during annealing in protective environment 

up to 600 ºC. 

Based on other thermal stability studies of hydrogenated carbon films [4, 6], the actual relationship 

between heat flux and weight variation can be identified as a thermal desorption process: the 

molecular hydrogen (H2) evolution, above 250 ºC, precedes alongside with the formation of 

hydrocarbon molecules (CxHy) which occur near 500 ºC (see more details below). Both of these 

gases effusions are endothermic [4] in good agreement with the convexity of the DSC curves 

obtained in this study. Therefore, the two parts of the weight decrease of the TG curve in figure 5a) 

can be attributed to each one of those reactions, the first being less steep than the second, since H2 

molecules are much lighter than CxHy ones. 

The hydrocarbon liberation is also a common situation reported by some authors during the film 

formation [2]. Indeed, a-C:H films are usually deposited at low temperatures in order to avoid this 

phenomenon and thus the deterioration of films properties. In order to shed some light on the 

structural evolution of the DLC films a series of Raman spectra was collected after isothermal 

annealing as shown in figure 6a) for the particular case of Film 1. It is clear from these figures that 

below 400 ºC the only observable changes in the Raman spectra evolution is a small increase in the 

peak frequency of the a-C:H bands without changes its shape. This small shift tends to be regular 

with temperature and it has been detected in other works [3] being of no sufficient magnitude to 

clear indicate some important changes on the coatings structure. In fact, the integrated intensity 

ratio of D and G bands (ID/IG), derived from curve fitting and plotted in figure 6b), is similar to that 

obtained in the as-deposited state for all coatings and become only distinct for heat treatments 

above 250 ºC. At 400 ºC, the higher importance of the D-band, near 1350 cm-1, coincides with the 

beginning of the G-band shift to higher wavelengths. Finally, at 600 ºC a substantive structural 
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change becomes apparent with the clear separation between the D and G bands, revealing that the 

coatings have developed the characteristics of the graphite-like regime. Thus, an increase of either 

the graphic rings or the number of graphitic sp2 clusters can be expected similar to that observed in 

other research studies [4, 8, 10]. The considerable increase in ID/IG ratio from ≅ 1 (at RT) to ≅ 3.0 (at 

600 ºC), figure 6b), envisage a strong softening of the coatings after thermal annealing. This can be 

confirmed in figure 7 presenting the evolution of the hardness after isothermal treatment in non-

oxidative ambiance. The inset evolution in figure 7 shows that there is a good correlation between 

the hardness and the ID/IG ratio after thermal annealing, confirming the above analysis. At 600 ºC 

the hardness drops of about 60 % in relation to the post-deposition value (~ 20 to 12 GPa). 

However, it should be remarked that up to 400 ºC the hardness values only experimented a slight 

decrease in all the three studied coatings.  

 

An overall discussion of the aforementioned results regarding the thermal behaviour of a-C:H 

coatings permits to conclude that below 400 ºC only desorption of hydrogen took place, which is 

reported in literature to occur near 300 ºC [3, 12]. This value is in good accordance with the first 

onset temperature DSC signal obtained in protective ambiance (figure 5a)). Nevertheless, the 

changes in both ID/IG ratio and G band frequency of the Raman spectra, from RT to 400 ºC (figure 

6b)), confirm that graphitization process is become noticeable. The important structural changes 

due to H2 effusion, such as the conversion of a part of the sp3 sites into sp2 sites, enhancement of 

sp2 cluster size and the reduction of the stress and disorder [3, 23, 24] seems to be in contradiction with 

the hardness values obtained for the post-annealed films at 400 ºC (figure 7). The statements point 

out by Neuville et. al [23] in a relatively recent review work will be helpful to clarify this apparently 

opposition. It is reported that the presence of sp3 sites is not the only criterion for diamond-like 

properties and the differences between the different possible binding energies in DLC-type coatings 

correspond to the distribution of C-sp3 and C-sp2 sites must also be considered [23]. Moreover, for 

hydrogenated coatings besides Csp2-Csp2 (~ 7.03 eV) and Csp3-Csp3 (7.02 eV) domains also the 

covalent bonds terminated by H atoms, H-Csp1 (5.4 eV), H-Csp2 (4.5 eV) and H-Csp3 (4.1 eV) 

(usually denoted as C-H bonds of average energy of 4.3 eV) have to be take into account [23].  
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During the dehydrogenation reaction the recombination of H atoms to form gaseous H2 will release 

chemical energy, considering the high binding energy of H-H (~ 5 eV) in comparison to C-H 

binding energy (~ 4.3 eV [23]), and thus the exo-diffusion of H2 molecules take place alongside to 

the transformation of sp3 to sp2 sites [3]. But these thermodynamic considerations do not correspond 

to the observed endothermic DSC reaction. However it is also necessary to consider the higher 

binding energies of both Csp2-Csp2 in the sp2 rings are getting larger during graphitization process 

(~7.03 eV [23]) and some possible atomic rearrangement in Csp3-Csp3 bonds (~ 7.02 eV [23]) 

corresponding to the reaction (3) proposed by Akkerman et al. [4].  

2
333 )()()(2 HspCspCHspC +−⇒−     (3) 

All these complex effects are balanced and mutually compensated and as a consequence, no 

significant hardness decrease should be expected as it was in fact observed up to 400 ºC. In 

opposition, at higher protective annealing temperatures (> 400 ºC), the continue effusion of the 

gaseous products, particularly in CxHy form, which match with the second DSC/TG signal, will 

occur. The gas liberation, results in the collapse of the carbon matrix, i.e. the sp2 clusters combine 

and grow rapidly, in addition to an significant reduction of the stress and disorder and thus to the 

severe hardness decline.  

The onset temperature for the thermal graphitization (figure 5a)) is almost coincident with the one 

of the thermal oxidation (figure 2a)), that is ≅ 500 ºC. This behaviour could be explained 

considering that oxygen can easily combine with reminiscent bonded H present in a-C:H films, due 

to the higher binding energy of O-H (4.8 eV) than C-O (3.8 eV), a reaction that transforms sp3 sites 

to sp2 and burns the graphitised carbon material. This is in accordance with the aforesaid 

experimental data revealing that low H-content films present the best oxidation resistance. Since 

oxidation reaction products are gaseous compounds any modified external passive layer in the a-

C:H coatings is not formed. This is confirmed by the Raman spectra shown in figure 6a) for Film 1, 

where the comparison between oxidative and protective annealed samples is presented. No 

differences in the spectra can be detected, presenting only the thermal effect in both samples. 

 

4. Conclusions 
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Hydrogenated amorphous carbon thin films containing 25 to 29 at.% H were successfully deposited 

by PACVD. Their thermal stability, investigated up to 600ºC in different ambiances, put in 

evidence three of the most thermal harmful processes: dehydrogenation, graphitization and 

oxidation. 

In protective atmosphere, two distinct thermal behaviours were detected. The first, for temperature 

up to 500ºC, the films were structurally stable maintaining their mechanical properties in the 

diamond-like regime (Hv ~20 GPa) in spite of the well detected dehydrogenation process; the 

second, achieved for higher annealing temperatures, leaded to the graphitization process in addition 

to gases effusion. At this point a substantive structural change was evident and the hardness values 

dropped to the graphite-like regime (Hv~12 GPa). 

The heat treatments in air allowed correlate the thermal graphitization with thermal oxidation, 

being the onset temperature for both process almost coincident (~ 500 ºC). The damaging effect of 

oxidative annealing leading to a drastic decrease of the coatings thickness was more evident on 

higher H-content ones. Nevertheless, the coatings arquitecture developed by NA Bekaert by 

PACVD, seems to be an effective way for oxidation protection of the metallic substrate avoid the 

oxygen inward while maintain practical adhesion.  

Finally it is important to mentioned that much more performing DLC of ta-C types exists, 

overcome some drawbacks of more usual DLC coatings of a-C:H type for many more demanding 

applications. However, for these achievements, they still need often to be better understood in 

many of their properties and coatings devices fundamentals and for which this study might play a 

part. 
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Research Highlights: 
 
• A new coating design, through a a-C:H cap layer on a functional gradient film was 
successfully deposited by PACVD. 
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• The stability, functionality and long-term performance were evaluated in protective and 
oxidative ambiances. 
 
 
• Up to 600 ºC three thermal harmful processes were detected: dehydrogenation, 
graphitization and oxidation. 
 
 
• The work describes the complex atomic rearrangements during annealing, function of 
temperature and composition, leading to important structural modifications.  
 
 
• Coatings delamination and/or substrate oxidation were never detected. 
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Table 1. Main characteristics of the as-deposited DLC-based coatings. 
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Figure 1. a) ERD elemental composition of the as-deposited Film 1 and cross-section morphology 

of the as-deposited Film 2; b) Raman spectra of the as-deposited a-C:H coatings (inset the example 

of the fitting procedure with four Gaussians for Film 3). 
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Figure 2. Thermal analysis curves of the a-C:H coatings annealed in air; a) continuous DSC/TG 

heating; b), c) and d) isothermal TG heating. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 17

Figure 3. XRD structural evolution of Film 3 as a function of the oxidation temperature, x = TiC 

[ICDD 74-1219] or SiC [ICDD 31-1231] or Ti5Si3 [ICDD 78-1429]. 
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Figure 4. Normalized thickness variation of the external a-C:H layers after heating in air ambiance 

at different temperatures during 60 min (inset the cross-section morphology of the post-annealed 

Film 3 at 600 ºC). 
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Figure 5. Thermal analytical curves of the Film 3 in protective environment; a) continuous 

DSC/TG heating; b) isothermal TG heating. 
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Figure 6. a) Evolution of the Raman spectra of a-C:H coatings as a function of the annealing 

temperature in both protective and oxidative atmosphere; b) ID/IG ratio and G band position derived 

from the Raman spectra curve fitting. 
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Figure 7. Hardness evolution of the a-C:H coatings as a function of the annealing temperature in 

protective atmosphere; inset of hardness versus ID/IG ratio (the dotted line is only a guide for the 

eyes). 

 

 




