Capítulo III

Metodologia

3.1. CARACTERIZAÇÃO DA AMOSTRA

A amostra utilizada neste estudo foi constituída por 9 sujeitos voluntários, do sexo feminino, atletas de uma equipa que disputa a Liga Feminina de Basquetebol de Portugal, com idades compreendidas entre 18 e 25 anos, e com um volume de treino semanal de 6 horas e 30 minutos repartidos por 4 sessões.

Sendo todos os sujeitos maiores de idade, foi-lhes solicitado que assinassem uma declaração em como eram voluntários para este estudo e foi-lhes explicado o contexto do estudo e os seus objectivos, bem como o carácter dos testes que iriam realizar.

Durante o desenrolar do estudo, os sujeitos foram sendo informados acerca do seu desenvolvimento, bem como dos seus pressupostos teóricos inerentes à sua investigação, enriquecendo, assim, a sua formação desportiva e o seu conhecimento sobre o comportamento do seu corpo durante o esforço.

3.2. PROCEDIMENTOS

Os sujeitos deslocaram-se ao laboratório da Faculdade de Ciências do Desporto e Educação Física da Universidade de Coimbra, sendo registada a data de nascimento, realizadas as medições antropométricas e realizados os testes de determinação directa do consumo máximo de oxigénio e determinação do limiar anaeróbio.

Os testes de campo foram realizados no pavilhão nº3 do estádio universitário de Coimbra e no pavilhão da Escola Básica 2+3 Alice Gouveia em Coimbra.

A todos os sujeitos foi atribuído um código composto por uma consoante e quatro números (ex. AC0401), facilitando assim a sua identificação e mantendo o seu anonimato.

Primeiramente os sujeitos realizaram o teste de determinação directa do consumo máximo de oxigénio, as medições antropométricas e os testes de impulsão vertical com o intuito de se determinar o perfil fisiológico de base da amostra.

Posteriormente, foram efectuados os testes de campo. Cada sujeito realizou três sessões de testes, sendo a sessão (i) constituída pelo aquecimento, teste de lançamento com limitações temporais de 20 segundos e teste de lançamento com limitações temporais de 40 segundos, a sessão (ii) constituída pelo aquecimento, teste de 1 contra 1 na perspectiva do atacante com limitações temporais de 20 segundos e teste de 1 contra 1 na perspectiva do atacante com limitações temporais de 40 segundos, a sessão (iii) constituída pelo aquecimento, teste de 1 contra 1 na perspectiva do defesa com limitações temporais de 20 segundos e teste de 1 contra 1 na perspectiva do defesa com limitações temporais de 40 segundos.

3.3. INSTRUMENTOS DE MEDIDA

3.3.1. Para recolha dos dados antropométricos

Estadiómetro, marca Seca modelo 220/221;

Balança mecânica portátil, marca Seca modelo 714;

Adipómetro, com pressão constante de 10 g/mm², marca Slim Guide.

3.3.2. Para determinação directa do consumo máximo de oxigénio

Analisador de gases, MetaMax Ergospirometry System da Cortex Biophysite GmbH 1991-1998;

Computador, Hewlett Packard modelo Vectra VE, serie 2 5/100, 8MB RAM e disco duro de 1,24 GB;

Software, Microsoft Windows 98 e MetaMax Analysis for Windows[©] Cortex Biophysite GmbH 1991-1998;

Tapete Rolante, HP Cosmos Sportgerate GMBH (Ltd.);

Polar, Heart Rate Analyzer.

3.3.3. Para recolha e análise de sangue

Softclix, marca Boehringer;

Tubos capilares, marca Dr. Lange;

Kit, modelo LKM 140, marca Dr. Lange;

Micro-pipeta, marca Dr. Lange;

Mini-Espectrofotómetro, modelo Lp20, marca Dr. Lange.

3.3.4. Para testes de impulsão vertical

Ergojump Portátil, marca Globus;

3.3.5. Para testes de avaliação do esforço em situação de lançamento e de 1 contra 1

Bolas, tamanho 6, marca Molten FX6;

Cronómetro, marca Rucanor;

Cones, com 31 cm de altura e 42 cm² de base.

3.4. MEDIÇÕES ANTROPOMÉTRICAS

Todas as medições foram efectuadas com o sujeito na posição anatómica: na posição vertical, com o olhar dirigido para a frente e com os membros superiores no prolongamento do tronco com as palmas das mão voltadas para fora.

3.4.1. Estatura

A medição da estatura, ou altura total do corpo, foi medida entre o *vertex* e o plano de referência do solo, conforme está descrito por Ross & Marfell-Jones (1991) citado por Sobral et al. (1997).

A estatura foi medida com os sujeitos colocados descalços em cima da balança e virados de costas para o estadiómetro, mantendo uma posição erecta e estável. Os sujeitos eram instruídos a olhar em frente, sendo a posição da cabeça corrigida de forma a que a ponteira superior do instrumento possa assentar sobre o *vertex* do crânio. Os resultados foram expressos em centímetros com aproximação às décimas.

3.4.2. Massa

Para a medição da massa dos sujeito, as atletas apresentavam-se descalças e com a menor roupa possível (calções e t-shirt). Leitura foi realizada com os sujeitos

totalmente imóveis sobre a balança com o olhar dirigido para a frente. Devido à dificuldade da disponibilidade dos sujeitos da amostra foi impossível medir todos os sujeitos à mesma hora do dia. Os valores foram registados em quilogramas, com aproximação às centenas de gramas.

3.4.3. Pregas cutâneas

São medidas dos valores locais dos depósitos de gordura cutânea, sendo geralmente utilizadas em forma de estimação antropométrica da composição corporal.

Foram observadas as seguintes pregas: (i) tricipital; (ii) subescapular; (iii) suprailíaca.

Utilizando o polegar e o indicador em forma de pinça, destaca-se com firmeza a pele e a gordura cutânea dos outros tecidos subjacentes. De seguida colocam-se as pontas do adipómetro 2 cm ao lado dos dedos e a uma profundidade de 1 cm. Todas as pregas foram medidas do lado direito do corpo do sujeito, sendo marcado o sítio a ser medido. A prega tricipital é uma prega vertical, medida na face posterior do braço direito, a meia distância entre os pontos *acromiale* e *radial*. A prega subescapular é uma prega obliqua, dirigida para baixo e para o exterior, medida imediatamente abaixo do vértice inferior da omoplata direita. A prega supraíliaca é uma prega ligeiramente oblíqua, dirigida para baixo e para dentro, medida acima da crista ilíaca, sobre a linha *midaxilar*.

3.5. PROTOCOLO DE DETERMINAÇÃO DIRECTA DO CONSUMO MÁXIMO DE OXIGÉNIO

3.5.1. Preparação do equipamento

Antes de cada sessão de testes eram preparados os equipamentos e materiais de forma a garantir que estivesse tudo preparado durante a realização dos testes. O Metamax Ergospirometry System deve ser ligado pelo menos 30 minutos antes de ser calibrado, para realizar a avaliação do ar ambiente.

3.5.2. Preparação do sujeito

Após explicar ao sujeito, em detalhe, os procedimentos do teste e clarificar eventuais dúvidas, o procedimento de recolha de sangue e os gestos de sinalização entre o sujeito e o técnico responsável para evitar acidentes, este realizou uma corrida prévia à velocidade de 8 km/h para se familiarizar com a corrida no tapete rolante.

Antes do sujeito iniciar o teste, colocou-se o monitor de frequência cardíaca no indivíduo, verificando se este está a fazer o registo e foi colocada a máscara do analisador de gases, tendo atenção para que esta ficasse estanque (não deve entrar ar por outro lado que não a turbina).

3.5.3. Procedimento de avaliação

O protocolo máximo utilizado foi um do tipo directo, progressivo por patamares com intervalos. O teste era constituído por patamares de 4 minutos cada iniciando-se o protocolo a 8 km/h e procedendo-se a um incremento de 1 km/h até aos 12 km/h. A partir de 12 km/h a velocidade mantêm-se constante sendo o aumento progressivo de intensidade garantido com a inclinação progressiva do tapete rolante em 2,5% em cada patamar. (ver Figura III-1).

Durante o minuto de repouso procedeu-se à recolha de uma amostra de sangue.

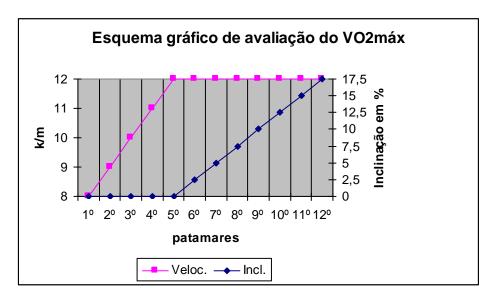


Figura III-1. Representação gráfica do protocolo utilizado para avaliar o VO_2 máx

Durante o esforço do sujeito foi muito importante dar um bom apoio e encorajamento às atletas atavés de *feedbacks* e incentivos verbais positivos para motivar os sujeitos, e, monitorizar os valores da frequência cardíaca, o quociente respiratório e o estado geral do atleta. Estes procedimentos intensificaram-se durante o repouso. Os sujeitos foram sempre encorajados a realizar o próximo patamar.

Para finalizar o teste foram considerados como critérios: (i) o valor do quociente respiratório ser igual ou superior a 1; (ii) aparecimento de máscara de esforço; (iii) atingir a frequência cardíaca máxima pré-determinada; (iv) atingir valores de lactato superiores a 8 mmol.l⁻¹; (v) estabilização do consumo de oxigénio ou mesmo um ligeiro decréscimo mesmo quando se aumenta a intensidade do esforço.

3.5.4. Procedimento pós-teste

No final do teste, o sujeito permaneceu numa posição estacionária apenas o tempo necessário para a última recolha de sangue e para remover a máscara do analisador de gases. Após este procedimento foi prescrita uma velocidade baixa para que o sujeito continue a caminhar confortavelmente durante pelo menos 5 minutos ou o tempo necessário para a frequência cardíaca baixar a valores inferiores a 120 bat.min⁻¹.

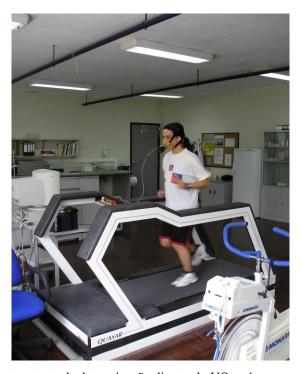


Figura III-2: Atleta durante o teste de determinação directa do $VO_2\,\text{m\'ax}$

3.6. RECOLHA E ANÁLISE DOS LACTATOS

A recolha de lactato neste estudo verificou-se durante o protocolo de avaliação directa do VO_2 máx e no final dos testes de campo de avaliação do esforço no lançamento e no 1 contra 1 em situação de ataque e de defesa.

3.6.1. Procedimento de recolha de lactato durante a avaliação directa do $VO_2 m\acute{a}x$

Durante cada teste de VO₂máx foram recolhidas amostras de sangue no final de cada patamar e no final do teste. Segurando a mão direita, desinfectava-se com álcool a extremidade do dedo polegar, efectuando em seguida uma pequena picada com o Softclix e pressionava-se o dedo até se formar uma pequena gota de sangue que era recolhida com um tubo capilar de 10 microlitros. Com a ajuda de uma micropipeta, o sangue era injectado num kit que continha uma solução tampão e agitava-se.

No caso de não ser possível efectuar apenas uma picada com o Softclix para recolher todas as amostras do teste, o procedimento acima descrito era repetido sempre que necessário. Para evitar que o sangue escorra durante a corrida, era dado ao sujeito um pouco de algodão para ele pressionar com os dedos. Após todas as recolhas de sangue procedia-se à medição da concentração de lactatos.

3.6.2. Procedimento de recolha de lactato durante a avaliação do esforço em situação de lançamento e de 1 contra 1

As recolhas de lactato durante os testes de campo foram efectuadas logo após o término do esforço, 3 minutos e 5 minutos após o final do esforço em cada uma situação com duração de 2 minutos avaliados. O procedimento utilizado para a recolha foi semelhante ao acima descrito.

3.6.3. Procedimento de medição do lactato.

Após se proceder à limpeza dos kits que contêm as amostras de sangue, ligava-se o aparelho pressionando "mode". Depois de aparecer no visor a respectiva indicação de que o aparelho estaria pronto para realizar a leitura, eram introduzidos, por ordem todos os frascos para que fosse feita a leitura de todos os *brancos*. À

medida que os frascos foram sendo retirados, foram novamente sendo colocados por ordem.

Após a leitura do último *branco* retirava-se a tampa verde* do primeiro e colocava-se uma tampa azul*, que continha o reagente, previamente numerada e mantida no frigorífico até ao momento da medição, e agitava-se duas vezes. De seguida era pressionada a tecla "*" e era introduzida a primeira amostra. Depois era repetido o procedimento de troca das tampas em todas as amostras tendo o cuidado de manter sempre a ordem das amostras. Após a indicação do valor de lactato para o primeiro frasco, este era retirado, inserindo-se depois cada um dos seguintes, pela mesma ordem que haviam sido lidos os *brancos*, até se obter os valores de todas as leituras.

Os valores da concentração de lactato, registados após cada leitura, eram expressos em mmol.l⁻¹.

3.7. PROTOCOLO DE DETERMINAÇÃO DO LIMIAR ANAERÓBIO

O limiar anaeróbio foi determinado através da utilização do método de determinação pelo início da acumulação de lactato sanguíneo (OBLA- onset of bood lactate accumulation). Este método é uma adaptação do método logarítmico de Beaver et al. citado por Santos (1991). Nós utilizamos a representação gráfica do logaritmo dos valores da concentração de lactato (eixo Y) e pela intensidade (eixo X). Os pontos da curva log[lactato] – intensidade corresponde ao limiar anaeróbio aferido pela verificação de uma ou duas condições seguintes:

- início evidente da subida da curva;
- intersecção das duas rectas que unem os dois ou três primeiros pontos (1ª recta) e os dois ou três últimos pontos (2ª recta) no gráfico representa o log da concentração de lactato vs. Intensidade. As rectas foram obtidas por regressão linear.

3.8. PROTOCOLO DE TESTES DE IMPULSÃO VERTICAL

No ergojump foram realizados dois testes para avaliar a impulsão vertical e a potência máxima instantânea dos membros inferiores, sendo os saltos seleccionados o Squat Jump e o Countermovement Jump, método introduzido por Bosco & Komi (1979 citado por Bosco, 1987), e que reproduzem os tipos de salto característicos no basquetebol (ressalto, lançamento, etc.).

3.8.1. Squat Jump

O indivíduo era instruído para se colocar em cima do tapete de contacto e adoptar a seguinte posição: membros inferiores semi-flectidos, tronco ligeiramente inclinado à frente, mãos na cintura pélvica, apoios afastados à largura dos ombros sem levantar os calcanhares. O indivíduo mantinha esta posição por 3 segundos e executava o salto realizando a extensão dos membros inferiores. Durante a execução do salto o indivíduo não podia flectir as pernas.

3.8.2. Countermovement Jump

Este salto difere do anterior no facto de se pretender avaliar o efeito do ciclo de encurtamento (movimento excêntrico) dos membros inferiores. Deste modo o indivíduo era instruído para se colocar em cima do tapete seguindo as mesmas instruções do salto anterior, com a diferença de a passagem pela posição de agachamento ser executada sem interrupção, saltando à altura máxima sem retirar as mãos da cintura pélvica. Durante a execução do salto o indivíduo não podia flectir as pernas.

3.8.3. Procedimento de avaliação

Para a realização dos testes, cada indivíduo realizava 6 saltos: 3 Squat Jump e 3 Countermovement Jump. Foram registados os resultados de todos os saltos e considerado o melhor resultado de cada tipo de salto para o estudo.

Antes do teste era explicado ao indivíduo, em detalhe, os procedimentos do teste e clarificadas todas as dúvidas, sendo dada a oportunidade a cada sujeito para experimentar ambos os saltos antes da avaliação. Antes de cada salto era dado um incentivo verbal para o indivíduo saltasse o mais alto possível.

Caso houvesse alguma incorrecção na realização de algum salto, o seu resultado era rejeitado, e após a explicação para a sua correcção, era dada uma nova tentativa para a sua execução.

3.8.4. Registo e tratamento das variáveis

As variáveis registadas foram: altura de salto, que corresponde ao deslocamento do centro de massa; potência anaeróbia máxima absoluta e potência anaeróbia relativa.

Para cálculo da potência anaeróbia máxima absoluta e potência anaeróbia máxima relativa dos membros inferiores foram utilizadas as seguintes fórmulas:

$$PanaM-abs = 2,21 \times M \times D^{(1/2)} = (W)$$

sendo que, PanaM-abs corresponde à potência anaeróbia máxima absoluta desenvolvida pelos membros inferiores, M à massa do indivíduo e D à distância percorrida pelo centro de gravidade (altura do salto). O resultado é expresso em Watts (W).

$$PanaM$$
- $rel = PanaM$ - $abs/M = (W.kg^{-1})$

sendo que, PanaM-rel corresponde à potência anaeróbia máxima relativa desenvolvida pelos membros inferiores, PanaM-abs à potência anaeróbia máxima absoluta e M à massa do indivíduo. O resultado é expresso em Watts (W.kg⁻¹).

3.9. PROTOCOLO DE AVALIAÇÃO DO ESFORÇO NUMA SITUAÇÃO DE TREINO DE BASQUETEBOL

Foram utilizadas duas situações específicas de treino do lançamento e de 1 contra 1 (do ponto de vista do ataque e da defesa) no basquetebol. A escolha nestas situações deve-se ao facto de o lançamento ser o gesto técnico que consuma o objectivo do jogo de acertar a bola num alvo colocado a 3,05 metros de altura do solo, para além de a eficácia do lançamento ser um indicador de sucesso decisivo no

alto nível, e o 1 contra 1 ser considerado na literatura (Tavares et al., Remmert) como a situação táctica privilegiada nos sistemas tácticos no basquetebol de alto nível.

Os testes avaliaram a frequência cardíaca (batimento a batimento) e o lactato sanguíneo (após o esforço, 3 minutos após o esforço e 5 minutos após o esforço) para determinar as vias energéticas solicitadas.

Os testes de lançamento, de 1 contra 1 na perspectiva do atacante e de 1 contra 1 na perspectiva do defesa foram realizados em dias diferentes.

3.9.1. Preparação do sujeito

Foi explicar ao sujeito, em detalhe, os procedimentos do teste e clarificadas eventuais duvidas. Antes do sujeito iniciar o teste, colocou-se o monitor de frequência cardíaca no indivíduo, verificando se este estava a fazer o registo.

3.9.2. Aquecimento

O aquecimento foi idêntico em ambas as situações e consistiu em 3 minutos de corrida constante, seguido de alongamento dos músculos adutores, posteriores e anteriores da coxa, dos músculos da região lombar e abdominal e dos músculos dos membros superiores.

3.9.3. Teste de lançamento

3.9.3.1. Procedimento de avaliação. Foram colocados 2 cones nas extremidades da linha de lançamento livre. O indivíduo começava colocado sobre a linha de lançamento livre na extremidade direita. O teste consiste em realizar um lançamento, apanhar o ressalto e o mais rapidamente possível contornar por fora o cone na extremidade contrária da linha de lançamento livre e executar um lançamento e assim sucessivamente. Quando o ressalto da bola no cesto fosse muito longo, o sujeito podia optar por continuar com uma bola que estava colocada na linha final na direcção do cesto.

Foram avaliadas 2 situações com a duração de 2 minutos, mas com uma relação esforço/repouso diferentes: 20/20 segundos; 40/40 segundos. A opção devese à aproximação da situação de treino com a relação entre tempos de actividade e de repouso verificadas no jogo.

Para o teste ser válido, os sujeitos tinham de efectuar um número mínimo de lançamentos durante cada período de esforço, 5 lançamentos durante os três

patamares de esforço de 20 segundos e , durante os esforços com 40 segundos de duração 10 lançamentos no primeiro patamar, 9 no segundo patamar.

O segundo teste com relação esforço repouso 40/40 segundos era iniciado 10 minutos após a recolha da última amostra de lactato na primeira situação avaliada com relação esforço/repouso 20/20 segundos e verificado que o valor da frequência cardíaca fosse inferior ou igual a 120 bat.min⁻¹.

Figura III-3: Atleta durante o teste de lançamento à esquerda e aspecto do local onde foram executados os testes de lançamento à direita

3.9.4. Teste de 1 contra 1

A situação de 1 contra 1 foi avaliada na perspectiva do atacante e na perspectiva do defesa sendo as limitações temporais, espaciais e técnicas iguais em ambas as situações.

3.9.4.1. Procedimento de avaliação. Foram colocados cones para delimitar a área de jogo para ser avaliada o 1 contra 1, sendo a largura da área o comprimento da base da área restritiva e o início da situação fora da linha de 3 pontos. Todos os sujeitos foram avaliados contra um jogador que serviu de constante. Como critérios de validação dos testes foi definido que: (i) o atacante tinha uma limitação de utilização de 2 dribles; (ii) após cesto convertido, recuperação da bola por parte do defesa, saída da bola da área de jogo, violações das regras de jogo definidas pela FIBA (Federação Internacional de Basquetebol), o atacante recomeça a atacar com 2 dribles disponíveis fora da linha de 3 pontos.

Foram avaliadas 2 situações com a duração de 2 minutos, tanto na perspectiva do atacante como do defesa, mas com uma relação esforço/repouso diferentes: 20/20 segundos; 40/40 segundos.

O teste com relação esforço/repouso 40/40 segundos era iniciado 10 minutos após a recolha da última amostra de lactato na primeira situação avaliada com relação esforço/repouso 20/20 segundos e verificado que o valor da frequência cardíaca fosse inferior ou igual a 120 bat.min⁻¹.

Na situação de 1 contra 1 na perspectiva do atacante, o sujeito durante a totalidade dos patamares avaliados fica na situação de atacante, sendo o jogador utilizado como constante instruído para não efectuar roubos de bola e desarmes de lançamento, não existindo qualquer outra limitação à sua performance.

Figura III-4: Atleta da amostra contra o atleta utilizado como constante durante o teste de 1 contra 1 na perspectiva do atacante

Na situação de 1 contra 1 na perspectiva do defesa, o sujeito defende o jogador utilizado como constante durante os intervalos de esforço, sendo os critérios de validação do teste os mesmos descritos para a situação de ataque.

Figura III-5: Atleta da amostra contra o atleta utilizado como constante durante o teste de 1 contra 1 na perspectiva do defesa

3.10. ANÁLISE DOS DADOS E ESTATÍSTICA

Para análise estatística foi utilizado o programa SPSS version 11.0 for Windows.

3.10.1. Análise descritiva

Para a caracterização da amostra foram aferidas a cada uma das variáveis a média e respectivos desvios-padrão.

3.10.2. Análise inferencial

Para o cálculo da significância da diferença entre as médias foi utilizado o teste-*t* de *student*.

Para ambas as técnicas estatísticas foi considerado o nível de significância de 0,05 (p<0,05).