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1 Notations and Background

1.1 Notation

Matrices are represented as bold capital lettegA( € R™"*™, n rows andm columns). Vectors are represented
as bold small lettersefa € R™, n elements). By default, a vector is considered a column. Setédirs €ga)
represent one dimensional elements. By default,jtheolumn vector ofA is specified as;. The jth element
of a vectora is written ase;. The element ofA in the line: and columry is represented as ;. Regular capital
letters €g.4) indicate one dimensional constants.

1.2 Useful Algebra Tools

In this section we describe some algebra tools that will leéulsn the remaining sections. For more information
about their properties we suggest ?, 3].
For a matrixA € R™*™

e C(A) - dimension of the column—spacerank of A;

e N (A) —dimension of the null-space or nullity.

m=C(A)+ N (A)

An useful property of theankis C (A) = C (AT).

If P, andP, are two permutation matrices. ThénA) = C (P, AP,).

If B € R*™ is column full-rank(C (B) = m) thenC (BA) =C (A)

[ A A,
A_<0 Ag) @)

then, itseigenvalues\ (A) = A (A;) U X (Aj)

If a matrix A € R™*"™ is partitioned as

1.3 Kronecker product

LetU € R™" andV < R¥*! and the equation
Uxv? =cC 2
whereX € R™*! is matrix of the system unknowns. It is possible to rewrit phevious equation as

(V®U)vec(X) = vec(C) (3)



where® is theKroneckerproduct ofU andV [2], with [V ® U] € R™*>*"! and vedX) is ani—vector formed
by stacking the columns d&.
The Kroneckerproduct is an useful tool to turn some systems linear. ¥oge R**! andU € R™" the
Kroneckerproducts
V®U = {y;;U} € R™>", (4)

2 Radial Basis Functions

Radial Basis Functionare are frequently used in approximating functiois: (R?> — R) by means of least
squares fitting. In these cases the interpolant equatiobeavritten as

,
S(X)Zao+azx+zwi¢(||x_ci||):<d)(X) p(X))(Z) ?
- R

wherex and{c;} belong toR?,

.|| is the2—normof vectorsp (x) = ( 1 xT > ¢ (x) =(¢1(x),...,0p (X))

T T
Whereqﬁi(x):qﬁ(Hx—ciH),W:<w1 wp) anda:(ao al

In this section we describe the typical problem of finding tilknown vectorh,,, for a set of interpolant
conditions

s (x;) = f(x;) (6)

fori=1,...,P.
For a sef{c;}, we define
® = {¢(Ilxi — ¢;I))} € R, (7)

WendlandandBuhamanti8, 1] prove that, for{x; = ¢;} wherei = 1,..., P, ® is conditional positive definite
For scatteredset{c,}, where{x; # c;} fori,5 =1, ..., P, Quak et alandSivakumarandWard[5, 6] prove
that @ is conditional positive definitewhere eacltontrol pointhas to be associated to a data pdirt}, that
satisfiesd < ge, where0 < e < 1, d = max {||x; — ¢;||} and2¢ = min; {||c; — c;||}. Quaket al[5] also
proved thatp, (r) = (57 + 7‘2)1/2 and ¢, (r) = e %" are good choices foradial basis functionsbecause,
choosing an appropriat® and/j,, they reduce the negative effects of small valueg @fde respectively.
From Equation¥), for a setP of {x;} we can write

s= (@ K )ha ®
————
R
. - T
whereK € R**” is the stacking op (x;) ands = ( s(x1) ... s(xp) )

From Equation &), we haveP + 3 unknowns and only? equations. To eliminate the extra degrees of free-
dom, additional constraints are needed. We use the adalittmmstraints resulting from the conditional positive



definiteness of the space of solutionswof&]

P
Z w;p (x) = Kw = 0. 9)
=1
Putting all together
& KT
5= hya (10)
0 K 0
~————

r

which has only one solution whdh € RP+3*P+3 js full-rank.
If V(T') =0,C(T') = P+ 3. Thus, computing thaull-spaceof T,

& K7 v
() () a

&v+K'u=0 (12)
Kv =0. (13)

or

The solution is only verified for = 0 andu = 0, which means that/ (I') = 0 andC (") = P + 3.
From [3, Section 8.5], if we pre—multiply the first Equation of Egoat(12) by v we get

vi®dv + (Kv) u=0. (14)
From Equation13), Kv = 0 which reduces Equatiori{) to
vidv = 0. (15)

We know from previous statements thhtis conditional positive definitewhich means that” ®v > 0 for
any non-zero vector. As a consequence, Equatiardy is only verified forv = 0.
Since we already proved that= 0, we can rewrite the Equatioi?) as

K"u = 0. (16)
If the set{x;}, fori = 1,..., P with P > 3, forms afull-column rankmatrix K”, C (K”) = 3, Equation (6) is

only verified foru = 0, which implies\ (T') = 0 andC (T") = P + 3.

3 Introduction

In this report we study and analyze the relationship betwieemumberN of point correspondences; — p;}
required for the calibration and the rank of the calibratiwatrix described in4].



The equation that represents the general imaging modekgasided in{]) can be written as

IR:s(X):<¢(x) p(x))<h$g h&?&) (17)
rE)rc) vaa
where vector'’, fori = 1,...,6, are as in Equatiorbj.

The calibration parameters are computed by estimating azeva vectowec (Hy,,) that satisfies

Q(p1) ®r(xy)
Q (p2) ® 1 (x2)
vec(Hy,) = 0 (18)
Q(pn) @1 (xn)
D
N . y
where vedH,,,) € R67+18)x1 js the stacking oh{ fori = 1,...,6, andQ (p,) is the incident relation between
a point in the worldp; € R? and a line generated from an image point
pil, -1
Q(pi) = ( [OT] o7 ) (19)

wherel is the identity matrix, with dimensiors x 3, and[a]_is the matrix that linearizes the three dimensional
exterior product afa] b =a x b.

SincelR = s(x), we see that the solution fdd,,, is up to a scale factor. Thus, to have a unique solution,
we must have\V (M) = 1 and the solution is any element of the righill-spaceexept the trivial solution
vec(Hya,) = 0.

4 Rank of matrix M

In this section, we study the relationship betweenréirg of matrix M (Equation (8)) and the number of point—
correspondences\(), used in the calibration process.

Since permuting rows does not changeriduek of a matrix,C (A) = C (ZM), for any permmutation matrix
Z, and we can study thank of A, instead ofMI.

From Equation 18) and Equation 4), we can find a matrixA = ZM as Equation Z0). whereZ is a
permutation matrixp; = <p(1), ), p£3)> andr; = r (x;), wherer (x;) is as described in Sectich
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0 —pg?’)rl ng)I'l I 0 0
0 —pg\?)r]\; pﬁ)rN Iy 0 0
pre 0 —p'n 0 10
pg\?)rN 0 —pg\l,)rN 0 ry 0
A= —pr p'n 0 0 0 n (20)
—pPry pYry 0 0 0 ry
0 0 0 pi'ri pPry pr
0 0 0 pVra pyry pyry
D
We defineE andF as
0 —pgg)rl pgz)rl rr 00
0 —pg\?;)rN pg\%)rN ry 0 O
pry 0 —pi’r, 01, 0 000 p{Vr; pi?r; pPry
E = : : : SR and F=|[::: : : (21)
pﬁ)m 0 —pg\lf)I'N Ory O 000 pg)rN pﬁ)rN pﬁ)rN
_p?)rl pgl)l‘l 0 0 0 r
—p%)rN p%)r]\; 0 0 0 ry
whereE € R3Vx6P+18 | < RNX6P+18 gnd we can rewrité as
E
A=| F (22)
D

We can see that the rows Bfare linear dependent on the rowskf

4.1 Proof that matrix M (in Equation ( 18)) can haverank 6P + 17

Since the rows of th&' are linearly dependent on the rowskfwe ignore the rows df for the rest of the section.

Thus, we consider the matrix(!) € R3N+18x6P+18

1
A _ 7O ( E® ) (23)
D



and if we defind) € R!8x6P+18 g5

0 -=P, =P, P 0 O

=Py 0 —-=3Py 0 Py O

—-5,P; E3P 0 0O 0 P
D-— 241 341 1 (24)

0 -=P, ZPy, P, 0 O

=4Py 0 —=¢P, 0 P, O

—E5P2 EﬁPQ 0 0 0 P2

where

Pi—(K 0), P,=(K, 0) (25)
P, € R¥>F3 andK,;, K, € R*¥ are the stacking of the sép (x;)} fori = 1,..., P, and{p (x;)} for
i=P+1,..., 2P respectively. MatriceE; € R3*3 are random diagonal matrices, Whéyé, forj=1,2 3 are

their diagonal elements.

We see thaE®M) € R3V*6P+18 gndD € RI8*6P+18 Thus, to have® (AM) = 6P + 17, we need at least
N =2P.

For a permutation matri¥®, E with N = 2P andD as in EquationZ4), we defineA ™ as in EquationZ6).

We can expresaA (Y as a block ofP + 3 x P + 3 matrices

o 't "D, 0o TIT, -T!D,

-fr, o r1rfs, -riT, 0 TIiS,
(amy?_ | TiDy ~TiS; 0 TiD, T3S, 0 o7
Tl 0 0 I 0 0
0 r’ 0 0 r’ 0
0 0 rT 0 0 ry

whereD;, T;, S; € RF+3xF+3 gre diagonal matrices, whose diagonal elements are eqrﬂpectivel)p%m) and

to corresponding elements of diagonal matriEE:ﬁg](.“, with 7 =1, ..., 3). For instance, diagonal matrik; is
P 0 0 0 0
3)
0 0O 0 0
T, = Pp " (28)
0 0 & 0 0
0 0 &Y o
0 o o o &Y

MatricesI'; andT'y are

111:(:> and FQ:(:) (29)



o o0 -

0
0

pgwrl

pg)rp
=Py

@
PpiiTpr+1

(2)
Ppii¥P+1 Tpy1

pf}mp

E5P2
"pg0r1
—pgh¢
—E3P,

_ M
pP+1rP+1

oo ---

rop
P,

0

o

o o -

oo ---

oo ---

ry
rp
Ipii

rop

o OO0 -

oo -

oo -

o0 -

rp

piq

Iap

c R6P+18><6P+18

(26)




wherel'; € RF+3*P+3 and
ry pig

rp Iop

whereR,; € R”*P+3 andP, andP, are as in Equatior2§).

We assume that the conditions described in Secéiare met fol; andI';, which means that these matrices
arefull-rank.

Let us define a matrix

N =G, (A")" G, (31)
where
I 00 0O 0 O
™ o 0 010 0 0 O
0 ™™ ... o0 00I 0 0 O
G, = _ ( 1_) _ and G, = (32)
: SRRV 000L' 0 0
0 o .. (rH)" 000 0 L' 0
000 0 0 L

G, Gy, € ROPHIEX6PHIE grefyll-rank matrices, and with, = (I‘IT)_1 I'l. The pre or post-multiplication by any
full-rank matrix does not change tiank of a matrix. Thus¢C (N) = C ((A(l))T> andC (AW) =¢ ((A(l))T>.

From Sectiori..2, we can see that (N) + A (N) = 6P+ 18. Thus, if we want (A") = C (N) = 6P +17,
we must haveV (N) = 1. As a result, we need to prove that thallity of N is one, whereN is

0 T, —-D, 0 LTQLil —LDgLi1

-T; 0 S; —-LT,L™! 0 LS,L!
D; -S; 0 LD,L7! —-LS,L! 0
N — 1 1 2 2 7 (33)
I 0 I 0 0
0 I 0 0 I 0
0o O I 0 0 I

which means thaNv = 0 has a one dimensional subspace of solutions.
We consider that = (vy,...,vs) € R¢7T® wherev; € RT3, From the three last rows of Equatiod3],
we see that thaull-spaceof N must verify

Vi = —Vyu (34)
V9 = —Vj (35)
V3 = —Vg. (36)

Getting the second, fifth and sixth row of equations of mawiand the third, fifth and sixth row of equations



of matrix N respectively, we can define the following constraints

-T, 0 S, Vi —-LT,L-! 0 LS,L! V4
0 I 0 vy | = — 0 I 0 Vs (37)
0 0 I Vs 0 0 I Vg
and
D, -S;, 0 Vi LD,L-! —LS,L=' 0 vy
0 I O vy | =— 0 I 0 vy | . (38)
0 0 I V3 0 0 I Vg

If the diagonal elements dd,; andT; are different from zero, we can define matrig@andC as

Vi Vg Vi Vy
Vo =B Vs s Vo =C V5 . (39)
V3 Vg V3 Vg

Using AppendixA.2, we obtain

“T,0S,\  /-LT,L'0LS,L" T 0TS\ /-LT,L ' 0LS,L"
- o110 0 I o0 =—| 0o 1 o0 0o I o =
0 01 0 0 I 0 0 I 0 0 I
T;'LT,L-' 0 —T{'LS, L~ + T;'S, (40)
— 0 I 0
0 0 I
) 5
and
D, -S, 0\  /LD,L' -LS,L'0 D;'D;'S;0\ /LD,L ' —LS,L7'0
-1 o 10 0 I o|l=-]l0 1 o0 0 I 0f-=
0 0 I 0 0 I 0 0 I 0 0 I
D;'LD,L! -D;'LS,L~! + D;!S; 0 (41)
— 0 I 0
0 0 I
N . .

From Sectiorl.2, the sets okigenvalue®f B andC are respectively

o T 0 I -0
A(B) = A (~T;'LT,L )UA(( . _I>> and A(C) = A (~D;'LD,L )UA(( . _1)>

(42)
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and we defin&g, X ¢ as diagonal matrices, whose diagonal elements ageavaluesf B andC respectively

2LTflLTgL—l 0 0 EfolLDgL—l 0 0
B = 0 -1 0 and YX¢c = 0 -1 0 . (43)
0 0 -1 0 0 -I

We can see that the solutions for Equatiodg) that verify Equations34), (34) and 36), are defined by the
eigenvectorsthat correspond to theigenvalues\ (B) that are equal te-1. On the other hand, solutions for
Equations 88) that verify Equations34), (34) and 36), are defined by theigenvectorsthat correspond to the
eigenvalues\ (C) that are equal te-1.

If we consider thafl; andD; are random matrices, we can conclude that the probability(@f, 'LT,L~")N
A(—I) = @ and) (D;'LD,L~') N A (-I) = @ is equal to one.

From AppendixA.3, we conclude that the matrices that correspond to the stgafieigenvectorgeigenvec-
tors matrice$, V andU (B = VEgV ! andC = UXU}) have the form

vl o0 V® u®d u® o
V = 0o VO® o and U = 0 U® o (44)
0 0 V® 0 0 U®W

whereV, U ¢ R3P+9x3P+9,
Since we are only interested aigenvectorsassociated t@igenvaluesqual to—1, we only consider the
subspaces generated from matrices

0o V@ u® o
V=] Vv® o0 and U= U® o (45)
0O V@& 0o U®W

Wherev, U € R3P+9x2P+6

However, we want solutions that veriffiv = 0, which means that they must belong to bathand U
subspaces. As a result, solutions must belong to the int@sef subspaces defined ByandU.

From AppendixA.3 and AppendixA.4, we conclude that the intersection subspace is defined byollenn

space of
£ 3

wW=| 1 (46)
K

whereW ¢ R37+9xFP+3_ This means that, any linear combinatiorWfcolumns Wa for anya # 0) is a solution
for Equations 89) that verifies Equation3d), (35) and @36) where

v = (*x,a,Ka, %, —a, —Ka) 47

for any vectora € R”*3 different from zero.

11



However, from the first row of equations df, Equation 47) must verify
T1V2 + LT2L71V5 = D1V3 + LD2L71V6, (48)
which from Equation47) is equal to

(T1 - LTQLil) a — (D1 - LDQLil) Ka. (49)

F(T1,2) F(D1,2)

From SectionA.1, the previous assumptions tha{T;'LT.L~!) N A (-I) = @ andX (D;'LD,L™") N
A (—I) = @ and assuming th&; , S, are random matrices which implies that the probability ¢8; 'LS,L )N
A(—I) = @ is one, we see that (F (T12)) = P+ 3,C(F(D12)) = P+ 3andC (K) = P + 3. Thus, the
constraint corresponding to EquatictB) can be rewritten as

K 'F(Dy,) 'F(Tiz)a=a. (50)

As a result, we can see that the dimension of ibl—spaceof N is equal to the number afigenvalues
A (K™'F (Dy2) ' F(Ty2)) that are equal ta.

4.2 The set\ (K‘lF (Dl,z)_1 F (T1,2))

In the previous section, we saw th@{A")) = C(N). On the other hand, we see that the(N) is equal
to the number okigenvalues\ (K~'F (D;2) ' F (T12)) N A(I) and, sinceN is a square matrix, we know
that6P + 18 = C(N) + N (N). As aresult,C (N) = 6P + 17, implies N (N) = 1, which means that
AKT'F (D12) ' F (T1,2)) must have oneigenvalueequal tol.

I'; are matrices that depend on a vealoAs a result, if we consider random elementslpit is expected that
the number otigenvalues\ (K~'F (D) ' F (T12)) N A (I) = 2.

However, we, intentionally chose matiX as in EquationZ4). Therefore matriXD has the following rows

0o ¢’ & 100
1 3

W0 P o010
v _ €2 ¢ 0 o001 51
= (@) ) 1)

0 -¢ & 1 00

Yoo g% 010

P e o0 001

whereY ¢ R(6x6P+18)

éx‘):(éz‘) LD ooo) and 1:(1 o1 000) (52)

with €171 € ROxP+3),

12



One concludes that(Y) = C (Y) where

0 ¢’ ¢? 100
o0 =P o1 o0
2 3
v_| & & o0 o001 (53)

0 &Y & 100
4) (6)

& 0 —& 010
—” ¢? 0 001

andC (Y)=C (Y) =5.

Since the rows o will be the columns of(A(l))T, we see thaf ((A(l))T> < 6P + 17 which means that
we have oneigenvectoof A (K~'F (Dy2) ' F (T12)) equal tol.

Thus, for random elements of the diagonal matridesT;, S, and random vectat, we have\ (IN) = 1 with
probability one, which implie§ (A(V) = C <(A<1))T> =C(N)=6P+17.

5 Conclusions

To obtain therank of the matrixM we write

M=Z>»A® (54)

@ _ A
A _< " (55)

andA® is as in Equation6) andZ® is a permutation matrix.

In Section4, we saw that each of the rows Bfis linearly dependent on the rows Bf which are included in
matrix A1), Thus, we can writ€ (A®) = C (AW) = 6P +17.

Since the permutation of rows does not changergr of a matrix, we can write (M) = C (A®) =
6P + 17.

where the matrixA @ is as

Appendices

A Some Matrix Results

A.1 Rankof D; — LD,L!

Considering diagondull-rank matricesD,, D, € R”*? and a generifull-rank L. ¢ RP*?,
If we write a matrixM € R?P*2F as

I 0
M = , (56)
LD,L~! -LD,L!'+ D,

13



we see thaf (M) = C (I) + C (—LD,L~! + D,). If we post—-multiplyM by anynon-singulamatrix, therank

of the resulting matrix will be the same as tfaak of M. As a result, we define

N — M I I
01
I I
N = .
< LD,L™' D, )

We can see that thaull-spaceof N must satisfy
1 I Vi
=0,
LDlL_l DQ Vo

Vi = —Vy
—D;'LDL7'v; = v,

whereC (N) =C (M) and

which can be rewritten as

and\ (N) = n, wheren is the number oéigenvaluesf —D; 'LD;L~'v, equal to one.

(57)

(58)

(59)

(60)

If do not existeigenvaluesqual to one, theth (N) = 0, which impliesN' (M) = N (N) = 2P and

C(-LD;L~! +D,) = P.

A.2 Inverse of Matrices

In this section we describe how to get the inverses of theixnatr

A, 0 A,
A = 0 A3 0
0 0 A,
whereA is full-rank.
The inverse must satisix ' A = I, thus
X; Xy X3 A, 0 A, I 0O
Xy X5 Xp 0 A; O =1 010
X7 Xs Xy 0 0 A, 00T
We can define the tree next systems
X1A1 - I X2A3 = 0 XlAQ + X3A4 - 0
X4A1 =0, X5A3 =1 and X4A2 + X6A4 =0.
X7;A;1 =0 XgA3=0 X7As +XgAy =1

(61)

(62)

(63)

From the first system, we g&; = X, = 0 andX, = A;'. From the second system, we @&t = X3 = 0 and

14



X5 = Agl. SinceX, = X; = 0, we can rewrite the third system as

X1A2 -+ X3A4 =0 — Xg = —AflAQAzl
XsAy =0 (64)
XoA, =1

and we can writ&s = 0 andX, = A .

Finally, we can write
A7Y 0 —ATTALALY
Al = 0 A 0 : (65)

Using the same method, we can prove that

-1
B, B, 0 B;' -B;'B;B;' 0
B'=| 0 B; 0 = 0 B! 0 . (66)
0 0 B, 0 0 B;'
A.3 Eigenvector Matrices

Suppose we want to know the structure of #higenvector matriXV 4 ) of a matrix

A 0 A,
A= 0 -1 o (67)
0 0 -I

whereA is full-rank.
We know thatV , must satisfyAV 4 = V34, WhereX 5 is a diagonal matrix whose diagonal elements are
A(A). Thus

A 0 A, X; Xp X3 X; X; X3 ¥a, O 0
0 -1 0 X4 X5 X6 - X4 X5 X6 0 E—I 0 . (68)
0o o0 I X; Xg Xy X; Xg Xy 0 0 X
Using this representation we can define the system
A X+ AyXy =X 34,
— Xy = XyXa, . (69)

— X7 = X734,

If we consider that matrip; is a random matrix, the probability of(A;) N A\ (—I) = @ is equal to one, which
from Equation 69) implies thatX, = X; = 0 andX; = Va, whereV ,, is theeigenvector matrixof A;.

15



The remaining equations from Equatid@] must verify

A Xy + AxXg = —X, A X5+ AyXy = —Xj3
—X5 - —X5 and _XG - _XG . (70)
~Xg = —Xg ~ Xy = —Xo

We are interested in the subspaceeafenvectors Thus, we can define a set efgenvectorbasis where
X8:X6:OandX5:X9:I

Va, 0 (-I—A) A,
Va=| 0 I 0 : (71)
0 0 I

If we apply the same method to the matrix

B, B, 0
B=| 0o -1 o (72)
0 0 I

and considering thdB, is a random matrixX (B;) N A (—I) = @), we get

Ve, (-I-B;)'B, 0
Ve=| o0 I 0 |. (73)
0 0 I

A.4 Intersection Subspace

In this section, we study the intersection subspace betegemvector matrice¥ 5, of Equation 1) andVg of
Equation {3), that correspond teigenvaluegqual to minos one.

Since we are only interested in tieggenvectorghat correspond teigenvaluesqual to minos one, from
AppendixA.3, we can define

0 (-I—A)) A, (-I-B;)"'B, 0
Va=|1 0 and Vg = I 0 |, (74)
0 I 0 I

and the basis for the intersection subspace can be obtammadlie solution of the following Equation

0 A;'A, B;'B, X, 0
I o0 I X, | = o (75)
0 I 0 X3 X,

M

whereM is full-rank, A; = —I — A; andB; = I — B,. Note thatA; andB; are random matrices which means
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that the probability of\ (A;) N A (I) = @ andX (B;) N A (I) = @ is one and, from Appendi®.1, we know that
A5 andB3; have inverses.

The subspace of solution for Equatiofb) can be defined as

Xl - —K
X3 =K
’ e (76)
Xy =—A; " A3B; B:K
X4 - —AglAnglBQK
for anynon—singulamatrix K.
We are interested in defining the basis for the intersectiasgace. Thus, we can wrike = I and
X;=-1
X3=1
’ ) ) (77)
X, = —-A;'A;B;'B,
Using X; andX, we can determine the intersection subspace from
0 A;'A, -B;'B,
X4
I 0 = —1I : (78)
X -1 -1
O I _A2 A3B3 B2
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