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Prefacio

Um dos mais importantes e frutuosos conceitos em Teoria das Categorias é o de sub-
categoria reflectiva. Por um lado, toda a subcategoria plena de uma categoria X que seja
reflectiva partilha muitas das propriedades mais significativas de X’ (tais como existéncia
e construcao de limites, existéncia de colimites, etc.), por outro lado, é conhecido um
consideravel nimero de boas condi¢oes suficientes para que haja reflectividade. Para
categorias plenas A de uma categoria X que nao sao reflectivas interessa determinar uma
subcategoria plena de X que seja a menor de entre as que sao reflectivas e contém A,
chamada invélucro reflectivo de A. Este é o tema central da presente dissertacao. Duas

questoes se poem:
(1) Quando é que A tem um invélucro reflectivo?
(2) Como pode ser construido o invélucro reflectivo de A, se ele existir?

Para (2), um caminho possivel é formar o invélucro para limites de A, i.e., a menor
subcategoria plena de X’ fechada para limites e que contém A. Se este invélucro é reflec-
tivo, ele é um invélucro reflectivo de A, mas a questao de determinar quando isto acon-
tece tem-se revelado muito dificil (cf., por exemplo, [4], [22], [58], [73] e [77]). Portanto,
nesta tese, optei por uma abordagem diferente baseada no conceito de ortogonalidade.
Recordemos que um objecto A se diz ortogonal a um morfismo f : X — Y se a aplicagao
hom(A, f) : hom(Y, A) — hom(X, A) é uma bijec¢ao. Para cada subcategoria plena A de
uma categoria X', denotamos por AT a classe de todos os morfismos f em X ortogonais

a todos os objectos de A. E f4cil concluir que se A é uma subcategoria reflectiva de X,
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entdo A pode ser reconstruida a partir de A+ do seguinte modo: A é constituida por
precisamente todos os objectos ortogonais a todos os morfismos em AL. Geralmente,
para uma subcategoria plena A, denotamos por O(A) o invélucro ortogonal de A, i.e., a
subcategoria plena de todos os objectos ortogonais a todos os A*-morfismos. Analoga-
mente ao que acontece para o fecho para limites, quando a subcategoria O(A) é reflectiva,
entao ela é o invélucro reflectivo de A. Por conseguinte, o invélucro ortogonal é também
um bom candidato a ser o invélucro reflectivo. Na verdade, muitos dos invélucros reflec-
tivos de subcategorias nao reflectivas “do dia-a-dia” coincidem com o fecho para limites
e, consequentemente, coincidem também com os respectivos invélucros ortogonais (visto
que toda a subcategoria plena reflectiva é ortogonal). Contudo, o invélucro ortogonal
pode ser simultaneamente reflectivo e diferente do fecho para limites. Em [56], J. Rosicky
apresenta um exemplo de uma categoria completa e cocompleta (na verdade, uma cate-
goria monotopoldgica sobre Set) que tem uma subcategoria plena fechada para limites
que nao € reflectiva e cujo invélucro ortogonal é reflectivo, logo o invélucro reflectivo.
Por outro lado, é de salientar que para toda a categoria topoldgica com fibras peque-
nas sobre Set, o invélucro reflectivo de uma subcategoria, caso exista, coincide com o
invélucro ortogonal, mas nao necessariamente com o fecho para limites (de acordo com
14.11 e 14.13). Portanto, o invélucro ortogonal pode constituir uma melhor abordagem
do invélucro reflectivo do que o fecho para limites.

Assim, o conceito de ortogonalidade terd um lugar central nesta tese. A nocao de
ortogonalidade no sentido usado ao longo do presente estudo aparece ja na literatura dos
anos sessenta (cf. [52] e suas referéncias). Em 1972, D. Pumpliin [52] observou que esta
nocao determina uma correspondéncia de Galois que induz um “operador de invélucro”
que faz corresponder a cada subcategoria A de uma categoria X uma subcategoria - o
invélucro ortogonal de A - que é uma boa aproximagao do invélucro (mono)reflectivo de
A em X e que tem grande parte das propriedades do invélucro (mono)reflectivo, mesmo
se este nao existir. Este conceito de ortogonalidade foi clarificado por P. J. Freyd e G.
M. Kelly ([22]) que apresentaram uma definigdo de ortogonalidade entre um morfismo
e um objecto de uma dada categoria (como em 1.1 a seguir). Desde entdo até agora o
estudo desta nogao, bem como o da sua relagdo com o conceito de reflectividade, tem-se
desenvolvido. Nomeadamente, o chamado “Problema da Subcategoria Ortogonal”, ou

seja o problema de quando é que uma subcategoria ortogonal é reflectiva, tem merecido a
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atengao de vérios mateméticos (cf. [22, 72, 79]). A nossa abordagem, em contraste com
a de outros autores, parte de uma dada subcategoria plena ao invés de partir de uma
dada classe de morfismos.

Para além do “ Problema do Invélucro Reflectivo”, investigamos também a relagao
deste com outros problemas tais como, por exemplo, a existéncia e caracterizacao do
invélucro sélido de uma categoria concreta (Capitulo IV). Finalmente, a investigacao feita
sobre reflectividade e ortogonalidade conduzir-nos-4 ao estudo de uma correspondente

generalizagao sobre multi-reflectividade e multi-ortogonalidade (Capitulos V e VI).

Sumario
Apresentamos agora uma breve descricao do contetido desta dissertacao.

O capitulo 0, “Preliminares”, da conta dos conceitos béasicos existentes na litera-
tura que sao usados ao longo da dissertacdo. Outros conceitos conhecidos, mas menos

estandardizados, sao relembrados mais tarde a medida que forem sendo precisos.

No Capitulo I, “O invélucro ortogonal” , comegamos um estudo sistematico do invélucro
reflectivo de uma subcategoria plena A de uma categoria X' mediante o invélucro ortog-
onal O(A). Provamos, por exemplo, que numa categoria com colimites conexos as duas
nogoes, invélucro ortogonal e invélucro reflectivo, coincidem se e sé se a classe de morfis-
mos Al satisfaz a condicao de conjunto solucao (Teorema 2.10). Mostramos ainda que é
possivel estudar o invélucro ortogonal de A em qualquer subcategoria plena e reflectiva
de X que contenha A, em vez de na categoria X dada (Proposicao 2.12). Este facto serd
usado varias vezes ao longo desta dissertacao como um meio de obter descri¢oes concretas
do invélucro ortogonal. Por ultimo, fazemos algumas consideracoes sobre classes firmes
de morfismos, um conceito introduzido por G. Briimmer e E. Giuli ([12]). Uma classe
& de morfismos diz-se firme sempre que existe alguma subcategoria plena e reflectiva tal
que &£ é precisamente a classe de todos os morfismos que um reflector R transforma em
isomorfismos, i.e.,

E ={f € Mor(X) | Rf é um isomorfismo}. O estudo do invélucro ortogonal desen-
volvido nas anteriores secgoes deste capitulo é usado para caracterizar classes firmes de

morfismos (Teorema 3.5).

O Segundo Capitulo é devotado ao estudo do operador de fecho ortogonal introduzido
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pela autora em [67] e serd a principal ferramenta para a investigagdo dos invélucros
ortogonais feita neste capitulo. O objectivo da definicao do operador de fecho ortogonal é
obter uma caracterizagao do invélucro ortogonal como sendo precisamente a subcategoria
plena de todos os objectos fortemente fechados (Teorema 7.5) e uma caracterizagao de
At como sendo uma classe de morfismos densos (Teorema 6.4). Aqui pressupomos que
é dada uma classe “adequada” M de monomorfismos como um parametro adicional
a X e A. O operador de fecho ortogonal faz corresponder a cada M-subobjecto m :
X — Y a interseccao de todos os subobjectos m, obtidos do seguinte modo: dado um
morfismo arbitrario g : X — A com A € A, formamos a soma amalgamada (¢’,m) do
par (m,g) e denotamos por mg a pré-imagem da M-parte de ™ segundo ¢’ (Definicao
5.1). Para além do j& mencionado papel deste operador de fecho, nomeadamente, na
caracterizagao do invélucro ortogonal via fechamento (e na caracterizagao da classe At
via densidade), ele é ainda usado para obter condigoes suficientes para que o invélucro
ortogonal seja reflectivo (Theorem 8.1). Estes resultados sdo particularizados em algumas
categorias bésicas X, e.g., a categoria dos espagos topoldgicos Tp (Exemplos 8.8). Dada
uma classe M de monomorfismos numa categoria X', a maior subclasse de M estavel
para somas amalgamadas serd representada por PS(M). Para uma classe “adequada”
M, asubclasse PS(M) desempenha um papel importante na caracterizacao do invélucro
ortogonal e na determinacao de condi¢Ges suficientes para que ele seja reflectivo, por
intermédio do operador de fecho ortogonal. Este facto motivou a Seccao 9 que se dedica
ao estudo da classe PS(M) em categorias “do dia-a-dia”. Em particular, caracterizamos
PS(M) para a classe M de todas as imersoes em algumas subcategorias epireflectivas
da categoria Top dos espagos topoldgicos e fungoes continuas (Exemplos 9.5 e Proposigao
9.9). Ao longo do capitulo, estabelecemos algumas relagoes entre o operador de fecho
ortogonal e o ja amplamente investigado operador de fecho regular (cf. [60], [18, 19, 20],
[21] e suas referéncias), é o caso em 5.8, 7.8, 8.9, 9.7 e 9.8.

O Capitulo III é dedicado & generalizagao do conceito de espago sébrio para espagos a-
s6brios, onde « é um ordinal, apresentada pela autora em [68]. Recordamos que os espagos
sébrios sao importantes na topologia “livre de pontos”, porque eles sao precisamente os
espagos topoldgicos que sao caracterizados pelo reticulado local dos conjuntos abertos.
Fazemos uso dos principais resultados do Capitulo II para provar que o “reticulado”

das subcategorias epireflectivas da categoria Topg dos espagos topoldgicos Tj e aplicagoes
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continuas contém uma classe prépria bem ordenada, formada pelas categorias dos espagos
a-sébrios, onde « é um ordinal maior do que 1. Cada categoria desta classe é o invélucro

reflectivo em Topg do ordinal a equipado com a topologia de Alexandrov.

No Capitulo IV, “Invélucros Sélidos”, que é essencialmente baseado em [66], estu-
damos condigoes sob as quais uma dada categoria concreta tem um invélucro sélido. Ha
uma ligagao estreita entre involucros sélidos e invélucros reflectivos porque uma categoria
concreta é solida se e 86 se é reflectiva no seu completamento de MacNeille, ou equivalen-
temente, se e sO se é uma subcategoria plena e reflectiva de alguma categoria topoldgica
(cf. [37] and [71]). O estudo de invélucros sélidos aqui desenvolvido continua a inves-
tigagao encetada por J. Rosicky em [56, 57], sendo que a nossa abordagem é, contudo,
completamente diferente. J. Rosicky descobriu uma categoria concreta sobre Set que
nao tem invélucro solido, apesar de ter uma extensao solida finalmente densa. Trata-se
de uma categoria muito interessante, cujas particularidades se revelam 1teis em varios
lugares da primeira parte desta tese. No Teorema 15.2, que foi inspirado por resultados
de J. Adamek, J. Rosicky e V. Trnkové ([5], [7], [57]) sobre o Principio de Vopénka, esta-
belecemos que a existéncia de involucros sélidos para todas as categorias concretas sobre
Set com uma subcategoria pequena finalmente densa é equivalente ao Principio Fraco
de Vopénka. Isto melhora o seguinte resultado devido a J. Rosicky [57]: Assumindo o
axioma (M) da nao existéncia de uma classe prépria de cardinais mensurdveis, existe
uma categoria concreta sobre Set com uma subcategoria pequena finalmente densa que

nao tem invélucro sélido ((M) implica a negacgao do Principio Fraco de Vopénka ([7])).

Ha& subcategorias importantes em varios campos da Matematica cujo comportamento
se assemelha ao das reflectivas, embora nao o sendo; é o caso, por exemplo, da subcate-
goria plena dos corpos na categoria dos anéis comutativos com identidade. Tais exemplos
levaram J.Kaput [44] a introduzir a nocao de subcategoras localmente reflectivas. Este
foi o ponto de partida para varias generalizacoes (e.g. [11], [17] and [74]) sob diferentes
nomes. Aqui estudamos uma dessas nocoes, a de multi-reflectidade, que foi introduzida
por R. Borger e W. Tholen em [11] e tem sido investigada por vérios autores (e.g.,
[17, 74, 10, 61, 8]). Em [17] Y. Diers apresenta um estudo sistematico das subcatego-
rias multi-reflectivas e fornece um grande ntimero de exemplos. Uma multi-reflexao de
um objecto X da categoria X na subcategoria plena A é uma fonte de morfismos com

dominio X e codominio em 4 universal no seguinte sentido: cada morfismo com dominio
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X e codominio em A se factoriza através de um tinico membro da fonte e, além disso, a
factorizagao é inica. Uma subcategoria A diz-se multi-reflectiva se todo o objecto de X
tem uma multi-reflexdo em A. (Analogamente, se pode generalizar a nocao de colimite
para multicolimite, a de categoria sélida para categoria multi-sélida, etc.) Dedicamos os
Capitulos V e VI ao estudo do invélucro multi-reflectivo de uma dada subcategoria plena
A, i.e., a menor subcategoria plena multi-reflectiva que contém A. Estudamos também a
conexao entre multi-reflectividade e propriedades tais como multicocompletude e multi-
solidez. Na Seccao 17 generalizamos os resultados de J. Adamek, H. Herrlich e J. Reiter-
man [3] que estabelecem que a cocompletude “quase” implica completude a questao de
quando é que a multicocompletude implica a existéncia de limites conexos (Proposi¢ao
17.3 e Teorema 17.6) e vice-versa (Proposicao 17.4). O Teorema 18.4 generaliza um
resultado sobre solidez de W. Tholen [71] estabelecendo que uma categoria concreta e
co-bempotenciada (A, U) sobre uma categoria-base multicocompleta é multi-sélida se e
s6 se A é multicocompleta e U é um multi-adjunto direito. Este resultado melhora o

Teorema 6.3 de [74] e é o principal resultado de [69].

O conceito de um objecto ortogonal a um morfismo também se generaliza natural-
mente ao de um objecto A multi-ortogonal a uma fonte com dominio X: tal genera-
lizacao significa que cada morfismo de X para A se factoriza de forma tunica através
de um tnico membro da fonte. Uma subcategoria plena A diz-se multi-ortogonal se
consistir precisamente em todos os objectos multi-ortogonais a uma dada colec¢ao de
fontes. No Capitulo VII, “Multi-reflectividade e Multi-ortogonalidade”, estudamos uma
generalizagao dos resultados sobre reflectividade e ortogonalidade dos Capitulos I e IT no
cenario das multi-reflectividade e multi-ortogonalidade. A nocao de multi-ortogonalidade,
introduzida, tanto quanto sei, por R. Borger [10], tem um papel central neste capitulo.
Relacionamos multi-ortogonalidade com ortogonalidade via quasicategorias de comple-
tamento para produtos grandes e usamos esta relacao para obtermos o Teorema 20.2 e
a Proposicao 20.4 que sao uma generalizagao de, respectivamente, 2.10 e 2.12.2. Final-
mente, generalizamos a defini¢do de operador de fecho ortogonal de uma maneira que se
revela mais apropriada para o estudo dos invélucros multi-reflectivos. Isto permite-nos
caracterizar as fontes multi-ortogonais a uma dada subcategoria plena em termos de den-
sidade (Proposicao 22.8) e dar condicoes suficientes para que o invélucro multi-ortogonal
seja multi-reflectivo e, além disso, caracterizd-lo em termos de fechamento (Teorema

23.4).
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Observamos que existe uma diferenca do ponto de vista da Teoria de Conjuntos
entre as nogoes “multi” consideradas por Y. Diers [17] e outros autores (veja-se, por
exemplo, [6], [8] e [61]) e as que nds consideramos: As multi-reflexdes e os multicolimites
de Y. Diers sao indexados somente por conjuntos, enquanto que nds permitimos que eles
sejam indexados por classes préprias. Os nossos resultados mais importantes permanecem
validos se obrigarmos a classe indexante de cada nocao “multi” a ser precisamente um
conjunto. A ideia de considerar classes em vez de conjuntos nao é nova. Por exemplo, em
[74], W. Tholen estudou as duas nocoes de multi-reflectividade, para conjuntos e classes
em paralelo com outras generalizacoes de reflectividade. Mas o que parece ser clarificado
nos tultimos dois capitulos desta dissertacao é que, ao contrario do que poderia parecer
numa primeira impressao, em geral, nao perdemos propriedades quando consideramos
classes em vez de conjuntos, mesmo se por vezes a técnica usada nas demonstracoes para
0 caso em que consideramos apenas conjuntos nao funciona para o caso em que admitimos
classes préprias (compare-se, por exemplo, a demonstragao do Teorema 6.3 em [74] com
o nosso Teorema 18.4). De facto, mais importante do que obter um resultado mais geral
ao aceitar classes nas nogoes “multi”, é o facto de que estas definicbes “grandes” e as
técnicas usadas nas demonstragoes sublinham o comportamento “local” destas nocoes e

o facto de que apenas o “tamanho local” desempenha realmente um papel.
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Preface

One of the most important and fruitful concepts of Category Theory is that of reflec-
tive subcategory: On the one hand, a full subcategory of a category X which is reflective
shares a lot of convenient properties of X' (existence and construction of limits, existence
of colimits, etc.), on the other hand, a number of good sufficient conditions for reflec-
tivity are known. For full subcategories A of a category X which fail to be reflective
it is interesting to study the smallest reflective subcategory of X containing A, called a
reflective hull of A. This is the aim of the present dissertation. We turn to the question
of

(1) When does A have a reflective hull?

and
(2) How can his reflective hull, if it exists, be constructed?

For (2), a possible way is to form a limit hull of A, i.e., the smallest full subcategory of X
closed under limits and containing A. If the latter category is reflective, it is a reflective
hull of A, but the question of when this happens turns out to be very difficult (see, for
instance, [4], [22], [58], [73] and [77]). In my thesis I therefore decided for a different
approach based on the concept of orthogonality. Recall that an object A is said to be or-
thogonal to a morphism f : X — Y provided that hom(A, —) turns f to an isomorphism.
For every full subcategory A of a category X we denote by A* the class of all morphisms
f in X orthogonal to all A-objects. It is not difficult to see that if A is a reflective subcat-

egory of X, then A can be reconstructed from A+ as follows: A consists of precisely all
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objects orthogonal to all morphisms in A*. For a general full subcategory A, we denote
by O(A) the orthogonal hull of A, i.e., the full subcategory of all objects orthogonal to
all A*-morphisms. Analogously to what happens to the limit-closure, whenever O(A) is
reflective, it is the reflective hull of A. So, the orthogonal hull is also a good approach to
the reflective hull. Indeed, most of the known reflective hulls of everyday non-reflective
subcategories coincide with the limit-closure and, consequently, they also coincide with
the orthogonal hull (since every reflective subcategory is orthogonal). However, the or-
thogonal hull may be simultaneously reflective and different from the limit-closure. In
[56], J. Rosicky presents an example of a complete and cocomplete category (indeed, a
monotopological category over Set) which has a non-reflective limit-closed subcategory
whose orthogonal hull is reflective, hence the reflective hull. On the other hand, for a
fibre-small topological category over Set, the reflective hull of a subcategory, if it exists,
must coincide with the orthogonal hull, but it may not coincide with the limit-closure
(see 14.11 below). So, the orthogonal hull may be a better approach to the reflective hull
than the limit-closure.

Thus, orthogonality will be a central concept in this thesis. The notion of orthogo-
nality in the sense we use has already been used in literature in the sixties (see [52] and
references there). Subsequently, D. Pumpliin [52] observed that this notion determines a
Galois correspondence which induces a “hull operator” which assigns to each subcategory
A of a category X a good approach to the (mono)reflective hull of A in X and which
has most of the properties of the (mono)reflective hull, even if the latter does not exist.
This concept of orthogonality was clarified by P. J. Freyd and G. M. Kelly ([22]) who
presented a definition of orthogonality between a morphism and an object of a given
category (as in 1.1 below). From then on, this notion and its role in the understanding
of the concept of reflectivity were further developed. Namely, the so-called “Orthogonal
Subcategory Problem”, that is, the problem of when an orthogonal subcategory is reflec-
tive, has drawn the attention of several mathematicians (cf. [22, 72, 79]). Our approach,
in contrast to the other authors, is that we start with a given full subcategory, while they
start with a given class of morphisms.

We also investigate the relationship between the “Reflective Hull Problem” to other
problems such as, for instance, the existence and characterization of a solid hull of a con-

crete category (Chapter IV). Finally, the investigation done on reflectivity and orthogo-



nality is generalized to a corresponding study of multireflectivity and multiorthogonality

(Chapters V and VI).

Summary

We now present a short synopsis of the contents of the dissertation.

Chapter 0, “Preliminaries”, summarizes the basic concepts found in literature which
are used throughout the dissertation. Other less standard well-known concepts are re-

called later as they are needed.

In Chapter I, “The Orthogonal Hull”, we begin a systematic study of the reflective
hull of a full subcategory A of a category X by means of its orthogonal hull O(A). We
prove, for example, that in a category with connected colimits the two notions, orthogonal
hull and reflective hull, coincide if and only if the collection AT satisfies the solution set
condition (Theorem 2.10). We also show that it is possible to study the orthogonal hull
of A in, instead of the given category X, any reflective full subcategory of X containing
A (Proposition 2.12). This fact will be used many times throughout the dissertation
in order to obtain concrete descriptions of the orthogonal hull. We finally turn to firm
classes of morphisms, a concept introduced by G. Brimmer and E. Giuli ([12]). A class
& of morphisms is called firm provided that, for some full reflective subcategory, £ is
precisely the class of all morphisms which a reflector R turns to isomorphisms, i.e.,
E ={f € Mor(X) |Rf is an isomorphism}. We use conditions defined in the present
chapter in the study of orthogonal hulls in order to characterize firm classes of morphisms

(Theorem 3.5).

The Second Chapter is devoted to the study of the orthogonal closure operator, which
was introduced by the author in [67] and will be a main tool for the investigation of or-
thogonal hulls along this chapter. The aim of the definition of this closure operator is
to obtain a characterization of the orthogonal hull as the full subcategory of all strongly
closed objects (Theorem 7.5) and a characterization of A as a class of dense morphisms

” class M of monomorphisms is given

(Theorem 6.4). Here we assume that a “convenien
as an additional parameter to X and A. The orthogonal closure operator assigns to
every M-subobject m : X — Y the intersection of all subobjects m, obtained as follows:

g : X — Ais an arbitrary morphism with A € A, then one forms a pushout (¢',m) of
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(m, g) and denotes by mg, the pre-image of the M-part of m under ¢’ (Definition 5.1).
Besides the already mentioned role of this closure operator, namely, a characterization of
the orthogonal hull via closedness (and characterization of A+ via density), we also use
it for giving sufficient conditions for the orthogonal hull to be reflective, thus, to be the
reflective hull (Theorem 8.1). These results are specialized in some basic categories X,
e.g., the category of topological Ty-spaces (Examples 8.8). Given a class M of monomor-
phisms in a category X, the greatest pushout-stable subclass of M will be denoted by
PS(M). For a “convenient” class M, the subclass PS(M) plays an important role in
the characterization of the orthogonal hull and the determination of sufficient conditions
for it to be reflective, via the orthogonal closure operator. This fact motivated section 9
which is concerned with the study of the class PS(M) in “everyday” categories. In par-
ticular, we characterize PS(M) for the class M of all embeddings in some epireflective
subcategories of the category Top of topological spaces and continuous maps (Examples
9.5 and Proposition 9.9). Throughout the chapter, some links between the orthogonal
closure operator and the widely investigated regular closure operator (cf. [60], [18, 19, 20],

[21] and references there) are established, see 5.8, 7.8, 8.9, 9.7 and 9.8.

Chapter III is devoted to the author’s generalization of sober spaces to a-sober spaces,
where « is an ordinal, see [68]. We recall that sober spaces are important in point-free
topology because they are precisely the spaces characterized by the frame of open sets.
We make use of the main results of Chapter II to prove that the “lattice” of epireflective
subcategories of the category Topg of topological Tp-spaces and continuous maps contains
a well ordered proper class, formed by categories Sob(a) of a-sober spaces, where o > 2
is an ordinal. Each category Sob(«) of this class is the reflective hull in Topy of the
ordinal « eqquiped with the Alexandrov topology.

In Chapter IV, “Solid hulls”, which is essentially based on [66], we study conditions
under which a given concrete category has a solid hull. There is a close link between solid
hulls and reflective hulls because a concrete category is solid if and only if it is reflective
in its MacNeille completion, or equivalently, if and only if it is a reflective full subcategory
of some topological category (cf. [37] and [71]) . The study of solid hulls continues the
research initiated by J. Rosicky [56, 57], however our approach is completely different.
J. Rosicky has presented a concrete category over Set which does not have a solid hull,

although it has a finally dense solid extension. This is a very interesting category whose
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particularities turn out to be useful in several places in the first part of this thesis. In
Theorem 15.2, which was inspired by results of J. Addamek, J. Rosicky and V. Trnkova
([5], [7], [57]) on the Vopénka’s Principle, we establish that the existence of solid hulls for
all concrete categories over Set with a small finally dense subcategory is equivalent to the
large-cardinal Weak Vopenka’s Principle. This improves the following result due to J.
Rosicky [57]: Under the axiom (M) of the non existence of a proper class of measurable
cardinals, there is a concrete category over Set with a small finally dense subcategory

which does not have a solid hull ((M) implies the negation of Weak Vopenka’s Principle
([71)-

There are important subcategories which, although they are not reflective, have a
behaviour which resembles that of reflective subcategories: for example, the full subcat-
egory of fields in the category of commutative unitary rings. Such examples have led J.
Kaput [44] to introduce the notion of locally reflective subcategories. This was the start-
ing point to various generalizations (e.g. [11], [17] and [74]) using different names. Here
we study one of these notions, multireflectivity, which was introduced by R. Borger and
W. Tholen in [11] and has been investigated by several authors (e.g., [17, 74, 10, 61, 8]).
In [17], Y. Diers presents a systematic study of multireflective subcategories and pro-
vides a great number of examples. By a multireflection of an object X of a category X
in a subcategory A is meant a source of morphisms with domain X and codomain in A
universal in the following sense: every morphism with the domain X and a codomain in
A factors through a member of the source and the factorization is unique. A subcate-
gory A is called multireflective provided that every object of X' has a multireflection in
A. (Analogously, one generalizes colimits to multicolimits, solidness to multisolidness,
etc.) We dedicate Chapters V and VI to the study of a multireflective hull of a given
full subcategory A, i.e., the smallest full multireflective subcategory containing A. We
also study the connection of multireflectivity to properties such as multicocompleteness
and multisolidness. In Section 17 we generalize the result of J. Addmek, H. Herrlich
and J. Reiterman [3] that cocompleteness “almost” implies completeness to the question
of when multicocompleteness implies the existence of connected limits (Proposition 17.3
and Theorem 17.6) and the other way round (Proposition 17.4). Theorem 18.4 general-
izes a result on solidness of W. Tholen [71] by establishing that a cowellpowered concrete

category (A, U) over a multicocomplete base-category is multisolid if and only if A is
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multicocomplete and U is a right multi-adjoint. This result improves Theorem 5.3 of [74]
and is the main result of [69].

The concept of an object orthogonal to a morphism also naturally generalizes to that
of an object A multiorthogonal to a source with domain X: it means that every mor-
phism from X to A uniquely factors through a unique member of the source. A full
subcategory A is called multiorthogonal provided that it consists of precisely all objects
multiorthogonal to a given collection of sources. In Chapter VII, “Multireflectivity and
multiorthogonality”, we investigate a generalization of the results on reflectivity and or-
thogonality of Chapters I and II to the setting of multireflectivity and multiorthogonality.
The notion of multiorthogonality, introduced, as far as I know, by R. Borger [10], plays
a central role in this chapter. We relate multiorthogonality with orthogonality via free
large-product completion quasicategories and we use these relationships to prove Theo-
rem 20.2 and Proposition 20.4 which are a generalization of, respectively, 2.10 and 2.12.2.
Finally, we give a generalization of the definition of orthogonal closure operator which
shows to be more appropriate for the characterization of multireflective hulls. This en-
ables us to characterize the sources multiorthogonal to a given full subcategory in terms
of density (Proposition 22.8) and to give sufficient conditions for the multiorthogonal hull
to be multireflective and, moreover, to be characterized in terms of closedness (Theorem

23.4).

We remark that there is a set-theoretic difference between the “multi” notions consid-
ered by Y. Diers [17] and other authors (see, for instance, [6], [8] and [61]) and the ones we
consider: The multireflections and the multicolimits of Y. Diers are indexed only by sets,
while we allow them to be indexed by classes. Our main results remain valid if we oblige
the indexed class of each “multi” notion to be just a set. The idea of considering classes
instead of sets is not new. For instance, in [74], W. Tholen studied the two notions of
multireflectivity, for sets and for classes (which he called “strongly localizing reflectivity”
and “strongly locally reflectivity”, respectively) in parallel with other generalizations of
reflectivity. But what seems to be clarified in the two last chapters of this dissertation is
that, in contrast to what may appear at a first look, in general, we do not lose properties
when we consider classes instead of sets, even if sometimes the technique used in the
proof for the small case does not work in the large one (compare, for instance, the proof

of Theorem 6.3 in [74] with our Theorem 18.4). In fact, more important than to have
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a more general result by accepting classes in the “multi” notions is the fact that these
“large” definitions and the techniques used in the proofs stress the “local ” behaviour of

these notions and the fact that only the “local smalness” plays really a role.
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Chapter 0

Preliminaries

Throughout this work we shall normally use script capitals A, B, ... X, ... to denote
categories. A category is understood in the sense of [2]; in particular, if X and Y are
objects of a category X', then the family of all morphisms from X to Y, denoted by
X(X,Y), is assumed to form a set. Otherwise we speak of quasicategories, even if the
collection of objects is a set.

All subcategories are understood to be full and replete, unless anything is specified
to the contrary.

A convenient reference for background in Category Theory is [2], whose terminology
we use, in general.

Next, we recall some notions which will be used along the text and which cannot be

found in [2], at least, with the details we need.

For a subcategory A of X', an X-morphism f : X — Y is A-cancellable if, for each
pair of morphisms g, h : Y — A with codomain in A, the equality g - f = h - f implies
that g = h.

A class £ of X-morphisms is right-cancellable if, for any morphisms f and g, f € £
whenever f-g€ £ and g € €.

Dually, we have left-cancellable classes.

A category X is connected if it is non-empty and, for each pair X, Y of X-objects,
there is a finite family of X-objects X = Xy, X1, ..., X, =Y such that X(X;_1, X;) U
X(X;, Xi—1) #0, for i = 1,2,...,n. Thus, each category is the coproduct of connected



categories. They are said to be its connected components.

A connected colimit is the colimit of a connected diagram, that is, of a diagram
D : I — X, where f is a connected category. Dually, we get the notion of connected
limit.

Let (X;); be a small family of objects of a category X'. The family (X;); is said to
be a terminal set in X provided that for each X-object Y there is a unique ¢ € I such

that X(Y, X1) # () and, furthermore, there is a unique morphism from Y to Xj.

The family (X;)7 is said to be a weakly terminal set provided that for each X-object
Y there is some i € I such that X (Y, X;) # 0.

If I is singular then the only object of the family is said to be a terminal object or a
weakly terminal object, respectively.

The dual notions are initial set, weakly initial set, initial object and weakly initial

object.



Chapter 1

The orthogonal hull

We want to study reflective hulls of subcategories A of a given category X. (Recall
that all subcategories are assumed to be full and replete.) That is, we want to discuss
the existence and characterize the objects of the smallest reflective subcategory A of X
containing A. Omne approach is to start with the closure of A under limits (which is
certainly contained in A and can possibly be equal to A). We find it more useful to work
with the orthogonal hull of A, i.e., the subcategory (A*). of all objects orthogonal to
any morphism to which all A-objects are orthogonal. This may be a better approach
than the limit-closure: For instance, for a fibre-small topological category over Set, the
reflective hull of a subcategory, if it exists, must coincide with the orthogonal hull, but
it may not coincide with the limit-closure (see 14.11 and 14.13 below). It is clear that
whenever the orthogonal hull is reflective, it is the desired reflective hull.

In the first section of this chapter we collect basic definitions and properties on or-
thogonality, illustrated with several examples.

In Section 2, we characterize the subcategories of categories with connected colimits
for which the orthogonal hull is reflective, then the reflective hull. We also show that
if A is a subcategory of B and X, and B is a reflective subcategory of X, then the
orthogonal hull of A in B coincides with the orthogonal hull of A in X. This enables us
to obtain some important results, such as, for instance, that if A is a subcategory of an
(€, M)-category X with connected colimits and such that the E-reflective hull of A in X
is cowellpowered, then the orthogonal hull of A in X is its reflective hull.

The notion of firm classes of morphisms was introduced in [13] and [12] as an approach
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to a categorical concept of completion. In the last section of this chapter we relate this
notion with the one of orthogonality and characterize firm classes in categories with

connected colimits.

Troughout the chapter, X denotes a given category.

1 Orthogonality

Definitions 1.1 An X-morphism f: X — Y and an X-object Z are said to be orthog-
onal to each other, written f 1 A, provided that for each morphism ¢ : X — Z, there is
a unique ¢’ : Y — Z such that the triangle

f
X ——Y

P4

Z
is commutative.

For every subcategory A of X, we denote by A* the class of all X-morphisms which
are orthogonal to A, that is, all morphisms f such that f L A for all A € Obj(A).

Given a class £ of X-morphisms, we denote by £, the subcategory of all X-objects

which are orthogonal to &, i.e., all X-objects such that f L X for all f € &.

A subcategory B of X is said to be orthogonal if B = £, for some class £ of X-

morphisms.

We shall write A+* and & » every time that the reference to the category X is

convenient.

Let A be a subcategory of a category X'. A reflection from an X-object X to A is a

morphism X —— A with codomain in A and such that

(0) each morphism with domain X and codomain in A is uniquely factorizable by 7.
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The condition (o) means that the morphism r is orthogonal to A. So, an A-reflection is

an A'-morphism with codomain in A.

The following Propositions 1.2 and 1.4 collect some properties on orthogonality which

can be found in [22], [72] and [58].

Proposition 1.2

1.

The pair of maps ((—) 1, (—)*) establishes a (contravariant) Galois connection be-

tween the conglomerate of all classes of X-morphisms and the conglomerate of all
subcategories of X, both ordered by inclusion, that is, if A and B are subcategories

of X and £ and F are classes of X-morphisms, then:

e ACB=— A+ D B*t
e ECF=—E& DF,L
e ACE —EC AL

For every subcategory A and for the following assertions

(a) A is reflective,

(b) A is orthogonal,

(c) A is closed under limits,
we have that (a) = (b) = (c).

For every family (&;)1 of classes of morphisms,

Nier(&)r = Uier &)1 O

From 1.2.1, it follows that, given a subcategory A of X, the subcategory (AL), is

the smallest orthogonal subcategory of X containing A.

Definition 1.3 For every subcategory A of X, the subcategory (A+), is called the
orthogonal hull of A in X and it will be denoted by O(A).

From the definition of A" it is clear that all morphisms in A~ are A-cancellable. The

following proposition lists some other useful properties of A*.
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Proposition 1.4 For every subcategory A of X we have that:

1. A+ contains all isomorphisms and is closed under composition.
2. If f-g € At and g is A-cancellable, then f € A*. Thus, At is right-cancellable.

3. At is left-cancellable.

4. At is closed under pushouts, i.e., if the diagram

is a pushout and f € A+, then f € AL,

5. AL is closed under multiple pushouts, i.e., if the diagrams

€;
X —X;
F

represent a multiple pushout and e; € AL for alli € I, then e € AL, O

,i1€el,

Examples 1.5 In the following examples, for each subcategory A of a category X, the

corresponding class A and subcategory O(A) are described.

1. (cf. [13] and [34]) Let Topp be the category of topological Tp-spaces and continuous

maps.
e A morphism f: X — Y in Topg is called b-dense if each y € Y satisfies the
condition
(b) for each open set Hin Y, if y € H, then {y} N H N f(X) #0 ,
or, equivalentely, the condition

(t/) for all open sets H and H' in Y such that H N f(X) = H' N f(X)X, we
have that y € H iff y € H'.
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e A topological space X is called sober if every non-empty irreducible closed set
of X (i.e., a closed set which cannot be written as a union of two proper closed

subsets) is the closure of a unique point.

Let A be the subcategory of Topy whose objects are the Sierpinski spaces. Then
the orthogonal hull of A is the subcategory Sob of all sober spaces, since Sob is
simultaneously the limit-closure and the reflective hull of A in Topy (see [63] and
[50]). On the other hand, A is the class of all b-dense embeddings. Indeed,
Topo is the epireflective hull of the Sierpinski space S = ({0,1},{0,{1},{0,1}})
in Top and Top is an (Epi, Initial M onoSource)-category; hence, it follows from
2.17.3 below that every Topg-morphism orthogonal to S must be an embedding and
an epimorphism in Topg. Then, since the epimorphisms in Topg are just b-dense
morphisms, as proved by S. Baron [9], every such morphism is a b-dense embedding.
Conversely, let X — Y be a b-dense embedding in Topy and let X L Shea
continuous map. Let H be an open set of Y such that X N H = f~1({1}). Then
the continuous map f :Y — S, defined by

_ 1 if H
f(y)Z{ 1 ve
0 if y¢&H

is such that f-m = f. Furthermore, since each y € Y satisfies condition ('), it

immediately follows that f is unique.

The following examples 2. and 3. follow from 3.8 of [12].

2. Let Tych be the category of Tychonoff spaces and continuous maps and let A be
the subcategory of Tych whose objects are all spaces homeomorphic to the closed
unit interval T = [0, 1] with the euclidean topology. An embedding X —= Y is
said to be a C*-embedding provided that every continuous function X 5 1 can
be extended to a continuous function Y L I. We recall that two subsets Z and
W of a topological space X are said to be completely separated provided that there
is some continuous map ¢ : X — I such that g(Z) = 0 and g(W) = 1. We recall
further that an embedding X —— Y is a C*-embedding iff every pair of completely

separated sets in X is completely separated in Y (see [78]).
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In this case, A~ is the class of all dense C*-embeddings and O(.A) is the subcategory

HComp of compact Hausdorff spaces.

3. For X=Tych and A the subcategory of all spaces homeomorphic to the real line
R, we have that Al consists of all dense C-embeddings (i.e., dense embeddings
which can extend all continuous functions with codomain in R) and O(A) is the

subcategory RComp of all real compact spaces.

4. Let HUnif be the category of Hausdorff uniform spaces and uniformly continuous
maps and let A be the subcategory of Cauchy-complete Hausdorff uniform spaces.
Hence, A is orthogonal, since it is reflective. On the other hand, since HUnif
is the epireflective hull of A, it follows from 2.17.3 below that all morphisms in
AL must simultaneously be epimorphisms and embeddings. Consequently, since in
HUnif the epimorphisms are just the dense uniformly continuous functions (see
[51] or [34]) and every embedding extends each uniformly continuous function with
codomain in a Cauchy-complete Hausdorff uniform space (see, for instance, [78]),

it follows that the class A~ is just the class of all dense embeddings.

5. Let X be the category Met of all metric spaces and non-expansive maps and let A
be the subcategory whose objects are the complete metric spaces. Then, by using
an argument analogous to the one used in example 4., we conclude that A+ consists

of all dense embeddings and O(A) is just A (see also [34]).

6. Similarly, if we consider the category Norm of normed spaces and non-expansive
maps and its subcategory Ban of Banach spaces, then we have that Ban'’ is the

class of all dense embeddings and O(Ban)=Ban.

7. Let X be a subcategory of Top and let A be a subcategory of X which contains
the indiscrete two-point space {0,1}. Furthermore, let A be initially dense in X,
that is, for each space X in X there is an X-source (X L> A;)r with codomain in
A which is initial, i.e., for every space Y in X a map Y -2+ X is continuous iff all
fi - g are continuous. Then AT consists of isomorphisms only and, consequently,
O(A) = X. In fact, let the morphism X Ty belong to A+. Then f is a bijection:
an injection because every map from X to {0, 1} must be factorized through f, and

a surjection because every map from X to {0, 1} can be factorized through f in an
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unique way. On the other hand, the fact that A is initially dense in X implies that
the morphism X 7, v is initial. Indeed, let Z be an X-object and let Z %5 X be
a map between the underlying sets of Z and X such that f - g is a continuous map.
Let (X N A;); be an initial source with codomain in A and, for each i € I, let
Y L> Aj; be the morphism such that f,- f = f;. Then f;-g = f;- f-g is continuous

for all ¢ € I and, thus, g is continuous. Therefore, since every initial bijection is an

isomorphism, it follows that every morphism in A" is an isomorphism.

Two examples of categories X and A satisfying these conditions are the following:

(a) X is the category FinGen of finitely generated topological spaces and contin-

uous maps and A is the subcategory of finite topological spaces.

(b) X is the category CompGen of compactly generated topological spaces and

continuous maps and A is the subcategory of all compact spaces.

8. Let TfAb be the category of torsion-free abelian groups and group homomorphisms.

A morphism f: A — B in TfAb is said to be T-dense if the factor group B/f(A)

is a torsion group.

Let A be the subcategory of T f.Ab whose objects are all divisible torsion-free abelian
groups. Then Al consists of all T-dense monomorphisms and O(A)=A (see [12]).

2 Orthogonal hulls and reflective hulls

Definition 2.1 Let A be a subcategory of X. A reflective subcategory B of X is said to
be a reflective hull of A in X’ provided that it contains A and is contained in any other
reflective subcategory which contains A.

If £ is a class of X-morphisms, B is said to be a £-reflective hull of A if it is E-reflective

and is contained in every E-reflective subcategory containing A.

A convenient reference on reflective subcategories, reflective hulls and the related

problem on the reflectivity of the intersection of reflective subcategories, is the survey
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paper [73] and references there.

By 1.2, the orthogonal hull is a good candidate to be the reflective hull. Indeed, in
all examples given in 1.5 we have that O(A) is the reflective hull of A. However, this
does not always occur. Next, we show a simple example of a subcategory which has a

reflective hull different from its orthogonal hull.

Example 2.2 Let X be the poset

a b

N

C

considered as a category. If A is the subcategory of X having only the object a, then A
is orthogonal and X is the reflective hull of A, but the orthogonal hull of A is A itself.

It can be argued that the category X in Example 2.2 is not a “nice” category; for
instance, it is neither cocomplete nor complete. However, even very “reasonable” cate-
gories may have subcategories such that neither the limit-closure nor the orthogonal hull
are reflective and, moreover, which do not have a reflective hull. Actually, V. Trnkova,
J. Addmek and J. Rosicky proved in [77] that the category Top of topological spaces and
continuous maps has a subcategory which does not have a reflective hull, although it is

an orthogonal subcategory. Another important example is the following:

Example 2.3 ([4]) Let BiTop be the category of bitopological spaces and bicontinuous
maps: objects are triples (X, 7,v) where X is a set and 7 and v are topologies on X;
a morphism f : (X,7,v) — (X',7/,¢) is a map from X to X’ which is continuous
with respect to the first topologies and with respect to the second topologies. The
subcategory BiCom of all bitopological spaces with both topologies compact Hausdorff
is the intersection of two reflective subcategories: the subcategory of all bitopological
spaces whose first topology is compact Hausdorff, and the subcategory of all bitopological
spaces whose second topology is compact Hausdorff. However, BiCom is not reflective,

and, consequently, it does not have a reflective hull.

Remark 2.4 For several categories, the existence of the reflective hull of A forces that

hull to be precisely the orthogonal hull of A:
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Let X be a category such that, for each morphism f, the subcategory {f}, is re-
flective. This holds, for example, in each locally presentable category and also in the
category Top of topological spaces (see [22] and [77]). Then, by 1.2, it follows that the
reflective hull of every subcategory A of X, if it exists, coincides with the orthogonal hull
of A. In fact, concerning Top, this is a particular case of a more general result (see 14.11
below).

Several results on conditions under which an orthogonal subcategory of the form {f} |

is reflective are given in [22] and [72] (see also [58]).

From 1.2.2, it is clear that, whenever the limit-closure is reflective, then it coincides
with the orthogonal hull. However, O(A) may be reflective without coinciding with the
limit-closure of A. It was J. Rosicky who found out an example of a category X with
very good properties and, yet, having a limit-closed subcategory A such that O(A) is
the reflective hull of A but A # O(A). It is described next.

Example 2.5 ([56]) Let X be the category defined as follows
e objects: pairs (X, z) where X is a set and z is either the empty map
05X
or a function from the class of all ordinals to X
Ord % X

such that, if z(i) = (k) for some pair (i, k) with ¢ < k, then, j > i = x(j) = z(i);
e morphisms: f: (X,z) — (Y,y) where f : X — Y is a map for which, whenever x

is a map from Ord to X, so is y and

f(x(1)) = y(i), i € Ord.
The category X is

e fibre-small, i.e. for every set X, the pairs (X, z) which are objects of X’ form a set,

not a proper class;
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and

e monotopological, i.e. if (X iy X;)r is a monosource in Set and (X;,z;) is an
X-object, i € I, then there is a unique z such that ((X,z) N (Xi,@i))r is an

initial source.

The fact that & is fibre-small and monotopological over Set implies that it is complete,
cocomplete, well-powered and an (Epi, Initial M onoSource)-category (see, for instance,
2)).

Let A be the subcategory of X consisting of all X-objects (X, z) such that z is not
the empty map.

Let us define, for each X-object (X, ),

Iz 0 if x is the empty map
€Tl =
min{k € Ord|j > k = x(j) = z(k)} otherwise.

It is obvious that, for each X-morphism f : (X,z) — (Y,y) with ||z|| # 0, the
inequality ||z|| > ||ly|| holds.

Now, let f: (X, z) — (Y,y) be a morphism in AL. Then, it is easily seen that, on the
one hand, from the A-cancellability of f, the restriction and corestriction of f : X — Y
to X\Im(z) and Y\Im(y) must be a bijection and, on the other hand, since every
morphism with domain (X,z) and codomain in A is factorizable trough f, one must
have ||z|| < [Jy||. Consequently, the class A~ is just the class of all X-isomorphisms.

Therefore O(A) is the whole category X, and this is the reflective hull of A. But it
is different from the limit-closure of A, which is A itself, since this subcategory is closed

under limits.

Given an X-object X and a subcategory A of X, let
X/A*

denote the category whose objects are all X-morphisms orthogonal to A and with domain

X and whose morphisms are all

s (X hy)—x Ly
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such that s : Y — Y’ is an X-morphism and s - f = f’. Since [O(A)]* = At (see 1.2.1),
it is immediate that if O(.A) is reflective, then for each X-object X the reflection from
X to O(A) is a terminal object of the category X/A™*.

So, it is natural to inquire into the converse. As a matter of fact, the existence of
a terminal object in the category X/ AL for each X € Obj(X) does not guarantee the
reflectivity of O(A). By way of illustration, consider X and A as in Example 2.2.

However, we are going to show that, under suitable conditions the desired converse
happens. For that, instead of considering the orthogonal hull of a given category, we first
deal with an orthogonal subcategory £, for a given class £ of morphisms.

For any class £ of X-morphisms, the notation X /& has the same meaning as above,
that is, it denotes the subcategory of the comma category X | X whose objects are
the morphisms belonging to £. We find conditions for a class £ of X-morphisms such
that the existence of a weakly terminal object of X/E for each X-object X implies the
reflectivity of £,. Thus, we get an answer to the so-called Orthogonal Subcategory
Problem ([22, 72, 79]).

Definitions 2.6 For a class £ of morphisms in a category X', we consider the following
conditions:

Coequalizer condition. If ¢ : C'— D is a coequalizer of a family of morphisms (f; : B —

() such that, there exist e € £ and h with f;-e = h for all i € I, then ¢ € £.

Fill-in condition. Given morphisms f € &£ and ¢g with the same domain, there are

morphims f’ and ¢’ such that f' € Eand ¢' - f = ' - g.

Pseudoreflectivity condition. For each X € X, the category X /& has a weakly terminal
object. (This weakly terminal object is called an &-pseudoreflection of X.)

Lemma 2.7 For any subcategory A of a category X, we have that:
1. At satisfies the coequalizer condition;
2. At satisfies the fill-in condition whenever X has pushouts;

3. if A is reflective in X, then A‘ satisfies the fill-in and the pseudoreflectivity con-

ditions.
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Proof.

1. If e € AL, (f; : B — C)g is a family of morphisms such that f; - e = h for every
i €I, and ¢ : C — D is the coequalizer of (f; : B — C)r, let g : C — A be a
morphism with codomain in A. Then g- fi-e = g- f; - e and, since e € A", this
implies that g - f; = g - f; for every i,j € I. Thus, there is a unique morphism ¢’
such that ¢ - c = g.

2. If X has pushouts, it follows from 1.4.4 that A" fulfils the fill-in condition.

3. If A is reflective in X, given morphisms X Ty and X % Z, with f € A,
let Z —% RZ be the A-reflection of Z; then, since RZ € A, there is a unique
morphism § : Y — RZ such that §- f = r - g; furthermore, ry; € A+, It is

immediate that A~ fulfils the pseudoreflectivity condition. O

Remark 2.8 The above three conditions are independent, in the sense that none of

them is implied by the others. Indeed:

Coequalizer and fill-in conditions # pseudoreflectivity condition: If X is a cocomplete
category and A is a subcategory of X' then & = A’ obviously satisfies the coequal-
izer and the fill-in conditions. But, if the orthogonal hull of A is not reflective, then
A' does not fulfil the pseudoreflectivity condition, as we can conclude from 2.10
below. And this is the case if X and A are, for instance, the categories of example

2.3.

Coequalizer and pseudoreflectivity conditions % fill-in condition: Let X and A be
as in example 2.2. Then, A" trivially satisfies the coequalizer codition since all
(multiple) coequalizers in X’ are isomorphisms. On the other hand, the categories
a/A*+ and b/ AL consists just of 1, and 1, respectively, so they have a terminal
object. The category ¢/ A" consists of the identity 1. and the morphism ¢ — a;
the latter morphism is clearly a terminal object of ¢/AL. Consequently, Al also
satisfies the pseudoreflectivity condition. But it does not fulfil the fill-in condition,

since the diagram
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cannot be “completed”.

Fill-in and pseudoreflectivity conditions #- coequalizer condition: Let X = Set and
let £ be the class of all injective maps. Clearly £ does not satisfy the coequalizer
condition but it satisfies the fill-in condition and, for each set X, the identity map

is an &-pseudoreflection of X.

Proposition 2.9 Let X be a category with multiple coequalizers. If a class € of X-
morphisms is closed under composition and satisfies the coequalizer, the fill-in and the

pseudoreflectivity conditions, then £, is E-reflective in X .

Proof. Let X € X and d : X — Y be an &-pseudoreflection of X. If c: Y — C is a
coequalizer of the family (h;); of all morphisms h; : Y — Y which satisfy the equality
h; - d = d, then, from the coequalizer condition and the fact that £ is closed under
composition, the morphism e = ¢ - d belongs to £. We show now that e : X — C is
a terminal object of X/E. If f is a E-morphism with domain X, then there is some
morphism ¢ such that ¢ - f = e. If a morphism ¢’ also fulfils ¢’ - f = e, let g = coeq(t,t').
From the coequalizer condition and the fact that £ is closed under composition, g-e € £.

Then there exists a morphism n such that n-g-e =4d, i.e.,
n-g-c-d=d.
Hence, n-g-c = h; for some ¢ and so, the equality ¢-n-g-c = ¢ holds, which implies that
c-n-g=1.

Thus, ¢ is an isomorphism and so t = ¢'.

Now, in order to conclude that e : X — C' is a universal morphism from X to £, it
suffices to show that C' belongs to £, . Given morphisms f and g with the same domain
such that f € £ and the codomain of g is C, the fill-in condition assures the existence of
morphisms f’ € £ and ¢’ such that ¢’ - f = f’ - g. Since £ is closed under composition,
f'-ebelongs to £. As e : X — C' is terminal, there is a morphism ¢ such that t- f'-e = ¢
and, again because e is terminal in X/&, the morphism ¢ - f’ is the identity 1¢. Then,

for r =t- ¢, we have that

rof=t-g-f=t-f-g=g



2 ORTHOGONAL HULLS AND REFLECTIVE HULLS 16

To show the uniqueness, let ' - f = r - f and let ¢ be a coequalizer of (r,7’). Then,
from the coequalizer condition, ¢ € &, and, since £ is closed under composition, ¢ - e
belongs to £ and so, there is some morphism p such that p-q-e =e. Thus p-q¢ =1 and,

consequently, r = r’. O

Now, we can give an answer to the question, raised in the introduction, concerning

the reflectivity of the orthogonal hull of a subcategory.

A class £ of X-morphisms is said to satisfy the solution set condition whenever, for

each X € Obj(X), the category X/€ has a weakly terminal set.

Theorem 2.10 If X has connected colimits then the orthogonal hull of a subcategory A
is the reflective hull of A in X if and only if A" satisfies the solution set condition.

Proof. If O(A) is reflective, then it is clear that AL satisfies the above condition.
Conversely, for X € X, assume that (f; : X — A;); is a weakly terminal set of the
category X/A*L. Then, the multiple pushout f : X — C of (f; : X — A;); is an A*-
pseudoreflection of X. It is clear that A" is closed under composition and, by 2.7, it
fulfils the coequalizer and the fill-in conditions. Therefore, by 2.9, O(.A) is the reflective
hull of A4 in X. O

We may have subcategories A and B of X such that A is contained in B but the
orthogonal hull of A in X is different from the orthogonal hull of A in B, even when B is

orthogonal in X, as the following example shows.

Example 2.11 Let X be the poset

and let A and B be the full subcategories whose set of objects is {a} and {a,b}, respec-
tively. It is easy to check that B is orthogonal in X'. However, the orthogonal hull of A
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in X is different from the orthogonal hull of A in B, the former being A, and the latter
being B.

In contrast, we prove now that the equality holds whenever B is reflective in X.

Proposition 2.12 If B is a reflective subcategory of X and A is a subcategory of B, the
following hold:

1. For a reflector R : X — B,

ALY = {f € Mor(X) | Rf € A5},
2. The orthogonal hull of A in B coincides with the orthogonal hull of A in X.

Proof.

1. Given an X-morphism f : X — Y, let rx : X — RX and ry : Y — RY be
reflections of X and Y in B, respectively; then

Rf -rx =ry-f.

On the one hand, if f € A+¥ then from the fact that rx, ry € A% and that
A+x s closed under composition and is right-cancellable (see 1.4) it follows that

Rf belongs to A% and, since A8 = A+* N Mor(B), Rf belongs to A5,

On the other hand, if Rf belongs to AL5, then it belongs to A%, and since A+¥
is closed under composition and left-cancellable (by 1.4) it follows that f € A+x.

2. Since B is reflective in X', by 1.2 we obtain that
(A¥) 1, C(AY) 1, = B (1)
from the fact that A8 C A'%, and using 1.2.1, we conclude that
(AT¥) 1y © (AYB) Ly (2)
and so, the inclusions 1 and 2 imply that

(AT¥) 1y C (AMF) Ly
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To prove the reverse inclusion, let B € (A1#), .. We want to show that B belongs
to (AJ‘X)LX, i.e., that B is orthogonal to each AL*-morphism. Let X Ty belong
to AL¥, let h be a morphism from X to B and let b’ : RX — B be the morphism
which fulfils 2’ - 7x = h. By 1., Rf € A'# and thus there is a unique morphism

h* : RY — B such that h* - Rf = h/.

f
Y
K ry
Rf
h RX
V

B

X

Hence, for ¢ = h* - ry we have the equality ¢ - f = h; moreover, ¢ is unique: if
¢ : Y — B is another morphism such that ¢’ - f = h, let ¢* : RY — B be the

morphism such that ¢g* - ry = ¢g. Then
g - Rf-rx=g"ry-f=g-f=h=h"-ry-f=h"-Rf -rx;

this implies that ¢* - Rf = h* - Rf and, since Rf € A8, it follows that ¢* = h*

and, consequently, g = h.

Using 2.12 and 2.10, we obtain the following

Corollary 2.13 If X has connected colimits, then the orthogonal hull O(A) is a reflective
hull of A in X if and only if there is some reflective subcategory B of X which contains
A and such that the class of all B-morphisms orthogonal to A satisfies the solution set

condition. O

Let X be an (£, M)-category and let A be a subcategory of X. Then the E-reflective
hull of A in X exists and consists of all objects X in X such that the source X' (X,.A)
belongs to M (see [2]).
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Notation 2.14 If X is an (£, M)-category and A is a subcategory of X, then we denote
by M(A) the E-reflective hull of A in X.

Next, we show that the class A+ has nice properties when considered in M(.A).

Notation 2.15 Throughout, for an (£, M)-category, M denotes the intersection
MN Mor(X).

Definition 2.16 Given a subcategory A of X, an X-morphism X 1, ¥ is said to be
A-injective provided that, for each A € Obj(.A), the map

X(f,A): X(Y,A) — X(X,A)

is surjective, that is, each morphism with domain X and codomain in A is factorizable
through f (not necessarily in a unique way).

We denote by Inj(A) the class of all A-injective morphisms in X'.

Lemma 2.17 Let X be an (€,M)-category with M C MonoSource(X) and let A be a
subcategory of X such that M(A) = X. Then we have that:

1. A morphism of X is A-cancellable if and only if it is an epimorphism;
2. At = Inj(A) N Epi(X);
3. At C Epi(X) M.

Proof.

1. If f: X — Y is an A-cancellable morphism and a,b : Y — Z are morphisms such
that a- f =b- f, then for each g € X(Z, A) g-a-f=¢g-b-f,thusg-a=g-b. As

X(Z,A) is a monosource, it follows that a = b.

2. This is obvious by 1., since an X-morphism is orthogonal to A iff it is A-injective

and A-cancellable.

3. Due to 2., it is sufficient to show that Inj(A) C M.
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Let (f: X = Y) € Inj(A) and let m - e be the (€, M)-factorization of f. Let (f;)s
be an M-source with the domain X and codomain in A. For each i € I, there is

some f/ such that f/ - f = f;. Then we have that

Since (f;); € M and e € &, there is a morphism d such that d-e = 1x. Since e € &,

it is an isomorphism and so f € M. |

Now, using 2.17 and 2.13, we obtain the following

Corollary 2.18 Let X be an (E,M)-category with connected colimits, where M C MonoSource(X).
Let A be a subcategory of X such that M(A) is cowellpowered. Then the orthogonal hull
of A is reflective and, thus, it is a reflective hull of A in X.

Proof. Under the above hypotheses, IM(.A) has connected colimits and, on the other
hand, cowellpoweredness of IM(.A) and lemma 2.17 guarantee that, in M(.A), the class A+
satisfies the solution set condition. Therefore, it follows from 2.13 that O(A) is reflective.

a

Let us recall here the following result due to R.-E. Hoffmann [33]:

If X is complete, wellpowered and cowellpowered and A is a subcategory of X whose
epireflective hull in X' is cowellpowered, then the limit-closure of A in X is its reflective
hull.

This assertion remains true if “to have connected colimits” replaces “to be complete
and wellpowered” and “orthogonal hull” replaces “limit-closure”, as the next corollary

shows.

Corollary 2.19 If X has connected colimits and is cowellpowered and A is a subcategory
of X whose epireflective hull in X is cowellpowered, then the orthogonal hull of A in X

1s its reflective hull.

Proof. The statement follows from 2.18 and the fact that, if X has connected colimits
and is cowellpowered, then it is an (Epi, ExtrMonoSource(X))-category (see 6.5 and
7.3 of [71] and 15.8 of [2]). O

We point out that most of the categories X of Examples 1.5 have connected colimits
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and are cowellpowered. So, in these cases, every subcategory A such that M(A) = X
has its orthogonal hull as a reflective hull.

However, from lemma 2.17 it is clear that in the Corollary 2.18 instead of cow-
ellpoweredness we may just assume cowellpoweredness with respect to the morphisms
orthogonal to A. And, as a matter of fact, cowellpoweredness and A+ -cowellpoweredness

can differ. This is shown by the following example.

Example 2.20 Let X and A be the categories considered in Example 2.5. Then the
E-reflective hull of A is just X.
The category X is A'-cowellpowered since, as we have seen, A+ = Iso(X).
But X is not cowellpowered; in fact, it is not even Epi(X) N M-cowellpowered:
Let X be a set and let x be the empty map () — X. For each ordinal 4, consider the
X-object (Y;,y;) where
Yi=XU{jeOrd|j<i}

and y; : Ord — Y; is defined by

i otherwise.

. Joifj<i
vi(J) = {
Let f; : X — Y be the inclusion of X into Y;.
Then, the morphisms
fi : (X7"'C) — (Y;Jyl)a i€ Ord

form a class of pairwise non-isomorphic epimorphic embeddings.

3 Firm classes of morphisms

In [12], which is somehow a refinement of the ideas introduced in [13]|, G. Brummer
and E. Giuli presented the concept of firm classes of morphisms as an approach to the
concept of completions of objects in arbitrary categories.

Let £ be a class of morphisms of a category X closed under composition and under

composition with isomorphisms on both sides. The class £ is said to be subfirm if there
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is an E-reflective subcategory A of X' such that
EC{feMor(X):Rf € Iso(X)},
where R : X — A is a reflector. If, moreover, we have that
E={feMor(X):Rf € Iso(X)} (3)

then & is said to be firm.

The corresponding subcategory A is said to be subfirmly (respectively, firmly) &-
reflective in X.

For a subfirm class £ of X, the fulfilment of the equality (3) is equivalent to the
following: each morphism in £ with codomain in A is a reflection. This translates into a
general categorical setting the behaviour of completions (where £ is in addition a class
of monomorphisms).

A classical example is the usual completion of a metric space: each metric space X
has a reflection rx : X — RX into the subcategory A of complete metric spaces with
rx a dense embedding; moreover, if f : X — A is another dense embedding in Met with
A € Obj(A), then there is an isomorphism f* such that f*-rx = f, that is, f is also a

reflection. Consequently, in Met, the class of all dense embeddings is firm.
We point out that, since for any reflective subcategory A we have that
AL ={f € Mor(X): Rf € Iso(X)},
we may rewrite the above definitions as follows:

£ is said to be subfirm (firm) provided that there is some E-reflective

subcategory A such that £ C A+ (respectively, £ = A1),

Hence, it is clear that, to each reflective subcategory A, there corresponds a unique firm

class, namely A+. Now, we may restate Theorem 1.4 of [12] as follows:

Proposition 3.1 If A is E-reflective in X, then A is subfirmly E-reflective in X if and
only if A=E,. O

Corollary 3.2 & is subfirm if and only if £, is E-reflective. a
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Thus, from 2.9, it follows that:

Corollary 3.3 If X is a category with multiple coequalizers and £ is a class of X-
morphisms which is closed under composition and satisfies the coequalizer, the fill-in

and the pseudoreflectivity conditions, then £ is a subfirm class of X.

In fact, we may obtain a more complete result by using the following lemma.

Lemma 3.4 If £ is a class of morphisms which contains all isomorphisms, is closed

under composition and such that £, is E-reflective, then £ 1is left-cancellable iff £ =
(€)™

Proof. If & = (€)%, then it is clear that & is left-cancellable, see 1.4. Let £ be
left-cancellable, let f : X — Y belong to (£,)" and consider the following diagram

f
X Y
rXx Ty
Rf
RX RY

Then Rf is an isomorphism and, from the conditions on £, Rf.rx € £. Thus, since ry

also belongs to £ and & is left-cancellable, it follows that f € £. |

Now, we have the following characterization of firm classes:

Theorem 3.5 Let X be a category with connected colimits and let £ be a class of X-
morphisms. Then £ is a firm class of X if and only if the following conditions are
satisfied:

1) Iso(X) C€E.

2) & is closed under composition.

3) € is left-cancellable.

4) & fulfils the coequalizer condition.

5) € is closed under the formation of pushouts and multiple pushouts.

6) & satisfies the solution set condition.
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Proof. If £ is firm, there is a reflective subcategory A of X such that £ = A+ and, then,
A* fulfils all conditions 1)-6).

Conversely: It is clear that 5) and 6) imply that £ fulfils the fill-in and the pseudore-
flectivity conditions. This fact with 2) and 4) implies, due to 2.9, that £, is E-reflective.
From lemma 3.4, it follows that & = (£,)*. O

Remark 3.6 Theorem 3.5 of [12] also gives a characterization of firm classes. Our
Theorem [12] imposes weaker conditions on the category X than that theorem. However,
concerning to the conditions on &, I could not compare our “solution set condition” with

the “solution set condition” on factorization of morphisms of 3.5 in [12].

In Theorem 3.5, we have just proved that for a category X with connected colimits, the
maps (—)1 and (—)* yield a bijection between the collection of all reflective subcategories
of X and the collection of all classes £ of morphisms which satisfy conditions 1) to 6).

Therefore, a reflective hull of a subcategory A in X exists if and only if the con-
glomerate of such classes of morphisms which, furthermore, are contained in A+, has a
greatest element. Thus, Theorem 2.10 gives a necessary and sufficient condition for A+

to be the greatest element.

The classical examples of completions correspond to firm classes of monomorphisms
which are also epimorphisms. The firm classes in 1.5 are all subclasses of this type. Since,

for these classes, the coequalizer condition trivially holds, we have the following

Corollary 3.7 Let X have connected colimits. If € is a class of epimorphisms containing
Iso(X), then & is firm if and only if it is closed under composition, is left-cancellable, is
closed under pushouts and under multiple pushouts and satisfies the solution set condition.

a

Remark 3.8 For all examples of 1.5, we have that X is an (£, M)-category for £ the
class of all surjections and a suitable IM which is easily determined.

In all cases, except when &X' is the category Tych of Tychonoff spaces, A+ = Epi(X)N
M; therefore, since we have that O(A)*+ = AL and O(A) is reflective, the class Epi(X)N



3 FIRM CLASSES OF MORPHISMS 25

M is firm in X. Moreover, by 2.17, it is the greatest firm class of M-morphisms in X
and, consequently, O(.A) is the smallest M-reflective subcategory of X'.

So, we may ask if Epi(X)NM is also firm when X is the category of Tychonoff spaces
and continuous maps, that is, if there exists some reflective subcategory A of Tych such
that At = Epi(X) N M. The answer is negative. Furthermore, the answer remains the
same for any epireflective subcategory X of Top consisting of Hausdorff spaces and having
a space with more than one point (considering always the class M of all embeddings) as
follows from 1.8(2) of [13].

From 9.5.3 and 9.6 below, it follows that the class of C*-embeddings is just the
greatest firm class of embeddings in Tych. In Section 9 we shall also study the greatest

firm classes for several other categories, including some of the ones referred above.






Chapter 11

The orthogonal closure operator

For the category Met and its subcategory A of complete metric spaces, we have that:
e At consists of all dense embeddings;

e O(A) consists of all “strongly closed” spaces X, i.e. such that any embedding of

X in a metric space is closed.

In this chapter we shall define a closure operator, called the orthogonal closure oper-
ator, which encompasses this example as well as the other examples of 1.5 and 2.5 and
many others. In fact, the orthogonal closure operator in a category X with respect to a
convenient class of morphisms M and induced by a subcategory A of X' gives us means
to characterize A+ and O(A) in terms of denseness and closedness, as in the above ex-
ample. Furthermore, it allows us to find sufficient conditions for the orthogonal hull to
be a reflective hull.

We also present interesting relationship between this closure operator and the regular
closure operator.

Finally, we pay special attention to a particular class of morphisms, namely the
greatest pushout-stable subclass of a given class of monomorphisms. This class is closely

related to the study of the orthogonal closure operator which is developed below.
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4 Closure operators

In this section we give a brief account of closure operators in the sense of [18] and

[20]. For a detailed information on this subject, the reader is referred to [18], [20] or [21].

Throughout this chapter, M will always denote a class of monomorphisms in X which

contains all isomorphisms, is closed under composition and is left-cancellable. We shall
also consider M as a full subcategory of the category X2 (of all X-morphisms).

Let
u:M—=X

be the codomain functor, i.e., the functor which assigns, to each morphism in M (r,s) :

(X BY)— (2% W), the X-morphism s : Y — W.

Definition 4.1 A closure operator on X with respect to M consists of a functor
c:M—=>M

such that u - ¢ = u, together with a natural transformation
6:1dyp — c

such that u -0 = Id,.

So, the closure operator (c,d) determines, for each m : X — Y in M, morphisms

¢(m) and d(m) and a commutative square

d(m)
X —X
m c(m)
Y Bl Y (4)

where 6, = (d(m), 1y) : m — ¢(m).
Since ¢(m) is a monomorphism, § is uniquely determined by ¢; consequently, we

usually write just ¢ instead of (¢, d).
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Definitions 4.2 If ¢ is a closure operator on X with respect to M, then a morphism

(m: X —Y) e Mis called c-dense if ¢(m) = 1y. It is called c-closed if ¢(m) = m.

The closure operator c is said to be weakly hereditary in a subclass N of M if, for
each n € N, d(m) is c-dense; if N' = M, we simply say that ¢ is weakly hereditary.
The closure operator ¢ is said to be idempotent provided that ¢(m) is c-closed for all

m e M.

The class of all c-dense morphisms in M is denoted by EM and the class of all c-closed
morphisms in M is denoted by M..

If ¢c and ¢ are two closure operators on X’ with respect to the same M, then we say
that ¢ s smaller than ¢, written ¢ < ¢/, provided that ¢(m) < ¢/(m) for all m € M, that
is, provided that, for each m € M, there is a morphism ¢ such that ¢(m) = ¢/(m) - t; this
morphism ¢ is obviously unique.

We write ¢ = ¢ if ¢ < ¢ and ¢ < ¢, that is, if for each m € M, ¢(m) = /(m).

Recall that, using terminology of [20], a factorization system on X with respect to

M gives, for each m in M, a pair of morphisms (d,, ¢;,) in M x M such that
e M = Cp - dmy

e for all m, n in M and all u, v with v -m = n - u, there is a unique morphism ¢ such

that t-d,, =d,-vand ¢, -t =v-cp,.

Proposition 4.3 [20] There is a one-to-one correspondence between closure operators

on X with respect to M and factorization systems on X with respect to M. O

In fact, a closure operator ¢ of X with respect to M induces for each m in M a
factorization

x M) ey

Y

illustrated by the diagram (4). Furthermore, these factorizations form a factorization

system on X with respect to M. The mentioned one-to-one correspondence assigns to



4 CLOSURE OPERATORS 30
each closure operator ¢ this factorization system.

Proposition 4.4 ([18] and [20]) For a closure operator ¢ of X with respect to M, the

following assertions are equivalent:
(1) ¢ is weakly hereditary and idempotent;
(ii) c is weakly hereditary and ECM 1s closed under composition;

(7i1) ¢ is idempotent and M, is closed under composition. ]

Let M be a class of morphisms in X which contains all isomorphisms and is closed
under composition. We recall that X is said to be M-complete provided that pullbacks of
M-morphisms along arbitrary morphisms exist and belong to M, and multiple pullbacks
of (possibly large) families of M-morphisms with common codomain exist and belong to
M. The pullback of an M-morphism m along a morphism f is called the inverse image
of m under f and it is denoted by f~!(m).

If X is a M-complete category then every morphism in M is a monomorphism and
M is left-cancellable. Furthermore, for each object X in X, the preordered class Mx of
all M-morphisms with codomain X is large-complete. Furthermore, there is a (uniquely
determined) class of morphisms £ in X such that (£, M) is a factorization structure for

morphisms in X.

If X is M-complete, a closure operator ¢ : M — M may be equivalently described
by a family of maps

(ex : Mx = Mx)xex,

where cx(m) = ¢(m) for each m, satisfying the conditions:
1. m < cx(m), m € Mx (cis extensive);
2. if m < n, then cx(m) < cx(n), m,n € Mx (c is monotone);

3. ex(f~t(m)) < f~l(ey(m)), for each morphism (f : X — Y) € Mor(X) and

m € My (every morphim f: X — Y is c-continuous).
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As mentioned above, the M-completeness of X' determines a factorization structure
(€, M) in X. In this case, we may extend the notion of c-density to all morphisms in X
Actually, an X-morphism is said to be c-dense if the M-part of its (€, M)-factorization

is c-dense.

Let us recall the concept of dominion of J. Isbell [40]. Let X’ be a category of universal
algebras. Given an algebra B in X and a subalgebra A of B, the dominion of A in B is
the set

Domp(A)={be B|forall f,g: B—Cin X, fla=gla= g(b) =h(b)}.

J. Isbell used this notion for characterizing the epimorphisms of a subcategory closed
under subobjects. His famous Zig-Zag Theorem characterizes the elements of Domp(A)
when the coproduct of two copies of B exists.

In [60], S. Salbany introduced the regular closure operators for the category of topo-
logical spaces; namely, for a subcategory A of Top, given a space Y and a subspace

X CY, the regular closure of X in Y induced by A is the subspace

(X]={ZCY | Z=-eq(f,g) for some f, g € Top(Y, A) such that f|x = g|x}.

In fact, regular closure operators may be defined in a categorical setting (see [18])
and have been widely investigated. In particular, they are a useful tool in the investi-
gation of cowellpoweredeness of some categories, since they provide a characterization of
epimorphisms in terms of denseness.

The dominion of a subalgebra in the sense of Isbell and the regular closure of a
subspace in the sense of Salbany turn out to be examples of regular closure operators in

categories.

Definition 4.5 Let X be M-complete with M containing all regular monomorphisms
of X, and let A be a subcategory of X.
The regular closure operator in X with respect to M and induced by A, which we
shall denote by
4 M— M,

assigns to each m € M x the intersection of all n € M x such that m < n and n is the

equalizer of a pair of morphisms with codomain in A.
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It is easy to check that r 4 actually is a closure operator in the sense defined above.

Moreover, it is idempotent.

Remark 4.6 We recall here two well-known and important properties of the regular

closure operator:

1. ([18, 20]) If X has equalizers and r is a reqular closure operator on X induced
by a subcategory A, then the ra-dense morphisms of X are just the A-cancellable

morphisms. In particular, the epimorphisms of A are the r 4-dense A-morphisms.

2. (cf. [15]) Let X be an (£, M)-category with equalizers, let RegMono(X) C
M N Mor(X) and let A and B be subcategories of X such that M(B) = M(A).
Then, the regular closure operator with respect to M fulfils

TA=TR.

As a consequence of 1. and 2., if M(A) = X, then the X-epimorphisms are just the

r 4-dense X-morphisms.

5 The orthogonal closure operator

For the rest of this chapter, unless explicitely stated, X is an M-complete category
with pushouts, where M contains all isomorphisms and is closed under composition and

(€, M) is the corresponding factorization structure for morphisms in X.

In this section, we introduce the orthogonal closure operator which will be the main

tool in the remainder of this chapter.

Definition 5.1 Let A be a subcategory of X'. For each m : X — Y in M, we denote by
ca(m): X — Y the M-morphism defined as follows:

(C) Foreach g: X — A with 4 in A, we form a pushout (7, ¢’) of (m,g) in X.
Let m’ - e be an (£, M)-factorization of m and let (mg, g*) be a pullback of
(m’,q").
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m

N

Xy

X Y
g J

VA

Let Pa(m) = {mg|g: X — A, A € A}. The morphism c4(m): X — Y is

the intersection of Pa(m).

It is clear that the morphism c4(m) belongs to M. We prove now that ¢4 is a closure

operator.

Proposition 5.2 For each subcategory A of X, the map c4 : M — M is a closure

operator on X with respect to M.
Proof. We first show that c4 is functorial. Let
p,f):m:X—=Y)>n:Z—->W)

be a morphism in the category M. We are going to define c4(p, f). For every (h: Z —
A) e X(Z,A), let (m, ') be a pushout of (n, h), let n' - ¢ be an (£, M)-factorization of n
and let (np, h*) be a pullback of (n/,h’). For g = h - p, let the morphisms m, ¢, m/, e,

mg and ¢g* be as in (C). Since

and (m, ¢’) is a pushout of (m,g), there is a unique morphism d such that b’ - f =d - ¢
and m = d - m. From the last equality we get n’- ¢ = d-m’ - e and, by the diagonal fill-in

property, there is a unique morphism k such that k-e=qgand n' -k =d-m’.
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m
X mo Y
V‘ X/ Y
g
n
Z - W
g . q
g
h
n
4 e 4 m' Y
A ° °
NN
q n'
A - o - o

Then we have
n(k-g"y=d-m'-g"=d-g -mg="n-(f mg).
Since (np, h*) is a pullback of (n/, '), there exists a morphism rj, such that
fmpp=f-mg=np-rp.
Now, for each h € X(Z, A), let t, be the unique morphism which fulfils my,., -ty = c4(m).
Then,
npc (rntn) = fmnp -ty = f - ca(m).
Consequently, since c4(n) : Z — W is the intersection of Py(n), there is a unique
morphism u : X — Z such that f-cy(m) = ca(n) - u.
Taking
calp, ) = (u, f) - ca(m) — ca(n),
it is easy to see that ¢4 : M — M is a functor for which u - ¢ = u, where u is the

codomain functor from M to X.

At last, we show that there is a natural transformation ¢ : Id,, — ¢ such that v -9 =
Id,. Let (m: X —Y) e M. For each g € X(X,.A), there is a unique morphism
dy : X — X, such that

mg-dg=m and ¢g*-ds=-e-g.
Then, since c4(m) : X — Y is the intersection of P4(m), from the first equality, there
is a unique morphism d4(m) : X — X such that c4(m) - d4(m) = m. The family of
morphisms

Om = ((da(m),1y) :m —4 (m)), m € M,
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defines a natural transformation § : Idaq — c4 such that ud = Id,. a

Definition 5.3 The closure operator ¢4 : M — M of 5.1 and 5.2 will be called the
orthogonal closure operator on X with respect to M induced by A.

Notation 5.4 Asin the above proof, throughout this dissertation, d 4(m) always denotes

the unique morphism such that m = ca(m) - d4(m).

Remark 5.5 In order to define the orthogonal closure operator, we can assume that X,

instead of being M-complete, fulfils the following weaker conditions:

e If m € M, the pullback of m along an arbitrary morphism ¢ with the same

codomain as m exists whenever there is a commutative diagram in X of the form

| ls

—

o If (X; S, Y')s is a family of morphisms of M such that for some X-object X there
are morphisms X A, X;, © € I, such that m; - d; = my - dy for all ¢,7' € I, then

the intersection of (m;); exists and belongs to M.

For instance, let Met, be the category obtained from Met by removing the empty
space. Then Met, has pushouts (although Met does not have pushouts) and fulfils the
above two conditions for M the class of all embeddings, but it is not M-complete. A
similar behaviour has the category N orm, which is obtained from Norm by removing

the empty space.

Remark 5.6 The following properties are immediate:

1. The orthogonal closure operator induced by a subcategory A of X is discrete in the

subclass of morphisms with domains in A, that is, for all m € M with domain in

A, ca(m) =m.

2. If A and B are subcategories of X such that A C B, then cg < c4.
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The following lemma will be used in the proofs of Propositions 5.8 and 5.9 and below.

Lemma 5.7 Let A be a subcategory of X. Under the assumption SplitMono(X) C M,
if a,b:Y — A is a pair of morphisms with A € Obj(A) and (m: X —Y) € M, then

a-m=>b-m = a-ca(m)=">-ca(m).

Proof. Let g =a-m =b-m and let (m,g’), m' - e and (mg, g*) be as in (C). We are
going to show that a-my = b-mg. The equality 14 - g = a - m implies the existence of a
unique morphism ¢ such that ¢t-m =14 and ¢t-¢’ = a; hence t-m’-e =t-m = 14 and so,
since e € £ N M, e is an isomorphism. Analogously, there is a unique morphism ¢’ such
that ' -m =14 and t' - ¢’ = b. Then
a-mgy = tog’-mg:tom’og*:t-m'efl-g*:efl-g*z
= t/-m-e_l-g*:t/-m"g*:t/-g/-mg

= b-my.

Let t4 be the morphism that fulfils the equality m, - t; = ca(m). Hence

a-ca(m)=a-mg-tg=>b-mgy-ty=>b-ca(m). ]

Next we relate the closure operator c4 to the regular closure operator induced by the

same category:

Proposition 5.8 If RegMono(X) C M, then for each subcategory A of X we have that

cA<TA.

Proof. Given m : X — Y in M, let n be a morphism in M with codomain in Y such
that m < n and n = eq(a,b) where a,b:Y — A is a pair of morphisms with codomain
in A. Hence, we have that a-m = b-m and, by 5.7, a - ca(m) = b-cq(m). But, then,
ca(m) <n.

Therefore, by definition of r 4, ca(m) < ra(m). 0

It is easy to see that the orthogonal closure operator is, in general, distinct from

the regular one. It suffices to notice that if A = X, then the closure operator cy4 is
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discrete and so the c4-dense morphisms are just the £-morphisms. But £ can obviously
be different from the class of all epimorphisms, which, under mild conditions, is just the
class of r4-dense morphisms, as mentioned in 4.6. Furthermore, several examples with
A # X and such that A-cancellable morphisms are not necessarily c4-dense will be given

below.

We are going to see that ¢ 4-dense morphisms play an important role in characterizing

A*t-morphisms, for suitable subcategories A.

Proposition 5.9 Under the assumption SplitMono(X) C M, every ca-dense morphism
in M is A-cancellable.

Proof. Let a-m = b-m, where a and b are morphisms with codomain in A and
m: X — Y is a dense morphism in M. Then c4(m) = 1y and from 5.7 it follows that
a=>b. O

Corollary 5.10 Assuming that £ is a class of epimorphisms, every c4-dense morphism

1s A-cancellable.

6 Dense morphisms and A'-morphisms

From now on we assume that X is an (€, M)-category, with IM a conglomerate of
monosources and M = M N Mor(X). It follows that £ is a class of epimorphisms (cf.
[2], [72]). As before we assume that X’ has pushouts.

Let A be a subcategory of X. From 2.12, the orthogonal hull of A in X coincides
with its orthogonal hull in IM(A). Hence, taking into account 1.2.2, it is clear that the
orthogonal hull of A is a reflective hull of A in M(.A) if and only if it is a reflective hull
of Ain X. Consequently, for characterizing the orthogonal hull of A in X as well as for
finding conditions under which O(A) is the reflective hull, we can assume, without loss
of generality, that IM(A) = X. This is often assumed for the rest of this chapter. We
also restrict to X = IM(A) for characterizing the class AL. But, even in this case, the

condition X = M(.A) is not too restrictive, since we saw in 2.12.1 that, in general, an
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X-morphism f is orthogonal to A if and only if its reflection in IM(.A) is orthogonal to
A.

Notation 6.1 We denote by PS(M) the subclass of M consisting of all morphisms for
which the pushout along any morphism belongs to M.

Thus, PS(M) is the greatest pushout-stable subclass of M. Furthermore, since M
is closed under composition and left cancellable, the same holds for PS(M).

The class PS(M) plays a crucial role in almost all the results presented in this
chapter. The second part of Lemma 6.3 will give a reason for that.

The following two lemmas will be useful in the sequel.

Lemma 6.2 Let A be a subcategory of X such that M(A) = X. An X-morphism f
belongs to PS(M) if and only if

(P) the pushout of f along any morphism with codomain in A lies in M.

Proof. Clearly, condition (P) is necessary for f belonging to PS(M). To show that it

is also sufficient, consider the diagram

f
X Y
g g
!
7 .
h; h
hi
Ai L4

where both of the inner squares are pushouts, (h;)r is in M and A; € Obj(A). Since
condition (P) is fulfilled, h; belongs to M. Then the source (h; - h;); is also in M.
Consequently, since X' is an (£, M)-category, the equalities

imply that f € M. O
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Lemma 6.3 Let A be a subcategory of X such that M(A) = X.

1. Inj(A) consists of precisely all m € PS(M) such that every pushout of m along a

morphism with codomain in A is a split monomorphism.

2. At consists of precisely all m € PS(M) such that every pushout of m along a

morphism with codomain in A is an isomorphism.

Proof.

1. It is clear that if m is a PS(M)-morphism such that every pushout of m along
a morphism with codomain in A is a split monomorphism, then it is A-injective.
Conversely, let f : X — Y belong to Inj(A). Then, as it was shown in the proof of
2.17, f € M. Let g: X — A be a morphism with codomain in A and let (f,g) be
the pushout of (f,g). Since f is A-injective, there is some morphism ¢’ : Y — A
such that ¢’ - f = 14 - g. Hence, there is a unique morphism ¢ such that ¢ - g = ¢’
and t- f = 14; so, f is a split monomorphism; furthermore, it follows that f € M,
and, therefore, from 6.2, we have that f € PS(M).

2. Since At C Inj(A), it is clear that A~ C PS(M). On the other hand, if f € A*,
then f is A-cancellable and so, by 2.17, it is an epimorphism. Hence, using the fact
that epimorphisms are stable under pushout, it is easily seen that a morphism f
belongs to A* if and only if the pushout of m along a morphism with codomain in

A is an isomorphism. O

Now, we have the following characterization of the class A™t:

Theorem 6.4 For a subcategory A of X such that M(A) = X, AL consists of precisely
all c4-dense morphisms in PS(M).

Proof. Let m € A*. Then, by 6.3.2, m € PS(M) and every m, € P4(m) is an
isomorphism; this implies that c4(m) = 1y, i. e., m is dense.

Conversely, let m : X — Y belong to PS(M) and be such that c4(m) = 1y. Hence,
every mgy € Py(m) must be an isomorphism. Now, let us recall that every pullback of a
pushout is a pushout, i. e., if (m/, ¢’) is a pushout of (m, g) and (m*, ¢g*) is a pullback of
(m/,¢") then (m/, ¢’) is a pushout of (m*, ¢g*). Then, for each g € X (X, A), a pushout of
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(m, g) is a pushout of m, along a certain morphism, thus it is an isomorphism. Therefore,

by 6.3.2, m € At. O

As we have seen, and in contrast to what happens with regular closure operators when
X = M(A), an epimorphism need not be c4-dense. The next proposition shows that
inside a particular subclass of morphisms of X the epimorphisms are just the c4-dense

morphisms.

Proposition 6.5 Let D be the subclass of PS(M) given by
D={neM|n=Zda(m) for somem e PS(M)}.

Then D C Inj(A) and, whenever M(A) = X, a D-morphism is c4-dense if and only if

it is an epimorphism.

Proof. We first show that D C Inj(A). For (da(m) : X — X) in D, with m € PS(M),if
g : X — A is a morphism with codomain in A, let (m’,¢’) be a pushout of (m,g) and
let (mg,g*) be the pullback of (m/,¢’). Then, for the unique morphism d, such that

myg - dg = ca(m), we have that

m' g =g -calm) -da(m)=g"-mg-dg-da(m)
=m'-g*-dg-da(m).

Since m/ is a monomorphism, it follows that g = (¢*-dg) -da(m). Thus da(m) € Inj(A).

Now, on the one hand, by 2.17.1 and 5.10, every epimorphism in D is c4-dense. On
the other hand, since M(A) = X, A+=Inj(A)NEpi(X) (using 2.17) and, from the above
theorem, A+ C D. Therefore, we have that

At = (DN Inj(A) N Epi(X) =DnN Epi(X).

Consequently, using 6.4, every epimorphism belonging to D is c¢_4-dense. ]
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7 Strongly closed objects and the orthogonal hull

In [40], J. Isbell defined an algebra A to be absolutely closed if, for every embedding
A C B, the dominion of A in B (see Section 4) is just A. In [19], D. Dikranjan and E.
Giuli extended this concept to the general setting of regular closure operators. Enlarging

this concept to all closure operators, we have the following definition.

Definition 7.1 For a closure operator ¢ : M — M of X', an object X € X is said to be

c-absolutely closed if every morphism in M with domain X is c-closed.

The c-absolutely closed objects were studied in [19] and [64], when ¢ is a regular
closure operator.

In this section, we shall see that:

e The subcategory of all c4-absolutely closed objects is always contained in the or-

thogonal hull O(A).

e If ¢y preserves PS(M)-morphisms (thus, it is also a closure operator when re-
stricted to PS(M)), the subcategory of all absolutely closed objects with respect
to

cq: PS(M)— PS(M)

coincides with the orthogonal hull of A.

We remark that, in contrast, the subcategory of all absolutely closed objects with
respect to the regular closure operator induced by A has a very irregular behaviour with
respect to the orthogonal hull, even when O(A) is reflective (see [64] and remark in 8.8

below).

In order to characterize the orthogonal hull of a subcategory of X by means of the

orthogonal closure operator, let us consider the following

Definition 7.2 An object X € X is said to be A-strongly closed provided that each
morphism in PS(M) with domain X is c4-closed.
We denote by SCI(A) the subcategory of all A-strongly closed objects .
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We shall prove that, under convenient assumptions, the subcategory SCI(.A) and the
orthogonal hull O(.A) coincide.

It is obvious that every object in A is ¢ 4-absolutely closed and that SCI(A) contains
all c4-absolutely closed objects. Next we show that, when X is the &-reflective hull of
A, the inclusion SCI(A) C O(A) also holds.

Proposition 7.3 For each subcategory A of X, if M(A) = X, then SCI(A) C O(A).

Proof. Let M(A) = X and let X be an A-strongly closed object of X'. In order to show
that X € O(A), we consider (m : Y — Z) € A+, an X-morphism f : Y — X and the
pushout (n: X — W, f' : Z — W) of (m, f). Then (n: X — W) € A and so, by
6.4, n is c4-dense, thus c4(n) = 1y. On the other hand, since X is A-strongly closed,
ca(n) = n. Hence we have n = 1y and (n=! - f') - m = f. Therefore, X is m-injective.

But, by 2.17, m € Epi(X) and so X € O(A). 0

Remark 7.4 Both the inclusion of A in the subcategory of all c4-absolutely closed
objects and the inclusion of the latter in SCI(.A) may be strict (see 8.8 below). But we
do not know any example with O(A) # SCI(A).

In what follows we show that the assumption that c4 preserves PS(M)-morphisms,

that is, c4(m) € PS(M) whenever m € PS(M), has very relevant consequences.

Theorem 7.5 Assuming that A is a subcategory of X such that M(A) = X, the orthogo-
nal closure operator c 4 preserves PS(M)-morphisms if and only if it is weakly hereditary
in PS(M). In this case, cq : PS(M) — PS(M) is an idempotent, weakly hereditary
closure operator and O(A) = SCI(A).

Proof.

L. If ¢ 4 is weakly hereditary in PS(M), consider a morphism (m : X —Y) € PS(M),
its factorization X dﬂ) X CM) Y and a morphism f : X — Z. Let (m*, f*) be a
pushout of (c4(m), f). From 6.5, the fact that the morphism d4(m) : X — X is c4-

dense implies that it is an epimorphism. Since (mf, f%) is the pushout of (c4(m), f), it is
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easy to see that (mf, f%) is also the pushout of (m, f-d4(m)). Then m# € M. Therefore,
ca(m) € PS(M).

II. Suppose ¢4 preserves PS(M)-morphisms. We prove that it is weakly hereditary.
Given (m : X — Y) € PS(M), we want to show that c4(da(m)) = 15. For each
g € X(X,A), let (n,fq\) be a pushout of (d4(m),g). Since PS(M) is left-cancellable,
da(m) € PS(M) and, therefore, n € M. Let (T/r\zg,gﬁ) be a pullback of (n,fq\), let (r,q")
be a pushout of (c4(m), 3), let (s, h) be a pullback of (r,¢’) and let (d, g*) be a pulback

of (n,h) as illustrated in the following diagram.

Then (s - d, g*) is a pullback of the pushout of (m,g). So s-d € P4(m) and then, there

exists some morphism ¢, : X — X, such that s-d-t; = ca(m). Thus, we have
A
r9=g -calm)=g s-d-tg=r-h-d-tyg=r-n-g* -t

It follows that 6 15 =n-g* - tg, because r € M. Since (73\1979% is the pullback of (n, 9),
there is a morphism w : X —>XAg such that ﬁ\lg ‘w = 1s. Thus, for each g € X (X, A) we
have that 74\19% I+, so ca(da(m)) = 1.

III. Now, let ¢4 : PS(M) — PS(M) be a weakly hereditary closure operator. By
6.4 and taking into account that A" is closed under composition, we have that the
class of all c4-dense PS(M)-morphisms are closed under composition. Together with
the fact that cq : PS(M) — PS(M) is weakly hereditary, this implies, by 4.4, that
ca: PS(M) — PS(M) is idempotent.

Finally, we want to show that O(A) C SCI(A). Let X € O(A). If (m: X —-Y) €
PS(M), then d4(m) is a c4-dense PS(M)-morphism and, then, by 6.4, d4(m) belongs
to At. The fact that X € O(A) and (da(m) : X — X) € A+ implies that d4(m) is an
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isomorphism and, then, c4(m) = m. Thus X is A-strongly closed. Therefore, from 7.3,
we have that O(A) = SCI(A). O

Corollary 7.6 If M = PS(M) and A is a subcategory of X such that M(A) = X, then
ca: M — M is an idempotent, weakly hereditary closure operator and O(A) = SCI(A).
O

Remark 7.7 For some (£, M)-categories, the equality M = PS(M) holds. This is the
case, for instance, of the categories Top, Topg, Met,, Norm, and T f.Ab, when M is the
conglomerate of initial monosources.

However, there are several examples of categories for which M # PS(M). In the

last section of the present chapter, we study the class PS(M) for several categories.

The following corollary gives conditions under which the orthogonal closure operator

and the regular one coincide.

Corollary 7.8 Let X have equalizers, RegMono(X) C M, M = PS(M) and let A be
a subcategory of X such that M(A) = X. If the reqular closure operator r4 is weakly

hereditary and all X -epimorphisms are c4-dense, then r 4 = c4.

Proof. Under the above conditions, the r 4-dense morphisms are just the X-epimorphisms
and, then, by 4.6, they are just the c4-dense morphisms. Let m : X — Y belong to M.
From 5.8, there is a morphism d such that c4(m) = r4(m) - d, and, since r 4 is weakly
hereditary, the morphism d - d4(m) is r4-dense, therefore, by hyphotesis, it is also c4-
dense. On the other hand, from the fact that c4 is an idempotent, weakly hereditary
closure operator (see 7.6), it follows that X has an (c4-dense, c4-closed)-factorization

system with respect to M (see 4.3) and, thus, the commutativity of the diagram

da(m) d

da(m) ca(m)
X - o - Y
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implies the existence of a morphism ¢ such that ¢ - d - d4(m) = da(m). So, one derives

that d is an isomorphism and, consequently, r4(m) = c4(m). O

Concerning regular closure operators, we have by Remark 4.6 that if X has equalizers
and RegMono(X) C M, then, for any two subcategories A and B of X with the same
E-reflective hull, the equality r4 = rp holds. The following proposition and corollary
show that, under suitable conditions, a similar result holds if orthogonal replaces reqular

and the orthogonal hull of A replaces the £-reflective hull.

Proposition 7.9 Let A and B be subcategories of X with M(A) = X.
1. If ca(m) < eg(m) for allm € PS(M), then O(B) C O(A).

2. If ca preserves PS(M)-morphisms and B C O(A), then
(cq: PS(M) = PS(M)) < (cg: PS(M) = PS(M)).

Proof.
1. If ¢4 < ¢ in PS(M), then every c4-dense PS(M)-morphism is cg-dense. Thus,
using 6.4, 6.5 and 5.9, we have that

At = {m e PS(M)|m is cq-dense}
C {me PS(M)|m is cp-dense} C B+

and so O(B) C O(A).

2. Given (m: X —Y) € PS(M), we show that ca(m) < my, for all m;, € Pg(m)
and then, since cg(m) = APg(m), it follows that c4(m) < c¢g(m). Let h : X — B be
a morphism with codomain in B, let (m/,h’) be a pushout of (m,h) and let (my, h*)
be a pullback of (m/,h'). Since c4 preserves PS(M)-morphisms and PS(M) is left-
cancellable, d4(m) € PS(M) and, by 7.5 and 6.4, d4(m) € A*. Since B € O(A), there
is a morphism A? such that h* - d4(m) = h.
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>
=
E)

Thus,
B - ca(m) - da(m)=m'-h=m'-h* dy(m)

and, from the fact that d4(m) is an epimorphism (by 6.5), it follows that A’ - ca(m) =
m' - h¥. As (my,h*) is the pullback of (m/,h’), there exists a morphism ¢ such that

my -t = ca(m), that is, ca(m) < my,. O

Corollary 7.10 If A and B are subcategories of X such that M(A) = M(B) = X and ca
and cp preserve PS(M)-morphisms (in particular, if M is pushout-stable), then c4 = cp
with respect to PS(M) if and only if O(A) = O(B).

8 The orthogonal closure operator versus reflectivity

Let M(A) = X. It is clear that if O(A) is reflective in X then, for each X € X, the
reflection of X in O(A) is a morphism of PS(M) with codomain in O(A). The next
theorem, which is the main result of this section, states that, if ¢4 preserves PS(M)-
morphisms and every X-object is a PS(M)-subobject of an object in O(A) then O(A)

is reflective.

Theorem 8.1 If A is a subcategory of X such that c4 preserves PS(M)-morphisms and
for every X € X there is a morphism in PS(M) with domain X and codomain in O(A),
then O(A) is the reflective hull of A in X.
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Proof. It is clear that, under the above assumptions, M(A) = X.

First, we prove that if Y is an A-strongly closed object and (m : X —Y') € PS(M)
then the domain X of c4(m) is an A-strongly closed object too. Consider such Y and
m, and let n : X — Z be a morphism in PS(M). We want to show that c4(n) = n. Let

the diagram

>
N

ca(m)

Y

be a pushout of (n,ca(m)). Then n’ € PS(M) and cy(n’) = n’. The morphism
(ca(m),u) : n — n’ in the category X? is a morphism in the category PS(M). Let
cal(ca(m),u)) = (t,u) : ca(n) — ca(n’). Since c4(n’) = n/, we have that, for a suitable

t’, the following diagram is commutative

t/

Hence
n'-ca(m)-da(m) =u-n-da(m) =u-ca(n)-da(n)-da(m) =n'-t'-da(n) -da(m). (5)
Since n' is a monomorphism, it follows that
ca(m) - da(m) =t"-da(n) - da(m). (6)

By 7.5, ¢4 : PS(M) — PS(M) is an idempotent, weakly hereditary closure operator
and this fact implies that:

e dy(n) and d4(m) are c4-dense PS(M)-morphisms; in particular, from 6.5, d4(m)

is an epimorphism;

e c4(m) is c4-closed.
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Consequently, on the one hand, from the equality (6), we get that

ca(m) -1 =1"- da(n);

on the other hand, this equality and the fact that X has an (c4-dense, c4-closed)-
factorization system with respect to PS(M) (see 4.3 and 7.5) imply the existence of
a morphism s such that s-d4(n) = 1. Therefore, d4(n) is an isomorphism and, conse-
quently, c4(n) = n.

Now, let X € X and (m: X - Y) € PS(M) with Y € O(A). Then from 6.4 and
7.5 it follows that d4(m) : X — X is a reflection of X in O(A). 0

Corollary 8.2 Let A be a subcategory of an M-complete (€, M)-category with pushouts.
If M is pushout-stable in M(A) and each X € M(A) is an M-subobject of some object
in O(A), then the orthogonal hull of A is its reflective hull. O

The study of the reflectors which preserve morphisms of M has been performed, for
instance, in [54]. In the following proposition we show that under the above conditions

the reflectors always preserve PS(M)-morphisms.

Proposition 8.3 If A is M-reflective in X, then a corresponding reflector preserves

morphisms of PS(M).

Proof. It is clear that, since A is M-reflective in X', we have that M(A) = X. Let
R : X — A be the corresponding reflector, let m : X — Y belong to PS(M) and let us

consider the following diagram

m
X Y
A
rx ° TY
2
Rm
RX RY

where (m/, ') is a pushout of (m,rx) and ¢ is the unique morphism which turns the two

smaller triangles commutative. The fact that ry € A" implies that ' € A+, by 1.4.4,
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and then, since ry € A%, it follows from 1.4.2 that ¢t € AL, so that t € PS(M). Now,
the morphism Rm is the composition of two morphisms of PS(M), hence it belongs to

PS(M). O

Remark 8.4 From 8.3, it follows that if M is stable under pushouts, then, for every
M-reflective subcategory A of X, a corresponding reflector preserves M-morphisms. In
fact, examining the proof of 8.3, it is clear that, instead of the stability of M under
pushouts, it suffices that X has M-amalgamations, that is, that the pushout of a pair of

morphisms in M is a pair of morphisms in M.

Proposition 8.5 If A is an M-reflective subcategory of X, then:

1. For each X Y € M and each reflection X 5 RX of X in A, we have

ca(m) =my,

that is, ca(m) is obtained by forming a pushout (m,r") of (m,rx) and taking a

pullback of the M-part of . along r’.

2. If ca preserves PS(M)-morphisms then each reflection of a PS(M)-morphism is

ca-closed.

Proof.

1. Given a morphism g : X — A with codomain in A, let §: RX — A be such that

g-rx = ¢g. Then, we obtain the following commutative diagram
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X Y Xy
X ° T/
/r,*
m Y
RX——— o g*
X y
g . q
t
ﬁ Y Y
A > o = °
X m m”
A

where (7, 7') and (T, ¢') are pushouts of (m,rx) and (M,7), respectively; m’-e and
m” ¢ are (€, M)-factorizations of m and m, respectively; ¢ is the unique morphism
such that t-e =¢'-gand m” -t = ¢ - m/; (m,,r*) and (my, g*) are pullbacks of
(m/,r") and (m”, g - 1'), respectively.

Thus, there is a unique morphism n such that my - n = m,,. Consequently, for
each my € P4(m) we have that m,, < m, and, since m,, also belongs to P4(m),

ca(m) =my,.

2. Let c4 preserve PS(M)-morphisms and let m € PS(M). We want to prove that
Rm is cy-closed, where R is a reflector from X to A. First we consider a morphism
(m: X — A) € PS(M) with A € A. Let mf be the unique morphism such
that m? - rx = m, where ry : X — RX is a reflection of X in A. Since A is
reflective, the equality A = O(A) holds and then, following the proof of 8.1, we
have that rx = d4(m) and, thus, (c4(m) : X — A) = (m! : RX — A). Now,
let (m: X —Y) e PS(M) and let ry : Y — RY be a reflection of Y in A.
Since ry € At, ry € PS(M) and so ry - m € PS(M). Then, we have that

Rm = c(ry - m) and as, by 7.5, ¢4 is idempotent, Rm is ¢ 4-closed. O

From 7.5 and 8.1 it is clear that conditions under which the orthogonal closure oper-
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ator c4 preserves PS(M)-morphisms are important. The following proposition gives us
a way to obtain some positive examples.
Proposition 8.6 Let M satisfy the following condition:

(D) If the composite c-d of two M-morphisms is an epimorphism, then

the first one, d, is also an epimorphism.

Then, for every M-reflective subcategory A of X, ca preserves PS(M)-morphisms.

Proof. Let (m: X — Y) € PS(M). Then by 8.5.1 c4(m) is just the pullback of the

pushout of m along rx, as illustrated by the following diagram

X

Y

ym)
¢a(m)

RX ~

m/

X

Since ry € PS(M), r' € M and so r* € M. Hence, using the property (D) and the
fact that rx € Epi(X) (by 2.17), it follows that d4(m) € Epi(X), thus, by 6.5, d4(m) is

ca-dense. O

Examples 8.7 Next, we list some examples of categories X and classes of monomor-

phisms M for which the property (D) holds.
1. X = Set and M is the class of all monomorphisms;
2. X =Topor X =Topg or X = Tych and M is the class of all embeddings;

3. X = TfAb and M is the class of all monomorphisms.

Examples 8.8
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1. Let X=Topy and let IM be the conglomerate of all initial monosources. Then M is
the class of all embeddings and it coincides with PS(M). We can consider every
(m: X —Y) € M as the inclusion of a subspace X in Y. Thus, if ¢c: M — M is
a closure operator, we identify ¢(m) with the corresponding subspace of Y which

we denote by ¢(X).

If S is the subcategory of all Sierpiniski spaces, then M(S) = X. It was shown in
[60] that the corresponding regular closure operator rs : M — M is the b-closure,

i.e., given Y € Topy, for every subspace X of Y,
rs(X) ={y € Y|{y} N HNX # 0 for every open neighborhood H of y in Y}.

As we proved in 5.8, ¢s(X) C rs(X) for every subspace X of Y. In fact, as we
shall see, we have that cs(X) = rs(X).

By 8.1, we have that SCI(S) = O(S) and that SCI(S) is the reflective hull of S in
X, that is, the subcategory of all sober spaces.

2. As a matter of fact, the examples from 4., 5., 6. and 8. of 1.5 provide a situation
similar to the last one, that is, for the corresponding M, it holds that M = PS(M),
M(A) = X, ¢y = r4 and SCI(A) is the reflective hull of A in X. We shall see in
the next section why the orthogonal and regular closure operators coincide in these

cases.

3. Let X and M be as in 1. and let N be the subcategory of Topy having as objects
those spaces which are isomorphic to N, where N is the set N = {1,2, ...} with the
upper topology with respect to the natural order. (That is, the non-empty open

sets are just all T n = {m € IN|m > n} for a natural number n.)

Since M(N) = X, we have that ryr = ry (by 4.6.2), i.e., ry is the b-closure. But
the inequality cyr < rpr is strict; in fact, let Y be the set IN U {oo} endowed with
the topology whose non-empty open sets are all T n U {cc}, n € IN. Thus N is a
subspace of Y7; it is clear that 7y (N) = Y and, on the other hand, cyr(N) = N,
since N € N (by 5.6.1).

We have again that the subcategory SCI(N) is the reflective hull of N in T opy.
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4. Let X and A be the categories of Example 2.5. Let IM be the conglomerate of
all initial monosources of X’; clearly, M(.A) = X. In this case we have that M #
PS(M); in fact, let X be a set, let Y = X U {a} and let y = (yi)icora With y; = a
for every i. Then m : (X,z) — (Y,y), where m is the inclusion of X in Y and x is

the empty map, is a morphism of M\ PS(M).

It is easy to see that the closure operators ¢4 and r4 coincide in M, that cy
preserves PS(M)-morphisms and that the c4-dense PS(M)-morphisms are just
the isomorphisms, hence SCI(A) = X.

Remark 8.9 Obviously, in the examples in 8.8.1 and 8.8.3, the notions of A-strongly
closed and c4-absolutely closed object coincide. We emphasize that, in some sense, this
concept of closedness for objects has a better behaviour when we deal with orthogonal
closure operators than when we deal with regular ones. Indeed, as we have seen, under
mild conditions, A C SCI(A) C O(A) and, adding the assumption that ¢4 preserves
PS(M)-morphisms, O(A) = SCI(A); whereas, with respect to the regular closure oper-
ator, we have that, for instance, IN is not rxr-absolutely closed although it belongs to N
as observed by M. Sobral in [64].

9 Pushout-stable M-morphisms

As we have seen, for certain classes M of monomorphisms, the class PS(M) plays
an important réle in the characterization of A, O(A) and the reflectivity of O(A). We
thus want to study the class PS(M) in everyday categories.

Let us remark that in the literature pushout-stability of a class M or just the existence
of M-amalgamations has been studied (see [45] and references there). We are interested
in a more general study of this subject.

The dual question, that is, the determination, for a given class of epimorphisms &, of

its subclass

&' = {e € £ | any pulback of e along an arbitrary morphism belongs to £}



9 PUSHOUT-STABLE M-MORPHISMS 54

has been investigated by several authors. In [16], Day and Kelly characterized &' for
X = Top and € the class of all quotients. This has been important in Descent Theory; in
fact, in Top the above class £ is just the class of descent morphisms (see [41], [53] and

[65]).

In 6.3.1, we have shown that, if M(A) = X, then Inj(A) C PS(M). We are going
to see that there are several examples for which the equality Inj(A) = PS(M) holds.

Proposition 9.1 For any (£,M)-category X with pushouts, if X has enough M-injectives,
then M is pushout-stable.

Proof. For A = Inj(M), we have M(A) = X and, consequently, Inj(A) C PS(M).
On the other hand, we clearly have that M C Inj(A). Therefore,

Inj(A) = M = PS(M)

and, thus, M is stable under pushouts. O

Examples 9.2

1. Here we list some examples of a category X and a subcategory A such that, for the

class M of all initial monomorphisms,
Inj(A) = PS(M) = M.

(a) X = Met and A is the subcategory of all complete metric spaces;
(b) X = Norm and A = Ban;

(¢c) X = TfAband Ais the subcategory of all divisible torsion-free abelian groups.

2. The examples listed next are of the same type, that is, the equalities Inj(A) =
PS(M) = M also hold, but now A is a subcategory generated by a unique object
A. In fact, the following categories X are simple epireflective subcategories of T op

(i.e., X is the epireflective hull of a topological space A in Top).

(a) In Topg, M = Inj(S), where S denotes the Sierpinski space.

(b) For the subcategory Znd of all indiscrete spaces, we have that M = Inj([3),

where Iy denotes the indiscrete spaces of cardinality 2.
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(¢) For Top, we have that M = Inj(Cy), where C is the space with underlying

set {0,1,2} and whose only non trivial open set is {0}.

Remark 9.3 It was stated in [45] without, proof that, in Top1, each diagram of the form

7]

with m an embedding, can be “completed” by a pair of morphisms (m/, ¢’) such that m/
is an embedding and ¢’ - m = m/ - g. Since Top; has pushouts, this is equivalent to say
that M = PS(M) for M the class of all embeddings. But this equality does not hold in
Top1. Moreover, the equality M = PS(M) is not true for any epireflective subcategory
X of Top contained in Top; and having a space with more than one point as we now
show!: We first recall that such a subcategory X has to contain all the 0-dimensional
Hausdorff spaces. Now, let X = [0,1] N Q (with the euclidean topology), and consider
the embedding m : X\{3} — X. Let D = {0,1} be discrete, and let f: X\{3} — D be
defined by f(z) = 0 for all z < § and f(z) = 1 for all z > 1. Then the pushout of m
along f in X is D — {x}. Therefore, m & PS(M).

In the following examples we characterize the class PS(M) for some of such epire-

flective subcategories of Top.

The following lemma will be useful to characterize the class PS(M) in the next group

of examples.

Lemma 9.4 If X = M(A) and

X

Y

m
Z

w

is a pushout diagram in X, then m € M iff there exist sources (m; : Z — A;)r € M and
(fi:Y = Ai)r, with A; € Obj(A), i € I, such that f;-m =m;-g for each i € I.

M. M. Clementino, private communication
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Proof. Let m € M; since W € M(A), there is some (h; : W — A;); € M with
A; € Obj(A), i € I. Then (m;); = (h; -m)r and (fi)r = (hi - §)1 satisfy the required
condition.

Conversely, let (m;); and (f;); fulfil the above condition condition. Hence, for each
i € I, there is t; such that t;-m = m; and t; - g = f;. Now, the equality (¢;);-m = (m;)1
with (m;); € M implies that m € IM. O

Examples 9.5 In the following examples of epireflective subcategories of Top, M always
denote the class of all embeddings. We characterize the class PS(M) and we show that,
in these cases, we have again the equality PS(M) = Inj(A) for a convenient topological

space A. For all of the examples below, the equality M(A) = X was proved in [32].

1. Let X be the category 0-dimHaus of all 0-dimensional Hausdorff spaces and con-
tinuous maps and let Do denote the set {0,1} with the discrete topology. Then
PS(M) = Inj(D2)

={X2BY eM|Aisclopenin X = A=m"Y(B) for some clopen

set BinY }.

First, let us show that PS(M) C Inj(D3), so that PS(M) = Inj(D3). Let
m : X — Y belong to PS(M) and consider a morphism f : X — Dy. If f is
constant, it is clear that there is f : Y — Dy such that f-m = f. If f is not
constant, from the above lemma it follows that there are some (n; : Dy — Da)
and (g; : Y — D)y such that n; - f = g; - m, ¢ € I. Hence, since (n;); is a
monosource, there exists n : Do — Do and g : Y — Do such that g - m =n - f
and n(0) # n(1). If n = 1p,, then f = g fulfils the required equality; otherwise,
n-n=1p, and then f =n-n-f=n-g-m and so we may choose f =n - g.

Now, let us show that Inj(Ds) is as described above. Let m : X — Y belong to
Inj(D2) and let G be a clopen set in X. Then xg : X — Dy, where yg(z) = 0
iff z € GG, is a continuous map. Let g : Y — Dy be such that g - m = xg. Hence
g 1({0}) is a clopen set in Y and G = ¢g~'({0}) N X (assuming that m is an

inclusion).

Conversely, let m : X — Y satisfy the above condition and consider the morphism
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f: X — Dy Let H be a clopen in Y such that X N H = f~1({0}). Then
xH Y — Dy fulfils xg-m = f.

2. Let X be the category 0-dimTop of all 0-dimensional topological spaces and contin-
uwous maps and let Cy be the set {0,1,2} with the topology generated by {0} and
{1,2}. Then
PS(M) = Inj(Co)

={X2BY eM|Aisclopenin X = A=m"Y(B) for some clopen

set Bin'Y }.

In fact, analogously to the above example, we can prove that if m : X — Y belongs
to Inj(Cp), then every clopen set in X is the inverse image by m of some clopen

set in Y.

Conversely, suppose that m : X — Y fulfils the above condition. We show that
m € Inj(Cy). Given f : X — Cp, let H be an open set in Y such that H N X =
f71({0}). Then, for f:Y — Cj defined by

0 if ye
fly)=4 1 if ye {1} .

2 otherwise

we have that f-m = f.

It remains to show that PS(M) = Inj(Cp) and, since the inclusion Inj(Cpy) C
PS(M) holds by 6.3.1, we have just to prove that PS(M) C Inj(Cp). In order to
prove this inclusion, we are going to show that every m : X — Y in PS(M) fulfils
the following condition: every clopen set in X is the intersection of X with some
clopen set in Y (assuming that m is an inclusion). Let G be clopen in X. Define
f: X —=Cyby f(x)=0if x € G, f(z) = 1, otherwise. From Lemma 9.4, there are
sources (m; : Co — Cp)r in M and (f; : Y — Cp)r such that m; - f = f; -m, i € I.
Hence, since (m;)r is initial, there are ji, ..., jr € I and open sets Gj,, ..., Gj.
in Cy such that {0} = ﬂzzlmj_kl(ij). This implies that m; '(G;) = {0} for some
i € {j1, .-y Jx}. Hence, either G; = {0} or G; = {1,2}. In both cases we have that
f7H(G;) is clopen in Y and G = f~1({0}) = f~1(m; 1(Gy)) = X N f;7H(Gy).

2
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3. Let X = Tych and let I be the closed unit interval [0, 1] with the euclidean topology.
Then
PS(M) = Inj(I) = {C*-embeddings}.

In fact, the Inj(I)-morphisms are just the C*-embeddings and an embedding X —
Y is a C*-embedding iff each pair of completely separated subsets of X is also
completely separated in Y (see 1.5.2). Thus, from the Tietze-Uryshon Extension
Theorem, it follows that an embedding of a subspace X into a space Y is a C*-
embedding iff for each continuous map f : X — I there is a continuous map
g:Y — I which carries all elements of f~1({0}) into 0 and all elements of f~*({1})
into 1. We use this characterization of the C*-embeddings to show that PS(M) C
{C*-embeddings}. Let m : X — Y belong to PS(M) and let f : X — I be
an arbitrary continuous map. Then, from Lemma 9.4, there are sources (m; :
I - I);in M and (f; : ¥ — I); such that f; -m = m; - f, j € J. Since
M C MonoSource(X), there is some j € J such that m;(0) = a # b = m;(1).
Let h : I — I be a continuous map such that h(a) = 0 and h(b) = 1 (which
always exists). Then for g = h - f; we have that for each z € f~*({0}) and each

y e fH{1}),
g-m(z)="h-fj-m(x)=h-m;- f(x)="h(a) =0

and, analogously, g - m(y) = 1. Consequently, m € Inj(I).

We point out that in most of the above examples, O(A) is precisely the smallest
M-reflective subcategory of X. The following proposition gives an explanation of this

fact.

Proposition 9.6 If A is a subcategory of X such that M(A) = X and O(A) is reflec-
tive, then the equality PS(M) = Inj(A) implies that O(A) is the smallest M-reflective
subacategory of X.

Proof. From 2.17 and 6.3, we have that

Inj(A) N Epi(X) = A+ C PS(M) N Epi(X).
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For PS(M) = Inj(A) it follows that A+ = PS(M) N Epi(X), that is, A" is the largest
of all classes B+ with B M-reflective. Consequently, O(A) is the smallest M-reflective
subcategory of X. |

All examples of 1.5, except the third one, and example 2.5 satisfy the conditions of the
above proposition. So, in each of them, O(A) is the smallest M-reflective subcategory

of X = M(A).

We have seen that, in general, the orthogonal closure operator induced by a given
subcategory is smaller than the regular one induced by the same subcategory. The
following proposition shows that there is at most one M-reflective subcategory of X for

which these two closure operators agree.

Proposition 9.7 Let X have equalizers and let RegMono(X) C M. If rq = ca for
some M-reflective subcategory A of X, then A is the smallest M-reflective subcategory
of X.

Proof. The fact that A is M-reflective implies that M(A) = X'. So we have that

ra=cq = {ra-dense PS(M)-morphisms} = {c4-dense PS(M)-morphisms}
= Epi(X) N PS(M) = AL, by 4.6 and 6.4

Hence, by 2.17 and 6.3, we conclude that A = O(A) is the smallest M-reflective subcat-
egory of X. O

The next proposition is, in a certain way, a partial converse of the above one.

Proposition 9.8 Let X' have equalizers, let RegMono(X) C M and let A =
(PS(M) N Epi(X))L. If ra is weakly hereditary and ca preserves PS(M)-morphisms,
then r 4 = ¢ with respect to PS(M).

Proof. We have that
AL C PS(M) N Epi(X) C (PS(M) N Epi(X)) )" = A*,

so that
At = PS(M) N Epi(X).
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Consequently, it follows from 4.6.1 and 6.4 that a PS(M)-morphism is r 4-dense iff it is
ca-dense. Let m : X — Y be a PS(M)-morphism. From 5.8, there is a morphism d
such that c4(m) = r4(m) - d, and, since r 4 is weakly hereditary, the morphism d-d(m)
is r 4-dense, therefore it is also c4-dense. Since c4 is an idempotent, weakly hereditary
closure operator (by 7.5), it follows that X has an (c4-dense, c4-closed)-factorization

system with respect to M (see 4.3) and, thus, the equality

ra(m) - (d-da(m)) = (ca(m)-da(m)) - 1x

implies the existence of a morphism ¢ such that ¢ - d - d4(m) = da(m). Consequently d

is an isomorphism and r4(m) = c4(m). O

It is clear that the equality PS(M) = Inj(A) depends on the choice of the subcat-
egory A. For instance, let S and A be the subcategories of Topg defined in 8.8.1 and
8.8.2, respectively. Then M = Inj(8S) # Inj(N).

In fact, if A and B are subcategories of a category X with IM(A) = IM(B), then the
equality Inj(A) = Inj(B) implies that A+ = B (by 2.17.2) and, hence, O(A) = O(B).

Next, we characterize the class PS(M) for M the class of all embeddings, in another
epireflective subcategory of Top, the subcategory Top; of all Ti-spaces.

Proposition 9.9 In Top, the embedding of a subspace X into a space Y belongs to
PS(M) for M the class of all embeddings if and only if it fulfils the following condition

(S) (A BCXadA NB =0 =4 nB =0.

Proof.

I. Let the diagram m
X

Y

Z

W (7)
be a pushout in Top with X, Y, Z € Top; and m an embedding. We may assume that
m and m are inclusions, W = Z U (Y \ X) and

(y):{y if yeY\X
gly) if yeX
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The set W is endowed with the final topology induced by m and g, that is, a subset U
of W is open iff both ~}(U) and g~ (U) are open in Z and Y, respectively. Then, a
pushout of m along g in Top; is ry - ™ where ryy : W — RW is a reflection of W in
Top:.

Letg: W — TV be the quotient of W determined by the smallest equivalence relation
~ in W such that

wE mw = w~w.

It is clear that a reflection ry : W — RW is factorizable through gq.

II. Let us prove that (S) is necessary. If it fails to be true, then there exist two closed
subsets of X, say Fy and Fb, such that F1NFy = () but y € Y NFY for some yeY\X.
Define amap g: X — Z = X \ (F1 UFy) U {1, 2} by

x if x€F1UF2
gx)=<X 1 if ze R
2 if xR

and let us consider Z with the quotient topology induced by g. The space Z is clearly
Ti. But a pushout in Top; of m along ¢ is not one-to-one; in fact, given an open set U
in W such that y € U, then, since y € 7 OEY, we have that gL (U)NF; #0,i=1,2,
and, consequently, 1,2 € U; therefore, y € mw ﬁmw and ¢(1) = ¢(2). It turns out

that ry - T is not one-to-one either.

ITI. To prove that the condition (S) is also sufficient, we first verify the following two

properties of the pushout (7) as above:

(i) fyeY\X and z € Z, thenyegw iﬂyeg_l(z)y;

(i) fw, w' € W, w#w and w € {w’}W, then w € Y\ X and v’ € Z.

Proof of (i): If y € g—l(z)y and H is an open set in W which contains y, then g~ (H) N
g~ '(2) # 0 and this implies that z € H; therefore, y € @Y.

Conversely, if y ¢ gT(z)Y, then there exists an open set A in Y such that y € A
but AN g=!(z) = 0. Let B be an open set in Y such that BN X = X \ g~'(2). Then
H = AU B is an open subset of Y such that y € H and HNX = X \ g~ (). Put
U= (H\X)U(Z\{z}). Hence, U is an open set in W such that y € U but z € U, thus
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v {2}

Proof of (ii): On the one hand, if w’ € Y\ X, the set W\ {w'} is open in W , contains w
and does not contain w’, then w & mw' On the other hand, if w, w’' € Z, let V be an
open set in Z such that w € V but w’ € V; then H =V UB\ X, where B is an open set
in Y such that g’l(V) = BN X, is open in W and contains w but not w’; consequently,
w ¢ mw.

Therefore, if w € mw, one must have w € Y\ X and v’ € Z.

Now, let condition (S) holds. We show that, then, for each morphism g : X — Z
with Z € Topy, the map ¢ -m is an embedding and I/?/ is a Ty-space. The fact that I/?/ is
a Ti-space implies that ¢ is a reflection from W to Top; and thus ¢ - ™ is a pushout of

m along g in Top;. Consequently, if 7 is an embedding we conclude that m belongs to

PS(M).

e ¢ -7 is one-to-one:

q-m(z) =q-m(z') < q(z)=q(z)
seY\X:yell N1, by (i),
sIeVY\X:yeqg i) Ng i), by (i).

This implies that z = 2/, since, otherwise, ¢g~!(z) and g~!(z’) would be disjoint

closed subsets of X and then, by (S) g—l(z)y and g—l(z’)y would be disjoint too.

e |V is a T'-space:

We show that for each b €W, q 1(b) is closed in W, and, hence, {b} is closed in
W. Indeed, from (7i) and the fact that ¢ - m is one-to-one it follows that

g '(b)={y} with yeV\X or ¢ '(b)={}U{yeY\X|ye {1}

Well, {y} is clearly closed in W; concerning the other case, we have that

m (g (b)) ={z}, wichis closed in Z,  and
gMa'®) =gl u{yeY\X|ye Y
=g () U{y e Y\ X |y eg ()}, by (ii)
=5 1(2)

Thus, ¢~ 1(b) is closed in W.
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e ¢ -m is initial:
We show that, for each closed set F of Z, there exists E C W such that ¢~ 1(q(E))
is closed in W (so that ¢(E) is closed in I/?/) and F =Znq Y(q(E)) =
(g-m)~*(q(F)). Given F closed in Z, put E = (g-L(F) ) \ X)UF. The set E is
closed in W. Moreover, we prove that ¢~ '(¢(E)) = E, so ¢(E) is closed. Indeed,
¢ Y(q(E)) = EU E; U Ey where

Ei={ze€Z | ye@w,forsomeyEEﬂ(Y\X)}
and

:{yEY\X|y€@W,forsomezE(EUEl)ﬂZ}.

Concerning z € Fjp, we have y € g*I(F)Y N gfl(z)y, thus g1 (F)Ng=(2) # 0,
from condition (S), therefore z € F C E.

Now, concerning y € FEs, the fact that z € FUF, = E and F is closed implies that
—W —W
{z} C E, thus, since y € {z} , we conclude y € E. O

Remark 9.10 From 9.9 it is clear that in Top; the class of all closed embeddings is
contained in PS(M) for M the class of all embeddings. But this inclusion is strict.
Indeed, let Y be a Ti-space which has an infinite subspace X such that X has the
cofinite topology. Then the inclusion of X in Y fulfils the condition (S) but it is not

closed.






Chapter 111

a-sober spaces

It is well-known that the conglomerate of all E-reflective subcategories of an (€, IM)-
category is a complete “lattice” with respect to the inclusion order. Several authors have
contributed to the study of the “lattice” of epireflective subcategories of “everyday” cate-
gories (see, e.g., [24] and references there). In particular, as observed by H. Herrlich [24],
it follows from results in [76], [46] and [43] that the “lattice ” of epireflective subcategories
of Haus contains a well-ordered proper class and that, if we assume the non existence of
measurable cardinals, the same holds for HComp .

As far as epireflective subcategories of Topg are concerned, we refer to [50], [31], [39]
and [48].

In this chapter, we use results of the last one to show that the “lattice” of epireflective
subcategories of Topg also contains a well-ordered proper class.

Every ordinal o equipped with the Alexandrov topology is a Ty-space. It is well known
that for a = 2 the reflective hull of « in Topy is the subcategory of sober spaces. Here, we
characterize the orthogonal closure operator induced in Topg by the category whose only
object is a (which for a = 2 coincides with the b-closure). Then we define a-sober space
for each v > 2 in such a way that the reflective hull of a in Topy is the subcategory of a-
sober spaces. Moreover, we obtain an order-preserving bijective correspondence between
a proper class of ordinals and the corresponding (epi)reflective hulls, which gives us the
claimed well-ordered proper class of epireflective subcategories of Topg. Our main tool

is the concept of orthogonal closure operator.
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10 The orthogonal closure operators ¢, in Topg

Let A be a subcategory of Topg and let M be the class of all embeddings in Topg.
For the sake of simplicity, we usually deal with embeddings as inclusions of subspaces.
Thus, since in Topy embeddings are pushout stable, we have that the orthogonal closure
operator in Topy with respect to M and induced by A assigns, to each subspace X of
a space Y, another subspace c4(X) which is the intersection of all subspaces X, of ¥

which are pullbacks of some pushout of m along some g € Topy(X, A).

Of course, for a space in Topg, to be A-strongly closed means just to be ¢ 4-absolutely
closed, that is, each of its embeddings into some other space is ¢ 4-closed.

Now, it is easy to deduce the following

Proposition 10.1 If Topg is the epireflective hull of A in Top, then the closure operator
ca is idempotent and weakly hereditary, and the (epi)reflective hull of A in Topy consists
of precisely all A-strongly closed spaces.

Proof. If Topg is the epireflective hull of A in Top, then, for each Ty-space X, there is
some small initial monosource (X 2t A;)r, with codomain in A. Thus, the morphism
< fi > X — IerA; is an embedding with codomain in O(A). Therefore, from 7.6 and
8.1, we conclude that the reflective hull of A in Topy is the subcategory of all A-strongly
closed spaces. This coincides with the epireflective hull since in Topg the class A~ consists

of epimorphisms. |

We are going to study the orthogonal closure operator c4 for a particular kind of

subcategories A of Topy.

It is well known that, for each Tp-space X, we may define a partial order in X, the
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specialization order, by x < y iff x € @ Furthermore, given a poset (X, <), there are
two canonical ways of defining a Ty topology in X for which < is the specialization order,

namely:

e the Alexandrov topology, which consists of all upper sets, i.e., sets U such that if

reUand z <y then y € U;

e the upper-interval topology, which is the smallest topology containing all sets of the

form

X\lz

where |z ={y € X |y < z}.

The first topology above is the maximal topology, and the second one is the minimal
topology, for which (X, <) is the specialization order.

Let @ > 0 be an ordinal. We consider « as a topological space endowed with the
Alexandrov topology. Therefore, since non-trivial open sets of « are all upper sets T 8 =
{6 €a|d>p} (with § € a), a is a Ty-space. We point out that proper closed subsets
of o are precisely the ordinals smaller than «, that is, a set v C « is closed in « iff v € a.

Of course, the ordinal 2 is the Sierpinski space. Furthermore, for a > 2, we have
an embedding 2 < « in Topy and, then, since Topg is the epireflective hull of 2 in Top,
it is also the epireflective hull of « in Top. If A is the full and replete subcategory of
Topo generated by «, we denote by ¢, the respective orthogonal closure operator and,

analogously, we use the term a-strongly closed space.
Along this chapter, the set of all open sets of a space X will be denoted by Q(X).

As we observed in 8.8.1, the closure ¢y is just the b-closure, first used by Baron in [9]
for characterizing the epimorphisms in Topg. We recall that if X is a subspace of Y then
y € Y belongs to co(X) iff

(b) For each H € Q(Y) with y € H we have that {y} N H N X # 0.
It is known that (b) is equivalent to the condition

(0') For arbitrary open sets H and H' in Y such that H N X = H' N X, we have that
ye Hiffye H'.
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Moreover, it is easy to see that (b') is also equivalent to the condition

(be) For each open set G of X, there is an ordinal Sy < 2 such that, given open sets H,
Hy and Hy of Y such that HoN X = X, H1NX = G and Hy N X = ), we have
y € Hs iff 6 < .

In order to generalize this characterization of the cs-closure to all cy-closures, with «
an ordinal, let us say that a family (Gg)s<q of open sets of X is a continuous a-sequence

provided that for every € X there exists an ordinal 5, < « such that
r e Gy iff § <p3,.

It is clear that all continuous sequences are decreasing, i.e., G5, 2 Gj, whenever
01 < do. Moreover, Gy = X.
Now, for an ordinal o > 1 and a subspace X of a Ty-space Y we consider the following

assumption on a given y € Y:

(ba) For each continuous a-sequence (Gs)s<q 0f open sets of X, there is an ordinal Sy < «
such that for each family (Hs)s<q of open sets of Y with H;NX = G5 for all § < «
and H, N X = (), we have that y € Hs iff 6 < f3,.

Next we show that we may characterize the c,-closure of a subspace in Topg, for

a > 1, by means of the condition (b, ). For that, we use the following

Lemma 10.2 If X is a subspace of Y in Topg andy € Y then, for each o > 1, condition

(ba) is equivalent to the condition

(bl,) for each continuous map g : X — « there exists an ordinal By < « such that for
every H € Q(Y) and every 8 < o with HN X = g~ (1 B), one has y € H iff
B < Bo?.

Proof. It is immediate by taking into account that the function which assigns to each

continuous map ¢ : X — « the family

(971 (T 5))5<a

2For g : X — a, g~ (1 @) is the empty set. For a > 2, “8 € a” may, equivalently, replace “8 € o+ 1”
in (ba).
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is a bijection from hom(X, «) to the set of all continuous a-sequences of open sets of X.

|

Proposition 10.3 If X is a subspace of Y in Topy and y € Y, then y € co(X) if and
only if fulfils condition (by).

Proof. Taking into account the above lemma, we show that y € c,(X) if and only if
fulfils condition (,,). Since for y € X the result is trivial, we assume that y € Y\ X.
Let y satisfy condition (b),). Firstly, we show that y € X (where X denotes the usual
closure of X in Y). In fact, let H € Q(Y) be such that H N X = (; define g : X — « by
g(z) =0,z € X. Since g~ }(1 1) = 0 = ) N X, the ordinal By required by (b.,) must be
smaller than 1, thus By = 0, and the equality H N X = ¢g~!(1 1) implies that y ¢ H.
Now, let g : X — « be an arbitrary continuous map and let us consider the following

pushout in Top, where m : X — Y is the embedding of X in Y.

X

o m W (8)

We assume that m’ : o — W is the inclusion of o into v U (Y\X). So, the pushout of

m along g in Topy is the pair (ry - m/, ry - g’), where ry is the reflection of W in Topo.
Let By be the ordinal whose existence is guaranteed by (/). We show that, for every
UecQW),yeUiff By € U, so that rw(y) = rw(Bo) and, consequently, y € X . Let
UeQW),ie., (¢)HU) € QY) and (m')"1(U) € Q(a). If y € U, then y € (¢')"1(U)
and, hence, since y € X, (¢') "1 (U)NX # (). Thus, since (¢')~"H(U)NX = g~ 1((m)~1(U)),
the set (m/)~1(U) is non empty and, then, (m/)~}(U) =1 8 for some 3 < «; moreover,

since y satisfies (b)), one has 3 < f3y. So we have that

yeU iffye(y) ' (U)
iff (m/)~Y(U) =1 3 for some B < By
iff By € (m/)~1(U) =1 3 for some 3
iff By € U.
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Therefore, since y € X, for each g € hom(X, a), it follows that y € ¢, (X).

Conversely, let y € ¢, (X) and let g € hom(X,a). Let us consider the corresponding
pushout as in (8) and let X, be the pullback of ryy - m’ along ry - ¢’. Then y € X, which
is equivalent to saying that there exists an ordinal Sy < « such that ry (y) = rw(5o);
furthermore, this §y is unique since the pushout-stability of embeddings in Topg assures
that 7y - m' is one-to-one. Let H € Q(Y) and 3 < a be such that g7 '(1 8) = HN X.
Put U = (H\X) Ut §; then U € Q(W). Well, as it is well-known, ry (y) = rw (6o) iff,
for every G € Q(W), y € G iff By € G; hence, for the open set U considered, we have
that y € (¢') "1 (U) iff Bp €1 B, ie., y € H iff B < fo. O

Corollary 10.4 If a and B are ordinals such that oo < B then cg < cq.

Proof. Let X be a subspace of Y in Topy and y € cg(X). Let g : X — a be a continuous
map and let e : @ < § be the inclusion of « in 8. Then, since y satisfies condition (b,’g),
there is an ordinal 8y < 8 such that for every H € Q(Y') and every § < /3 which fulfil the
equality HN X = (e-g) (1), y € H iff § < By. Since (e-g)~1(1 ) =0 for § > a, it
must be Sy < a and we have that this [y fulfils also the condition (b)) for g : X — a.
Consequently, y € cq(X). O

Remark 10.5 The closure operator ¢, coincides with the b-closure for all finite n > 1.

Indeed, if X is a subspace of Y and y € co(X), let
X=Gp2G2...02Gx1
be a continuous n-sequence. Then, for each £k =1,....,.n — 1,
X =Go 2 Gy,

is a continuous 2-sequence. Consequently, from (by), it determines an ordinal §; < 2 such
that for each family (Hj)s<2 of open sets of Y with Hy N X = Gy, H1 N X = G}, and
HyNX =0,y e Hg iff § <. It is easy to check that the ordinal

n—1
Bo=> 0k
k=1

fulfils condition (by,) for y and the given continuous n-sequence.
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Consequently, y € ¢,(X). Now, from 10.4, it follows that ca = ¢, for n € wp \ 2.

On the other hand, cs is strictly smaller than ¢;. In order to show this, let us consider
the embedding m : 2 — 3 defined by m(0) = 0 and m(1) = 2. Then cz(m) = m, since
the domain of m is 2 (by 5.6.1). But ¢1(m) = 13; this is easily verified by taking into

account that, for each subspace X of Y, we can characterize ¢;(X) as follows:

y € c1(X) if and only if y € X and, for every H € Q(Y), if X C H then that
yeH.

In fact, a continuous 1-sequence consists of the set X only and, in this case, 5y must be
equal to 0. Thus, on the one hand, if H N X = (), then y ¢ H and, on the other hand, if
HNX = X, thatis, X C H, then y € H.

11 a-sober spaces

Definitions 11.1 1. Let X € Topp and let a > 1. A closed subset F' of X is said to

be a-irreducible if it satisfies the following conditions:

(i9) F is irreducible, i.e., for arbitrary open sets G and Ga, if FNG1 NGy = ()
then FNG1 =0 or FNGy=0.

(iq) For each continuous a-sequence (Gg)s<q Of open sets in X such that

F N (NseaGs) =0, the set {d < a| FNGs # 0} has a maximum.

2. A Tp-space X is said to be a-sober if each of its a-irreducible closed set is the

closure of a single point.

Remarks 11.2

1. We note that condition (i,) implies that an a-irreducible closed set is non-empty.

It is clear that, for every finite ordinal n # 0, a non-empty closed set is n-irreducible
iff it satisfies the condition (ig) (since (i,) trivially holds). Consequently, to be an
n-sober space means to be a sober space. However, we introduced a-sober for finite

ordinals o because of the characterizations 11.3 and 11.4 below. They “work” well
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for all @ > 2, but not for a = 1, as we will see. We point out that Topg is the
(epi)reflective hull of «v in Top only if a > 1.

2. Combining (i) with (in) we obtain the following condition which is equivalent to

the conjunction of the two above ones:

(I,) For each continuous a-sequence (Gg)s<o With Gs = A N AS and all AS, A in
Q(X), such that F'N (Ns<aGs) = 0, there exists an ordinal dy < « such that
FNGs #0and FNAY™ =0 for j=1orj=2.

3. It is well-known that the above condition (i) on F' is equivalent to

(i) If F is the union of two closed sets then F is equal to one of them.

By using Lemma 10.2, it is easy to verify that (iy) is equivalent to

(i,) For every continuous map g : X — «, the set g(F) has a maximum.

The formulation (i,,) of condition (i,) will be very useful in the sequel.

Proposition 11.3 For an ordinal o > 2, a Ty-space X is a-sober if and only if it is

a-strongly closed.

Proof. Let us assume that X is not an a-sober space. This means that X has an a-
irreducible closed set F' which is not the closure of a singleton. Let us define a space Y

as follows:
Y = X U{a}
QY)={0}U{H|H e QX)and HNF =0} U{HU{a} | H € Q(X) and HN F # (}.

It is clear that Q(Y") is closed under arbitrary unions. For finite intersections, we use the
2

irreducibility of F' to conclude that ﬂ (H; U {a}) € Q(Y) whenever H; U {a} € Q(Y) for
i=1,2. =

Let us show that Y € Topg. It is clear that arbitrary two distinct points of X are
“separated” by some open set of Y'; further, if x is a point of X and z &€ F', there is some
H € Q(X) such that z € H and H N F = () and, then, H is an open set of ¥ which

separates x from a. Now, let us consider the point ¢ and some x € F. If x € F', we have
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that m # F, by hypothesis on F' and by using 11.2.3. Then there is some 2’ € F' and
G € Q(X) such that 2/ € G but 2 € G. Hence G U {a} € Q(Y) “separates” a from .

It is obvious that X is a subspace of Y. Now, let us show that a € ¢, (X) by showing
that a and « fulfil condition (b),); so that X is not a-strongly closed. Let g : X — a be a
continuous map. By hypothesis on F' and by 11.2.3, there exists an ordinal 5y € a such
that By = max g(F). In order to show that fy fulfils the requirement of (b)) of 10.2, let
H € Q(Y) and 3 < a be such that HNX = ¢g~'(1 3). Hence, on the one hand, if a € H,
then H = g~ (1 8) U {a} with g=*(1 8) N F # () and, by definition of fy, we have that
B < Bo. On the other hand, if a ¢ H, then H = ¢g~(1 8) and ¢~ (1 B8) N F = (); thus,
Bo €1 B, i.e., Bo < B.

Conversely, let us assume that X is a-sober. Let X be a subspace of a Ty-space Y
and let y € Y be such that y € ¢,(X). We want to show that y must be a point of X.

Let {y} be the closure of {y} in Y. Firstly, let us notice that, from Corollary 10.4,
y € co(X) and, then, since ¢ is the b-closure operator, it easily follows that {y} N X is
a closed set of X which satisfies condition (i) (which is equivalent to (ip), by 11.2.3).
On the other hand, @ﬂ X satisfies condition (iy); to show that, we prove that it fulfils

the equivalent condition (i),

) (see 11.2.3). In fact, since y € ¢4 (X), for each continuous
map g : X — «, let By € a be the ordinal whose existence is guaranteed in condition
(ba). We are going to show that By = maz g({y} N X). Let = € {y} N X; then, for some
HeQY), g (T g(z)) = HN X, and, since = € H N {y}, y must belong to H, hence
g(z) < Bo. Now, let H € Q(Y) be such that H N X = g~ (1 Bo); then y € H and, since
y € co(X), {yy N X N H # 0, that is, there is some = € {y} N X such that g(z) €1 fo.
But, as we have seen, g(x) < fBp; then g(z) = Sy and [y is the desired maximum.
Therefore, since X is an a-sober space and {y}NX is a-irreducible, {y}NX = {z}NX
for some x € X. Thus, on the one hand, {z} C {y}; on the other hand, given H € Q(Y))
with y € H, we have that {x} N H # 0, since {z} NHNX = {y}NHNX # (), and, then,
x € H; consequently, we also have the inclusion {y} C {z}. Now, since {y} = {x} and

Y is a Ty-space, it follows that y = x. O

Corollary 11.4 For each ordinal o € Ord\2, the (epi)reflective hull of o in Topg is the

full subcategory of all a-sober spaces.
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Proof. It is an immediate consequence of the above proposition and 10.1. ]

From now on, for each a € Ord\2, we denote the full subcategory of a-sober spaces

by Sob(«).
Corollary 11.5 For a, 8 € Ord\2 such that o < 3, Sob(«) C Sob(p).

Proof. It is a consequence of the above proposition and of Corollary 10.4. O

12 The chain of subcategories Sob(«a)

As we have seen, for n € wp\2, Sob(n) = Sob(2). Next we deal with the question for
which ordinals a < 8 we have that Sob(«) is strictly contained in Sob(f).

First, we recall some definitions and facts about cardinals, essentially collected from
[49], and which will be very useful in what follows.

A cardinal is just an ordinal which is not equipotent with any of its elements.

A cardinal X is said to be regular if it is not a sum of a smaller number of smaller
ordinals. In other words, A is a regular cardinal if, for all sets I' C A with cardinality
smaller than A, we have that |JI' < A. For example, wg and w; are regular; moreover, for
any infinite cardinal a, a™ is regular, where o is the smallest cardinal which is larger
than «. But, for instance, w,, is not regular since it is the union of all w; with i € w.

If @ and 3 are ordinals, we say that « is cofinal with 3 if there is a strictly increasing

function f with domain  such that

UG +1) =a

y<pB
If « is a limit ordinal and « is cofinal with 5, then [ is also a limit ordinal and the

cofinality of « with 8 means precisely that there is a strictly increasing function

f B8 — a such that

U rn) =a.

v<B
Let us also recall that an infinite ordinal « is a regular cardinal iff it is not cofinal with

any ordinal smaller than .
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For any ordinal «, the cofinality character of o, denoted by c¢f(«), is the least ordinal
B such that « is cofinal with 5. If « is a limit ordinal, then ¢f(«) is a regular cardinal.

Let Ord denote the category whose objects are all ordinals and whose morphisms are
all order-preserving maps. The following lemma, which establishes that, up to a concrete

isomorphism, Ord is a full subcategory of Topg, will be very useful in the sequel.

Lemma 12.1 The function which transforms each ordinal a into a Ty-space by equipping

it with the Alexandrov tolology is a concrete full embedding of Ord in Topg.

Proof. We have to show that a map f : « — § between two ordinals is order-preserving
iff it is continuous with respect to the Alexandrov topologies.

In fact, the specialization order for these topologies coincide with the usual order and
it is well-known that, then, for Typ-spaces X and Y, every continuous map f: X — Y
preserves the specialization order.

Conversely, if f : o — (3 preserves order, given § € 3, let

70 = min{y € a| f(y) €1 5}

hence, f~1(16) =1 7. Consequently, f is continuous. a

The following theorem enables us to conclude that there exists a well-ordered proper

class of subcategories Sob(«) with « € Ord.

Theorem 12.2 Given ordinals f > « > 2, then Sob(«) is strictly contained in Sob(3)
if and only if there is some infinite reqular cardinal A such that o < A < 3.

Proof. Let a, f, A € Ord\2 be such that o < f and a < A < f with A an infinite
regular cardinal. The closed set A of § trivially satisfies (i()); we shall show that it also
satisfies (i), so that A is a-irreducible.

Let g : B — « be a continuous map.

If A\ < 3, let § € a be such that g(A) = J; hence, since the continuity of g is equivalent
to the preservation of order (by 12.1), it follows that 6 € A = ¢(0) < g(\) = § and,
consequently, A C g~ 1({ §).

If A\ =8, since o = U 1} 0, we have that X\ C U g (1 6) and, then, as a < X and X is

lste dEQ
regular, A C g~ (| §) for some d € a.
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Thus, there exists o = min{J € a|X C g~} §)}. Moreover, AN g~ 1({5p}) # 0, so

that 6 = maxz g(\). Indeed, if AN g~'({d}) = 0, then A C | ] g~ ({1 9); but, since X is
d€do
regular, it follows that A C g~1(] d) for some § € dp, which contradicts to the definition

of dy. Hence, 0y € g(N).
Therefore, we have shown that A is an a-irreducible closed set of 3. But A is not the
closure of a single point; in fact, a set is the closure of a singleton iff it is a successor

ordinal. Thus /5 is not an a-sober space, so the inclusion Sob(a) C Sob(f) is strict.

Conversely, let us assume that there exists no infinite regular cardinal between «
and 8. The only closed subsets of § which are not the closure of a single point are the
limit ordinals. We shall show that they are not a-irreducible, so thus 5 € Sob(«) and
Sob(a) = Sob(f). Let v be a limit ordinal in 3, let A be its cofinality character (which is

an infinite regular cardinal) and let

f:A—=7y

be a strictly increasing function such that
v=J f(9).
dEA
By hypothesis, A must be smaller than «, and, according to the assumptions on f, for
each ¢ € ~ there is some 6 € A such that ¢ < f(J) and, so, the set {6 € A\| ¢ < f(I)} is
not empty. Thus, let

g: 00—«
be defined as follows:

g(@:{ min{s € X6 < f(6)}, i oer,

A, otherwise.

It is obvious that g is nondecreasing, hence it is continuous, by 12.1. But ~ fails (i)

with respect to g; indeed, we have that g(y) = A, since the definition of g and the fact
that f is strictly increasing imply that, for each § € A, g(f(9)) = 0. O

Corollary 12.3 The family (Sob(«)), such that « is an infinite cardinal, is a well-
ordered proper class which is contained in the “lattice” of epireflective subcategories of

TOpO .
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Proof. If a and § are infinite cardinals and o < 8 then there is some infinite regular
cardinal between them, since, for every infinite cardinal «, the cardinal a* is regular.
Thus, the inequality Sob(«) # Sob(3) follows. Now, using 11.5, we get the claimed result.
O

Remark 12.4 Indeed, by 12.2 and 12.3, the ordinals o > 2 for which (Sob(«)) strictly
contains (Sob(f)) for all § < « are precisely all infinite cardinals and all ordinals which

are the successor of an infinite regular cardinal. Thus, we have that
Sob(2) C Sob(wg) C Sob(wy + 1) = Sob(wy + wp) = - - - = Sob(wp - wp) = - - -
<o C Sob(wy) C Sob(wy +1) =--- C Sob(wy,) = Sob(wy, +1) =---.

Remark 12.5 In the last section we characterized the epireflective hull of each ordinal
endowed with the Alexandrov topology in Topg. In [48], S. Mantovani considered each
ordinal a equipped with the upper-interval topology, i.e., the non trivial open sets are of
the form {d€a | § > S}, B € «, and characterized the epireflective hulls of these spaces
in Topg. It is obvious that, for each ordinal «, the upper-interval topology and the
Alexandrov topology coincide iff @ < wyp: for a > wy, each limit ordinal in « is closed for
the Alexandrov topology, but not for the upper-interval one. For o > wy, the epireflective
hulls obtained in this chapter are different from Mantovani’s hulls. In fact, each successor
ordinal with the upper-interval topology is a sober space. More generally, it is proved in
[48] that for o and g with the upper-interval topology the corrresponding epireflective
hulls coincide if and only if ¢f(«) = ¢f(8). Moreover, S. Mantovani showed that these
epireflective hulls are not comparable in the “lattice” of epireflective subcategories of
Topg. Thus, our definition of a-sober space provides a more natural generalization of the
concept of sober space. Namely, and in contrast with Mantovani’s epireflective hulls, we

have that:

1. The function
Ord\2 — L(Topo)

where L£(Topg) denotes the “lattice” of epireflective subcategories of Topg, which as-
signs, to each ordinal a, the subcategory Sob(«) is order-preserving (from Corollary

11.5).



12 THE CHAIN OF SUBCATEGORIES SOB(a) 78

2. As we showed in Lemma 12.1, the class of all ordinals and all order-preserving maps
may be considered as a full concrete subcategory of Topg, by equipping each ordinal
with the Alexandrov topology. This fails to hold if the upper-interval topology

replaces the Alexandrov one. Indeed, let
firw+l—w+1

be defined by

f(0)=0 forall ¢ € w;

flw) =w.
Then f is order-preserving, 1 is a closed set for both topologies, the Alexandrov
one and the upper-interval one, but f~!(1) = w is not closed for the upper-interval

topology.



Chapter 1V
Solid hulls

Solid categories are concrete categories in which every structured sink has a semi-
final lift. These categories, introduced, under different names, by V. Trnkova [75] and
R.-E. Hoffmann [35, 36], are known to retain properties of the base category, such as
completeness, cocompletness and other convenient ones, and yet to be broad enough
to encompass all “well-behaved” categories in Topology and Algebra; see [2] for more
details.

One property is, however, less satisfactory: there seems to be no general procedure
for a construction of a solid extension as small as possible, i.e., a solid hull, of an arbi-
trary concrete category. This contrasts with the situation of topological categories, i.e.,
categories in which every structured sink has a final lift: the topological hull, the so-called
MacNeille completion, introduced by H. Herrlich [27], was constructed generally by J.
Adéamek, H. Herrlich and G. E. Strecker [1] in the sense that, whenever that construction
is legitimate, is the topological hull, and, whenever it is not legitimate, a topological hull
fails to exist.

In the present chapter we study conditions under which a given concrete category has
a solid hull. This continues the research initiated by J. Rosicky [55, 56, 57] who presented,
inter alia, a concrete category over Set which does not have a solid hull, although it has
a finally dense, solid extension (see 13.11 below). In [57], Rosicky shows that, under the
set axiom (M) of the non-existence of a proper class of measurable cardinals, there is a
concrete category over Set with a small finally dense subcategory which does not have

a solid hull. Based on results of J. Addmek, J. Rosicky and V. Trnkova ([5], [7], [57]),
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we show that, furthermore, the existence of solid hulls for concrete categories over Set
with a small finally dense subcategory is equivalent to the large-cardinal Weak Vopénka’s
Principle. ( (M) implies the negation of Weak Vopénka’s Principle, see [7].)

The existence of solid hulls and of reflective hulls are closely related, as we shall see

in this chapter.

13 Solid hull

We recall that a concrete category over a category X is a pair (A,U), where A is
a category and U : A — X is a faithful functor; furthermore, a concrete functor from
(A,U) to another concrete category (B,V) over X, denoted by F': (4,U) — (B,V), is a
functor F': A — B such that U =V - F.

A convenient reference for background information on concrete categories is [2].

Throughout this chapter, for all concrete categories (A,U), we assume that U is

amnestic, i.e., every A-isomorphism whose U-image is an identity must be an identity.

A well-known concrete category is Top endowed with the natural forgetful functor

over Set. An important property of Top is the following:

(1) If (X;, ;) are topological spaces, i € I, and (f; : X; — X)s is a family of maps, then
there is a unique topology 7 in X, the final topology with respect to (f;)r, such
that, if (Y,v) is a topological space and ¢ : X — Y is a map for which g - f; is

continuous for all i € I, then g : (X,7) — (Y,v) is a continuous map.

In fact, a number of properties of Top may be derived from (1).
Several known concrete categories fulfil the above condition and they are just said

topological. More precisely:

We recall that if (A,U) is a concrete category, then an A-sink (f; : A; — A)r is
U -final provided that each X-morphism g : UA — UB carries an A-morphism whenever
g - fi carries an A-morphism for all ¢ € I. The dual notion is U -initial source.

A concrete category (A, U) is called topological provided that every U-structured sink
(z; : UA; — X)r has a U-final lift (f; : A; — A)j, e, UA = X and (f; : A; — A) is
U-final. We may equivalently define a topological category as a concrete category (A, U)
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for which every U-structured source (x; : X — UA;) has a U-initial lift. The faithfulness
and amnesticity of U assures the unicity of each U-final (or U-initial) lift.
Topological categories have very good properties (see [2]); we recall here that, in

particular, if (A, U) is a topological category over X', then
(p1) U is a right adjoint;
(p2) Ais (co)complete whenever X is (co)complete;

(p3) If (A, U) is fibre-small (i.e., for each X-object X the collection of all A-objects A for
which UA = X is a set), then A is (co)wellpowered whenever X is (co)wellpowered.

Several examples of everyday topological categories may be found in [2]. Now, we
describe an example of concrete categories which are topological, in spite of their algebraic

origin, and which will be very useful in the sequel.

Example 13.1 Using terminology of [6], let X be a A-ary relational signature, that is, ¥
is a set of relation symbols, such that, for each o € ¥, we are given an arity ar(o) where
ar(o) is a set with card(ar(c)) < A. A relational structure A of type ¥ consists of an
underlying set X4 and of relations o4 C XZT(U) for each 0. The category Rel(X) has, as
objects, all relational structures of type X and, as morphisms, all homomorphisms, i.e.,
maps preserving the corresponding relations.

The category Rel(X), with the usual underlying functor over Set, is topological. In
fact, given relational structures A;, i € I, and a sink (f; : X4, — X)s in Set, we define

a final lift by taking the relational structure A defined by

Xa=X and, foreachoce X, o4= U{(fi(at))tear(a) | (at)tcar(o) € T4, }-
i€l

The notion of solid category, which we recall next, generalizes topological category (as
well as topologically algebraic category, see [2]). Thus, solid categories arise in abundance

in Topology and Algebra.

Definition 13.2 A concrete category (A, U) is solid if, for each U-sink S =
(UA; & X))y, there exists a U-morphism X % UB such that:

(i) y - x; carries an A-morphism A; — B for each i € I;
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(ii) whenever a U-morphism X = UC' is such that z - z; carries an A-morphism for all

1 € I, then there is a unique A-morphism B EN Csuchthat Uf -y = z.

Remarks 13.3 (cf.[71])

1. This concept is substantially weaker than that of topological category. Nevertheless,
it retains some of the most significant properties, e.g. (p1) and (p2) mentioned

above.
2. Other relevant properties concerning solidness are the following:

(a) Solid functors, i.e., faithful functors U : A — X such that (A, U) is solid, are

closed under composition.

(b) If A is a reflective subcategory of a category B, then the inclusion functor

A — B is solid.

The following problem has been studied by several authors (cf, for instance, [62] and
references there): Given a concrete category (A, U), is there an extension of (A, U) with
good enough properties, e.g., a topological or a solid extension? And, if so, is there a
smallest one?

Here, we are just interested in the existence of a smallest solid extension.

To make the terminology more precise, we recall that:

A full concrete embedding E : (A,U) — (B,V) is called an extension of (A,U). We
also say that (B,V) is an extension of (A, U).

An extension E : (A, U) — (B,V) of (A,U) is finally dense if for every B-object B
there exists a V-final sink (f; : EA; — B); with each A; in A.

Dually, we have the notion of initially dense extension.

Definition 13.4 If E; : (A,U) — (B1,V1) and Es : (A, U) — (Ba,V>) are finally dense
extensions of (A,U), we say that Ey is smaller or equal than Es provided that there
exists a full concrete embedding F': (B, V1) — (Ba, Va) such that F' - By = Es.

It is obvious that this relation “smaller or equal than” is reflexive and transitive;
furthermore, it is “almost” antisymmetric: if F; is smaller or equal than Fs and F»

is smaller or equal than Fi, then the two extensions of (A, U) are isomorphic, that is,
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there is a concrete isomorphism F' such that F' - £y = E5. That is a consequence of the

following lemma.

Lemma 13.5 Given finally dense full concrete embeddings F; : (A, U) — (B;,V;), i =
1,2, there exists at most one full concrete embedding F : (B1, Vi) — (Ba, Vo) with F-Ey =
Es.

Proof. Let F and I’ be full concrete embeddings such that F' - Fy = F' - Fy = E».
For each B € Obj(B1), we have that (f; : E1A; — B)j is the sink of all morphisms
with codomain B and domain in Fj(A) if and only if (Ff; : E3A; — FB); and (F'f; :
EyA; — F'B); are the sinks of all morphisms with codomain FB and F’B, respectively,
and domain in Ey(A). Since Ej is finally dense, both of the sinks (F'f; : E2A; — FB);
and (F'f; : E;A; — F'B); are final. Therefore, from the concretness of F' and F’ and
the fact that V5 is amnestic, we conclude that FFB = F'B. Since V5 - FF = V5 - F' and V5

is faithful, it turns out that F and F’ coincide on morphisms too. |

Let us recall that, given a concrete category (A, U) over X, a U-sink S =
(UA; 2t X)r is said to be closed provided that it contains all morphisms g : UB — X
such that for each h : X — UA, the X-morphism h - g carries an A-morphism whenever
all h- f; carry an A-morphism.

We may consider the quasicategory of all closed U-sinks by taking as morphisms from
S = (UA; 5 X)r to 8" = (UA; “ Y), all X-morphisms f : X — Y such that f - f;
belong to S’, for all i € I. As it was shown by J. Adamek, H. Herrlich and G. Strecker
in [1], a concrete category (A, U) has a smallest topological extension if and only if the
conglomerate of closed U-sinks is legitimate and, in this case, the category of closed U-
sinks is a smallest topological extension, usually called the MacNeille completion. It is
just the unique (up to isomorphism) initially and finally dense, topological extension of
the concrete category.

The following result, due to Hoffmann and Tholen, is very important for this chapter.
(Naturally, if E': (A,U) — (B, V) is an extension, then we say that (A, U), or simply A,
is reflective in (B, V'), or B, provided that E(.A) is reflective in B.)

Proposition 13.6 ([37, 71]) A concrete category is olid if and only if it has a MacNeille

completion and is reflective in it. O
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Now, let us define solid hull of a concrete category.

Definition 13.7 An extension E® : (A,U) — (A®,U?) of a concrete category (A, U) is
a solid hull of (A,U) provided that:

() it is a finally dense, solid extension of (A, U);

(74) it is smaller or equal than any other finally dense, solid extension of (A, U).

Since, by 13.5, a solid hull, when it exists, is unique up to isomorphism, it will often

be called the solid hull.

In this section, we will show that, if a concrete category has a solid hull, it is its

reflective hull in any finally dense, solid extension.

We shall make use of the following
Lemma 13.8 A solid category is reflective in each of its finally dense extensions.

Proof. Let (A,U) be solid and let £ : (A,U) — (B,V) be a finally dense extension. If
(fi - FA; — B)y is the sink of all morphisms with domain in F(A) and codomain B,
let p: VB — UA be the semi-final lift of the U-structered sink (V f; : UA; — VB)j.
Since (f;)r is V-final, p : VB — V EA carries a B-morphism, i.e., there is a B-morphism
p: B — FEA such that Vp = p. Now, it is easy to show that the morphism p: B — FA

is a reflection of B to E. O

Let us remark that the problem of the existence of a solid hull or, even, of a solid
extension, makes sense only for concrete categories which have a MacNeille completion.
Indeed, if E : (A,U) — (B,V) is a solid extension, the MacNeille completion of (B, V)
exists (by 13.6) and it is a topological extension of (A, U) which guarantees that (A, U)
has a MacNeille completion ([1]).

Consequently, from now on, we shall always assume that

the concrete categories considered have a MacNeille completion.
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Theorem 13.9 A concrete category (A,U) has a solid hull if and only if there exists the
reflective hull of A in any finally dense, solid extension of (A,U). Furthermore, if the

solid hull exists, it is concretely isomorphic to each of those reflective hulls.

Proof. Let
E®: (A U) — (A% U?)

be the solid hull of (A,U) and let £ : (A,U) — (B, V) be a finally dense, solid extension.
From 13.5 and 13.7, there exists a unique full concrete embedding F': (A%, U®) — (B,V)
such that F'- E® = E. Since FE is finally dense, F' is finally dense and, from 13.8, F'(A®) is
reflective in B, because (A®, U?®) is solid. Now, we show that F'(A°) is the reflective hull
of E(A) in B. Let C be a reflective subcategory of B which contains E(A). Then (C, V"),
where V' is the restriction of V to C, is a finally dense solid extension of A, because a
reflective concrete subcategory of a solid category is solid, by 13.3.2. Therefore, from

13.5 and 13.7, F'(A®) is a subcategory of C.

Conversely, let

B (AU) — (AL U

be the MacNeille completion of (A, U) and let A” be the reflective hull of E*(A) in A"
Hence, (A", U"), where U" is the restriction of U’ to A, is a finally dense, solid extension
of (A,U). We show that, moreover, (A", U") is a solid hull of (A, U).

For a finally dense, solid extension E : (A,U) — (B,V), let F* : (B,V) — (B!, V1)
be the MacNeille completion of (B,V). Then, Ft- E : (A,U) — (B, V) is a topological
extension of (A,U) and so there is a full concrete embedding G : (A%, U?) — (B, V?)
such that G- E* = F' . E.

Et
(A,U) (AL UY
Y“
E (A", U") G
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It is clear that G is finally dense and, since (A%, U?) is solid, it follows from 13.8, that
G(A?) is reflective in B. But, by hypothesis, G- E*(A) has a reflective hull in B'. Hence,
that hull must coincide with the reflective hull of G - E*(A) in G(A") which, of course, is
G(A"™). Consequently, the reflective hull of G - E*(A) in B! is concretely isomorphic to
A". Analogously, F* is finally dense, (B, V) is solid and, thus, F'(B) is reflective in B’.
Then the reflective hull of F*- E(A) = G - E*(A) in B' coincides with the reflective hull
of Ft- E(A) in F!(B). Thus, A" is concretely isomorphic to the reflective hull of E(.A)
in B. Therefore, the extension (A", U") of (A, U) is smaller or equal than the extension

(B, V). O

Remarks 13.10

1. As we have just shown, the existence of a solid hull of a given concrete category
depends on the existence of a convenient reflective hull. Let us point out now that
the converse is also true: the existence of the reflective hull of a given subcategory
depends on the existence of the solid hull of a convenient concrete category. Indeed,
let A be a subcategory of a category X. Then (X,1y) and (A, E), where E is the
inclusion of A in X, are concrete categories over X’; furthermore, (A, E) — (X, 1x)
is the MacNeille completion of (A, E) and, thus, the reflective hull of A in X, if it
exists, is the solid hull of (A, E).

2. For a given property P on concrete categories, an extension F : (A,U) — (B,V)
is called a P-extension provided that (B,V') satisfies the property P. A P-hull of
(A,U) is a finally dense P-extension of (A, U) which is smaller or equal than any
other finally dense P-extension. For several properties P and for some classes E of
morphisms, the E-reflective hull on every finally dense P-extension of (A,U) is a
P-hull of (A,U) ([62]). But there is an important difference between the solid hull
and several other P-hulls: Indeed, the existence of the P-hulls considered in [62]
is guaranteed by that of finally dense P-extensions. However, the same does not
hold for the solid hull, even if the base category is just Set as we are going to see

in Example 13.11.

The following example of a concrete category over Set which has a finally dense solid

extension but does not have a solid hull was presented by Rosicky in 1.2 of [56], using
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a model-theoretic language. Next, we describe this example using a different aproach
which stresses the relation between the problems of the existence of a solid hull and of a

reflective hull.

Example 13.11 (cf [56]) Let C; be the category obtained from the coproduct of the
category of sets with the category of complete-join-semilattices by adding the following
morphisms: for each set X and each complete semilattice A, C;(X,A) consists of all
maps from X to the underlying set of A. Let Co be defined in an analogous way by
replacing the category of complete-join-semilattices by that of algebras on one unary
operation. For the usual forgetful functors U; : C; — Set, the categories C; and Cy are
solid. Let (A,U) = (C1,U;) x (Ca,Usz) be the product of (C1,U;) and (Ca,Us) in the
quasicategory C AT (Set) of concrete categories over Set and concrete functors between
them. We recall that A is the subcategory of the product category C; x Cy with objects
all pairs (C1, Cs) such that C; and C have the same underlying set and with morphisms
all f:(C1,C2) — (D1, D), where f : C; — D; is a C;-morphism, ¢ = 1,2. The functor U
is defined by U(Cy,Cy) = U1Cy = UyCs and U f = f. We are going to show that (A, U)
does not have a solid hull. Let E! : (C;,U;) — (C!,U}) be the MacNeille completion
of (C;,U;), i = 1,2, and (T,V) = (C},U}l) x (CL,U}). The concrete category (7,V) is
solid, since it is topological. Furthermore, (7, V') is cocomplete, since it is solid over a
cocomplete category (by 13.3.1). Consider the categories (A1, Vy) = (C1,Uy) x (CL,UY)
and (Ag, Va) = ((CL,Uf) x (Ca,Us). Tt is clear that there are full concrete embeddings
Gi: (AU) = (A, V;) and F; : (A;, V) — (T,V), i = 1,2, such that F} - G1 = F5 - Gs
and F1 (A1) N Fy(Ag) = F1 - G1(A) = Fy - Go(A).

(A1, Vi) = (C1,Un) x (C5,U%)

G, \Fl

(Cla Ul) X (027 UQ) :(A9U (T V) = (C ) (65>U§>
Go Fy
(A2,V2) = (C, Uf) x (C2,Ua)

Moreover, the categories F;(.A;) are reflective in T because C; is reflective in Cf and Cf is

topological, i = 1,2. Then, as F;-G1(.A) is the intersection of two reflective subcategories,
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in order to conclude that it does not have a reflective hull, it suffices to show that it is not
reflective. In fact, F; - G1(.A) is not cocomplete: let C be the free complete semi-lattice
generated by the set of all natural numbers, let C'5 be the underlying set of C'y, let D2 be
the unary algebra generated by a singleton set and let D; be the underlying set of Da;
then, the coproduct of (Cy,C3) and (D1, D3) does not exist in A. Hence, F}-G1(.A) is not
reflective in the cocomplete category 7. On the other hand, F; -Gy : (A, U) — (T,V) is
finally dense; it is a consequence of the fact that E! and Ef are finally dense and that,
for i = 1,2, C; has discrete structures which are preserved by E! (see [2]). Therefore,

from 13.9, (A, U) does not have a solid hull.

14 Orthogonal and solid hulls of a concrete category

In view of the two first chapters and the last section, an important candidate for being
the solid hull of a concrete category is the orthogonal hull in the MacNeille completion.

So, in the sequel, we use the following notion.

Definition 14.1 By the orthogonal hull of a concrete category (A, U) we shall mean the

extension of (A, U) to the orthogonal hull of its image in the MacNeille completion.

We will see that, under suitable conditions, the orthogonal hull is a solid hull.

Proposition 14.2 The orthogonal hull of a concrete category (A, U) is smaller or equal
than any finally dense, solid extension of (A,U).

Proof. Let (A,U) be a concrete category with the MacNeille completion E* : (A,U) —
(AL, UY), let A° be the orthogonal hull of E*(A) in A?, U° the restriction of U? to A° and
E°: (A, U) — (A° U°) the corestriction of E! to (A°,U°). If

E:(AU) = (B,V)

is a finally dense, solid extension, let A' be the orthogonal hull of E(A) in B, U' be
the restriction of V to A! and E' : (A, U) — (A',U') be the corresponding extension.
Let F': (B,V) — (B', V') be the MacNeille completion of (B,V); then, there is a full
concrete embedding G : (AY, U') — (B!, V!) such that G- E' = F' - E.
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t

— (A, U) (.At,Ut)
Ell \EO

F (Al,Ul) (A°,U°) G

BV P s

Hence, from 2.12.2 and 13.8, we have that G yields a concrete isomorphism between
(A°,U°) and the orthogonal hull of F*- E(A) in B!, which, through F', is concretely
isomorphic to (Al, U 1); thus the two finally dense extensions F° and E' are isomorphic.

Therefore, it is clear that E° is smaller or equal than FE. |

Corollary 14.3 If the orthogonal hull of a concrete category (A,U) is solid then it is
the solid hull of (A,U) . O

For the particular case of concrete categories over Set with a fibre-small MacNeille
completion, the above proposition is stated in [56] as Theorem 1.1 (see also [57], where

the translation from model-theoretic terms to categorical ones is mentioned).

Remarks 14.4

1. The proof of 14.2 shows that we obtain an equivalent definition of the orthogonal
hull of a concrete category if, in 14.1, we replace “the MacNeille completion” by

“some finally dense, solid extension”.

2. Whenever E : (A,U) — (B,V) is a finally dense, solid extension of (A,U), the
orthogonal hull E! : (A,U) — (A, U') as described above is a solid hull if and
only if A! is reflective in B, as we can conclude using the above remark 1., 13.8 and

the fact that a reflective subcategory of a solid category is solid.

3. Let (A,U) be a concrete category over a category with connected colimits and let
E: (A U) — (B,V) be a finally dense solid extension of (A,U). Then, from 2.10

and the fact that a solid category has all colimits which exist in the base category
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(see [71]), the orthogonal hull of (A, U) is its solid hull if and only if the class

[E(A)]*5 satisfies the solution set condition in B.

Proposition 14.5 Let (A,U) be a concrete category over a complete, wellpowered base
category. If (A,U) has a fibre-small MacNeille completion and A has a cogenerating set,
then (A,U) has a solid hull.

Proof. Let E' : (A,U) — (A%, U") be a fibre-small MacNeille completion of (A, U).
Then, from the hypothesis over the base category, it follows that A’ is complete and
wellpowered. Now, the proof follows from the Special Adjoint Functor Theorem: Let A’
be the closure under limits of E*(A) in A’. Then, A’ is complete and wellpowered and

it has a cogenerating set. Consequently, A’ is reflective in A* and, therefore, it is a solid

hull of A. O

In [57] it was shown that any small concrete category over Set has a solid hull. From

the above proposition we have the following more general result:

Corollary 14.6 FEvery small concrete category over a complete and wellpowered category

has a solid hull. O

A concrete category over an (&£, M)-category is said to be M-topological if every
structured source in IM has an initial lift. It is well-known that, for a concrete category

(A,U) over an (£, M)-category, the following implications hold:
(A, U) is topological = (A,U) is M-topological = (A, U) is solid.

The M-topological hull of a concrete category over an (£, IM)-category is the smallest fi-
nally dense IM-topological extension. If it exists, it is the E-reflective hull in the MacNeille
completion (see, e.g., [62]).

Theorem 14.7 Let (A,U) be a concrete category over a cocomplete (€, M)-category X,
with M C MonoSource(X), and let E™ : (A, U) — (A™,U™) be the M-topological hull
of (A,U).

1. If A™ is cowellpowered with respect to U™-initial bimorphisms then (A,U) has a
solid hull.
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2. If in X every epimorphism is split and Epi(A™) = (U™) "1 (Epi(X)), then E™ :
(A, U) = (A™,U™) is the solid hull of (A,U).

Proof.

1. If X is an (£,M)-category, then A™ is an (£, M')-category with & = (U™)~1(&
and M)" = (U™)~Y(M) N InitialSource(U™). Hence, from 2.17.3 and taking into
account 14.4.3, the orthogonal hull of (A, U) is a solid hull.

2. Let g : B — C be an initial bimorphism in A™. Since it is initial and U™yg is a
split epimorphism in X, it follows that g is a split epimorphism in A™. Hence, g is
an A™-isomorphism. Then, by 2.17.3, [E™(A)]*4™ consists of isomorphisms only.
Therefore, the orthogonal hull of E™(A) in A™ is A™, and, from 14.3 and 14.4.1,
E™: (A U) — (A™,U™) is the solid hull of (A,U). O

Corollary 14.8 If (A,U) is a concrete category over Set with a monotopological hull
(B,U) in which every epimorphism is a surjection then (B,U) is also the solid hull of
(Aa U) O

Corollary 14.9 Let (A,U) be a concrete category over a cocomplete (€, M)-category
X, with M C MonoSource(X). If in X every epimorphism is split and the MacNeille
completion of (A,U) is the M-topological hull of (A,U), then it is also the solid hull of
(A, U).

Proof. It follows from 14.7.2 and the fact that, if E* : (A, U) — (A%, U?) is the MacNeille
completion, then Epi(AY) = (UY)~Y(Epi(X)). 0

Examples 14.10 In the following examples, for each category A equipped with the
obvious forgetful functor, we describe the MacNeille completion, the monotopological
hull, the solid hull and the orthogonal hull of A, which are denoted by Af, A™, A% and
A°, respectively. By A! we denote the limit closure of A in Af*. We also describe the

classes A+at and ALam,

1. For the examples (a)-(c) below, we have that Atat = Iso(A?), At4™ = Iso(A™)
and Al = A° = A% = A™ = AL
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(a) (see [27]) A is a partially ordered set (P, <) considered as a concrete category
over the one-morphism category. The MacNeille completion of (P, <) yields a

MacNeille completion of the concrete category A.

(b) (see [27]) A is the concrete category over Set consisting of all finite topological
spaces and continuous maps. Then A’ is the category FinGen of finitely

generated spaces and continuous maps.

(c) (see [1]) A is the concrete category over Set consisting of all compact topo-
logical spaces and continuous maps. Then A’ is the category CompGen of

compactly generated spaces.

2. (a) (see [34]) A quasi-metric space is a pair (X, d) where X is a set and d is a map
d: X x X — [0,00] such that, for any z,y,z € X,

S
—
&
<
~—

|

d(y,z),
dz,z) = 0
d(z,z) < d(z,y)+dy,z2).

A map f:(X,d) — (Y,e) is called non-expansive if e(f(z), f(y)) < d(x,y) for
any z,y € X. A quasi-metric space (X,d) is called separated if d(xz,y) = 0
implies = y for any z,y € X. A separated quasi-metric space (X, d) is called
complete if every Cauchy sequence converges.

Let A be the concrete category over Set of complete metric spaces and non-
expansive maps. Then A’ is the category QMet of quasi-metric spaces and
non-expansive maps, A" is its full subcategory of separated quasi-metric

spaces and A°? is its full subcategory of complete separated quasi-metric spaces.

(b) (see [38]) Let Vec be the category of vector spaces over K, for K = IR or
C, and linear maps. A quasi-normed space over K is a pair (X, ||.|]|) where
X € Vec and ||.|| is a map from X to [0, 0] such that, for all z,y € X and

AeK
[[Az|| = [Al[|z[| ~and

[z 4+ yll <l + [yl
Amap f: (X, [.]]) = (Y, ]|].]]) is non-expansive if || f(z)|| < ||z|| for any z € X.
A quasi-normed space is said to be separated if ||z|| = 0 only if x = 0 and it is

said to be complete if Cauchy sequences converge.
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Let A be the category Ban of Banach spaces over IK and non-expansive maps.
Ban is a concrete category over the category Vec. In this case, A’ coincides
with the category QN orm of quasi-normed spaces and non-expansive maps,
A™ is its full subcategory of the separated quasi-normed spaces and A?® is its

full subcategory of the complete separated quasi-normed spaces.

In the examples (a) and (b) above, we have that A4t consists of all initial A-
cancellable A*-morphisms, i.e., of all initial dense A‘-morphisms, and A+4™ con-

sists of all dense embeddings. Furthermore, A' = A° = A% # A™ # A*.

3. It is well known that the category Top is the MacNeille completion of its full
subcategory A which consist of the Sierpinski space alone. In this case, Topg is the
monotopological hull of A and Sob is its solid hull. We have already seen that ALm
consists of all b-dense embeddings. It is easy to see that A+t consists of all initial

b-dense morphisms

4. Let A be the category described in 2.5. With the obvious forgetful functor, A is
a concrete category over Set. This category A was introduced by Rosicky in [56]
with the aim of showing that a concrete category over Set may be complete and
simultaneously have a solid hull different from itself. In that paper, he describes the
orthogonal hull of A as a category of models of a first-order theory and concludes
that it is the solid hull. Here, we get the same conclusion by begining with the

presentation of the MacNeille completion of A.

The MacNeille completion A" of A can be described as the following category:

e Objects are pairs

(X, )

with X a set and 2 = (X;);corq @ collection of subsets of X such that either
all X; are empty or, for all i € Ord, X; # () and,

if X; N X}, # 0 for some pair (i, k) with ¢ < k, then, for all j > i, X; = Xj.

e A morphism
f(Xz) = (Yy)

is a function f: X — Y such that f(X;) CY; for every i.
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To show that A’ is the MacNeille completion of A we prove that:
(a) A! is a topological category over Set;
(b) A is initially and finally dense in A’

(a): Tt is clear that A’ is a category. Furthermore, with the obvious forgetful
functor, it is a concrete category over Set. In order to prove that it is topological,
let ((X*,2%))k, where ¥ = (XF)icorq, be a family of Af-objects and let (f* :
Xk — X) be a family of morphisms in Set. We show that there is a collection
x = (X;)icora of subsets of X such that the sink ((X*,2*) f—k> (X, z))k is final.
Since the case where XF = () for all i € Ord and k € K is trivial, let us assume

that Xf # () for i € Ord and some k € K. We define © = (X;);corq as follows:

Let X; = Ug f¥(XF) for all i € Ord and let us consider the class
C = {i € Ord, X; N X; # 0 for some j # i}. 9)

It is clear that this class is non-empty. Let i, be its minimum. We put

X, if i<i
Xi:{ 7 0

UjZioXj7 if 4>

k
It is easy to verify that ((X*,z*) EAN (X, z))K is a final sink.
(b): If X; =0 for all i € Ord, then, on the one hand, the source
(X, ) 1x, (X,@))qex where @ is the function from Ord to X defined by a(i) = a
for all i € Ord is initial with codomain in A. On the other hand, the empty sink
with codomain (X, ) is final.
If X; # 0 for i € Ord, let (X, %) be the A-object obtained from (X,z) by merging
for each i € Ord all elements of X; to one denoted by x;. Then we get a quotient

q: X — X. It is easy to see that the A‘-morphism
(X,2) = (X, 7) (10)

is initial. To see that there is a final sink with codomain (X, x) and domain in A,

let us consider the subclass C of Ord defined above, let iy be the minimum of C
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and let X;, = U;>;,X;. Let E be the collection of all e = (¢;);corq such that

e; € X;, if 1 <ip;

e = z, if i > g, where z € X,,.
It is easy to verify that ((X,e) 1x, (X, 2))eck is a final sink.

It is straightforward to conclude that an A’-object (X, ) is the domain of some
initial monosource with codomain in A iff (X,z) € Obj(A) or x = (0);corq- Con-
sequently, the monotopological hull A™ is the full subcategory of A’ consisting of
all objects of A and the objects (X, z) € A" such that X; = 0, i € Ord. It is clear

that A™ is, up to concrete isomorphism, the category X described in 2.5.

The class A~ in the category A’ consists of all Af-morphisms f : (X,z) — (Y,y)
such that

(1) fla)eYinf(X)=a€ X;, forallaec X, iec Ord,
(i) Y \U;Yi € f(X);
(vit) if f(a) = f(b) then a = b or a,b € X; for some i.

In fact, let f: (X,2) — (Y,y) be an A’-morphism orthogonal to A. The fact that
A is initially dense in A’ and there is a bijection between the families A'(X,.A)
and A (Y, A) of all morphisms with domain X and Y, respectively, and codomain
in A, implies that f is initial. This means that f satisfies (7). It is easy to check
that the A-cancellability of f is equivalent to (ii). Finally, let a,b € X be such
that f(a) = f(b) and there is no i € Ord for which a,b € X;. If x = (0);cord, let
X % X U {a} be the inclusion of X into X U {a} and let T = (T;)icora be such
that Z; = a for all i € Ord. Then (X,z) - (X U {a}, ) is an Af-morphism with
domain in A. If 2 # (0)icord, let ¢ : (X,x) — (X,%) be as defined above (10). In
both cases, there is an A’-morphism g such that g- f = ¢ and, since g(a) # q(b),
we have that f(a) # f(b). Conversely, let f satisfy conditions (i), (i7) and (4i7) and
let (X,2) % (Z, z) be an A'-morphism with codomain in A. Then the morphism
7: (Y,y) = (Z,z) defined by g(c) = z;, if ¢ € Y; and g(c) = d such that f(d) = ¢,
if c €Y \ UjeoraYi is the unique one such that g- f = g.

On the other hand, as we have seen in 2.5, the class A+ in A™ consists of all
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A™-isomorphisms.
Thus we have Al #£ A% = A% = A™ #£ Al

5. Taking into account Remark 13.10.1., Example 2.2 provides an example of a con-

crete category with the solid hull different from the orthogonal hull.

Th following proposition states that in several categories the reflective hull of each
subcategory, if it exists, must coincide with the orthogonal hull . As a consequence, for
several concrete categories, if they have a solid hull, it coincides with the orthogonal hull

(Corollary 14.12).

Proposition 14.11 The reflective hull of a subcategory in a fibre-small topological cat-

egory over Set, if it exists, coincides with the orthogonal hull.

Proof. From Theorem 4.1.3 and Proposition 3.1.2 of [22], it follows that if X satisfies

the following conditions
it is complete, cocomplete and cowellpowered,
it has a factorization structure (€, M) for morphisms with & = Epi(X),
it has a separator

for each numerable family (C; —= B)ic. of M-subobjects of an arbitrary X-object B
the union of all pullbacks of m; along a given morphism g is equal to the pullback

of the union of all m; along g (i.e., Viewg ' (m:) = g7 (Viewmi)),

then for each X-morphisms f the subcategory {f} is reflective.

Let X be a fibre-small topological category over Set. Since Set satisfies all those
conditions for £ the class of all epimorphisms and M the class of all monomorphisms, it
follows that X satisfies all those conditions for £ the class of all epimorphisms and M
the class of all initial monomorphisms (see 21.16 and 21.17 of [2]).

Consequently, for each X-morphism f the subcategory {f}, is reflective. Therefore,
by 1.2, if a subcategory A of X has a reflective hull in X it must coincide with the
orthogonal hull of A in X. |

We recall that Addmek, Herrlich and Strecker ([1]) characterized concrete categories
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which have a fibre-small MacNeille completion; they are the so-called strongly fibre-small

concrete categories.

Corollary 14.12 If a strongly fibre-small concrete category over Set has a solid hull, it

must coincide with the orthogonal hull. O

Remark 14.13 We point out that, however, the solid hull of a strongly fibre-small
concrete category over Set may not coincide with the limit-closure in its MacNeille com-
pletion, as it is shown by the category A of 14.10.4 above which, in fact, is a strongly

fibre-small concrete category over Set.

15 Solid hulls and Vopénka’s Principle

Let us begin by recalling the notion of locally presentable category. Let A be a re-
gular cardinal and let X be an object of a given category; we say that X is A\-presentable
if its hom-functor hom(X, —) preserves A-directed colimits. A locally presentable category
is a cocomplete category which, for some regular cardinal A, has a set .S of A\-presentable
objects such that every object is a A-directed colimit of objects from S.

For a detailed account of locally presentable categories the reader is referred to the
book [6] of J. Addmek and J. Rosicky.

All categories of structures of a given signature of operation and relation symbols are
locally presentable ([6]). In particular, the category Rel(X) of relational structures of
type X as described in 13.1 is locally presentable.

An example of such a category is the category of graphs Gra, i.e., the category of sets

with a binary relation and homomorphisms between them.

We are going to consider the following three large-cardinal axioms of set theory:
Vopénka’s Principle: Gra does not have a large, discrete, full subcategory;

Weak Vopénka’s Principle: Ord°P cannot be fully embedded into Gra (where Ord is the

large poset of all ordinals considered as a category and Ord® is its dual category);
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(M): There do not exist arbitrarily large measurable cardinals.

As it is shown in [7], Vopénka’s Principle implies Weak Vopénka’s Principle and it
also implies the negation of (M).

Under Vopénka’s Principle, locally presentable categories are precisely the cocomplete
categories with a dense subcategory (see 6.14 in [6]).

The following important result, which was proved by J.Adamek, J.Rosicky and V.Trnkova

in [7], shows that the existence of a reflective hull may depend on set theory.

Theorem 15.1 ([7]) Let B be a locally presentable category. Assuming Weak Vopénka’s

Principle, the limit closure of each subcategory of B is reflective. O

The idea that, for concrete categories over Set, the existence of a solid hull depends
on a large-cardinal principle is due to J. Rosicky who showed, in [57], that, under the
axiom (M) there is a concrete category over Set with a small finally dense subcategory,
which does not have a solid hull. Now, we prove a refinement of this result: for concrete
categories over Set with a small finally dense subcategory, the existence of solid hulls is

equivalent to Weak Vopénka’s Principle.

Theorem 15.2 The following assertions are equivalent:

(a) Every concrete category over Set with a small, finally dense subcategory has a solid

hull.

(b) Weak Vopénka’s Principle holds.

Proof.
(b) = (a): Let (A,U) be a concrete category over Set and let C be a small, finally
dense subcategory of A. We define a category A¢ as follows:

e Objects are pairs
(X, a)

where X is a set and « is a U-structured sink with domain in C, codomain X and
such that, for all morphisms c¢: ¢’ — C in C and g : UC — X in «, we have that
g - Uc belong to a.
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e Morphisms
[ (X, a) = (Y, 5)

are maps f : X — Y such that, for each g € o, f-g € .

The pair
(Ac, Uc),

where Ug is defined by Ug(X, ) = X and Ue(f) = f, is a concrete category over Set.
Furthermore, let

Ec A — .Ac
be the functor such that, for each A € A, E¢(A) = (UA, o) where « is the sink of all
morphisms Ug with (¢ : C — A) € Mor(A) and C € C, and, for each f € Mor(A),
Ee(f)=Uf.
Then, we have the following two properties:
1. (see [38]) E¢ : (A, U) — (Ac,Uc) is a finally dense, topological extension of (A, U).

2. (see [55, 6]) Ac is a locally presentable category.

From property 2. above and 15.1, we have that, under Weak Vopénka’s Principle,
the limit closure of E¢(A) in Ag is its reflective hull, and, by 1.2.2, 14.4.2 and property
1. above, it yields the solid hull of (A, U).

(a) = (b): Conversely, we are going to show that, under the negation of Weak
Vopénka’s Principle, there is a concrete category over Set with a small finally dense
subcategory which does not have a solid hull. Our main tool is a construction given in
[5] 1.13. Assuming the negation of Weak Vopénka’s Principle, there exist:

(i) a class of graphs L; = (Y;, 5;), i € Ord, such that
0 if i<y
hom(Li, Lj) = .f -
{ZULZ—)LJ} ’Lf ’LZ]
and, since the negation of Vopénka’s Principle follows,

(ii) a class of graphs K; = (Xj, «;), i € Ord, such that

0 if i#7

hom(K;, K;) =
oG, Kq) {{1&-} if i=j
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In the category Rel(2,2,1) of structures with two binary and one unary relation, consider

the following objects
A= (X, UY U{ti}, s UY; x {t;}, Bi U X; x {t;}, {t:})
for all ¢ € Ord. For each ordinal i, put
A; = i< Ay

and
MZ{UZ':Ao—)Z”Z'EOTd}
where v; : Ag — A; is the coproduct injection. We want to show that M | is not reflective
in Rel(2,2,1).
For each j € Ord, let B; be the object obtained from A; by merging all points of X;

to one denoted by sj, i.e.,
Bj =
= (@5, 75> 05, €)
= My A I ({s;} UY; U {t;}, {(s5,5)} UY; x {t;}, B U{(s5,t)}, {t;}).
We show that all B; belong to M . To conclude this, we first note that, for arbitrary
i,j € Ord, the cardinality of hom(A;, Bj) is 1. In fact:

Ifi > j,let fij : A = Bj be defined by

flz)=s5, v€X;

fly) =1i(y), y €Y

f(ti) =1t
It is obvious that f;; is a homomorphism. Furthermore, it is the only one from A; to
Bj. In fact, let g : A; — B; be such that g(t;) =t with k <i. Then f(Y;) x {f(t;)} =
F(Y;) x {t;} must be contained in 7; and, similarly, f(X;) x {t;} must be contained
in 0;. This implies, respectively, that f(Y;) C Yx and f(X;) C Xg. But this would
determine an homomorphism from A; to Ay which, by hypothesis does not exist! A

similar argument shows that if g(¢;) = ¢; then g = f;; above.
Ifi <j,let fij : Ai — Bj be defined by
flz) =2z, zeX;
fy) =y, yeyi
f(t:) = t;.
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Again, it is easy to see that this is the only homomorphism from A; to B;.

Now, it is clear that, for any i,j € Ord, there is a unique homomorphism from A4; to

Bj, say
gij : A; = Bj;
furthermore, the diagrams "
Ao — 4;
ij{ /gij
B;

are commutative. Consequently, all objects B; are orthogonal to M.
Now, we show that Ay does not have a reflection in M | .
If, to the contrary,

Ao 5 A

is a reflection in M , then, since A§ € M, for each i € Ord, we obtain a commutative
diagram
(%

Ag — A
r l /’z
Ap

We show that for i # ¢/, p;(i) # py(i'), which is obviously false. In fact, for i # ¢/, let j
be an ordinal larger than ¢ and ' and let [; + Ay = Bj be the unique morphism which
makes the diagram

.
Ag — Aj

f oji /f]*

B;

commutative.

Hence, one must have
fiopi(ti) = gij(ti) =ti and  f} - py(ti) = gij(t) = tir;

consequently, p;(t;) # pi(tir).
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Now, put
Cy = ({07 1}7 {(07 1)}7®7®)7 Cy = ({07 1}7(2)7{(07 1)}7®) and Cj3 = ({0}7®7®7 {0})

It is clear that the set C = {C4, Cq, C3} is finally dense in Rel(2,2,1). On the other
hand, since the unary relation in C'; and Cs is empty, there is no homomorphisms from
Ap to Cy or Cy; since the subcategory {K;,i € Ord} is discrete in Gra, we conclude
ap # () and again hom(A, C3) = 0. Hence, it follows that C;, Cy and C5 belong to M |
and, thus, C is a finally dense set of M .

Furthermore Rel(2,2,1) is topological, by 13.1, thus it is a finally dense, solid exten-
sion of M .

By 1.2, the orthogonal hull of M in Rel(2,2,1) is M and, since M is not reflec-
tive and Rel(2,2,1) is locally presentable, it follows from 2.4 that M does not have a
reflective hull in Str(2,2,1). Therefore, using 13.9, we conclude that the concrete cate-

gory M does not have a solid hull. O



Chapter V

Multireflectivity and multicolimits

Kaput’s paper [44] led to the study of generalizations of the concept of reflectivity.
One of these generalizations, multireflectivity, which has been investigated by several
authors (e.g., [11, 17, 74, 10, 61, 8]), has very relevant consequences such as, closedness
under connected limits and existence of multicolimits.

In this chapter, we study the interplay between multireflectivity, multicolimits, con-
nected limits and multisolidness, and we generalize some known results on colimits, limits
and solidness to the above corresponding concepts. Namely, we give conditions under
which a multicocomplete category has connected limits and we prove that a cowellpowered
concrete category (A, U) over a multicocomplete category is multisolid if and only if A

is multicocomplete and U is a right multi-adjoint.

16 Multireflectivity

Definition 16.1

1. Let U : A — X be a functor. A wuniversal source from X to U is a U-source
(X 2 UAj)y such that for each U-morphism X 5 UB there is a unique pair
(4, f) with j € J and f : A; — B fulfilling the equality Uf - n; = . The functor
U is said to be a right multi-adjoint if, for each X € Obj(X), there is a universal

source from X to U.
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2. A subcategory A of a category X is multireflective if the inclusion functor A < X
is a right multi-adjoint. In this case, a universal source from X to the inclusion

functor is said to be a multireflection of X in A.

If, for some class € C Mor(X), all multireflections are formed by E-morphisms,
then the subcategory A is said to be multi-E-reflective in X. 1If, for some con-
glomerate M C Source(X), each multireflection belongs to IM, we say that A is

M-multirefiective.

Examples 16.2 ( [17, 74])

1. The category Fld of fields is a multireflective subcategory of the category Rng of
commutative unitary rings. Given a commutative unitary ring X, let 7 be the set
of all maximal ideals of X and, for each I € Z, let f; be the quotient map of X
into X/I. Then, the source

(X 25 X/1) ez

is a multireflection.

2. The category Lord of linearly ordered sets is a subcategory of the category of posets

and strictly increasing maps. Given a poset (X, <), the family of all morphisms
id 7
(X, <) -5 (X, <) =8 (X, =)
where ¢ is a quotient morphism and < is a linear ordering in X’ containing <, is a

multireflection of (X, <) in Lord.

3. Let Con be the category of non-empty connected topological spaces. Then its dual
category Con®P is multireflective in Top°P, i.e. Con is multicoreflective in Top.
For each topological space X, a multicoreflection consists of the inclusions of all

connected components of X.
Analogously, the category of pathwise connected spaces is multicoreflective in Top

and the category of connected graphs is multicoreflective in Gra.

4. A ring X € Rng is called connected provided that its prime spectrum is con-

nected with respect to the Zariski topology. Equivalently, X is connected if its only
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idempotents are 0 and 1. The category A of connected rings is a multireflective

subcategory of Rng.

In order to show that, let X € Rng and let J be the set of all proper ideals J of X

such that

?—rxeJ=(xeJorx—1€l).

Given an ideal I of X, it is obvious that X/I is connected iff I € J. Let K be the
set of all minimal elements of J. Then for each J € J there is a unique K € K

such that K C J. Consequently, the source
(X 4 X/K)kex
is a multireflection of X in A.

Definitions 16.3 A multicolimit of a diagram D : I — X is a family of natural sinks
(D1 l—% Li)r) i from D such that for each natural sink (Di =% X); from D there is a
unique pair (k, Ly, L X) such that k£ € K and u; = t-lg-c for all 7 € I. Each of the natural
sinks (D1 l—f> Ly); is said to be a component of the multicolimit.

A category X is multicocomplete provided that each small diagram in X has a mul-
ticolimit.

In general, we use the colimits terminology with respect to multicolimits, adding the

prefix “multi”. For instance:

e A multipushout is a multicolimit of the diagram whose scheme is

e A multiple multipushout is a multicolimit with scheme

/N

where I is a set or a class.

e A multiple multicoequalizer is a multicolimit of a scheme of the form
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where the family of all morphisms is a set or a class.

Remark 16.4 Some well-known properties of colimits can be generalized to multicol-

imits. For example, it is easy to prove the following assertions:
1. Each component of a multicolimit is an epi-sink.

2. Each component of a multipushout of an epimorphism along another morphism is

an epimorphism.
3. If X has a factorization structure (£, M) for morphisms, then:

(a) each component of a multipushout of a morphism in £ along any morphism
belongs to &;
(b) if (X LN Zy, (Vs Sk, Z1)1)k is a multiple multipushout of a family

(X =5 Y;); of E-morphisms, then each morphism dj, belongs to &.

Examples 16.5 In [17], Diers presents a great variety of examples of multicocomplete
categories which are not cocomplete. This is the case, for instance, of the categories Fld,

Lord and Con®P.

It is well-known that the notions of reflectivity and cocompleteness may be inter-
preted in terms of the existence of initial objects for convenient categories. Now, we
consider a generalization of initial object which leads to a similar interpretation concern-

ing multireflectivity and multicolimits.

Definition 16.6 A family (A;); of objects of a category A is said to be initial in A, if
for each A-object A there is a unique pair (i, f) with i € I and f: A; — A.

Remarks 16.7

1. From Definition 16.6, it is clear that, if (A4;); is an initial family in A and By, Ba,

Bj are A-objects for which there is a diagram of the form

Bl — BQ(-B:),,
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then the unique i; € I such that A(A;;, Bj)#0 is the same for all j = 1,2,3. Conse-

quently, it follows that the family (A;); is initial iff, for each connected component

C of X, there exists a unique ¢ € I such that A; is an initial object in C.

Thus, we have that:

(a)

A functor U : A — X is a right multi-adjoint iff for each X-object X the
comma category X | U has an initial family, or, equivalently, each connected
component of the comma category X | U has an initial object. Of course,
such a initial family forms the corresponding universal source from X to U.
Each initial object which is part of the initial family is said to be a component
of the universal source.

As a consequence we have that, whenever two morphisms X —— UB and
X -5 UC belong to the same connected component of X | U, then they are
factorized through the same component of the universal source from X to U.
Thus, a right multi-adjoint is a right adjoint iff, for each X € Obj(X), the

comma category X | U is connected.

Given a category X and a diagram D : I — X in X, let D | X denote the
quasicategory of natural sinks from D, that is, objects of D : [ — X are all

natural sinks from D and morphisms are all
. fi . i
h: (Di %% X)iconjiry — (Di &Y )iconn)

where h: X — Y is an X-morphism such that h - f; = g; for all i € Obj(I).

The diagram D : I — X has a multicolimit iff the quasicategory D | X
has an initial family. The elements of this family are just the components
of the multicolimit and, of course, each component is an initial object in its

connected component in D | X.

2. By definition, it is clear that each initial family is unique up to isomorphism, i.e.,

if (A;); and (B;) are initial families of a given category, then there are a bijection

¢ : I — J and isomorphisms h; : A; — By for all i € I.

Consequently, a universal source is unique up to isomorphism (and so is a multi-

colimit).
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3.

In the definition of initial family given above, I is empty whenever A is an empty
category. Furthermore, in contrast to the definition of initial family introduced by
Diers ([17]), we allow I to be a class. In fact, the main results which we obtain in
the sequel are true independently from accepting classes or not in the definition of
initial family. This stresses the fact that multireflectivity is a local notion and that
only the “local smallness” plays a role here. To illustrate the role of the requirement
that I be a set, we point out that, for instance, a small discrete category has an
initial family, in both senses, whereas a large discrete category has an initial family
only if we admit the index family to be a class. Similarly, given a subcategory A
of a category X, a multireflection of an X-object X in A in the “large” sense is
a multireflection from X to A in the “small” sense iff the family of all connected

components of the comma category X | A is a set.

The following two propositions generalize well-known results on adjoint functors to

multi-adjoint functors.

Proposition 16.8 (c.f. [17])

1.

2.

Right multi-adjoint functors preserve connected limits.

If X is a category with connected limits, then a functor U : A — X is a right
multi-adjoint if and only if it preserves connected limits and, for each X-object X,

each connected component of X | U has a weakly initial set. O

We point out that if we consider right multi-adjoints in the sense of Diers (i.e., uni-

versal sources are indexed by sets), then in 16.8.2 we may replace “for each X-object X,

each connected component of X | U has a weakly initial set” by “U satisfies the solution

set condition”. This result was, in fact, proved in [17]. Assertion 16.8.1 was also proved

by Diers for the case where universal sources are indexed by sets. An obvious adaptation

of the proofs in [17] provides 16.8 for the present definition of right multi-adjoint, i.e.,

for the case where universal sources may be indexed by proper classes.

Proposition 16.9 ([17, 74] ) If A is a multireflective subcategory of a multicocomplete

category, then A is multicocomplete. O
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The following proposition shows the role which the fact that an initial family may be

empty can play.

Proposition 16.10 Let X be a category with the following property:

(T) For all morphisms f, g with common domain there are morphisms u, v for which

the square
f
v
commutes.

Then every multireflective subcategory A of X, such that X (X, A) # 0 for all X in X, is

reflective in X .

Proof. Let X be an X-object and let (r; : X — A;); be the multireflection of X in
A which is non-empty, since X(X,.A) # (). For each pair i,j € I, there is some pair of
morphisms (v : A; = W,v: Aj — W) such that w-7; =v-r;. Let s : W — A be a
morphism with codomain in A; hence s-u and s-v are A-morphisms and s-u-7; = s-v-r;.
Thus r; and r; belong to the same connected component of X | A and, from 16.7.1(a),

we conclude i = j. Therefore, I is a singleton and, thus, X has a reflection in A. ]

It is clear that each of the following conditions on X implies condition (T):
e X has pushouts;
e X has non-empty multipushouts;

e X has a terminal object.

Definition 16.11 Let A be a subcategory of the category X. A subcategory B of X
is said to be a multireflective hull of A in X provided that it is multireflective in X,

contains A and is contained in every multireflective subcategory of X which contains A.
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If, in the above definition, we replace “multireflective” by “multi-E-reflective” (“IM-
multireflective, respectively), we obtain the definition of multi-E-reflective hull of A in

X (M-multireflective hull of A in X, respectively).

Let X be an (£, M)-category. Then every subcategory A of X has an E-reflective hull
in X which consists of all X-objects which are domains of IM-sources with codomains in \A.
Now, we prove that, if X' is an E-cowellpowered (&€, M)-category, then every subcategory
has a multi-E-reflective hull.

We shall make use of the following definition and lemma.

Definition 16.12 If G : A — X is a functor, a source (X iR GA;)1 is said to be G-
connected provided that the subcategory of X | G which consists of all f; is connected.

If A is a subcategory of X, an X-source (X % A;)r is said to be A-connected if it is
connected with respect to the inclusion functor.

An X-source (X N X;)r which is X-connected is simply said to be connected .

Lemma 16.13 If X is an (£,M)-category and A is a multi-E-reflective subcategory of
X, then an X-object X belongs to A if and only if it is the domain of some A-connected

source in M.

Proof. If X belongs to A, then the source of all morphisms with domain X and codomain
in A contains the identity 1x and, consequently, it is an A-connected source which belongs
to M.

Conversely, let (X i A;); be an A-connected M-source and let (X -3 Bj)j be a
multi-E-reflection of X in A. Then, since (f;); is A-connected, all morphisms f; are
factorizable through the same r; for some j € J. Consequently, the fact that r; € £ and
(fi)r € M implies that r; is an isomorphism and, thus, X belongs to A. a

Given an (&,M)-category X and a subcategory A of X, let us consider a chain
(An)acora of subcategories of X' defined as follows:
e The category Ay is just A.

e For each a € Ord,
Aa+1
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consists of all X-objects X such that X is the domain of some A,-connected source
which belongs to IM.

e For each limit ordinal A,

A)\ = Uoz<)\~/4a-
Let us denote the union of all these subcategories, UncordAa, by
cM(A).

Proposition 16.14 If A is a subcategory of an E-cowellpowered (€, M)-category X, then
cM(A) is the multi-E-reflective hull of A in X.

Proof.

We are going to use the following two results of Salicrup [61]:

I. If X is an E-cowellpowered (&€, M)-category then, for each source (m; : X — Y;)r
belonging to M, there exists a set J C I such that (m; : X — Y;) s belongs to M.

IT . If X is an E-cowellpowered (£, M)-category and A is a subcategory of X, then the

following assertions are equivalent:

(i) A is multi-E-reflective in X.

(ii) If the following diagram m;
X — A
g
i
A
commutes in X for each i € I, f; is an A-morphism for each i € I and

(m; : X — A;); belongs to M, then X € Obj(A).

Let A be a subcategory of an E-cowellpowered (£,M)-category X. We show that
cM(A) fulfils condition (ii).
Let the diagram
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m;
X — Y
\g /
Y
commute in X, for each i € I, let f; be an cM(A)-morphism, i € I, and let (m; : X — ;)1
belong to M. Hence, using condition I, there is a set J C I such that (m; : X — Y;),
belongs to IM. Since J is a set, there is some a € Ord such that f; € Ay, ¢ € J. Thus,
X € Obj(Aun+1) and, therefore, X € Obj(cM(A)). In order to show that cIM(A) is the
smallest multi-E-reflective subcategory containing A, let B be another multi-E-reflective
subcategory of X which contains A. Therefore we have that A C BB and, for each a € Ord,

if A, C B then, from Lemma 16.13, A,+1 C B. Consequently, by the construction of the
subcategories Ay, it follows that, for each ordinal A, Ay C B and, thus, cM(A) C B. O

Remark 16.15 In fact, according to Salicrup’s proof of the result II, under the as-
sumptions of the above theorem, the multi-E-reflections of objects of X into cIM(.A) are

indexed by a set.

17 Multicocompleteness and connected limits

As we have seen, sometimes the role played by colimits and limits when we deal
with the concept of relectivity turns out to be played by, respectively, multicolimits and
connected limits if we deal with multireflectivity. In the present sequel we explore some
other similarities between the pairs colimits/limits and multicolimits/connected limits.
Our main inspiration is [3] (as well as section 12 of [2]) where the authors give conditions
under which a cocomplete category is complete. Thus we want to study the question of

when a multicocomplete category has connected limits.

Let D : I — Abe asmall diagram in A. Asin [2], we denote by S” the category whose
objects are all natural sources (A, (fi)op;(r)) for D, whose morphisms (A, (fi)owi(r)) SN
(A", (f))ovj(r)) are all those A-morphisms h : A — A’ such that f] - h = f; for all

i € Obj(I), and whose identities and composition law are as in A. We also denote by
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D* : SP — A the forgetful functor given by
* h h
D*((A, (fi)ovjry) — (A", (f)owjr))) = (A= A").

Dually, we define Sp to be the category of natural sinks from D and by D, : Sp — A to

be the corresponding forgetful functor.

Lemma 17.1 If D: I — A is a small connected diagram in a multicocomplete category

A, then SP is cocomplete.

Proof. Let D, : J — SP be a small diagram such that, for each j € Obj(.J), Do(j) =
(Aj, (fji)r). Let ((4; C—% L*)jconjs)kerc be a multicolimit of the composite diagram
J 22 8P L A Tt is easily checked that, for each object i of I, (A; S Di)jconj(s) is a
natural sink for D*-D,; then there is a unique k£ € K and a unique morphism g; : L* — Di
such that g; - cé? = fji, for all object j of J. But the fact that I is connected implies
that all the natural sinks (A; g Di) jeonj(s) belong to the same connected component of
Sp+.p,. Thus, the existing &k in K is the same for all ¢ in Obj(I). It is now easy to check

that (g; : L* — Di)icopj(ry is a natural source for D and
k

(A, (fit)onj(ry) —= (L*, (9i)owj(r))ovj(s) 18 @ colimit of D O

We recall that a subcategory B of a category A is said to be colimit-dense in A
provided that each A-object is the colimit of some small diagram with codomain in B5.
Dually, we define limit-dense subcategory.

We introduce the following definition:

Definition 17.2 A subcategory B of A is said to be multicolimit-dense in A if for every
object A in A there is a small diagram D : I — B and a natural sink (I; : Di — A);er

which is a component of a multicolimit of D.

Proposition 17.3 FEvery multicocomplete category with a small multicolimit-dense sub-

category has connected limits.

Proof. Let B be a small multicolimit-dense subcategory of a multicocomplete category

A. Let D : I — A be a small connected diagram. To show that it has a limit in A
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is equivalent to showing that S” has a terminal object. Furthermore, since, by Lemma
17.1, SP is cocomplete, to show that S has a terminal object it suffices to show that
it has a weakly terminal object (see [2]). Let I* be the subcategory of SP of all natural
sources for D with domain in B. Since B is small, so is I* and the inclusion functor

I* — SP has a colimit, since S” is cocomplete. Let this colimit be
(S 3 R)ser, with R = (C, (pi)onj(1))-

We claim that R = (C, (pi)ops(1)) is a weakly terminal object of SP. Indeed, let S =
(fi + A — Di)op(r) belong to SP. By hypothesis, there is a small diagram D : N — B
and a natural sink (¢, : Dn — A)peonj(ny for D which is a component of a multicolimit
of N g B — A. For each object n of N, the source S, =
(Dn oy op Sy Di);copj(r) belongs to I*. We claim that (D, N C)neowj(n) is a natural
sink from D, that is, (Dn —% C)neonj(n) belongs to Sp. Indeed, let d : m — n be a
N-morphism. Since (t,)neopj(n) 18 @ natural sink from D, we have t,, = t,, - Dd and thus
fitm = (fi - tn) - Dd for all i € Obj(I). This means that Dd is an Sp-morphism from
Sm to S,. Hence cs,, = Dd - cg,. Therefore, there is a component of the multicolimit of
N g B — A which is just the initial object of the connected component of S5 which
contains (Dn =% C)neovj(ny- But, (Dn N C)neovj(ny and (Dn tny A)peconj(n) belong
to the same connected component of S, since, given i € Obj(I), we have the following
morphisms in S5t

fio

_ ) bi
(Dn tg A)Obj(N) > (DTL tg A f# Di)Obj(N)

cs

(Dn =% C)owj(ny -

Consequently, (Dn In, A)opj(ny is the component of the multicolimit of D referred above.
Thus, there is a morphism w : A — C such that w - t, = cg, for all objects n of N.
From the fact that, for each object n € Obj(N) and each object i € Obj(I), we have
that p; - w - t, = fi - t, and that (¢,)op;(n) s an epi-sink, it follows that p; - w = f;
for all i € Obj(I). Therefore, w is an SP-morphism from S = (A Eit Di)iconj(ry to
R = (C ™ Di)icobj(r). O

The following proposition gives conditions under which a category with connected

limits is multicocomplete.
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Proposition 17.4 Every category with connected limits and such that each of its con-

nected components has a small limit-dense subcategory is multicocomplete.

Proof. Let A fulfil the hypotheses and let D : I — A be a small diagram in A. We
want to show that D has a multicolimit in A. Let (Cx)rex be the family of all connected
components of the category Sp of all natural sinks from D. To show that D has a
multicolimit is equivalent to showing that each connected component Cp has an initial
object. Thus, it suffices to prove that

(i) Cx has connected limits (then, in particular, C has equalizers)
and

(ii) Cy has a weakly initial object.

Proof of (i): Let D : J — Ci be a small connected diagram in Cj, such that Dj =

(Di ﬁ) Aj)opj(ry and let us consider the diagram

T2 B sy 2 A
where E}, is the inclusion functor. Since A has connected limits, the functor D, - By, - D
has a limit in A, let it be
(L by Aj)jeonj(r) -
It is easy to see that the fact that D is a functor implies that, for each i € Obj([),
(D1 ﬁ> Aj)jeonj() s a natural source for Dy - Ey -D. Then, there is a unique morphism
t; © Dy — L such that [; - t; = f;; for all j € Obj(J). The sink (D; BN L)icowjry 1s

natural from D, since, given an [-morphism d : i — 7/, the equalities
lj -ty -Dd= fy;-Dd = fij =1;-t; forall j € Obj(J)
imply that ¢ - Dd = t;. Furthermore, the Sp-source
(Di L)iconj(n b, (Di L, Aj)icovi())jeoBi()

is a limit for D. The naturality of this source for D is a consequence of the naturality of

(L l—]> Aj)owj(ry for Dy - Ej - D. To show that it is a limit of D, let
. uj . fij
(Di =5 V)iconin) —= (Di =5 Aj)icowi(r) jeoBi())

be another natural source for D. The naturality of this source implies that the source

(uj : V= Aj)jeonj(s) is natural for D, - Ej. - D. Since (L — Aj)op;(sy is a limit of



17 MULTICOCOMPLETENESS AND CONNECTED LIMITS 116

D, - Ej - D, there is a unique morphism ¢ : V' — L such that ;- t = u; for all j € J.
Furthermore, ¢ is an Sp-morphism from (D; —% V)owjry to (D; N L)oyjr)- In fact,

for each i € Obj(I), since
lj-t-vi:uj-vi:fij:lj-ti for all jGOb](J),

we have t - v; = t;. Consequently, ¢ is the unique Sp-morphism from (D; N V)ow(r) to
(D; % L)ow;(r) such that I -t = u; for all j € Obj(J).

Proof of (ii): Let Ay be the subcategory of A which consists of all codomains of
natural sinks from D which lie in Cg. Then, Ay is connected, since C, is. By hypothesis,
the connected component of A which contains Ay has a small limit-dense subcategory B.
Let I, be the subcategory of Cj, of all natural sinks from D with codomain in B. Since Cj
is connected, for each pair of Ci-objects S and S’ we may choose a finite set of Cp-objects
Iis,sny = {Sr = (Di iy Ar)icovjrys 7 = 1,...,m} for which there is a diagram of the
form

S—8¢+—8 —.«—8, — 5.

Let I.. be the subcategory of Cj which consists of all objects in I, U (Ussrer, I(s,5))-
Then I, is clearly a small connected subcategory of C;. Consequently, by (i), the

inclusion functor I, < Cj has a limit in C,. Let it be
(So 2% S)ser..

with S, = (D; iy A)iconj(ry- We show that S, is a weakly initial object of Cx. Indeed,
let § = (Di N A)ieObj(I) belong to C. Then, there is a small diagram D : N — B
which has as limit a source with domain A, say, (A ny B )neowjvy- It is clear that,
for each n € Obj(N), the sink S, = (Di SUNGY RN By)iconj(r) belongs to L. On
the other hand, the source (A LN Br)neowj(ny is natural for D. In fact, let n 2 0 be
a N-morphism. The naturality of (£,)op;(n) implies that Dd - t, = t, and thus, that
Dd - (tn - hi) =ty - h; for all i € Obj(I). That is, Dd is a I,,-morphism from S, to S,.
Consequently, as (S, EEN S)ser,. is a limit, we have that Dd - ps, = ps,,- Therefore,
there exists a unique morphism 4 % A such that ¢, - w = ps,, for all n € Obj(N). Now,
for each i € Obj(I), we have t,, - w - l; = pg, - li =ty - hi (n € Obj(N)). Hence, since

(tn)neowj(n) is a limit, it follows that w-1; = h; for al i € Obj([I), that is, w is a morphism
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in Cj, from S, to S. a

We recall that a monosource (m;)r is said to be extremal provided that it fulfils the
following condition

(E) every epimorphism e through which all m; factors is an isomorphism.

It is well-known that every cocomplete and cowellpowered category is an
(Epi, Extr MonoSource)-category (this follows, for instance, from 6.5 and 7.3 of [71]).
Lemma 17.5 If A is a multicocomplete and cowellpowered category, then:
(i) Each connected source in A has an (Epi, Extr MonoSource)-factorization.

(ii) If (B = B;); is a connected extremal monosource, A < C is an epimorphism,
A ﬁ> B is a morphism and (C £> B;)r is a source such that m; - h = h; - e for all

1 € I, then there is a unique morphismt : C' — B such thatt-e =h and m; -t = h;

forallieI.
e
A C
h . hi
B B
my
Proof. (i) Let (f; : A — A;)1 be a connected source and let us consider the family

indexed by K of all pairs (ex, (mg;)r) where e, : A — E} is an epimorphism and, for all

1 €1, my : By — A; are morphisms such that
mpi - ex = fi. (11)

Now, let us form a multicointersection of the family (ex)rer. From (11) it follows that

there are a unique component of the multicointersection, say
(e A — B;(gk B — B)K>,
and a unique morphism m; : B — A; such that

m; -e= f; and m; - g = my; for all k € K.
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Since the A-source (f;); is connected and all e; are epimorphisms, we have that all
(fis (myi) i) with ¢ € I belong to the same connected component of the quasicategory of
natural sinks for the diagram A -5 Ej, k € K. Thus, the existing component (e, (g1) &)
of the multicointersection is the same for all i € I. Hence, (A <+ B 5 A;); is a
factorization of (f;);, with e € Epi(A). Since (f;)s is connected and e is an epimorphism,
it is clear that (m;)s is connected.

Now, we first show that (m;); fulfils the above condition (E). Let d be an epimorphism
and let (I;); be a source such that m; = l; - d for all i € I. Then (f;); = (I;)7 - (d - e)
and, thus, d - e = ¢ for some k € K. Hence, we have the equality gi - d - e = e, which
implies that gy - d = 1. thus, d is an isomorphism. To show that (m;); is a monosource,
let a and b be morphisms with codomain in B and such that m; -a =m;-b for all i € I.
Then for each i € I there are a component B - C' of the multicoequalizer of (a,b) and
a morphism r; : C' — A; such that r; - ¢ = m,;. Since (m;); is connected, the component
B 5% C is the same for all m;. Consequently, the equality (m;); = (r;); - ¢, with ¢ an
epimorphism, implies that ¢ is an isomorphism, since (m;); fulfils condition (E). Thus,
a=>o.

(ii) Let us form a multipushout of e along h. For each i € I, the equality h;-e = m;-h
implies the existence of a unique component (¢, k) of the multipushout of (e, h) and of a
unique morphism ¢; such that ¢; - € = m; and t; - h = hi. Since (m;)r is connected and
e € Epi(A), all the pairs (m;, h;) belong to the same connected component of the category
of natural sinks from the diagram (e, h) and, thus, the same pair (é, ﬁ) corresponds to each
one of them. Consequently, we have that (m;); = (¢;)7 - € and, since é is an epimorphism
(by 16.4.2) and (m;); fulfils condition (E), é is an isomorphism. Therefore, t = ¢~ h is

the required morphism. O

We recall that, given a category A, an A-object S is said to be a separator in A
provided that for each pair of morphisms f,g : A — B with f # g, there is some
morphism S " A such that f-h#g-h.

Theorem 17.6 FEvery cowellpowered, multicocomplete category with a separator has con-

nected limits.

Proof. Let A be a cowellpowered, multicocomplete category and let S be a separator of
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A.

I. We show that every object B is a quotient of some component of a multicoproduct

of S indexed by A(S, B). In fact, let

((5 2% CYgensm) ) ter (12)

be a multicoproduct of S indexed by A(S, B). Then, there is a unique pair
(t,, Ct % B) such that the triangles

Cto (13)

are commutative for all g € A(S, B). Furthermore, the fact that S is a separator implies
that w is an epimorphism. Of course, if A(S, B) = (), then the multicoproduct of S
indexed by A(S, B) is just an initial family of A.

I1. We prove that if (B % A;); is a small non-empty monosource with A(S, B) # ()
then the domain B is the quotient of some component of a multicoproduct of S indexed
by [lier A(S, A;). By L it suffices to show that each component of the multicoproduct
of S indexed by A(S, B) is a quotient of some component of the multicoproduct of S
indexed by [[;c; A(S, 4;). The fact that (B " A;); is a monosource implies that the
map
¢+ A(S,B) = Tl;cr A(S, A;) which assigns (m; - g)1 to each g € A(S, B) is one-to-one.
Then, it suffices to prove the following general result: If N and M are nonempty sets
such that N C M, and B is an A-object, then each component of a multicoproduct of B
indexed by N is a quotient of some component of a multicoproduct of B indexed by M.

So, let (v, : B — C)pen be a component of the multicoproduct of B indexed by N.
Fix n, in N and put, for each m € M,

Vp ifmeN
Om =
Vp, ifmégN

o

Hence, there are a unique component of the multicoproduct of B indexed by M, say,

(0, : B — L)men, and a unique morphism u : L — C' such that u - 6, = d,,, m € M.
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Thus, we have that (6, : B — L),en and (v, : B — C),en belong to the same connected

component of the category of all sinks (g, : B — X)nen, since
(Hn B — L)nEN — (Vn B — C)nEN

is a morphism in that category. This proves the existence of a unique morphismv : C' — L
such that v-v, =0, foralln € N. Thenu-v-v, =u-6, =, = v, for all n € N; hence,

u-v=1¢ and, thus, u: L — C is a split epi.

ITI. We prove that, given a small non-empty family (A;); of objects in A, there is a
set F(4,), of A-objects such that every domain B of a monosource with codomain (4;);,
i.e., of the form (B % A;);, is a quotient of some object in F(4,),- The set F(4,), is the
union of {C'} and F, for C' and F as follows:

(a) Itis clear that all objects B which are the domain of a monosource with the codomain
(A;)1 belong to the same connected component of A; consequently, all such objects
B which, furthermore, fulfil A(S, B) = () are quotients of the initial object of the

connected component of A which contains them.

(b) We show that there is a set F of components of the multicoproduct of S indexed by
[Ler A(S, A;) such that every domain B of a monosource of the form (B % A;);

with A(S, B) # 0 is a quotient of some object in F.

For each monosource (B —= A;); with A(S, B) # 0, let

G(B,(my);) = {(mi - 9)1 € [Lier A(S, 4i) | g € A(S, B)}.

Since {G(B,(m,);) | (B M, A;)r is a monosource} is contained in the set of
all subsets of [[;c; A(S, 4;), it is a set. Let {(Bj,(mg)j), j € J} be a set of
monosources with the codomain (A;); such that for each monosource (B, (m;)r)
with the codomain (A;); there is one and only one j € J such that G (g (m,),) =
G(Bf,(m{)f)' By II., there exists a set F = {C7, j € J} of components of a multico-
product of S indexed by [];c; A(S, A;) such that B’ is a quotient of C7. We show
now that for each monosource (B —% A;); with A(S, B) # 0 the domain B is a
quotient of some C7.

m;

Com?
Let (B — A;); and (B’ RN A;)r be two monosources such that G(g (m,),) =

G(Bj (mi))" Then we may define an isomorphism ¢ between A(S, B) and A(S, B7)

2
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by putting, for each g € A(S, B), ¢(g) = h such that (m; - g); = (mi -h);. Con-
sequently, it is clear that the multicoproduct (12) of S indexed by A(B,S) is
also a multicoproduct of S indexed by .A(S, B7). Hence, there is a unique pair

', c w BY) such that the triangles

BJ

Ct’ (14)

where ¢(g) = h, are commutative for all g € A(S, B). As before, w’ is an epimor-

phism and we may assume that C* = €Y. Consequently, from the commutativity

J

i

¢
g

all g € A(S, B), which imply that ¢ = t, and m! - w' = m; - w, since ((0l) aes,B)T

of the diagrams (13) and (14), we get the equalities (m] -w') - o}, = (m;-w)- oy for

is a multicoproduct. Thus B is also a quotient of C7.

IV. Now, since, given A € Obj(A), there is a set F(4) such that each subobject of A

is a quotient of some object in F(4), it turns out that A is wellpowered.

To show that A has connected limits, let D : I — A be a small connected diagram in
A. From Lemma 17.1, the category S of natural sources for D is cocomplete. Hence, to
show that S” has a terminal object - which, then, is the limit of D - it suffices to show
that it has a weakly terminal object. Let F(Di)Obj(I) be the set chosen above and let I*
be the set of all natural sources for D with domain in F(Di)ObjU)' Since I* is small, the

diagram I* < SP has a colimit in SP, let it be

H(B,f;)

(B, (fi)ovjry) — (C,(wi)owi(r))-

From Lemma 17.5, the connected source (C' — Di)opj(r) has an (Epi,

Extr MonoSource)-factorization, say (C' % L LN Di)oyj(r)- We show that

(L LN Di)opj(r) is a weakly terminal object of S Let (A 25 Di)opj(r) belong to sP
and let (A 4 p Di)opj(r) be an (Epi, Extr MonoSource)-factorization of (gi)op;(r)-
Then there is some object E in F(p; 08D and some epimorphism E % B. It is clear
that (F % B =% Di)opj(r) is natural for D and, thus, it belongs to I*. Consequently, we

have the equality n;-q = l;- (e fi(gn,.q)) for all i € Obj(I). Hence, again by Lemma 17.5,
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there is a unique ¢ : B — L such that ¢ - q = e - ji(g p,.q) and l; - t = n; for all i € Obj(I).
Therefore, it is clear that ¢-d is an SP-morphism from (A, (g:)op;(1)) to (L, (li)obj(r))- O

Remark 17.7 Let A be category with terminal object. Then trivially holds that if A
is multicocomplete then it is cocomplete. Furthermore, if A has connected limits then it
is complete. This follows from the fact that a product [];c; A; is the same as a limit of

the cone-diagram of all morphisms from A; to a terminal object.

18 Multisolid categories

The concept of a solid concrete category has turned out to be extremely useful in
unifying “well-behaved” concrete categories from topology, algebra and other fields of
mathematics. We recall that, for cowellpowered concrete categories (A,U) over a co-
complete category, solidness is equivalent to A being cocomplete and U having a left
adjoint (see [71]). In the present section we study a generalization of solid concrete cate-
gories to multisolid ones, introduced by W. Tholen [74] under the name strongly locally
semitopological. The main result is that a cowellpowered concrete category (A, U) over
a multicocomplete category is multisolid if and only if A is multicocomplete and U is
a right multi-adjoint. Thus, these categories include examples such as the category of
strictly linearly ordered sets or the category of fields. This result improves Theorem 6.3
in [74], using a different approach which stresses the similarity between the behaviour of

solid and multisolid categories.

Definition 18.1 A concrete category (A, U) is multisolid if for each U-sink S =
(UA4; 3% X); there exists a U-source (X 2 UBj) such that

(1) y; - z; carries an A-morphism A; — Bj for each i € I, j € J;

(i4) whenever a U-morphism X % UB is such that y - 2; carries an A-morphism for
all ¢ € I, then there is a unique pair (j, f) with j € J and B; 5B satisfying
Uf-yj=y.

The U-source (X Ry Bj) is called a semifinal multilift of S.
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Examples 18.2 (cf. [73])

1. Solid categories (i.e., the case where J is a singular set).

2. The category of strictly linearly ordered sets is multisolid over the category of

strictly ordered posets.
3. The category of fields is multisolid over the category of commutative unitary rings.

4. A functor U : A — X is said to be locally full if, for each commutative diagram of

the form

UA UB
Ua\ / Ub
el

f is the underlying X-morphism of an A-morphism from A to B.

IfU: A— X is a faithful and locally full right multi-adjoint, then the concrete
category (A,U) is multisolid. To show this, let (UA; &% X); be a U-sink and
consider the U-source (X =% UC})r of all U-morphisms such that z - z; carries an
A-morphism from A; to Cy, for all ¢ € I. Let (X i3 U By) k be the sub-source of the
universal source from X to U of all morphisms X ® By, such that Ugy - ni. = 2
for some ¢t € T" and some A-morphism g; : By, — C;. Thus, for each i € I, we have
the following commutative diagram

’l

AH)(4>UB]C

2t - Ty /Ugt

UCy

with z;-x; the underlying X-morphism of a morphism from A; to C;. Consequently,
since U is locally full, we have that 7 - z; carries an A-morphism from A; to Bjy.

Therefore (X Ik UBy)k is a semifinal multilift of (z;);.

Many other examples from topology, algebra and geometry can be found in [73].
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Remarks 18.3

1. It is clear that a multisolid category is solid iff, for each X € Obj(X), the comma
category X | U is connected.

2. From the definition it follows immediately that if (A, U) is a multisolid category,
then U is a right multi-adjoint, the universal source from X to U being the semifinal

multilift of the empty source with domain X.

Furthermore, as W. Tholen observed in [74], if (A, U) is a multisolid category over

a multicocomplete category, then A is multicocomplete.

Theorem 18.4 Let X be a multicocomplete category. Then a concrete category (A, U)
over X with A cowellpowered is multisolid if and only if U is a right multi-adjoint and

A is multicocomplete.

Proof. By 18.3.2, we have to prove just the sufficiency. Let U : A — X be a faithful,
right multi-adjoint functor. We show that every U-sink (UA; =% X); has a semifinal
multilift. Consider the U-source (X 2% UC})r of all U-morphisms z such that, for all
1 €1, z - x; is the underlying X-morphism of an A-morphism from A; to C;. Then

r :UjeJ T,

where, for each j € J, (X 2 UCy)1; is a connected component of the U-source (z;)7.
Since U is a right multi-adjoint, for each ¢t € T there is a unique pair (7, f) such that
n : X — UD belongs to the universal source from X to U and f : D — C, fulfils
Uf-n = 2. For each j € J, the U-connectedness of the source (Z =% UCy)r; implies
that the U-morphism 7 is the same for all z; with ¢t € Tj. For each t € T} we denote the
above pair by

(mj : X = UDj, fi:Dj = Cy).

d.
For each j € J, let (D; =3 B, Ly Ci)1; be an (Epi, Extr MonoSource)-factorization of
(ft)r; which exists by Lemma 17.5. We claim that

(x % up; "V UB)),
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is a semifinal multilift of (U A; X X)r. In fact, if X % UB is such that y - x; carries an
A-morphism for all 7 € I, then B = C; andy = z; for some ¢t € T. Let j be the unique

element in J such that ¢ € T}; hence
y:Ult(Ud]nJ) (15)

Furthermore, since (7;) is a sub-source of a universal source from X to U and d; is an
A-epimorphism, it follows that (4, {;) is the unique pair for which the equality (15) holds.
O






Chapter VI

Multireflectivity and

multiorthogonality

In the two first chapters we studied relations between orthogonal and reflective hulls;
in particular, conditions under which an orthogonal subcategory is reflective were given.
In the the present chapter we study the existence and characterization of the multireflec-
tive hull of a given subcategory. Namely, we investigate a generalizaton of the results on
orthogonality and reflectivity to the setting of multiorthogonality and multireflectivity.
We relate multiorthogonality with orthogonality via free large-product completions and
we obtain sufficient conditions for the multiorthogonal hull of a subcategory to be its
multireflective hull.

Furthermore, we extend the notion of orthogonal closure operator to categories with
multipushouts - instead of pushouts - and we use this closure operator to express multi-

orthogonal sources in terms of density and multireflective hulls in terms of closedness.

19 Multiorthogonality

The main goal of this section is to find conditions under which the multiorthogonal
hull is a multireflective hull.

We begin by recalling the concept of multiorthogonality.

Let A be a subcategory of X. When we pass from the notion of reflectivity to that
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of orthogonality, we enlarge the class of all reflections of some X-object X in A, that is,

the class of all morphisms X 4, A with codomain in A such that
(0) each morphism X 5 A’ with codomain in A is uniquely factorized through f,

by considering the class of all morphisms X l> Y, with codomain not necessarily in A,
which fulfil condition (o).

The notion of multiorthogonality is obtained in an analogous way from that of mul-
tireflectivity. This concept has been studied by some authors (see, for instance, [10], in

the dual situation, [6] and references there).

Definitions 19.1 Let X € Obj(X) and let S = (Y,(f; : Y — Z;)ier) be a source in
X. We say that X is multiorthogonal to S, or S is multiorthogonal to X, written XLS,
provided that, for each morphism Y < X, there is a unique pair (i,g) with i € I and

g : Z; — X a morphism such that g- f; = g¢.

If A is a subcategory of X', we denote by .A£ the conglomerate of all sources S such
that, for each A € Obj(A), ALS.

If S is a conglomerate of sources, we denote by & the subcategory of all X in X

such that, for each S € S, XLS.

A subcategory A of X is said to be multiorthogonal if it coincides with S| for some

conglomerate S of sources.

Remark 19.2 For each source S = (X 2t Yi)r in .AJ;, we have that, if g : X — A
and h : X — A’ belong to the same connected component of X | A, then g and h
are factorizable through the same f;. Indeed, let ¢ and h belong to the same connected

component; this means that there is a commutative diagram of the following form

g h

A X Al
di | b dn

Al An

g1
d;\ 92 /dn—l
A2 Anfl
d3\
Az < Ay
dy
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with Aj, Ay ..., Ay in A. Let g and g1 be factorizable through f; and fi7, respectively.
Then, the morphism d; - g = ds - g1 is factorizable by both f; and fi/; therefore ¢ = 7'. By
using the same argument for g; and g2, and so on, we conclude that A must also factorize
through f;.

As a consequence, it is clear that if X | A is connected for each X in X, then

AL — 4t

The following propositions show that the interplay between the notions multireflec-
tivity, multicocompleteness, multiorthogonality and connected limits is parallel to that

between the notions of reflectivity, cocompleteness, orthogonality and completeness.

Proposition 19.3

1. If A and B are subcategories of X and & and T are conglomerates of X-sources,

then:

« ACB— AL ot

¢ ACS, «=Scat

2. For every subcategory A of X, each of the assertions (a)-(c) below implies the next

one:

(a) A is multireflective;
(b) A is multiorthogonal;

(c) A is closed under connected limits.

3. For every family (S;)1 of conglomerates of sources, we have that

Nier(Si) L = (Uier Si) -
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Proof. The proof of 1. and 3. and of the implication (a) = (b) of 2. are straightforward.
The implication (b) = (c¢) of 2. is proved in [6] for the case of multiorthogonality with

respect to small sources only. But it also works for possibly large sources. a

From 19.3.1, it follows that a subcategory A of X is multiorthogonal iff A4 = (AJ; )L

and that the subcategory (.AJ;) | is the smallest multiorthogonal subcategory of X con-
taining 4. Thus, we shall use the following

Definition 19.4 Given a subcategory A of X', the multiorthogonal hull of A in X is the
subcategory (AJ;)J_ and it will be denoted by O(A).

Definitions 19.5 A conglomerate S of sources in X’ is said to be

e left-cancellable provided that if S = (X i> Yi)r and S; = (V; i, Zij)je, 1 € 1,
are sources such that S; belong to S for all ¢ € I and the composition (S;)7-S =
(X g”—ff Zij)icl,jeJ; also belongs to S, then S belongs to S.

e right-cancellable provided that if S = (X LN Y:)r and S; = (V; EEN Zij)jer, t € 1,

are sources such that the source S and the composition (S;);-S =

(X g”—ff Zij)ier,jeJ; belong to S, then S; belongs to S for all ¢ € I.

Proposition 19.6 Let A be a subcategory of X.
1. If (fi)1 belongs to .AJ;, then each f; is A-cancellable.
2. AL C AL and O(A) C O(A).

3. AJ; is closed under composition, that is, if the sources S = (X N Yi)r and

S, = (Vi EEN Zij)jes;» © € I, belong to AJ;, then the composition (S;)r - S =

(X Lff Zij)icl,je; also belongs to .AJ;.

4. AJ; 18 left-cancellable and right-cancellable.

Proof.

1. and 2. are obvious.
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3. Let (X XK Yi); and (V; ¥ Zij) i, 1 € 1, be sources in AL and let h: X — A be
a morphism with codomain in A. Hence, there is a unique pair (i,h) such that

h - f; = h; and then there is a unique pair (j, k) such that j € J; and h- gij =h. It
is clear that, thus, ((i,j),ﬁ) is the unique pair with (7, j) € Il;c;J;, where

WierJi = Vier{(i,J) | j € Ji},
and such that h - (gij - fi) = h.

4. In order to show that .A; is left-cancellable, let S = (f; : X — Y;)icr and S; = (g4
Y = Zij)jes;, @ € I, be sources such that S; belongs to .AJ; for all 4 € I and the
composition (S;)r - S also belongs to AL Leth:X = Abea morphism with
codomain in A. Then there is a unique pair ((7,7), h’) such that (i, j) € I;c;J; and
h' - gij - fi = h. Thus, the pair (i,h - g;;) is such that i € I and

(h/ . gij) . fz = h (16)

To show that this pair is unique, let (i/,h”) be a pair with ¢/ € I and A" - f; = h.
Then, since Sy € .AJ;, there are j' € Jy and g : Zyj — A such that g - gy = 1.
Consequently, g - (girj - f) = h and, since (S;)7-S € .AJ:, it follows that i = ¢’ and
j =j'. Concerning the unicity of k- g;; in the equality (16), let u be a morphism
such that u - f; = h. Then, since S; € .AJ*‘, there is a unique pair ((,5'),u) such
that u = v’ - g;j» and, thus,

u' - (gigr - fi) =u- fi=h =0 (g - fi);
hence, 7' = j and «' = A/, from which it follows that u = u’ - gg =N gi.

Let us show that .A£ is also right-cancellable. Let S = (f; : X — Y;);er and
Si = (9ij + Yi = Zij)jes;, © € I, be sources such that S and the composition
(Si)1-S belong to AL, FixieIandlet h: Y; — A be a morphism with codomain
in A. Hence, there is a unique pair ((i/,j),h") such that »’ - (gi; - fir) = h- fi.
But, since (f;)I € S, this equality guarantees that ¢ = ¢ and b’ - g;; = h. Now, if
j' € Ji is such that, for some morphism h”, we have that, h' - g;; = h = h" - g;;r,
then we also have ' - (g5 - fi) = h" - (gij» - fi) and, since (S;);-S € AJ:, ji=17
and h = h”. Therefore, (j,h’) is the unique pair such that j € J; and b’ fulfils the
equality A’ - g;; = h. O
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Next, we define the free large-product completion of a given category, which allows
us to establish interesting relationships between the notions of multiorthogonality and

orthogonality.

Definitions 19.7

1. Given a category X, the free large-product completion of X, denoted by ITH(X), is

the quasicategory defined as follows:

e objects are families (possibly large) (X;); of X-objects;

e morphisms are of the form

(X); (v, (f5)) )

where o : J — [ is a function and, for each j, f; : X, — Y is an X-

morphism;

e composition and identity morphisms are obvious.

It is clear that & is a subcategory of II'(X), if objects of X are identified with

singleton-indexed families.

2. If U : A— X is a functor between the categories A and X, we define the functor
YU) : T A) — THX) by
I(U)((Ai)1) = (UA);
I'U) (e, (fj)0) = (e, (Uf).)-

Remark 19.8 Let II°(X) denote the subcategory of the quasicategory IT‘(X) which
consists of all families (X;); such that I is a set; analogously, given a functor U : A — X,
we define the functor II*(U) : II¥(A) — II°(X). As observed by Diers [17], II*(X) is a

free product completion of X, i.e.,
(i) II*(X) has products:
(ii) For every functor F : X — ), where ) is a category with products there exists a

functor F* : TI°(X) — ) preserving products and extending F (i.e., FX = F*X
and Ff = F*f), unique up to isomorphism.
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The analogous result holds for IT'(X), only here products must be substituted by
large products (and Y is now an arbitrary quasicategory with large products).

Furthermore, Y. Diers ([17]) proved that
A. X has connected limits iff II*(X) is complete;
B. X is multicocomplete iff TI°(X) is cocomplete;
C. U: A — X is aright multi-adjoint iff I1°(U) : 1I°(A) — II°(X) is a right-adjoint (see

also [74]).

The following two lemmas will be useful in the sequel. We point out that they extend
the assertions B. and C. in 19.8 to the case where multireflections and multicolimits are

allowed to be indexed by a proper class.

Lemma 19.9

1. If A is a subcategory of X, then a TI'(X)-object (X;)1 has a reflection in TI'(A) if

and only if, for each i € I, X; has a multireflection in A.
2. U : A — X is a right multi-adjoint if and only if II'(U) : IH(A) — TIX) is a
right-adjoint.
Proof.
1. Let

(@ (a3).)

(Xo)r (A4j)s

be a reflection of (X;); in TI'(A). We claim that for each i, € I the source

(X, 3 Aj)

a(j)=io

is a multireflection of X, in A. Indeed, if X;, % Aisa morphism with codomain
in A, then (X;)r (29) A, with B(e) = i,, is a IT'(X’)-morphism with codomain in
IT'(A); hence, there is a unique I1'(A)-morphism (53,9) : (4;); — A such that
(8.9) - (o, (aj)s) = (B,g), that is, a- B =B and g - T Bley) = 9- Therefore, taking
J = B(e), the pair (j,g) is unique with a(j) =i and g-a; = g.
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Conversely, for each i € I let
(X — Aj)jEJi
be a multireflection of X; in A. Let
K =Uier Ji = Uier{(4.9) | j € Ji}

and let us define av: K — I by «(j,7) = i. Then, it is easy to see that

(v, (Ti')(j,i)eK) )
(X1 ! - (A;')(j,i)eK

is a reflection of (X;); in II'(A).

2. It is a consequence of 1. O

Lemma 19.10

1. Let D be a quasicategory with a set of objects. For each category X, every diagram

Proof.

D :D — X has a multicolimit if and only if every diagram D : D — TIY(X) has a

colimat.

X is multicocomplete if and only if IN(X) has colimits of all diagrams D : D —
H(X) such that D is a quasicategory with a set of objects.

. Let D be a quasicategory such that 0bj(D) is a set. Let D : D — X be a diagram

lz
in X, and let (Dd ta)g (Xi)1)deonj(p) be a colimit of D B x < (x) in T(X).

l74
Then it is immediate that (Dd —% (Xi)deovj(D)),e; i @ multicolimit of D in X'
Conversely, let let D : D — II'(X) be a diagram in IT'(X). For each object d of D
put
Dd = (X;));

d

and for each morphism ¢ : d — d’ put

ot (fhi,
D(d 5 d) = (X)), 0 i) (Xig)1, -
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Let I be the subclass of the class J = [lgcop;(p) Ig which consists of all (i) geonj(p) €
J such that for each D-morphism d L d the map Iy N I fulfils ol (ig) = ig.
Thus, for each i = (ig)geopjpy € I We obtain a functor D; : D — & defined by
D;d = X;, and D;(d 4 d) = (X;, @ Xi,). By hypothesis, for each i € I, the
functor D; : D — X has a multicolimit in X, let it be ((D;d Lk, Lik) acovj(p)) ke kK, -
Let K =Ujer K; = Ujer{(k,i) | k € K;} and let a : K — I be defined by a(k,i) =

a(k, (id)aeonj(p)) = iq- Then, it is easy to show that

(o, (Lik) (k,i)e )
( (Xig, = (Lik) (k,i)ek ) deobi(D)

is a colimit of the functor D : D — I'(X).

2. It follows from 1., since the fact that X has multicolimits of functors whose domain
is a small category implies that X also has multicolimits of functors whose domain
is a quasicategory with just a set of objects. In fact, this is a consequence of the

following assertion which can be easily proved:

Let D : D — X be a functor such that D is a quasicategory with a set of
objects. Let D be the quotient category obtained from D such that Obj(ﬁ) =
Obj(D), and, for each pair of objects d,d" € Obj(D), we define an equivalence
relation ~ in the class D(d,d') by f ~ f' iff Df = D’ and we define D(d, d')
to be the set of all equivalent classes for ~ in D(d,d").

Let D : D — X be the corresponding quotient functor.

Then, if D : D — X has a multicolimit in X ,s0has D : D — X and, moreover,

the two multicolimits coincide. O

Remark 19.11 Although we have yet a nice relationship between the multicolimits in
a category X and colimits when we pass from the category I1°(X) to the quasicategory
II'(X), the same is not true with respect to connected limits of X’ versus limits in TI/(X).
Indeed, the fact that X has connected limits does not implies the existence of equalizers
in TI'(X) as the following example shows:

Let X = Set and let us consider in IT'(X) the following diagram
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(e, (f:)1)
(A); (B
(8, (9:)1)

where [ is the class of all ordinals, the map o : I — I assigns the zero to each ordinal,
B = idy and, for each i € I, A; = {0, 1} and B; = {0}; f; : Ao — B; and g; : A, — B;
are the constant map. We are going to show that this pair of morphisms does not have
an equalizer in II!(Set). Let us assume that, to the contrary, (cx)x (o) (A;)r is an
equalizer of that pair. Then, in particular, v -« = ~ - 8 and, consequently, for each
i eI, y() =~v(B()) = v(a(i)) = v(0); hence, v is a constant map. Furthermore, the

11! (Set)-morphism Cy0) i)y (A;)r equalizes the pair ((a, (fi)1), (B3, (gi)r)). But, then,

on the one hand, C. (hi)g (A;)1 equalizes the pair ((a, (fi)1), (B, (g:)r)) and, on the

other hand, the triangle

’ h’L

(Cr) i Sl )I)(Ai)l

(d, Z.dC»Y(o) ) (hi)r
Cy0

where the map 0 : {e} — K is defined by d(s) = 7(0), is commutative. Consequently, K

must be singular and

(o, (fi)1)
Cy0) (Ai)1 (Bi)1
(B, (gi)r)

is an equalizer diagram. Now, we show that, for each ordinal «, there is a one-to-one

map from the product {0, 1} into C. ), which is absurd. Let a be an ordinal. Let
7+ {0, 1}* = {0, 1} , i € a, be the corresponding projections and define {0, 1}* " A,
by r; = m; if i € a, 7, = mp, otherwise. Then {0, 1}* @{ (A;)7 is a morphism in
I!(Set) which equalizes the pair (o, (fi)1), (3, (g:)1)). Then, there is a unique morphism
t:{0,1}* — O,y such that h; -t = r;, for all ordinal 7. In fact, ¢ is one-to-one:
t-a=t-b = h;-t-a="h;-t-b forall i
=ri-a=r;-b for all 7
=>m-a=m;-b forall i €«

=a=0>.
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In order to relate multiorthogonality with orthogonality via free large-product com-

pletions, we use the following definition.

Notation 19.12 Given a conglomerate S of sources in X, we denote by IT/(S) the con-
glomerate of all morphisms (X;); (@ i)7) (Y;)s TIH(X)) such that for every i € I the
source (X i Yj)a(j)=i belongs to S

In the sequel, when we use the operators L and L, we always consider L in X and L

in TI'(X).

Proposition 19.13 For a subcategory A of the category X and a conglomerate S of
sources in X which contains all isomorphisms, we have the following properties:

1 (AL = (T (A))*

2. (IN(8)) L =TS ));
3. TIHO(A)) = O(IT' (A)).

Proof.

1. This equality follows from the following equivalences which are easily checked:

(Oé, (f])J)

the source  (X;); (Vi) belongs to HZ(AJ;)

iff, for each i € I, (X; L) Yj)aj)=i belongs to AJ:

iff, for each i € I, x, (fi)ag)=i

(Y)) aj)=i belongs to (IT'(A))+

i (x), (o, (f5)1)

2. Let (By)x € (I'(S)) 1; in order to prove that (By)x € II'(S| ), we show that, for
cach k € K, By € S| . Let (X £ V;); € S. Fix k, € K and let h: X — By, be an

(Y;); belongs to (IT(A))* .

X-morphism. We may define a IT'(X’)-morphism
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(a, (g5))
(Zk) K (Wj)s
as follows:
X if k=k
Zy =
B, if k#k,
J=TU(K\{ko})
Y, if jelI
wy=¢ 0
By it jeK\ {k}
, ko if jel
o=y . .
g it je K\ {ko}
the X-morphisms g; : Z,(;) — W, are defined by
fj if jel
9i = e :
1y, it jeK\ {k}

: . . (e, (g5).)
Since I'so(X) C S, it is clear that the morphism (7). (W;); be
longs to II!(S).

On the other hand, we may define a IT'(X')-morphism
(8, (hi) k)
(Zi) K (Bk) i

by

ho i k=k,
hy = .
g, if k+#k

Then, there is a unique II'(X')-morphism

(B, (hi)k) + (Wj) s — (Be)k
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such that
(B, (h) k) - (@, (g5).0) = (B, (hie) k)-
Therefore, it is easy to conclude that the pair

(B(k0)7ﬁko)

is the unique one such that 5(k,) € I and the morphism Ay, : Y,y — B, fulfils
the equality hy, - JB(ko) = -

(o, (f5))

Conversely, let (By)x € II'(S| ) and let (X;)

D1 (Y;) belong to

I(8). To show that (o, (f5)s) L (B, let  (X;), (B: (gr)c) (By)x bea
IT'(X)-morphism. For each k € K, let us consider i = $(k); the source

(X; N Yj)a(j)=i belongs to S; hence, there is a unique pair (ji, g;) with a(jr) =i
and gy, : Yj — By, such that g, - fj, = gk. It is easy to see that the II'(X')-morphism
(73 (gk)K)v

with v : K — J defined by (k) = ji, is the unique one such that
('7’ (gk)K) ’ (Oé, (f])]) = (61 (gk)K)

3. It follows from 1. and 2. In fact, we have that

MHO(A)) = ((AF) ) = (IT(AT)) L = (T (A) 4L

— O (A)).

20 Multiorthogonal and multireflective hulls

Now, we investigate conditions under which the multiorthogonal hull is multireflective.
In particular, we are going to show that Theorem 2.10 for reflectivity has a parallel for

multireflectivity.

Let A be a subcategory of X.
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For each X € Obj(X), we consider the quasicategory X/ .AJ; defined as follows:
e objects are all sources in .AJ; with domain X;

e morphisms are ITI'(X')-morphisms (o, (a;);) : (Yi); — (Z;); with aj.fo(j) = gj for
each j € J;

e the units and the composition of morphisms are as expected.

As a matter of fact, when the comma category X | A is connected, the quasicategory
X/ AJ; coincides with the category X/A* as defined in the second section of Chapter I,
before 2.6.

The following lemma is obvious.

Lemma 20.1 Let A be a subcategory of X and let (X, (rj : X — Aj)jer) be a source in
X. Then:

1. (rj)g is a multireflection of X in A iff it belongs to .A£ and A; € Obj(A), j € J.

2. If (rj) is a multireflection of X in A then it is a terminal object of X/.AJ;.D

The following theorem establishes conditions under which the second item of the

above lemma has a converse.

Theorem 20.2 If X is a category with connected multicolimits and A is a subcategory
of X, then the multiorthogonal hull of A in X, O(A), is multireflective in X if and only
if for each X € Obj(X) the quasicategory X/.AJ; has a weakly terminal set.

Proof. The necessity is clear. Conversely, let us assume that, for X € Obj(X), X/ A£
has a weakly terminal set. We want to prove that X has a multireflection in O(A).
From Lemma 19.9 and Proposition 19.13, it suffices to show that X has a reflection in
O(II'(A)). But, in 2.9 and 2.10, we have proved the following:

If X has connected colimits, A is a subcategory of X and X is an X-object such that
X /A" has a weakly terminal set, then X/A~* has a terminal object and it is exactly a
reflection from X to O(A).

By 19.10.1, the fact that X has connected multicolimits implies that the quasicategory

II'(X) has multipushouts and multicoequalizers of possibly large families of morphisms.
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Consequently, since X/(IT'(A))* has a weakly terminal set, it is easily checked, by using
the same technique as in 2.9, that X/(II'(.A))* has a terminal object which is a reflection
of X in O(II'(A)). Therefore, X has a multireflection in O(A). 0

Let us consider the categories A, B and X of Example 2.11. For each X-object X, the
category X | A is connected and this implies that the multiorthogonal hull of A in B and
the one in X' coincide with the orthogonal hull of A in B and the one in X, respectively.
We remark that, consequently, this example allows us to conclude that we may have
subcategories A and B of X such that A is contained in B but the multiorthogonal
hull of A in X is different from the multiorthogonal hull of A in B, even when B is
multiorthogonal in X. We are going to show that the two multiortogonal hulls coincide

when B is multireflective in X.

Remark 20.3 Let B be a multireflective subcategory of X and, given a source S =

(X K Y;); in X, consider the following commutative diagrams

fi
X Y;
Teg(ik) = T3 Tik
YGik
Beg(ik) = Bj By, (17)

where (r; : X — Bj)jes is the multireflection of X in B, (ri : Yi — Big)kek, is the
multireflection of Y; in B, i € I, and, for each (i, k) with i € I and k € K, j is the unique
element of .J such that r; - f; is factorizable through r; and g;, : B; — By is the unique
morphism such that g, - rj = 7 - fi. We put j = eg(i, k).

We know that IT'(B) is reflective in TI'(X) and, from the above diagrams, we obtain
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the following diagram

(fi)r
X (Yi)r
(i) (Tik)keK, il
(gik)
(Bj)s (Bik) ke, icr (18)

in IY(X), where (r;); is the reflection from X to II'(B), (7ik)kek, icr is the reflection
from (Y;)7 to IT'(B) and (9ik)keK,,icr is the image of (f;); in I1'(B) through the reflector.

Consequently, from 2.12.1 and 19.13 it follows that if B is a multireflective subcategory
of X and A is a subcategory of B, then .AJ*‘X is the collection of all sources S = (X 5 Yi)r
such that in the above diagram the source (B; 2% Bik)(i7k)6651({j}) belongs to ALs for
all j € J.

On the other hand, since for a reflective subcategory A of a category X we always have
that A"’ consists of all X-morphisms whose image through the reflector is an isomorphism,
it follows that: If B is a multireflective subcategory of X, a source S = (f; : X — Yi)ier
belongs to ZS’J: if and only if g : I;c;K; — J is a bijection and all morphisms B; gk Bi

are isomorphisms.

Using again the relationship between multiorthogonality and orthogonality via the

“operator” II', we obtain the following

Proposition 20.4 If B is a multireflective subcategory of X and A is a subcategory of
B, then the multiorthogonal hull of A in B coincides with the multiorthogonal hull of A
mn X.

Proof. Let B be a multireflective subcategory of X and let A be a subcategory of B.
Then ITY(B) is a reflective sub-quasicategory of II'(X) and II!(A) is a sub-quasicategory
of TI'(B). From 2.12.2, we have that

(A M), = ((T(A)) )

1l (x) nl(s)’

which implies by 19.13,
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hence,
1 1L
W((ASY)] ) N& = (A7) )N,

that is,

d

The following lemma shows that, if X' is an (£, M)-category, the conglomerate .AJ:

has nice properties when considered in the £-reflective hull M(A).

Lemma 20.5 Let X be an (€,M)-category with M C MonoSource(X). If A is a sub-
category of X such that M(A) = X and (f; : X — Y;)ier belongs to AJ;, then

1. fi € Epi(X),i€l;
2. (fi)1 belongs to M.

Proof.

1. For a fixed i € I, let g, h : Y; = Z be morphisms such that g- f; = h- f;. Since Z €
IM(A), there is a source (m; : Z — Aj) belonging to M and with A; € Obj(A),
j € J. For each j € J, we have that the equality m;-g- f; = m;-h- f; implies that
m;-g = my;-h, since f; is A-cancellable. Consequently, since M C MonoSource(X),
g=h.

2. Let fi =mn;-e, 1 € I, be an (€, M)-factorization of (f;); and let (my : X — Ag)x
be a source in M with A; € Obj(A). For each k, there exists a unique pair
(a(k), sk : You) — Ag) such that a(k) € I and my = si - for). Then, from the
equalities my, - idx = (s - na(k)) -e, k € K, and from the diagonal property for

(E,M), it follows that e is an isomorphism, so that (f;); belongs to IM. a

Now, combining this lemma with 20.4 and 20.2, we obtain the following

Theorem 20.6 Let X be an (E,M)-category with M C MonoSource(X) and let X have
connected multicolimits. If A is a subcategory of X such that M(A) is cowellpowered,

then the multiorthogonal hull of A is multireflective and, thus, it is the multireflective

hull of A in X.
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Proof. Under the above hypotheses, M(.A) has connected multicolimits. On the other
hand, the cowellpowerdness of IM(.A) guarantees, by 20.5.1., that X/ .A; has a terminal
weakly set. Therefore, from 20.2, it follows that O(A) is multireflective. 0

Remark 20.7 Under the conditions of the above theorem, we conclude that, moreover,

every A-multireflection is just a set.

In the last section of the first chapter we studied the concept of firm classes of mor-

phisms. Next, we extend the concept of firmness to conglomerates of sources.

Definition 20.8 A conglomerate S of sources is said to be subfirm provided that there
exists an S-multireflective subcategory A such that S C AJ;. If, moreover, S = AJ:, S
is said to be firm.

Such a subcategory A is said to be subfirmly (respectively, firmly) S-multireflective
in X.

Proposition 20.9 A conglomerate S of sources is subfirm if and only if S| is S-
multireflective and, in this case, S| is the unique subfirmly S-multireflective subcategory

of X.

Proof. If §| is S-multireflective, then, since S C (SJ_)J:, S is subfirm.

Convers;ly, let S be subfirm. This means that the;e exists a S-multireflective subcat-
egory A of X such that S C AL Hence A = (AJ;)L C 8| . Now we show that the con-
verse inclusion also holds and, consequently, S| is tﬁe uniaue subfirmly S-multireflective
subcategory. Let X € S| and let (r; : X — ;li)ie] be the S-multireflection of X in A.
Then, there is some i € ; and some t : A; — X such that ¢t - r; = idx, because X € S
This implies r; -t - r; = r; and, consequently, 7; -t = i¢d4,. Thus r; is an isomorphism ar:d

X e A ]

Definitions 20.10 Let S be a conglomerate of sources in a multicocomplete category

X.
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(a) We say that S fulfils the multicoequalizer condition provided that, given sources
(X 2t Yi)r and (X 2 Zj); in S and a family of pairs (a*, (h;?)J), indexed by K,

such that o : J — I is a function and h? : Yok (j) — Zj is an X-morphism with
B fariy = 95
then for each (i,7) € I x J the multiple multicoequalizer of the family
{hf i = Zj |o"(j) = i}
belongs to S.

(b) We say that S is closed under multipushouts provided that, given a source
(X 2L Yi); in S and an X-morphism X % Z, if, for each i € I, (Z %8 Wip) ek, is
the multipushout of f; along g, then the source (Z gik Wik)kek,, icr belongs to S.

(c) We say that S is closed under multiple multipushouts provided that, given a family
{T}, k € K} of sources in S indexed by a set K, with

Foon
T = (X = Y )ier,,

7

if, for each i = (ix)ker in I = pex i, the source (X N Z!)jey; is the multiple

k
multipushout of (X —% V) ek, then the source

o
(X — Zz‘])jeJi,ieI

belongs to S.

Remark 20.11 Comparing the above definition with 2.6, we see immediatly that (a) is
equivalent to saying that IT'(S) fulfils the coequalizer condition in IT'(X), (b) is equivalent
to saying that ITI'(S) is closed under pushouts in II/(X) and (c) is equivalent to saying
that TT'(S) is closed under multiple pushouts in TI'(X).

Thus, from 1.4.4-5, 2.7.1 and 19.13, it follows that, given a subcategory A of X, the
conglomerate AL fulfils conditions (a), (b) and (c).

It is easy to see that IT'(S) contains all IT'(X')-isomorphisms, is closed under compo-
sition and left-cancellable if and only if, respectively, S contains all X-isomorphims, is

closed under composition and left-cancellable. Hence, using 3.5, we obtain the following
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Theorem 20.12 If X is a multicocomplete category and S is a conglomerate of sources
in X, then S is firm if and only if the following conditions are fulfilled:

1. Iso(X)CS.

2. S is closed under composition.

o

. S is left-cancellable.

B

. S fulfils the multicoequalizer condition.
5. S is closed under multipushouts and multiple multipushouts.

6. For each X € Obj(X), the quasicategory X/S has a weakly terminal set. O

Example 20.13 Let X = Top® and let A = Con®. Then the firm conglomerate .AJ;

consists of all sources which are dual of episinks (Y I x ) in Top such that
(a) f; is an embedding, for all j € J;
(b) Im(f;) are pairwise disjoint (j € J);

(c) each embedding f; preserves connected components, that is, if C' is a connected

component of Y then f;(C) is a connected component of X.

In fact, for the class M of all embeddings in Top and IE the conglomerate of all episinks
in Top, we have that Top® is an (M°P IE?)-category. Since Con is IEP-multireflective
in Top (see 16.2.3), it follows, from the dual of 20.5, that

(1) AL C [E°, that is, each source in AL is the dual of an episink (X i, Y;)s in
Top°P and

(ii) such an episink (f;), fulfils condition (a).
The condition (b) is clear since, if Im(f;) N Im(f;) # 0, then each connected component
of that intersection may be simultaneously factorized through f; and f;. To show that
(f;) satisfies (c), let C < Im(f;) be the embedding of a connected component of Im( f;)
and let C’ be the connected component of X which contains C. Then, since (f;); € .AJ;,
there exists i € J such that C’ C I'm f;. But then f;-c is simultaneously factorized trough
fj and f;, which implies that ¢ = j and, consequently, C' C Im(f;). Hence, C' = C’.
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Conversely, let (Y; — X); be an episink where each Y; is a subspace of X, the
subspaces Y are pairwise disjoint and each connected component in Y; is a connected
component in X. Let C % X be a continuous map from a connected space C' to X.
Then, since (Y; < X); is an episink, we have that g(C') C Uje;Y;. Hence, g(C)NY; # 0
for some j € J. Let C’ be the connected component of X which contains g(C); then
C'NY; # 0 and, by (c), one must have C’ C Yj; consequently ¢g(C) C Y;. The condition
(b) assures that this j is the unique one such that g is factorizable through Yj.

Remark 20.14 We point out that all results which we obtained on multiorthogonality
remain true if we consistently interpret multireflections and multicolimits as being just
indexed by sets, .AJ: is defined as consisting just of all small sources which are multi-
orthogonal to A and the conglomerate of sources S considered in this section is assumed

to contain small sources only.

21 A generalization of the orthogonal closure operator

Next, we consider a generalization of the orthogonal closure operator defined in Chap-
ter II. We shall show that the orthogonal closure operator is also a useful tool in the

investigation of the multireflectivity of the multiorthogonal hull of a given subcategory.

From now on, X is a category with multipushouts and M is a class of X-monomorphisms
which contains all isomorphisms, is closed under composition and such that X is M-
complete. Furthermore, (£, M) is the factorization structure for morphisms determined

by the M-completeness of X.
Notations 21.1 Given a subcategory A of a category X, we denote by

X4

the subcategory of X of all X-objects X such that X(X,.A) # (.

For each class M of X-morphisms,
My =MnMor(Xy).
Analogously, for each conglomerate IM of sources in X,

M =MnN Source(Xy).
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Proposition 21.2 For any subcategory A of a category X,
1. X4 is multireflective in X .

2. If X is an (€, M)-category, is M-complete and has multipushouts, then the subcat-
egory X4 is an (E4, M 4)-category, it is M a-complete and has multipushouts.

Proof.

1. It is clear that, given an X-object X, if it belongs to A4, then the multireflection
consists just of the identity 1yx; otherwise, the multireflection of X in X4 is the

empty source with domain X.

2. The fact that the M-completeness of X implies the M 4-completeness of X' 4 and
that X4 is an (€4, M 4)-category whenever X is an (€, IM)-category is a consequence
of the following obvious property of X 4: If X T Yisan X -morphism such that
Y belongs to X 4, then X also belongs to X 4. O

In the sequel, the category X4 plays an important role. By the above proposition,
the question of the existence of a multireflection of each X-object in A reduces to the
one of the existence of a multireflection of each X 4-object in A. Moreover, by 20.4, the
multiorthogonal hull of A in X coincides with the multiorthogonal hull of A in X4, and,
then, we may restrict the study of the multirefletivity of the multiorhogonal hull of A in
X to category X 4.

Definitions 21.3 Let A be a subcategory of X.

For each morphism m : X — Y in My, let P4(m) be the class of all morphisms
n: N — Y such that there are some morphism g : X — A, with A € Obj(A), and m, ¢/,
m’, e such that (T, ¢’) is a component of the multipushout of (m,g) in X4, m =m'-e

is the (€4, M 4)-factorization of m and n : N — Y is the pullback of m’ along ¢'.
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<

X

Y

N}

e
l
72X

It is clear that each morphism n in P4(m) is an M 4-subobject of ¥ which contains

A

m. Let

ca(m) = A\ Pa(m).

We denote by d4(m) the unique morphism of M 4 such that m = c4(m) - da(m).

Proposition 21.4 For each subcategory A of X, cq: My — My is a closure operator
on X4.

Proof. By 4.3, it suffices to prove that, for each commutative diagram

X

Y

n

7 %% (19)

with m,n € My, there is a unique morphism f’ such that the following diagram

is commutative.
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Let (m,h') be a component of a multipushout of n along some morphism
h:Z — A with A in A. Thus, the multipushout of m along h - p is non-empty, since the
multipushout of n along h is non-empty. Moreover, by universality, there are a unique
component (7, g’) of the multipushout of (m,h - p) and a unique morphism d such that
d-m=nandd-g =h-f. Let n - q and m’ - e be (£, M)-factorizations of n and m,
respectively, let (s, h*) be a pullback of (n/,h’) and let (r,g*) be a pullback of (m/, ¢).
The equality n' - ¢ = (d - m’) - e implies the existence of a unique morphism [ such that

n'-1=d-m' and [ - e = q. Consequently,
n-(l-g)=d-m'-g"=d-g"-r="0"-(fr)

and, since (s, h*) is a pullback of (n’, h/), there is a unige morphism ¢ such that s-t = f-r
and h* -t =1+ g*. We conclude that, for each s € P4(n), there are some r € P4(m) and

a morphism ¢ such that the following diagram

m

N4

Pt f

PN

Z

X Y

w

is commutative. Therefore, since c4(m) and c4(n) are the intersections of, respectively,
P4(m) and Py(n), this proves the existence of a unique morphism f’ such that the

diagram (20) is commutative. O

Definition 21.5 The closure operator c4 : M4 — M 4 defined as above will be called

the orthogonal closure operator on X4 with respect to M 4 induced by A.

Remarks 21.6

1. If X has pushouts and A is a subcategory of X such that X4 = X, then cyq : M4 —
M 4 is just the orthogonal closure operator defined in Chapter II (see 5.1 and 5.3).
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2. Analogously to the orthogonal closure operator defined in Chapter 11, for the present

orthogonal closure operator ¢4 we have that, for subcategories A and B of X

(a) The closure operator ¢4 is discrete in the subclass of morphisms with domain
in A.

(b) If A C B then cg < c4.

(c) If SplitMono(X4) C M, then, for each pair a,b : Y — A of morphisms,
with A € Obj(A) and each X —% Y in M4

a-m=>b-m = a-ca(m)=">0-ca(m).

3. We may also conclude that, analogously to the orthogonal closure operator defined
in Chapter II, for the present definition of orthogonal closure operator, we have

that, if RegMono(X4) C M4, then:

(a) ca < rg, where r4 denotes the regular closure operator with respect to M4
induced by A;

(b) every c4-dense morphism in M 4 is A-cancellable.

22 Density and multiorthogonality

For the rest of this chapter, we assume that the category X (which is supposed
to have multipushouts and be M-complete) is, furthermore, an (€, M)-category, with
M C MonoSource(X) and M =MN Mor(X).

Let A be a subcategory of X and let M(A) be the E-reflective hull of A in X.

Since, by 20.4, the multiorthogonal hull of A in X coincides with the multiorthogonal
hull of A in IM(A), in the present sequel we often assume that X = IM(.A), which clearly
implies that X4 = M4(A).

On the other hand, we recall that in IM(A) every A-cancellable morphism is an
epimorphism, by 2.17. Thus, from 21.6.3(b), it follows that:

Every ca-dense morphism in X4 is an epimorphism.

This fact will be often used.
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Definition 22.1 Let A be a subcategory of X. An X-source (f; : X — Y;);er is said to

be A-disjoint provided that, for each pair (i,7) in I? with i # j, there is no commutative

diagram of the form

fi l
— A

:<‘7><

with A € Obj(A).

Remark 22.2 It is clear that in Definition 22.1, we may equivalently replace
“A € Obj(A)” by “A € Obj(X4)”. Furthermore, if (f; : X — Yi)ier is an A-disjoint
X g-source, then, for each pair (i,j) € I? with i # j, the pair (f;, f;) has an empty

multipushout in X 4.

Definitions 22.3 Given a subcategory A of X, let us consider the following classes and

conglomerates:

PC (M) consists of all X4-morphisms f such that all components of a multipushout

in X4 of f along a morphism with codomain in A belong to M 4.
PS(My) is the intersection of PC(M 4) with M 4.

PS(IM 4) consists of all sources (X, (f;)r) € M4 such that each f; belongs to PC'(M 4)
and for each morphism g with domain X and codomain in A there is some i € [

such that the multipushouts of f; along ¢ in X4 is non-empty.
Remarks 22.4

1. It is clear that each morphism of a PS(IM 4)-source belongs to PC(M 4).

2. It is obvious that, if X4 has pushouts, then PS(M 4) consists precisely of all disjoint
PS(IM 4)-sources and this conglomerate is just the class PS(M 4) in the sense used
in Chapter IL.

The folllowing two lemmas collect some properties on multipushouts which will be

very useful in the sequel.
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Lemma 22.5

1. If f, g, f, 9, f and g’ are X-morphisms such that (f,g) is a component of the

multipushout of (f,q) and (f',g') is the pullback of (f,q), then (f,g) is also a
component of the multipushout of (f,q’).

2. Let the diagram

f1
.w.
AT

! 62/4]‘?2\@*2'

®*e — > o

be commutative and let e; and ey be epimorphisms. If (f2,G) is a component of the

multipushout of (f1,9g), then (ma,g) is a component of the multipushout of (my, h);

the converse is true if es is an isomorphism.
Proof.

1. In the following diagram

f
X Y
X V
g P g
%f
Z w

let (f,g) be a component of the multipushout of (f,g), let (f,¢’) be the pullback
of (f,g) and let d be the unique morphism which turns both the smaller triangles
commutative. Then there is a unique component (f*, ¢*) of the multipushout of
(f',¢") and a unique morphism ¢ such that ¢ - ¢* = g and ¢ - f* = f. But then

(f*,g%) belongs to the same connected component as (f,g) in the category of all

natural sinks from the diagram
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f
XY
v 9
zZ

Hence, there is a unique morphism #' such that ¢ - f = f* and ¢ - g = ¢*. Now,
since (f,g) and (f*,g*) are components of multipushouts, they are episinks and,

consequently, from the equalities
t-t'-f=t-ff=f and t-t'-g=t-g* =7
tt-ff=t'-f=f" and t'-t-g"=t'"-g=g"
it follows that ¢ is an isomorphism.

2. Under the given conditions, let (f2,7) be a component of the multipushout of (f1, g).
We want to show that (mg,g) is a component of the multipushout of (m, k). Since
mo-h =7- f1, there are a unique component (1, iL) of the multipushout of (m, h)
and a unique morphism ¢ such that ¢ - h = g and t-m = mso. Since m - h = h - m,
we have that

(Th-€2>'g:m'h'€1:iL-ml-€1:iL'f1.

On the other hand, since

t~(m~€2):m2-62=f2 and t-h=g,

it follows that (72 - eg, h) and (f2,g) belong to the same conneted component of the

category of all natural sinks from the diagram

fi
o —» Y

V9

Therefore, there is a unique u such that u- fo =m-eg and u-g = h. Tt follows that

u-t=1and t-u =1, so that ¢ is an isomorphism as we wanted to prove.

Now, let e2 be an isomorphism and let (m2,g) be a component of the multipushout
of (mq,h). Let ((f, G), s) be the unique pair such that (f, §g) is a component of the
multipushout of (f1,g) and s fulfils the equalities s - f = f and s-§ = g. Then,

since e; is an epimorphism, it turns out that (s- fa-e5')-h = (s-§) - my. Now, it
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is easy to see that s is an isomorphism and, consequently, (f2,q) is a component of

the multipushout of (fi,g). O

Lemma 22.6 Let A be a subcategory of X and let f : X — Y be an X4-morphism in
PC(My). Then

1.

Every component of a multipushout in X4 of f along another morphism belongs to

PC(My).
If m- e is an (Ea4, M a)-factorization of f, then m € PS(My).

If f is c4-dense, then every component of a multipushout in X4 of f along another

morphism is c4-dense.

Proof.

1.

Let (f,g) be a component of the multipushout of f along an X 4-morphism g :
X — Z. Let (?, h) be a component of the multipushout of f along a morphism
h: Z — A with codomain in A. Then it is easily seen that (?,E-g) is a component

of the multipushout of f along h - g. Consequently, ? e My.

Let g : Z — A, where Z is the domain of m, be a morphism with codomain in
A. If (n,g) is a component of the multipushout of m along g then, using the fact
that e is an epimorphism, it is easy to conclude that (77,9) is also a component
of the multipushout of f along g - e. Therefore, since f € PC(M 4), we have that
m e My.

Let f : X — Y be cy-dense and let (f,g) be a component of the multipushout
of falong g: X — Z. LetX@EgYanngEQWbe(EA,MA)—
factorizations of f and f, respectively. Then there exists a unique h such that
n-h=g¢g-mandd-g = h-e Thus, by 22.5.2, (n,g) is a component of the
multipushout of (m, h). We show that n is c4-dense. Let [ : D — A be a morphism
with codomain in A, let (72,1) be a component of the multipushout of (n,[) and let
(n, i) be the pullback of (m,1). We want to show that 7 is an isomorphism. Let
(m, g) be the pullback of (7, 7g); then (1, [- ) is the pullback of (7,1 -g). But then,
since (7,1 - g) is a component of the multipushout of (m,[-h) and m is c4-dense,
m must be an isomorphism; hence, by 22.5.1, 7 must be an isomorphism, and so is

n. O
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Definitions 22.7 Let A be a subcategory of X, let (X SN Y;)1 be a source in X4 and

let m; - e; be an (€4, M 4)-factorization of f;, for each i.
1. The source (X i> Y;)s is said to be c4-dense if each morphism m; is ¢ 4-dense.

2. The orthogonal closure operator c 4 is said to be weakly hereditary with respect to
a conglomerate N C M 4 whenever, for each (f;); € IN, the source (da(m;) - €i)r

is c4-dense and belongs to IN.

Proposition 22.8 If A is a subcategory of X such that M(A) = X, then the class .AJ;

in X4 consists precisely of all c-dense sources in PS(IM 4) which are A-disjoint.

Proof. Let (f; : X — Y;);cs belong to AJ: in X4. Then (f;); belongs to M4 (by 20.5)
and it is clearly A-disjoint. To show that (f;); belongs to PS(IMy), let i € I, let X -2+ A
be a morphism with codomain in A and let (A L W, Y; 9, W) be a component of
the multipushout of (f;,g) in X4 for some ¢ € I. Then, since W € Obj(X4), there is
some morphism h : W — A’ with codomain in A. But then ¢ and h-g - f; belong to
the same connected component of X | A; hence, since h - g - f; is factorizable through
fi, the morphism g is also factorizable through f;, by 19.2. This implies that there is a
morphism W —' A such that t - f = 14. But, on the other hand, f; is .A-cancellable,
then, by 2.17, it is an epimorphism and, thus, f is also an epimorphism. Therefore, f is
an isomorphism. This shows that (f;)s lies in PS(IM _4). To show that each f; is ¢ 4-dense,
let X <% X; 25 Y; be an (Ea, M y)-factorization of f; and let X; M Abea morphism
with codomain in A. Let (m,h) be a component of the multipushout of m; along h, in
X4. Then by 22.6.2, m € My. Consequently, by 22.5.2, (7, h) is also a component
of the multipushout of f; along h - e;. Hence, as we have shown above, m must be an
isomorphism, and, thus, the pullback of m along h is also an isomorphism. Since P4(m;)
consists of isomorphisms only, it follows that c4(m;) is an isomorphism, that is, m; is
c4-dense. Furthermore, since the multipushout of m; along ¢ is also the multipushout
of m; along g - e (by 22.5.2) and the pullback of an isomorphism is an isomorphism, it
follows hat each f; is c4-dense.

Conversely, let (f; : X — Y;);er be an A-disjoint, c4-dense source in PS(IM 4) and
let g : X — A be a morphism with codomain in A. Then there is some i € I such that

the multipushout of f; along ¢ is non-empty and, furthermore, each of its components
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belongs to M 4. Let (f,g) be a component of this multipushout and let X <% X; 7% Y]
be an (€4, M_4)-factorization of f;. Then, since f € My, there is a morphism t such
that t-e; = g and f-t = g-m;. Thus, from 22.5.2, (f,g) is a component of the
multipushout of m; along t. Consequently, since m; is c4-dense, the pullback of f along
G is an isomorphism and, hence, from 22.5.1, f is also an isomorphism. Consequently, g is
factorizable through f;. Moreover, f_l -g is the unique morphism such that g = (f_1~§)~ fi
since the fact that f; is ¢ 4-dense implies that it is an epimorphism (by 21.6.3(b) and 2.17).
On the other hand, the A-disjointness of (f;); ensures that there is a unique i such that
g is factorizable through f;. |

23 Closedness and multireflectivity

In this section, we find conditions for the multiorthogonal hull of a subcategory to
be its multireflective hull and we characterize such a multireflective hull in terms of

closedness via the orthogonal closure operator.

Definition 23.1 Given a subcategory A of X, an A 4-object X is said to be A-strongly
multiclosed provided that, for each source (f; : X — Y;)ier in PS(My), all f; are

c4-closed M _4-morphisms.

We denote by SCI(.A) the subcategory of X4 of all A-strongly multiclosed objects.

Remark 23.2 If X4 has pushouts, then SCI(A) is the subcategory SCI(A) of all A-
strongly closed objects in X4, as defined in Chapter II.

Proposition 23.3 Given a subcategory A of X, we have that:
1. AC SCIA);
2. If Ma(A) = X4, then SCI(A) C O(A);

3. If A is M-multireflective in X, then A = SCI(A) = O(A).

Proof.
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1. Let A € Obj(A) and let (A -5 Y;); be a source in PS(M.4). Then, for some i € I,
the multipushout of f; along 14 is non-empty. Let (77, d) be a component of such
a multipushout. If A <5 X; ™5 Y; is an (£4, M 4)-factorization of f;, we get the
equality

(d-m;)-e;=m-14.

Consequently, there is a unique morphism ¢ such that t-e; = 14 and, thus, e; is an

isomorphism. Hence, f; € M 4. From 21.6.2(a), it is clear that f; is also c4-closed.

2. Let us consider, in X4, an A-strongly multiclosed object X, a source
(Y TN Z;); multiorthogonal to A and a morphism g : Y — X. For each i € I, let
((h¥, d¥))rer, be the multipushout in X4 of f; along g. The family (h¥)rer, ics is
non-empty, since X € X4. Moreover, the source (h¥)ex, icr belongs to AJ; (by
20.11), then it also belongs to PS(IMy) (by 22.8). Now, since X is A-strongly
multiclosed, we have that all hf are c4-closed M _4-morphisms. On the other hand,
since (h¥)re Kiiel € .AJ;, every morphism h¥ is c4-dense, by 22.8. Being c4-closed
and c4-dense, hf is an isomorphism and, consequently, g : Y — X is factorizable

through f;. It is clear that there is a unique such 4, since (f;)s is A-disjoint. And

the factorization is unique since f; is c4-dense, thus it is an epimorphism.

3. If A is M-multireflective, then A = O(A) (by 19.3) and, on the other hand, from
1. and 2., we have that A C SCI(A) C O(A). Therefore, it follows that A =
SCI(A) = O(A). 0

Theorem 23.4 Let A be a subcategory of X such that:
1. My(A) = Xy;
2. cyq is weakly hereditary with respect to PS(IM4);

3. for each object X in X4, there is some source (fi : X — Y;)r in PS(M4) with
Y; € SCI(A) for alli e 1.

Then O(A) coincides with SCI(A) and it is a multireflective hull of A in X.

Proof. First, we show that

(i) c4 is weakly hereditary with respect to P.S(M4),
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(ii) c4 preserves PS(M 4)- morphisms,
(iii) the orthogonal closure operator
ca: PS(My) — PS(My)
is idempotent and weakly hereditary.
In fact,

(i) Let m : X — Y be a PS(M 4)-morphism, then the source consisting of the mor-
phisms m and 1y belongs to P.S(IM 4); hence, by hypothesis, the source (X, (d4(m), 1x))

is c4-dense and, so, d4(m) is c4-dense.

da(m)

(i) Let m : X — Y be a PS(M.)-morphism and let X "% X A1)

Y be the
factorization determined by c4. Let g : X — A be a morphism with codomain in A
and let (7, g) be a component of the multipushout of c¢4(m) along g. Since d4(m)
is c4-dense, it is an epimorphism and, then, from 22.5.2, (7m,g) is a component

of a multipushout of m along g - d4(m), hence m € M 4; consequently, c4(m) €
PS(My).

(iii) It remains to show that cq4 : PS(M4) — PS(M 4) is idempotent and, by 4.4, it
suffices to show that the class of all c4-dense PS(M 4)-morphisms is closed under
composition. Let X %Y and Y % Z be cq-dense PS(M 4)-morphisms and let
X % A be a morphism with codomain in A. Let (r,s) be a component of the
multipushout of (n-m,g). We show that, on the one hand, r € M 4, and, on the
other hand, the pullback of r along s is an isomorphism. Let ((7,9), ) be the
unique pair such that (77,9) is a component of the multipushout of (m,g) and ¢
is a morphism such that ¢t -m = r and t - g = s - n. Then, since m € M 4 and m
is c4-dense, the pullback of m along g is an isomorphism and, hence, by 22.5.1,
it follows that m is an isomorphism. Now, since m is an epimorphism, because it
is c4-dense, by 22.5.2, it turns out that (r,s) is a component of the multipushout
of (n,m ' -g). Thus, since the codomain of the morphism m~! - g lies in A and
n € PS(My), we have that r € M 4. On the other hand, the fact that n is ca-
dense implies that the pullback of r along s is an isomorphism. Thus, Py(n - m)

consists of isomorphisms only and, consequently, n - m is c4-dense.
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The inclusion SCI(A) € O(A) is clear from 23.3.2.

We now show that SCI(.A) is multireflective in X4, from which it follows that SCI(A) =
O(A) and O(A) is the multireflective hull of A in X. Let X be an object in X4 and let
(fi : X = Y;); belong to PS(M4) with Y; € SCI(A) for all i € I. Let X = X; ™8 Y] be
an (€4, M 4)-factorization of each f; and let m; = X; dalmi) X; calms) Y;.

First, we show that, for each i € I, X; is an object of SCI(A). Given i € I, let
(X: % Zj); belong to PS(M.,). The family ((h¥,d%))rex;, jes, where (hE,d¥))iex,
is the multipushout of g; along c4(m;) in Xy, is non-empty, since (g;); belongs to
PS(M_4) and Y; € Obj(X4). Furthermore, using 22.6.1, it is obvious that the source
(h?)ke;(j jes belongs to PS(IM 4). Then, since Y; belongs to SCI(A), all h;? are c4-closed
M g-morphisms. For each j € J, let g; = n; - e; be the (€4, M 4)-factorization of g;.
Now, for each j € J and each k € K}, since h;? € My and ej € €4, it follows, from 4.3,

that there is a unique morphism ¢ such that

Wit =db (21)

and t-ej =ca(my). (22)

From the equality (21), it follows that h;? ot = df -ca(n;) - da(nj) and thus, since h;? is

c-closed, there is a unique morphism ¢ such that h;? = d;? cca(nj) and t'-d4(n;) = t.

B 9j
X - Zj

ca(m;)

Consequently, we have that
ca(mi) =t-e; =t -da(n;)-e;. (23)

Now, the fact that, in the equality (22), e; € £4 and c4(m;) € M4 implies that e; is

an isomorphism, because (€4, M 4) is a factorizaton system for morphisms and €4 C
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Epi(X4). Hence, it follows that
calms) - et =t - da(n). (24)

On the other hand, the fact that c4 : PS(M ) — PS(M 4) is an idempotent, weakly
hereditary closure operator implies that d4(n;) is c4-dense (so, it is an epimorphism)
and, further, that c4(m;) is c4-closed.

Then, from the equality 24, there is a unique morphism s such that

s-da(n;) = ej_l.

This equality implies that the epimorphism d4(n;) is also an isomorphism, that is, n;
is c4-closed. Consequently, since e; is an isomorphism, g; is a c4-closed M 4-morphism.
Thus, X; belongs to SCI(A).

Therefore, since ¢4 is weakly hereditary with respect to PS(IM_4), the source

(X 5% = (x % x, 5%,
is a c4-dense PS(IM 4)-source with codomain in SCI(A). We show that there is a sub-
source of (d;)r which belongs to PS(IM4) and is A-disjoint. It suffices to show that if
and ¢ are such that there is some commutative diagram in X4 of the form

di
X —X

ldi/ l g
h
°

Xy—

then d; =2 dy. Let us consider such a commutative diagram. Without loss of generality,
we may assume that (h,g) is a component of the multipushout in X4 of (d;,dy). Then,
since d; is part of a PS(IM 4)-source, it is easy to see that the morphism A is also part
of a PS(IM_4)-source; thus, since X is A-strongly multiclosed, h is a c4-closed M 4-
morphism. On the other hand, as d; is a c4-dense PC'(M 4)-morphism, the morphism
h is also c4-dense (from 22.6.2). Therefore, h is an isomorphism and d; is factorizable
through d;. Analogously, we conclude that d; is factorizable through d;. Consequenly,
since d; and d; are epimorphisms, this implies the existence of an isomorphism ¢ such
that dy =t - d;.

Thus, let (X i, X ;) be a subsource of (d;); which belongs to PS(IM4) and is
A-disjoint. Such a source (dj); belongs to A£ in X4, by 22.8. Then, since SCI(A) C
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O(A), it follows that, furthermore, by 19.3.2, O(A) = SCI(A). Therefore, O(A) is the
multireflective hull of A in X. ]
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