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Abstract: 

Objective: Chondrocytes respond to insulin, but the presence and role of the specific 

high affinity insulin receptor (InsR) has never been demonstrated. This study 

determined whether human chondrocytes express the InsR and compared its 

abundance and function in normal and OA human chondrocytes. 

Design: Cartilage sections were immunostained for detection of the InsR. Non-

proliferating chondrocyte cultures from normal and OA human cartilage were treated 

with 1 nM or 10 nM insulin for various periods. InsR, IGFR, aggrecan and collagen II 

mRNA levels were assessed by real time RT-PCR. InsR, GLUT-1, phospho-InsRbeta 

and phospho-Akt were evaluated by western blot and immunofluorescence. Glucose 

transport was measured as the uptake of [3H]-2-Deoxy-D-Glucose (2-DG). 

Results: Chondrocytes staining positively for the InsR were scattered throughout the 

articular cartilage. The mRNA and protein levels of the InsR in OA chondrocytes were 

approximately 33% and 45%, respectively, of those found in normal chondrocytes. 

Insulin induced the phosphorylation of the InsRbeta subunit. Akt phosphorylation and 

2-DG uptake increased more intensely in normal than OA chondrocytes. Collagen II 

mRNA expression increased similarly in normal and OA chondrocytes while aggrecan 

expression remained unchanged. The PI3K/Akt pathway was required for both basal 

and insulin-induced collagen II expression. 

Conclusions: Human chondrocytes express functional InsR that respond to 

physiologic insulin concentrations. The InsR seems to be more abundant in normal 

than in OA chondrocytes, but these still respond to physiologic insulin concentrations, 

although some responses are impaired while others appear fully activated. 

Understanding the mechanisms that regulate the expression and function of the InsR in 

normal and OA chondrocytes can disclose new targets for the development of 

innovative therapies for OA. 
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Introduction: 

 

Insulin was shown to induce anabolic and inhibit catabolic responses in adult 

chondrocytes. In particular, insulin was shown to promote collagen II and proteoglycan 

synthesis1,2 and to inhibit Interleukin-1β (IL-1)-induced catabolic effects in adult 

chondrocytes and cartilage explant cultures from various species3. Insulin also plays an 

important role in chondrogenesis as an inducer of chondrocyte differentiation4 and was 

recently shown to reverse the cartilage loss associated with impaired fracture healing in 

diabetic mice5. Moreover, insulin was shown to ameliorate cartilage degeneration in a 

mouse model of osteoarthritis (OA) while its anabolic and anti-catabolic effects seemed 

to be independent of aging or disease state3. 

Despite this, little attention has been devoted to the role of insulin in modulating adult 

articular chondrocyte functions other than the synthesis and degradation of 

proteoglycans and collagen II. In this regard, regulation of glucose transport may be 

especially important since it is a major function of insulin in target tissues. Besides its 

major effect on the facilitative glucose transporter (GLUT)-4, a member of the 

facilitative glucose/polyol or GLUT/SLC2A transporter family, expressed in skeletal 

muscle and adipose tissue cells, insulin was shown to increase glucose transport in 

other cell types, by promoting the expression and plasma membrane incorporation of 

GLUT-16-9. Glucose is an essential nutrient for chondrocytes, being required for energy 

production, basically through the glycolytic pathway, and for the proper synthesis of 

cartilage matrix macromolecules, namely proteoglycans. Facilitated glucose transport 

represents the first rate-limiting step in glucose metabolism in chondrocytes and thus 

its regulation is a critical determinant of chondrocyte homeostasis10. Several members 

of the GLUT family were identified, at the protein level, in human chondrocytes, 

including GLUTs-1, -3, -6, -8, -9 and -10, but not GLUT-410, 11. Among these, GLUT-1 
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seems to be especially important since it is regulated by anabolic, namely IGF-I, and 

catabolic stimuli10-13, as well as by the extracellular glucose concentration14. 

It is unclear, however, whether physiologic nanomolar concentrations of insulin, which 

can reach chondrocytes by simple diffusion from the synovial fluid15, are able to 

promote anabolic gene expression and to modulate glucose transport in chondrocytes. 

This is especially important since many of the studies conducted so far used high 

supraphysiologic insulin concentrations1,2. In the few studies where insulin was used in 

the nanomolar range, the presence and role of the specific high affinity insulin receptor 

(InsR) in mediating insulin-induced responses were not demonstrated3. Since insulin 

also binds to the structural- and functionally-related insulin-like growth factor receptor 

(IGFR), although with lower affinity thus requiring higher concentrations16, the question 

remains as to the presence and role of the InsR in mediating insulin-induced responses 

in chondrocytes. 

Therefore, the first objective of this study was to determine whether adult human 

chondrocytes express the InsR and to compare its abundance in normal and OA 

chondrocytes. Then, we investigated whether the insulin receptors expressed in normal 

and OA chondrocytes were functional by examining the ability of insulin to induce its 

phosphorylation and the activation of the Phosphoinositol-3 Kinase (PI3K)/Akt (or 

protein kinase B) pathway, which is a major downstream effector of the InsR. To 

elucidate the role of the InsR in mediating the anabolic effects of insulin, we analyzed 

the mRNA expression of aggrecan and collagen II. Finally, we investigated the role of 

insulin and the InsR in modulating glucose transport and GLUT-1 content in normal and 

OA chondrocytes. 
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Materials and methods  

 

CARTILAGE SAMPLES AND CHONDROCYTE CULTURES 

 

Human knee cartilage was collected from the distal femoral condyles of 24 multi-organ 

donors (11 women and 13 men, 18-53 years old, mean=38,) or with informed consent 

from 29 patients (14 women, 15 men, 58-82 years old, mean=67) undergoing total 

knee replacement surgery at the Orthopedic Department of the University Hospital of 

Coimbra (HUC). The Ethics Committee of HUC approved all procedures. Normal 

cartilage had no macroscopic signs of degradation or osteophytosis. Cartilage from 

patients was severely damaged, with areas of extensive full thickness erosion. 

Chondrocytes were isolated by enzymatic digestion from non-pooled cartilage samples 

as described previously17. To avoid dedifferentiation, confluent non-proliferating 

monolayer cultures were established from each cartilage sample, allowed to recover in 

medium containing 5% fetal bovine serum for 24h, serum-starved overnight and 

maintained thereafter in serum-free culture medium. Serum-starved chondrocyte 

cultures were treated with 1 or 10 ng/ml recombinant human insulin (Sigma Chemical 

Co., St. Louis, MO), as indicated in the results section and figure legends. 

 

TOTAL RNA EXTRACTION, CDNA PREPARATION AND QUANTITATIVE REAL-TIME 

RT-PCR (qRT-PCR) 

 

Total RNA was extracted with TRIzol (Invitrogen, Paisley, UK), analyzed using 

Experion RNA StdSens Chip (Bio-Rad) and quantified in a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE) at 260 nm. The 

cDNA was reverse transcribed from 1 µg of total RNA, using iScriptTM Select cDNA 

Synthesis Kit (Bio-Rad), according to the manufacturer’s instructions. The cDNA 
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obtained was stored at -20ºC until further analysis. Specific sets of primers were 

designed using Beacon Designer software (PREMIER Biosoft International, Palo Alto, 

CA). Details of the forward and reverse primers used are presented in table 1. The 

stability values for the expression of reference gene candidates were obtained by a 

Normfinder analysis using Genex® software (MultiD Analyses AB). The results 

obtained (Supplemental table) indicated that HPRT-1 is the best reference gene for 

comparisons between normal and OA chondrocytes, while RPL13A is the best to 

evaluate insulin-induced responses. qRT-PCR was performed with iTaqTM DNA 

polymerase using iQTM SYBR Green Supermix (BioRad). Thermal cycling conditions 

included 3 minutes at 95 ºC to activate the iTaqTM DNA polymerase, followed by 45 

cycles, each consisting of a denaturation step at 95ºC for 10 seconds, an annealing 

step at 54ºC for 30 seconds and an elongation step at 72ºC for 30 seconds. 

Fluorescence measurements were taken every cycle at the end of the annealing step 

and the specificity of the amplification products was checked by analysis of the melting 

curve. The efficiency of the amplification reaction for each gene was calculated by 

running a standard curve of serially diluted cDNA sample. In each assay, a control 

reaction without the cDNA was also subjected to PCR amplification. 

Gene expression levels in normal and OA chondrocytes were normalized to HPRT-1 

using the following formula E∆Ct, where E is the qPCR efficiency of the genes evaluated 

and ∆Ct is the difference between the cycle threshold (Ct) of HPRT-1 and that of each 

gene of interest. Gene expression changes relative to a control condition were 

analyzed using the built-in iQ5 Optical system software v2, which enables the analysis 

of the results with the Pfaffl method18, a variation of the ∆∆CT method corrected for 

gene-specific efficiencies.  

 

WESTERN BLOT ANALYSIS 
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Total cell extracts were prepared as previously described14. The extracts and molecular 

weight markers (All blue, Precision Plus molecular weight markers, Bio-Rad 

Laboratories Inc., Hercules, CA) were subjected to SDS/PAGE, electroblotted onto 

PVDF membranes, probed with rabbit polyclonal antibodies against the β subunit of the 

InsR (InsRbeta) (1:1000 dilution; Santa Cruz Biotechnology, Inc, Santa Cruz, CA), the 

Ser 473-phosphorylated form of Akt (pAkt) (1:1000 dilution; Cell Signaling Technology, 

Danvers, MA) or the human GLUT-1 (1:4000 dilution; FabGennix Inc. International, 

Frisco, TX) and then with an alkaline phosphatase-conjugated secondary antibody 

(1:20,000 dilution; GE Healthcare). A mouse monoclonal antibody against the 

phosphorylated form of the InsRbeta subunit (1:200 dilution, Santa Cruz 

Biotechnology) was used to detect the activated form of the InsR (pInsRbeta). Immune 

complexes were detected with the Enhanced ChemiFluorescence reagent (GE 

Healthcare) in a Storm 840 scanner (GE Healthcare). A mouse anti-actin monoclonal 

antibody (1:10,000 dilution; Millipore Corporation, Billerica, MA) was used as a loading 

control. The intensity of the bands was analyzed using ImageQuantTm TL (GE 

Healthcare). 

 

IMMUNOFLUORESCENCE STAINING 

Five mm diameter full thickness cartilage cylinders were collected from the distal 

femoral condyles of multi-organ donors, immersed in OCT embedding compound 

(TAAB Laboratories, UK) and immediately frozen at -80 ºC. Cryostat sections, 10 µm 

thick, were fixed in methanol at -20 ºC for 10 min. Chondrocytes cultured on glass 

coverslips were, fixed in 4% paraformaldehyde at 4 ºC for 10 min and permeabilized 

with 0.1% Tween-20 in PBS for 10 min. For immunostaining of fixed cartilage sections 

and chondrocytes, a rabbit polyclonal antibody to the InsRbeta subunit (1:50 dilution; 

Santa Cruz Biotechnology) and Alexa fluor 488-conjugated goat anti-rabbit antibody 

(1:200 dilution; Molecular Probes, Eugene, OR) were used as primary and secondary 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

antibodies, respectively. Counterstaining was performed with DAPI (Sigma) to allow 

nucleus visualization. Specificity was assessed by omitting the first antibody (negative 

control). Images of cartilage sections were acquired in a PALM laser dissector 

fluorescence microscope (Zeiss Axiovert 200M) and images of cultured chondrocytes 

were acquired in a confocal laser scanning microscope (Zeiss LSM 510 Meta), using 

an excitation filter of 500 nm and an emission filter of 520 nm. The settings for contrast, 

brightness, acquisition mode and scanning time were maintained throughout the work 

in both microscopes. 

 

2-DEOXY-D-GLUCOSE UPTAKE ASSAY 

Glucose transport was measured as the net uptake of 2-Deoxy-D-Glucose (2-DG) 

(Sigma), a non-metabolizable analogue of glucose, as previously described14. 

 

STATISTICAL ANALYSIS 

The two-tailed unpaired Student t-test was used to compare the mRNA and protein 

levels of the InsR and the IGFR mRNA levels in normal and OA chondrocytes. In all 

other figures and tables, the statistical analysis was performed using the one-tailed or 

two-tailed Student t-test for paired data. To assess normality for the observations 

themselves or for the observed differences, a graphical analysis based on normal 

quantile plots was used and showed no strong departure from normality thus 

supporting the use of the Student t-test. Each subject contributed only one cartilage 

sample. Single measurements of the various parameters being analyzed were obtained 

from each cartilage sample, except in qRT-PCR and 2-DG uptake where triplicates and 

duplicates, respectively, were analyzed. Nonetheless, multiple measurements 

contributed only once (as mean value) to the statistical analysis. Results are presented 

as mean values with 95% confidence intervals (95% CI), and were considered 

statistically significant for P< 0.05. 
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Results  

 

IN SITU IMMUNOFLUORESCENCE STAINING OF THE InsR IN NORMAL HUMAN 

CARTILAGE. 

Figure 1A shows chondrocytes staining positively for the InsRbeta subunit scattered 

throughout adult human cartilage, as indicated by the green fluorescence around nuclei 

stained in blue. Nonetheless, several chondrocytes are also present that show no 

staining. The absence of green staining in Fig. 1B (negative control) demonstrates the 

specificity of the staining in panel A. Therefore, these results demonstrate that the InsR 

is present at the protein level in adult human chondrocytes in situ in the articular 

cartilage.  

 

InsR AND IGFR mRNA EXPRESSION IN CHONDROCYTES FROM NORMAL AND 

OA HUMAN ARTICULAR CARTILAGE: 

The results show that adult human chondrocytes, either normal or OA, express both 

the insulin and the IGF-I receptors at the mRNA level. However, the InsR mRNA level 

is 33% lower (P=0.0028) in OA (mean=6.1, 95% CI=2.9-6.4, N=7) than in normal 

(mean=9.1, 95% CI=7.7-10.6, N=8) chondrocytes. Similarly, the abundance of the 

IGFR mRNA is 52.5% lower (P=0.0149) in OA (mean= 2.2, 95% CI=1.9-2.6, N=7) than 

in normal (mean=4.6, 95% CI=2.8-5.4, N=8) chondrocytes. 

 

InsR PROTEIN LEVELS IN CHONDROCYTES FROM NORMAL AND OA HUMAN 

ARTICULAR CARTILAGE 
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The InsR expressed in chondrocytes was further characterized at the protein level by 

western blot and immunofluorescence staining. The antibody used in the western blot 

analysis is specific for the β subunit of the InsR, detecting both its precursor (PreInsR) 

and mature (InsRbeta) forms which have apparent molecular weights of 200 and 90 

kDa, respectively. Accordingly, the two bands were detected both in a whole cell 

extract of 3T3-L1 adipocytes used as a positive control (PC) and in the whole cell 

extracts obtained from normal and OA chondrocytes (Fig. 2A). The levels of either form 

of the InsR were found to be significantly higher in normal than in OA chondrocytes, in 

which they represent 53.1% and 55.9%, respectively, of those found in normal 

chondrocytes (Fig. 2A). Immunofluorescence staining of normal and OA chondrocyte 

cultures (Fig. 2B) confirmed the results of the western blot analysis, showing a 

punctuated staining pattern consistent with the plasma membrane localization of the 

InsR that is more intense in normal than in OA chondrocytes. 

 

EVALUATION OF THE FUNCTIONAL STATE OF THE InsR EXPRESSED IN 

NORMAL AND OA HUMAN CHONDROCYTES 

To determine whether the InsR expressed in normal and OA human chondrocytes is 

functional and mediates insulin-induced responses, we evaluated the ability of 

nanomolar insulin concentrations to induce the phosphorylation of Tyrosine residues in 

positions 1150 and 1151 of the beta subunit of the InsR and the phosphorylation of the 

Serine 473 residue of Akt.  

Treatment of normal and OA chondrocytes with 10 nM insulin induced the 

phosphorylation of the InsRbeta subunit, in a time-dependent manner (Fig. 3A). Normal 

and OA chondrocytes have a similar basal Akt phosphorylation, which was markedly 

increased by treatment with 1 nM and 10 nM insulin both in normal (Fig. 3B) and OA 
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chondrocytes (Fig. 3C). However, in OA chondrocytes, Akt phosphorylation induced by 

either insulin concentration was lower than that observed in normal ones.  

 

ROLE OF INSULIN AND ITS SPECIFIC RECEPTOR IN MODULATING AGGRECAN 

AND TYPE II COLLAGEN GENE EXPRESSION:  

To further characterize the functions of the InsR, insulin-induced anabolic gene 

expression, namely aggrecan and type II collagen, was evaluated by qRT-PCR. 

Treatment of normal human chondrocytes with 10 nM insulin for 12 h (mean=1.002, 

95% CI=0.72-1.28, P=0.5089, N=5) did not alter aggrecan mRNA levels relative to 

untreated cells, whereas it induced a 2.4 fold increase in type II collagen mRNA level 

(Table 2). 

To further elucidate the mechanisms by which the InsR mediates insulin-induced 

collagen II expression, specific inhibitors of PI3K (wortmannin) and MEK1/MEK2 

(U0126) were added to the chondrocyte cultures 30 min before addition of 10 nM 

insulin for 12 h. Treatment with wortmannin alone for the same period significantly 

decreased basal collagen II mRNA levels, while in insulin-treated chondrocytes, it 

returned collagen II mRNA levels to those found in untreated cells (Table 2). The 

MEK1/MEK2 inhibitor slightly increased collagen II mRNA levels relative to untreated 

cells, but had no effect on insulin-induced collagen II expression. 

To determine whether the InsR is still functional in OA chondrocytes, we measured 

collagen II mRNA levels in response to insulin. Basal mRNA levels did not differ 

significantly between normal and OA chondrocytes (data not shown). Treatment of OA 

chondrocytes with 10 nM insulin for 12 h increased collagen II mRNA levels to 2.0 

(95% CI=0.8-3.3, P=0.0455, N=4) of those found in untreated cells, which, although 
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barely reaching statistical significance, is a response of magnitude similar to that 

observed in normal chondrocytes. 

 

REGULATION OF GLUCOSE TRANSPORT AND GLUT-1 CONTENT BY INSULIN IN 

NORMAL AND OA CHONDROCYTES 

To determine the role of insulin and its specific receptor in the regulation of glucose 

transport, we measured 2-DG uptake in normal and OA chondrocytes. Treatment of 

normal chondrocytes with 1 nM and 10 nM insulin for 48 h increased 2-DG uptake in a 

concentration-dependent manner relative to untreated cells (Table 3). In OA 

chondrocytes, however, the increase in 2-DG uptake induced by insulin was lower than 

in normal ones and the difference between the responses induced by the two insulin 

concentrations tested did not reach statistical significance. 

To elucidate the mechanism by which insulin increased 2-DG uptake, total GLUT-1 

protein content was analyzed by western blot in total cell extracts from normal and OA 

chondrocytes. Treatment with 10 nM insulin increased total GLUT-1 protein content in 

normal (Fig. 4A), but not in OA chondrocytes (Fig. 4B), whereas 1 nM insulin had no 

effect, either in normal or OA chondrocytes.  
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Discussion 

The results obtained in this study demonstrate for the first time that adult human 

chondrocytes express the InsR, both in situ in the articular cartilage (Fig. 1) and in vitro 

after isolation and culture (Fig. 2). In agreement with this, a physiologic nanomolar 

insulin concentration was effective in directly activating the InsR both in normal and OA 

chondrocytes, thus indicating that the InsR expressed in human chondrocytes is 

functional. Consistent with this, insulin also induced Akt phosphorylation in normal and, 

to a lesser extent, in OA chondrocytes (Fig. 3). This finding, together with the low 

insulin concentrations tested that are unlike to be sufficient to activate the IGFR16, 

further support the involvement of the specific InsR in mediating Akt activation induced 

by physiologic insulin concentrations. On the other hand, the lower response of OA 

chondrocytes to the same insulin concentrations can directly result from reduced 

expression of the InsR (Fig. 2), as well as from defective downstream signaling.  

Several processes can contribute to the reduced expression of the InsR in OA 

chondrocytes. The InsR is regulated both at the transcriptional and post-transcriptional 

levels by glucocorticoids19, insulin19,20 and nutrient availability20-22. Additionally, 

inflammatory mediators, like IL-1, TNF-α and reactive oxygen species (ROS) which 

play an important role in OA23,24, may also contribute to downregulate the InsR and/or 

its downstream signaling pathways. Indeed, studies in endothelial cells demonstrated 

that TNF-α decreases the InsR content25. Moreover, TNF-α, IL-1 and ROS have all 

been shown to inhibit the generation of downstream signaling intermediates26-29, 

leading to insulin resistance. Accordingly, the lower InsR content and the reduced Akt 

activation in OA chondrocytes relative to normal ones may be another consequence of 

the accumulation and actions of those inflammatory and catabolic mediators in 

osteoarthritic joints. On the other hand, given the different mean age of the normal and 

OA groups analyzed, the influence of aging on the decreased InsR expression and 
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function in OA chondrocytes cannot be excluded. Nonetheless, since aging is the major 

risk factor for OA, elucidation of the mechanisms that regulate the InsR expression and 

function in human chondrocytes and how these are affected by aging and OA deserve 

further investigation. 

We also found the IGFR expression to be decreased in OA relative to normal 

chondrocytes. This is likely to contribute to the reported resistance of OA chondrocytes 

to IGF-I, along with other mechanisms already identified30,31. Similarly, the lower InsR 

expression and activity in OA chondrocytes suggest that these may also have some 

degree of insulin resistance. However, although less effectively, OA chondrocytes still 

activated Akt in response to physiologic insulin concentrations (Fig. 3B), indicating that 

they are partially sensitive to insulin which can contribute to sustain chondrocyte 

functions, since Akt is upstream of key survival and metabolic pathways31. 

To elucidate this question, we determined whether insulin signaling through its specific 

receptor can promote anabolic responses, namely aggrecan and collagen II 

expression, both in normal and OA chondrocytes. Under the experimental conditions 

used, the mRNA expression of aggrecan was not affected, while collagen II mRNA 

levels were increased by treatment of human chondrocytes with a physiologic insulin 

concentration (Table 2). In addition, collagen II expression involved a mechanism partly 

dependent on the PI3K, but not on the MEK1/MEK2 pathway (Table 2). This 

demonstrates that, at least, some anabolic responses in human chondrocytes are 

physiologically regulated by activation of the InsR. Although expressing lower levels of 

the InsR, the ability of OA chondrocytes to express collagen II in response to insulin 

was found to be similar to that observed in normal chondrocytes. This suggests that the 

remaining InsR molecules are sufficient to ensure full or nearly full induction of collagen 

II expression. Nonetheless, this finding is somewhat puzzling since OA chondrocytes 

showed defective Akt activation (Fig. 3B) and the InsR-mediated collagen II expression 
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was found to involve the PI3K (Table 2), which taken together would predict a lower 

ability of OA chondrocytes to express collagen II mRNA in response to insulin. In 

agreement with this, the difference in collagen II mRNA levels between insulin-treated 

and untreated OA chondrocytes barely reached statistical significance, likely reflecting 

a significant variability between individuals. This suggests that some individuals with 

OA will respond less effectively to physiologic insulin concentrations in terms of 

collagen II expression, which in the current study may have been underestimated due 

to the small sample size available. Further studies with larger cohorts of OA patients 

stratified by age, sex, comorbidities and possibly other individual variables may help 

elucidate which patients will more likely respond to physiologic insulin concentrations. 

Moreover, identification of the signaling pathways involved in InsR-mediated collagen II 

expression and evaluation of their activity in normal and OA chondrocytes deserves 

further investigation as it may disclose novel mechanisms to promote the chondrocyte 

anabolic responses. 

The finding that, unlike collagen II, aggrecan expression was not increased by low 

insulin concentrations is somewhat unexpected, especially as other studies showed 

increased aggrecan and proteoglycan production1,2. As these studies used high 

supraphysiologic insulin concentrations, it is possible that the effects of insulin on 

aggrecan and proteoglycan synthesis were mediated solely by the IGFR. Nonetheless, 

it is also possible that insulin, even in low physiologic concentrations, can increase the 

production of proteoglycans acting by mechanisms independent of gene transcription. 

Such studies are beyond the scope of the current study, but are worthwhile being 

undertaken as new targets to increase the chondrocyte anabolic activity may be 

disclosed. 

To further characterize the role of physiologic insulin concentrations in regulating 

normal and OA chondrocyte functions, we evaluated its ability to modulate glucose 
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transport and observed that it significantly increased in normal and to a lesser extent in 

OA chondrocytes (Table 3). The highest insulin concentration tested also augmented 

total GLUT-1 protein content in normal chondrocytes (Fig. 4A), suggesting that this 

contributed, at least in part, to the observed increase in 2-DG uptake. In OA 

chondrocytes, however, total GLUT-1 content remained unaffected with both insulin 

concentrations (Fig. 4B). In other cells, insulin was shown to increase glucose uptake 

by promoting GLUT-1 incorporation in the plasma membrane32. Other studies 

demonstrated that GLUT-1 exists in a dynamic equilibrium that involves the plasma 

membrane, intracellular storage in the trans Golgi network and the lysosomes where it 

is degraded14,33,34. Accordingly, the results presented suggest that, even in 

concentrations as low as 1 nM acting in OA chondrocytes, insulin can promote the 

recruitment of GLUT-1 from intracellular stores to the plasma membrane. Nonetheless, 

we also cannot exclude the possibility that other isoforms of the GLUT family are 

involved in insulin-stimulated glucose uptake in chondrocytes. Indeed, insulin has been 

shown to regulate other GLUT isoforms, namely GLUTs-8 and -1235,36 which are insulin 

sensitive and expressed by human chondrocytes, at least at the mRNA level10,11. 

GLUT-3, which is constitutively expressed in chondrocytes10 and in other cells was 

shown to be regulated by insulin37, also deserves to be investigated as a possible 

insulin target in human chondrocytes.  

In conclusion, our results show for the first time that adult human chondrocytes express 

functional InsR. Even though expressing lower InsR levels and showing defective 

activation of Akt than normal ones, OA chondrocytes still seem capable of responding 

to physiologic insulin concentrations. Even though the relatively small number of 

cartilage samples available precludes definitive conclusions to be taken, some 

responses, namely glucose transport, seem to be impaired while others, like collagen II 

mRNA expression, appear fully activated, at least in some patients. The reduced ability 

of OA chondrocytes to increase glucose transport in response to physiologic insulin 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

 

concentrations may compromise energy production and plastic functions, namely 

glucosaminoglycan synthesis, what can contribute to chondrocyte damage and OA 

progression. On the other hand, taking into account the structural and functional 

homology between the InsR and the IGFR, modulation of the InsR and of its 

downstream signaling pathways may be an effective strategy to overcome the 

resistance of OA chondrocytes to IGF-1, thus representing a novel pharmacological 

target for the development of innovative anti-osteoarthritic therapies. 
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Figure legends: 

 
Figure 1: In situ Immunofluorescence staining of  the InsR in normal human 

cartilage. (A)  representative image of the InsRbeta subunit (green) in normal human 

cartilage sections (N=3) counterstained with DAPI (blue) to allow nuclei visualization, 

viewed with a 200x magnification (inset: 400x magnification). (B) representative image 

of the negative control (N=3) viewed with a 200x magnification (inset: 400x 

magnification). 

Figure 2: InsR protein levels in  chondrocytes from normal and OA human 

articular cartilage. (A)  preInsR and InsRbeta protein content in total cell extracts of 

chondrocyte cultures established from normal (N=6) and OA (N=6) non-pooled 

cartilage samples. The image shown is representative of the results obtained in normal 

and OA chondrocytes. MW= molecular weight marker; PC=positive control; N=normal 

chondrocytes; OA=osteoarthritic chondrocytes. (B) Immunofluorescence staining of the 

InsRbeta subunit (green) expressed in normal and OA chondrocytes counterstained 

with DAPI (blue) to show the cell nuclei, as described in section 2.6. The images shown 

are representative of the results obtained in 3 normal and 3 OA independent 

chondrocyte cultures; NC= Negative control.  

Figure 3: Evaluation of the functional state of the InsR expressed in normal and 

OA human chondrocytes. (A) InsRbeta phosphorylation in chondrocyte extracts from 

1 normal and 2 OA cartilage samples untreated (Control) or treated with insulin 10 nM 

for the indicated periods. Akt phosphorylation in total cell extracts from 4 normal (B) 

and 4 OA (C) non-pooled independent chondrocyte cultures treated with 1 or 10 nM 

insulin for 30 min relative to untreated cells. 
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Figure 4: Regulation of GLUT-1 content by insulin in normal and OA 

chondrocytes. Total GLUT-1 protein levels in (A) normal (N=6) and (B) OA (N=6) 

chondrocytes treated with 1 or 10 nM insulin for 48 h relative to untreated cells.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 1: Oligonucleotide primer pairs used for qRT-PCR 

Gene Primer sequences (5´-3´) RefSeq ID 

β-Actin 

(ACTB) 

F: AACTACCTTCAACTCCAT 

R: TGATCTTGATCTTCATTGTG 

NM_001101 

Beta-2-microglobulin 

(B2M) 

F: CTCCAAAGATTCAGGTTTACTCAC 

R: AGTCAACTTCAATGTCGGATGG 

NM_004048 

Peptidylprolyl isomerase A 

(Cyclophilin A) 

F: CAGTCCCAGGAAGTGTCAATG 

R: CAGCGTCTCACTATGTTGCC 

NM_021130 

Hypoxanthine 

phosphoribosyltransferase-

1 (HPRT-1) 

F: TGACACTGGCAAAACAAT 

R: GGCTTATATCCAACACTTCG 

NM_000194 

Glyceraldehyde 3-

phosphate dehydrogenase 

(GAPDH) 

F: ACAGTCAGCCGCATCTTC 

R: GCCCAATACGACCAAATCC 

NM_002046 

Ribossomal protein S18 

(18S rRNA) 

F: GAAGATATGCTCATGTGGTGTTG  

R: CTTGTACTGGCGTGGATTCTG 

NM_022551 

Ribossomal protein L13a 

(RPL13A) 

F:GGAAGAGCAACCAGTTACTATGAG 

R:CAGAGTATATGACCAGGTGGAAAG 

NM_012423 

 

TATA box binding protein  

(TBP) 

F: TTCCACTCACAGACTCTC 

R: ACAATCCCAGAACTCTCC 

NM_003194 

Insulin receptor 

(INSR) 

F: GCCTCTACAACCTGATGAAC 

R: ACAGATGTCTCCACACTCC 

NM__000208 

Insulin like growth factor 

receptor (IGFR) 

F: GAAGTGAGTGCTCCTTGATG 

R: CCACGGATGACTGCTGAG 

NM_000875 

Collagen type II 

(COL2A1) 

F: GGC AGA GGT ATA ATG ATA AGG 

R: ATT ATG TCG TCG CAG AGG 

NM_001844               

Aggrecan 

(ACAN) 

F:.CCT GGT GTG GCT GCT GTC 

R: CTG GCT CGG TGG TGA ACT C 

NM_001135 

F: Forward sequence; R: Reverse sequence 
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Table 2: Role of signaling pathway inhibitors on collagen type II gene expression 

relative to untreated cells 

a vs untreated cells; b vs insulin, 10nM 

Insulin, 10 nM, 

12h 
Inhibitor Mean (95% CI) P value N 

+        – 2.48 (1.24-3.72) 0.0138a 6 

– Wortmannin, 200 nM 0.41 (0.31-0.50) 0.0014a 3 

+ Wortmannin, 200 nM 0.80 (0.73-0.88) 0.9962a/0.0021b 3 

– U0126, 10 µM 1.21 (1.17-1.25) 0.0022a 3 

+ U0126, 10 µM 2.14 (1.18-3.10) 0.0180a/0.8556b 3 
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         Table 3: Regulation of 2-DG uptake by insulin in normal and OA chondrocytes 

Relative 2-DG uptake (% of untreated cells) 

  Normal   OA  

Insulin, nM Mean (95% CI) P N Mean (95% CI) P N 

1 125 (118-132) 1.16e-05a 16 112 (107-117) 0.0049a 8 

10 141 (134-147) 5.78e-10a/0.0084b 18/12 123 (118-129) 3.8e-07a/0.0511b 16/4 

               a vs untreated cells; b vs insulin, 1 nM 
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