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ABSTRACT 

 

Cyclin-dependent kinase 5 (Cdk5) is a peculiar proline-directed serine/threonine kinase. Unlike 

the other members of the Cdk family, Cdk5 is not directly involved in cell cycle regulation, being 

normally associated to neuronal processes such as migration, cortical layering and synaptic plasticity. 

This kinase is present mainly in post-mitotic neurons and its activity is tightly regulated by the 

interaction with the specific activators, p35 and p39. 

Despite its pivotal role in CNS development, Cdk5 dysregulation has been implicated in 

different pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), 

Parkinson’s disease (PD) and, most recently, prion-related encephalopathies (PRE). In these 

neurodegenerative conditions, Cdk5 overactivation and relocalization occurs upon association with 

p25, a truncated form of the normal activator p35. This activator switching will cause a shift in the 

phosphorylative pattern of Cdk5, with an alteration both in targets and activity, ultimately leading to 

neuronal demise. 

In AD and PRE, two disorders that share clinical and neuropathological features, Cdk5 

dysregulation is a linking event between the major neuropathological markers: amyloid plaques, tau 

hyperphosphorylation and synaptic and neuronal loss. Moreover, this kinase was shown to be 

involved in abortive cell cycle re-entry, a feature recently proposed as a possible step in the neuronal 

apoptosis mechanism of several neurological diseases. 

This review focuses on the role of Cdk5 in neurons, namely in the regulation of cytoskeletal 

dynamics, synaptic function and cell survival, both in physiological and in pathological conditions, 

highlighting the relevance of Cdk5 in the main mechanisms of neurodegeneration in Alzheimer’s 

disease and other brain pathologies.  
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1. INTRODUCTION 

1.1. The Cdk family 

The cyclin-dependent kinase (Cdk) family is composed of 9 small (30-35 kDa) 

serine/threonine kinases, numbered according to their discovery, from Cdk1 to Cdk9 (Morgan, 1997). 

The biological functions of Cdks are vast, going from mitosis to the regulation of cellular processes 

such as differentiation, senescence and apoptosis, through modification of gene transcription 

(Tannoch et al., 2000). In proliferating cells, Cdk dysregulation is associated with tumour formation, 

whereas their disappearance/inhibition in neuronal precursors coincides with terminal differentiation 

(Okano et al., 1993). Generally, in order to be activated, Cdks need to associate with regulatory 

subunits named cyclins. Although specific Cdks are linked to different phases of the cell cycle, their 

activities can sometimes overlap, depending on the association with different cyclins (Morgan, 1997; 

Nguyen et al., 2002; Nigg, 2001). 

Cdk activity can also be regulated by two other distinct mechanisms. A set of 

phosphorylation and dephosphorylation events primes Cdks for activation by regulatory subunits, as 

can be seen in the case of the Cdk4/cyclin D1 complex, which only becomes active after 

phosphorylation by the Cdk-activating kinase (CAK) (Diehl and Sherr, 1997; Kato et al., 1994). 

Furthermore, a family of Cdk-inhibitory subunits (CKIs) can bind to and inactivate the Cdk-cyclin 

complex (Golias et al., 2004; Pavletich, 1999; Peter, 1997).  

 

1.2. Cdk5: different between equals  

Cdk5 is an unusual member of the Cdk family (Dhariwala and Rajadhyaksha, 2008). Unlike 

the other Cdks, this serine-threonine kinase does not exert a direct control over the cell cycle (Dhavan 

and Tsai, 2001), although it has been shown that Cdk5 can phosphorylate the retinoblastoma protein 

(Rb), a major intervenient in cell cycle progression (Hamdane et al., 2005). Similarly to the other 

members of its group, Cdk5 needs to associate with a regulatory subunit in order to be activated. 

However, this kinase does not associate with cyclins, but with the neuron-specific activators p35 and 

p39 (Tang et al., 1995; Tsai et al., 1994), which are structurally similar to cyclins, yet share no 
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homology at the amino acid level. Furthermore, Cdk5 does not require any additional phosphorylation 

in order to become active, although the phosphorylation at Tyr15 by Src-related tyrosine kinases can 

increase the activity of this protein (Zukerberg et al., 2000).  

Despite the widespread expression throughout the organism, enzymatic activity of Cdk5 is 

more prominent in the CNS, since the expression of this kinase and its activators is highest in post-

mitotic neurons (Hisanaga and Endo, 2010; Nguyen et al., 2002; Zheng et al., 1998). The spacial and 

temporal expression of p35 and p39 appear to be complementary, with studies indicating that in 

growth cones, synapses and in detergent-insoluble cytoskeleton and membrane fractions they localize 

in distinct subcellular compartments that can be overlapped (Asada et al., 2008; Humbert et al., 

2000a; Humbert et al., 2000b; Paglini et al., 1998), However, it remains unclear whether the two 

activators can confer substrate specificity to Cdk5. Interestingly, although p39 can compensate for 

some functions of p35, the absence of p39 can be masked by p35, as confirmed by the lack of obvious 

detectable abnormalities in p39-null mice (Ko et al., 2001). 

Cdk5 activators p35 and p39 are relatively unstable proteins. Studies in neuronal cultures 

show that the half-life of p35 is approximately 20-30 minutes (Patrick et al., 1998). The levels of 

these proteins are regulated by their synthesis and degradation, and the expression of p35 was shown 

to be induced by extracellular stimuli. In vitro studies revealed that the extracellular matrix 

glycoprotein laminin can trigger an increase, not only in p35 mRNA, but also in protein levels, 

leading to an augment of Cdk5 activity (Paglini et al., 1998). Neurotrophic factors, like nerve growth 

factor (NGF) and brain-derived neurotrophic factor (BDNF), also cause an upregulation of p35 

expression (Harada et al., 2001; Tokuoka et al., 2000). In order to be degraded, p35 is multi-

ubiquitylated and processed via the ubiquitin-proteasome pathway. Interestingly, when Cdk5 activity 

is blocked, the stability of p35 is largely maintained and the half-life of this activator is increased 

(Kerokoski et al., 2002), as demonstrated in Cdk5 dominant negative mutants that lack p35 

phosphorylation (Patrick et al., 1998), which can suggest a negative feedback mechanism for the 

regulation of Cdk5. Furthermore, the phosphorylation status of p35 also influences the membrane 

association of the Cdk5/p35 complex (Sato et al., 2007). The interaction of this complex with the 



Page 6 of 57

Acc
ep

te
d 

M
an

us
cr

ip
t

6 

 

membrane is a possible regulatory mechanism of Cdk5, since it has been shown that membrane-bound 

Cdk5/p35 is inactive, whereas the cytoplasmic complex is the active form (Zhu et al., 2005). 

Moreover, a recent study showed that membrane association facilitates degradation of p35 and p39 

(Minegishi et al., 2010) 

    

1.3. The physiological functions of Cdk5 

Although it has been demonstrated that Cdk5 has a functional role in different organs and 

cell types (Daval et al., 2011; Feldmann et al., 2010; Lin et al., 2009; Pallari et al., 2011; Shimomura 

et al., 2011), the vast majority of known actions for this kinase is associated with its activity at the 

CNS level (Hisanaga and Endo, 2010; Jessberger et al., 2009; Lalioti et al., 2010; Tsai et al., 1993)}. 

Gene-targeting experiments have demonstrated that Cdk5 plays a pivotal role in the 

cytoarchitecture of CNS. Indeed, Cdk5-deficient mice die just before or after birth, displaying 

widespread disruptions in neuronal layering of many brain structures, such as the cerebral cortex, 

hippocampus, cerebellum and olfactory bulb, indicating that neuronal migration is affected (Adle-

Biassette et al., 2006; Gilmore et al., 1998; Ohshima et al., 1999; Ohshima et al., 1996). In a recent 

report, Jessberger and colleagues demonstrated that the knockdown of Cdk5 leads to the aberrant 

growth of dendritic processes, which is associated with an altered migration pattern of newborn cells 

in the hippocampus (Jessberger et al., 2008). In the cerebral cortex, Cdk5 deficiency causes an 

inversion of the neuronal laminar organization (Tanaka et al., 2001). Similarly, p35 null mice (p35 -/-) 

show a similar inverted cortical layering, although the hippocampus only suffers minor disruption and 

the cerebellum is unaffected (Chae et al., 1997; Kwon and Tsai, 1998; Kwon et al., 1999). In contrast 

to Cdk5 -/- mice, p35 -/- animals are viable and fertile, although they have increased susceptibility to 

seizures. The apparent discrepancy in the phenotypes of the p35 -/- and Cdk5 -/- mice can be 

explained by the compensatory role of p39. While p39-deficient mice (p39 -/-) do not show any 

noticeable defects, the phenotype of the p35/p39 double-mutant mice (p35 -/- and p39 -/-) is 

indistinguishable from that of  Cdk5 -/- mice (Ko et al., 2001).  
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A crucial role for Cdk5 in corticogenesis is supported by observations showing that this 

kinase promotes migration by acting positively on pro-migratory signals, and possibly by 

antagonizing anti-migratory signals. In fact, Cdk5 has been identified as a regulator of neuroblast 

migration in the postnatal subventricular zone (Hirasawa et al., 2004; Hirota et al., 2007). In cultured 

primary neurons, the reduction of Cdk5 activity by expressing dominant-negative Cdk5 mutants, or by 

using antisense oligonucleotides of Cdk5, p35 or p39, inhibits neurite outgrowth (Nikolic et al., 

1996). Defects observed in fasciculation of several prominent axon tracts of p35- mutant mice also 

suggest a role for Cdk5 in axonal guidance and targeting (Kwon et al., 1999). The regulation of 

microtubule and intermediate-filament cytoskeletal components by Cdk5 also implicates this kinase in 

the modulation of cell adhesion and of intracellular signalling and transport (Dhavan and Tsai, 2001). 

Indeed, amongst the substrates of Cdk5 are several proteins involved in axonal transport, such as the 

microtubule and neurofilament-associated proteins tau and microtubule-associated protein 1B 

(MAP1B) (Ahlijanian et al., 2000; Grant et al., 2001; Paglini et al., 1998), as well as NUDEL, a 

protein proposed to bind to neurofilaments and facilitate their assembly (Holzbaur, 2004; Niethammer 

et al., 2000).  

The regulatory role of Cdk5 in the CNS also extends to several synaptic functions, such as 

synapse formation, synaptic plasticity, learning and memory. This kinase, as well as p35 and p39, is 

present in both pre- and postsynaptic compartments (Humbert et al., 2000b; Niethammer et al., 2000). 

Studies have shown that synapsin 1 and MUNC18, two presynaptic proteins involved in the regulation 

of exocytosis, are substrates of Cdk5 (Fletcher et al., 1999; Matsubara et al., 1996; Shuang et al., 

1998). This kinase is also supposed to be involved in the modulation of synaptic plasticity through the 

regulation of dendritic spine formation (Cheung and Ip, 2007; Tada and Sheng, 2006). Dendritic 

spines are small membranous protrusions from a neuron's dendrite that usually receive excitatory 

input from axons and can be modified by synaptic activity (Bourne and Harris, 2008). Since spines 

need to rapidly change their volume or shape in response to stimuli, alterations in dendritic spine 

morphology will depend on the dynamic regulation of the actin cytoskeleton (Schubert and Dotti, 

2007; Tada and Sheng, 2006). As a large number of cytoskeleton-binding proteins are Cdk5 substrates 
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in neurons, it is valid to hypothesize that this kinase plays a role in dendritic spine formation. Indeed, 

phosphorylation of the Cdk-related protein kinase Pctaire 1 by Cdk5 was shown to modulate the 

development of dendrites in differentiating neurons (Fu et al., 2011). Furthermore, both spinophilin, 

which is enriched at dendritic spines and negatively regulates their development (Feng et al., 2000), 

and its related protein neurabin I, are also phosphorylating targets for Cdk5 (Causeret et al., 2007; 

Futter et al., 2005), although the functional consequences of this mechanism on spine formation 

remains to be determined. 

An increasing number of reports also points out Cdk5 as an important regulator of the 

activity of two major neurotransmitter systems, the cholinergic and the glutamatergic (Fu et al., 2001; 

Fu et al., 2005; Hawasli et al., 2007; Li et al., 2001). In fact, Cdk5 and its activator p35 were shown 

to co-localize with the acetylcholine receptor on the postsynaptic muscle membrane, where they 

regulate the trafficking of these receptors (Fu et al., 2001). Interestingly, acetylcholine has been 

shown to negatively regulate the formation of synapses at the neuromuscular junction through a 

mechanism involving Cdk5 (Lin et al., 2005). The regulation of synaptic function by Cdk5 is also 

linked to its action on the glutamatergic neurotransmitter system, through the modulation of N-

methyl-D-aspartate (NMDA) receptor activity. In fact, the conditional Cdk5 knock-out will cause 

enhanced synaptic plasticity through an increase in the amount of NMDA receptors containing NR2B 

subunits and in the related excitatory postsynaptic currents (Hawasli et al., 2007). Likewise, NMDA 

receptor activity can be increased through the phosphorylation of its NR2A subunit by Cdk5 (Li et al., 

2001). Dopaminergic signalling is also controlled by Cdk5 through the phosphorylation of dopamine 

cAMP-regulated phosphoprotein of 32 kDa, DARPP32  (Bibb et al., 1999).  

 

2. CDK5 IN NEURODEGENERATION 

2.1. Cdk5 dysregulation: when things go wrong 

Although Cdk5 activity is vital for a correct CNS development, as well as several other 

important physiological nervous system functions, the dysregulation of this kinase has been shown to 

be involved in the neurodegenerative processes of several diseases, including AD, prion-related 
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encephalopathies (PRE), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) or acute 

neuronal injury caused by ischemia/stroke (Alvira et al., 2008; Lopes et al., 2007, 2010; Nguyen and 

Julien, 2003; Slevin and Krupinski, 2009; Tsai et al., 2004). 

A main step in Cdk5 dysregulation is the cleavage of the activator proteins p35 and p39 by 

calpains, a group of Ca
2+

-activated cytosolic proteases (Adle-Biassette et al., 2006; Camins et al., 

2006; Kusakawa et al., 2000; Lee et al., 2000; Patrick et al., 1999) (Fig. 1). Calpains participate in 

various important physiological processes and are crucial in some neuronal functions like learning and 

memory. Their activation during sustained synaptic activity is vital for Ca
2+

-dependent neuronal 

functions, such as neurotransmitter release, synaptic plasticity, vesicular trafficking and structural 

stabilization (Liu et al., 2008a; Wu and Lynch, 2006; Zadran et al., 2010). Several studies suggest the 

involvement of calpains in different neurodegenerative conditions, including some where Cdk5 

dysregulation also occurs, like stroke, PD or AD (Alvira et al., 2006; Araujo et al., 2010; Bano and 

Nicotera, 2007; Camins et al., 2006; Grammer et al., 2008; Langou et al., 2010; Raynaud and 

Marcilhac, 2006; Yadavalli et al., 2004). Indeed, Cdk5 dysregulation in AD and PRE is intimately 

related to calpains overactivation (Liang et al., 2010; Lopes et al., 2007). The dependence of Ca
2+ 

for 

activation makes calpains vulnerable to changes in the homeostasis of this ion and turns calpains into 

important elements of neurodegeneration (Araujo et al., 2010; Ferreiro et al., 2006; Green et al., 

2007; Lopes et al., 2007; Raynaud and Marcilhac, 2006; Resende et al., 2007). In fact, the imbalance 

in intracellular Ca
2+

 levels occurs both through the entry from the extracellular space via NMDA and 

AMPA receptors (Alberdi et al., 2010), and by the release of this ion from the intracellular 

compartments, namely the endoplasmic reticulum (Ferreiro et al., 2006; Resende et al., 2008) (Fig. 1).  

Calpain cleavage of p35 and p39 generates, respectively, p25 and p29. These truncated Cdk5 

activators show distinct properties from their original precursors. The half-life times of p25 and p29 

are significantly longer than p35 and p39 (around 3-fold increase) (Patrick et al., 1998) and the 

binding of these cleaved activators to the kinase is stronger (Amin et al., 2002), resulting in increased 

Cdk5 activity when compared to Cdk5/p35 (or p39). Furthermore, p25 and p29 lack an amino-

terminal myristoilation site, which will cause the Cdk5/p25 (or p29) complex to exhibit a different 
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subcellular localization, passing from the cellular periphery (mainly in the synapses) to a more 

perinuclear region (in the cell body), thus altering the substrates phosphorylated by this kinase (Asada 

et al., 2008; Kusakawa et al., 2000; Patrick et al., 1999). Interestingly, when p35 is phosphorylated by 

Cdk5, the calpain-mediated cleavage of this activator is reduced, suggesting that that the formation 

Cdk5/p25 complex can be autoregulated (Saito et al., 2003).  

When dysregulated, Cdk5 hyperphosphorylates the cytoskeleton protein tau (Ahlijanian et 

al., 2000; Lopes et al., 2010; Plattner et al., 2006), causing its release from the microtubules and 

accumulation in the form of cytoplasmic filaments and tangles (Alonso et al., 2001; Grundke-Iqbal et 

al., 1986a) (Fig. 1). This is caused by the change in substrate specificity of Cdk5, derived from its 

association with p25. Indeed, major evidences regarding the involvement of p25/Cdk5 in 

neurodegeneration were also obtained from p25-transgenic mouse models (Ahlijanian et al., 2000; 

Cruz et al., 2003). Cruz and colleagues demonstrated that in p25-overexpressing animals, endogenous 

tau is hyperphosphorylated at different epitopes and the accumulation of aggregated tau and 

neurofibrillary pathology progressively increased. Furthermore, while the phosphorylation of tau and 

other substrates was upregulated, the phosphorylation of known physiological Cdk5 substrates is not 

increased in p25-transgenic mice (Cruz et al., 2003). Mice expressing p25 during long periods of time 

were shown to suffer from impaired hippocampal long term potentiation (LTP) and memory deficits, 

along with significant synaptic and neuronal loss. However, when p25 was expressed in a transient 

form, hippocampal LTP was improved, the number of dendritic spines and synapses was increased 

and no neurodegeneration was observed (Fischer et al., 2005). Altogether, these results point out that 

it is the persistent increase in p25 expression that turns the physiological Cdk5 function into a 

pathological one.  

 

(Insertion of Figure 1) 
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2.2. Cdk5 and AD: two old acquaintances  

Alzheimer’s disease (AD) is the most common type of dementia (Rodgers, 2008; Smith, 

1998). Affecting an estimate of 35 million people worldwide (Shah and Reichman, 2006), AD has 

turned into an alarming health care problem with a vast socio-economic impact (Wimo and Prince, 

2010).  

Neuropathologically, the AD brain is characterized by 3 main markers: amyloid plaque 

deposition, neurofibrillary tangle formation and severe selective neuronal loss (Armstrong, 2006; 

Braak and Braak, 1991). Amyloid-β (Aβ), the main component of amyloid plaques, is considered a 

key molecule in AD pathogenesis (Alberdi et al., 2010; Findeis, 2007; Lopes et al., 2010; McLarnon 

and Ryu, 2008; Tseng et al., 2007). Generated by a two-step proteolytic cleavage of the integral 

membrane glycoprotein APP (amyloid precursor protein) (Esler and Wolfe, 2001; Thinakaran and 

Koo, 2008) via the amyloidogenic pathway, Aβ can trigger a series of processes known as the 

amyloid cascade, a multi-step series of events that disrupts neuronal homeostasis, causing aberrant 

activation of kinases and ultimately resulting in neurofibrillary tangle formation and neuronal loss 

(Golde, 2003; Hardy and Selkoe, 2002; Newman et al., 2007).  

Cdk5 has been proposed as an attractive candidate to connect Aβ toxicity, tau pathology and 

neurodegeneration (Cruz et al., 2006; Lee and Tsai, 2003; Lopes et al., 2010; Piedrahita et al., 2010). 

Indeed, in human AD brains, there is a significant augment in Cdk5 activity compared with age-

matched control brains (Lee et al., 1999). In accordance with this finding, the levels of p25 and 

activated calpain are increased in AD brains (Grynspan et al., 1997; Tseng et al., 2002) and different 

studies point out to a correlation between the presence of Cdk5/p25 and neurofibrillary tangle (NFT) 

formation (Liu et al., 2004b; Pei et al., 1998; Wang et al., 2007). Also, p25 levels were shown to be 

increased both in vitro and in vivo through the administration of Aβ peptide (Lopes et al., 2007, 2010; 

Patrick et al., 1999). Aβ neurotoxicity was shown to be decreased by the direct inhibition of Cdk5 

(Alvarez et al., 1999; Chang et al., 2011; Lopes et al., 2007) or by acting upstream, on calpain 

activation, with the consequent blockage of p25 formation (Granic et al., 2010; Lopes et al., 2010).  
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2.2.1. Cdk5 and Aβ generation 

All mutations currently known to cause AD are located either in the APP gene or in the genes 

encoding presenilins 1 (PS1) and 2 (PS2), two proteins that are part of the γ-secretase complex, one of 

the secretases responsible for APP cleavage to Aβ (Ahn et al., 2008; Esler and Wolfe, 2001; Florean 

et al., 2008; Hardy, 1997). Therefore, besides the evidence that Aβ can trigger Cdk5 dysregulation 

(Kusakawa et al., 2000; Lopes et al., 2007, 2010; Patrick et al., 1999), the link between Cdk5 and AD 

was further reinforced by reports showing that dysregulated Cdk5 phosphorylates APP at Thr668 

(Iijima et al., 2000; Lee et al., 2003), thus regulating its processing and increasing Aβ production. In 

fact, augmented generation and intraneuronal accumulation of Aβ has been described in inducible 

p25-transgenic mice (Cruz et al., 2006). Furthermore, APP phosphorylation will induce the nuclear 

translocation of the APP intracellular domain, which will lead to neuronal demise (Chang et al., 

2006). 

Cdk5 dysregulation can also be linked to alterations in the presenlin system. Actually, in the 

cerebral cortex of PS conditional knock-out mice increased levels of activator p25 activator are 

associated with tau hyperphosphorylation and neurodegeneration (Saura et al., 2004). Moreover, and 

similarly to other kinases such as protein kinases A (PKA) and C (PKC) and glycogen-synthase 

kinase 3 beta (GSK3β) (Kirschenbaum et al., 2001; Seeger et al., 1997; Walter et al., 1998), Cdk5 can 

phosphorylate PS1, altering its interaction with other molecules and regulating the stability of this 

phosphoprotein. Human PS1 contains two threonine (thr) residues preceding a proline, thr112 and 

thr354, which are prone to phosphorylation by Cdk5. Indeed, Cdk5/p35 has been show to directly 

phosphorylate PS1thr354 both in vitro and in vivo, increasing the levels of this presenilin (Lau et al., 

2002). As an indirect mode of action, the complex Cdk5/p35 can bind and phosphorylate β-catenin 

and modulate the interactions between this protein and PS1 (Kesavapany et al., 2001). Moreover, 

Cdk5 is involved in the regulation of N-cadherin-mediated adhesion in cortical neurons, and N-

cadherin itself is a γ-secretase substrate (Kwon et al., 2000; Marambaud et al., 2002). Remarkably, 

Dab1, a key regulator of reelin signaling that is downregulated in PS1 mutants, is also a substrate for 

Cdk5/p35, and is known to interact with APP (Howell et al., 1999; Keshvara et al., 2002). Therefore, 
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alterations in Cdk5 activity may lead to changes in PS1 metabolism, contributing to the pathogenesis 

of AD (Fig. 3). 

 

2.2.2. Cdk5 and tau pathology 

Besides Aβ accumulation, in brain regions affected by AD many neurons also display 

intracellular inclusions in the form of large nonmembrane-bound bundles of abnormal fibres, which 

occupy much of the perinuclear cytoplasm. These inclusions are designated neurofibrillary tangles 

(NFTs) and are composed primarily of hyperphosphorylated tau (Adle-Biassette et al., 2006; 

Eckermann et al., 2007; Grundke-Iqbal et al., 1986a; Grundke-Iqbal et al., 1986b; Kosik et al., 1986). 

Tau is a member of the microtubule associated proteins (MAP) family, which have as their main 

function the binding and stabilization of the cellular microtubular network (Iqbal et al., 2005). 

Therefore, tau is essential to vital processes such as axonal transport, cytoskeletal organization or 

mitotic division (Cuchillo-Ibanez et al., 2008; Grundke-Iqbal et al., 1986b). However, upon 

hyperphosphorylation, tau no longer associates with the microtubules and can aggregate in the form of 

filaments and tangles (Alonso et al., 2001; Grundke-Iqbal et al., 1986a) (Fig. 1), ultimately leading to 

synaptic loss and neuronal death (Buee et al., 2010; Eckermann et al., 2007; Iqbal et al., 2005) 

(Steinhilb et al., 2007) (Fig. 3).  

The high number (about 42) of serine/threonine (Ser/Thr) residues available in tau (Shahani 

and Brandt, 2002) make this protein a good target for several kinases, such as Cdk5 (Li et al., 2006; 

Lopes et al., 2010; Piedrahita et al., 2010; Wang et al., 2007), Gsk3β (Li et al., 2006; Mandelkow et 

al., 1992; Resende et al., 2008; Wang et al., 2008) or PKA (Liu et al., 2006; Liu et al., 2004a; Liu et 

al., 2008b). Indeed, both in vitro (Lopes et al., 2007; Patrick et al., 1999) and in vivo (Ahlijanian et 

al., 2000; Cruz et al., 2003; Lopes et al., 2010) studies support a role for Cdk5 in tau 

hyperphosphorylation, mainly when associated with p25: i) Cdk5 can phosphorylate tau on sites that 

are found in paired helical filaments (a form of tau aggregation associated with different pathologies) 

(Sengupta et al., 2006; Wang et al., 2007), ii) transgenic animals and cell lines overexpressing p25 

display tau hyperphosphorylation (Cruz et al., 2003; Hamdane et al., 2003), and iii) the inhibition of 
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Cdk5 activity, either by blocking directly the kinase or by avoiding p35 cleavage to p25, prevents tau 

hyperphosphorylation in neuronal cultures exposed to Aβ and in animals intracerebroventricularly 

injected with the peptide (Adle-Biassette et al., 2006; Lopes et al., 2007, 2010).  

Although Aβ peptides cause a significant increase in tau phosphorylation (Adle-Biassette et 

al., 2006; Lopes et al., 2007, 2010; Resende et al., 2008), therefore sustaining a link between amyloid 

and tau pathologies in AD, the overexpression of p25 in transgenic mice can lead to neurofibrillary 

tangle formation and neuronal loss even in the absence of changes in Aβ levels (Cruz et al., 2003), 

thus confirming neuropathological studies showing that tau pathology alone can contribute for 

memory loss and behavior changes associated with AD (Arriagada et al., 1992; Quon et al., 1991) and 

that Cdk5 dysregulation is a major part of this process. 

Hyperphosphorylation of tau also reduces its degradation rate, further promoting tau 

accumulation in the neurons (Khatoon et al., 1992). Indeed, whereas proteasomal activity has been 

demonstrated as a major responsible for tau degradation (David et al., 2002; Oddo, 2008), tau 

aggregates isolated from AD brain can have inhibitory action on the activity of proteasome (Keck et 

al., 2003), similarly to what has been observed with Aβ oligomers (Tseng et al., 2007), culminating in 

the pathological accumulation of Aβ and tau. Interestingly, in order to be degraded, p35 is multi-

ubiquitylated and processed via the ubiquitin-proteasome pathway (Patrick et al., 1998). This may 

ultimately lead to a feedback-loop mechanism, where Aβ and/or hyperphosphorylated tau impair 

proteasomal activity, leading to a decrease in the rate of p35 degradation. More of this activator will 

therefore be available for cleavage onto p25, generating Cdk5 dysregulation, a phenomenon known to 

cause the hyperphosphorylation of tau and increments on Aβ levels (Fig. 1). 

 

2.3. Cdk5 dysregulation in other neurodegenerative conditions: causes and consequences 

Although the deleterious effect of Cdk5 have been mostly studied in the context of AD, its 

dysregulation has also been shown to be involved in other neuropathologies, such as prion 

encephalopathies, PD, ALS and stroke. 
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2.3.1 Cdk5 in prion diseases 

Prion-related encephalopathies (PRE) are a lethal type of neurodegenerative diseases, some of 

which with a vast socio-economic impact, like bovine spongiform encephalopathy (BSE) or the new 

variant Creutfeldt-Jakob disease (nvCJD) (Belay and Schonberger, 2005; Feraudet-Tarisse et al.; 

Johnson, 2005). Although they can have genetic or sporadic etiology, PRE are mainly of infectious 

origin (Blennow et al., 2006; Johnson, 2005) and, therefore, in most prion diseases the onset age will 

depend on when the contact with the pathogenic agent occurs. 

The central molecule of PRE pathogenesis is the prion, an exclusively proteic infectious 

particle that amplifies in a self-catalytic misfolding process without requiring any nucleic acid 

contribution (Aguzzi et al., 2008). However, the normal product of the prion gene is a protein 

designated as cellular isoform of the prion protein or PrP
C
. Although the exact function of this 

ubiquitously expressed glycoprotein remains unknown, diverse lines of evidence point to a potential 

role of PrP
C
 in cell adhesion, oxidative stress and cell signalling (Encalada et al., 2008; Mouillet-

Richard et al., 2000; Roucou et al., 2004; Vassallo and Herms, 2003). PrP
C
 has also been largely 

described as a copper (Cu
2+

)-dependent antioxidant (Adle-Biassette et al., 2006; Brown, 2001; 

Millhauser, 2007; Zomosa-Signoret et al., 2008). Studies suggest that PrP
C
 may be a major          

Cu
2+

-binding protein in brain membrane fractions, even controlling the activity of other membrane-

associated Cu
2+

-binding proteins. Furthermore, prion protein expression was shown to alter cellular 

Cu
2+

 uptake and enhance the incorporation of this ion into the antioxidant enzyme superoxide 

dismutase (SOD), or may also act as a SOD by itself, scavenging reactive oxygen species (Brown et 

al., 1999). Remarkably, in a transgenic mouse model of AD, Cu
2+

 exposure not only increased Aβ 

generation, (particularly Aβ40) but also triggered pathological tau phosphorylation and tangle 

formation in the brain, in a mechanism correlated with the increased formation of p25 and subsequent 

aberrant activation of Cdk5/p25 (Kitazawa et al., 2009). It is, however, not well understood how Cu
2+

 

in the brain triggers these pathological changes and if the alterations in the homeostasis of this ion can 

somehow be related to the recent discovery that cellular prion protein is required for memory 

impairment in transgenic AD mice (Gimbel et al., 2010). 
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Cdk5 dysregulation is a major contributor to PrP-induced neurodegeneration (Lopes et al., 

2007, 2009b). Indeed, a recent work showed that hamsters infected with prion strains had a significant 

increase in the levels of tau hyperphosphorylated on Ser 202/Thr 205, a fact that was correlated with a 

marked increase of Cdk5 levels (Wang et al., 2010). Also, the exposure of cortical neurons to the 

toxic peptide PrP106-126 can lead to tau hyperphosphorylation and cell cycle re-entry, a cascade that 

will culminate in apoptotic neuronal death (Lopes et al., 2007, 2009b). This effect of PrP, similarly to 

what happens with the Aβ peptide, is mediated by the imbalance of calcium homeostasis (Agostinho 

and Oliveira, 2003). However, whereas Aβ causes Ca
2+

 influx from the extracellular space via NMDA 

receptors and voltage-sensitive Ca
2+

 channels (Alberdi et al., 2010), PrP peptides will block Ca
2+

 

entry through this type of channels (Florio et al., 1998; Sandberg et al., 2004). In alternative, the 

synthetic prion fragment PrP106–126 has been demonstrated to form nonselective ionic channels in 

planar lipid bilayers (Kourie and Shorthouse, 2000; Lin et al., 1997), which could permit Ca
2+

 entry 

into cells and consequent calpain activation, leading to the cleavage of p35 to p25 and the 

overactivation of Cdk5 without altering the levels of this kinase (Lopes et al., 2007) (Fig. 1). The 

infectious isoform of the prion protein is also known as scrapie prion (PrP
Sc

), due to the fact that this 

protein-only pathogenic agent is the cause of sheep transmissible spongiform encephalopathy, scrapie. 

This 33-35 kDa protein has a protease-resistant core known as PrP27-30 (McKinley et al., 1991). PrP
Sc

 

is resistant to physical and chemical proteolysis, heat and radiation (Aguzzi and Heppner, 2000; 

Harris, 1999; Prusiner, 1998). Interestingly, a recent study has shown that the phosphorylation of the 

recombinant PrP fragment PrP23-231 by Cdk5 can lead to the generation of a proteinase K resistant 

species (which forms Congo Red-positive fibrils) and aggregates that can be immunostained with 

anti-PrP antibodies (Giannopoulos et al., 2009). These new results raise the possibility that 

phosphorylation by Cdk5 can be part of a physiological mechanism of PrP conformational alteration 

and its putative conversion into a pathological infectious form. 
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2.3.2 Cdk5 in Parkinson’s disease 

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder that affects both 

cognitive and motor skills. Neuropathologically, PD is characterized by a progressive and selective 

degeneration of dopaminergic neurons, in particular those from substantia nigra pars compacta 

(Aguzzi and Weissmann, 1996; Przedborski, 2005; Przedborski and Vila, 2001). Neuronal loss and 

the formation of intracellular aggregates of α-synuclein named Lewy bodies are the two main 

hallmark features of this pathology (Meredith et al., 2009; Pollanen et al., 1993; Venda et al., 2010). 

Although the exact mechanism of dopaminergic neuronal death remains unknown, recent 

studies have demonstrated that Cdk5 is involved in the process.  The activity and levels of this kinase 

were found to be altered in the brain of PD patients (Alvira et al., 2008), as well as in 

pharmacological animal models of the disease, in particular those corresponding to the administration 

of MPTP(a neurotoxin that causes parkinsonian symptoms), or in cell cultures exposed to the MPTP 

metabolite, MPP+ (Alvira et al., 2006; Smith et al., 2003), with increased Cdk5 activation correlating 

to the augment in the levels of the pathogenic activator p25 due to calpain cleavage (Alvira et al., 

2008; Alvira et al., 2006). This mechanism probably involves glutamate excitotoxicity, since MPTP 

exposure substantially increases glutamate levels (Meredith et al., 2009), leading to the imbalance of 

calcium and consequent calpain activation. Inhibition of Cdk5, either directly, by the cdk inhibitor 

flavopiridol, or indirectly, by blocking the cleavage of p35 to p25, was shown to provide 

neuroprotection against both compounds, with effects at the cellular level (reduction in the number of 

degenerating dopaminergic neurons), as well as in the behavioural aspect, with the animals displaying 

a significant locomotor improvement (Smith et al., 2003).  

Similarly to what happens in AD with the cytoskeleton protein tau (Ahlijanian et al., 2000; 

Piedrahita et al., 2010), Cdk5 has been implicated in the phosphorylation of two proteins, α-synuclein 

and parkin, with significant importance in the pathogenesis of PD (Avraham et al., 2007; Muntane et 

al., 2008; Rubio de la Torre et al., 2009). α-synuclein is the major component of Lewy bodies, and it 

is primarily found in nervous tissue (Iwatsubo, 2003; Spillantini et al., 1998), where it is known to 

play a role in neurotransmission (Dev et al., 2003), although its main function remains unknown, 
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whereas parkin acts as an E3 ubiquitin ligase, a member of the ubiquitin-proteasome system (Shimura 

et al., 2000). Mutations in the gene coding for parkin are known to cause early-age familial PD 

(Kitada et al., 1998; Lucking et al., 2000). The phosphorylation of parkin by Cdk5, both in vitro and 

in vivo, was shown to affect its ubiquitin-ligase activity, leading to a reduction in its auto-

ubiquitylation (Avraham et al., 2007). Furthermore, the conjugated action of Cdk5 with casein kinase 

I decreases the solubility of parkin, leading to its aggregation(Rubio de la Torre et al., 2009). Cdk5 

phosphorylation of α-synuclein also leads to its agglomeration (Muntane et al., 2008). Indeed, in the 

brains of PD patients, Cdk5 and p35 were found to co-localize with Lewy bodies, which reinforces 

the idea that the Cdk5 is involved in the generation of the α-synuclein fibrils that form these PD 

hallmark structures (Nakamura et al., 1997). 

Alterations in Cdk5 activity can also have an impact on the antioxidant capacity of the 

dopaminergic neurons: the overactivation of Cdk5 by MPP+ was shown to downregulate the 

peroxidase activity of the peroxiredoxin Prx2, thus leading to a decrease to the capacity of the cells to 

eliminate reactive oxygen species (ROS), which will ultimately induce neuronal loss (Qu et al., 2007).  

 

2.4.3 Cdk5 in other neurological disorders 

Cdk5 has also been linked to the onset of other neurodegenerative conditions, such as ALS 

(Nguyen and Julien, 2003) or stroke (Slevin and Krupinski, 2009) with the overactivation of this 

kinase resulting from a strong intracellular calcium imbalance, which in turn activates calpains and 

leads to the generation of p25  and ultimately contributing for neuronal loss (Patrick et al., 1999).  

In ALS, an adult-onset neurodegenerative disorder characterized by a selective demise of 

motor neurons from the brain and spinal cord (Cleveland, 1999), mutations of the copper/zinc 

superoxide dismutase (SOD1) gene trigger a series of toxic effects including glutamate excitotoxicity, 

which overstimulates the glutamatergic receptors and leads to excessive calcium entry into the motor 

neurons (Cudkowicz et al., 1997; Rosen, 1993). The involvement of Cdk5 in ALS is mainly 

correlated with its phosphorylative action, since the dysregulation of this kinase seems to cause a 

hyperphosphorylation of neurofilaments, namely the heavy subunit (NF-H), as well as of tau (Nguyen 
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et al., 2001). In fact, besides the co-localization between phosphorylated NF-H and the Cdk5/p25 

complex in motor neurons of SOD1 mutant mice (Nguyen et al., 2001), a partial overlapping of NF-H 

aggregates and Cdk5 was observed in the brain of ALS patients (Bajaj et al., 1999). Although NF-H 

hyperphosphorylation is associated with a disruption of the cytoskeleton (similarly to what is 

observed in the case of tau in AD) (Patzke and Tsai, 2002), perikaryal aggregates of NF-H can capture 

Cdk5/p25, thus preventing it, up to a certain point, from targeting other substrates (Nguyen et al., 

2001). 

Cerebral ischemia (stroke) consists of a loss of brain functions due to a transient or permanent 

blocking of the blood flow to the brain (Lo et al., 2003). The neuronal demise resulting from an 

ischemic event is caused by multiple overlapping mechanisms, such as the generation of reactive 

oxygen species, inflammatory reactions and excitotoxicity caused by and excessive activation of 

ionotropic glutamate receptors, in particular NMDA  (Mehta et al., 2007; Nakka et al., 2008). 

Therefore, and similarly to other neurodegenerative conditions, the calcium imbalance generated by 

NMDA receptor overactivation (Mehta et al., 2007) is probably the main generator of Cdk5 

dysregulation in stroke. In in vivo models of ischemia, Cdk5 overactivation was shown to cause tau 

hyperphosphorylation (Wen et al., 2007) and will also phosphorylate the NMDA receptors, thus 

amplifying the calcium influx and potentiating neuronal death (Wang et al., 2003). Furthermore, 

ischemic stroke leads to increases in Cdk5 expression (Mitsios et al., 2007) and affects the antioxidant 

capability of the neurons, since similarly to what occurs in PD, Cdk5 phosphorylates the enzyme 

Prx2, therefore inactivating it and abolishing its peroxidase activity (Rashidian et al., 2009). 

 

3. CDK5 AND THE CELL CYCLE   

3.1. The cell cycle: Cdks in control 

Cell cycle activity/progression is dependent on the activity of Cdks. The formation of different 

Cdk/cyclin complexes is the base for a precise control of cell cycle progression (Golias et al., 2004; 

Nguyen et al., 2002; Nigg, 2001). The phosphorylation of the retinoblastoma protein (Rb), first by 

Cdk4/cyclin D1 and Cdk6/cyclin D1-3 and further by Cdk2/cyclin E, is considered to be the initiating 
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point of cell cycle (Tannoch et al., 2000; Weinberg, 1995). At the G1/S checkpoint, a complex formed 

by Rb, E2F-1, histone deacetylases (HDAC) amongst other proteins, blocks protein transcription and 

arrests the cell cycle (Nguyen et al., 2002; Panteleeva et al., 2004). Upon phosphorylation, Rb is 

released from this transcription-blocking complex and occurs the transcription of S phase-associated 

proteins (Park et al., 2000) and consequent progression in the cell cycle. 

Since cell cycle-associated Cdks do not play a significant role in differentiated neurons, their 

activity in the CNS is considerably reduced (Nguyen et al., 2002). Despite the tight regulation of the 

cell cycle, this process can sometimes be disrupted by powerful stimuli, such as excitotocitity, 

oxidative stress, DNA damage or ischemia, forcing mature neurons to leave a steady G0 state and re-

enter the cell cycle (Katchanov et al., 2001; Kruman et al., 2004; Kuan et al., 2004; Nguyen et al., 

2003).  

Cell cycle re-entry has been observed in different neurodegenerative conditions, such as AD, 

PD, ALS or stroke (Ahn et al., 2008; Andorfer et al., 2005; Hoglinger et al., 2007; Lopes et al., 

2009c; Neve and McPhie, 2006; Nguyen et al., 2003; Rashidian et al., 2005; Wen et al., 2005). 

Although in these neurons the passage into the G1 phase is closely related to the re-expression of cell 

cycle Cdks, namely Cdk2, 4 and 6 (Copani et al., 1999; Kuan et al., 2004; Lopes et al., 2009a; 

Nguyen et al., 2003), a very important part in the abortive cell cycle re-entry is played by Rb. Under 

pathological conditions, Rb phosphorylation/inactivation causes re-cycling neurons to overcome the 

G1/S checkpoint and DNA synthesis will occur (as confirmed by BrdU incorporation) (Hoglinger et 

al., 2007; Wen et al., 2005). Nevertheless, these neurons never reach the M phase and, somewhere 

between the S and the G2 phases, degenerate by apoptosis (Hernandez-Ortega et al., 2007).  

 

3.2. Cdk5 and cell cycle re-entry: a new pathway to degeneration 

Abnormal cell cycle reactivation can in fact be considered as an important neuropathological 

feature of AD (Ahn et al., 2008; Hernandez-Ortega et al., 2007; Lopes et al., 2009a; Majd et al., 

2008; Yang et al., 2006). Cell cycle events have been described in the brains of patients (Busser et al., 

1998) and in animal models of AD (Ahn et al., 2008; Lopes et al., 2010; McShea et al., 2007), as well 
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as in cultured neurons exposed to Aβ (Lopes et al., 2009b; Wu et al., 2000). Furthermore, in AD 

brains, ectopic expression of cell cycle molecules was shown to occur in the same regions as disease-

associated neurodegeneration (Busser et al., 1998). Recently, abnormal cell cycle re-entry was also 

observed in neuronal cultures exposed to prion peptides (Lopes et al., 2009b), which may indicate that 

the ectopic reactivation of the cell cycle is also part of the neurodegenerative mechanism of PRE. 

 

(Insertion of Figure 2) 

 

Interestingly, Cdk5 overactivation has been described in several neurodegenerative 

conditions in which ectopic cell cycle events were also reported (Hoglinger et al., 2007; Lopes et al., 

2009b; Nguyen et al., 2003; Wen et al., 2005; Zhang et al., 2010). Moreover, Cdk5 dysregulation due 

to increased levels of oxidative stress, like in the mutant SOD1 mouse model of ALS, can cause 

neurodegeneration via changes in Cdk4 expression/activity (Nguyen et al., 2003). In a recent report, it 

was demonstrated that Cdk5 can also act as a mediator of neuronal cell cycle reactivation induced by 

Aβ and PrP, since both peptides increased the levels of Cdk4, pRb and PCNA; however, these 

changes in the levels of cell cycle markers were prevented when Cdk5 activity was blocked. The 

levels of the M phase marker, phospho-histone H3 (phH3), were identical before and after Cdk5 

dysregulation, confirming that although neurons  challenged with Aβ or PrP manage to reach the S or 

the G2 phases, they do not pass the G2/M checkpoint and proceed in the apoptotic pathway (Fig. 2). 

Curiously, the presence of a marker for the S phase was observed in neurons already at an advanced 

apoptotic stage, what seems to imply cell cycle reactivation, not as a cause for, but rather as a 

component of the cell death pathway (Lopes et al., 2009b). 

Besides the “normal” alterations in Cdk5 localization, with a passage from a more peripheral 

position to the cell body, recent studies have shown the toxic effects of this kinase are also associated 

with a translocation of nuclear Cdk5 to the cytoplasm (Fig. 2), an event which appears to be 

intimately linked with the ectopic cell cycle re-entry observed in both AD animal models and cultured 

neurons exposed to Aβ (Lopes et al., 2010; Zhang et al., 2008a). Indeed, nuclear Cdk5 appears to be 
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responsible for the suppression of cell cycle activity in post-mitotic neurons, possibly through the 

stabilization of the cell cycle inhibitor p27 and by preventing the association of E2F-1 with its co-

activator DP1. Furthermore, the blockage of cell cycle progression by Cdk5 requires that this kinase is 

associated with its normal activator p35. Thus, the cleavage of p35 to p25, which will lead to Cdk5 

dysregulation, is probably a major step in the abortive cell cycle re-entry triggered by Aβ exposure 

(Zhang et al., 2008a; Zhang et al., 2010), an hypothesis supported by the recent discovery that upon 

p25 generation, either via Aβ exposure in vitro or in p25-inducible transgenic mice, Cdk5 will cause 

the dispersion of the nuclear envelope, an event directly associated with apoptotic neuronal death 

(Chang et al., 2011). Since the nature of Cdk5 dysregulation is mainly based on the imbalance of 

intracellular calcium homeostasis (Camins et al., 2006; Lee et al., 2000) (Fig. 3), a common feature of 

different neurodegenerative pathologies (Araujo et al., 2010; Bano and Nicotera, 2007; Green et al., 

2007; Liu et al., 2008a; Melo et al., 2007), it is likely that the exposure to pathological stimuli other 

than Aβ (such as prion peptides, oxidative stress or ischemia) can trigger common mechanisms that 

lead to ectopic cell cycle re-entry (Fig.2).  

 

4. CDK5 AT THE SYNAPSES: FUNCTIONS AND DYSFUNCTION 

There are increasing evidences that point out a role for Cdk5 in the mechanisms of synaptic 

plasticity (Angelo et al., 2006; Cheung et al., 2006; Hawasli et al., 2007; Hawasli et al., 2009; Lai and 

Ip, 2009). Both Cdk5 and its normal activator p35 have been found in neuronal synapses as well as in 

the neuromuscular junction (Fu et al., 2011; Humbert et al., 2000b), where they colocalize with 

acetylcholine receptors (Fu et al., 2001). Furthermore, several of the synaptic proteins isolated from 

adult mouse brain synaptosomes have been identified as substrates for Cdk5 (Collins et al., 2005). 

Cdk5 also plays a relevant role neurotransmitter trafficking since it has the ability to modulate 

neurotransmitter release through the phosphorylation of P/Q-type voltage-dependent calcium channels 

(Tomizawa et al., 2002). Moreover, Cdk5 inhibition allows the access to a pool of synaptic vesicles 

which is not normally available (Kim and Ryan, 2010). Besides regulating the exocytosis of 
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neurotransmitters, Cdk5 also regulates clathrin-mediated endocytosis, by phosphorylating dynamin 1 

and amphiphysin 1(Floyd et al., 2001; Tomizawa et al., 2003).  

Recent studies show that Cdk5 controls hippocampus-dependent learning and synaptic 

plasticity (Adle-Biassette et al., 2006; Hawasli et al., 2007; Hawasli et al., 2009; Li et al., 2001). 

Indeed, the conditional knock-out of Cdk5 improved performance in several hippocampal learning 

tasks and reduced the threshold for LTP induction (Hawasli et al., 2009). However, although the 

knock-out of Cdk5 improves learning and synaptic plasticity, after some time Cdk5 knock-out mice 

displayed an increase in seizure susceptibility, suggesting a progressive increase in excitability 

(Hawasli et al., 2009). Interestingly, the transient expression of p25 was also shown to enhance LTP 

and spatial learning (Angelo et al., 2003; Fischer et al., 2005), whereas in p35 null mice (p35 -/-) the 

long-term depression (LTD) and spatial learning were impaired (Ohshima et al., 2005).  

The modulation of learning and synaptic plasticity by Cdk5 occurs mainly through the 

regulation of NMDA receptor (NMDAR) trafficking and degradation. Indeed, in hippocampal 

neurons, Cdk5 can complex with calpains to promote the proteolysis of the NMDAR subunit NR2B 

(Hawasli et al., 2007). On the other hand, the regulation of NMDAR endocytosis by Cdk5 is made 

through the phosphorylation of PSD-95 (Zhang et al., 2008b), a postsynaptic scaffolding protein with 

a major role in the organization, function, and plasticity of excitatory synapses (Ehrlich and Malinow, 

2004; Kim and Sheng, 2004). Studies show that Cdk5 inhibition increases the binding of PSD-95 to 

the tyrosine kinase Src, which in turn induces phosphorylation of NR2B and attenuates activity-

induced endocytosis of this NMDAR subunit (Zhang et al., 2008b). Interestingly, Cdk5 can also act 

on another type of NMDAR subunits, the NR2A. In fact, the action of Cdk5 over this subunit type is 

different from NR2B, since NR2A can be directly phosphorylated by Cdk5, a mechanism that will 

increase the activity of the receptor. Thus, unlike in NR2B, the inhibition of Cdk5 will block LTP 

induction in hippocampal neurons (Li et al., 2001). This dual mechanism through which Cdk5 

regulates NR2A and NR2B receptors may also be associated to their different nature, since NR2A is 

eminently synaptic, whereas NR2B can occur both synaptically and extrasynaptically (Hardingham 

and Bading, 2010).  
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Additionally, Cdk5 was shown to regulate the expression of acetylcholine neurotransmitter 

receptors (Fu et al., 2001; Xie et al., 2004) and affect acetylcholine and NMDA receptors clustering 

through PSD-95 phosphorylation (Fu et al., 2005; Morabito et al., 2004).The interaction between 

Cdk5 and PSD-95 is also considered relevant for the synaptic impairment that occurs in AD. 

Excitatory synapses are considered to be early targets for soluble Aβ, a view supported by the 

evidence that oligomerized Aβ can bind to synaptic sites, namely postsynaptic ones containing PSD-

95 (Lacor et al., 2004), Remarkably, inhibition of Cdk5 by roscovitine was shown to block the effect 

of Aβ on PSD-95 protein levels, an observation confirmed by the fact that the levels of PSD-95 do not 

decline after Aβ treatment of cultured cells expressing the triple alanine mutant form of PSD-95, 

which lacks phosphorylation sites (Roselli et al., 2005).  

 

5. STRATEGIES TO CONTROL CDK5 AND CONCLUSIONS 

The studies comprehended in this review demonstrate the vital role of Cdk5 in the brain 

development through the participation in processes as important as neuronal migration or synaptic 

plasticity. It was our objective to unravel the physiological part that Cdk5 phosphorylation takes on 

the modulation of NMDA receptor activity and expression, neurotransmitter release, degradation of 

synaptic proteins, or even in gene expression modulation.  

On the other hand, this review addressed the consequences of Cdk5 dysregulation , with a 

particular focus on Alzheimer’s disease, but also outlining the role of this kinase in other 

neurodegenerative pathologies, such as prion encephalopathies or Parkinson’s disease. Indeed, the 

overactivation and myslocalization of Cdk5 through a mechanism involving Ca
2+

- induced calpain 

activation was shown to mediate tau hyperphosphorylation and apoptotic neuronal death, amongst 

other noxious effects. (Fig. 3).  

 

(Insertion of Figure 3) 
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Due to its importance in these various neurodegenerative pathways of several brain 

pathologies, it is logical to assume that Cdk5 can be a good pharmacological target to prevent or even 

halt these pathologies. Indeed, diverse in vitro and in vivo studies have demonstrated that the blockage 

of Cdk5 activity can have a beneficial effect and provide neuroprotection. Two main strategies have 

been used for these purposes: direct inhibition, with the use of Cdk5 inhibitors, and indirect action, by 

preventing the excessive generation of the pathogenesis-associated activator p25 through the use of 

calpain inhibitors. Although the efficacy of these compounds has been demonstrated in various 

disease models, several concerns remain regarding the possible effects on the several physiological 

mechanisms controlled by Cdk5, since not only this kinase is vital for different neuronal processes, 

but even p25, when generated in a transient form, can play a positive role in cognitive and memory 

functions. Furthermore, although both roscovitine (one of the best know Cdk5 inhibitors), and calpain 

inhibitors (such as MDL28170), have the capability to cross the blood-brain barrier, they are not 

completely specific, which implies that their administration can affect several other pathways, both 

pathological and physiological.  

In conclusion, the understanding of how such a multifaceted kinase executes its role in both 

normal and pathological conditions is of vital importance, since it establishes a basis for the 

development of novel therapeutic approaches designed to block Cdk5 dysregulation in diverse 

pathologies. 
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7. FIGURE LEGENDS 

Figure 1. Schematic representation of Cdk5 dysregulation by Aβ or PrP peptides 

Neurons exposed to Aβ or PrP suffer a dysregulation in Ca
2+

 homeostasis, caused mainly by an influx 

through NMDA receptors and voltage-sensitive Ca
2+

 channels (in the case of Aβ) and non-selective 

ion channels (for PrP peptides), and potentiated by a calcium-induced calcium release from 

intracellular compartments, in particular the endoplasmic reticulum. This increase of the intracellular 

Ca
2+

 level will trigger the overactivation of calpains, which in turn will cleave the normal Cdk5 

activator p35 to the pathogenic form p25. The augment in p25 levels promotes the formation of a 

hyperactive p25/Cdk5 complex, which, amongst other toxic effects, is responsible for the 
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hyperphosphorylation of the cytoskeleton protein tau, which will accumulate in the cytoplasm as 

paired helical filaments and neurofibrillary tangles. 

 

Figure 2. Cdk5 is a key molecule in the cell cycle re-entry triggered by Aβ 

Besides the cytoplasm, Cdk5 is also known to be located in the nucleus, where the Cdk5/p35 complex 

will stabilize p27, a protein known to affect multiple processes in neurons, including cell cycle 

suppression. Furthermore, Cdk5/p35, by associating with E2F-1, blocks the binding of this nuclear 

factor with its activator DP1, thus halting the cell cycle in post-mitotic neurons. However, the 

cleavage of p35 to p25 triggered by Aβ (and possibly by other stimuli associated with different 

neurodegenerative pathologies, such as prion peptides, SOD1 mutations or ischemia) causes the 

disruption of this complex. Cdk5 is shuttled to the cytoplasm and, in the nucleus, the association of 

E2F-1 with DP1, as well as anupregulation of different proteins, such as the Cdks 2, 4 and 6, will 

induce the progression from the G1 to the S phase, where DNA replication will occur. However, these 

cell cycle active neurons do not overcome the G2/M checkpoint, probably exiting the cell cycle 

somewhere along the S or the G2 phases and advancing through the apoptotic pathway. 

 

Figure 3. Cdk5 in different pathways of neurodegeneration  

Although the triggering stimuli may be diverse, Cdk5 dysregulation appears to depend on the 

disruption of intracellular calcium homeostasis, generally do to an excessive activation of ionotropic 

glutamate receptors. One of the main consequences from Cdk5 overactivation is the excessive 

phosphorylation of the cytoskeleton protein tau, which correlates with the synaptic loss and formation 

of neurofibrillary tangles in AD and in some PRE, conducing also to neuronal death. Similarly, Cdk5 

phosphorylates α-synuclein and parkin, two proteins involved in the pathogenesis of PD. Cdk5 is also 

a trigger for synaptic dysfunction via the phosphorylation of PSD-95 leading to the internalization and 

degradation of NMDA receptors. Cell cycle reactivation has also been recently linked to changes in 

the activity and localization of Cdk5. However, this cell cycle is not fully completed and the neurons 

exhibit activation of pro-apoptotic proteins of the Bcl-2 family and consequent caspase-3 activation. 
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Recent studies have further shown that cell cycle re-entry leads to AD-like changes such as increased 

Aβ and APP levels. Cdk5 can also influence Aβ production both by altering APP processing via the 

phosphorylation of this transmembrane protein and by modulating the activity of presenilins. The 

capacity of the cells to handle oxidative stress is also impaired by Cdk5 dysregulation, as is 

demonstrated by the inactivation of the peroxidase Prx2, via Cdk5 phosphorylation, in PD and ALS. 

Altogether, these evidences clearly point out Cdk5 dysregulation as a major step in the 

neurodegeneration pathways of diverse neurological disorders.  
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