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Resumo	  

 

 

 O trabalho de investigação apresentado nesta tese foi dedicado ao estudo e 

desenvolvimento de métodos de reconstrução de imagem para Tomografia por 

Emissão de Positrões  (PET).  

 Esta técnica de imagiologia não invasiva permite obter a biodistribuição de 

radiofármacos emissores de positrões, que após administrados, participam num 

determinado processo metabólico. Ao longo dos anos, vários desenvolvimentos ao 

nível da instrumentação e das técnicas de reconstrução e correção de dados 

permitiram expandir as suas aplicações. Hoje em dia, esta técnica desempenha um 

papel de relevo em áreas como a oncologia, a neurologia e a cardiologia. 

 As características das imagens finais dependem, em muito, dos métodos de 

reconstrução utilizados, os quais podem ser classificados como analíticos ou 

iterativos. Os últimos permitem modelar de forma precisa os processos físicos, bem 

como introduzir alguma informação a priori sobre a biodistribuição de radiofármacos. 

  Ao longo do trabalho de investigação foram explorados métodos de 

reconstrução iterativos baseados em modelação de resolução e em multi-escala. A 

modelação de resolução (RM) permite, em geral, melhorar a resolução espacial e o 

contraste da imagem final. Em PET, é usualmente assumido um modelo linear para 

relacionar os dados adquiridos com a distribuição da actividade.  A matriz que 

permite estabelecer essa relação é denominada matriz do sistema. As técnicas de RM 

tentam modelar de forma realista esta matriz. Foi desenvolvido e implementado um 

método de modelação de resolução adaptado à geometria do tomógrafo dedicado ao 

estudo do cérebro  High Resolution Research Tomograph (HRRT).  Ao contrário dos 

tomógrafos usualmente utilizados em clinica para estudos de corpo inteiro, a 

geometria do HRRT não é cilíndrica. O HRRT é composto por 8 cabeças de detector  

organizadas em octógono. Para esta geometria, os fotões de aniquilação penetram 

com ângulos de incidência não normais independentemente da posição radial. Estes 

ângulos levam à degradação da resolução. O modelo de modelação desenvolvido e 



 

 

implementado depende dos ângulos de incidência. Baseado na reconstrução de uma 

fonte pontual adquirida em diferentes posições, a modelação de resolução proposta 

permite melhorar a resolução bem como reduzir a sua variação.  

  Durante a exploração do conceito de multi-escala aplicado à reconstrução, foi 

desenvolvido um algoritmo, Multiscale/Multiframe (MS/MF), que poderá ser 

utilizado para gerar imagens em tempo quase real na escala mais adequada à 

estatística dos dados existentes. Usualmente, a reconstrução dos dados é feita sempre 

na mesma escala. No método MS/MF a reconstrução começa durante a aquisição e 

numa escala mais grosseira. Todos os eventos adquiridos até um determinado instante 

t1 são processados nessa escala. O resultado dessa reconstrução, após ter sido 

redimensionado, é utilizado como condição inicial para o processamento numa escala 

mais fina, onde todos os eventos desde o início da aquisição até um dado instante , t2, 

posterior a t1,  (t2>t1),   são utilizados. Este processo é repetido até se chegar à escala 

mais fina de todas, escala onde a imagem é reconstruída com o tamanho de voxel 

usual. Este método de reconstrução, quando combinado com computação de alto 

desempenho, pode permitir a optimização dos parâmetros de aquisição durante a 

execução do exame. 

 O método MS/MF introduz novas variáveis na reconstrução, nomeadamente a 

escolha do método de interpolação, o número de iterações a realizar numa dada escala 

e o número de conjuntos de dados acumulados. Foram realizados vários estudos de 

forma a optimizar estes parâmetros. A escolha do número de conjuntos de dados 

acumulados deve ter em conta a especificidade do estudo e o tomógrafo utilizado. Foi 

testado e generalizado um método estatístico que permite selecionar, de forma 

automática, o número de iterações a realizar numa dada escala. 

 Diversos estudos foram feitos de forma a caracterizar as imagens finais 

reconstruídas com o método MS/MF. Os resultados mostram que este método permite 

acelerar a convergência especialmente em zonas de pouca actividade. 

 O método proposto poderá ser utilizado na reconstrução de dados de 

tomógrafos com alta sensibilidade e alta resolução, em sistemas adaptativos de 

detecção de lesões e em radioterapia. 



 

 

	  

Abstract	  

 

  

 Positron Emission Tomography (PET) is a nuclear medicine imaging 

technique that provides three-dimensional functional images of the human body. It is 

a quantitative technique that allows to measure the radiotracer’s concentration and to 

estimate physiological parameters. This thesis is devoted to PET reconstruction 

methods that allow improving the resolution of the final images as well as exploring 

the concept of multiple scales in PET image reconstruction. 

 A resolution modelling reconstructing technique adapted to the High 

Resolution Research Tomograph was developed, implemented and tested. The 

proposed reconstruction approach allows to incorporate the effects of the inter-crystal 

penetration into the reconstruction process. The proposed blurring kernel model has 

into account the angle of incidence formed by the intersection of the line of response 

(LOR) with the detector head. A spatial variant asymmetric Gaussian function was 

used to model this blurring effect. Based on the reconstruction results of point source 

data acquired in multiple positions, the proposed reconstruction allows for the 

improvement of the resolution and also for the reduction of its variation. 

 During the exploration of the concept of multiple scales in PET reconstruction, 

a novel reconstruction algorithm, the Multiscale/Multiframe algorithm, was 

developed. This reconstruction algorithm introduces the concept of accumulated time 

frame in multiscale reconstruction. The Multiscale/Multiframe algorithm can be used 

to generate near real-time images in the scale that is the most suitable to the data 

statistics available at a given frame. Different datasets were used to characterize this 

reconstruction method. The use of a better initial condition for the finest scale 

improves the convergence speed (compared with the uniform image), in particular for 

regions of lower tracer uptake, allowing a reduction of the overall reconstruction time. 

A Morozov discrepancy principle for Poisson data was proposed to adaptively select 

the number of iterations to perform at a given scale. 
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Introduction	  

 

 Positron emission tomography (PET) is a widespread imaging technique that 

allows to measure the distribution of the radiotracer administered to a subject. Several 

improvements related to the resolution and sensitivity of the scanners allowed to 

expand the applications of the Positron Emission Tomography. This technique plays a 

key role in oncology, neurology, cardiology, preclinical imaging and in drug design 

and development. 

 The characteristics of the final PET images are very dependent on the 

reconstruction methods used.  These methods can be classified as analytic or iterative. 

Iterative reconstruction methods allow incorporating an accurate model of the 

physical processes and also a priori information about the activity distribution. 

 The main motivation of this thesis was the development of image 

reconstruction techniques that allow for the improvement of the resolution of the final 

images as well as the convergence, while reducing computation time. Resolution 

modelling reconstruction techniques can be used to improve the resolution of the final 

reconstruction image. These techniques, in general, allow for the improvement of the 

spatial resolution and the contrast as well for the reduction of the image noise. The 

concept of multiscale in PET image reconstruction was also explored in this thesis. 

Based on this concept a new reconstruction technique was developed and 

characterized. 

 Chapter 1 introduces some basic aspects of PET. Chapter 2 presents an 

overview of the different image reconstruction techniques used in PET.  Chapter 3 

presents the resolution modelling technique developed for the High Resolution 

Research Tomograph (HRRT), a dedicated human brain scanner with high resolution. 

Chapter 4 is devoted to the multiscale reconstruction technique. The characterization 

and optimization of a multiscale reconstruction algorithm was made using simulated 

data. Chapter 5 introduces and characterizes the Multiscale/Multiframe reconstruction 

approach. Chapter 6 presents the work done in the development of a statistical 

stopping criterion for the MS/MF reconstruction algorithm. The performance of this 

criterion was assessed using simulation data. This algorithm can be applied to other 
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fields such as microscopy or astronomy. Finally, a general conclusion are presented in 

Chapter  7. 
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Chapter 1 

1 Introduction	  to	  Positron	  Emission	  Tomography	  

 

1.1 	   Positron	  Emission	  Tomography	  

 

 Positron Emission Tomography (PET) is a nuclear medicine imaging 

technique that provides three-dimensional functional images of the human body. It's a 

quantitative technique that allows to measure the radiotracer’s concentration and to 

estimate physiological parameters. A tracer is a molecule that carries an unstable 

isotope [Nuyts,	   2012]. A specific tracer is chosen according to the clinical study. 

After being administered, this molecule will participate in a particular metabolic 

process. During the decay process of an unstable isotope a pair of annihilation 

photons is emitted in opposite directions. The amount of tracer must always be small 

in order to not interfere with the process being studied [Nuyts,	  2012]. The most used 

tracer in clinical PET is Fluorodeoxyglucose (FDG), a glucose analog. In oncology 

this technique is used to detect tumours and metastases as well as in treatment 

planning and for measuring the response to therapy. In neurology, for example, it has 

been used in the study of dementia. In preclinical imaging it can be used in drug 

discovery and in the development of new tracers. Usually in clinical applications it’s 

combined with other modalities such as Computer Tomography (CT) or Magnetic 

Resonance Imaging (MRI). 

 The first PET scanner dedicated to phantom studies was built by Ter-

Pogossian in 1970s. In 1974 M. Phelps and Ed Hoffman developed a scanner, named 
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PET III, for human studies. The first published images of human PET reconstructed 

with the Filtered Backprojection algorithm (FBP) were acquired with this scanner. 

The ECAT II (Emission computed Axial Tomograph), developed in 1976 in 

collaboration with M. Phelps and Ed Hoffman, was the first commercial PET scanner. 

 Several advances done over the years have contributed to the widespread use 

of this technique, such as [Cherry, 2006] whole body acquisition, 3D mode of 

acquisition, iterative reconstruction, preclinical systems, Time Of Flight (TOF) and 

multimodality. 

 Nowadays the whole body PET imaging plays a key role in oncology medical 

imaging [Cherry, 2006]. Cancer staging and monitoring the response of the therapy 

are two application examples.  

 The 3D acquisition mode allows for the improvement of the sensitivity of the 

scanner [Cherry et al., 2006]. With the increase of the counts rate, the duration of the 

exams or the dose injected into the patient can be reduced. The main drawback of the 

use of this acquisition mode is the increase of the scatter fraction and the increase of 

the number of random coincidences. However, the development in the detectors and 

in the data correction techniques allow for the minimization of these effects. 

Nowadays, the 3D acquisition mode is the standard acquisition mode. 

 Dedicated small-animal PET scanners have helped position PET as a key  

translation tool in the field of molecular imaging [Cherry, 2006]. Preclinical advances 

are more likely to translate into the clinic because PET is already a clinical standard 

[Levin et Zaidi, 2007]. 

 Time of flight PET scanners use the time of flight difference to improve the 

estimation of the annihilation position [Conti, 2009]. In the 1980s TOF PET scanners 

were built but their performance was poor. The crystals available with an adequate 

time resolution had a poor stopping power and so the sensitivity of these scanners was 

very low. In the last decade new crystals with higher stopping power and better time 

resolution have been found. Nowadays TOF PET scanners are used in clinical 

environment.  The TOF information allows to improve the signal-to-noise ratio 

[Conti, 2009]. In oncology TOF PET allows improvements in lesion detection 

especially for lesions with low contrast [Fakhri et al., 2011]. 

 In the past, analytical reconstruction methods were used to process the PET 

data. With the advances in high performance computing (HPC), the iterative 
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reconstruction methods began to be used in the clinical environment. These 

reconstruction methods allow a better modelling of the physics and of the detector 

characteristics. The reconstructed images exhibit improvements in the trade-off 

between the signal-to-noise and the spatial resolution and also a reduction of the 

streak artefacts that are characteristics of analytical image reconstruction methods 

such as FBP [Defrise et al., 2005]. 

 In the late '90s, D. Townsend and R. Nutt proposed the combination of the 

PET scanner with the CT scanner in a tandem configuration. The functional 

information (PET image) is combined with the anatomical information (CT image) 

which led to a paradigm shift in the practice of clinical PET [Cherry, 2006]. It was 

considered by the TIME’s magazine the invention of 2000. The PET/CT scanners are 

widely used in clinical. The CT image can also be used to correct the PET data 

(attenuation correction and estimation of scatter events).  

 Recently, a simultaneous whole body PET/RMI scanner was introduced in the 

market [Drzezga et al., 2011]. The PET/MRI advantages over PET/CT are related 

with the excellent soft-tissue contrast of MRI, reducing the overall radiation dose to 

the subject by replacing CT with MRI and the multifunction image options that MRI 

offers [Cherry, 2006]  [Catana et al., 2008]. 

 

1.2 Stages	  of	  a	  PET	  Exam	  	  

 

 PET is a multidisciplinary field in the sense that different competencies are 

needed at the different states of the PET exam (see Figure 1.1). The process begins 

with the production of the radionuclide using a cyclotron. Then, the synthesis of tracer 

molecules that will be administered into the patient is made. Some studies require an 

uptake time. Next, the data are acquired, processed and is done the analysis and the 

exploration of the results. The image reconstruction is done during the processing 

step. The projections (the raw data) are used to recover the image of the activity 

distribution.  These images will be used in the following step (analysis and the 

exploration step).   
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Figure 1.1- Schematic representation of the different stages of a PET exam. 

 

 Different radionuclides (unstable isotopes) can be used in PET studies. The 

most common radionuclides as well as its main characteristics are presented in Table 

1.1. The radionuclide will be used in the synthesis of the tracer, a particular molecule 

carrying the radionuclides. After administration, this molecule will participate in a 

particular metabolic process. The Fluorodeoxyglucose (FDG), a glucose analog, is the 

most used tracer in clinical PET. 
 

Table 1.1- List of radionuclides used in PET imaging. The Emax  corresponds to the maximum kinetic energy 

of the emitted positrons. Adapted from [Cherry et al., 2006]. 

Radionuclide Half-life Emax(Mev) 

11C 20.4 min 0.96 

13N 9.97 min 1.20 

15O 122 s 1.73 

18F 109.8 min 0.63 

22Na 2.60 years 0.55 
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1.3 Positron	  Emission	  and	  Annihilation	  

 

 In positron emission (β+ decay) a proton is transformed into a neutron and a 

positron [Nuyts,	  2012]: 

 

𝑝! → 𝑛 + 𝑒! + 𝜐 + 𝐸! ( 1.1 ) 

 

where 𝑝! is the proton, 𝑛 the neutron, 𝜐 the neutrino, 𝐸! the kinetic energy and e+ the 

positron. The kinetic energy will be shared between the daughter nucleus, the 

positron, and the neutrino. The positron follows a tortuous path due to multiple 

direction-changing interactions with the atomic electrons of the tissue. Once almost in 

rest, it will annihilate with an electron. The distance from the emission site to the 

place where the annihilation occurs is named positron range [Cherry et al., 2006]. The 

positron range depends on the maximum kinetic energy of the emitted positrons, i.e., 

depends on the radionuclide. This effect leads to errors in the determination of the line 

along which an emission took place (see Figure 1.2). If not corrected, this effect 

introduces a blurring effect in the reconstructed image.  

 

 

Figure 1.2- Schematic representation of the positron emission and the annihilation process. The positron 

range and non-collinearity effect are highly exaggerated.  
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 The result of the annihilation process is the emission of two 511 keV  photons. 

If the positron is at rest, due to the conservation of the linear moment and the energy, 

the photons are emitted 180º apart. In reality, they are emitted with a distribution of 

angles around 180º±0.5º  [Cherry et al., 2006]. This effect is known as non-

collinearity and it’s independent of the radionuclide. The detection of the two 

annihilation photons within a short timing window allows to define a line where the 

annihilation occurs (see Figure 1.2). The recovery of the activity distribution will be 

done using that information. 
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1.4 Data	  Acquisition	  

1.4.1 Photon	  Detection	  	  

 

 A PET scanner is composed of a set of detectors that allows for the detection 

of the annihilation photons. The line that connects the two detectors hit by the 

annihilation photons is called Line of Response, LOR (see Figure 1.2). 

 The most common geometry for whole body scanners is the ring geometry. 

During the detection process, the energy of the annihilation photons is converted into 

an electric signal. The detection is usually done using scintillator detectors coupled to 

photomultiplier tubes. 

 The scintillator detectors, composed of scintillation crystals, convert the 

energy of the annihilation photon (~ 511 keV) into visible wavelength photons, 

producing a visible flash. The interaction of the annihilation photon with matter 

occurs mainly by Compton and photoelectric interactions [Cherry et al., 2006]. The 

number of visible photons produced is proportional to the energy deposited by the 

annihilation photon. The choice of the scintillator should have into account several 

properties, such as, [Cherry et al., 2006] [Schmitz et al., 2005]: the stopping power, 

the decay constant, the energy resolution and the light output. The stopping power is 

defined as the inverse of the mean distance travelled by the photons before depositing 

their energy in the crystal [Schmitz et al., 2005]. The scintillator must be dense in 

order to improve the interaction with the annihilation photons and thus stop a large 

fraction of the photons. The decay constant is defined as the average time that the 

electrons remain in the excited state before releasing a scintillation photon [Schmitz et 

al., 2005]. The decay constants should be small to allow the detection of a large 

number of events. Good energy resolution allows to discard annihilation photons that 

have been scattered before being measured. The light output, photon yield per 

incoming keV, should be as high as possible. 

 Same scintillators that can be used in PET are the Sodium iodide, the Bismuth 

Germanate, Lutetium Oxyorthosilicate (LSO) and the Gadolinium Oxyorthosilicate. 

In the Table 1.2 are presented the proprieties of these scintillators.  

 The photomultiplier tubes convert the scintillation light into electric current 

[Cherry et al., 2006]. The incident light photons are converted, by photoelectric effect, 
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to photo-electrons, that are accelerated and amplified. The charge amplification is 

done using a series of dynodes each of which is held at a greater voltage with a 

resistor chain [Cherry et al., 2006]. The output current is proportional to the number 

of light photons. High gains (amplification) lead to high signal-to-noise pulses. When 

compared with the scintillation decay time the response time of a PMT is very short (a 

few ns) [Cherry et al., 2006]. 

 A large detector area composed of small crystals arranged in a two-

dimensional matrix (block design) can be used to determinate the localization of the 

interaction [Nuyts, 2012]. Often, each block (typically composed of 64 crystals) is 

coupled to four photomultiplier tubes (see Figure 1.3 ). The position of interaction can 

be calculated by weighting the signals of the photomultipliers. 

 
 

 
Figure 1.3- Schematic representation of a typical PET block detector. 

 

 Other type of detectors can be used to detect the annihilation photons. For 

example liquid xenon [Lewellen, 2008] can be used to replace the scintillator crystals 

or avalanche photodiodes can be used as an alternative to the photomultiplier. Due to 

its insensitivity to magnetic fields, avalanche photodiodes (APD) are suitable to be 

used in simultaneous PET/RMI scanners [Cherry et al., 2006] [Cherry, 2006]  [Catana 
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et al., 2008]. More recently, other semi-conductor  photodetector devices built around 

a series of APD micro-cells, the silicon photomultiplier (siPM),  are under active 

development [Lewellen, 2008].  

 CdZnTe detectors [Cherry et al., 2006] or resistive plate chamber (RPC) 

[Couceiro et al., 2012] are examples of technologies that can replace the entire 

standard detection system. 
 

Table 1.2- Properties of common scintillator materials used in PET. Adapated from [Cherry et al., 2006]. 

Scintillator Density 
(g/cm3) 

Light output 
(photons per 511keV) 

Decay time 
(ns) 

Linear attenuation at 
511 keV (cm-1) 

Ratio between 
photoelectric 
and Compton 

NaI(TI) 3.67 19400 230 0.34 0.22 
BGO 7.13 4200 300 0.96 0.78 
LSO 7.40 ~13000 ~47 0.88 0.52 
GSO 6.71 ~4600 ~56 0.70 0.35 
 

1.4.2 Detected	  Events	  in	  Positron	  Emission	  Tomography	  

 

 Under ideal conditions the detection of the two annihilation photons by the 

detection ring should be done roughly at the same time. The annihilation occurs 

somewhere in the line that connects the two photon-detection points. An event 

(decay) is detected using a technique referred to as coincidence detection [Cherry et 

al., 2006]. The two main factors that are responsible for the detection not occurring at 

the same time are [Cherry et al., 2006] the time resolution of the detection system and 

the difference in the distance of the annihilation site to each detector. The first factor 

depends mainly on the decay time and on the light output of the crystal. To avoid the 

loss of events, the detection of the two photons is assumed to be arising from the same 

annihilation if the time difference between the detection of the two photons is less 

than a defined constant. 

 The detected events can be classified into single, true, random, scatter and 

multiple [Bailey, 2005] (see Figure 1.4). 
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Figure 1.4- Different type of events: trues (a),singles(b),multiple (c), scatter (d) and random(e). 

 

 A single event is recorded when only one of the annihilation photon is 

detected. These events are not coincidences and usually correspond to more than 90% 

of the photons detected by the scanner [Cherry et al., 2006]. There are several causes 

that can lead to the not detection of the second photon, such as: attenuation, finite size 

of the scanner or not being registered by the detector system. 

 True events correspond to the (ideal) situation where the two annihilation 

photons are detected within the time window and without interacting significatively 

with the matter. 

 Random events are produced by the detection of two unrelated single photons 

within the same coincidence window. These events introduce wrong spatial 

information in the raw data. The random events count rate between the detector a and 

the detector b, 𝑅!" , is given by [Bailey, 2005]: 

 

𝑅!" = 2𝜏𝑁!𝑁! ( 1.2 ) 

where 𝑁!  and 𝑁! are the single event rate of the detectors a and b, respectively, and 

2τ is the coincidence time window width. Assuming that both detectors have similar 



1- Introduction to Positron Emission Tomography  

                                                              

 

 

 13 

single event rates, 𝑁!   ≈ 𝑁!   , the random events rate increases approximately 

proportionally to the square of the single rate of the detectors. 

 Multiple events are produced when three (or more photons) usually from two 

annihilations are detected within the same coincidence time window. Usually these 

events are discarded.   

 Scatter events are coincidence events where one or both annihilation photons 

changed direction due to a Compton scatter interaction. The Line of Response (LOR) 

represented by this type of events is not correlated with the true activity. These events 

produce a low spatial frequency background and introduce inaccurate quantification 

in the final image [Cherry et al., 2006] [Bailey, 2005]. The fraction of scattered events 

depends on the object and on the radioactivity distribution. 

 

1.4.3 Acquisition	  Modes	  

 

  Some clinical PET scanners, composed of multiple rings, can operate in two 

acquisition modes: 2D mode or 3D mode (see Figure 1.5). In the 2D acquisition mode 

the rings are separated by septa and only events that occur in direct planes (ring 

difference is 0) or cross planes (ring difference is 1) are adquired. In fully 3D mode, 

the septa are retracted (or do not exist) and all the possible LORs are recorded, 

independently of the ring difference.  

 

 
Figure 1.5- Schematic representation of the 2D (left) and the 3D (right) acquisition mode.  

 

 For a scanner with N rings operated in the 2D acquisition mode, 2N-1 

coincidence planes (N direct planes and N-1 cross planes) can be defined. In the case 
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of the 3D acquisition mode N2 coincidence planes can be defined [Cherry et al., 

2006].  

 The spatial resolution of the recovered image is approximately independent of 

the acquisition mode. The 3D acquisition mode provides a dramatic improvement in 

sensitivity (a factor of 5× to 7× when compared with 2D acquisition [Cherry et al., 

2006]), allowing to reduce the injected dose or the exam duration. However the 

scatter and random events also increase. 

 

1.4.4 LOR	  Parameterization	  and	  Data	  Storage	  

 

 The lines of response in the projections space for cylindrical scanners can be 

parameterized using four variables: the radial position (s),  the azimuthal angle (𝜙), 

the polar angle (θ) and the axial position ( 𝜁 ) (see Figure 1.6 ). In the case of 2D 

acquisition mode the polar angle is ~ 0. 

 

 

 
Figure 1.6- Parameterization of a line of response. 

 

 Two different methods can be used to store the PET raw data: histogram or 

list-mode [Defrise et Kinahan, 1998]. 

 In the histogram format the total counts of each LOR are stored into a matrix. 

Data acquired in 2D mode can be stored into N matrices where the bin value 

(individual matrix elements) of the row i and column j corresponds to the number of 
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events occurred in the LOR parameterized with the azimuthal angle and radial 

position related to the row and column index, respectively. This matrix is known as 

sinogram. Usually some consideration about the discretization of the parametric 

variables is made before the image reconstruction, i.e. the sampling of the projection 

space is optimized. In the case of 3D acquisition the histogram matrices have four 

dimensions. 

 In the list-mode data format the event information is stored in a list-type 

format on an event-by-event basis as the events are detected [Defrise et Kinahan, 

1998]. The list-mode format allows preserving the temporal information as well as 

other additional information, such as, the crystals index and the energy deposited in 

the detectors. When the ratio between the total bin counts and the number of bins in 

the sinogram format is less than one, the list-mode format allows to store the data 

more compactly. It should also be noted that it is possible to convert the data from the 

list-mode format to sinogram format. 

 

1.5 Data	  Correction	  

1.5.1 Normalization	  Correction	  

 

 Variations in the detection efficiency between different LORs introduce 

artefacts in the reconstructed images and do not allow the recover of quantitative 

information. Different factors contribute for the arise of these variations, such as, the 

non uniformities in individual detectors efficiencies, geometric and solid angle 

effects, detector electronics and the summing of adjacent data elements [Meikle et 

Badawi, 2005]. The normalization correction tries to compensate these variations by 

weighting each LOR with a multiplicative factor, the normalization coefficient. The 

estimation of these factors can be done using two main methods: direct measurements 

or component based methods. 

 In direct measurement methods, a planar or a rotating linear positron source is 

used to measure in coincidence the variations between all LORs of the system. A low 

activity source must be chosen in order to avoid dead time and pile–up effects [Cherry 

et al., 2006]. Very long scans (several hours) are required in order to obtain adequate 

counts per LOR.  
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  In component-based normalization methods [Meikle et Badawi, 2005][Casey 

et al., 1996] [Ferreira et al., 2009][Ollinger, 1995] the coincidence detection 

efficiencies of a pair of detectors are modelled as a product of factors that can be 

measured independently. These approaches allow for the reduction of the duration of 

the acquisitions used for the calculation of the normalization parameters. 

 

1.5.2 Attenuation	  Correction	  

 

 The 511 keV annihilation photons will interact with the matter predominantly 

though Compton interactions [Cherry et al., 2006]. Only a part of the photons will 

escape from the patient body, i.e., the flux of annihilation photons is attenuated. This 

effect can be described using the Beer’s law [Zeng, 2010]. In PET the reduction of the 

photon flux is independent of the localization of the annihilation along the LOR.  

 

 
Figure 1.7- The attenuation path of two annihilation photons emitted from a point source inside the object.  

The probability that both annihilation photons escape from the object is given by 

[Nuyts, 2012][Zeng, 2010],  

 

𝑒! !(!)!"!
!! 𝑒! !(!)!"!!

! = 𝑒! !(!)!"!!
!!  

( 1.3 ) 

 

where d1 and d2 are the position of the two detectors hit by the pair of annihilation 

photons emitted along the s-axes, a the position of the source and 𝜇  (𝑠)  the 
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attenuation coefficient of the object at the point s (see Figure 1.7). If the attenuation 

coefficients at every point of the object are known, the attenuation correction factors  

(𝑎!!,!!) used to correct the raw data can be easily  calculate using 

 

𝑎!!,!! = 𝑒! !(!)!"!!
!! . 

( 1.4 ) 

 

 The estimation of the attenuation coefficients can be done using direct 

measurements (transmission scan) in coincidence mode, e.g, by placing a rotation 

positron-emitting source outside the object. First a black scan is made where 

transmission data are acquired without the object. Then the object is placed in the 

scanner and a second transmission scan is performed. The attenuation correction 

factors are given by the ratio between the black scan sinograms and the transmission 

scan sinograms [Cherry et al., 2006], i.e., the ratio between the number of counts 

measured for each LOR in the absence of attenuation and in the presence of the 

attenuation medium. Usually the sources are made from 68Ge. Although in theory 

these methods allow a very accurate estimation of the attenuation correction factor, 

one of the main problems of these tecniques is the long acquisition time needed to 

ensure a good statistics.  

 Another approach is to do direct measurements (transmission scan) in singles 

acquisition mode. In this case the attenuation LOR is found using the position of the 

source and the position of the detector hit by the photon that penetrate into the object. 

In this attenuation acquisition scheme a more active source can be used which allows 

for the improvement of the statistical of the transmission scan and/or for the reduction 

of the acquisition time [Cherry et al., 2006]. The main drawback of this approach is 

the higher scatter fraction that leads to an under estimation of the attenuation 

correction [Cherry et al., 2006].  

  Nowadays most of the clinical PET scanners are coupled with CT scanners 

(sharing the same patient bed). The CT images can be used to measure the attenuation 

coefficients. The main problem of this approach is that the CT data must be converted 

to an estimate of the attenuation factors at 511 keV. The x-ray photons used in clinical 

CT usually yield a continuous energy spectrum between 30 to 120 keV. For water and 

soft tissues the mass attenuation coefficient (linear attenuation coefficient divided by 

density) at the energies of PET and CT are similar. Based on this fact, Kinahan et al. 
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[Kinahan et al., 1998] proposed a bilinear scaling method where the attenuation 

coefficients are estimated by using separate scaling factors for bone and non-bone 

components [Townsend et Beyer, 2005]. The segmentation between bone and non-

bone is done based on the CT image. When compared with the direct measures 

methods, attenuation correction based on CT data allows to estimate the coefficients 

faster and with less statistical noise. This technique has some limitations such as the 

truncation of the CT FOV or the effects of CT contrast agents [Townsend et Beyer, 

2005].  

 

1.5.3 Scatter	  Correction	  

 

 Annihilation photons that undergo a Compton interaction change direction and 

lose part of the energy. At 511 keV, 50% of all Compton interactions produce photons 

with a scattering angle of 60º or less [Cherry et al., 2006]. If the detector energy 

resolution were excellent and all the energy of the photon is deposited in the detector, 

the detection of annihilation photons would be easy and energy discrimination would 

allow to distinguish between scattered and unscattered events. However the energy 

resolution of the detectors is not so good and only a part of the photon's energy is 

deposited in the detector. Scattered events may significantly degrade the quantitative 

accuracy and reduce the image contrast [Meikle et Badawi, 2005]. Three main types 

of approaches were proposed to perform the estimation of scattered events [Cherry et 

al., 2006]: analytic approach [Bowen et al., 1994][Cherry et Huan, 1995], methods 

based on energy windows [Ferreira et al., 2000][Adam et al., 2000][Shao et al., 1994]  

and simulation methods [Watson, 2000]  [Levin et al., 1995]. 

 The most accurate scatter correction methods are based on the simulation 

methods. The simulation of the estimated scatter can be done based on a model 

[Watson, 2000] or using Monte Carlo [Levin et al., 1995] [Qi et Huesman, 2002] 

methods. These estimation approaches require the calculation of the map of the 

attenuation coefficients and an initial estimate of the scatter-free radioactivity 

distribution.  

 The implementation of the scatter correction methods based on simulation can 

be divided into five main steps [Meikle et Badawi, 2005]: 
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1. Calculation of the map of linear attenuation coefficients (attenuation map). 

When direct measurements were used for the attenuation correction, the 

attenuation map is estimated using the 2D reconstructions of the blank and 

transmission sinograms. 

2. Reconstruction of an initial estimate of the emission volume. In literature 

different approaches were proposed for this task [Watson, 2000]  [Ollinger, 

1996] [Holdsworth et al., 2001]. 

3. Estimation of the scatter contribution to the projections.  

4. Scaling of the scatter estimate. For regions where only scatter is present, i.e., 

regions not occupied by the object, the scatter distribution is scaled globally to 

ensure a good fit between the estimated scatter and the measured data. 

5. Correction of the 3D emission projections for scatter. The estimated scatter is 

subtracted from the measured data. 

1.5.4 Correction	  for	  Random	  Coincidences	  

 

 Due to the finite width of the coincidence time window, two non-related 

events may be interpreted as a coincidence event (random coincidences). The methods 

of correction of random events estimate the number of random events present at each 

LOR, which is subtracted to the prompt data (true+randoms+scatter).  Two main 

approaches can be used to correct the random coincidences [Cherry et al., 2006]. 

 In the first method the estimation of the random count rate is done based on 

equation ( 1.2 ). It has into account the singles counting rate for each detector pair and 

the coincidence time window width.  This method tends to overestimate the amount of 

random coincidences and the time width must be known with good accuracy for each 

detector.  

 The second approach, the delayed coincidence window method, is the most 

usual method to correct the random events. In this technique an additional 

coincidence circuit is used with the same duration of the time window but where the 

events recorded by one of the detectors are delayed by a sufficiently long time in 

order to ensure the no detection of true or scatter events. The number of counts in the 

delayed window has the same expectation value as the random events recorded by the 

coincidence circuit with the normal window. The subtraction of the estimated random 
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events is done on-line. This technique allows removing the bias but the variance on 

the corrected data increases.  The estimate of the random coincidences is noisy, 

leading to the increase of noise in the corrected data. 

 The simplest way to reduce the variance in the estimate of the random 

coincidences is to acquire the delayed coincidences separately and then smooth the 

data [Brasse et al., 2005]. Analytic [Defrise et al., 1991] and iterative techniques 

[Panin et al., 2007] [Byars et al., 2005] using the delays coincidence sinograms were 

also proposed to reduce the variance. 

1.6 Characterization	  of	  PET	  Scanners	  

 

 For comparing the performance of different clinical PET scanners, the 

National Electrical Manufacturers Association proposed in 1994 a set of guidelines 

[NEMA, 1994]. In 2001, a new standard more suitable for whole body PET imaging 

was published [NEMA, 2001].  

 In the design of PET scanners several factors should be taken into account to 

maximize the performance of the scanner. Two of them are the spatial resolution and 

the sensitivity of the system.   

1.6.1 Spatial	  Resolution	  

 

 The spatial resolution in PET depends on several factors, such as the positron 

range, the non-collinearity of annihilating photons, the angle of incidence of the LOR 

with the detector and the depth of interaction of the photon in the detector, the size 

and geometry of the detector, acquisition parameters and the reconstruction method. 

 The resolution attainable by PET is limited by the positron range. This effect 

depends on the radionuclide and the surround medium.  Based on simulated data, 

Sánchez-Crespo et al. [Sánchez-Crespo et al., 2004] studied the positron annihilation 

distribution for different positrons (11C, 13N, 15O, 18F, 68Ga and 82Rb) in various 

human tissues (human compact bone, adipose tissue, soft tissue and lung tissue). They 

concluded that for high resolution PET (1-2 mm) the positron range will be a limiting 

factor in lung tissue regardless of the choice of the radionuclide. Kemerink et al. 

[Kemerink et al., 2011] investigated the effect of positron range on the visualization 

and quantification with different radiotracers ( 18F, 68Ga and 124I) on lung-like tissue. 



1- Introduction to Positron Emission Tomography  

                                                              

 

 

 21 

They concluded that lung lesions will be visualized similarly, and at least as sharp as 

in soft tissue [Kemerink et al., 2011]. For a complete activity recovery the 68Ga and 
124I images need large volumes of interest. [Kemerink et al., 2011]. The positron 

range of radionuclides, speciality for radionuclides with high Emax (see Table 1.1), can 

be reduced by using strong magnetic fields [Wirrwar et al., 1997]. 

 The non-collinearity between the annihilation photons (see Figure 1.2) also 

leads to resolution degradation. Assuming a Gaussian distribution and small angles of 

incidence, the blurring effect due to the non-collinearity depends linearly on the 

diameter of the PET scanner [Cherry et al., 2006][Rahmim et al., 2008]. 

 

𝐹𝑊𝐻𝑀 = 0.5
𝜋
180

𝐿
4 = 0.0022𝐿  , 

( 1.5 ) 

 

where 𝐿 is the separation of the detectors in coincidence. 

Another factor of degradation of the image is the inter-crystal scatter and penetration 

(see Figure 1.8).  

 

 

 
Figure 1.8- Representation of the inter-crystal penetration. The dash line represents the LOR assigned and 

the continuous line to the real LOR. 
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 Due to the inter-crystal penetration for cylindrical scanners, the spatial 

resolution depends on the radial distance. Off-centre events can penetrate with non-

normal angles of incidence and be assigned to inaccurate LORs (see Figure 1.8) 

[Cherry et al., 2006]. Some scanners are able to estimate the depth in which each 

photon interacts within the crystal, Depth of Interaction (DOI), and so they can 

mitigate this effect. 

 

1.6.2 Sensitivity	  

 

 The system sensitivity is defined as the number of events detected per unit of 

radioactive concentration in a specific phantom [Cherry et al., 2006]. The design of a 

PET scanner should try to maximize the sensitivity. The duration of the exam and/or 

the dose injected depend on this factor. High sensitivity scanners allow for the 

detection of more events for a fixed scan duration and for a fixed activity which lead 

to the improvement of the quality of the reconstructed image.  The sensitivity of the 

system is mainly determined by the efficiency of the detector at 511keV, the scanner 

geometry, the localization of the source relative to the detectors, the energy window 

used and the detector dead time [Cherry et al., 2006][Bailey, 2005]. The 3D 

acquisition mode allows for the improvement of the sensibility by a factor of 5× to 

7×  when compared with 2D acquisition [Cherry et al., 2006].
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Chapter 2 
 

2 Image	  Reconstruction	  in	  PET	  

  

  

 Different methods were proposed to recover the image of the distribution of 

the radiotracer activity from the coincidence measures. Usually they are classified as 

analytical or iterative. The analytic methods allow a faster reconstruction as well as an 

easier control of the resolution and noise correlations [Defrise et Kinahan, 1998]. The 

iterative methods allow for the incorporation of an accurate model of the physical 

processes and also a priori information about the activity distribution.  

 We begin by introducing some fundamental mathematical concepts used in 

tomography. We then present an overview of the most popular reconstruction 

algorithms. 

 

2.1 Analytic	  Methods	  	  

2.1.1 The	  2D	  Radon	  Transform	  

 

 The Radon transform, introduced by the Johann Radon in 1917, allows to 

relate the object with the collection of all line-integrals parallel to a given projection 

direction [Bertero et al., 1998] [Zeng, 2010], 
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𝒑! 𝑠 = 𝒇(𝑠  𝑐𝑜𝑠𝜙 − 𝑙  𝑠𝑖𝑛𝜙, 𝑠  𝑠𝑖𝑛𝜙 + 𝑙𝑐𝑜𝑠𝜙)𝑑𝑙
!!

!!
 

( 2.1 ) 

 

where 𝒑! 𝑠  is the projection of the LOR l with the azimuthal angle 𝜙  and the radial 

distance s (see Figure 2.1) and 𝒇 a density function in the x-y plane. The radial 

distance is related with x and y (see Figure 2.1) by s = x cos 𝜙  + y sin 𝜙 [Bertero et 

al., 1998].   

  
Figure 2.1- One dimensional projection of a 2D object as the collection of all parallel line-integrals for an 

angle ϕ relative to the scanner. The x and y are the coordinate axes related to the scanner. The yr  and xr are 

the coordinate axes related to the lines of response (LOR). Adapted from [Defrise et Kinahan, 1998]. 

 

An equivalent equation is given by [Deans, 1983] [Zeng, 2010]: 

 

𝒑! 𝑠 = 𝒇(𝑥,𝑦)𝜹(𝑥  𝑐𝑜𝑠𝜙 + 𝑦  𝑠𝑖𝑛𝜙 − 𝑠)𝑑𝑥𝑑𝑦
!!

!!

 
( 2.2 ) 

 

where 𝜹 is the Dirac delta function. 
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2.1.2 2D	  Central-‐Section	  Theorem	  

 

 The central-section theorem allows to relate the Fourier transform of the 

measured projection data with the Fourier transform of the activity distribution. 

Let us consider the 1D Fourier transform of 𝒑𝝓(s) with the direction of the radial 

offset, 𝐹! 𝒑! 𝜈!!   [Defrise et Kinahan, 1998] [Zeng, 2010]: 

                                 

            𝐹! 𝒑! 𝜈!! = 𝒑! 𝑠 𝑒!!!"#!!!𝑑𝑠
!!

!!
 

                                                                        = 𝒇(𝑥,𝑦)𝜹(𝑥  𝑐𝑜𝑠𝜙 + 𝑦  𝑠𝑖𝑛𝜙 − 𝑠)𝑒!!!"#!!!𝑑𝑥𝑑𝑦𝑑𝑠
!!

!!

 

 

 
( 2.3 ) 

The central section theorem can be derived by expanding the right hand side of  ( 2.3 )  

having into account the properties of the Dirac delta function [Defrise et Kinahan, 

1998] [Zeng, 2010], 

     

 

                              𝐹! 𝒑! 𝜈!! = 𝒑! 𝑠 𝑒!!!"#!!!𝑑𝑠
!!

!!
 

                                                      = 𝒇 𝑥,𝑦 𝑒!!!"(!  !"#$!!  !"#$)!!!𝑑𝑥𝑑𝑦
!!

!!

!!

!!
   

                                                                              = 𝐹! 𝒇 𝜈!!𝑐𝑜𝑠𝜙, 𝜈!!𝑠𝑖𝑛𝜙                                                 

                                                                              = 𝐹! 𝒇 𝜈! , 𝜈!  

 
( 2.4 ) 

 

where 𝐹!{𝒇} is the 2D Fourier transform of 𝒇 with respect to the two variable, 

𝜈! = 𝜈!!𝑐𝑜𝑠𝜙  and  𝜈! = 𝜈!!𝑠𝑖𝑛𝜙. 

 Equation ( 2.4 ) states that the 1D Fourier transform of a projection at an angle 

𝜙 is equivalent to the values along a line through the origin (for the same angle) of the 

2D Fourier transform of the activity distribution (see Figure 2.2). 
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Figure 2.2- Illustration of the 2D central-section theorem. Adapted from [Defrise et Kinahan, 1998]. 

 

This theorem establishes that if 𝒑! (s) is known for all the 𝑠 ≤ 𝑅  and all the 

𝜙: 0 ≤ 𝜙 < 𝜋  the density function, f(x,y), can be recovered. One possible 

reconstruction algorithm is to calculate the 𝐹! 𝒑! 𝜈!!  for all 𝜙: 0 ≤ 𝜙 < 𝜋 , 

organize these profiles as a 2D array representing the   𝐹! 𝒇  and then the estimated 

f(x,y) is calculated by taking the inverse 2D Fourier transform, 

 

𝒇 𝑥,𝑦 =   𝐹! 𝒇 𝜈! , 𝜈! 𝑒!!!(!!!!!!!)𝑑𝜈!𝑑𝜈!
!!!
!!

!!
!!  . ( 2.5 ) 

 

 A practical problem arises from the use of the central theorem to perform the 

reconstruction. Most of the implementations of discrete Fourier transform are based 

on Fast Fourier Transform (FFT) algorithms that assume that the data are represented 

in the Cartesian coordinate system. On the other hand, the Fourier transform of the 

data,
 
𝐹! 𝒑! 𝜈!! , is sampled along radial lines in polar coordinates, and so it must 

be interpolated to a regular grid, prior to the inverse 2D Fourier transform. 

Interpolation accuracy is very important to guarantee good reconstruction results 

[Matej et Bajla, 1990] [Choi, 1998].  

 As can be seen in Figure 2.3, the sampling of the Fourier space is not uniform. 

The over-weighting of the low frequency components blurs the image. This non-

uniformity on the sampling of the Fourier space is proportional to the !

!!!!!!!
 [Defrise 
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et Kinahan, 1998][Zeng, 2010]. 

 

 
Figure 2.3- 2D image reconstruction based on the central slice theorem. 

 

2.1.3 2D	  Filtered-‐Backprojection	  

 

 The Filtered Backprojection (FBP) is a fast reconstruction algorithm that 

compensates the non uniformity of the sampling in the Fourier space (see Figure 2.3) 

by multiplying the 1D Fourier transform of the data, 𝐹! 𝒑! 𝜈!! , by a ramp-filter.  

 The backprojection operator, the adjoint operator of the forward projection, 

can be described by [Defrise et Kinahan, 1998]: 

 

𝒃 𝑥,𝑦 = 𝒑!𝑑
!
! 𝜙 . ( 2.6 ) 

 

For 2D PET, the backprojection operation can be considered the output of a linear 

shift-invariant imaging process [Defrise et Kinahan, 1998], 

 

𝒃 𝑥,𝑦 = 𝒇 𝑥,𝑦 ∗∗ 𝒉(𝑥,𝑦) ( 2.7 ) 

  

where 𝒉(𝑥,𝑦) is the 2D shift-invariant point spread function (PSF) and ∗∗ denotes the 

2D convolution operator. 

The 2D Fourier transform of 𝒃 𝑥,𝑦  is equal to the weighted version of the 2D 

Fourier transform of the  𝒇 𝑥,𝑦  as expressed by [Defrise et Kinahan, 1998]: 

𝑩(𝑥,𝑦) = 𝐹! 𝒃 𝑥,𝑦 = 𝐹! 𝒇 𝑥,𝑦
1
𝜈  

νx#
F%12{.}#

νy#
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 with 𝜈 = 𝜈!! + 𝜈!!. ( 2.8 ) 

The backprojection image corresponds to a blurred version of f(x,y).  

The FBP algorithm can be written as [Defrise et Kinahan, 1998]: 

 

𝜈!!
!!

!!
𝐹! 𝒑! 𝜈!! 𝑒

!!!!!!𝑠  𝑑𝜈!!   𝑑𝜙
!!

!
. 

 

( 2.9 ) 

 The ramp filter, 𝜈!! , gives more weight to the high-spatial frequencies than 

the low frequencies, reversing the effects of the blurring. In the presence of noise, i.e. 

in practice, an apodizing filter is used to remove any contributions from frequencies 

above a pre-determinated cut-off frequency. Some of the most common filters are the 

Hann, Shepp–Logan and Hamming filters [Cherry et al., 2006]. 

 The implementation of the FBP algorithm can be given using the following 

steps [Defrise et Kinahan, 1998]: 

 

1. Fourier transform of the projection 𝑷! 𝜈!! = 𝐹! 𝒑! 𝜈!!  for a given ϕ. 

2.  Filter the projection in frequency space 𝑷!!"#$%& 𝜈!! = 𝜈!! 𝑷! 𝜈!! . 

3. Inverse Fourier transform of the filtered projection 

𝒑!!"#$%& 𝜈!! = 𝐹!!!{𝑷!!"#$%& 𝜈!! }.  

4. Backproject the filtered projection 𝑩{𝒑!!"#$%& 𝜈!! }. 

5. Repeat steps 1-4 for each ϕ:0<ϕ<π 

  

2.2 Iterative	  Methods	  

 

 The image of the distribution of the radiotracer activity can be recover from 

the coincidence measures using iterative methods. These reconstruction methods 

allow incorporating a more accurate modelling of the physical processes and also a 

priori information about the activity distribution. A simplified flowchart of an 

iterative reconstruction is presented in Figure 2.4. First, the estimated image is 

mapped to the projection space. Then the estimated projection is compared with the 

acquired projection having into account a given criterion. If the criterion is satisfied, 
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the reconstruction stops. If the criterion is not satisfied, the estimated image is 

updated and the process is repeated. 

 

 
Figure 2.4- A simplified flowchart of an iterative reconstruction. Adapted from [Cherry et al., 2006]. 

 

 The data acquisition process can be naturally described as a discrete-

continuous problem that relates the discrete data acquired by the tomograph and the 

continuous function that represents the spatial distribution of activity [Lewitt et Matej, 

2003]. In terms of the formulation of the reconstruction problem, this model has some 

attractive theoretical properties since it’s not necessary to introduce any discretization 

or approximation. However it’s not very used, mainly because it needs to construct 

and solve large and non-sparse linear systems [Lewitt et Matej, 2003].  

 The most usual model used in iterative methods is the discrete-discrete (D-D) 

model where the activity function is represented by a linear combination of a finite 

number of basis functions [Lewitt et Matej, 2003] [Fessler, 2004]. Under this model, 

the reconstruction process has five general components [Lewitt et Matej, 2003]: the 

object parameterization, the system physical model, the statistical model, the cost 

function and the algorithm. 
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Object	  Parameterization	  

 

 The basis functions can be classified as localized basis functions (such as 

voxels or Kaiser-Bessel window functions (blobs)) or global basis functions (such as 

Fourier series) [Fessler, 2004]. 

 The most used basis function is the voxel. This basis is orthogonal and each 

elementary function corresponds to a parallelepiped. The elementary function has unit 

value inside the voxel and zero value outside the voxel. The choice of the proper 

voxel size has to be done carefully. For unregularized reconstruction methods, voxels 

that are too small can lead to over-parameterization whereas if they are too big they 

can produce model mismatch and image features can be lost [Fessler, 1994]. The 

orthogonally of the basis function is not an essential propriety. The use of non-

overlapping uniform voxels to model the image can introduce too many artificial 

high-frequency components into the image due to the discontinuities contained in the 

model [Zeng, 2010]. A more realistic band-limited image model can be achieved by 

the use of radial functions with overlapping, blobs. The main problem of the use of 

blobs is the computational complexity.  
 

System	  Physical	  Model	  

 

 Under the D-D model, the data acquisition can be related to the activity as a 

linear relation: 

𝒚! ≈ 𝑯
!

!!!

(𝑖, 𝑗)𝝀! 
( 2.10 ) 

with m being the number of voxels and 𝑯(𝑖, 𝑗) expressing the probability that an 

annihilation in the jth voxel, 𝝀! , is detected by the ith detector pair 𝒚!. 

The probability expressed by the matrix 𝐻 must have into account different factors 

such as the geometric sensitivity, photon pair non- collinearity, attenuation, intrinsic 

detector sensitivity and positron range.  

 The matrix 𝑯  can be factorized into several sub-matrixes [Qi et al., 

1998][Mumcuoglu et al., 1996], 

𝑯 ≈ 𝑺!𝑺!"#.!"#$𝑺!𝑺!"#$𝑺!"#$%&"' ( 2.11 ) 
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with  𝑺!    the diagonal matrix containing the detection efficiency of each detector pair, 

𝑺!"#.!"#$    the matrix that models the blurring  effects introduced by the detectors and 

𝑺!  a diagonal matrix containing the attenuation factors. The 𝑺!"#$ is the geometric 

projection matrix with each element (i, j) equal to the probability that a photon pair 

produced in voxel j reaches the front faces of the detector pair i in the absence of 

attenuation and assuming perfect photon-pair collinearity.  The  𝐒!"#$%&"!  is  a matrix 

that includes the effects of the positron range.  

 The geometric relations between the projection space and the image space can 

be established using three types of projectors: the ray-driven projectors, the pixel-

driven projectors and the distance driven projectors. Due to the memory limitations, 

usually these relations are calculated on the fly. 

 In the ray-driven projectors, a ray connecting each detector bin pair is drawn 

and the contribution of each voxel is calculated in accordance with its overlapping 

with the ray. Siddon [Siddon, 1985] proposed one of the most used ray-driven 

projectors. This method reduces the complexity of the computation by having into 

consideration that the voxels consist of the intersection of orthogonal sets of equally 

spaced parallel planes (see Figure 2.5).  

 

 

Figure 2.5- Siddon algorithm concept. The reduction of the complexity of the computation is done having 

into consideration that the voxels consist of the intersection of orthogonal sets of equally spaced parallel 

planes. 

 Another popular ray tracing method was proposed by Joseph [Joseph, 1982]. It 

begins by determining the ray direction that lies closer to the x,y or z axis. Then, for 

each intersection of the LOR with the planes of the grid orthogonal to this direction, it 

is assigned a value obtained by bilinear interpolation with the four closest voxels.  

 In the case of a pixel driven projector using a bilinear projection, the centre of 

every voxel is projected onto the projection plane, and bilinear interpolation between 

the nearest four projections elements determines their respective weights [Egger et al., 

1996][Cho et al., 1990]. This technique is a common way to perform backprojection 

= +

1) Find the points of  line of  intersection of  the LOR with a set of  parallel planes  
 

2) Sort them, and skip those outside the Field-Of-View 
    
3) Remove double points 
 
4) Length of  the LOR contained by a particular voxel  
 
5) Normalize the weight of  the voxel value by the corresponding length 
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when the data are stored as sinograms [Cherry et al., 2006].  

 In the 2D distance-driven projector, the detector array boundaries and the pixel 

boundaries are mapped onto a common axis, and then a one-dimensional kernel 

operation to map the data from one set of boundaries to another is applied [DeMan et 

Basu, 2004].  

 The geometric part of the system matrix is very sparse and usually is also very 

symmetric, i.e., many LOR are linked by geometrical symmetries. The symmetries 

can be used to reduce the size of the system matrix [Qi et al., 1998]. 

A	  Model	  of	  the	  Measurement	  Uncertainty	  

  

 The model of the measurement uncertainty expresses the probability 

distribution of the data around their expected value. Depending on the noise model 

assumed, different reconstruction algorithms can be derived. In some reconstruction 

methods no model is assumed for the noise. 

 In PET, the detection of each decay event by the system can be modelled as a 

Bernoulli process, i.e, the sinogram data are a collection of independent Poisson 

random variables [Qi et Leahy, 2006]. Under this model for the noise, the 

corresponding reconstruction method is the Maximum Likelihood-Expectation 

Maximization (ML-EM) reconstruction algorithm.  

 The justification for using non-Poisson models such as the Gaussian model 

arises from the fact that if data corrections are applied prior to the reconstruction, the 

data no longer follow a Poisson model [Lewitt et Matej, 2003]. 

Objective	  Function	  

 

 This function gives a measure of how well the estimated image fits the data 

and how well this image matches any prescribed a priori image properties such as 

positivity and smoothness [Lewitt et Matej, 2003][Defrise et al., 2005]. 

 In the case of non-statistical reconstruction algorithms, the cost function is 

usually the minimization of the square of the Euclidian distance between the 

estimated projections and the acquired projections.  

 For statistical reconstruction methods, the cost function is usually the Poisson 

likelihood or the Gaussian likelihood. Please note that only when data have 
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redundancies the noise model has effect on the solution [Zeng, 2010]. For 3D PET 

this is true, i.e., the number of projections is higher that the number of voxels. 

 The Bayes’ rule adapted to the PET reconstruction problem can be written as 

[Nuyts, 2012], 

 

𝑃𝑟𝑜𝑏 𝝀 𝒚 =
𝑃𝑟𝑜𝑏 𝒚 𝝀 𝑃𝑟𝑜𝑏 𝝀

𝑃𝑟𝑜𝑏 𝒚 , 
( 2.12 ) 

where 𝑃𝑟𝑜𝑏 𝝀   is call the prior and is the likelihhod of the distributions of the activity 

without having into account the data. The function 𝑃𝑟𝑜𝑏 𝒚 𝝀   gives the probability of 

obtain the measurements 𝒚 assuming that the true distributions of the activity is 𝝀. 

This term is called the likelihood. The value of 𝑃𝑟𝑜𝑏 𝒚  is constant since the data 

have been already measurement. The function 𝑃𝑟𝑜𝑏 𝝀 𝒚  is called the posterior. 

Under this statistics framework we want to find the 𝝀 that maximizes the posterior 

function. Assuming that 𝑃𝑟𝑜𝑏 𝝀  is constant, i.e., all the solutions have the same 

probability of occurring, the value of 𝝀  that maximize the likelihood will also 

maximize the posterior function. Since likelihood function is easier to calculate, the 

solution to the reconstruction problem is found by maximize the likelihood function. 

 The maximum-likelihood estimators have attractive properties such as 

asymptotic unbiasedness and efficiency [Qi et  Leahy,2006]. 

	  

Poisson	  likelihood	  	  

 

 Assuming a Poisson model for the measurement of uncertainty, the probability 

of obtaing the measurement 𝒚! assuming that the true activity distribution is given by 

𝛌 can be expressed by [Nuyts, 2012][Hunter et Lange, 2004][Dempster et al., 1977]: 

𝑃𝑟𝑜𝑏 𝒚𝒊 𝝀 =
𝑒! 𝑯 !,! 𝝀𝒋!

!!!    𝑯 𝑖, 𝑗 𝝀𝒋!
!!!

𝒚𝒊

𝒚𝒊!
 

( 2.13 ) 

where 𝑯(𝑖, 𝑗) express the probability that a photon emitted from the voxel 𝑗 will be 

detected by the pair of detectors 𝑖 , 𝒚!   is a sample  from a Poisson distribution with the 

expected value equal to 𝑯 𝑖, 𝑗 𝝀𝒋!
!!!  , i.e., is a random variable describing the 

number of photons detected  by the pair of detectors 𝑖 and 𝝀! the number of the 



34                                                                                 2- Image Reconstruction in PET  

 

 

photons emitted from the voxel 𝑗. 

 When all projections are statistically independent, the likelihood function is 

the joint probability density function by considering all projections together, 

 

𝑃𝑟𝑜𝑏 𝒚 𝝀 =
𝑒! 𝑯 !,! 𝝀𝒋!

!!!    𝑯 𝑖, 𝑗 𝝀𝒋!
!!!

𝒚𝒊

𝒚𝒊!

!

!!!

. 
 

( 2.14 ) 

 And the log-likelihood is given by: 

 

ln 𝑃𝑟𝑜𝑏 𝒚 𝝀 = − 𝑯 𝑖, 𝑗 𝝀𝒋

!

!!!

+ 𝒚𝒊 ln 𝑯 𝑖, 𝑗 𝝀𝒋

!

!!!

+ 𝑐𝑜𝑛𝑠𝑡
!

!!!

 
 

( 2.15 ) 

with 𝑐𝑜𝑛𝑠𝑡 equal to a term that not depend on  𝛌!. 

	  

Gaussian	  likelihood	  

 

 Assuming a Gaussian model for the measurement of uncertainty, the ith 

projection measurement, 𝒚𝒊, is a random variable with mean equal to 𝑯 𝑖, 𝑗 𝝀𝒋!
!!!  

and variance 𝜎! !. The correspondent Gaussian distribution density function is given 

by [Zeng, 2010]: 

𝑃𝑟𝑜𝑏 𝒚𝒊 𝝀 =
1
2𝜋𝜎!

𝑒
!( 𝑯𝝀 !!𝒚𝒊)!

(!!!)!  
 

( 2.16 ) 

When all projections are statistically independent, the likelihood function is given by, 

 

𝑃𝑟𝑜𝑏 𝒚 𝝀 =
1
2𝜋𝜎!

𝑒
!( 𝑯𝝀 !!𝒚𝒊)!

(!!!)!
!

!!!

 
 

( 2.17 ) 

and the log-likelihood is given by,  

 

𝑃𝑟𝑜𝑏 𝒚 𝝀 = −
1
2

𝑯𝝀 ! − 𝒚𝒊 !

𝜎!!
+

!

!!!

𝑐𝑜𝑛𝑠𝑡  . 
 

( 2.18 ) 
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Numerical	  Algorithm	  

  

 The objective of the numerical algorithm is to find the coefficients values of 

the basis function that allow to maximize (or minimize) the objective function. 

Iterative algorithms produce a sequence of estimates of the image which, in principle, 

converge to the solution [Defrise et Kinahan, 1998]. The final solution should be 

independent of the choice of the numerical algorithm. For convex problems and if the 

optimization algorithms are appropriate to the problem, it is expected that they 

converge to the same solution. In practice it is common to stop an iterative algorithm 

before reaching the maximum (minimum) of the objective function. Different 

algorithms generate different estimated images sequences and so different final 

images can be obtained. 

 The most popular iterative algorithm for PET data reconstruction is the 

Expectation maximization algorithm [Dempster et al., 1977]. This algorithm can be 

viewed as a special case of a more general class of optimization algorithms called 

MM [Hunter et Lange, 2004] (in minimization MM stands for majorize/minimize, and 

in maximization stands for minorize/maximize). An MM algorithm operates by 

creating a surrogate function that minimizes or maximizes the objective function. 

When the surrogate function is optimized, the objective function is driven uphill or 

downhill as needed [Hunter et Lange, 2004].  
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2.2.1 Algebraic	  Reconstruction	  Technique	  

 

 The Algebraic Reconstruction Technique (ART)  [Gordon, 1974]  is a non-

statistical algorithm that was developed by Kaczmarz [Censor et al., 1983] to solve 

systems of linear equations.  

 

 

Figure 2.6- ART algorithm. Estimated solution sequence (yi) for a toy problem with two LORs (𝝀𝟏  , 𝝀𝟐  ) and 

two pixels (𝒚𝟏  ,𝒚𝟐  ). The initial pixels values were equal to y0. 

 The ART algorithm generates the sequence of estimated images satisfying one 

equation at a time, as illustrated in Figure 2.6. In this toy problem, two LORs (that 

represent two equations) and two pixels were used. In the absence of noise, the 

solution is the intersection of the two LORs. The initial solution, y0, is projected 

perpendicularly (minimal distance) to λ1, obtaining the first estimated of the solution, 

y1
. Then the y1 is projected perpendicularly to λ2. This procedure will be repeated to 

all projections. In the presence of noise the equations are not consistent and the 

algorithm does not converge to a unique solution. The iterative form of this row-

action algorithm can be as expressed by [Herman, 1980]: 

�1 

�2 

y1 

y2 

y1
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y2
0 

y0 
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y2 

y3 

y4 



2- Image Reconstruction in PET    

 

 

 37 

𝝀!! = 𝝀!!!! +
𝒚! − 𝑯 𝑖, 𝑗 𝝀!!!!!

!

𝑯 𝑖, 𝑗 !!
!

𝑯 𝑖, 𝑗 , 
 

 

( 2.19 ) 

with m being the number of voxels and 𝑯(𝑖, 𝑗) expressing the probability that an 

annihilation in the jth voxel, 𝝀! , is detected by the ith detector pair 𝒚!. The 𝝀!! is the 

estimated value for the jth voxel of the activity distribution image at the iteration k. 

 This algorithm considers one projection 𝒚! at a time. The convergence speed 

depends on the order in which the projections are process. To force the convergence 

in the presence of noise a relaxation parameter is introduced [Censor et al., 1983] 

[Herman, 1980]:  

𝝀!! = 𝝀!!!! + 𝑟
𝒚! − 𝑯 𝑖, 𝑗 𝝀!!!!!

!

𝑯 𝑖, 𝑗 !!
!

𝑯(𝑖, 𝑗) 
 

 

( 2.20 ) 

where r is the relaxation parameter with values between 0 and 1.This parameter will 

reduce the update weight and force the convergence to a point somewhere in the 

middle of the partial solutions.  

	  

2.2.2 Maximum-Likelihood Expectation-Maximization 	  

 

 Currently, the most popular iterative methods for PET image reconstruction 

are based on the Maximum-Likelihood Expectation-Maximization [Shepp et Vardi, 

1982]. The Expectation-Maximization was proposed by Dempster [Dempster et al., 

1977] as a general approach to iterative computation of the maximum-likelihood 

estimates when the observations can be viewed as incomplete data. Assuming a 

Poisson model for the noise, the log-likelihood function is given by,  

 

𝑳𝒚 = 𝑙𝑛 𝑃𝑟𝑜𝑏 𝒚 𝝀 = − 𝑯 𝑖, 𝑗 𝝀𝒋

!

!!!

+ 𝒚𝒊 𝑙𝑛 𝑯 𝑖, 𝑗 𝝀𝒋

!

!!!

+ 𝑐𝑜𝑛𝑠𝑡
!

!!!

 
 

where 𝑯(𝑖, 𝑗) express the probability that a photon emitted from the voxel 𝑗 will be 

detected by the pair of detectors bins 𝑖 , 𝒚!   is a sample from a Poisson distribution 
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with the expected value equal to 𝑯 𝑖, 𝑗 𝝀𝒋!
!!!  , i.e., is a random variable describing 

the number of photons detected  by the pair of detectors 𝑖 and 𝝀! the number of the 

photons emitted from the voxel 𝑗. 

The objective of the EM algorithm is to find the image that maximizes the log-

likelihood function, 

𝝀𝑴𝑳 = argmax
𝝀

− 𝑯 𝑖, 𝑗 𝝀𝒋

𝑚

𝑗=1

+ 𝒚𝒊 ln 𝑯 𝑖, 𝑗 𝝀𝒋

𝑚

𝑗=1

𝑛

𝑖=1

 
 

( 2.21 ) 

 For solving this optimization problem the EM algorithm introduces a new 

Poisson random variable, 𝑿, to the problem. This variable is called complete data and 

𝑿(𝑖, 𝑗) is the number of photons actually emitted from the pixel 𝑗 and recorded by the 

pair of detectors i. The expectation value of this variable, given 𝛌, is 

𝐸 𝑿(𝑖, 𝑗) 𝝀 = 𝑯 𝑖, 𝑗 𝝀! . ( 2.22 ) 

From the complete data, 𝑿 , computation of the acquired (incomplete) data is 

straightforward attending to 𝒚! = 𝑿(𝑖, 𝑗)! . Instead of trying to maximize ( 2.21 ), 

the EM approach maximize the log-lokelihood for the complete data. The 

corresponding log-likelihood function of all Poisson distributed random variables 𝑿 is 

given by [Nuyts, 2012][Lange et Carson, 1984] : 

𝑳𝑿(𝑿,𝝀) = 𝑿 𝑖, 𝑗 ln 𝑯 𝑖, 𝑗 𝝀! −𝑯 𝑖, 𝑗 𝝀!
!

!

!

!
 

 

( 2.23 ) 

This method has two steps, the E (expectation) step and the M (maximization) step. In 

the E step are estimated the conditional expected values of the complete data, 𝑿, and 

in the M-step the new estimate for 𝝀 is calculated by maximization of the function 

derived in the E-step. 

E	  step	  

 

 Since 𝑿 is unknown, it is not possible to calculate 𝑳𝑿. The value of 𝑿 𝑖, 𝑗   is 

replaced in ( 2.24 ) by its expected value using the measurement 𝒚𝒊 and the current 
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estimate of 𝝀𝒋 at the iteration k, 𝝀!!, that can be written as, [Nuyts, 2012][Lange et 

Carson, 1984] 

 

𝐸 𝑿 𝑖, 𝑗 𝒚𝒊,𝝀𝒌 =
𝐻 𝑖, 𝑗 𝝀𝒋𝒌

𝐻 𝑖,𝑝 𝝀𝒑𝒌!
𝒚𝒊    . 

 

( 2.24 ) 

Doing that the conditional expected values of the complete data with respect to 𝒚 and 

the 𝝀!!   are obtained,  

 

𝐸 𝐿𝑿 𝑿,𝝀 𝒚,𝝀𝒌 =
𝑯 𝑖, 𝑗 𝝀𝒋𝒌

𝑯 𝑖,𝑝 𝝀𝒑𝒌!
𝒚𝒊  ln 𝑯 𝑖, 𝑗 𝝀𝒋 −𝑯 𝑖, 𝑗 𝝀𝒋

!,!

  . 
 

( 2.25 ) 

M	  step	  

 

 In the M step a new estimated 𝛌!!! is calculated that maximizes the function 

computed in the E-step with respect to 𝝀𝒋 by setting the partial derivative to zero: 

𝜕𝐸(𝐿𝒙(𝑿,𝝀) 𝒚,𝝀𝒌)
𝜕𝝀𝒋

=
𝑯 𝑖, 𝑗 𝝀𝒋𝒌

𝑯 𝑖,𝑝 𝝀𝒑𝒌!
𝒚𝒊   

𝑯 𝑖, 𝑗
𝑯 𝑖, 𝑗 𝝀𝒋

−𝑯 𝑖, 𝑗
!

= 0    . 
 

( 2.26 ) 

Solving for 𝝀𝒋   we find the usual (multiplicative) iterative form of the ML-EM 

algorithm, 

𝝀𝒋𝒌!𝟏 =
𝝀𝒋𝒌

𝑯 𝑖, 𝑗𝒊
𝑯 𝑖, 𝑗

𝒊

𝒚𝒊
𝑯 𝑖,𝑝 𝝀𝒑𝒌!

    . 
 

( 2.27 ) 

The term of comparison used by this algorithm is the ratio between the measured data 

and the forward projection of the current estimates. This ratio determines a 

modification factor to update the current estimate of the image. Richardson 

[Richardson, 1972] and Lucy [Lucy, 1974] proposed a similar iterative algorithm for 

restoration of astronomy images. The ML-EM algorithm can also be written in an 

additive form so that it appears like a gradient descent algorithm as in [Fessler, 2004]: 
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𝝀!!! = 𝝀! +
𝝀!

𝑯!𝟏!
𝑯! 𝒚

𝐻𝝀! −𝑯
!𝟏!     . 

( 2.28 ) 

 De Pierro [DePierro, 1993] used an elegant approach to derive the ML-EM 

algorithm without using the concept of complete data. In his derivation he only used 

the convexity of the log-likelihood objective function and the Jensen’s inequality. One 

possible way to incorporate the correction of data into the iterative form of the ML-

EM is to use the Ordinary Poisson ML-EM [Comtat et al., 2004], 

 

𝝀!!! =
𝝀!

𝑺𝒈𝒆𝒐𝒎!𝑨𝑵𝟏!
𝑺𝒈𝒆𝒐𝒎! 𝒑

𝑺𝒈𝒆𝒐𝒎𝝀+ 𝑨!!(𝑵!!𝒅+ 𝒔), 
 

(2.29) 

 

where 𝒑 are the prompt coincidences, 𝒅 the delayed coincidences and 𝒔 the scattered 

coincidences. 𝑵 and 𝑨 are the inverse of the normalization and attenuation correction 

factors, respectively. The 𝝀!   is the estimated activity image at the iteration k  and 𝟏! a 

vector of ones with the same size as 𝒑. 

 In the ML-EM derivation it was assumed that the model for the noise was 

Poissonian. The Image Space Reconstruction Algorithm (ISRA) [DePierro, 1993]  is 

the corresponding reconstruction algorithm when the model for the noise is assumed 

to be Gaussian. The iterative form of ISRA algorithm is given by [DePierro, 1993], 

 

 

𝝀!!!! = 𝝀!!
𝑯(𝑖, 𝑗)𝑦!!

!!!

𝑯(𝑖, 𝑗) 𝑯(𝑖, 𝑙)𝝀!!
!!!

!
!!!

 
( 2.30 ) 

	  

Properties	  of	  the	  ML-‐EM	  Iteration	  

 

• The cost function, the log-likelihood function, increases monotonically at each 

iteration [Qi et  Leahy,2006]. Assuming that this function is a concave 

function (the number of projections is greater or equal than the number of 

voxels and the system matrix has full rank), all the maxima of this function are 
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global maxima and so the ML-EM iteration gives the sequence of images that 

converge to the global maximum likelihood estimator. In practice, the 

reconstruction is stopped at a given iteration. With the increase of the number 

of iterations the estimated image becomes too noisy (see section 6.1). 

• In contrast with the Filtered BackProjection (FBP), the ML-EM algorithm is 

non-linear [Defrise et al., 2005]. In general, the sum of the final reconstructed 

volumes of the raw data of individual objects is not equal to the reconstruction 

result of the raw data of the sum of the objects. The estimated activity 

distribution of a point source in a uniform background, using a small number 

of iterations, broadens when the strength of the background is increased 

[Defrise et al., 2005]. The final reconstructed volumes also depend on the 

position of the objects. The non-linearity also explains the slower convergence 

for regions of low tracer uptake than for regions of high tracer uptake. When 

compared with the FBP, quantitative results show that the ML-EM 

reconstruction allows a better SNR in regions of low tracer uptake, resulting in 

a better visibility of the contours of the body [Defrise et al., 2005]. 

• If the system matrix is normalized the total counts of the sinogram will be 

preserved. 

• If the initial image is positive, then, all the estimated images will be positive. 

The estimated image is calculated by multiplying the previous estimated 

image with a multiplicative factor. 

2.2.3 Block	  Iterative	  Reconstruction	  Methods	  

 

 One of the main problems for the use of ML-EM in clinical applications was 

the long reconstruction time. In each iteration one projection and one backprojection 

must be done. Due to its slow convergence several iterations must be performed. In 

the case of FBP only a single backprojection is needed. Block iterative reconstruction 

methods allow reducing the reconstruction time by processing the data in blocks 

(subsets) within each iteration. Two of the most popular block iterative methods are 

the Ordered Subsets Expectation Maximum (OSEM) and Row-Action Maximum 

Likelihood Algorithm (RAMLA). 
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Order	  Subset	  Expectation	  Maximization	  

 

 In 1994 Hudson et al. [Hudson  et Larkin, 1994] proposed a block iterative 

reconstruction method called Order Subset Expectation Maximization algorithm. This 

approach is similar in concept to block-Kaczmarz methods introduced by Eggermont 

et al. [Censor et al., 1983][Eggermont et al., 1981] for iterative reconstruction.  

 In OSEM the data is divided in to Ns disjoint balanced subsets, S, in which the 

ML-EM is applied. By balanced it is meant that the 𝑯(𝑖, 𝑗)!∈!!  is independent on 

each subset q, where 𝑯(𝑖, 𝑗) expressing the probability that an annihilation in the jth 

voxel, 𝝀! , is detected by the ith detector pair 𝒚!. The update equation of the OSEM is 

given by equation [Qi et  Leahy, 2006] ,  

 

𝝀!
(!,!) =

𝝀!
(!,!!!)

𝑯(𝑖, 𝑙)𝑖∈𝑆𝑞

𝑯(𝑖, 𝑗)
𝒚𝑖

𝑯(𝑖, 𝑝)𝝀!
(!,!!!)

𝑝𝑖∈𝑆𝑞

, 

for j=1,…,n and q=1,…, Ns 

 
 

 

( 2.31 ) 

 

with 

𝝀!
(!,!!) = 𝝀!

(!)

𝝀!
(!,!) = 𝝀!

(!!!) 

 
( 2.32 ) 

 

Although this technique improves the convergence speed by a factor proportional to 

the number of subsets [Hudson  et Larkin, 1994], the convergence of the algorithm is 

not guaranteed [Qi et  Leahy,2006] [Byrne, 1998].  

 In practice, since the reconstruction problem is ill conditioned, the ML-EM 

algorithm is stopped before the maximum of the objective function is reached, 

avoiding noise amplification (see section 6.1). 

 

Row-‐Action	  Maximum-‐Likelihood  

 

 Another popular reconstruction algorithm in the clinical context is the row-

action maximum-likelihood algorithm (RAMLA). Inspired in the row-action ART 
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algorithm, Browne and De Pierro [Browne et DePierro, 1996] developed the RAMLA 

algorithm that allows to maximize the Poisson likelihood function with a reduced 

computational effort when compared with the ML-EM algorithm. The iterative form 

of the algorithm is given by [Qi et  Leahy, 2006]:  

 

𝝀!
(!,!) = 𝝀!

(!,!!!) + 𝜂!𝝀!
(!,!!!) 𝑯(𝑖, 𝑗)𝒚!

𝑯(𝑖,𝑝)𝝀!
(!,!!!)

!
− 1

!∈!!

, 

for j=1,…,n and q=1,…, Ns 

 

 

( 2.33 ) 

 

where η! is a sequence of positive relaxation parameters such that, 

 

lim
!→!

𝜂! = 0 𝜂!

!

!!!

= +∞ 
 

( 2.34 ) 

 

 The image is updated for each projection view (row of the system matrix). In  

[Browne et DePierro, 1996]  the selection of the appropriate relaxation parameters for 

a specific task was made using a training process. An incorrect choice of the 

relaxation parameters can greatly reduce the performance of the method. 

In their experiments, the iterations 1, 2, 3, and 4 of RAMLA reach comparable log-

likelihood values as the iterations 45, 60, 70, and 80, respectively, of ML-EM. 

 For cost function strictly concave, it was showed that RAMLA converges to 

the maximum of the cost function (assuming a correct choice of the relaxation 

parameters).  

 In 2001 De Pierro  et Yamagishi [DePierro et Yamagishi, 2001] presented an 

extension of RAMLA for maximum a posteriori reconstruction and in 2003 

[DePierro, 2003] extended the concept to transmission tomography. Note that the 

ML-EM algorithm does not yield a closed-form solution when used to maximize the 

Poisson likelihood in transmission CT [DePierro, 2003]. 
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Chapter 3 

3 Resolution	  Modelling	  in	  PET	  

 

 Resolution modelling techniques (RM) aim to improve the resolution and the 

quantification of the reconstructed image by better modelling the system matrix. 

Different approaches were proposed to estimate the system matrix, such as Monte 

Carlo techniques, analytic models, direct measures or a combination of the previous 

approaches. 

  A method to perform the estimation of the sinogram blurring kernel adapted 

to the High Resolution Research Tomograph (HRRT) scanner was developed and 

tested. The proposed method permits the incorporation of the effects of the inter-

crystal penetration into the reconstruction process. A spatial variant asymmetric 

Gaussian function was used to model this blurring effect in the radial and axial 

direction.  

 We begin by presenting the main characteristics of the HRRT, and then we do 

an overview of the resolution modelling techniques. After that, we will present the 

proposed method to estimate the sinogram blurring kernel. This kernel was used in the 

reconstruction of a point source data acquired at different radial distances. The 

resulting images were compared with images obtained by reconstructing the datasets 

without resolution modelling and with resolution modelling in the image space. 

 

 



46                                                                                   3- Resolution Modelling in PET  

 

 

3.1 High	  Resolution	  Research	  Tomograph	  

 

 The High Resolution Research Tomograph is a specialized scanner that 

provides high resolution PET images of the human brain. Due to its high resolution 

and sensitivity this scanner can be also used in pre-clinical [Jan et al., 2004]. It’s 

composed of 8 heads arranged in an octagon configuration. Each head is constituted 

of 9 block detectors in the transverse direction and 13 in the axial direction [Eriksson 

et al., 2002] and each detector is composed of two scintillator layers constituted of 

LSO and Lutetium Yttrium Orthosilicate (LYSO). The difference in decay times 

between the two crystals (40 ns for the LSO and 53 ns for the LYSO) allows for the 

retrieval of DOI information.  

 The coincidences events are stored in a list with 64 bits. Usually, the list-mode 

data are binned into 256 radial bins, 288 angles and 2209 planes (that correspond to 

span 9) [Jong et al., 2007]. 

 The attenuation coefficients are estimated by transmission measurements 

using a 2D fan-collimated 137Cs moving point source. First is done an acquisition 

without the object and then is done the acquisition with the object. After that, the 

attenuation data are reconstructed (usually using regularized reconstruction techniques 

[Nuyts et al., 2001]) and the result is re-mapped (scaled) by a factor to express the 

attenuation values at 511 keV. Finally the attenuation image is projected into the 

projection space [Knoß, 2004].  

 Scatter correction is done using an adapted version of the single scatter 

simulation method [Watson, 2000]  (see section 1.5.3). The correction is based on the 

pre-corrected emission sinogram (corrected for attenuation, detector gaps and 

normalization) and on the attenuation map of the object [Knoß, 2004].  

 The standard normalization correction uses the direct method [Knoß, 2004]. A 
68Ge line source with a length of 250mm, rotating in a 165 mm radius orbit, is 

acquired using the same energy window as the one used in the clinical protocol. The 

main problem of this approach is the long acquisition time (several dozens of hours) 

required to obtain normalization coefficients with low noise.  

 Random events are estimated using a delayed window technique [Knoß, 2004] 

(see section 1.5.4). 
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 Different reconstruction algorithms are available, such as, 2D FPB, 2D  

OSEM and 3D OSEM. For the 2D reconstruction the data rebinning is done using 

Fourier rebinning [Defrise et al., 1997]. In the clinical environment one of the most 

common method used is the OP-OSEM [Comtat et al., 2004] (see (2.29) ). Usually the 

images were reconstructed on a 256×256×207 pixels (x, y, z directions, respectively) 

grid of voxels with the dimensions 1.218×1.218×1.218 mm×mm×mm in the x, y, z 

direction, respectively. 

 

3.2 Resolution	  Modelling	  Reconstruction	  Techniques 	  

  

 A realistic modelling of the system matrix is needed to ensure the good quality 

of the reconstructed images. Different methods were proposed to improve the 

estimation of the system matrix. 

 Monte Carlo methods can be used to directly calculate the system matrix. 

Several research groups have proposed this approach for modelling the system matrix 

of small animal scanners [Rafecas et al., 2002][Gimenez et al., 2006][Ortuno et al., 

2010]. The main problems of Monte Carlo methods are related with the computational 

resources required to simulate and store the system matrix. It is also difficult to 

correctly describe the effects of light collection and the  electronics.   

 A different approach is to experimentally measure the system matrix.  Panin et 

al. [Panin et al., 2006a][Panin et al., 2006b] derived the system matrix for the 

Siemens Biograph HiRez scanner from point source measurements acquired at 

different positions in the FOV. The point sources were positioned using a robot. For a 

direct measure of this matrix, measurements should be done for each point in the 

FOV. The number of acquisitions was reduced by taking into consideration the 

symmetries of the system and by using a parameterized model. Even so a total of 

1599 acquisitions (5-minute each) was necessary.   

 In order to reduce the required storage and optimize the performance of the 

reconstruction, the system matrix can be decomposed into sub-matrices (see ( 2.11 )), 

  

𝐇 ≈ 𝐒!𝐒!"#.!"#$𝐒!𝐒!"#$𝐒!"#$%&"'  
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with  𝐒!    the diagonal matrix containing the detection efficiency of each detector pair, 

𝐒!"#.!"#$   the matrix that models the blurring  effects introduced by the detectors and 

𝐒!  a diagonal matrix containing the attenuation factors. The 𝐒!"#$ is the geometric 

projection matrix with each element (i, j ) equal to the probability that a photon pair 

produced in voxel j reaches the front faces of the detector pair i in the absence of 

attenuation and assuming perfect photon-pair collinearity.  The  𝑺!"#$%&"'  is  a matrix 

that includes the effects of the positron range.  

 This representation allows an independent description of the different effects 

that contribute to the degradation of the image quality, such as positron range, non-

collinearity, inter-crystal scatter and penetration. In most of the resolution modelling 

algorithms based on the factorization of the system matrix, all the non-geometric 

effects are combined into a single sub-matrix that is defined in the projection space 

(𝑺!"#) or in the image space (𝑺!"#). 

 If these blurring effects are modelled in the projection space, 𝑺!"#,      the 

factorization of the system matrix is given by:   

 

𝑯 = 𝐒𝑁𝐒det.blur𝐒A𝐒prm𝐒geom . ( 3.1 ) 

Effects like non-collinearity, inter crystal scatter and penetration are best described in 

the projection space. Formally, the blurring induced by the non-collinearity depends 

on the point of the annihilation along the LOR and cannot be accurately described in 

the projection space. This effect should be modelled in the geometric matrix, 𝑆!"#$.  

However, to simplify the system matrix computation, one can assume that photon 

non-collinearity is depth independent and so can be modelled in the projection space 

[Rahmim et al., 2008] . 

 When the blurring effects are modelled in the image space, 𝐒!"#  ,   the 

factorization of the system matrix can be expressed by: 

 

𝑯 = 𝐒𝑁𝐒det.blur𝐒A𝐒srm𝐒geom𝐒psf  .  ( 3.2 ) 

The blurring effects of the positron range are best described in image space. Only 

when the condition,  
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𝑅𝑎𝑛𝑔𝑒{𝐒prm𝐒geom} ⊆ 𝑅𝑎𝑛𝑔𝑒{𝐒geom} ( 3.3 ) 

is satisfied, where 𝑅𝑎𝑛𝑔𝑒{𝑴} is the set of all possible linear combinations of  the 

column vectors of the matrix 𝑴, then is possible exactly describe the blurring effects 

in the image space [Cloquet et al., 2010]. In general this condition cannot be satisfied 

because the dimensions of the projection space are much higher that the dimensions 

of the image space.  

 Due to the factorization of the system matrix, the blurring kernel can be easily 

incorporated into the iterative form of the maximum-likelihood expectation 

maximization reconstruction algorithm (ML-EM). The Ordinary Poisson ML-EM 

reconstruction algorithm (see (2.29)) can be rewritten as: 

 

𝝀!!! =
𝝀!

𝑺!𝑨𝑵𝟏!
𝑺!

𝒑
𝑺𝝀+ 𝑨!!(𝑵!!𝒅+ 𝒔), 

 

( 3.4 ) 

 

where 𝒑 are the prompt coincidences, 𝒅 the delayed coincidences and 𝒔 the scattered 

coincidences. 𝑵 and 𝑨 are the inverse of the normalization and attenuation correction 

factors, respectively. The 𝝀!   is the estimated activity image at the iteration k  and 𝟏! a 

vector of ones with the same size as 𝒑. 

 When 𝑺 = 𝐒!"#$ , the reconstruction don’t have into account the blurring 

effects introduced by the detector (noRM-EM). If 𝑺 = 𝑺!"#$𝑺!"#, the effects that 

lead to the degradation of the image quality are modelled in the image space (IRM-

EM). In the case of 𝑺 = 𝑺!"#𝑺!"#$  these effects are modelled in the projection space.  

 

 

3.2.1 Resolution	  Modelling	  in	  Projection	  Space	  

 

 Different methods were proposed for the estimation of the 𝑺!"# sub-matrix. 

 Qi et al. [Qi et al., 1998] used resolution modelling in the sinogram space to 

reconstruct data acquired with the microPET system [Cherry et al., 1997]. A Monte 

Carlo simulation was used to estimate the blurring effects of the photon pair non-

collinearity and inter-crystal penetration. The blurring model was confined to the 
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radial and azimuthal directions.  Monte Carlo simulation was also used by Alessio et 

al. [Alessio et al., 2006] to find the system model for a whole-body PET system. 

Besides the detector blurring effects and the non-collinearity they also took into 

account the influence of the Fourier rebinning. The blurring kernel was modelled as a 

three-dimensional function that blurs in the radial and axial directions and is spatially 

variant in the radial location.  A different kernel model was proposed by Stute et al. 

[Stute et al., 2011]. They proposed a 4-dimensional kernel that has into account the 

inter-crystal scattering and penetration and the intra-crystal count distribution.   

 Analytic models can also be used to model the inter-crystal scatter and 

penetration and the photons non-collinearity. Lecomte et al. [Lecomte et al., 1984] 

[Schmitt et al., 1988] proposed and analytical model for the inter-crystal penetration 

which depends on the linear attenuation model and the angle of incidence. For the 

modelling of the non- collinearity, Rahmim  et al.  [Rahmim et al., 2008]  used a 

angular-dependent Gaussian blurring kernel along the radial and axial directions.  

 Another approach to estimate the blurring kernels is based on direct 

measurements. Qi [Qi, 2006] proposed a maximum likelihood (ML) approach to 

estimate 2D sinogram blurring kernels (radial and angular directions) from 

experimental measurements of non-collimated point sources. These blurring kernels 

have into account not only the inter-crystal scatter and penetration but also other 

blurring effects in the photon detection process. It is assumed that the data acquired 

correspond to the convolution of the sinogram blurring kernels with the geometric 

projection of the object. The iterative form of the proposed method is given by, 

bij
k+1 =

bij
k

ni gjm∑
yi,mgj,m
b
i, j'
k gj',mj'=1

N
∑m=1

M

∑
 

 

( 3.5 ) 

 

where bij is the element i,j of the sinogram blurring matrix, B, and expresses the 

blurring contribution from detector pair j to detector pair i. yi ,m and gi ,m are the 

measured projection and calculated geometric projection, respectively, of the m point 

source detected by detector pair i. The ni is the sensitivity factor for detector pair i. M 

is the number of point source positions, N is the number of sinogram elements and  k 

the iteration number. This iterative form is very similar to the iterative form of the 
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ML-EM reconstruction algorithm. The proposed algorithm monotonically converges 

to an ML estimate of the blurring matrix [Tohme et Qi, 2009].  Tohme et Qi [Tohme 

et Qi, 2009] adapted the proposed method to the microPETT II scanner [Tai et al., 

2003]. The new formulation of the algorithm has into account the effect of the block 

detector in the rotational symmetry of the scanner geometry.  

3.2.2 Resolution	  Modelling	  in	  Image	  Space	  

 

 The  𝑺!"#  sub-matrix is constructed based on the results obtained by 

reconstructing point source or line source data. Usually, to avoid the introduction of 

noise in the image space blurring kernel, the reconstructed data are parameterized 

using a smooth functional model. The main differences between the different methods 

proposed in literature are related with the PSF model adopted.  

 Reader et al. [Reader et al., 2002][Reader et al., 2003] tested a 3D Gaussian 

PSF model (shift-invariant and isotropic). The proposed model was used to perform 

the reconstruction of simulated list-mode data and also to reconstruct data acquired 

with a GE Advance PET scanner. Sureau et al. [Sureau et al., 2008] used a shift-

invariant PSF model in the reconstruction of (dynamic) data acquired with the HRRT. 

They tested two PSF models to fit the point source data: an exponential model with an 

offset model and a 2-weighted exponential model.  

 A space-variant and anisotropic PSF model was used by Rahmim et al. 

[Rahmim et al., 2008] to reconstruct list-mode data acquired in the HRRT. An 

exponential model and an inverse-Gaussian model were tested. Four 11C line sources, 

oriented axially, at different radial distances were simultaneously acquired. These 

datasets were reconstructed using different space-invariant and isotropic Gaussian 

kernels. The best reconstruction result of each line source was used to parameterize 

the spatially-variant and anisotropic PSF model.  Cloquet et al. [Cloquet et al., 2010] 

compared the performance of different asymmetric and space variant PSF models in 

the reconstruction of data acquired with the Philips Gemini 16 Power PET scanner 

[Surti et Karp, 2004]. The shift variant Gaussian model, the shift variant and 

asymmetrical Gaussian model and the asymmetric modified Pearson model were the 

PSF models tested. They have done 42 different acquisitions of a point source along 

the central coronal plane. 
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3.2.3 Effect	  of	  the	  Resolution	  Modelling	  in	  the	  Reconstructed	  Image	  

 

 In general the use of resolution modelling reconstruction methods has several 

advantages [Sureau et al., 2008][Tong et Alessio, 2010][Rapisarda et Bettinardi, 

2010][Tohme et Qi, 2009], such as improving the spatial resolution, improving the 

contrast recovery and reducing image noise. One consequence of these improvements 

is the reduction of the Partial Volume Effect (PVE). PVE is caused by the finite 

spatial resolution of the imaging system and by the image sampling [Soret et al., 

2007]. Motion also introduces additional PVE. 

 The finite spatial resolution introduces blurring in the reconstructed image. It 

depends on the detector design and on the reconstruction method. The signal (counts) 

of the structures smaller than the system resolution will be spread over the neighbour 

voxels [Soret et al., 2007]. Even for larger structures the borders will be blurred.  This 

“spill-out” effect results in an “apparent” reduction of the activity inside a structure. 

 The image sampling is the cause of the  “spill-in” effect. Since the contours of 

the voxels usually do not match with the shape of the structure, some voxels represent 

different types of tissues, i.e., different structures can contribute for the measured 

activity at some voxels. 

 The PVE introduces a bias in quantification, especially for small structures 

with many borders. It also affects the tumour apparent size. For tumours with partially 

necrotic centres “spill in” will be responsibly of an “apparent” increase of activity in 

the centre [Soret et al., 2007]. 

 The drawback of using resolution modelling algorithms is the introduction of 

some edge artefacts (Gibbs effects) in the reconstructed image [Qi et al., 

1998][Reader et al., 2003]. Two main reasons are given as the cause of these effects 

[Snyder et al., 1987][Politte et Snyder, 1988]. The first cause is the error on the 

estimation of the blurring kernel. The second is related with the system matrix being 

ill-conditioned [Qi et al., 1998]. These effects can be reduced by the use of 

regularization techniques, post-smoothing the final image, or using a smaller PSF 

kernel. All these potential solutions will degrade the resolution of the final image. 

 The use of blurring kernels into the reconstruction also reduces the initial 

convergence speed. For the ML-EM algorithm, the estimated images in the early 

iterations are smoother than those reconstructed without resolution modelling. 
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3.3 HRRT	  Sinogram	  Resolution	  Modelling	  

 

  The proposed sinogram blurring kernel attempts to improve the resolution and 

to reduce its variation. This blurring kernel was parameterized using a smooth 

functional model and the radial parameters were estimated based on a line source 

measurement.  

3.3.1 Sinogram	  Blurring	  Kernel	  

  

 The proposed blurring kernel model has into account the angles of incidence, 

𝛼 angles, formed by the intersection of each LOR, represented by each sinogram 

element, with the detector heads (see Figure 3.1). 

 For scanner with cylindrical geometry the radial profile of the detector 

response function becomes asymmetrical and broader with increasing the radial 

offsets [Cherry et al., 2006]. Off-centre events penetrate with non-normal angles of 

incidence that lead to the degradation of the resolution. Both angles of incidence 

formed by the intersection of each Line Of Response (LOR) with the detectors are 

identical and the radial profile depends on the radial coordinate. On the contrary, for 

the octagonal geometry of the HRRT, annihilation photons penetrate with oblique 

angles of incidence independently of the radial position.  

 

 

 
Figure 3.1- Schematic representation of the angles of incidence (𝛂𝐚and 𝛂𝐛 angles) formed by the intersection 

of a LOR with the detector heads.  
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 The α angles were organized into a sinogram format, i.e., each value of the 

sinogram bin corresponds to the α  angle in degrees. Two α  sinograms were 

constructed (see Figure 3.2) corresponding to the angles of incidence with the detector 

heads (represented in Figure 3.1 by α!and α!).  

 

 

 
Figure 3.2- Sinograms of the α angles calculated for the intersection of the LORs with the A head (left) and 

B head (right) represented in Figure 3.1 by 𝛂𝐚and 𝛂𝐛, respectively.  

 

When the two 𝛼 sinograms are summed, three distinct regions can be defined. The 𝛼 

sinogram can be divided into these three regions, as showed in Figure 3.3.  

 In the Region 1 the 𝛼 angles formed with the detector heads are equal. In the 

Region 2 and Region 3 the A head 𝛼 angle and the B head 𝛼 angle are related by a 

constant (see Figure 3.3), 

where 𝛼! and 𝛼! are the angles formed by the intersection of one LOR with the A and 

B detector heads, respectively. For the Region 2 the constant is equal to 135º and for 

the Region 3 is equal to 90º. The range of 𝛼!  and 𝛼!  angles is the same for a given 

region. For the Region 2 and 3, when 𝛼!  has the maximum value the correspondent 

𝛼!    has the minimum value (see ( 3.4 )). 

 

𝛼! + 𝛼! = 𝑐𝑜𝑛𝑠𝑡  , ( 3.6 ) 
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Figure 3.3- Representation of the sum of  two 𝜶 sinograms (𝜶𝒂 + 𝜶𝒃). 

 

 The value of the constants is related with angle formed by the perpendiculars 

to the detector heads in coincidence (see Figure 3.4). In Region 1 the events are 

detected by the pairs of detector heads that are face to face. For the Region 2 the angle 

between the perpendiculars to the A and B heads is 135º and in Region 3 this angle is 

90º. 

 

 

 
Figure 3.4- Relation between the 𝜶  sinogram regions with the angles between the detector heads in 

coincidence.  In Region 1 the events are detected by the pairs of heads that are face to face. For the events 

detected in Region 2 the angle between the A head and the B head is 135º and in Region 3 this angle is 90º. 

Figure 3.5 presents the relations between the coincidences detected by the different 

pairs of detector heads and their localization in the sinogram.   
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Figure 3.5- Relations between the coincidences detected in the different pairs of detector heads and the 

corresponding localizations in the sinogram. The numbers in the figure on the right correspond to the head 

number defined in the figure on the left. Only the sinogram part between the two dashed lines will be used. 

Adapted from [Knoß, 2004]. 

 The radial component of the proposed blurring kernel model depends on the α 

Region. An asymmetric space-variant Gaussian model was used to model the blurring 

kernel in this direction: 

 

𝑆𝑅𝑀!"#$"% 𝛼𝑅, 𝑥! = 𝑎!(𝛼𝑅)𝑒
!!!!!! !"

!

!!!"#$
! (!") 𝑥! , 𝑥! < 𝑥!! 𝛼𝑅

𝑎!(𝛼𝑅)𝑒
!!!!!! !"

!

!!!"#!!
! (!") 𝑥! , 𝑥! ≥ 𝑥!! 𝛼𝑅

 

 

 

 

( 3.7 ) 

𝑥! ∈ 𝛼𝑅 

 

where αR is the α Region, 𝑥! the radial coordinate and 𝑥!! is the radial localization 

of the peak and 𝑎! the radial amplitude. The 𝜎!"#$ and 𝜎!"#!! are the left and right 

standard deviations related to the localization of the radial peak, respectively. 

For the axial direction a Gaussian model was used to fit the axial profile, as express 

by: 

 

𝑆𝑅𝑀!"#$%(𝑧) = 𝑎!𝑒
(!!!!)!
!!!! 𝑧 

 

 ( 3.8 ) 

 

where 𝑎! is the axial amplitude, 𝑧 the axial coordinate and 𝑧! the axial localization of 

the peak. The 𝜎! is the standard deviation related to the localization of the axial peak. 
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3.4 Materials	  and	  Methods	  

3.4.1 Estimating	  of	  the	  Sinogram	  Blurring	  Kernel	  

 

 The parameters of the proposed sinogram resolution model were found using 

measured data. The acquired data of a line source (see Figure 3.6) with a length of 

approximated 5 cm were used to fit the asymmetric radial function.  The line source 

was positioned with a radial offset of ~13cm from the centre of the scanner. First, the 

raw data were binned into 2209 sinograms (207 axial slices and 15 polar subsets), 

each with dimensions of 256 by 288 along the radial and azimuthal directions, 

respectively. Then, the binned data were corrected and the central slices of the 

segment zero (between the slices nº 102 and nº 107) were selected and sum. After 

that, the result was decomposed having into account the different regions (see Figure 

3.7). Each subset of the data was centre and used to generate a radial profile. The 

profile of the α Regions 1, 2 and 3 had approximately 150 000, 600 000 and 60 000 

corrected counts, respectively. Finally the Levenberg-Marquardt [Levenberg, 1944] 

optimization algorithm was used to estimate the radial model parameters. 

 A similar procedure was used for the axial component of the blurring model. 

In this case the profile generated from pseudo - point source was used to find the 

parameters of the model. The estimated value for the σ! was equal to 1.2 mm. 

 

  

 

 
Figure 3.6- Representation of the sinogram nº 104 of segment zero (direct planes) of the raw data used to 

estimate the blurring model parameters.  
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Figure 3.7- Representation of a sinogram decomposition having into account the α Regions 1 (left), the α 

Regions 2 (centre) and the α Regions 3 (right). The line source was positioned with a radial offset of ~13cm 

from the centre of the scanner. 

 

3.4.2 Data	  Reconstruction	  

 

 A sinogram resolution modelling reconstruction (SRM-EM) was implemented 

(see ( 3.4 )) and used to test the performance of the estimated blurring kernel. Point 

source data measured at different radial distances (~ 1, 5, 10 cm) was used in this 

evaluation. The same datasets were reconstructed using the noRM-EM and the IRM-

EM and the resulting images were compared.   

 Only the segment zero was reconstructed and the voxel size was equal to 

0.24×0.24×1.22 mm3. The total number of prompt coincidences in each dataset was  

~800 000. A block iterative reconstruction approach with 16 disjoint balanced subsets 

was used.  For the noRM-EM the reconstruction was stopped at the iteration 5 and for 

the IRM-EM [Comtat et al., 2008] and SRM-EM at the iteration 10. The geometric 

projector utilized was based on the Joseph algorithm with bilinear interpolations 

[Joseph,	  1982].  

 The estimation of the position of the point sources was made based on the 

centre of the mass of the reconstructed image. In Table 3.1 is presented the estimated 

positions (related to the centre of the scanner). 

 In IRM- EM a mixture of two Gaussian functions was used to model the PSF 

function [Comtat et al., 2008]. The first Gaussian had a FWHM equal to 2.11 mm and 

the second had a FWHM equal 5.9 mm. The amplitude ratio between the two was 

0.05. 

 

α"Region"1" α"Region"2" α"Region"3"

=
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Table 3.1- Estimated position of the point sources for each acquisition, relatively to the centre of the 

scanner. 

 Point Source 1cm (cm) Point Source 5cm (cm) Point Source 10cm (cm) 

Radial  1.07 4.80 9.71 

Tangential  -0.01 -0.18 -0.25 

Axial -0.15 0.23 -0.21 

 

The sinogram nº 104 of the direct planes for the different datasets is shown in Figure 

3.8.  

 

 
Figure 3.8- Sinogram nº 104 of the direct planes for the point sources acquired at different radial positions. 

Left: source position approximately at 1 cm from the centre (dataset 1). Centre: point source at 5 cm from 

the centre (dataset 2). Right: point source at 10 cm from the centre (dataset 3).   

 

3.4.3 Performance	  Criteria	  

 

 The results of the point source reconstruction using the different 

reconstruction techniques were compared by measuring the full width at half 

maximum (FWHM) of the reconstructed radial and tangential profiles. Two methods 

were used to measuring the FWHM.  

 In the first method the FWHM value was calculated following the NEMA NU 

2- 2001 guidelines for spatial resolution measurements (FWHMnema). We started by 

finding the maximum value of the profile by doing a parabolic fit using the peak point 

and its two nearest neighbouring. Then we estimated the FWHMnema by a linear 

interpolation between adjacent pixels at half the maximum value.  
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 In the second method an asymmetric Gaussian model was used to fit the 

profiles. The estimated parameter values were used to calculate the correspondent 

FWHM for the left side (FWHMσ!"#$) and right side (FWHMσ!"#$%) using  

 

𝐹𝑊𝐻𝑀 = 2 2 ln 2𝜎. ( 3.9 ) 

  

3.5 Results	  

 

 The proposed method for the estimation of the radial sinogram blurring kernel 

was tested using line source data acquired in the HRRT. The decomposition of the 

acquired data has into account the three 𝛼  Regions.  

 The performance of the SRM-EM using the estimated kernels was evaluated 

and compared with the noRM-EM and the IRM-EM. 

 

3.5.1 Estimating	  of	  the	  Sinogram	  Blurring	  Kernels	  

 

 Figure 3.9 presents the measured radial profiles as well as the correspondent 

fitted functions used in the estimation of the radial kernel for the different α Regions.  

 

 
Figure 3.9- Measured radial profiles (orange points)  used in the estimation of the sinogram resolution 

kernel parameters for the different α Regions. The blue line corresponds to the fitted curve [Levenberg, 

1944]. The central slices of the segment zero of a line source acquisition were used to generate these profiles.  

 In Table 3.2 is presented the estimated values for the radial component σleft 
and σright as well as the correspondent range of the α angles. 
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Table 3.2- Estimated values for the radial component parameters  𝛔𝐥𝐞𝐟𝐭  and 𝛔𝐫𝐢𝐠𝐡𝐭  when the decomposition 

of the acquired sinogram data have into account the α Regions.  The corresponding range of α angles is also 

presented.  

SRMradial Asymmetric Gaussian parameters  𝛼 angle range (degrees) 

 𝜎!"#$ (mm) 𝜎!"#!!(mm) 𝛼! range  𝛼!  range 

𝛼 Region 1 1.10 1.28 [68,90] [68,90] 

𝛼 Region 2 1.65 2.02 [45,90] [45,90] 

𝛼 Region 3 1.88 2.59 [30,60] [30,60] 

 

For the axial direction, the estimated value for the 𝜎! was equal to 1.2 mm. 
 

3.5.2 Image	  Reconstruction	  

 

 Figure 3.10 presents the reconstruction results using the different 

reconstruction algorithms for the different point source datasets. For each dataset a 

ROI of the transaxial slice with the maximum counts is shown. 

 Figure 3.11 shows the radial FWHMnema as a function of the radial offset 

obtained using the different reconstruction algorithms. Similarly, Figure 3.12 presents 

the estimated tangential FWHMnema as a function of the radial offset. 

 The variation of the radial asymmetric FWHMleft  and FWHMright as a function 

of the radial offset obtained using the different reconstruction algorithms is presented, 

respectively, in Figure 3.13 and Figure 3.14. Similarly, Figure 3.15 and Figure 3.16 

shows the variation of the of the tangential asymmetric FWHMleft  and FWHMright, 

respectively.  
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Figure 3.10- From the left to the right column: reconstruction results of a pseudo point source positioned 

with a radial offset of ~1cm, ~5cm and ~10cm from the scanner centre, respectively. A block iterative 

reconstruction approach with 16 disjoint balanced subsets was used. For each dataset a ROI of the 

transaxial slice with the maximum counts is presented. Only data from the segment zero was processed. 

From the top to the bottom row: reconstruction results achieved by the SRM-EM (10 iterations), IRM-EM 

[Comtat et al., 2008] (10 iterations) and noRM-EM (5 iterations), respectively. The voxel size was equal to 

0.24×0.24×1.22 mm3.  

 

 
Figure 3.11- Radial FWMHnema as a function of the radial offset. The blue, red and yellow points correspond 

to the results obtained using the noRM-EM, the IRM-EM and the SRM-EM, respectively. The FWHW was 

calculated following the NEMA NU 2- 2001 guidelines for spatial resolution measurements. 

SRM$EM&

IRM$EM&

noRM$EM&

1&cm& 5&cm& 10&cm&

Radial&offset&



3- Resolution Modelling in PET   

 

 

 63 

.  

Figure 3.12 Tangential FWMHnema as a function of the radial offset. The blue, red and yellow points 

correspond to the results obtained using the noRM-EM, the IRM-EM and the SRM-EM, respectively. The 

FWHW was calculated following the NEMA NU 2- 2001 guidelines for spatial resolution measurements. 

 
Figure 3.13- Radial asymmetric FWHMleft as a function of the radial offset. The blue, red and yellow points 

correspond to the results obtained using the noRM-EM, the IRM-EM and the SRM-EM, respectively. 

   

Figure 3.14- Radial asymmetric FWHMright as a function of the radial offset. The blue, red and yellow points 

correspond to the results obtained using the noRM-EM, the IRM-EM and the SRM-EM, respectively.  
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Figure 3.15- Tangential asymmetric FWHMleft as a function of the radial offset. The blue, red and yellow 

points correspond to the results obtained using the noRM-EM, the IRM-EM and the SRM-EM, 

respectively. 

 

 

  

Figure 3.16- Tangential asymmetric FWHMright as a function of the radial offset. The blue, red and yellow 

points correspond to the results obtained using the noRM-EM, the IRM-EM and the SRM-EM, 

respectively. 
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3.6 Discussion	  

 

 Several effects contribute to the degradation of the resolution of the 

reconstructed image, such as the inter-crystal penetration and non-collinearity.  

 A method for estimation of the sinogram blurring kernel optimized for the 

geometry of the HRRT was developed. Due to the geometry of the HRRT there are 

three different possible relations between the α angles, and thereby the sinogram can 

be decomposed into 3 distinct regions (α Regions). The proposed asymmetric and 

space-varying kernel model depends on these regions.  

 An acquisition of a linear source was used to measure the radial profiles of the 

three α Regions. The width of the α Region 1 radial profile was smaller than the 

profile widths of the other two regions (see Figure 3.9). This behaviour was expected 

because this region has the range of α values close to the 90º (normal).  In 

opposition, for α Region 3 the maximum α value is about 60º and so the width of the 

profile was the highest. The values of the fitted parameters σleft and σright also 

demonstrate this behaviour (see Table 3.2).  

 Point source data acquired at different radial positions were used to test the 

performance of the SRM-EM reconstruction algorithm (see Figure 3.10). When data 

were processed with the noRM-EM reconstruction algorithm the radial FWHM 

increase when the point source was positioned at 10 cm from the centre. At that 

position, the radial FWHMnema was 3.3 mm and when positioned at 1cm was 2.6 mm 

(see Figure 3.11). These results are in agreement with the resolution measurement 

results reported by Jong  et al. [Jong et al., 2007]. 

 The proposed method allows for the improvement of the resolution for the 

different radial positions tested (see Figure 3.11 and Figure 3.12). When compared 

with the IMR-EM, the SRM-EM permits the reduction of the variation of the radial 

and tangential FWHMnema. 

 An asymmetric Gaussian model was also used to fit the radial and tangential 

profiles of the reconstructed point sources. Since the geometric projectors used in this 

study are based on the Joseph algorithm with bilinear interpolations, the reconstructed 

point source profiles should be Gaussian. Globally, the profiles of the point source 
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reconstructed with RM methods were more symmetric (see Figure 3.13 to Figure 

3.16).  

   

3.7 Conclusion	  

  

 A resolution modelling in the sinogram space was developed and tested for a 

non cylindrical PET scanner geometry. 

 The proposed method for estimation of the sinogram blurring kernel has into 

account the angle of incidence (α angle) i.e., the angle defined by the intersection of a 

given LOR with a detection head. The parameters of the model radial component are 

found using only one measurement.  

 The estimated blurring kernels were used in the reconstruction of point source 

data acquired at different radial distances. When compared with the noRM-EM and 

IMR-EM, the SRM-EM allowed for the improvement of the resolution of the 

reconstructed point sources as well as for the reduction of the variation of the radial 

and tangential FWHM over the different radial positions tested. 
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Chapter 4 

4 Multiscale	  Reconstruction	  in	  PET 
  

 The multiscale reconstruction (MS) algorithms were proposed to improve the 

convergence rate and reduce the reconstruction computation time. When compared 

with the usual single grid reconstruction approach, the MS introduces new variables 

in the reconstruction algorithm such as the interpolator operator, the number of 

iterations to do in a given scale and the number of scales.  

 The main motivations of the work presented in this chapter were to study the 

impact of the use of different scales in convergence speed and choose the most 

suitable interpolator operator. 

  First we present the state-of-the-art of the multiscale reconstruction for 

emission reconstruction. We then discuss the results that lead to the choice of the 

Gaussian kernel as the most suited interpolator to be used in the MS reconstruction. 

Finally, we compare the performance of the MS reconstruction approach with the 

performance of the ML-EM reconstruction algorithm.  

 

4.1 Multiscale	  Reconstruction	  	  

 

Instead of improving the convergence of the reconstruction algorithm by using 

data subsets, the multiscale techniques attempt to reduce the computational effort and 

improve the convergence by processing the data at different scales.  

In 1988 Ranganath et al. [Rangana et al., 1988] proposed the multigrid expectation 

maximization algorithm (MGEM) which explore the concept of multiscale applied to 
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the ML-EM  for Positron Emission Tomography (PET). In this algorithm the 

multiscale is only applied to the image space. It was tested with simulated and with 

real data acquired in the TOFPET-I [142]. They claim that this algorithm allows for 

the decreasing of reconstruction time by a factor of 10. The number of iterations 

performed in each scale was chosen based on the log-likelihood function variation 

[Rangana et al., 1988]. In 1999 Rahej et al. [Raheja et al., 1999]  proposed an 

extension of the MGEM, the Multiresolution Expectation Maximization algorithm 

(MREM). In this method the dimensions of the projection space also change during 

the reconstruction.  

Figure 4.1 presents a schematic representation of a MS reconstruction. 

 

 
Figure 4.1- Schematic representation of the multiscale reconstruction. 

  

 In general, multiscale algorithms begin the reconstruction at coarsest image 

scale using data that have been binned at coarsest detector level. After a few iterations 

in a particular scale, the image scale and the projection binning scale switch until the 

finest binning projection is reached. At coarse scales the low frequency components 

of the image can be reconstructed with low computational effort. For dyadic scales, 

the maximum frequency that can be recovered on the coarse scale corresponds to 

approximately one-half of the maximum frequency that can be recovered on the next 

scale.  
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 Using simulated data, the reconstruction root mean square error (RMSE) of 

the final image achieved by the MREM was lower when compared with the ML-EM 

[Raheja et al., 1999] . The ML-EM was allowed to iterate for an equal amount of CPU 

time as the MREM algorithm. The MREM stopping criterion was based on the 

variation of the energy of the high-high wavelet band of the reconstructed image (see 

section 6.1). With real data the authors of [Raheja et al., 1999] claim that MREM 

performs well, produces better images and also point out that this algorithm 

introduces some regularization in the reconstruction. In clinical protocols this kind of 

regularization is achieved by post-filtering of the final image.  Please note that when 

the fine scale system matrix is not singular the ML estimate is unique and in this case 

the MREM algorithm should converge to the same image. However as the 

reconstruction is usually stopped before the maximum of the objective function has 

been reached, the solutions given by the two algorithms can be different. 

 Pan et Yagle [Pan et Yagle, 1991] made a numerical characterization of the 

multiscale concept versus single scale applied to different algorithms such as 

Landweber [Bertero et al., 1998], Algebric Reconstruction Algorithm (ART)  and 

ML-EM. The reconstructions were made using noise free 2D tomographic data. Three 

different system matrices were used in the comparative study: a small (195 

projections by 144 pixels) and not singular matrix, a small (84 projections by 144 

pixels) and singular matrix and a  system matrix with a bigger size (4160 projections 

by 3228 pixel). For the multiscale reconstruction a coarse scale matrix was generated 

for each system matrix. Four main conclusions can be highlighted from this study.  

 First, Pan et al. underline the capabilities of the multiscale methods to recover 

high-frequency components in the case of the values of neighbouring fine-grid pixels 

to be grouped as a coarse-grid pixel have similar values [Pan et Yagle, 1991]. Second, 

they also found that since the fine grid iteration is able to recover the low-frequency 

components, the advantage of using multiscale for certain image reconstruction 

methods can disappear after a certain number of fine-grid iterations. Third, the authors 

show that for some specific cases when the system matrices are singular, the use of 

coarse system matrices allows for the recovery of elements in the null space of the 

fine-grid system matrix. Frequencies that cannot be recovered with the finest grid 

reconstruction with a uniform initial condition are recovered with the multiscale 
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initial condition. Fourth, they also presented cases where the coarse-grid iteration is 

unable to recover high frequencies or introduces incorrect high-frequencies. 

 In literature it can also be found multiscale reconstruction techniques based on 

wavelets [Bhatia et al., 1996][Delaney et Bresler, 1994][Delaney et Bresler, 

1994][Turkheimer et al., 1999][Alpert  et al., 2006][Reader  et al., 2006][Verhaeghe  

et al., 2008]. Nowak and Kolaczyk [Nowak et Kolaczyk, 2000] proposed a statistical 

multiscale framework for Poisson inverse problems. They show that Harr multiscale 

analysis [Daubechies, 1992] is especially appropriated to Poisson data. This 

framework admits a simple EM algorithm for computing the Maximum a Posteriori 

reconstructions [Nowak et Kolaczyk, 2000]. Raheja et al. [Raheja et Dhawan, 2000] 

transform the MGEM algorithm to a wavelet-based Multiresolution EM (WMGEM). 

Instead of virtually grouping the detectors, the multi-resolution data space is 

generated by performing a 2D wavelet transform in the sinogram space. The High-

High frequency band is discarded (in order to reduce the noise) and the Low-High and 

the High-Low bands are subjected to thresholding or DC shifting [Raheja et Dhawan, 

2000] in order to remove the negative values. For each band the corresponding images 

are estimated using the ML-EM algorithm.  Then, the inverse wavelet transform of 

the three estimated images (the High-High frequency band has the value zero) is done. 

The synthesized image is used as initial condition to the Low-Low band of next scale. 

For the other two bands the initial image is a uniform image. They tested this 

algorithm with simulated and real data. The authors claim that WMREM provides 

better quality images for PET image reconstruction when compared to MGEM and 

single grid EM methods. However, since the High-High band is discarded, the data is 

no longer Poisson distributed and the use of the ML-EM for Poisson noise is no 

longer justified.  

 Multigrid algorithms [Briggs, 2000]  are very popular for solving differential 

equations. Under this context, these algorithms allow a systematic projection of the 

data from the coarse scale to the fine scale as well as from the fine scale to the coarse. 

Based on the previous work done on optical diffusion [Oh et al., 2005][Oh et al., 

2003a][Oh et al., 2003b][Ye et al., 1999] Oh et al. proposed [Oh et al., 2006] a 

multigrid bayesian reconstruction for transmission or emission tomography.  This 

method was tested using a three level multigrid-V recursion configuration [Briggs, 

2000] . A fixed-grid Iterative Coordinate Descent (ICD) algorithm [Bouman et al., 
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1996]  with random-order pixel updates was used in each grid. They concluded that 

the multigrid approach allows for the improvement of the convergence speed. 

 In clinical reconstruction for emission tomography the use of ICD is not 

common. Recently Van Slambrouck and Nuyts [Van Slambrouck et Nuyts, 2010], 

[Van Slambrouck et Nuyts, 2011] proposed to divide the image in a matrix of equally 

sized cuboids and update them separately as groups of pixels using a grouped 

coordinate ascent algorithm [Fessler et al., 1997]. They reported improvements in 

convergence speed when applied to transmission or emission tomography. Using 

equally sized cuboids, they reported an improved convergence degree proportional to 

the square root of the number of patches. However, this method leads to differences in 

convergence rates between the different patches that can result in visible edges 

between them.  

 References to reconstruction algorithms where the proposed grid is not 

uniform (see Figure 4.2) can be found in the literature, such as reconstructions using 

mesh grids [Brankov et al., 2004], point cloud image representations [Sitek et al., 

2006]  and adaptive multi-level refinement [Schumacher et al., 2008].   

 

Figure 4.2- Example of the representation of an image using a non-uniform grid. Left: image using a non-

uniform grid with the border pixels highlighted. Right: the same image without highlighting the borders of 

the pixels. The top line represents a case where the non-uniform grid allows to obtain an image with better 

quality than the image at the bottom, where the non-uniform representation adds artefacts.  
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4.2 Materials	  and	  Methods	  

4.2.1 The	  Multiscale	  Algorithm	  	  

 

 In general, the MS algorithms such as MREM can be expressed as: 
  

𝝀!!!! =
𝝀!!

𝑯!
!𝟏𝒚!

𝑯!
! 𝒚!
𝑯! 𝝀!!

 
 

( 4.1 ) 

 

where s represents a generic scale (the fine scale corresponds to s=1),  𝑯! is the 

system matrix at the scale s and 𝝀!! the estimate image at the scale s and in the 

iteration k. The 𝒚! is the set of data binned onto the projection matrix at the scale s 

and the 1ys is a vector of ones with the same size as 𝒚!. The initial condition, 𝝀!! , used 

in the scale s is given by: 

 

𝝀!! =
𝟏!  !"# , 𝑠 = 𝑠!"#
𝑰!𝝀!

!!!! , 𝑠 ≠ 𝑠!"#
 

( 4.2 ) 

 

where 𝐾!!! is the number of ML-EM iterations made in the previous scale (s+1), I is 

the interpolation operator that maps the previous scale image  to the next scale image 

and 𝟏!  !"#  is a constant image of ones with the same dimensions of the coarsest scale 

𝑠!"#, image used.  

 

Interpolator Operator 

 

 Different resampling kernels can be used to map the reconstructed image of 

the previous scale to the next scale. In this study we tested four different kernels: the 

nearest neighbour, the cubic, the Lanczos and the Gaussian. 

 In the nearest  neighbour interpolation the interpolated value is equal to the 

nearest available value. The corresponding two-dimensional kernel is given by: 

 

𝒘!"#$"%& 𝑥,𝑦 = 1 𝑖𝑓 −0.5 ≤ 𝑥,      𝑦 < 0.5
0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

( 4.3 ) 
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with x and y the arbitrary continuous positions in the horizontal and vertical 

directions, respectively. 

 The one dimension cubic kernel (see Figure 4.3) is defined as a piecewise 

cubic polynomial given by [Burger  et al., 2009]  

 

𝒘!"#$!(𝑥) =
𝑥 ! − 2 𝑥 ! + 1 𝑖𝑓 0 ≤ 𝑥 < 1

− 𝑥 ! + 5 𝑥 ! − 8 𝑥 + 4 𝑖𝑓 1 ≤ 𝑥 < 2
0 𝑖𝑓 𝑥 ≥ 2

. 

 

( 4.4 ) 

 

 

 
Figure 4.3- Representation of the one-dimensional cubic kernel. 

The one dimensional kernel used for the Gaussian interpolation (see Figure 4.4) is 

given by [Burger  et al., 2009] ,  

 

𝒘!"#$$%"& 𝑥 =
𝑒!

!!
!∗!.!!

2𝜋 ∗ 0.5
𝑖𝑓 𝑥 < 3

0 𝑖𝑓 𝑥 ≥ 3

 

 

 ( 4.5 ) 

 

and the one-dimensional Lanczos kernel (see Figure 4.5 ) is given by [Burger  et al., 

2009] , 

 

𝒘!"#$%&'(𝑥) =

1 𝑖𝑓 𝑥 = 0

3
sin(𝜋 𝑥3)sin  (𝜋𝑥)

𝜋!𝑥!
𝑖𝑓 0 ≤ 𝑥 < 3

0 𝑖𝑓 𝑥 ≥ 3

 

 

 

 

( 4.6 ) 
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Figure 4.4- Representation of the one-dimensional Gaussian kernel. 

 

 
Figure 4.5- Representation of the one-dimensional Lanczos kernel. 

 

The corresponding two dimensional kernels can be calculated using, 

 

𝑾! 𝑥,𝑦 = 𝒘! 𝑥 𝒘! 𝑦  ( 4.7 ) 

with,  𝑚 = {𝐿𝑎𝑛𝑐𝑧𝑜𝑠,𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑐𝑢𝑏𝑖𝑐,𝑛𝑒𝑎𝑟𝑒𝑠𝑡}. 

In the case of the cubic interpolation the interpolated values are calculated using 

[Burger  et al., 2009]  

 

𝝀 𝑥,𝑦 = 𝝀(𝑢, 𝑣)𝑾!"#$!(𝑥 − 𝑢,𝑦 − 𝑣)
!! !!

!! !! !!

!! !!

!! !! !! !

. 

 

 

( 4.8 ) 

This  interpolation have in account the values of the 16 neighbour pixels.  
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The interpolated values using the Gaussian and Lanczos 2D kernels are found using 

[Burger  et al., 2009]  

 

𝝀 𝑥, 𝑦 = 𝝀 𝑢, 𝑣 𝑾{!"#$$%"&,!"#$%&'} 𝑥 − 𝑢, 𝑦 − 𝑣
!! !!

!! !! !!

!! !!

!! !! !! !.

. 

 

 

( 4.9 ) 

These interpolations take into account the 36 nearest neighbor pixels.  The 

interpolation results are projected to the ℝ!
! space in order to remove negative values, 

which do not have any physical meaning.  

4.2.2 Generation	  of	  the	  Simulated	  Raw	  Data	  	  

 

 We made analytic simulations [Comtat et al., 1999] of a 3D phantom 

composed of 26 ellipsoids (phantom nº 1), acquired by a tomograph with a geometry 

similar to the High Resolution Research Tomograph (HRRT, Siemens).  Scatter, 

randoms and attenuation were not simulated.  

 
Figure 4.6- From the left to the right: sum of all the planes in the transaxial, coronal and sagittal directions 

of the phantom nº 1.  

 
Figure 4.7- Transaxial slice nº 104 of the phantom nº 1. 
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Figure 4.8- Transaxial slice nº 104 of the digital phantom nº 1 represented with the different color gradients 

used in this thesis. 

Figure 4.8 shows the slice nº 104 of the digital phantom nº 1 using the different colour 

gradients utilized in this thesis.  The diameter of the structures utilized in this thesis 

was 6 mm for the point source and 12, 20, 70 mm for the small, medium and large 

sources, respectively (see Figure 4.9). 

 

 
Figure 4.9- From the left to the right: Highlight of the point source and of the small , medium  and large 

sources used in this thesis. 

 In this thesis, the contrast of the hot structures studied, as defined in ( 4.14 ), 

was 4.For the cold structures the contrast, as defined in ( 4.15 ), was 1. 
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 The simulated dataset, with ~1x108 counts, were binned as described in 

section 3.4.1. Three scales were used in the multiscale reconstruction. The fine scale 

corresponds to the simulated data binned with the usual dimensions. The medium and 

coarse scales were generated by adding the two adjacent LORs in the azimuthal 

direction and in the radial direction of the sinogram of the previous scale.  Thus for 

scale s (s=1,2,3 for the fine, medium and coarse scales respectively), the sinograms 

used in this study had 256/2(s-1) bins radially and 288/2(s-1) bins along the azimuthal 

direction. The corresponding reconstructed images had 256/2(s-1) pixels by 256/2(s-1) 

pixels by 207 pixels (x, y and z directions respectively) (see Figure 4.10). In terms of 

physical dimensions these correspond to 1.21×2(s-1), 1.21×2(s-1) and 1.21 (mm) in the 

x, y and z directions, respectively. Figure 4.11 presents the sinogram of the slice nº 

104 of the segment zero and the corresponding histogram at the different scales. The 

maximum number of counts was of 172, 62 and 21 for the coarse, medium and fine 

scales, respectively.  

 The reconstructions of the data were done using all the data available (3D 

dataset) as well as using only the direct planes (2D dataset). 

 

 

 

 
Figure 4.10- 3D raw data dimensions and image dimensions used in the coarse (s=3), medium (s=2) and fine 

scale (s=1). 
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Figure 4.11- From left to right: sinogram of the slice nº 104 of 2D dataset (top) and the corresponding 

histogram (bottom) of the coarse, medium and fine scales, respectively. 

 

4.2.3 Performance	  Criteria	  

 

Choice of the Interpolation Kernel 

 

 The effects of using different interpolators in the final image were studied 

having into account the variations of the reconstruction error in sinogram space, 

denoted by 

 

𝑺𝒊𝒏𝒐𝑹𝒆𝒄𝑬𝒓𝒓𝒐𝒓 𝑘 = (𝒚! 𝑖 − (𝑯𝟏𝝀!!)(𝑖))!
!

, 
( 4.10 ) 

 

and the number of iterations required by the stopping criterion. The criterion to 

choose the number of iterations to use in a particular scale was based on the image 

space reconstruction error, defined by: 
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𝒊𝒎𝒂𝒈𝒆𝑹𝒆𝒄𝑬𝒓𝒓𝒐𝒓 𝑘 =
(𝝀!"#$ 𝑗 − 𝝀!!(𝑗))!!

𝝀!"#$ 𝑗!
  , 

( 4.11 ) 

 

where the 𝝀!"#$ is the true activity image.   

 Visual inspection of the final reconstructed images, the analysis of profiles and 

the (logarithm) power spectrum of the 2D Fourier transform of the final image central 

slice [Burger  et al., 2009] , 

 

𝑿 𝝀! = 𝐿𝑜𝑔 𝐴𝑏𝑠 ℱ! 𝝀! , ( 4.12 ) 

 

were also used. 

 The texture of the reconstructed image slices were also studied by analysing 

the 2D co-occurrence matrix defined by : 

 

𝑪∆𝒙,∆𝒚 𝑖, 𝑗 = 1, 𝑖𝑓 𝝀𝒌 𝑝, 𝑞 = 𝑖    𝑎𝑛𝑑    𝝀𝒌 𝑝 + ∆𝑥, 𝑞 + ∆𝑦 = 𝑗  
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

!"#

!!!

!"#

!!!

 
 
( 4.13 ) 

 

with 𝛌! the estimated slice at iteration k organized in a 2 dimension space and 

mapped into 128 quantization levels. In this study we only report on the co-

occurrence for ∆𝑥 = ∆𝑦 = +1. 

 

Performance of the Multiscale Reconstruction Algorithm 

 

  The stopping criterion in the coarse scales was the minimum error in the 

image space. Based on the analysis of the reconstruction results using the different 

interpolators (see section 4.3.1), the Gaussian interpolator was chosen as interpolator 

kernel.   

 The performance of the MS and the ML-EM were evaluated taking into 

account the variation of the reconstruction error in the sinogram space (as in  ( 4.10 )). 

An analysis based on Regions of Interest (ROIs) in the reconstructed images (fine 

scale in the case of MS) was also made. For each ROI was analysed the hot and cold 
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contrast given by: 

 

contrast!"# =
R k − B(k)

B(k)
 

and 

( 4.14 ) 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑐𝑜𝑙𝑑 = 1 −
𝑅 𝑘

𝐵(𝑘)
 

( 4.15 ) 

, respectively, where R is the mean activity in the ROI and B the mean activity in the 

background (see Figure 4.12).  

 

 
Figure 4.12- Representation of the background ROI (blue region). 

 Visual inspection of the final reconstructed images, as well as of the power 

spectrum (as expressed by ( 4.12 )) of the reconstruction images and of the initial 

condition images were done in order to find reconstruction artefacts. The co-

occurrence matrix was also analysed. 

4.3 Results	  

4.3.1 Interpolator	  Operator	  

 

 The performance of four different interpolators was tested: nearest neighbour 

interpolation (see ( 4.7 ) ), cubic interpolation (see ( 4.8 ) ), Gaussian interpolation(see 

( 4.9 )) and Lanczos interpolation (see ( 4.9 )). The stopping criterion used in each 

scale was the minimum error in image space as expressed by ( 4.11 ). 

 Table 4.1 shows the iteration number where the minimum image space error 

was obtained for the different scales using the different interpolations.  
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Table 4.1 - Number of iterations needed to reach the minimum error in the image space using the 3D 

dataset and using the 2D dataset for the diferent interpolation methods (Gaussain, nearest neighbour, 

Lanczos and cubic) in the fine (S1), medium (S2) and coarse scales (S3). 

 3D dataset 2D dataset 
 Gaussian Nearest Lanczos Cubic Gaussian Nearest Lanczos Cubic 

S3 14 14 14 14 13 13 13 13 

S2 21 23 20 21 7 6 6 8 

S1 17 17 15 18 3 3 3 3 

 

Figure 4.13 presents the fine scale sinogram reconstruction error as a function of the 

number of iterations for the different interpolation algorithms using the 3D dataset 

(top row) and the 2D dataset (bottom row). 

 

 

 
Figure 4.13- Sinogram reconstruction error in the fine scale as a function of the number of iterations for the 

different interpolation methods using all the available data (top) and using only the direct planes (bottom). 

 Figure 4.14 presents the sum of the transaxial planes of the reconstruction 

result using the Gaussian, nearest neighbour, cubic and Lanczos interpolation (from 
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left to  right). The top (bottom) row corresponds to the reconstruction images obtained 

using the 3D dataset (2D dataset). Similarly, the sum of the coronal and sagittal planes 

are presented in Figure 4.15 and Figure 4.16, respectively. 

 

 

 
Figure 4.14- Sum of the transaxial planes of the reconstruction images obtained using the Gaussian, nearest 

neighbour, cubic and Lanczos interpolation (from left to right respectively) when the 3D dataset is used (top 

row) and when the 2D dataset is used in the reconstruction (bottom row). 

 

 

 
Figure 4.15- Sum of the coronal planes of the reconstruction results obtained with Gaussian, nearest 

neighbour, cubic and Lanczos interpolation (from left to right respectively) when the 3D dataset is used (top 

row) and when the 2D dataset is used in the reconstruction (bottom row). 
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Figure 4.16- Sum of the sagittal planes of the reconstruction results obtained with Gaussian, nearest 

neighbour, cubic and Lanczos interpolation (from left to right respectively) when the 3D dataset is used (top 

row) and when the 2D dataset is used in the reconstruction (bottom row). 

 

 

 
Figure 4.17- Transaxial slice nº 104 of the reconstruction results obtained with Gaussian, nearest neighbour, 

cubic and Lanczos interpolation (from left to right respectively) when the 3D dataset is used (top row) and 

when the 2D dataset is used in the reconstruction (bottom row). 

 Figure 4.17 shows the results obtained for transaxial slice nº 104 for the 

different resampling algorithms. 

  Figure 4.18 presents the profiles of the slice nº 104 of the reconstruction 

results as a function of the interpolation method when the 3D dataset  (top row) and 

the 2D dataset (bottom row) are used in the reconstruction. The left column profiles 

cross a region with 3 small hot structures and the profiles in the right column cross a 

region with a big cold structure.   
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 Figure 4.18- Profiles of transaxial slice nº 104 of the reconstruction results obtained with the Gaussian, 

nearest neighbour, cubic and Lanczos interpolation (from left to right) when the 3D dataset is used (top 

row) and when the 2D dataset is used in the reconstruction (bottom row). The profiles on the left cross a 

region with 3 small hot structures and the profiles on the right cross a region with a big cold structure.       

 

The power spectra of the Fourier transform applied to the different 

initialization images used in the fine scale reconstructions are shown in Figure 4.19.  

Figure 4.20 and Figure 4.21 show the co-occurrence matrix of the slice nº 104 

in the transaxial plane of the initialization image in the fine scale using different 

interpolation methods when all available data were used and when only the direct 

planes were used in the reconstruction, respectively. 

Figure 4.22 shows the power spectrum of the Fourier transform applied to the 

true phantom.  
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Figure 4.19- Power spectrum of the Fourier transform applied to the transaxial slice nº 104 of the fine scale 

initialization image using as interpolation method the Gaussian, the nearest neighbour, the cubic and the 

Lanczos kernel (from left to right respectively) when the 3D dataset is used (top row) and when the 2D 

dataset used in the reconstruction (bottom row). 

 

 
Figure 4.20- Co-occurrence matrix of the transaxial slice nº 104 of the initialization image in the fine scale 

(s=1) using different interpolation methods when the 3D dataset is used. The figures  a, b, c, d correspond to 

the Lanczos,  cubic, Gaussian and nearest neighbour kernel, respectively. 
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Figure 4.21- Co-occurrence matrix of the slice nº 104 in the transaxial plane of the initialization image in the 

fine scale (s=1) using different interpolation methods when the 2D dataset is used. The figures a, b, c, d 

correspond to the Lanczos,  cubic, Gaussian and nearest neighbour kernel, respectively. 

 

 
Figure 4.22- Power spectrum of the Fourier transform applied to the slice nº 104 of the phantom nº 1. 

 

4.3.2 Performance	  of	  the	  Multiscale	  Reconstruction	  Algorithm	  

 

With the MS reconstruction, the minimum image space error was achieved at 

iterations 14, 21 and 17 in the coarse, medium and fine scales respectively. With ML-

EM, the stopping criterion was achieved at iteration 26. In this study the time per 
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iteration in the coarse, medium and fine scales was about 15 seconds, 1.4 minutes and 

7.2 minutes, respectively. 

The central slice reconstruction results are presented in Figure 4.23. 

 

 
Figure 4.23- MS reconstruction result (left) and ML-EM reconstruction result (right) for slice nº 104. 

 

Figure 4.24 presents the sinogram reconstruction error in the fine scale as a 

function of the iteration number using both methods. 

 

 

 
Figure 4.24- Sinogram reconstruction error in the fine scale as a function of the iteration number using the 

MS (blue) and ML-EM (red curve) reconstructions. 

 

The contrast values in the fine scale as a function of the number of iterations 

for hot structures are presented in Figure 4.25. 
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Figure 4.25- Contrast values in the fine scale as a function of the number of iterations for the central hot 

structures and the right hot structures (from left to the right, respectively). The black, blue and red curves 

correspond to the true phantom, MS and ML-EM reconstruction results for the 3D simulated data, 

respectively. 

 

 
Figure 4.26- Contrast values in the fine scale as a function of the number of iterations for the large and 

medium cold structures (represented by the green region in the top left/right image). The blue and red 

curves correspond to the MS and ML-EM reconstruction results for the 3D simulated data, respectively. 

Figure 4.26 shows the contrast in the fine scale as a function of the number of 

iterations for two cold structures. 

 Figure 4.27 presents the co-occurrence matrixes for slice nº 104 using both 

methods. 
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Figure 4.27- Co-occurrence matrix of the slice nº 104 of the reconstructed image using MS (left) and ML-

EM (right). 

 

4.4 Discussion	  

 

 In MS the reconstruction result of the previous scale is mapped into the next 

scale and used as the initial estimate for the reconstruction at that scale. Four 

interpolator kernels were tested: the Gaussian, the nearest neighbour, the cubic and 

the Lanczos. The different interpolator operators resulted in a similar number of 

iterations to reach the stopping criterion (minimum error in the image space) at the 

different scales (see Table 4.1 ). The greatest variation was found for the Laczos 

kernel. In the case of 2D reconstruction, the number of iterations was lower than with 

the 3D dataset due to the lower counting statistics of the data. This can also explain 

why the number of iterations for the 2D dataset decreases with the increase of the 

reconstruction scale.  Among other factors, the maximum frequency that can be 

recovered in a given scale depends on the reconstruction scale as well as on the 

number of counts. The improvements in data statistics by the addition of more data 

segments (3D dataset) allowed to recover more details, and thus the number of 

iterations did not decrease in the finest scale. 

  The fine scale sinogram reconstruction error as a function of the iterations 

decreases with the increase of the number of iterations (see Figure 4.13). In the first 

iterations, the reconstruction using the Lanczos (cubic) interpolation had the lowest 

(highest) error. In the later iterations the errors of the different reconstructions 
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converged to the same value. Similar behaviour was found for the 2D MS 

reconstructions (see Figure 4.13). 

 The visual inspection of the reconstruction results shows that the use of the 

nearest neighbour interpolation introduces some block effects in the final image (see 

Figure 4.14 and Figure 4.15). The profile lines that cross three small and hot 

structures and a cold big structure (left and right row of the Figure 4.18, respectively) 

show similar behaviour for the different interpolation methods. 

 The analysis of the power spectra of the Fourier transform, applied to the 

different initialization images used into the fine scale reconstructions, shows that the 

Lanczos and the nearest interpolation introduce some high frequency artefacts, which 

can lead to the introduction of erroneous high frequencies in the initial image (see 

Figure 4.19). Based on these spectra, the Gaussian kernel is the most suitable to be 

used in the MS reconstruction. This kernel should allow a smoother initial image and 

so reducing the probability of having high frequency artefacts in the final image.   

 Due to the image block effects, the co-occurrence matrix of the initial image 

generated using the nearest neighbour interpolation has a completely different 

signature (see Figure 4.20 and Figure 4.21). 

 The use of MS allows reducing the reconstruction time. Although several 

iterations are needed in the coarse scales (14 iterations in the coarse scale and 21 in 

the medium scale), the number of iterations needed in the fine scale was smaller (17) 

than with ML-EM (26). Since the number of arithmetical operations per iteration is 

lower in the coarse scales, the overall time is reduced.  

 The analysis of the evolution of the sinogram error (see Figure 4.24) shows 

that in the first iterations the MS sinogram error is lower than with ML-EM and in the 

later iterations the errors converge to the same value. Similar sinogram errors were 

achieved at the iteration when the minimum image error was reached. 

The multiscale reconstruction has a better contrast in the early fine scale 

iterations (see Figure 4.25 and Figure 4.26). In the case of the hot structures, in the 

later iterations, both methods converge to the same value (see Figure 4.26).  The 

convergence speed of the different structures is not uniform: it was especially 

improved for the cold structures (see Figure 4.26).  

 Both reconstruction methods show similar co-occurrence signatures (see 

Figure 4.27).  
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4.5 Conclusion	  

 

 Four different interpolation kernels were tested to map the reconstruction 

results between the different scales. The nearest neighbour interpolation introduces 

block effects in the reconstruction result. The analysis of the power spectum of the 

Fourier transforms revels that the Lanczos and the nearest neighbour interpolation 

introduce some artefacts, which can introduce erroneous high frequencies in the initial 

image. Based on the results of the comparative test, the Gaussian interpolation is the 

most suitable kernel to be used in the multiscale reconstruction.  

 The performance of the MS reconstruction was compared with the ML-EM. 

MS allows for the improvement of convergence speed. This conclusion is in 

agreement with the results reported by Raheja et al. [Raheja et al., 1999]. Our results 

show that the improvements in convergence speed are observed especially for cold 

regions. 
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Chapter 5 

5 The	  Multiscale/Multiframe	  Reconstruction	  Approach	  	  
 

 

 The multiscale/multiframe reconstruction (MS/MF) adds the concept of 

accumulated time frame to the multiscale reconstruction. This reconstruction scheme 

can be used to generate near real-time images in the scale that is the most suitable to 

the data statistics available at a given accumulated frame. If combined with high 

performance computing (HPC) techniques, the MS/MF may allow the optimization of 

the acquisition parameters on the fly.  

 The MS/MF reconstruction approach was developed, implemented, tested, 

optimized and characterised during this work. We start by presenting this novel 

reconstruction technique and by discussing possible applications where this 

reconstruction approach can be useful. We then study the effects of using the MS/MF 

in the final image. We compare the MS/MF reconstruction results with the 

reconstruction results obtained with the single scale/frame ML-EM. Finally, we 

discuss the potentialities of the MS/MF to generate near real-time images. 

 

5.1 Multiscale/Multiframe	  Reconstruction	  	  

 

The multiscale/multiframe algorithm (MS/MF)  introduces the concept of time 

frame to the MS reconstruction scheme proposed by Raheja et al. [Raheja et al., 

1999]. Instead of starting the reconstruction using all the data, the reconstruction 
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begins using a temporal subset of the data in the coarsest scale, as can be seen in 

Figure 5.1. 

 

 
Figure 5.1- The Multiscale/Multiframe reconstruction scheme. 

   

At the coarsest scale all the events acquired until the instant t1 are processed. The 

resulting reconstructed image, after resizing, will be used as the initial condition to the 

medium scale, where all the events between the beginning of the acquisition (t0) and 

the instant t2 are reconstructed. As before, the medium scale image will then be used 

as the initial condition to the fine scale reconstruction, using all events between t0 

(acquisition start) and t3 (acquisition stop).  When applied to ML-EM, the general 

equation of the MS/MF reconstruction is given by, 

 

𝝀!!!! =
𝝀!!

𝑯!
!𝟏𝒚!

𝑯!
! 𝒚!,!
𝑯! 𝝀!!

 

 

( 5.1) 

 

where s represents a generic scale. 𝑯!  is the system matrix at the scale s,  𝒚!,! is the 

set of data accumulated from the beginning of the acquisition to time t, and binned 

onto the projection matrix at the scale s. 𝟏𝒚! is a vector of ones with the same size as 

𝒚!. The initial condition (𝝀!!) used in the scale s is given by ( 4.2 ): 
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𝝀!! =
𝟏!  !"# , 𝒔 = 𝒔𝒎𝒂𝒙
𝑰!𝝀!

!!!! , 𝒔 ≠ 𝒔𝒎𝒂𝒙
 

 

 

where 𝐾!!! is the number of ML-EM iterations made in the previous scale (s+1), I is 

the interpolation operator that maps the previous scale image  to the next scale image 

and 𝟏!  !"#  is a constant image of ones with the same dimensions of the coarsest scale 

(Smax) image used. The main difference relative to the multiscale reconstruction is that 

the data used at a given scale depend on the accumulated time frame. 

 

5.1.1 MS/MF	  Applications	  

 

 The MS/MF could be useful to reconstruct images in systems with very high 

resolution and sensitivity, in adaptive systems for lesion detection, in in-beam PET 

systems and in systems with variable geometry and/or with a limited Field Of View.  

 During the acquisition the near real-time images can be used to detect regions 

with  “anomalies”. Based on this information the acquisition parameters can be 

optimized taking into account not only the study but also the patient, i.e., MS/MF can 

be used to adaptively choose the acquisition parameters.  

 For scanners with high resolution and sensitivity, the near real-time images 

can be useful to optimize the acquisition time and/or to optimize the way in which the 

individual lines of response can be combined. Performing the reconstruction using 

different scales allows for the improvement of the convergence speed and reduces the 

reconstruction time (see section 5.3).  

 For systems with variable geometry, this reconstruction technique can be 

extremely useful. Based on the information extracted from the near real-time images, 

the geometry of the scanners can be optimized to account for the localization of the 

tumors. For example this reconstruction technique can be used in scanners like the 

ClearPem [Abreu et al., 2007] or Zoom-in PET System [Zhou et Qi, 2011]. 

 Another area where this technique can be useful is on In-Beam PET [Yamaya 

et al, 2008], where the near real-time images can be used to optimize the irradiation of 

the target.  
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5.2 Material	  and	  Methods 

5.2.1 Phantom	  nº	  2	  Dataset	  

  

 We made analytic simulations [Comtat et al., 1999] of a 3D phantom 

composed of a truncated ellipsoid, phantom nº 2 (see Figure 5.2), acquired by a 

tomograph with a geometry similar to the High Resolution Research Tomograph 

(HRRT,Siemens). Scatter, randoms and attenuation were not simulated. 

	  
Figure 5.2- From the left to the right: sum of all planes of the digital phantom nº 2 in the transaxial, coronal 

and sagital direction. 

 One MS/MF dataset with three scales/frames was generated with 3×10!×

4(!!!) total counts per scale/frame (s=1,2,3 for the fine, medium and coarse scales, 

respectively). The number of counts per sinogram bin was chosen to be constant at the 

different scales/frames. The dimensions of the image and sinogram spaces for each 

scale/frame were the same as the data simulated in Chapter 4 (see section 4.2.2). 

Figure 5.3 presents the sinogram of the slice nº 104 of the segment zero and the 

corresponding histogram at the different scales. 
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Figure 5.3- From left to right: sinograms of the central plane of segment zero for the digital phantom nº 2 at 

the coarse, medium and fine scales, respectively. 

 

5.2.2 Phantom	  nº	  1	  	  Datasets	  

 

 We made analytic simulations [Comtat et al., 1999] of the digital phantom nº 1 

(see Figure 4.6) acquired by a tomograph with a geometry similar to the High 

Resolution Research Tomograph (HRRT,Siemens). Scatter, randoms and attenuation 

were not simulated. 

  Two multiscale/multiframe datasets were generated with different number of 

counts. The first dataset had 2×10!×4(!!!) total counts per scale/frame (high counts 

dataset) and the second has 2×10!×4(!!!) (low counts dataset).  The number of 

counts per sinogram bin was chosen to be constant at the different scales/frames. The 

raw data used for the single scale/frame ML-EM is the fine scale/frame of each 

datasets. The dimensions of the image and sinogram spaces for each scale were the 

same as the data simulated in Chapter 4 (see section 4.2.2). Figure 5.4 and Figure 5.5 

present the sinogram of the slice nº 104 of the segment zero and the corresponding 

histogram at the different scales for the high count and low count datasets, 

respectively. 
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Figure 5.4- From left to right: sinograms of the central plane of segment zero for the phantom nº 1 high 

counts dataset at the coarse, medium and fine scales, respectively. 

. 

 
Figure 5.5- From left to right: sinograms of the central plane of segment zero for the phantom nº 1 low 

counts dataset at the coarse, medium and fine scales, respectively. 
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5.2.3 Micro-‐Deluxe	  Phantom	  Dataset	  

 

The MS/MF was also tested with a real 3D acquisition of a Micro-Deluxe 

phantom [MicroDeluxe, 2012] with the interior cylinder filled with a FDG solution 

(no activity in the rods). The diameters of the different phantom rods are 1.2, 1.6, 

2.4, 3.2, 4.0 and 4.8 mm. After the acquisition the data were binned as described in 

section 3.4.1 (see Figure 5.6). 

 
Figure 5.6- Central plane of the segment zero of the prompt Micro-Deluxe raw data acquired in the HRRT. 

 

 Since no list-mode data were available, a list of events was generated by a 

weighted random selection of the sinogram bins. The weight has into account the 

number of counts of the correspondent sinogram bin.  Two accumulated prompt and 

delayed datasets where generated. The data correction was done during the iterative 

reconstruction (see (2.29)). 

The number of counts per sinogram bin was chosen to be constant at the different 

scales/frames. The first was binned to the medium scale and the second to the fine 

scale (see section 4.2.2). The second accumulated frame had a total prompts counts 

equal to ~ 5.7x108. The corresponding dimensions of the reconstructed images at 

each scale/frame were the same as the ones used in the section 4.2.2.  
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5.2.4 Performance	  Criteria	  

 

 The performance of the two reconstruction methods was evaluated taking into 

account the variation of the reconstruction error in the sinogram (see ( 4.10 )) and 

image (see ( 4.11 )) spaces. In this study the time per iteration in the coarse, medium 

and fine scales was about 15 seconds, 1.4 minutes and 7.2 minutes, respectively. The 

texture analysis (see section 4.2.3) of the reconstructed images was also performed. 

 The contrast as a function of the number of iterations (see section 4.2.3) and 

the contrast as a function of the background standard deviation, sdt, (see Figure 4.12) 

were analysed for diferents ROIs of the phantom nº1.  

 For the Micro-Deluxe dataset the performance of the reconstrcutions was done 

by visual inspection and by taking into account the variation of the mean value of the 

central cold structure of the phantom (see Figure 5.7) as a function of the iterations.   

 

 
Figure 5.7- Representation of the central cold structure of the Micro-Deluxe phantom (green region). 

  

5.3 Results	  

 

 Several datasets were used to study the effects of using different scales/frames 

on the final reconstructed image and also to provide a proof of concept of the use of 

MS/MF to generate near real-time images. The performance of the MS/MF was 

compared with the (single grid) ML-EM. 

 We began by test the MS/MF using 3D datasets generated by an analytical 

simulation of phantoms nº 2 (see Figure 5.2) and nº 1 (see Figure 4.6). After that, we 

tested this reconstruction technique using pseudo real data acquired in the HRRT. The 

difference between the fine grid reconstruction results of the MS/MF and the (single 

grid) ML-EM is only due to the different initial conditions. In the case of the MS/MF 

the initial condition is the interpolated reconstruction result of the previous scale and 

in the case of the (single grid) ML-EM it is a volume with the constant value of one. 
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Although the reconstruction of the raw data is a volume, only the central slice was 

chosen in order to simplify the presentation of the reconstruction results. The criterion 

to select the number of iterations to perform in each scale was the minimum image 

space error.  

5.3.1 Phantom	  nº	  2	  Dataset	  

 

 Figure 5.8 and  Figure 5.9 show the fine scale sinogram reconstruction error 

and the image space reconstruction error respectively, as a function of the iteration 

number for both reconstruction methods. The MS/MF achieved the minimum 

reconstruction image error at iterations 10, 9 and 10 in the coarse, medium and fine 

scales, respectively. ML-EM reached the minimum at the 17th iteration. 

 

 

 

 
Figure 5.8- Phantom nº 2 dataset. Sinogram reconstruction error as a function of the iteration number done 

in the fine scale. For the MS/MF reconstruction 10 and 9 iterations were done in the coarse and medium 

scale, respectively. 
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 Figure 5.9- Phantom nº 2 dataset. Fine scale image space reconstruction error as a function of the iteration 

number. For the MS/MF reconstruction 10 and 9 iterations were done in the coarse and medium scale, 

respectively. The black point for each curve corresponds to the iteration where the minimum error was 

reached. 

 

 The sum of all planes of the reconstructed images in the transaxial, coronal 

and sagital directions obtained with the MS/MF and ML-EM are presented in Figure 

5.10 and Figure 5.11, respectively. 

 Figure 5.12 shows the reconstruction results for slice nº 104 obtained with 

MS/MF and ML-EM and Figure 5.13 presents the corresponding co-occurrence 

matrices. 

 Figure 5.14 shows the reconstruction results using MS/MF at different 

iterations. 

 

 

 
Figure 5.10- From the left to the right: sum of all the planes of the MS/MF reconstruction result in the 

transaxial, coronal and sagital directions, repectively, using the phantom nº 2 dataset. 
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Figure 5.11- From the left to the right: sum of all planes of the ML-EM  reconstruction result in the 

transaxial, coronal and sagital directions, repectively, using the phantom nº 2 dataset. 

 

 
Figure 5.12-Phantom nº 2 dataset. MS/MF (left) and ML-EM (right) reconstruction results for the 

transaxial slice nº 104. 

 

 
Figure 5.13- Phantom nº 2 dataset. Co-occurrence matrix of the reconstruction result for transaxial slice 

nº104 with ML-EM (left) and MS/MF (right). 
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Figure 5.14- Phantom nº 2 dataset. Reconstruction results of the transaxial slice nº 104 using the MS/MF at 

iteration 10, 30 and 60. 

 

5.3.2 Phantom	  nº1	  Datasets	  

 

 Figure 5.15 presents the slice nº 104 of the true image and of the resulting 

reconstructed images obtained with MS/MF and ML-EM using the high counts 

dataset. The MS/MF achieved the minimum reconstruction image error at iterations 

24, 23 and 24 in the coarse, medium and fine scales, respectively. With ML-EM the 

minimum was reached at the 33th iteration.  

 

 

 
Figure 5.15- ML-EM reconstruction result (left) and MS/MF reconstruction result (right) for transaxial nº  

104 using the high counts dataset. 

 

With the low count dataset the MS/MF achieved the minimum reconstruction error at 

iterations 9, 9 and 10 in the coarse, medium and fine scales, respectively. With ML-
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EM the stopping criterion was satisfied at iteration 16.  Figure 5.16 presents the 

reconstruction results of the low counts dataset using both methods. 

 

 
Figure 5.16- ML-EM reconstruction result (left) and MS/MF reconstruction result (right) for transaxial 

slice nº 104 using the low counts dataset. 

 

 The evolution of the sinogram reconstruction error as a function of the 

iterations for the high counts dataset and the low counts dataset are presented in 

Figure 5.17 and Figure 5.18, respectively. 
 

 

 

 
Figure 5.17 - High counts dataset. Sinogram reconstruction error as a function of the iteration number for 

the fine scale. The blue curve corresponds to the MS/MF error and the red to the ML-EM error. For the 

MS/MF reconstruction 24 and 23 iterations were done in the coarse and medium scale, respectively. 
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Figure 5.18- Low counts dataset. Sinogram reconstruction error as a function of the iteration number for 

the fine scale. The blue curve corresponds to the MS/MF error and the red to the ML-EM error. For the 

MS/MF reconstruction  9 iterations were done in the coarse and medium scale. 

 The contrast as a function of the iteration number was also studied for the 

different structures that compose the phantom using the reconstruction resuls of the 

high counts dataset. The top row of Figure 5.19 shows the results of the 

reconstruction of the high counts dataset for two hot structures. The bottom row 

shows the contrast as a function of the background standard deviation. Similar 

analysis is presented in Figure 5.20 for two cold structures.  

 We also investigated if the use of different scales introduces artefacts by 

visual inspection and by analysing the texture. Figure 5.21 and Figure 5.22 present the 

co-occurrence matrix of the reconstruction image with both methods using the high 

counts dataset and the low counts dataset, respectively. 

 The top row of Figure 5.23 presents the MS/MF results in the coarse (left) and 

medium (right) scales using the low counts dataset. The bottom of this figure presents 

the results of the first accumulated frame (left) and the second accumulated frame 

(right) using the ML-EM. Eight iterations were done in the first accumulated frame 

and 9 in the second.  

 

 

 

 

 

 

 



5- The  Multiscale/Multiframe Reconstruction Approach  

 

 

 107 

 

 

 

 

 

 

 

 

 
Figure 5.19- High counts dataset. Contrast values as a function of the number of iterations and contrast as a 

function of the background standard deviation (centre and bottom rows, respectively) for the hot structures 

with 6 mm of diameter shown in green inside the shaded rectangle of the images in the top row. The black, 

blue and red curves correspond to the true phantom, fine scale/frame MS/MF and ML-EM reconstruction 

results, respectively. 
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Figure 5.20- High counts dataset. Contrast values as a function of the number of iterations and contrast as a 

function of the background standard deviation (centre and bottom rows, respectively) for the big (with 70 

mm of diameter) and small (with 12 mm of diameter) cold structures shown in green on the images in the 

top row. The blue and red curves correspond to the fine scale/frame MS/MF and ML-EM reconstruction 

results, respectively. 
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Figure 5.21- High counts dataset. Co-occurrence matrix of the reconstruction result for the slice nº104 with 

ML-EM (left) and with MS/MF (right). 

 

 

 

 
Figure 5.22- Low counts dataset. Co-occurrence matrix of the reconstruction result for the slice nº104 with 

ML-EM (left) and with MS/MF (right). 
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Figure 5.23- Low counts dataset. The top row corresponds to the reconstruction results (slice nº 104) using 

the MS/MF in the coarse scale (left) and medium scale (right). In the bottom the corresponding 

reconstruction results using the ML-EM are shown. The left (right) image corresponds to the first (second) 

accumulated frame. 

 

5.3.3 Micro-‐Deluxe	  Phantom	  Dataset	  

  

 The left image of Figure 5.24 shows the MS/MF reconstructed slice nº 104 in 

the medium scale with 30 iterations. The right image shows the fine scale MS/MF 

reconstruction with 75 iterations.  

 

 
Figure 5.24- The left image corresponds to the Micro-Deluxe reconstruction result for the slice nº 104 of the 

first accumulated frame in the medium scale with 30 iterations. The right image shows the reconstruction of 

the second accumulated frame in the finest scale with 75 iterations. 
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Figure 5.25- Left column corresponds to the MS/MF reconstruction results when were done 30 iterations in 

the medium scale, the central column correspond to the reconstruction results using the ML-EM algorithm 

and the right correspond to the MS/MF reconstruction results when were done 60 iterations in the medium 

scale. The top row corresponds to the reconstruction results with 1 iteration, the central row with 75 

iterations and the bottom row with 150 iterations. 

 

 Figure 5.25 presents a qualitative reconstruction result of slice nº 104 for the 

Micro-Deluxe phantom using the MS/MF and the ML-EM. The left column 

corresponds to the MS/MF reconstruction results with 30 iterations in the previous 

scale, the central column shows the results with the ML-EM algorithm and the right 

column shows the MS/MF reconstruction results with 60 iterations in the previous 

scale. The top row corresponds to the reconstruction results with 1 iteration, the 

central raw with 75 iterations and the bottom raw with 150 iterations. 

 Figure 5.26 shows the mean value of the central cold structure (see Figure 5.7) 

as a function of the iteration number.  
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Figure 5.26- Mean value of the Micro-Deluxe central cold structure as a function of the iteration number for 

the fine scale. The green and blue curves correspond to the MS/MF reconstruction results with 30 and 60 

iterations in the medium scale, respectively, and the red curve to the ML-EM reconstruction result. The 

mean values are expressed in arbitrary units (a.u.). 

 

5.4 Discussion	  

 

 The MS/MF reconstruction algorithm was characterized using different 

datasets. The performance of the proposed algorithm was compared with the 

reconstruction results obtained using the ML-EM algorithm.  

 We start by testing the MS/MF reconstruction algorithm using simulated 3D 

raw data of a uniform phantom (see Figure 5.2). At the early iterations the fine scale 

sinogram reconstruction error achieved by the MS/MF was lower when compared 

with the ML-EM (see Figure 5.8). For the later iterations both methods exhibit similar 

image (see  Figure 5.9) and sinogram reconstruction errors. Based on visual analysis 

of the reconstruction results, the MS/MF did not introduce significant artefacts in the 

final image (see Figure 5.10 and Figure 5.11). However the MS/MF slice 

reconstruction result exhibits a different noise texture (see Figure 5.12). The analysis 

of the co-occurrence matrices (see Figure 5.13) confirms the visual difference in the 

texture of the images. In order to avoid the introduction of erroneous high frequencies 

into the initial image, several studies were made to select the most suitable 

interpolator operator (see section 4.3.1). Even so, the interpolation introduces 

correlations between neighboring pixels, which only slowly disappear during the fine 
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scale reconstruction (see Figure 5.14). Due to the redundancy of data in our study 

(~1.6 x 108 sinogram bins for only 1.3 x 107 images voxels) the nullspace of the fine 

scale matrix are highly likely to be trivial. Under this condition the ML solution is 

unique and therefore we expect  both strategies to eventually converge to the same 

image. 

 The studies of the local effects of the use of different scales/frames in the final 

image and the potentialities of the MS/MF to perform reconstruction in near real-time 

were done using 2 simulated datasets of the phantom nº 1. As was found for the 

phanton nº 2, the analysis of the evolution of the sinogram error (Figure 5.17 and 

Figure 5.18) shows that, although both methods converge to the same value, the fine 

scale MS/MF sinogram error is lower in the early iterations. The global improvement 

of convergence speed by the use of scales/frames is in agreement with the results 

presented in Chapter 4 for multiscale reconstruction. As was found for the MS (see 

section 4.3.2), for the hot regions the advantage of using different scales/frames 

disappears for the later iterations (Figure 5.19). However, when this happens, the 

reconstruction should already have been stopped (the minimum error in the image 

space has been already achieved). Based on the co-occurrence matrices (see Figure 

5.21 and Figure 5.22) and visual analysis (Figure 5.15 and Figure 5.16) of the final 

reconstructed images, we conclude that the low count reconstruction results exhibits a 

different noise texture, as the one found in the reconstruction results of the phantom 

nº 2. As we can see in Figure 5.19, both strategies allow the same contrast level for 

the hot structures if we iterate enough. However, the same contrast can be achieved 

faster with MS/MF, with approximately the same noise. When we observe the 

contrast as a function of the background standard deviation (Figure 5.19), no 

significant differences between the two strategies were found. For the cold  ROIs (see 

Figure 5.20), there is a lack of convergence. Since in ML-EM the convergence of 

regions with low tracer uptake is slower, the maximum number of iterations used may 

not have been enough.  

 In applications that require near real-time reconstruction, performing the 

accumulated frames reconstruction using the usual acquisition protocol is not feasible. 

Since the number of operations per iteration is reduced in the coarse scales, the 

MS/MF method can be used to perform near real-time reconstructions at different 
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scales/frames. The time spent in one coarse scale (medium scale) iteration 

corresponds to ~ 5% (20%) of the time spent in one iteration in the fine scale.  

As we can see in Figure 5.23, the choice of the reconstruction scale should take into 

account the counting statistics available at a given frame, since the maximum 

frequencies that can be recovered depend on this parameter. Although the voxel size 

of the ML-EM reconstruction (bottom left of Figure 5.23) is smaller compared with 

the coarse scale (top left of Figure 5.23) the low statistics in this early frame does not 

allow for the recovery of the high resolution details. This is confirmed by the lower 

number of iterations (8 iterations) required by the stopping criterion when compared 

with the 16 iterations required for the reconstruction of the complete dataset.  

 The effects on the final reconstruction image were also tested using pseudo 

real data. Based on visual inspection, the use of scales/frames in the reconstruction of 

the Micro-Deluxe data did not introduce significant artefacts on the reconstructed 

images (Figure 5.24 and Figure 5.25). Despite the lack of resolution of the medium 

scale image, it is possible to identify the phantom type. As happened with the 

simulated data, the MS/MF approach improves the convergence speed in the fine 

scale (see Figure 5.26). 

   

5.5 Conclusions	  

 

 A MS/MF reconstruction technique has been presented and its performance 

evaluated.  

 The use of a better initial condition for the finest scale improves the 

convergence speed allowing a reduction of the overall reconstruction time.  

The near real-time images generated by the MS/MF reconstruction algorithm may 

allow the optimization of the acquisition parameters on the fly. The choice of the 

reconstruction scale should take into account the data statistics available at a given 

accumulated frame. 

  A different noise structure was found in the MS/MF reconstructed images. 

Improvements in the interpolation operator should reduce the correlation between the 

voxels. 
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 MS/MF could be useful to perform image reconstruction in systems with very 

high resolution and sensitivity, in adaptive systems for lesion detection, for in-beam 

PET systems and in systems with variable geometry.  
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Chapter 6 

6 A	   Generalized	   Morozov	   Discrepancy	   Criterion	   for the 

MS/MF 
 

 The MS/MF reconstruction introduces new variables that must be optimized. 

In this chapter we present a generalized Morozov discrepancy criterion for Poisson 

data to adaptively select the number of iterations needed in each scale. Based on this 

generalization a weighted discrete Fourier Morozov criterion (WDF-Morozov) as well 

as the Morozov criterion can be derived. In the WDF-Morozov, the weights can be 

chosen to improve the performance of the stopping criterion. This is particularly 

useful when the modelling of the system matrix is not perfect.  

 We begin by doing an overview of the stopping criteria proposed for PET data 

iterative reconstruction. We then present the generalized Morozov discrepancy 

criterion. The performance of the Morozov criterion was tested using different 

simulated datasets. A proof of concept of the use of the WDF-Morozov criterion is 

also presented.   
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6.1 Stopping	  Criteria	  

 

 Due to the data noise and the ill-posedness nature of the problem, the 

maximum likelihood solution is too noisy and in certain cases can lead to “night sky” 

solutions [Barrett et al., 2003].  

Although the value of the objective function continues to increase, the solution starts 

to be very noisy (as can be seen in Figure 6.1). This happens because the algorithm 

tries to fit the noise of the raw data (as can be seen in Figure 6.2). The increase of the 

image noise with the number of iterations can also be noticed by the analysis of the 

co-occurrence matrix (see Figure 6.3). Several strategies can be used to avoid this 

problem, such as introducing a regularization term, stopping the reconstruction earlier 

or filter the image after the final reconstruction. 

 

 

Figure 6.1  - From left to right: Reconstructed image using the ML-EM algorithm at iterations 30, 100 and 

400.  

 

 
Figure 6.2 - From left to right: estimated sinogram at iterations 30, 100 and 400.  
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Figure 6.3 - From left to right: co-occurrence matrix (128 levels) for the reconstruction image at iterations 

30, 100 and 400. 

 Veklerov et al.[Veklerov and Llacer, 1987] used a stopping criterion based on 

the Pearson χ2 goodness-of-fit to stop the ML-EM reconstruction when the  image 

solution is feasible, i.e., consistent with the data. A feasible reconstructed image 

corresponds to the one that could have caused or produced the observed data by the 

statistical process that governs the measurement [Veklerov and Llacer, 1987]. When 

compared with the Filtered Backprojection reconstruction, the solution given by this 

criterion shows low noise specially in the cold regions [Veklerov and Llacer, 1987]. 

The main problem of this method is its high sensitivity to small inaccuracies in the 

system matrix. To overpass this problem, Llancer et al. [Llacer et Veklerov, 1989] 

introduced a factor that expresses the inaccuracies in the system matrix modelling. Its 

value is chosen based on experience. The authors tested this criterion with real data 

(Hoffman brain phantom) acquired with the UCLA ECAT-111. They reported that the 

images obtained were sharp and did not presented noise deterioration. 

 In 1993  Llacer et al. [Llacer et al., 1993]  tested a stopping criterion based on 

the cross-validation (CV) technique. This technique begins by split the data into n 

independent datasets and then each dataset is reconstructed using the ML-EM 

algorithm. At each iteration, the cross-validation likelihood between the different 

estimated solutions is computed. The reconstruction of a particular dataset stops when 

its cross-validation likelihood starts to decrease. The final reconstructed image 

corresponds to the sum of the n reconstructed images. Llacer et al. [Llacer et al., 

1993]  claim that this technique works well with simulated images and with a wide 

range of real data sets.  For acquisitions with a very high number of counts they report 

that the maximum was never reached (due to the lack of accuracy in the system 
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matrix model used). They also reported, if the data corrections did not preserve the 

Poisson characteristics of the data the stopping point would occur later. Selivanov  et 

al. [Selivanov et al., 2001] tested this stopping rule with 2D dynamic reconstruction 

using data acquired in the Sherbrooke high-resolution animal tomograph [Lecomte et 

al., 1996]. When the number of counts of the dynamic series was sufficiently high, 

they reported that the CV stopping rule ensures a good balance between noise and 

quantitative accuracy of the estimated images. However, for low-count dynamic 

series the reconstruction stopped too early, i.e., the estimated image exhibited low 

noise and the quantitative accuracy was lower. Johnson [Johnson, 1994] studied the 

dependence between the total photon number of counts and iteration number at which 

the cross-validation likelihood function is maximized. As expected, he found that the 

CV optimal iteration depends on the total counts. To avoid problems related to the 

data split he proposed a Jackknife processing scheme [Reeds, 1978]. Under this 

approach the events are split into n subsets. The union of the n-1 subsets is used to 

perform the reconstruction and only one is used in the cross validation.  

 For the MGEM (see section 4.1), Ranganath et al. used a criterion based on 

the variation of the log-likelihood [Rangana et al., 1988]. The reconstruction 

algorithm MREM (see section 4.1) used a stopping criterion based on wavelets. Tests 

performed by Rahej et al.  [Raheja et al., 1999] led to the establishment of a 

relationship between the energy of the high-high wavelet band [Daubechies, 1992] of 

the reconstructed image and the minimum image space error. The change of scale is 

done when the energy in the high-high band reaches a maximum.   

 A similar problem is to select the regularization parameter of the regularized 

deblurring and denoising algorithms for Poisson data. The maximization of the 

likelihood function for Poisson data is equivalent to the minimization of the 

generalized Kullback-Leibler divergence. Bertero et al. [Bertero et al., 1998] [Zanella 

et al, 2009] propose a criterion based on the discrepancy principle for Poisson data. 

The selection criterion is justified by the statistical properties of the Poisson noise 

[Zanella et al, 2009]. They also tested this criterion as a stopping rule for the iterative 

deconvolution of astronomical images.  
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6.2 A	  Generalized	  Morozov	  Discrepancy	  Principle	  

 

 In this study a generalized Morozov discrepancy criterion for Poisson data 

[Defrise et DeMol., 1987], [Bertero et al., 1998] was used to select the number of 

iterations needed in each scale. 

 The residual error due to Poisson noise can be defined as 

 

𝒓 = 𝒚−𝑯𝝀 , ( 6.1 ) 

where 𝑯  is the system matrix, 𝒚 the measured data and 𝝀 the activity image.  

Assuming that the raw data is consistent with the Poisson hypothesis, the second 

moment of the raw data is given by: 

 

𝐸 𝒓𝒓𝑻 = 𝑫𝑯𝝀 ≈ 𝑫𝒚 , ( 6.2 ) 

 

where 𝑫! is a diagonal matrix with the projection data, and 𝑫!" is a diagonal matrix 

corresponding to the activity image projected to the projection space. This relation 

can be used to establish a stopping criterion. Consider a 𝑀×𝐿 matrix 𝑸, with M the 

dimensions of the raw data and L an arbitrary integer number. Then, 

 

𝑸𝐸 𝒓𝒌𝒓𝒌𝑻 𝑸! ≈ 𝑸𝑫𝒚𝑸𝑻. ( 6.3 ) 

 
By taking the trace of both sides of equation ( 6.3 )  the relation continues to hold, 
 

𝑇𝑟 𝑸𝐸 𝒓𝒌𝒓𝒌𝑻 𝑸! ≈ 𝑇𝑟 𝑸𝒀𝑸! 𝑤𝑖𝑡ℎ 𝒀(𝑖, 𝑗) = 𝛿!,!𝒚!. ( 6.4 ) 

 
In the case of an iterative reconstruction we can calculate the estimated residual error 

at the iteration k as, 

 

𝒓𝒌 = 𝒚−𝑯𝝀𝒌 . ( 6.5 ) 

 

The reconstruction can be stopped when an approximated equivalent of ( 6.4 ) is 

satisfied: 
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𝑇𝑟 𝑸𝐸 𝒓𝒌𝒓𝒌𝑻 𝑸! = 𝑇𝑟 𝑸𝒀𝑸! 𝑤𝑖𝑡ℎ 𝒀(𝑖, 𝑗) = 𝛿!,!𝒚! . . ( 6.6 ) 

 

Equation ( 6.6 ) is a generalization of the Morozov discrepancy principle for Poisson 

data. A proper choice of the 𝑸 matrix could allow for the improvement of the 

performance of the stopping criterion. For example, this generalization allows us to 

formulate the Morozov stopping criterion as a weighted discrete Fourier Morozov 

criterio.  The (usual) Morozov stopping criterion is found by taking the Q  equal to the 

identity matrix. 

 

6.2.1 Morozov	  Criterion	  

 

 The Morozov stopping criterion can be found by choose the Q matrix as the 

identity matrix. In this case equation can be simplified to: 

Tr 𝐫!𝐫!! ≈ 𝒚!  
!

. 
( 6.7 ) 

 

The Morozov stopping criterion is satisfied when the sum of the squares of the 

estimated residuals at a given iteration is roughly equal to the sum of the number of 

counts in the raw data. Although the ML-EM algorithm only ensures the increase of 

the likelihood function, in general, with the increase of the number of iterations the 

left-hand side (LHS) of ( 6.7 ) decreases. 

  Initially (k=0) the LHS of ( 6.7 ) is larger because the initial image estimated 

does not fit the data.  In our experiments with simulated data, we observe that with the 

increasing number of iterations the LHS decreases and after a given number of 

iterations it is roughly equal to the total number of counts (right-hand side (RHS) of ( 

6.7 ).  
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6.2.2 Weighted	  Discrete	  Fourier	  Morozov	  Criterion	  

 

   A weighted discrete Fourier Morozov Criterion (WDF Morozov) can be 

found by choose the matrix Q equal to the weighted discrete Fourier transform as 

expressed by: 

 

𝑸 =𝑾𝑭, ( 6.8) 

where W is the diagonal matrix with the weights and F the Fourier matrix. For the 

sake of simplicity, we consider the case where the 1D discrete Fourier transform is 

applied in the radial direction to the sinogram elements with a given azimuthal angle 

denoted by 𝒓!,! = 𝒓!,!(𝑥!). The correspondent measured elements are defined by 

𝒚! = 𝒚!(𝑥!). Under these assumption the LHS of ( 6.6 ) can be expressed by, 

 

𝑾𝑭𝟏𝒓!,!
! = 𝑾(𝑙, 𝑙)𝟐 𝒆!

!!"#$
! 𝒓!,!(𝑗)𝒋

𝟐

! . 

 

( 6.9 ) 

The RHS of  ( 6.6 ) can be written as: 

 

𝑇𝑟 𝑸𝒀𝝓𝑸𝑻 = 𝑇𝑟 𝑾𝑭!𝒀!𝑭!!𝑾! = 𝑇𝑟{𝑭!!𝑾!𝑾𝑭!𝒀!}. ( 6.10 ) 

In order to simplify the equation ( 6.10) please note that  𝑾!𝑾𝑭𝟏𝒀! can be given by: 

 

(𝑾!𝑾𝑭!𝒀!)(!") =𝑾(𝑙, 𝑙)!𝑒
!!!"#$
! 𝒚!(𝑗). 

( 6.11 ) 

  

and then  𝑭!!𝑾!𝑾𝑭!𝒀!  can be calculated by, 

 

(𝑭!!𝑾!𝑾𝑭𝟏𝒀!)!" = 𝑒
!!!"#$
! 𝑾(𝑙, 𝑙)!𝑒

!!!"#$
!! 𝒚!(𝑗). 

 

( 6.12) 

Taking into account ( 6.12), the RHS of ( 6.6 ) can be expressed as: 

 

𝑇𝑟 𝑸𝒀𝝓𝑸𝑻 = (𝑭𝟏𝑻𝑾𝑻𝑾𝑭𝟏𝒀𝝓)!!! = 𝒚!(𝑗)! 𝑾 𝑙, 𝑙 !
! . 

 

( 6.13 ) 



124                      6-A Generalized Morozov Discrepancy Criterion for the MS/MF 

 

 

 

Finally, from ( 6.9) and ( 6.13), the weighted discrete Fourier Morozov Criterion is 

given by: 

 

𝑾(𝑙, 𝑙)𝟐 𝒆!
!!"#$
! 𝒓!,!(𝑗)𝒋

𝟐
≈ 𝒚!(𝑗) 𝑾(𝑙, 𝑙)𝟐𝒍𝒋! . 

 

( 6.14 ) 

The corresponding stopping criterion take into account the different azimuthal angles 

is given by: 

 

( 𝑾(𝑙, 𝑙)𝟐 𝑒!
!!"#$
! 𝒓!,!(𝑗)𝒋

𝟐
)𝒍! ≈ ( 𝒚!(𝑗) 𝑾(𝑙, 𝑙)𝟐)𝒍𝒋! . 

 

( 6.15 ) 

The performance of the traditional Morozov criterion can be improved by giving 

different weights to the different frequencies. 
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6.3 Material	  and	  Methods	  

6.3.1 Reconstruction	  Using	  the	  ML-‐EM	  

2D	  Reconstruction	  

 

 Simulated 2D data of a phantom composed of a hot and a cold source (see 

Figure 6.4), phantom nº 3, with 3x107 counts were used to test the performance of the 

Morozov stopping criterion. Figure 6.5 shows the sinogram of the direct plane nº104 

and the corresponding histogram. 

 The number of iterations required by the Morozov criterion and by the 

minimum image space reconstruction error (MISRE) criterion was compared.  

3D Reconstruction 

 

 The impact of the number of segments in the performance of the Morozov 

stopping criterion was tested using simulated data of the phantom nº 1 (see section 

4.2.2) with 1x108 total counts. 

 The high counts dataset (see 5.2.2) and the medium counts dataset (generated 

using the same phantom but now with 1.5×10!×4(!!!) total counts at the scale s) 

were also used to test the performance of the Morozov criterion applied to 3D data 

reconstruction. 

 

 
Figure 6.4- Representation of phantom nº 3. From left to right: sum of all planes in the transaxial, coronal 

and sagittal directions. 
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Figure 6.5- Phantom nº 3 dataset. Sinogram of slice nº 104 of segment zero(top) and corresponding 

histogram (bottom). 

 

6.3.2 Reconstruction	  Using	  the	  MS/MF	  

 

3D Reconstruction using the MS/MF 

 

 The Morozov stopping criterion, after been applied to the ML-EM 

reconstruction was tested if was suitable to the MS/MF reconstruction approach. Two 

MS/MF datasets of the phantom nº 1 (see Figure 4.7) were tested: the high counts 

dataset (see section 5.2.2) and the medium counts dataset (see section 6.3.1). Three 

scales (coarse, medium and fine) were used, as shown in Figure 4.1. The performance 

of the MS/MF reconstruction using the Morozov stopping criterion was compared 

with the MS/MF using the minimum image space reconstruction error (MISRE) as a 

stooping criterion and the ML-EM using the Morozov stopping criterion. The ML-

EM raw data corresponds to the fine scale/frame of each dataset. As in the previous 

chapter, the Gaussian interpolator was used to project the coarse scale reconstruction 

result to the next. 
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Effects of the Use of Different Scales/Frames in the Final Image 

   

 Three datasets were used in this study: the high and low counts datasets of the 

phantom nº 1 (see section 5.2.2) and the phantom nº 2 dataset (see section 5.2.1). For 

each dataset 20 noise realizations were generated.  

 The performance of the MS/MF was compared with the (single scale/frame) 

ML-EM using two initial conditions: a volume with constant value of one (Ones-ML-

EM) and the image reconstructed result with the 2D Filtered Backprojection 

algorithm using a Hanning filter with cutoff equal to 0.8 times the Nyquist frequency 

(FBP-ML-EM). Prior to the Filtered Backprojection reconstruction, the 3D data were 

rebinned using the Single-Slice Rebinning algorithm [Defrise et al., 2005] to obtain a 

2D sinogram for each slice. The raw data used for the single scale/frame ML-EM 

reconstructions correspond to the fine scale/frame of each noise realization. 

  The performance of the three reconstruction methods was evaluated taking 

into account the mean image across all noise realizations (for the slice crossing the 

central plane z=104) denoted by  

 
𝝀 𝑗,𝑚 = 𝝀(𝑗,𝑛𝑟,𝑚) !" , ( 6.16 ) 

 
where 𝝀(j,nr,m)  corresponds to the estimated value of the pixel j   for the 𝑛𝑟!! noise 

realization (with nr = {1, . . ,NR}) of a given dataset reconstructed with the method m. 

The operator < x >! stands for the mean value of matrix < x >  in the direction of 

d.  

The  bias and the standard deviation were also calculated using 

 
𝒃𝒊𝒂𝒔 𝑗,𝑚 = 𝝀 𝑗,𝑚 − 𝝀(𝑗) ( 6.17 ) 

 
and 

𝒔𝒕𝒅 𝑗,𝑚 =
1

𝑁𝑅 − 1 (𝝀(𝑗,𝑛𝑟,𝑚)− 𝝀 𝑗,𝑚 )!
!"

!"!!

, 

( 6.18 ) 

 
respectively. 
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Another performance metric used was the reconstruction error in the sinogram space 

(see ( 4.10 )). Using the notation introduced in this section,  ( 4.10 ) can be expressed 

by,  

 

𝑹𝒆𝒄𝑺𝒊𝒏𝒐𝑬𝒓𝒓𝒐𝒓 𝑘,𝑛𝑟,𝑚               = 𝑇𝑟 𝒓𝒌(𝑘,𝑛𝑟,𝑚)𝒓𝒌𝑻(𝑘,𝑛𝑟,𝑚) , ( 6.19 ) 

 

where 𝑘 is the iteration number. 

 Additionally, different post-reconstruction smoothing Gaussian filters were 

applied to the different reconstructed images to generate the contrast versus noise 

trade-off curves for three different ROIs (denoted as 𝑅𝑂𝐼! with 𝑙 = {1,2,3}). The full 

width at half maximum  (FWHM) of the filters used were equal to 1.44 ∗Δ mm, 

Δ = {1,2,3,4,5,6,7,8,9}. For each ROI different parameters were calculated, such as 

the mean contrast,  

 

< 𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 >=< 𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕   𝑙,𝑛𝑟,𝑚, 𝑓𝑖𝑙𝑡𝑒𝑟 >!" , ( 6.20 ) 

where the contrast is calculated using 
 

𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 𝑙,𝑛𝑟,𝑚, 𝑓𝑖𝑙𝑡𝑒𝑟 = 

                  
𝑹𝑶𝑰𝒍 𝑗! ,𝑛𝑟,𝑚, 𝑓𝑖𝑙𝑡𝑒𝑟 !! − 𝑹𝑶𝑰! 𝑗! ,𝑛𝑟,𝑚, 𝑓𝑖𝑙𝑡𝑒𝑟 !!

𝑹𝑶𝑰! 𝑗! ,𝑛𝑟,𝑚, 𝑓𝑖𝑙𝑡𝑒𝑟 !!
 

( 6.21 ) 

with the background ROI (Figure 4.12) represented by 𝑅𝑂𝐼! and the pixel 𝑗! ∈   𝑅𝑂𝐼! 

and the pixel 𝑗! ∈   ROI!.  

 The standard deviation of the contrast and the mean of the standard deviation 

of the background, denoted by 

 

𝒔𝒕𝒅(𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡) = 𝒔𝒕𝒅!"(𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑙,𝑛𝑟,𝑚, 𝑓𝑖𝑙𝑡𝑒𝑟)) ( 6.22 ) 

and 

 

< 𝒔𝒕𝒅 𝐵𝑎𝑐𝑘𝐺𝑟𝑜𝑢𝑛𝑑 >  =         
                                                                   𝒔𝒕𝒅!! 𝑅𝑂𝐼! 𝑗! ,𝑛𝑟,𝑚, 𝑓𝑖𝑙𝑡𝑒𝑟 !" , 

( 6.23 ) 

respectively, were also evaluated.  
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6.3.3 WDF-‐Morozov	  Criterion	  

  

 The effect of the use of different weights in the WDF-Morozov was study 

using a 2D simulated dataset of the phantom nº 1 (see section 5.2.2) with 1x108 

counts (WDF-Morozov dataset). Figure 6.6 presents the sinogram of the slice nº 104 

of the segment zero and the corresponding histogram at the different scales. A 2D 

discrete Fourier transform was applied in the radial and azimuthal direction. In Figure 

6.25 and Figure 6.26 are presented the binary masks used as weights. For 

visualization proposes, the zero-frequency component was shift to the centre of the 

spectrum. 

 

 
Figure 6.6- WDF-Morozov dataset. Sinogram of slice nº 104 of segment zero (top) and corresponding 

histogram (bottom). 

 

6.4 	   Results	  

 

 Several tests were done to study the performance of the Morozov stopping 

criteria to adaptively select the number of iterations needed in each scale. 

 We began by study the performance of the Morozov stopping criterion when 

applied to the ML-EM. After that, it was tested if this criterion was suitable to be used 
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in the MS/MF. Finally, is presented a proof of concept of the use of the WDF-

Morozov criterion. 

6.4.1 Reconstruction	  Using	  the	  ML-‐EM	  

2D Reconstruction Using ML-EM 

 

 Figure 6.7 present the reconstruction error in the sinogram and image spaces 

as a function of the number of iteration. The number of iteration required by the 

Morozov criterion was 8 and by the MISRE was 9.  

 

 
Figure 6.7-  Left image: sinogram space error as a function of the number of iterations and corresponding 

Morozov stopping criterion using the phantom nº 3 dataset. Right image: image space reconstruction error 

as a function of the number of iterations.  

   

3D Reconstruction Using ML-EM 

 

 Two studies were done based on 3D reconstruction using the ML-EM 

algorithm. We start by testing if the number of polar segments used in the 

reconstruction has influence in the performance of the Morozov stopping criterion.  

Depending to its ring difference, a given LOR is associated to a segment. The raw 

data were binned into 15 polar segments ( [-7 , +7]). The segment zero corresponds to 

the direct planes. The sign of the segment depend on the polar angle associated.  

 Table 6.1 presents the number of iterations required by the Morozov stopping 

criterion and by the MISRE criterion as a function of the range of polar segments used 

in the reconstruction. 
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Table 6.1 - Comparison of the number of iterations required by the Morozov stopping criterion and by the 

MISRE criterion when the range of polar segments used in the reconstruction changes. 

Range of segments Morozov (iterations) MISRE (iterations) 

{0} 8 10 

[-1,1] 18 19 

[-5,5] 20 21 

[-7,7] 22 23 

 

 We also studied the influence of the number of counts on the Morozov 

criterion, using two datasets with different noise levels. 

Figure 6.8 presents the reconstruction error in the sinogram and image spaces, as a 

function of the number of iterations for the high counts (top of the figure) and the 

medium counts (bottom of the figure) datasets. The Morozov criterion required 36 

(30) iterations for the high (medium) counts dataset. The minimum error was 

achieved at the iteration 33 and 30 for the high and medium counts dataset, 

respectively.   

 
Figure 6.8- 3D reconstruction using ML-EM. Left column: sinogram space error as a function of the 

number of iterations and the corresponding Morozov stopping criterion. Right column: image space error 

as a function of the number of iterations. The top row shows results for the medium counts dataset and the 

bottom row for the high counts dataset. 
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6.4.2 Reconstruction	  Using	  the	  MS/MF	  

 

3D Reconstruction Using the MS/MF  

 

 In this study it was assessed if the Morozov is suitable to be used in the 

MS/MF. Two MS/MF datasets with different noise levels were used: the high counts 

and the medium counts datasets of phantom nº 1.  

 Table 6.3 shows, for the different scales, the number of iterations required by 

the Morozov and MISRE criteria using the high counts dataset. 

 Table 6.4 presents similar information but for the medium counts dataset. The 

stopping criterion used in the MS/MF reconstruction was the Morozov, i.e., the 

number of iterations done in the previous scales was chosen based on that criterion. 

 
Table 6.2 - Comparison of the number of iterations required by the Morozov and MISRE criteria using the 

high counts dataset. 

 Morozov (iterations) MISRE (iterations) 

S=3 24 24 

S=2 21 23 

S=1 27 26 
 

Table 6.3 - Comparison of the number of iterations required by the Morozov and MISRE criteria using the 

medium counts dataset. 

 Morozov (iterations) MISRE (iterations) 

S=3 20 21 

S=2 19 21 

S=1 22 23 

 

 Figure 6.9 and Figure 6.10 present the reconstruction errors in the sinogram 

and image spaces as a function of the number of iterations for the two datasets at the 

medium scale and fine scales, respectively. 
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Figure 6.9 - Medium scale 3D reconstruction using MS/MF: The left column shows the sinogram space 

error as a function of the iterations and the corresponding Morozov stopping criterion. The right column 

presents the image space error as a function of iterations. The top line shows the results using the high 

counts dataset and in the bottom line the medium counts dataset.  

 
Figure 6.10 - Fine scale 3D reconstruction using MS/MF: The left column shows the sinogram space error as 

a function of the iterations and the corresponding Morozov stopping criterion.  The right column presents 

the image space error as a function of iterations. In the top line are presented the results using the high 

counts dataset and in the bottom line the medium counts dataset.  
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Effects of the Use of Different Scales/Frames in the Final Image 

 

 In this study we extended the characterization of the performance of the 

MS/MF algorithm (see section 5.3). We compared the MS/MF reconstruction results 

with the reconstruction results obtained with the single scale/frame ML-EM, using as 

initial estimate either a uniform image or the reconstruction obtained by the Filtered 

Backprojection (FBP) algorithm. The number of iterations to perform in each 

scale/frame was chosen based on the Morozov criterion (using all projection space 

data and all image space data available at a given scale/frame). 

 Although the reconstruction result is a volume, the central slice nº 104 was 

selected to simplify the presentation of the results.  

 Figure 6.11 and Figure 6.12 show the fine scale sinogram reconstruction error 

for the high counts data and low counts data, respectively, as a function of the 

iteration number for the three reconstruction methods. For each reconstructed method 

the error curves obtained for the different realizations are overlapped. 

 Figure 6.13 presents the distribution of the number of fine scale iterations 

required by the Morozov criterion for the different noise realizations and 

reconstruction methods. 

 Figure 6.14 shows the distribution of the number of iterations required by the 

Morozov criterion, using the MS/MF, for the different noise realizations in the coarse 

and medium scale.  

 Figure 6.15 presents a representative reconstruction of a noise realization 

obtained with the different reconstruction methods and data. 

 Figure 6.16, Figure 6.17 and Figure 6.18, show the mean (( 6.16 )), bias (( 

6.17 ) and  standard deviation ( ( 6.18 )), respectively, for the different reconstruction 

methods and data.  

 Figure 6.19 and Figure 6.20 present vertical profiles of the standard deviation 

images that contain a region with a hot and cold structure, respectively, for the high 

counts data. Figure 6.21 shows vertical profiles of the standard deviation images for 

the phantom nº 2 data. 

 The contrast versus noise trade-off curves was also studied for different hot 

structures that compose the phantom nº 1. Figure 6.22 and Figure 6.24 show these 

curves for groups of hot structures positioned at the center and right side of the 
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phantom, respectively. Figure 6.23 shows the contrast versus noise trade-off curves 

for a medium size hot source. 

 For the MS/MF, the mean time to perform the reconstruction of the first 

accumulated frame in the coarse scale was 6.5 minutes. The overall mean 

reconstruction time was 235 minute for the MS/MF, 266 minutes for the Ones-ML-

EM and 259 minutes for the FBP-ML-EM. 

 
 

 
Figure 6.11- High counts data. Sinogram reconstruction error as a function of the iteration number for all 

realizations using the different reconstruction methods. For each reconstructed method the error curves 

obtained for the different realizations are overlapped. The stopping criterion was the Morozov criterion. 

The horizontal scale only represents the iterations done at the fine scale. The initial MS/MF iterations at the 

coarse scales are not taken into account. 

 

 
Figure 6.12- Low counts data. Sinogram reconstruction error as a function of the iteration number for all 

realizations using the different reconstruction methods. For each reconstructed method the error curves 

obtained for the different realizations are overlapped. The stopping criterion was the Morozov criterion. 

The horizontal scale only represents the iterations done at the fine scale. The initial MS/MF iterations at the 

coarse scales are not taken into account. 
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Figure 6.13- Fine scale distribution of the number of iterations required by the Morozov criterion for the 

different noise realizations using the MS/MF (top), the Ones-ML-EM (medium) and the FBP-ML-EM 

(bottom). The left column corresponds to the low counts data and the right column to the high counts data. 

Several iterations in the coarse scales were done in the MS/MF reconstruction. 

 

 

Figure 6.14- Distribution of the number of iterations required by the Morozov criterion for the different 

noise realizations reconstructed using the MS/MF in the medium scale (top row) and in the coarse scale (top 

row). The left plots correspond to the low counts data and the right to the high counts data. 
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Figure 6.15- Reconstruction results of a representative noise realization using the Ones-ML-EM (left), the 

MS/MF (center) and the FBP-ML-EM(right). The top row corresponds to the reconstruction results with 

the high counts dataset, the middle with the low counts dataset and the bottom with the phantom nº 2 

dataset. 
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Figure 6.16- Average of the reconstruction results using the Ones-ML-EM (left), the MS/MF (center) and 

the FBP-ML-EM(right). The top row corresponds to the reconstruction results with the high counts data, 

the middle with the low counts data and the bottom with the phantom nº 2 data. 
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Figure 6.17-  Bias images achieved using the Ones-ML-EM (left), the MS/MF (center) and the FBP-ML-

EM(right). The top row corresponds to the reconstruction results with the high counts data, the middle with 

the low counts data and the bottom with the phantom nº 2 data. The stopping reconstruction criterion was 

the Morozov criterion. 
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Figure 6.18- Standard deviation images achieved using the Ones-ML-EM (left), the MS/MF (center) and the 

FBP-ML-EM(right). The top row corresponds to the reconstruction results with the high counts data, the 

middle with the low counts data and the bottom with the phantom nº 2 data. The stopping reconstruction 

criterion was the Morozov criterion. 
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Figure 6.19- Vertical profiles of the standard deviation images for the high counts data. The profile contains a 

region with a hot structure as shown in the top image. The red, blue and black curves correspond to the 

reconstruction results using the Ones-ML-EM, the MS/MF and the FBP-ML-EM, respectively. The stopping 

reconstruction criterion was the Morozov criterion. 

 

 

 
Figure 6.20- Vertical profiles of the standard deviation images for the high counts data. The profile contains 

a region with a cold structure as shown in the top image. The red, blue and black curves correspond to the 

reconstruction results using the Ones-ML-EM, the MS/MF and the FBP-ML-EM, respectively. The 

stopping reconstruction criterion was the Morozov criterion. 



142                      6-A Generalized Morozov Discrepancy Criterion for the MS/MF 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.21- Vertical profiles of the standard deviation images for the phantom nº 2 data. The red, blue and 

black curves correspond to the reconstruction results using the Ones-ML-EM, the MS/MF and the FBP-

ML-EM, respectively. The stopping reconstruction criterion was the Morozov criterion. 
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Figure 6.22- Contrast versus noise trade-off curves for the central point sources with 6 mm of diameter 

(green point sources in the figure of the bottom row) for the high counts data. The top row presents the 

mean contrast for the different noise realizations versus the standard deviation of the contrast as a function 

of the different post-reconstruction smoothing filter's FWHM and reconstruction method.  In the bottom 

row is presented the mean ROI Contrast for the different noise realization versus the mean of the standard 

deviation of the background reconstructed values as a function of the different post- reconstruction 

smoothing filter's FWHM and reconstruction method. The highlight points correspond to the unfiltered 

reconstructed data. 
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Figure 6.23- Contrast versus noise trade-off curves for a source with 20 mm of diameter (green point 

sources in the image of the bottom row) for the high counts data. The top row presents the mean contrast 

for the different noise realizations versus the standard deviation of the contrast as a function of the different 

post-reconstruction smoothing filter's FWHM and reconstruction method.  In the bottom row is presented 

the mean ROI Contrast for the different noise realizations versus the mean of the standard deviation of the 

background reconstructed values as a function of the different post- reconstruction smoothing filter's 

FWHM and reconstruction method. The highlight points correspond to the unfiltered reconstructed data. 
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Figure 6.24- Contrast versus noise trade-off curves for the lateral point sources with 6 mm of diameter 

(green point sources in the figure of the bottom row) for the high counts data. The top row presents the 

mean contrast for the different noise realizations versus the standard deviation of the contrast as a function 

of the different post-reconstruction smoothing filter's FWHM and reconstruction method.  In the bottom 

row is presented the mean ROI Contrast for the different noise realization versus the mean of the standard 

deviation of the background reconstructed values as a function of the different post- reconstruction 

smoothing filter's FWHM and reconstruction method. The highlight points correspond to the unfiltered 

reconstructed data. 
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6.4.3 WDF-‐Morozov	  Criterion	  

  

 Figure 6.25 and Figure 6.26 present the effect of using different low-pass and 

high-pass filters on the number of iterations required by the WDF-Morozov criterion.  

The minimum image space error was achieved at iteration 31.  

 

 
Figure 6.25- Stop iteration requested by the WDF-Morozov criterion when no filter is used (all the weights 

are equal) and when two different low pass filters are applied. In the top row is showed the power spectrum 

of the slice nº 104 of the raw data multiply by the correspondent filter mask. The minimum image space 

error was achieved at iteration 31. 

 

 
Figure 6.26- Stop iteration using the WDF-Morozov criterion with different high pass filters, In the top row 

is showed the power spectrum of the slice nº 104 of the raw data multiply by the correspondent filter mask. 

The minimum image space error was achieved at iteration 31. 

 

 

 

 

  



6-A Generalized Morozov Discrepancy Criterion for the MS/MF   

 

 

 147 

6.5 Discussion	  	  

   

  Two stopping criteria derived from the generalized Morozov criterion were 

tested using different simulated datasets. These criteria allow to adaptively select the 

number of iterations to perform into a given scale. The performance of these criteria 

was compared with the minimum image space error, the optimal criterion. In practice 

this criterion cannot be used in real applications because the true image is unknown.  

 The Morozov stopping criterion was applied to ML-EM reconstruction as well 

as to the MS/MF reconstruction. The datasets used were generated using analytic 

simulations. 

 When applied to the reconstruction of 2D data using the ML-EM, the 

Morozov criterion chose the stopping iteration near the minimum image space error.  

 The stop iteration selected by the Morozov criterion as a function of the range 

of segments used in the reconstruction is also similar to the optimal iteration (see 

Table 6.1). As expected, with the addition of segments, the number of iterations 

required by the proposed criterion increases. Good performance was also achieved 

with the 3D datasets (see Figure 6.8).  

 Based on simulated data, the Morozov criterion seems appropriate to be used 

in the MS/MF reconstruction. The number of iterations required by this criterion is 

near the optimal (see Table 6.2 and Table 6.3).  This criterion allows to adaptively 

choose the number of iterations having into account the counting statistics of the data. 

(see Figure 6.9). 

  The effects on the final image of the use of the Morozov criterion as a 

stopping criterion to the MS/MF were also studied. The study results are in agreement 

with the ones reported in the section 5.3. The analysis of the evolution of the 

sinogram error for the fine scale shows that the MS/MF allows improving the 

convergence (see Figure 6.11 and Figure 6.12).  As we can see in  Figure 6.13 the 

number of iterations required by the stopping criterion for the MS/MF was lower 

when compared with the single scale/frame reconstructions and as expected the 

number of iterations required by the stopping criterion was lower for the low counts 

data than for the high counts data.  

 Initializing the ML-EM iteration with the FBP reconstruction instead of a 

uniform image only led to a modest gain in convergence. 
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As expected, the different noise structure introduced by the use of scales/frames  

(section 5.4) was also found in the reconstruction results using the low counts data 

and phantom nº 2 data (see Figure 6.15). 

 The mean (see Figure 6.16), bias (see Figure 6.17) and standard deviation 

images (see Figure 6.18) also present the different noise structure for MS/MF. Further 

work will be needed to verify whether a better interpolation method may reduce this 

effect. 

 Comparable bias values (see Figure 6.17) were obtained for the different 

reconstructed methods. The values of the standard deviation (see Figure 6.18) for the 

high and low counts data were also similar. The vertical profiles (see Figure 6.19 and 

Figure 6.20) suggest that the standard deviation obtained by the MS/MF is lower. 

However for the phantom nº 2 the profile obtained with the Ones-ML-EM is 

comparable (see Figure 6.21). For this phantom the FBP-ML-EM standard deviation 

values are higher.  

 Similar contrast with approximately the same noise can be achieved with the 

three reconstructed methods for the different ROIs (see Figure 6.22, Figure 6.23 and 

Figure 6.24). Nevertheless, the MS/MF allows achieving the final contrast with less 

fine scale iterations. 

 Related to the WDF-Morozov criterion, the results shows that when low 

frequencies are selected the number of iterations required by this criterion increases 

(see Figure 6.25). On the contrary, the selection of the high frequencies decreases the 

number of iterations (see Figure 6.26). With real data, due to the simplification done 

in the modelling of the system matrix, is expected that the number of iterations 

required by the Morozov criterion would be too high. The proper choice of a filter 

could allow solving this problem.  

 

6.6 Conclusions	  	  

 

 In this chapter a generalized Morozov stopping criterion for Emission 

Tomography was presented. Based on this generalization two criterion were derived: 

the (usual)  Morozov and the WDF-Morozov. The main motivation was to develop a 

stopping criterion suitable for the MS/MF reconstruction. These criteria allow to 
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adaptively choose the number of iterations to perform in a given scale based on the 

statistics of the data.  

 Based on simulated data, the Morozov criterion seems appropriate to be used 

in the MS/MF reconstruction. The reconstruction results obtained are in agreement 

with the ones reported in charpter 5.  

 A proof of concept of the use of the WDF-Morozov criterion was done. This 

criterion can be very useful when the modelling of the system matrix is inaccurate. 

The right choice of the weights could allow to overcome this problem.  
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Chapter 7 

7 Main	  Conclusions	  and	  Possible	  Developments	  	  

 

 Positron Emission Tomography (PET) is a quantitative nuclear medicine 

imaging technique that allows to measure the radiotracer’s concentration and the 

estimation of physiological parameters. When compared with Computer Tomography 

(CT) or Magnetic Resonance Imaging (MRI), PET has poor resolution and high 

sensitivity. In this thesis, reconstruction techniques were developed to improve the 

resolution of the final image, as well as to improve the convergence rate and reducing 

the reconstruction computation time. 

 Resolution modelling techniques allow for the improvement of spatial 

resolution and contrast of the reconstructed images. These improvements are achieved 

by better modelling the system matrix used during the reconstruction process. A 

method for the estimation of the sinogram blurring kernel adapted to the High 

Resolution Research Tomograph is presented in Chapter 3. The High Resolution 

Research Tomograph is a specialized scanner that provides high resolution PET 

images of the human brain. Due to its high resolution and sensitivity this scanner can 

also be used in pre-clinical studies. 

 The proposed method permits the incorporation of the effects of the inter-

crystal penetration into the reconstruction process. The blurring kernel model has into 

account the angle of incidence (α angles) formed by the intersection of the LOR with 

the detector head. Due to the polygonal geometry of the HRRT, the degradation in 
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resolution is spread fairly uniform across the FOV. The annihilation photons  

penetrate with non-normal α angles independently of the radial position. The α angles 

were organized in a sinogram format (α sinogram). Due to the geometry of the HRRT, 

the α sinogram was decomposed into 3 distinct regions. The widths of the measured 

radial profiles depend on the α angles. For ranges of α angles more close to the 

normal (90º) the corresponding profile width was smaller than the width of profiles 

with more oblique ranges of α angles.  This behaviour was expected because the inter-

crystal penetration only occurs for oblique angles of incidence.  

 The blurring kernel was modelled as a spatial varying asymmetric Gaussian 

function. The estimation of the radial model parameters was done using only one 

measurement. 

 The performance of the reconstruction using the estimated sinogram blurring 

kernel was compared with the case where no resolution modelling was used and 

where resolution modelling was applied in the image space. Point source data 

acquired at different radial distances were reconstructed using the different methods.  

The proposed method leads to an improvement of spatial resolution as well as allows 

for the reduction of the variation of the radial and tangential FWHM.  

 In Chapter 4 the performance of a multiscale reconstruction algorithm is 

evaluated and the most suitable interpolator operator is chosen. The Multiscale 

reconstruction algorithms try to improve the convergence rate and reduce the 

reconstruction computation time by processing the data at different scales. In this 

approach, the reconstructed image on the previous scale is interpolated into the next 

scale and used as initial image for the reconstruction at that scale. At coarse scales the 

low frequency components of the image can be reconstructed with low computational 

effort. For dyadic scales, the maximum frequency that can be recovered on the coarse 

scale corresponds to approximately one-half of the maximum frequency that can be 

recovered on the next scale. A digital 3D phantom composed of hot and cold 

structures was especially designed to study the variations of the resolution and of the 

contrast. The use of analytic simulations allowed having full control over the data 

generated.  

 The reconstruction results using different interpolator methods (nearest 

neighbour, cubic, Gaussian and Lanczos) were compared.  The tests results showed 
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that the Gaussian interpolator is the most suitable kernel to be used in MS 

reconstruction.  

 The performance of the MS reconstruction was compared with the ML-EM 

algorithm. This study confirmed that MS reconstruction allows to reduce the overall 

reconstruction time. Although we had to perform several iterations in the coarse 

scales, the number of iterations required in the finest scale was smaller than with the 

ML-EM reconstruction approach. Similar co-occurrence matrices were found for the 

reconstruction results obtained with both methods. The improvements in convergence 

speed obtained by processing the data in different scales were especially high for 

lower tracer uptake regions. 

 In Chapter 5 a novel reconstruction algorithm was presented, the 

Multiscale/Multiframe algorithm, that introduces the concept of accumulated time 

frame to the multiscale reconstruction. This approach can be used to generate near 

real-time images in the scale that is the most suitable to the data statistics available at 

a given accumulated frame. Usually the dimensions of the reconstructed volume or 

the projection space binning do not change during the image reconstruction process.  

In MS/MF the reconstruction begins during the acquisition, using all the events 

acquired until a given instant, in a coarse scale. Then the reconstruction result of the 

previous scale is used as initial condition for the reconstruction at a finer scale using a 

larger temporal data subset. In the finest scale, all the events acquired until the end of 

the acquisition are processed using the usual dimensions for the image and projection 

space. If combined with high performance computing (HPC) techniques, this 

reconstruction approach may allow the optimization of the acquisition parameters on 

the fly. MS/MF could be useful to reconstruct images in systems with very high 

resolution, in systems with variable/adaptable geometry for lesion detection or in in-

beam PET systems. MS/MF can be easily adapted to list-mode reconstruction 

algorithms.  

 The proposed algorithm was characterized using different datasets.  The use of 

the reconstruction result of the previous scale as initial condition for the 

reconstruction at the finest scale improved the convergence speed and reduced the 

overall computation time. As was found for the MS, the gain in the convergence 

speed in the fine scale reconstruction was higher for cold structures.  

 A different noise structure was found in the MS/MF reconstructed images. In 
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MS/MF the interpolation introduces correlations between neighbouring pixels that 

disappear slowly during the fine scale reconstruction. The analysis of the co-

occurrence matrices confirms the visual differences in the texture of the reconstructed 

images.  

 Reconstructing in near real-time in the fine scale is usually not feasible. 

MS/MF can be used to perform near real-time reconstruction. In our reconstruction 

setup, one coarse (medium) scale iteration corresponds to ~5%  (~20%) of the time 

spent in one iteration in the fine scale. Furthermore, since the maximum frequencies 

that can be recovered depend on the data statistics available at a given accumulated 

frame, the choice of the reconstruction scale should take into account this parameter.  

 The proposed reconstruction algorithm was also used to reconstruct a Micro-

Deluxe phantom. The use of scales/frames did not introduce significant artifacts in the 

reconstruction image and allowed for the improvement of the convergence speed. 

 Most PET reconstruction algorithms try to maximize the likelihood function 

for Poisson noise. Due to the ill-posed nature of the problem and to the data noise, the 

maximum likelihood solution is noisy. Several strategies can be used to solve this 

problem. In clinical environment is common to stop the reconstruction before the 

maximum of the objective function is reached. Chapter 6 presents a generalized 

Morozov discrepancy criterion for Poisson data to adaptively select the number of 

iterations needed in each scale. Based on this generalization, two stopping rules were 

derived: the WDF-Morozov and the (usual) Morozov criterion.  

 Based on simulation data, the Morozov criterion seems suitable for the 

MS/MF reconstruction. Similar reconstruction results were found using this criterion 

when compared with the minimum image space error criterion.  The WDF-Morozov 

weights can be chosen to improve the performance of the stopping criterion. This is 

particularly useful when the modelling of the system matrix is not perfect.  

 In the future it would be interesting to test and to optimize the reconstruction 

techniques presented in this thesis, resolution modelling and MS/MF reconstruction 

approach, with the protocols used in Institute of Nuclear Sciences Applied To Health 

(ICNAS). A study should be done to assess the feasibility of combining these 

techniques for the tracer kinetic analysis. Since one of the main objectives of the 

MS/MF reconstruction is to generate near real-time images, the performance of the 

reconstruction code should be optimized taking into account the last advances in high 
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performance computing. 
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