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 ABSTRACT 

 

 Cancer is a major public health problem in all countries. Among the several 

forms of cancer, breast and prostate cancers are the ones most frequently diagnosed 

among Women and Men, and a large number of them are hormone-dependent.  

 

 Breast cancer is the most common malignancy in women being the leading 

cause of cancer death worldwide. The natural history of this illness suggests that many 

of these tumors are dependent on estrogens for their development and growth. Among 

the several therapeutic options available, endocrine therapy controlling estrogen 

production has been the guiding principle for more than a century. In the biosynthesis of 

estrogens it is involved the enzyme aromatase, and its inhibition assumes a rational way 

to treat this disease. Nowadays, it has been observed a meaningful evolution in the 

development of aromatase inhibitors (AIs). The recent successful elucidation of the 

crystallized 3D structure of the enzyme, which provided the structural basis for the 

specificity to the interaction with its substrate, was an important milestone. This has 

clarified the establishment of hydrogen bonds between the oxygen atoms of C-3 and C-

17 keto groups and specific amino acid residues of the active site of the enzyme. 

Besides this, it was also observed that C-6 linear side chains of some inhibitors protrude 

into an access channel cavity immobilizing catalytic residues. This new data is very 

useful to understand the action of the inhibitors and for the development of promising 

molecules able to overcome some of the major drawbacks of AIs, such as the side 

effects, which are bone loss, joint pain and heart problems and the acquired resistance 

that they can led to after some years of usage. 
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 In this work, we were interested in the design, synthesis, biochemical and 

biological evaluation of the anti-aromatase activity of steroidal compounds obtained by 

structural modifications within the A-, B- and D-rings of androstenedione, the natural 

substrate of the enzyme. Supported on the results obtained, the features of the steroidal 

compounds determinant for achieving inhibitory activity were elucidated.  

 It is known that aromatase establishes two main hydrogen bonds with the 

carbonyl functions at C-3 and C-17 of androstenedione. Also, former studies have 

revealed that, in spite of this, the presence of the carbonyl group at C-3 is not 

completely mandatory to bind steroid molecules to the enzyme. On the other side, the 

C-17 carbonyl group seems to have a major role on the activity of steroidal AIs. Based 

on this rationale, we have transformed the C-3 carbonyl group into a hydroxyl group. 

From the studied molecules, we observed that C-3 hydroxyl derivatives of 

androstenedione are very active inhibitors specially when the hydroxyl group assumes a 

3β-stereochemistry. Changing both carbonyl groups, at C-3 and C-17, led to a 

significant decrease in activity. These results allowed establishing that the existence of a 

carbonyl group at C-3 is not mandatory for a steroid to be a potent inhibitor, as long as 

there is one at C-17.  

 According to previous results reported on the literature, it was inferred that some 

planarity in the A-ring and in the A,B-ring junction would be required for steroids to 

inhibit the enzyme. Based on this, we have synthesized new AIs and compared the 

influence of double bonds and epoxide functions in several positions along the A-ring. 

It was observed that when introducing the double bond in 4,5-position, the compound 

obtained revealed the highest activity, pointing out the importance of the planarity in the 

position closer to the A,B-ring junction. However, among the epoxide series, the 3,4-
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epoxysteroid revealed to be the most active inhibitor, evidencing the possibility of the 

oxiran oxygen atom to establish hydrogen bonds within the active site of the enzyme.  

 According to former information, it is known that the enzyme may have a 

hydrophobic binding pocket with a limited accessible volume, but that can 

accommodate non-bulky substituents located in the C-6 and C-7 position of the 

steroidal framework. Also, most recently, it was observed that the enzyme has an access 

channel, which allows the accommodation of C-6 side chains present in some inhibitors. 

Further, previous works have revealed the evidence that the aromatase inhibitory 

activity is similar when the same kind of substituent is in the referred C-6 or C-7 

position. With this knowledge in mind, we have synthesized new 6α-methyl and 7α-

allyl androstenedione derivatives that revealed to be strong AIs.  

 Previous work pointed out the importance of the C-17 carbonyl group in the 

steroidal D-ring as a structural feature required to reach maximum aromatase inhibitory 

activity. Based on this, and in order to achieve new structure-activity relationships 

(SAR), we have substituted the C-17 carbonyl group by a hydroxyl, acetyl and also by a 

thionyl isoster group, to compare inhibitory activities. In almost all synthesized 

compounds the C-17 carbonyl derivatives revealed to be stronger AIs.  

 We were also interested in preparing and studying some derivatives of the two 

steroidal AIs that were/are in clinical use for the treatment of breast cancer, formestane 

and exemestane. The C-4 acetoxy and acetylsalicyloxy derivatives from formestane 

were synthesized and evaluated showing that bulky substituents in C-4 position 

diminish the inhibitory activity. With respect to epoxy derivatives of exemestane, which 

are potential metabolites, they revealed to be potent AIs.  

 The activity of the most potent AIs evaluated in placental microsomes was also 

tested in MCF-7aro cells being some of them able to inhibit cell viability and cell 
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proliferation even more efficiently than exemestane. Some of the compounds were also 

studied in SK-BR-3 and LTEDaro cells. 

 

 Concerning prostate cancer, this type of tumor depends on androgens for its 

development and progression. Another illness with this association, and which is also a 

recurrent disease in men, is benign prostate hyperplasia (BPH). In both these situations, 

it is always observed an increase in the activity of the enzyme 5α-reductase, the one 

responsible for converting testosterone into dihydrotestosterone, the main androgen 

implicated in the differentiation and growth of prostate. Hence, the inhibition of 5α-

reductase is a rational way for treating these hyperandrogenic disorders. Despite the 

potency and success of the molecules used nowadays, they still present some 

disadvantages, such as increase in both bone and muscle loss, and impotency. Further, 

when these molecules are used in a profilatic way, they can cause high-grade prostate 

cancers.   

 In this thesis we designed and synthesized steroids with the 3-keto-Δ4 moiety in 

the steroidal A-ring combined with carboxamide, carboxyester or carboxylic acid 

functions at the C-17β position of the D-ring. This rationale was mainly focused on 

analogs of finasteride and dutasteride, two potent irreversible 5α-reductase inhibitors 

(RIs) used in the clinic, sharing in the same molecule the 3-keto-Δ4 moiety present in 

testosterone, the natural substrate of the enzyme, with the C-17β carboxamide group 

present in the referred RIs. The results obtained suggest that lipophilic amides favour 

the enzyme inhibition, being the synthesized steroid with a C-17β N-tert-

butylcarboxamide group the best inhibitor. 
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 Coumarins constitute another group of compounds that can structurally resemble 

steroids in inhibiting aromatase. Theregore, in this thesis we have also synthesized new 

3-thiophenyl coumarin derivatives in order to open a new pathway for the synthesis and 

evaluation of this class of compounds as AIs. Some preliminary results concerning their 

synthesis will be presented.  
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 RESUMO 

 

 O cancro é dos problemas de saúde pública com maior incidência a nível 

mundial. Dos diferentes tipos de cancro, o cancro de mama e da próstata são dos mais 

frequentemente diagnosticadas na Mulher e no Homem, sendo que um número 

significativo deles são hormono-dependentes.  

  

 O cancro de mama é das doenças mais comuns nas mulheres e constitui a 

principal causa de morte por cancro na população feminina, em todo o mundo. Desde há 

muito que se sabe que a maioria deste tipo de cancro depende de estrogénios, para o seu 

desenvolvimento e crescimento. Entre as diversas opções terapêuticas disponíveis, a 

terapia endócrina de controlo da produção de estrogénios tem sido o princípio 

orientador seguido durante mais de um século. Na biossíntese de estrogénios existe a 

enzima aromatase e a sua inibição constitui uma forma muito eficiente de tratar esta 

doença. Atualmente, tem-se observado uma evolução significativa no desenvolvimento 

dos inibidores da aromatase. A recente elucidação  da estrutura cristalina 3D da enzima 

constitui um importante ponto de viragem, já que esclareceu as bases estruturais para a 

especificidade da interação da enzima com o seu substrato. Este esclarecimento mostrou 

que se estabelecem ligações de hidrogénio entre os átomos de oxigénio dos grupos 

carbonilo em C-3 e C-17 e resíduos específicos de aminoácidos, no local ativo da 

enzima. Para além disso, também foi observado que cadeias lineares posicionadas em 

C-6 de alguns inibidores esteróides se projetam para o interior de um canal de acesso à 

enzima, imobilizando os resíduos catalíticos. Esta nova informação revelou-se muito 

útil na tentativa de se compreender o mecanismo de inibição da aromatase e também no 

desenvolvimento de moléculas promissoras capazes de ultrapassarem algumas das 
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principais desvantagens dos inibidores da aromatase em uso, como sejam, os efeitos 

secundários relacionados com a perda de massa óssea, dores articulares e problemas 

cardíacos, bem como a resistência adquirida, que estes tendem a desenvolver após 

alguns anos de utilização.  

 Neste trabalho estivemos interessados no design, na síntese e na avaliação 

biológica da atividade inibidora da aromatase de compostos esteróides obtidos por 

modificações estruturais nos anéis A, B e D da androstenodiona, o substrato natural da 

enzima. As características determinantes para que estes compostos sejam potentes 

inibidores foram elucidadas com base nos resultados obtidos.  

 Sabe-se que a aromatase estabelece duas ligações de hidrogénio principais com 

os átomos de oxigénio das funções carbonilo em C-3 e C-17 da androstenodiona. 

Estudos anteriores revelaram que, apesar disso, a presença do grupo carbonilo em C-3 

não é absolutamente essencial para que a molécula se ligue à enzima. Por outro lado, o 

grupo em C-17 parece ter um papel predominante na atividade inibitória da aromatase. 

Desta forma, decidimos transformar o grupo carbonilo de C-3 num grupo hidroxilo. Das 

moléculas estudadas, observámos que os derivados C-3 hidroxilados são inibidores 

bastante potentes, especialmente se o grupo hidroxilo assumir a estereoquímica 3β. A 

alteração de ambos os grupos carbonilo em C-3 e C-17 levou, por seu turno, a uma 

diminuição muito significativa da atividade. Estes resultados permitiram estabelecer 

que, de facto, não é essencial a existência de um grupo carbonilo em C-3 num esteróide 

para que este seja um potente inibidor, desde que exista um outro destes grupos em C-

17. 

 De acordo com resultados apresentados na literatura, revelou-se necessário a 

existência de alguma planaridade no anel A e na junção dos anéis A,B, para que os 

compostos esteróides inibam a enzima. Assim, sintetizámos novos inibidores da 
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aromatase e comparámos a influência que as funções, dupla ligação e epóxido, tinham 

quando ocupavam diferentes posições do anel A. Perante os resultados obtidos, 

verificou-se que, quando a dupla ligação estava na posição 4,5, o composto apresentava 

maior atividade, reforçando a importância da planaridade na posição mais próxima da 

junção dos anéis A,B. Todavia, para a série dos epóxidos, o derivado 3,4 mostrou ser o 

inibidor mais ativo, o que levantou a hipótese do oxigénio do anel oxirano conseguir 

estabelecer ligações de hidrogénio com algum aminoácido do local ativo da enzima. 

  De acordo com dados anteriores, sabe-se que a enzima poderá ter uma bolsa 

hidrofóbica, com um volume limitado, mas que poderá acomodar substituintes pouco 

volumosos localizados nas posições C-6 e C-7 dos esteróides. Recentemente, também se 

observou que a enzima tem um canal de acesso que permite a entrada dos esteróides e 

que poderá acomodar cadeias laterais na posição C-6 destes compostos. Para além 

disso, outros trabalhos revelaram que a atividade inibitória é semelhante quando o 

mesmo tipo de substituinte está na posição C-6 ou na C-7. Desta forma, sintetizámos 

novos derivados 6α-metilo e 7α-alilo da androstenodiona que revelaram ser potentes 

inibidores da aromatase.  

 Estudos anteriores mostraram a importância do grupo carbonilo em C-17 no anel 

D esteróide como característica estrutural requerida para atingir atividade inibitória 

máxima. Deste modo, e de forma a estabelecer novas relações estrutura-atividade, 

substituímos o grupo carbonilo em C-17 pelo grupo hidroxilo, acetilo e também pelo 

isóstero tionilo. Em quase todos os compostos preparados, os que contêm o grupo 

carbonilo revelaram ser inibidores mais potentes.  

 Estivemos também interessados em preparar e estudar alguns derivados dos dois 

fármacos usados/em uso na clínica para o tratamento do cancro de mama, o formestano 

e o exemestano. Os derivados C-4 acetoxilo e acetisaliciloxilo do formestano foram 
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sintetizados e avaliados. Ficou evidente que substituintes nesta posição diminuem a 

atividade inibitória. Relativamente aos epoxi-derivados do exemestano, que são 

potenciais metabolitos, estes mostraram ser potentes inibidores.  

 A actividade dos inibidores da aromatase mais potentes avaliados nos 

microssomas da placenta foi também testada em células MCF-7aro sendo que alguns 

deles revelaram inibir a viabilidade e proliferação celulares de uma forma ainda mais 

eficiente que o exemestano. Alguns destes compostos foram ainda estudados nas linhas 

celulares SK-BR-3 e LTEDaro.  

 

 Relativamente ao cancro de próstata, este depende de androgénios para o seu 

desenvolvimento e progressão. Outra doença que também partilha destas características 

é a hiperplasia benigna da próstata. Em ambas as situações é sempre observada uma 

atividade anormalmente elevada da enzima 5α-reductase, enzima responsável pela 

conversão da testosterona na di-hidrotestosterona, o principal androgénio implicado na 

diferenciação e crescimento da próstata. Assim, a inibição da 5α-reductase surge como 

uma forma lógica de promover o tratamento destas situações. Apesar das moléculas que 

existem atualmente em uso clínico serem potentes, elas apresentam algumas 

desvantagens, como a perda de massa óssea e de massa muscular e impotência. Além 

disso, quando eles são usados de uma forma profilática podem causar cancro de próstata 

de elevado grau.  

 Nesta tese fizemos o design e sintetizámos esteróides com a função 3-ceto-Δ4 do 

anel A do esteróide combinada com funções carboxamida, carboxiéster e ácido 

carboxílico na posição C-17β do anel D. Na base deste design estão os compostos 

finasteride e dutasteride, dois inibidores potentes e irreversíveis da 5α-reductase usados 

na terapêutica. Assim, procurou-se reunir na mesma molécula, o anel A que existe na 
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testosterona, o substrato natural da enzima, com os substituintes presentes em C-17β 

dos referidos fármacos. Os resultados obtidos sugerem que as amidas lipofílicas 

favorecem a inibição da enzima, sendo que o composto com o grupo N-terc-

butilcarboxamida em C-17β constitui o melhor inibidor.  

 

  As cumarinas constituem outro grupo de compostos que podem assemelhar-se 

quimicamente aos esteróides, na inibição da aromatase. Assim, também sintetizámos 

novos derivados 3-tiofenil da cumarina, de forma a abrir um novo caminho para a 

síntese e a avaliação desta classe de compostos como inibidores da aromatase. Alguns 

resultados preliminares relacionados com a sua síntese são apresentados nesta tese.  
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 OUTLINE OF THE THESIS 

 

 The present thesis focuses on: 

 i)   achieving new compounds for breast and prostate cancer treatment; 

ii)  establishing structure-activity relationships (SAR) of steroidal compounds as 

aromatase and 5α-reductase inhibitors.  

For that, several compounds where designed, synthesized and screened for their 

aromatase and 5α-reductase inhibitory activity, in order to evaluate their anti-tumor 

potency towards breast and prostate cancer and for BPH treatment, respectively. 

 

 

 

 

 

 

 

 This work is divided in three main sections:  

 

 CHAPTER I – STEROIDAL AROMATASE INHIBITORS AS ANTI-TUMORS 

 In this part, it is made an introduction where the scope of the disease, the 

molecular target, and the compounds used in breast cancer treatment are revised.  

 This chapter is subdivided into five subjects where there are presented: the 

rationale behind the prepared compounds; the synthetic strategies to obtain them and the 

discussion of the encountered SAR. The conclusion about the studies performed on cell 

lines are also made. Molecular modelling studies were performed for some compounds 

Ring-lettering and atom-numbering of the steroidal framework 
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and its conclusions are presented. The experimental part of the prepared compounds in 

chapter I is also disclosed.   

 

 

 CHAPTER II - STEROIDAL 5α-REDUCTASE INHIBITORS AS ANTI-TUMORS AND 

AS DRUGS FOR THE TREATMENT OF BENINGN PROSTATE HYPERPLASIA (BPH)  

 In this part, it is made an introduction presenting the disease and the molecular 

target involved as well as the molecules used in the treatment. 

 This chapter presents the rationale behind the synthesis of the desired 

compounds as well as the synthetic strategies behind it. It is also made a study of the 

SAR and the conclusion about the studies performed in cell lines. The experimental part 

of this section is enclosed in the end of the chapter. 

 

 

 CHAPTER III - FUTURE WORK: DEVELOPMENT OF COUMARINS AS 

AROMATASE INHIBITORS  

 This part of the thesis arose from our interest in extending the study of 

aromatase inhibition to other type of compounds, namely coumarins. A complementary 

study of this kind of compounds was made at the Department of Organic Chemistry of 

the Faculty of Pharmacy of the University of Santiago de Compostela, Spain. The 

presentation of the compounds prepared is made in this chapter.  

 

 

 The biochemical assays and biological studies of the compounds prepared in this 

thesis were performed in the Laboratory of Biochemistry, Department of Biological 
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Sciences, Faculty of Pharmacy, University of Porto, and the Institute for Molecular and 

Cell Biology, University of Porto. 

 The molecular modeling studies were performed in collaboration with the 

CCLab, Department of Health Science, University “Magna Græcia” of Catanzaro, Italy.  

 The X-ray analysis was made in collaboration with the Group of Electronic and 

Magnetic Structure of Materials from the Center of Materials Study through X-ray 

Diffraction at the Physics Department of the Faculty of Sciences and Technology, 

University of Coimbra. 
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 INTRODUCTION 

 

 A.1. Breast Cancer: Some Facts  

 Breast cancer is the most commonly diagnosed cancer and the leading cause of 

cancer death in women worldwide, with an estimated 1.4 million of new cases and 

458,000 deaths in 2008.1 In Figure 1.1 are indicated the most common cancers in 

women in 1984, 2007 and predicted to occur in 2030, for the United Kingdom.2  

 

 

  

 

 

 

 

 

 The three most commonly types of cancer among women expected to be 

diagnosed in 2030 are breast, lung and colorectal, accounting for more than half of the 

estimated cases of cancer in women. Breast cancer alone is expected to account for 29% 

of all the estimated cases. These same predictions were also made for 2012, for the 

United States.3  

 In spite of the rising in breast cancer incidence, the mortality rate is falling in 

developed countries (approximately 6-19 per 100,000 cases) because of the more 

favorable life style, the earlier diagnosis of the disease and the discovery of new specific 

important cancer in 1984 (29% of all cancers) is now in third
position (12% of male cancers), while prostate cancer now
comprises 29% of the total, having comprised only 11% of the
total in 1984. Stomach cancer, the fifth most common type of
cancer in 1984 no longer figures in the top 10 (it ranks 12th, with
o2% of the total), and melanoma (14th with just under 1% of male
cancer in 1984) is predicted to become the fourth most common
male cancer accounting for 4.6% of cases in 2030.

Comparison with Nordpred predictions

We also used the Nordpred package (with a power-5 link and
5-year step functions for age, period and cohort) to project
rates until 2023–2027. Comparison of 2052 age–sex–site–period-
specific projections (for all sites other than breast and prostate,
for ages 40þ years for all sites except for testis, and for ages
15–79 years for testis) were made (Table 2). The median of the
observed absolute differences increased from 9% for 2008–2012 to
14% for 2023–2027. The 95th percentile (i.e., the 488th largest of
the 513 comparisons in each 5-year calendar period) of the
distribution of disagreement was about four times greater than
the median (Table 2).

These results can be compared with those obtained by using the
data until 2002 in Nordpred to predict results for 2003–2008 and
comparing these with the observed data. Here the median absolute
disagreement was 7% and the 95th percentile 28%.

DISCUSSION

The observed data were annual incidence rates, for GB, by cancer
site, sex and 5-year age group from 1975 to 2007. The rates were
converted to numbers of cases for the United Kingdom by
multiplying by the ratio of the respective populations. Compared

with the actual incidence (number of recorded cases) in the United
Kingdom in 2007, the difference between observed and modelled
numbers of cases (using GB rates applied to the UK population)
was o1.5% for all sex/site combinations. In Table 1, we present the
projected changes in ASRs and in the numbers of cases of cancer
between 2007 and 2030. These can be used to split the change in
numbers between changes due to changing rates and changes due
to changing population. Thus, for instance, the 11% increase in
male stomach cancer cases is accompanied by a 33% fall in rates,
so that the effect of the population change is to increase numbers
by 66% (¼ [100þ 11]/[100#33]#1).

We have deliberately shown results on a linear rather than a
logarithmic scale because of the greater uncertainties in predicting
cancers in the young. For ovarian cancer, for instance, cancers in
young women are likely to be germ cell with very different risk
factors from epithelial cancer in older women; therefore, there is
no reason to suspect that cohort effects seen in those aged 15– 29
years will carry forward to ages 35– 49 years. Rates of melanoma,
ovarian cancer, endometrial cancer (corpus uterus) and testicular
cancer (not shown in Figure 2) are all non-negligible in those aged
25–49 years, and our model is seen to fit these observed data well.
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Table 2 Agreement between our (spline) model projections and those
of the Nordpred (step function) model

Period
Median percentage

absolute disagreement
95th percentile

absolute disagreement

2008–2012 9 35
2013–2017 10 40
2018–2022 10 37
2023–2027 14 66

UK cancer projections
M Mistry et al

1801

British Journal of Cancer (2011) 105(11), 1795 – 1803& 2011 Cancer Research UK
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Figure 1.1 - Pie charts of the most common cancers in women in 1984, 2007 and predicted for 2030, for the 
United Kingdom. The areas of the pies are proportional to the numbers of cases2 
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drugs.4 Due to the combination between the high incidence and the favourable 

prognostic, breast cancer is the one with higher survival rate. It is estimated that 

approximately 4,4 millions of women, worldwide, that were formerly diagnosed with 

breast cancer within the last five years, are still alive.5 

 In Portugal, in the beginning of the 90’s, it was observed an inversion in the 

increased tendency of mortality due to breast cancer. The decrease rate was of 2% per 

year (Figure 1.2). This can be explained by the early detection and the easy access to 

effective treatments.5 The incidence rates in the United Sates, as well as in other western 

countries including United Kingdom, have decreased since the early 2000s largely due 

to reduction in the use of hormone replacement-therapy, in post-menopausal women.6,7  

 

  

 

 

 

 

  

 

 

 

 

 There are a number of factors that are known to increase the risk of developing 

breast cancer, being some of them modifiable, accounting to control the development of 

the disease. Besides the gender, age is the most important risk factor for breast cancer. 

Hence, for example, a 20-year old woman has a probability of 0.06% to develop breast 
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Figure 1.2 - Breast cancer-related mortality in Portuguese women (35-74 years), between 1955-20025 
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cancer in the next 10 years, while a 60-year old woman has a risk of 3.45%.8 However, 

in the last years, it has been observed a more frequent diagnosis of breast cancer among 

young women. Women with family history of breast cancer, especially in a first-degree 

relative (mother, sister, daughter, father, or brother), are at increased risk of developing 

the disease. Compared to women without a family history, the risk of breast cancer is 

1.8 times higher for women with one first-degree female relative. This risk also 

increases when the first diagnosis occurs at a younger age.8 Genetic factors are also 

decisive. It is estimated that 5-10% of breast cancer cases arise from inherited 

mutations, including in the breast cancer susceptibility genes BRCA1 and BRCA2. 

Mutations in these two genes account for about 15-20% of familiar breast cancers.8,9 

Reproductive hormones are thought to influence breast cancer risk. Early menarche 

(<12 years) and older age at menopause (>55 years) may increase the risk for breast 

cancer.8,10 Postmenopausal women with high levels of endogenous hormones (estrogen 

or testosterone) have about twice the risk for developing breast cancer.8,11 Younger age 

of child bearing and a greater number of pregnancies decrease the risk of breast 

cancer.1,8 Recently, it has been attributed to the use of oral contraceptives the slightly 

increase in the risk of breast cancer. Also, the use of hormone replacement therapy, with 

combined estrogen and progestin, appears to increase the risk of developing and dying 

from breast cancer.8 There are many other risk factors for breast cancer, such as, high 

breast tissue, high bone density, a fat-rich diet and environmental agents, frequently 

referred to as “endocrine disruptors”, like cigarette smoke, alcohol and exposure to 

harmful radiations.8,10  

 In conclusion, it is accepted that sex-steroid hormones are involved in the 

development of breast tumors. However, some aspects are still to be fully understood.  
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 A.2. Estrogens 

 Estrogens are essential for life. They are a group of steroid hormones that are 

involved in numerous physiological processes including the development and 

maintenance of the female sexual organs, reproductive cycle, reproduction and several 

neuroendocrine functions. However, these hormones also play crucial roles in certain 

disease states, especially in mammary and endometrial carcinomas.12,13 

 

 

  A.2.1. Estrogen Receptors 

 Estrogens induce cellular transformations by different mechanisms being the 

estrogen receptor (ER) (Figure 1.3) the central piece of them.14,15  Estrogens diffuse 

through the cell membrane into the cell and, after the involvement of other non-ER 

plasma membrane-associated estrogen binding proteins,16 they bind to the ER that is 

located in the nucleus belonging to the nuclear hormone receptor superfamily.17,18 It 

was in 1986 that Green, P. et al.19 and Greene, G. L. et al.20 have cloned  the first ER, 

and later in 1996 Kuipier, G. G. et al.14 have reported a second ER. These are nowadays 

known as ERα and ERβ, respectively.  

 

 

 

 

 

 

 

 
Figure 1.3 - Crystal structure of ERα ligand binding domain complexed with estradiol15 
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 The two ER forms present a very high degree of similarity when compared at 

the aminoacid level and they have a similar tertiary structure.21 They share common 

regions, which participate in the formation of independent but interacting functional 

domains: the N-terminal transactivation domain, the DNA-binding domain and the 

ligand-binding domain. They are encoded by separate genes, ESR1 and ESR2, which are 

found in different chromosomal locations.17,18,22  

 ERα and ERβ can be detected in different tissues, being possible to exist both 

receptors in some cells, whereas in others there is only one subtype predominant. ERα is 

mainly expressed in the uterus, prostate stroma, theca cells of the ovary, Leydig cells of 

testes, epididymis, bone, breast, some regions of the brain and white adipose tissue. ERβ 

is in turn expressed in the colon, bone marrow, salivary gland, vascular endothelium 

and in some parts of the brain.18  

 ERs play therefore functional roles both in the physiology and disease. 

Concerning breast, it is known that normal and cancer tissues present different ERα and 

ERβ distribution, which might influence breast cancer risk, hormone responsiveness and 

survival.18 Although, it has been shown that also ERβ is expressed in breast tumors, 

ERα is indeed the predominant estrogen receptor in the female reproductive tract and 

mammary glands, being also the receptor most required for the known estrogenic 

responses.13,23 ERα is the only form clinically measured for medical decision-making 

and treatment.18 Approximately three quarter of breast tumors express hormone 

receptors like ER (ER-positive tumors).  
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 A.2.2. Estrogen Biosynthesis 

 The biosynthesis of steroidal hormones occurs from the precursor cholesterol 

and it is a multi-step process, which involves a series of transformations with different 

enzymes (Figure 1.4). These enzymes promote the synthesis of different families of 

steroidal hormones, not only in specific secretory organs but also in peripheral tissues.24 

 The most predominant estrogen in circulation is 17β-estradiol (E2), which is the 

most biologically active in breast tissue.24 In premenopausal women the synthesis of 

estrogens occurs in the ovaries, and also in the placenta, in pregnant ones. However, in 

postmenopausal women the ovary function and the production of estrogens cease. 

Hence, in this case, peripheral tissues such as liver, skin, muscle as well as adipose 

tissue provide the major source of estrogen synthesis.13,25  

 The last step of biosynthesis of the most potent endogenous estrogen E2 is made 

from testosterone by aromatase, which is generally considered rate-limiting in estrogen 

production. The crucial role played by aromatase in estrogen production has led to 

enormous interest both in the enzyme and its inhibitors.13,26 

  

  

 A.3. Aromatase  

 The human aromatase enzyme is a member of the cytochrome P450 group and is 

the product of CYP19A1 gene. Aromatase is bound in the endoplasmic reticulum27,28 of 

the cell and works in a heterodimer system composed by two major proteins: 

cytochrome P450arom, which contains a heme group and a steroid binding site, and an 

ubiquitous flavoprotein NADPH-cytochrome P450 reductase, which transfers reducing 

NADPH equivalents to cytochrome P450arom.  
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Figure 1.4 - The biosynthesis of steroidal hormones. The enzymes are: cholesterol side-chain cleavage (P450scc), 
3β-hydroxysteroid dehydrogenase (3β-HSD), 17α-hydroxylase/17,20-lyase (P450c17), steroid sulfatase (STS), 
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 Aromatase promotes the aromatization of androgens being the only enzyme in 

vertebrates known to aromatize a six membered ring.12,28,29 Its substrates are 

androstenedione (Figure 1.5) and testosterone. 

 

 

 

 

 

 

 

 

 

 

 

 

 Aromatization of androstenedione, the preferred substrate, proceeds through 

three successive oxidation steps, each using one mole of NADPH as an electron donor 

and one mole of oxygen, in order to convert one mole of substrate into one mole of 

estrone (Figure 1.5). The first oxidative step is the hydroxylation at the C-19 methyl 

group to generate a 19-hydroxymethyl function. This is then subjected to a 

stereospecific second hydroxylation at the C-19 pro-R position to provide the C-19 

geminal diol, which is the hydrated form of the C-19 aldehyde. In the last step, the C-19 

aldehyde derivative undergoes the third final hydroxylation, probably at the 2β position, 

and aromatizes spontaneously.30 This last step of the aromatization mechanism is not 

thoroughly understood.12,13,26 

Figure 1.5 - Proposed mechanism for the aromatization of androgens29 
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 Aromatase is present in high levels in a variety of places including ovary, 

placenta, adipose tissue, testis and skin. Breast cancer tissues have been shown to 

express aromatase and to produce higher levels of estrogens than non-cancerous cells. 

This is one of the main reasons why aromatase has generated such a huge interest as a 

target in the treatment of breast cancer.12,13 

 During the last years, much of the research that was being performed worldwide 

in order to elucidate the mechanism of aromatase action has relied on site directed 

mutagenesis experiments with specific aromatase inhibitors. Very recently, in 2009, 

there was a significant breakthrough in this field since Gosh et al.28 successfully solved 

the 3D structure of human aromatase, after crystallizing it along with its substrate, 

androstenedione, hence providing a structural basis for its binding to the natural 

substrate (Figure 1.6).  

 

 

 

 

 

 

 

 

 

 

 

 From the 3D crystal structure of the enzyme aromatase, it was found that the 

active site is a distal cavity of the heme-binding pocket and the heme iron atom is the 

Figure 1.6 - The overall structure of aromatase28 
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reaction center of the enzyme. The catalytic site of aromatase is located at the juncture 

of the I and F helices (Figure 1.7).31  

 

    

 

 

 

 

 

 

 

 

 

 

 

 The amino acid residues within the catalytic cleft are Ile305, Ala306, Asp309 

and Thr310 from the I-helix, Phe221 and Trp224 from the F-helix, Ile133 and Phe134 

from the B-C loop, Val370, Leu372 and Val373 from the K-helix-β3 loop, Met374 from 

β3, and Leu477 and Ser478 from β8-β9 loop. Concerning the substrate, the 17-keto 

oxygen of androstenedione makes a hydrogen bond (2.8Å) with the backbone amide of 

Met374 and a weak contact (3.4Å) with NH1 of Arg115. The 3-keto is 2.6Å from the 

carboxylate moiety of Asp309 and may be protonated. Androstenedione binds with its 

β-face oriented towards the heme group and the C-19 of the methyl group positioned at 

a distance of 4.0Å from the heme Fe atom with which is coordinated.28,31,32 

Figure 1.7 - Close-up view of aromatase active site showing the bound androstenedione and 
some of the amino acids involved31 

200 D. Ghosh et al. / Journal of Steroid Biochemistry & Molecular Biology 118 (2010) 197–202

Fig. 3. A close up view of the human placental aromatase active site showing the bound androstenedione molecule within its unbiased electron density surface. Important
side chains, heme and water molecules are depicted in the following element colors: gray (carbon), blue (nitrogen), red (oxygen), yellow (sulfur) and firebrick (Fe). The carbon
atoms of androstenedione are colored in cornflower blue. The color code is maintained for all figures throughout the manuscript. The distances are in Å.

enzyme. The active site, thus, is buried deep within the roughly
spherical molecule near its geometrical center. Androstenedione
binds with its !-face oriented towards the heme group and C19 of
the methyl group positioned at a distance 4.0 Å from the Fe-atom
(Figs. 2 and 3). The refined Fe-position is displaced roughly 0.2 Å
away from the heme plane towards the ligand Cys437. The 17-keto
oxygen of the substrate is ideally situated at a distance 2.8 Å from
the backbone amide nitrogen of Met374 to accept a proton and
make a hydrogen bond. The 3-keto oxygen O1 at the other end is
at 2.6 Å from the carboxylate O"2 of the Asp309 side chain, sug-
gesting protonation of the carboxylate moiety and the formation
of a hydrogen bond. The geometries of these two hydrogen bonds
are such that 3-keto O1 and the water oxygen atom lie roughly in
the carboxylate plane. Furthermore, this water molecule is situ-
ated at 3.6 Å from the guanidinium group of the Arg192 side chain,
which is salt-bridged to Glu483 (not shown). Two water molecules
were found hydrogen-bonded to each other and also to the Ser478
side chain OH, which in turn donates its proton to His480 N"1
(Ser478OH· · ·N"1His480: 2.9 Å; not shown), further away from the
active site. Moreover, the Ser478 side chain is linked via these two
water molecules to Arg192 by a weak hydrogen bond of length 3.4 Å
(Fig. 3).

The steroid-binding pocket that snuggly fits an androstenedione
molecule is delineated by a confluence of tight packing hydrophobic
residues from various parts of the polypeptide chain. The residues
contributing to the catalytic cleft are Ile305, Ala306, Asp309 and
Thr310 from I-helix, Phe221 and Trp224 from F-helix, Ile133 and
Phe134 from the B′–C loop, Val370, Leu372 and Val373 from the
K–!3 loop, Met374 from !3, and Leu477 and Ser478 from the
!8–!9 loop. Additionally, 4 arginine and 1 tryptophan side chains
are involved in binding polar interactions with the heme propi-
onate moieties, as described earlier. Of these, the NH1 atom of
Arg115 approaches O2 (of 17-keto) of androstenedione from a dis-
tance of 3.4 Å (Fig. 3).

The hydrophobic residues and porphyrin rings of heme sur-
round and pack against the steroid backbone from all sides at
van der waals distances. Side chains of residues Arg115, Ile133,
Phe134, Phe221, Trp224, Ala306, Thr310, Val370, Val373, Met374
and Leu477 have direct van der waals contacts with the bound
androstenedione molecule. Among these, Ile133, Phe134, Phe221,
Trp224 and Leu477 approach the substrate from the #-face of

androstenedione and follow the contour and puckering of the
steroid backbone, while Arg115, Ala306, and Met374 make con-
tacts at its edge and Thr310, Val370, and Val373 on its !-face. The
combined surface creates a pocket just right in volume and shape
to tightly enclose androstenedione [37]. This is particularly true
for the #-face of the ligand where the van der waals surfaces of the
large hydrophobics Phe134, Phe221, and Trp224, dictate the shape.
The volume of the binding pocket is estimated to be no more than
400 Å3, considerably smaller than those in 3A4 and 2D6 [11,12].

The only significant opening to the pocket is at the bottom right
corner where 3 water molecules, having hydrogen bonds to Asp309
and Ser478, are located (Fig. 3). This leads to a channel that exits to
the exterior of the protein surface. The salt bridging Arg192–Glu483
side chain pair as well as those of Asp309 and Ser478 line the
channel, right underneath the surface [37]. It is possible that this
channel, although too narrow at points to let steroids through, per-
mits the passage of the substrate and the product, owing to the
flexibility of the surrounding tertiary structure.

Pro308 plays a key role in the architecture of the active site.
The first 5 amino-terminal turns (Arg293 to Ala306) of I-helix in
aromatase have a slightly different orientation—in a direction away
from the active site. Pro308 causes a bend in the backbone and a
shift in the helix axis, bringing it back more towards the active site
to follow its normal course. As a result, some extra space, where
the 5th turn of the helix (Met303 to Ala307) otherwise would have
been, is created accommodating the 3-keto end of the A-ring. In a
normal course of I-helix, the 5th turn would have a steric clash with
this end of the substrate [37]. Furthermore, as previously discussed,
in addition to the bulky hydrophobic residues and differences in the
F-helix that greatly restrict the available space, the catalytic cleft in
aromatase is further constricted by the altered location and length
of the !8–!9 loop that contributes important residues Ser478 and
Leu477 to the active site (Fig. 3).

3.4. Structural perspective on the mechanism of aromatization

In a three-step catalytic process that requires 3 mol of O2, 3 mol
of NADPH, and the flavoprotein CPR for transferring electrons from
NADPH, aromatase converts androgens to estrogens. There is a gen-
eral agreement among previously proposed models that the first
two steps are typical P450 hydroxylation reactions. The mechanism
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 The steroid-binding pocket that fits an androstenedione molecule is delineated 

by a confluence of tight packing hydrophobic residues. The hydrophobic residues and 

porphyrin rings of heme pack tightly against the steroid backbone. The side chains of 

residues Arg115, Ile133, Phe134, Phe221, Trp224, Ala306, Thr310, Val370, Val373, 

Met374 and Leu477 make direct van der Waals contacts with the bound substrate. 

Ile133, Phe134, Phe221, Trp224 and Leu477 approach the substrate from the α-face and 

follow the contour and puckering of the steroid backbone, while the side chains of 

Arg115, Ala306 and Met374 make contacts at its edge, and Thr310, Val370 and Val373 

on the β-face. The combined surface creates a pocket that encloses androstenedione 

very tightly (Figure 1.8).33 The volume of the binding pocket is estimated to be no more 

than 400Å3, which is considerably smaller than in other xenobiotic-metabolizing human 

P450s.28,31  

 In summary, the crystal structure of aromatase revealed to be a highly tuned 

molecular machine of estrogen production. This important and recent discovery will be 

useful in the structure-based design development of new compounds.28,33 

 

 

 

 

 

 

 

 

 

 

Antiproliferative Activity of New Compounds. The six
potent 2-alkynyloxy derivatives 4−9, as well as EXM and LTZ
as controls, were assayed for their antiproliferative properties in

the breast cancer cell MCF-7-Tet-off-3βHSD1-Arom (MCF-7a;
see Experimental Section). The results are summarized in
Figure 3c,d, and the EC50 values are given in Table 1. More
detailed antiproliferation data and individual dose response
curves for the new inhibitors and the controls are provided in
Table S2 (Supporting Information). The proliferative activity of
the MCF-7a cells is first evaluated by treating the cells with E2,
TST, and ASD. All three compounds effectively stimulate the
growth of the MCF-7a cells in a concentration-dependent
manner (Figure 3c), confirming that these cells express both a
functional estrogen receptor and an active aromatase. E2 (EC50
= 55 pM) is more potent than either TST (EC50 = 99 pM) or
ASD (EC50 = 3.6 nM) in growth stimulation, indicating that
there is a time lag for the synthesis of E2 from TST (via the
aromatase pathway) and ASD (via the aromatase-17β-
hydroxysteroid dehydrogenase type 1 pathway) in these breast
cancer cells. The maximum concentration of E2 and TST
required to stimulate MCF-7a cell proliferation in our cell-
based assay system is determined to be 1 nM (Figure 3c); this
concentration is used for subsequent proliferation inhibition
assays.
Figure 3d summarizes the results from the antiproliferative

activity assay of the 2-alkynyloxy aromatase inhibitors 4−9 in
the MCF-7a cells in comparison with the activities of LTZ and
EXM. The data show that the newly designed inhibitors abolish
the TST-stimulated proliferation of MCF-7a cells in a dose
dependent manner. The number of MCF-7a cells nearly
doubles in response to 1 nM TST treatment. However, the
addition of aromatase inhibitors 4−9 progressively inhibits the
stimulatory activity of TST as a function of concentration
(Figure 3d). The EC50 values of 4−9 are 1.7, 0.03, 3.4, 5.4, 15.7,
and 0.3 nM, respectively (Table 1). Of these inhibitors, 4, 5,
and 9 show 2.6-fold (p < 0.040), 119.6-fold (p < 0.010), and
14.7-fold (p < 0.012) antiproliferative activities, respectively,
against TST-stimulated cell growth when compared to the
steroidal AI EXM (EC50 = 5.6 nM). Thus, the structure−
activity relationship of these compounds in the cell-based
antiproliferation assay parallels their enzyme inhibitory proper-
ties in the cell-free system.

Aromatase−Androstenedione Complex Structure at
2.75 Å. The newly refined structure has yielded a better model
than the 2.90 Å structure (PDB code 3EQM)6 in terms of
overall quality and the refinement parameter statistics (Table
S3, Supporting Information). Inclusion of the higher resolution
data enabled rebuilding of some of the weakly defined loop
regions and inclusion of additional solvent atoms into the
model. The residues Ser267 to Cys275 in the G−H loop have
clearer electron densities than the previous map and are rebuilt

Figure 2. Design considerations for the new inhibitors derived from
the binding interactions and exposure of the ligands to the enzyme
interaction spaces: (a) ASD; (b) EXM. In (a) and (b) derived from
the X-ray structures, the residues lining the binding pocket making
hydrophobic and hydrogen-bonding contacts are shown (hydrophobic,
green; acidic, red; basic, blue; polar, purple; sulfur-containing, yellow).
Exposure at the C4 and C6 positions of the steroid to the access
channel opening is indicated. Also shown schematically in (a) is a
water molecule trapped between Asp309 and Arg192 side chains,
postulated to have a role in the proton relay network and enolization
of 3-keto.6

Scheme 1. Synthesis of C6β-2-Alkynyloxy Derivatives of ASDDa

aShown are chemical structures of newly synthesized C6β-alkoxy-substituted androsta-1,4-diene-3,17-dione compounds 2−9.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm300930n | J. Med. Chem. 2012, 55, 8464−84768466

 

Figure 1.8 - Binding interactions and exposure of ligands to the enzyme 
interaction spaces with androstenedione33 
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 A.4. Breast cancer treatment 

 Although there have been recent declines in breast cancer mortality rates in 

some European Union countries, breast cancer still remains of key importance to public 

health not only in Europe but also worldwide. 

 The major decision about the treatment to follow is determined by the patient 

and by the physician, after being considered the biological characteristics of the tumor, 

the age of the patient and the risks and benefits from each treatment. Therefore, the 

therapeutic strategies available are: surgery, chemotherapy, radiation therapy, targeted 

therapy and hormonal therapy.  

 

 

 A.4.1. Surgery 

 The main objective of breast cancer surgery is the removal of the tumor itself 

and to assess the stage of the disease. The techniques usually performed are 

lumpectomy and simple or total mastectomy. 

 

 

 A.4.2. Chemotherapy  

 There are many factors that influence the outcome of chemotherapy such as the 

size of the tumor and the number of lymph nodes affected. Drugs like doxorubicin 

(Adriamycin®) are used to weaken and destroy cancer cells within the body, being also 

used to shrink cancer that has metastasized. In most cases, combinations of drugs are 

more effective than one drug alone for breast cancer treatment.8  
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 A.4.3. Radiation therapy 

 This procedure is used to destroy cancer cells that eventually have remained in 

the breast, chest wall or underarm area after surgery. It might also be needed after 

mastectomy when cancer is larger than 5 cm in size or when it is dissiminated in the 

lymph nodes. Radiotherapy might be applied externally or internally, depending on the 

type, stage and location of the tumor. In the last decades, this therapy has become an 

accurate targeted process, which allowed reducing side effects and treatment time.8 

  

 

 A.4.4. Targeted therapy 

 In about 15-30% of breast tumors there is an over-production of protein HER2 

(Human epidermal growth factor receptor 2), which allows the tumor to grow faster. 

Monoclonal antibodies that target this protein, like trastuzumab (Herceptin®), offer a 

survival benefit for women who have breast cancer that overexpress HER2. Hence, all 

invasive breast cancers should be tested for the gene that encodes the HER2 protein to 

identify women that would benefit from this therapy.8 

 

 

 A.4.5. Hormonal therapy 

 Many studies have shown that endocrine therapy plays an important role in the 

treatment of hormone-dependent breast cancer, being used in most of the cases in 

complement with the above-mentioned approaches. There are two major hormonal treatment 

modalities to prevent the effects of estrogens in the growth of tumors:24 (1) the use of 

estrogen antagonists to block the action of the estrogens on its receptor, and (2) the use of 

inhibitors of the biosynthesis of estrogens, to reduce their circulating levels (Figure 1.9).  



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 18 

 

 

 

 

 

 

 

 

 

 

 

 A.4.5.1. Estrogen Receptor Antagonists 

 One of the breakthroughs in breast cancer treatment was the discovery of drugs 

that targeted the ER, also called antiestrogens. These compounds compete for binding to 

the ER and reduce the number of receptors available for binding to endogenous 

estrogens. This approach has proven to be very effective in estrogen-dependent breast 

cancers. There are two types of antiestrogens: SERMs (Selective Estrogen Receptor 

Modulators) and SERDs (Selective Estrogen Receptor Downregulators). SERMs are 

chemically diverse compounds but with a conformational similarity that allow them to 

bind to ER, presenting both selective agonist or antagonist action on several target 

tissues depending on its content on ER.34 SERDs block estradiol action and induce 

receptor downregulation by causing its degradation.  

 Tamoxifen (Figure 1.10) was the first antiestrogen drug for breast cancer 

treatment approved in the 1970s and is the SERM most widely used.13,35 Like other 

SERMs, Tamoxifen exerts an agonist effect on the ER of some tissues, while acting as 

Figure 1.9 - Strategies for hormonal therapy 
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antagonist on others. For this reason, it is quite effective as ER antagonist in the 

treatment of hormone receptor-positive breast cancer, both in pre and postmenopausal 

women. However, the agonist effects in the ER of the uterus and vascular system, after 

prolonged usage, causes an increased risk of endometrial cancer and 

thromboembolism.12,36 On the other side, the agonist effect in the bone ER, prevents 

bone loss and osteoporosis. Other examples of recent SERMs are raloxifene and 

toremifene, which are structurally related to tamoxifen.37 

 

 

 

 

 

 

 

 

 Fulvestrant (Figure 1.11) is a SERD compound that has an affinity for the ER 

approximately 100 times higher than tamoxifen. Besides, it has no estrogen-like activity 

on the uterus, and has the capacity to block completely the stimulatory activities of both 

agonists and antagonists, like tamoxifen. The clinical efficacy of fulvestrant has been 

compared with that of tamoxifen in postmenopausal women with breast cancer, and its 

efficacy in tamoxifen-resistant breast cancer has also been demonstrated.37  

 

 

 

 

NO

Figure 1.10 - Tamoxifen 

Figure 1.11 - Fulvestrant 
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 A.4.5.2. Aromatase Inhibitors (AIs) 

 Hormonal treatment has also been focused into the reduction of estrogen levels, 

which has revealed to be a very successful approach. This is achieved by using 

aromatase inhibitors (AIs), by blocking the production of estrogens. Investigations on 

the development of aromatase inhibitors began in the 1970s and have expanded greatly 

in the past three decades.13  

 AIs do not interact directly with the ER but block the conversion of adrenal 

androgens into estrogens in peripheral tissues, including the breast tissue.36  

 The evolution of AIs has seen a transition from prototype first generation agents, 

which were not particularly potent or selective, to the actual third-generation drugs, 

which are much more effective. This last generation of compounds represent a 

significant advance in ER-positive breast cancer therapy in postmenopausal women, 

being approved both for early- and late-stage cases.38 

 AIs are traditionally subdivided into two main classes, according to their 

structure. Type I inhibitors are associated to the substrate-binding site of the enzyme 

and invariably have an androgen structure, and are usually referred to as steroidal 

inhibitors. On the other side, type II inhibitors are “nonsteroidal”, and are essentially 

azole type compounds.39 All AIs are similar in the way that they inhibit the estrogen 

synthesis which is by blocking aromatase activity. However, they have distinct 

mechanisms of action. 

 The steroidal or type I AIs can be classified as competitive or mechanism-based 

inhibitors according to the way they promote the inhibition of the enzyme, binding 

reversibly or irreversibly to its active site. Nonsteroidal or type II inhibitors are mostly 

competitive inhibitors. Thus, competitive inhibitors are molecules that compete with the 

substrate for noncovalent binding to the active site of the enzyme, decreasing the 
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amount of product formed. A mechanism-based inhibitor mimics the substrate, being 

then converted by the enzyme to a reactive intermediate, which irreversibly binds to the 

enzyme promoting its inactivation. The term “mechanism based” is used because the 

inhibitor uses the mechanism of the enzyme to be activated.13 Other denominations are 

also used for these inhibitors such as “enzyme-activated irreversible inhibitors”, 

“suicide substrates” and “suicide inactivators”, since aromatase is inactivated because of 

its own mechanism of action.38 

 On the other side, nonsteroidal AIs interact noncovalently with the heme moiety 

of the enzyme and occupy its substrate-binding site, thereby preventing binding of 

androgens to the catalytic site. This antagonism is reversible, being these AIs 

competitively displaced from the active site.38 The nonsteroidal inhibitors contain a 

nitrogen heteroatom with a free electron pair that coordinates with the heme iron (Fe3+) 

mimicking the C-10 methyl group of steroids. Some of these inhibitors are likely to be 

less enzyme specific and can inhibit other cytochrome P450-mediated hydroxylations, 

which results in significant toxicity.35  

 The evolution of AIs has seen the development of agents of both type I and type 

II classes that have progressively increased in both specificity and potency, within each 

new generation. 

 

 

 First-Generation Drugs 

 First-generation AIs were used without the knowledge at that time that they had 

anti-aromatase properties, as was the case of testololactone and aminoglutethimide 

(Figure 1.12).  
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 Testololactone (Teslac®) was initially used as androgen, based on the conviction 

that existed at that time, that androgens might counteract the action of estrogens. It is 

structurally related to testosterone and became available for studies in the early 1960s.40 

Segaloff et al.40 performed the first clinical study and reported on the effectiveness of 

the drug in advanced breast cancer. It demonstrated a very low rate of toxic effects and 

did not present virilism or other hormonal activity present in testosterone. It was only in 

1975 that Siiteri and Thompson41 discovered that this compound had aromatase 

inhibitory activity. It was used for over two decades as a treatment for breast cancer 

since it was found to inhibit aromatase.25 

 

 

 

 

  

   

 

 Aminoglutethimide (Cytadren®) was originally an antiepileptic agent that was 

removed from the market due to serious side effects, namely renal failure.13,40 It first 

entered in preliminary clinical trials in advanced breast cancer as a result of the 

observation that it inhibited adrenal steroidogenesis, being introduced as a form of 

chemical adrenalectomy.39  

 Aminoglutethimide was the prototype for the nonsteroidal aromatase 

inhibitors,40 being referred to as the first-generation AI. Although it was an important 

AI, it was clear that it was far from being an ideal agent. The drug was only partially 

effective in supressing plasma estrogen levels, and it lacked specificity since it also 

Figure 1.12 - Testololactone (left) and aminoglutethimide (right) 
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inhibited a number of other steroidogenic CYP-450 enzymes, requiring a concomitant 

administration of corticosteroids. This resulted in significant toxicity.13,39 

 

 

 Second-Generation Drugs 

 Second-generation inhibitors were developed with greater selectivity and 

potency than their first-generation counterparts. Among the second-generation AIs that 

reached the clinic, the most notables were the steroidal, formestane, and the 

nonsteroidal, fadrozole (Figure 1.13).  

 

 

 

 

 

 

  

  

 Formestane (Lentaron®) was one of about 200 compounds that were specifically 

designed and assayed as AIs by Harry and Angela Brodie in the 1970s, which revealed 

to be a potent inhibitor of aromatase.39,42,43 It is structurally related to androstenedione, 

the natural substrate of the enzyme, having a hydroxyl group at C-4. Due to this 

inhibitory activity it was indeed used for breast cancer treatment in postmenopausal 

women.44 

 Formestane competes rapidly with androstenedione for the active site of the 

enzyme initiating a time-dependent reactive process which results in either covalent or 

O

O
OH

N
N

N

Figure 1.13 - Formestane (left) and fadrozole (right) 
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very tight binding to the enzyme, causing its inactivation.42 It appeared to be converted 

by the enzyme to a reactive intermediate that bound irreversibly to aromatase.39 This 

kind of inhibitor presents lasting effects, because new enzyme synthesis is required to 

overcome this mode of inhibition. Hence, it is not necessary the continued presence of 

the drug to maintain inhibition and the probability of toxic side effects are reduced.35,42 

Formestane was administrated as a suspension by intramuscular injection because, when 

given orally, it had poor biological activity due to glucuronidation of the critical 4-

hydroxy group through the first-pass liver metabolism, which results in its elimination 

from the body.39  

 Formestane is about 60-fold more potent than aminoglutethimide.39 It is also 

more effective than tamoxifen, and it does not have estrogenic activity on other tissues 

as tamoxifen.25 

 

 Fadrozole (Afema®) is the representative compound of second-generation type II 

inhibitor. This compound is an imidazole analog of aminoglutethimide, but shows 

higher potency, inhibiting aromatase in vitro 200 to 400 times higher.45 Another 

interesting difference when compared to the first generation drugs is that, at 

concentrations that maximally inhibit the enzyme, it had relatively small effects on 

other cytochrome P450-related enzymes. This means that with fadrazole there is no need 

for corticoid replacement.39  

 Although fadrozole is a highly potent compound, it has a relatively short half-

life, which is responsible for its lower in vivo activity when compared with other 

triazole derivatives, that are cleared more slowly.46  
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 Third-Generation Drugs 

 Among the recent third-generation of AIs, the most significant ones include type 

I, exemestane, and type II, anastrazole and letrozole (Figure 1.14).  

 

 

 

 

 

 

  

 

 

 These molecules are substantially more potent than aminoglutethimide in 

inhibiting aromatase activity in vitro (Table 1.1). For the first-generation drug it is 

necessary a micromolar concentration while for the second- and third-generation drugs 

the active concentration ranges the nanomolar scale. Their superior pharmacokinetic 

profiles also mean that they are even more effective in vivo.39 

 

 Exemestane (Aromasin®) is an orally active, irreversible steroidal inhibitor 

developed by Di Salle and Lombardi to overcome the unfavourable metabolism and 

poor oral availability of formestane.47,48 Exemestane entered in preclinical development 

in 1986, and successfully performed clinical trials during the 1990s led to FDA 

approval in 1999 for the treatment of advanced breast cancer in postmenopausal 

women.48 It differs from nonsteroidal inhibitors in that it leads to irreversible inhibition 

of aromatase, probably by covalent binding to the enzyme. This derivative of 

N N
N

NC

CN

N N
N

CN

NC CH3
NC

CNH3C
O

O

CH2

Figure 1.14 - Exemestane (left), letrozole (middle) and anastrazole (right) 
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androstenedione is recognized as a false substrate by the enzyme and processed through 

the normal catalytic mechanism to a transformed product, which covalently binds to and 

irreversibly inactivates the substrate-binding site of the enzyme, an effect also known as 

“suicide inhibition”.49 The irreversible nature of its inhibitory activity is responsible for 

the long-lasting effect (3 to 5 days according to the dose) on estrogen biosynthesis.48 

Treatment with this steroidal compound has been shown to be well tolerated and 

chronic treatment was found to suppress plasma estrogen levels by 85 to 95% when the 

drug was administered at a dose ≥10 mg per day.50 It also shows a great potential to be 

more effective as first-line treatment than other substances, including antiestrogens and 

nonsteroidal AIs.48 

 Exemestane undergoes a complex metabolism, being the first step the reduction 

of the 17-keto group to give the 17β-hydroxy derivative (the primary metabolite to be 

identified in plasma), followed by the P450-catalyzed oxidation of the 6-methylidene 

group with formation of many secondary metabolites (Figure 1.15).53,54 These 

metabolites were found to be either inactive or less potent than exemestane.48,53,55-57 

However, the 17β-hydroxy derivative was further studied by Goss and collaborators58 

which found that it produced similar effects to exemestane, such as, bone sparing and 

favorable changes in circulating lipid levels. Buzzetti et al. have synthesized some 

potential metabolites through oxidation of the 6-methylidene group.47 Recently, some 

new exemestane metabolites were detected in urine by gas chromatography coupled to 

mass spectrometry.53  
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Table 1.1 - Comparison of aromatase inhibitory activity of first, second and third 

generation drugs39,51,52 

 

 

Placental 

microsomes 

IC50 (nM) 

Breast cancer 

homogenates 

IC50 (nM) 

Inhibitiona) 

(%) 

Aminoglutethimide 3000 4500 90.6 

Anastrazole 12 10 96.7 

Letrozole 12 2.5 98.9 

Formestane 50 30 91.9 

Exemestane 50 15 97.9 

 
a) Activity determined in vivo; drugs were given orally with exception for formestane that was 

administered intramuscularly. 

 

  

 Nonsteroidal third-generation, anastrazole (Arimidex®) and letrozole (Femara®) 

are reversible, imidazole-based potent AIs and with high specificity to aromatase. These 

new agents are 100-3000 times more active than aminoglutethimide, and inhibit whole-

body aromatization by greater than 96%.13 Both agents have shown to cause profound 

suppression of plasma estrogen levels in postmenopausal women.59 Since they do not 

interact significantly with other P450 enzymes, no substantial suppression of cortisol, 

progesterone and aldosterone levels is evident.13 Besides, they have few side effects and 

low toxicity when compared with other generation nonsteroidal inhibitors.35  

 

 Anastrazole, which was the first AI from the third-generation drugs to enter into 

clinical trials, in an in vitro system, revealed to be a potent inhibitor of human placental 

aromatase (200 times more potent than aminoglutethimide and twice more potent than 

formestane). Treatment with anastrazole does not change lipid profiles, and studies have 
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confirmed that it has fewer thromboembolism and ischemic cerebrovascular events, and 

it does not demonstrate androgenic, progestogenic or estrogenic effects.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 - Proposed metabolic pathways for exemestane (3α/β-HSD = 3α/β-hydroxysteroid-dehydrogenase) 
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 Letrozole is more potent and effective, suppressing plasma estrogen 

concentration to undetectable levels. It has proven to be superior in several aspects to 

the other drugs having survival benefits and better tolerability.61 A cross-over study of 

letrozole and anastrazole revealed that treatment with the first one supressed levels of in 

vivo aromatization below the detection limit of the assays in all patients, while this 

degree of inhibition with anastrazole was only achieved in one case. Essentially, 

letrozole achieves a greater aromatase inhibition at its lower dose (0.5 mg, daily) when 

compared with anastrazole at its higher dose (10 mg, daily).59,61 This suggests that 

letrozole might translate into more effective therapy than anastrozole for 

postmenopausal women.62 

 Clinically, letrozole produces tumor remission in postmenopausal women with 

breast cancer resistant to other endocrine treatments and chemotherapy.39  

  

 Third-generation AIs have their efficacy in breast cancer demonstrated, being 

the treatment of choice for the advanced disease, as well as for the adjuvant setting, the 

preoperative setting and even with potential in chemoprevention.63 

 

  

 Resistance to Aromatase Inhibitors 

 Whilst substantial number of patients with breast cancer benefit from treatment 

with AIs, others do not and, even in responding patients, remissions are not usually 

permanent and disease returns in a resistant form.64 Overall, the long-term use of 

antihormonal therapy can result in the development of resistance.35  

 Once AIs play their role by causing estrogen deprivation, many of the 

mechanisms by which resistance occurs are likely to be shared by other forms of 
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endocrine deprivation. These mechanisms include the loss of ERs with the treatment,65 

the outgrowth of hormone-intensive cells, the ineffective estrogen suppression and/or 

endocrine compensation, and a switch to dependence on other mitogens.39,66 

 Irrespective of the cause of the phenotype of aromatase, certain tumors may be 

more sensitive/resistant to individual AIs. Since steroidal and nonsteroidal AIs have a 

different mechanism of action, it is not observed cross-resistance. Potential explanations 

for this lack of cross-resistance include: the nature of the interaction with the enzyme 

active site, differential sensitivities of aromatase variants to specific compounds, 

androgen-agonistic effects, and inherent differences in potencies among AIs.38,67 

Furthermore, this lack of cross-resistance between distinct AIs offers the possibility of 

its sequential use in advanced disease.36 

 

 

 Advantages/Disadvantages of Aromatase Inhibitors 

 Aromatase inhibitors have revealed several advantages over other endocrine 

therapies, such as:39 

i. The actions of AIs are not totally irreversible and estrogen levels return to 

normal on discontinuation of treatment; 

ii. AIs specifically decrease the estrogen production, while surgical ablation of 

endocrine organs will affect the normal production of other steroid hormones. For this 

reason, AIs have fewer side effects and lower morbidity; 

iii. AIs have the potential to totally block estrogen production since 

biosynthesis is not restricted to endocrine glands but occurs in many other tissues, such 

as breast cancer.  
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 On the other side, specific AIs also present some disadvantages in the treatment 

of estrogen-dependent breast cancers:39 

i. They do not affect estrogens exogenously derived or levels of other types of 

steroids with estrogenic activity; 

ii. They are unproven to be effective in premenopausal women once they 

cannot stop the ovaries from producing estrogen due to the hypophyseal feedback 

mechanism;  

iii. They increase significantly musculoskeletal symptoms, arthralgia, 

osteopenia, osteoporosis and fracture rate, since estrogens have a major role in the 

maintenance of bone mass;12,25  

iv. Although no significant changes in cardiovascular events have been 

described, a trend toward its increase is of concern;25 

v. They may induce cellular resistance, by long-term estrogen deprivation.25,35 

 

  



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 32 

 AIM OF THE WORK 

 

 Recent data has shown significant success in improving the survival rates among 

breast cancer patients by using aromatase inhibition therapy. This can be explained by 

the more insightful choice of the appropriate drugs for each patient, based on the 

clinical information available and by using more potent drugs, such as exemestane, 

anastrazole and letrozole.  

 Third-generation AIs appear to be extremely potent and highly specific 

inhibitors of the enzyme, showing strong anti-tumor effects in postmenopausal women, 

and being well tolerated. However, they still present some side effects, such as increase 

of bone loss, joint pain and cardiac events.68 In addition, after some years of usage they 

can develop cellular resistance.51 For these reasons it is necessary to discover new drugs 

that allow to surpass the referred limitations. These new molecules can also allow 

studying the mechanism of enzyme inhibition and can help to clarify the aromatization 

mechanism of aromatase, which still remains unknown. 

 The recent elucidation of the 3D-structure of aromatase and the establishment of 

the molecular basis of the enzyme-substrate interaction36 allowed us a more rational 

design of AIs. The design, synthesis and biological study of the new substrate- and 

structure-based inhibitors in this thesis would greatly contribute to understand the 

interactions of the enzyme with the inhibitors and to establish new SAR.  

 Based on this, the aim of the work was to design and synthesize new steroidal 

AIs for subsequent biochemical and biological evaluation, and in some cases to do 

molecular modelling studies, in order to establish new and solid SAR.   
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1.1. DERIVATIVES OF EXEMESTANE 

 

1.1.1. Design and synthesis  

Exemestane (3) (Scheme 1.1), chemically described as 6-methylenandrosta-1,4-

diene-3,17-dione, is the only steroidal AI in the market being orally active, long-lasting 

and safe for the treatment of hormone-responsive breast cancer in postmenopausal 

women.48  

As described before, exemestane is extensively metabolized (Figure 1.15). 

Frequently, these metabolites are still active compounds and there is a huge interest in 

studying them biochemically and biologically. Hence, we were interested in 

synthesizing some selected exemestane derivatives. By this reason, our first challenge 

began with the synthesis of exemestane itself. 

   

 

Synthesis of Exemestane 

Buzzetti et al., in the US patent 4,808,616, disclosed the synthesis of 

exemestane for the first time in 1989.69 They considered its preparation by 

dehydrogenation of 6-methylenadrosta-4-ene-3,17-dione using 2,3-dichloro-5,6-

dicyanobenzoquinone (DDQ) and anhydrous dioxane as solvent. The starting material 

6-methylenadrosta-4-ene-3,17-dione was prepared by reaction of androstenedione with 

formaldehyde acetal and phopshoryl chloride, according to the general method of 

Annen et al.70  

  Other synthetic strategies were disclosed in order to overcome the disadvantages 

and drawbacks of this method, specially the low yields and high price of DDQ as well 

as purification processes, which were not affordable in a scaled up synthesis. Therefore, 
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a practical approach, using the commercially available dehydrotestosterone, disclosed a 

curious Mannich reaction on a cross-conjugated dienone moiety by directly introducing 

the methylidene group at the C-6 position using, for this matter, paraformaldehyde and 

dimethylamine in isoamylic alcohol. Exemestane was then obtained after the Jones 

oxidation of the 17β-hydroxyl group of its precursor.48,71 Another strategy developed 

also made use of androstenedione as starting material and it also involved the 

intermediate 6-methylenadrosta-4-ene-3,17-dione, but using other reagents to prepare it, 

and being followed by three other reactions until the production of exemestane.48 Other 

groups explored other approaches studying the influence of an acid catalyst with the 

dehydrogenation agent,72 and others even studied this approach using also at least one 

co-oxidant in the dehydrogenation reaction.73,74  

 In this thesis, we decided to attempt the synthesis of exemestane (3) using a two-

step strategy (Scheme 1.1).69 Hence, we used androstenedione (1) as the starting 

material to which the 6-methylidene group was introduced. We followed the method 

developed by Annen et al.,70 who succeeded in performing this transformation in an 

one-step reaction overcoming the former synthesis that had many steps. Once prepared 

the 6-methylidene derivative (2), a subsequent dehydrogenation using DDQ47 was made 

in order to achieve exemestane (3). However, in our hands we did not succeed in this 

step ending up by obtaining compound 4 (Scheme 1.1). Marcos-Escribano et al.74 have 

also reported the same problem we encountered. In general, the 1,2-dehydrogenation of 

steroidal 4-en-3-ones with DDQ predominates in the presence of weak acids, or in 

uncatalyzed reactions, while the 6,7-dehydrogenation occurs in the presence of strong 

acids. In fact, the reaction of androstenedione (1) with DDQ in benzene or dioxane, 

under reflux, leads to the 1,2-dehydrogenated derivative as the major one.74 However, 

when these conditions were applied to compound 2 the reaction proceeded with the 
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desired 1,2-dehydration but, besides that, it was also observed an isomerization of the 

exocyclic C-6 double bond forming the most stable conjugated system leadind to 

derivative 4.  

  

 

Scheme 1.1 - Attempt to synthesize exemestane (3) from androstenedione (1) 

 

 

 

 

 

 

 

 

 

Reagents and Conditions: (i) anhydrous sodium acetate, formaldehyde dimethyl acetal, 
phosphoryl chloride, anhydrous chloroform, reflux, 10 h; (ii) DDQ, anhydrous dioxane, reflux, 
11 h 10 min. 
 

 

The structure of compound 2, which is a key synthetic precursor of exemestane, 

was characterized by X-ray analysis and its ORTEP view is shown in Figure 1.16.75 

Results from the single-crystal diffraction revealed that it adopts a 1α-sofa 

conformation, slightly distorted towards a 1α,2β-halfchair. The pseudo-torsion angle 

C19-C10…C13-C18 indicates that the structure of 2 is slightly twisted. It was observed 

that the 6-methylidene group is in a beta equatorial position with an angle of 63.8(2)º 

relative to the plane of the molecule.  
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Synthesis of Derivatives of Exemestane 

Due to the huge clinical interest of exemestane and since it is extensively 

metabolized being some of the metabolites active, we decided to synthesize some 

epoxide derivatives that are proposed as potential metabolites in the metabolic pathways 

for exemestane.48,53-55 Besides, we have already observed for other potent AIs that the 

substitution of double bonds by epoxide functions, which have similar bond geometries, 

allowed the molecule to maintain planarity and to exhibit strong aromatase inhibitory 

activity.76,77 Because of this, we have synthesized the epoxide derivatives 5 and 6 of 

exemestane. 

Two different reaction conditions for the epoxidation reaction were explored in 

order to obtain distinct epoxide derivatives of exemestane (Scheme 1.2).  

For the epoxidation of the 6-exomethylidene group, we subjected exemestane to 

treatment with performic acid generated in situ.78 Buzzetti et al.47 also synthesized 

compound 5 using different reaction conditions (m-chloroperbenzoic acid). For the 

Figure 1.16 – ORTEP view of the molecular structure of compound 2 obtained by X-ray analysis75 
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oxidation of the C-1/C-2 double bond we used alkaline hydrogen peroxide,79 which 

allowed obtaining the respective epoxide 6.  

 We have also been interested in preparing a 3-deoxy-derivative based on the fact 

that formerly our team has concluded that the presence of the carbonyl group at C-3 was 

not mandatory to bind the inhibitors to the enzyme.80 With this idea in mind, we 

subjected exemestane to the reaction conditions of Hanson et al.81 using sodium 

borohydride in a mixture of trifluoroacetic acid, acetonitrile, acetic acid and 

dichloromethane to promote the deoxygenation of the C-3 carbonyl group. This reaction 

allowed the preparation of compound 8 along with compound 7, which is the main in 

vivo metabolite of exemestane (Scheme 1.2). 

 

 

 1.1.2. Chemistry 

Androstenedione (1) (Scheme 1.1) was prepared through the oxidation of 

testosterone with a solution of chromium trioxide in aqueous sulphuric acid (Jones 

reagent), as reported by Rasmusson and Arth,82 in 98% yield. 

The direct γ-alkylenation of enone 1 was achieved by reaction with phosphoryl 

chloride and formaldeyde dimethyl acetal.70 After 10 h at reflux, a mixture of several 

products was formed, being compound 2 isolated by silica gel column chromatography, 

in 17% yield. 

Compound 2 (Scheme 1.1) was then subjected to a reaction with DDQ in order 

to promote the dehydrogenation at C-1/C-2,47 and therefore produce exemestane (3). 

The reaction conditions allowed indeed the dehydrogenation at the mentioned position 

of the A-ring. However, they also promoted the isomerization of the 6-methylidene 
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double bond with formation of compound 4, which was isolated in the pure form by 

silica gel column chromatography, in 98% yield, as a white solid.  

 

 

Scheme 1.2 - Synthesis of derivatives of exemestane (3)  

 

 

 

 

 

 

 
Reagents and Conditions: (i) H2O2, HCOOH, dichloromethane, rt, 96 h; (ii) H2O2, NaOH, 
methanol, rt, 24 h; (iii) CF3COOH, CH3COOH, CH3CN, NaBH4, anhydrous dichloromethane, 
rt, 11 h. 
 

 

The synthesis of compound 5 (Scheme 1.2) was made by treating exemestane 

(3) with performic acid in dichloromethane, at room temperature, for 96 h.78,80 The 

crude mixture was then purified by column chromatography affording the desired 

epoxide 5, in 21% yield. In other fraction, a mixture of 5 with its 6α-isomer was 

obtained in a 65:35 proportion, respectively.  

Although the C-6 epoxide derivative of exemestane is already described, its 

stereochemistry had not been established. Therefore, two-dimensional NOESY 

experiments were used to assign the C-6 stereochemistry of compound 5. The most 

significant correlation to be studied was between the H-atoms of groups C-6 -O-CH2 

and 19-CH3 (Figure 1.17). For the 6α-isomer it was observed a strong correlation 
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between the H-atoms of the C-6 -O-CH2 and 19-CH3 groups, which implies that these 

H-atoms are spatially close enough to correlate. Hence the C-6 -O-CH2- will be pointing 

towards the beta face of the molecule being the epoxide functional group with alpha 

stereochemistry. For the 6β-isomer 5, it was not observed any correlation between the 

C-6 -O-CH2- and 19-CH3 H-atoms. This observation together with the study of the 

chemical shifts for the 19-CH3 H-atoms, which are shifted downfield when compared 

with that of the 6α-isomer, due to the higher influence of the electronegativity of the 

oxygen atom, allows one to conclude that the more abundant and isolated compound is 

the 6β-isomer 5.   

 

 

 

 

 

  

 

 

 The synthesis of epoxide 6 (Scheme 1.2) was performed by treatment of a 

methanol solution of exemestane (3) with an alkaline oxidizing solution of 35% 

hydrogen peroxide in a 4 N sodium hydroxide solution.79 The reaction was carried out 

at room temperature during 24 h and the crude product was purified by column 

chromatography affording the desired epoxide 6 in 11% yield.  

 Despite the reaction has not been complete, only compound 6 was detected.  

Figure 1.17 - Compound 5 (6β-isomer) and its 6α-isomer showing NOESY correlations (dashed line – absence of 
correlation; full line – strong correlation) 

6β-Epoxide isomer (compound 5) 6α-Epoxide isomer  

19 19 

6 6 
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 NOESY experiments were also used to unequivocally identify compound 6 

(Figure 1.18). The most significant signal analyzed was the correspondent to the 

resonance of 1-H atom at 3.58 ppm. It was observed a strong correlation between this 

H-atom and the H-atoms of group 19-CH3, which reveals that the 1-H must be assuming 

the beta configuration allowing an enhanced spatial proximity towards the C-19 angular 

methyl group (Figure 1.18). Hence, the isolated isomer will be the 1α,2α-epoxide 

compound 6.    

 

 

 

 

 

 

 

The reaction of exemestane (3) (Scheme 1.2) with a mixture of sodium 

borohydride in trifluoroacetic acid, glacial acetic acid and acetonitrile was performed in 

a nitrogen atmosphere.81 It led to a mixture of several compounds, being 7 and 8 the 

two main products, which were isolated through column chromatography. Compound 7 

was isolated in higher yield (39%) as a pure white solid residue and compound 8 was 

isolated in 12% yield.  

As the 1H NMR studies did not allow to unequivocally elucidate the position of 

the double bonds within the A-ring in compound 8, two-dimentional COSY 

experiments were performed. The most relevant signals analyzed in COSY spectrum 

were: the signal of the H-atoms from -CH2 group in C-3 at 2.77 ppm and the signals of 

the H-atoms of the double bonds at 5.66 ppm, 5.70 ppm and 5.92 ppm (Figure 1.19). 

Figure 1.18 - Compound 6 showing NOESY correlations (full line – 
existence of correlation) 

1 
19 
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The analysis of the spectrum showed a significant correlation between the two H-atoms 

of the C-3-methylidenegroup and the H-atoms resonating at 5.66 and 5.70 ppm, and a 

weaker correlation with the H-atom resonating at 5.92 ppm. This correlation pattern is 

consistent with the structure of compound 8 (Figure 1.19).   

 

 

 

 

 

 

 

 

1.1.3. Biochemistry and biology 

 Inhibition of aromatase activity by the synthesized steroids (5, 6 and 7) was 

evaluated in human placental microsomes by a radiometric assay in which tritiated 

water, released from [1β-3H] androstenedione into the incubation medium, was used as 

an index of estrogen formation.83 A screening assay was performed in human placental 

microsomes and the results obtained are shown in Table 1.2 as a percentage of 

inhibition (%). The assay was performed for all compounds at 2 µM, against an assay 

carried out in the absence of the inhibitor. The aromatase inhibitor formestane at 0.5 µM 

concentration (99.65 ± 0.06%) was used as reference.84,85 

 The IC50 of these compounds was also evaluated in MCF-7aro cells, an ER+ 

aromatase-overexpressing human breast cancers cell line, using the same radiometric 

assay, as reported in previous works of our group.84,85  

Figure 1.19 - Compound 8 showing COSY correlations (dashed line – weak correlation; 
full line – strong correlation) 
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 In addition, cell proliferation and cell viability were evaluated, also in MCF-7aro 

cells, according previous works of our group.84,85 All derivatives revealed to promote a 

decrease in both cell proliferation and cell viability. However, compound 6 promotes 

this effect in a more efficient way, even surpassing exemestane itself (unpublished 

results).  

 

 

Table 1.2 - Percentage of aromatase inhibition and IC50 values of tested compounds in 

human placental microsomes a) and in MCF-7aro cells b)  

 

 

 

 

 

 

 

 *Results for the IC50 of exemestane (3) described in the literature.47 

 

 

1.1.4. Structure-activity relationships discussion and conclusions  

 As pointed out before, exemestane is metabolized in vivo into active compounds. 

In this work, it were synthesized some potential metabolites of exemestane by 

substituing the double bonds of the A- and B-rings by epoxide groups (compounds 5 

and 6) and by reducing the C-17 carbonyl group to a hydroxyl group (compound 7). 

Looking at compounds 5 and 6 (Figures 1.17 and 1.18 and Table 1.2), we observed that 

the substitution of the double bond, both in the C-6 exocyclic and in C-1/C-2 position, 

Compounds 
Aromatase Inhibitiona) (%) 

± SEM 

IC50
a) 

(µM) 

IC50
b) 

(µM) 

5 93.64 ± 0.89 0.67 0.70 

6 86.78 ± 0.99 1.04 0.75 

7 - - 4.20 

Formestane (9) 99.65 ± 0.06 0.042 - 

Exemestane (3)* - 0.027 0.90 
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by the epoxide group, led to derivatives less potent in microsomes but even more potent 

in MCF-7aro cells than exemestane (3), being the exocyclic substitution (compound 5) 

slightly more potent, with an IC50 of 0.67 µM, in microsomes, and 0.70 µM in MCF-

7aro cells, than the substitution at C-1/C-2 (compound 6), with an IC50 of 1.04 µM and 

0.75 µM, in microsomes and MCF-7aro cells, respectively. In these two molecules it 

was maintained the integrity of the C-17 carbonyl group, which is known to be 

important to reach maximum aromatase inhibitory activity. In compound 7, this group 

was transformed into a hydroxyl group and a significant decrease in activity was 

observed (IC50 of 4.20 µM) in MCF-7aro cells. This decreasing of activity was already 

observed in other aromatase inhibitors for the same transformation. We believe that, 

contrary to what happens with the carbonyl group, the hydroxyl group does not allow 

the establishment of the hydrogen bond with Met374 residue of the active site of the 

enzyme (Figure 1.7), which is essential for a strong inhibitory activity. 

 When it was studied the cell viability and cell proliferative effects of the 

synthesized molecules (5, 6 and 7), we observed that they induced a decline in cell 

viability and proliferation in a more efficient way than exemestane. When the two 

epoxide inhibitors were compared, we observed that compound 6, although slightly less 

potent in inhibiting aromatase than 5, was the most effective derivative in reducing the 

cell viability and proliferation. This reveals that other mechanisms of cell death than 

aromatase inhibition may be involved, requiring further studies to elucidate the 

biological effects observed (unpublished results).   
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1.2. DERIVATIVES OF FORMESTANE 

 

1.2.1. Design and synthesis 

 Formestane (9) (Scheme 1.3), chemically described as 4-hydroxyandrost-4-ene-

3,17-dione, was the first selective aromatase inhibitor to become available in the clinic. 

Due to the high activity of this molecule and to the fact that its C-4 acetoxy derivative 

have also revealed to be a strong aromatase inhibitor,43 we decided to prepare several 

other C-4 ester derivatives related to formestane in order to study their activity against 

aromatase (Scheme 1.3).87 Moreover, an interesting feature related to breast cancer 

concerns the existence of an elevated expression of the enzyme cyclooxygenase 2 

(COX-2) in the tumor tissues. Based on this, it was hypothesized that the inhibition of 

COX-2 might decrease carcinogenesis by decreasing cell proliferation, angiogenesis 

and metastasis and increasing apoptosis.86-88 Further, epidemiologic studies suggest that 

the use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as acetylsalicylic acid, 

protects against breast cancer development. Hence, we felt that it would be interesting to 

develop C-4 acetoxy and acetylsalicyloxy derivatives of formestane (9) (Scheme 1.3).76 

In the case of the C-4 acetylsalicyloxy derivative, we intended to combine in the same 

steroidal structure, the dual capacity of aromatase and COX-2 inhibition. Hence, the 

acetyl derivatives 10 and 12 were prepared through classical acetylation conditions from 

the corresponding alcohols using the respective acyl chloride.  

 Based on the rationale that the presence of the carbonyl group at C-3 is not 

mandatory to bind the molecule to the enzyme,80 we were also interested in preparing 

the corresponding C-3 deoxyderivatives 11, 13a and 14. For this, compounds 10 and 12 

were submitted to a Clemmenson-type reduction with zinc dust in acetic acid solution. 

This allowed to obtain, respectively, compounds 11 and 13a in mixture with 13b. In 
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order to achieve compound 14, we subjected formestane to the reaction conditions of 

Hanson et al.81 where it was used sodium borohydride in a mixture of trifluoroacetic 

acid, acetonitrile, acetic acid and dichloromethane to promote the deoxygenation of the 

C-3 carbonyl group. However, this only allowed to isolate 14a. 

 

 

Scheme 1.3 - Synthesis of derivatives of formestane (9) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Reagents and Conditions: (i) acetyl chloride, anhydrous pyridine, rt, 21 h 50 min; (ii) o-
acetylsalicyloyl chloride, anhydrous pyridine, rt, 24 h 40 min; (iii) Zn dust, acetic acid, rt; (iv) 
CF3COOH, CH3COOH, CH3CN, NaBH4, anhydrous dichloromethane, rt, 45 min. 
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 1.2.2. Chemistry 

 Compound 9 was treated with acetyl chloride in anhydrous pyridine leading, 

after crystallization, to the pure compound 10, in 72% yield. Subsequently, compound 

10 was treated with zinc dust in acetic acid solution leading to a mixture of 5α- and 5β-

epimers, which after crystallization with petroleum ether allowed the isolation of the 

desired pure 5α-epimer, compound 11.  

 Treatment of 9 with o-acetylsalicyloyl chloride in anhydrous pyridine led, after 

purification by column chromatography, to a main fraction (one single TLC spot), 

which after NMR analysis revealed to be composed by a mixture of compounds 10 and 

12, in a 40:60 proportion, respectively. The formation of compound 10 probably 

resulted from an interestingly intramolecular transesterification occurred in 12, 

according to the proposed mechanism (Scheme 1.4). This may involve the formation of 

a cyclic intermediate, which then opens through alkaline catalysis leading to formation 

of 10 and salicilic acid. Further purification of this mixture by another column 

chromatography, using a different mixture of solvents, allowed the isolation of the pure 

compound 12. Treating 12 with zinc dust in acetic acid solution led to an inseparable 

epimeric mixture of 13a, and its 5β-epimer (13b) in a 70:30 proportion, respectively 

(NMR analysis). 

 The reaction of formestane (9) with the reductive mixture of sodium 

borohydride in trifluoroacetic acid, glacial acetic acid and acetonitrile was performed 

under a nitrogen atmosphere, in order to attempt the preparation of the 3-deoxy 

derivative 14.81 However, instead of 14, a mixture of compounds was obtained from 

which 14a was isolated through a column chromatography as a white solid, in 65% 

yield. 
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Scheme 1.4 - Proposed mechanism for the intramolecular transesterification of 12 to 

obtain derivative 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3. Biochemistry  

 Inhibition of aromatase activity by the synthesized steroids 11 and 12 was 

evaluated in human placental microsomes as mentioned formerly (Section 1.1.3). A 

screening assay was performed and the results obtained are shown in Table 1.3 as a 

percentage of inhibition (%).76 

 

 

1.2.4. Structure-activity relationships discussion and conclusions  

 As pointed out previously, some recent studies suggest that the use of NSAIDs, 

such as acetylsalicylic acid, protects against breast cancer development.86-88 
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Additionally, the C-4 acetoxy derivative 10 of formestane (9), the first steroidal AI 

clinically used also revealed to be a strong inhibitor.89 In this manner, a new AI 

(compound 12) based on 9 was designed and synthesized, by esterification of its C-4 

hydroxyl group with the acetylsalicylic acid moiety. However, the C-4 acetylsalicyloxy 

derivative 12 showed a pronounced decrease in aromatase inhibition when compared 

with its precursor 9. 

 

  

Table 1.3 - Percentage of aromatase inhibition of tested compounds in human placental 

microsomes76  

 

 

 

 

 

 

 *Data for compound 10 described in the literature.89 

 

 

 The results obtained suggest that the presence of bulky substituents in C-4 

diminishes the aromatase inhibitory activity, which is consistent with the short volume 

of the binding pocket of aromatase. The C-4 acetoxy derivative 11 also showed a 

dramatic reduction in the aromatase inhibitory activity (Table 1.3), when compared with 

that of 10 showing that the C-3 carbonyl group would be potentially important, in this 

case. This decrease in activity can be also due to the displacement of the 4,5 double 

bond to the 3,4 position, reinforcing the importance of having planarity in the A,B-ring 

Compounds Aromatase Inhibition (%) ± SEM 

  10* 81 

11 33.90 ± 1.68 

12 68.73 ± 3.53 

Formestane (9) 99.65 ± 0.06 
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junction at C-5 as previously observed by our group.76,80,90 This hypothesis might be 

corroborated when we compare 11 with the C-4 acetoxy derivative of Δ4-olefin (Figure 

1.20), which is a strong competitive inhibitor (IC50 = 0.66 µM).77,91 It is also interesting 

to compare the activity of 11 with that of Δ3-olefin 27a (Scheme 1.6 – Section 1.3.2). 

We observed a decrease in the activity when we go from Δ3-olefin 27a to its C-4 

acetoxy derivative 11. In this case, the introduction of a C-4 acetoxy group did not 

maintain the aromatase inhibitory activity, in contrary to that observed for 10 relatively 

to 9.  

 

 

 

 

 

 

 

 

 Further studies in COX-2 inhibition were not performed due to the weak 

aromatase inhibitory activity of compound 12. 

 

 

 

  

Figure 1.20 - Structure of 4-acetoxyandrost-4-en-17-one 
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1.3. A- AND D-RING MODIFIED DERIVATIVES OF ANDROSTENEDIONE 

 

1.3.1. C-3 Hydroxyl Derivatives of Androstenedione and Testosterone 

 

 1.3.1.1. Design and synthesis 

 After the elucidation of the active site of the enzyme aromatase and the 

establishment of the structural bases of the enzyme-substrate interaction,28 a more 

rational design of new AIs was allowed. Among other interactions, aromatase 

establishes two main hydrogen bonds with the oxygen atoms of the carbonyl groups at 

C-3 and C-17 of androstenedione.28 From a previous study, it was concluded that the 

presence of the carbonyl group at C-3 is not absolutely necessary to allow the binding of 

steroid molecules to the enzyme.80 Other authors described strong aromatase inhibitors 

without the C-17 carbonyl group.92 Recently, our group also confirmed those facts and 

postulated that it is necessary, at least, one carbonyl group (C-3 or C-17) in order to 

allow the binding of steroid molecules to aromatase.90  

In this work, we were interested in studying steroid molecules as aromatase 

inhibitors in which the carbonyl group at C-3 (a hydrogen bond acceptor) of 

androstenedione, was replaced by a hydroxyl group (a hydrogen bond donor) and also 

in which the two carbonyl groups (C-3 and C-17) were replaced by two hydroxyl 

groups. The design of these compounds was based in the structure of the substrates of 

the enzyme, androstenedione and testosterone (substrate-based design), and in the 

interactions of these substrates with the enzyme. The effect of the stereochemistry of the 

hydroxyl group at C-3 was also explored (Scheme 1.5). For this purpose, we studied 

reduction conditions of the carbonyl group by using two different hydride reagents, 

sodium borohydride and lithium tri-t-butoxy aluminum hydride, in order to obtain 
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compound 16 from compound 15. Compound 17 was in turn prepared from the 

commercially available compound 21. Reduction of testosterone acetate derivative 18, 

with sodium borohydride gave an isomeric mixture of 3α (10%) and 3β (compound 19). 

The effect of different functional groups at C-17, such as carbonyl (compound 20), 

hydroxyl (compound 16) and acetyl (compound 19), was also studied for the series of 

3β-OH derivatives. 

 

 

Scheme 1.5 - Synthesis of C-3 hydroxyl derivatives of androstenedione (1) and 

testosterone (15)  

 

 

 

 

 

 

 

 

Reagents and conditions: (i) NaBH4, methanol, rt; (ii) (t-butoxi)3AlLiH, tetrahydrofuran, reflux, 
8 h 20 min; (iii) (CH3CO)2O, pyridine, rt, 21 h 25 min. 
  

 

 

3α isomer (10%) 
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 1.3.1.2. Chemistry 

 The synthesis of derivative 16 was performed from 15 through two different 

methods (Scheme 1.5), in an attempt to achieve stereoselectivity in the reduction of the 

C-3 carbonyl group. In the first approach, testosterone (15) reacted with sodium 

borohydride, in methanol, at room temperature yielding a mixture of the 3β- and 3α- 

isomers, which after crystallization afforded 21% of compound 16 (Method A). In the 

second method, testosterone (15) was refluxed in tetrahydrofuran with lithium tri-t-

butoxyaluminum hydride.93 However, this reduction also led to a mixture of the 3β- and 

3α-isomers, which after crystallization gave a similar amount of compound 16 (Method 

B). Testosterone (15) was also converted to its acetate derivative 18, by acetylation with 

acetic anhydride, in 84% yield (Scheme 1.5).94 Compound 18 was then reduced with 

sodium borohydride, leading to a mixture of the 3β- (compound 19) and 3α-epimers  

(90:10 respectively, NMR and HPLC). Attempts to isolate 3β-isomer by crystallization 

led however to enrichment of the obtained mixture in the 3α-isomer. Compound 17 was 

obtained quantitatively from the commercially available compound 21, by reduction 

with sodium borohydride in methanol, at room temperature (Scheme 1.5).  

 

 

1.3.1.3. Biochemistry and biology  

 Inhibition of aromatase activity by the synthesized steroids (16, 17, 19, 20 and 

21) was evaluated in human placental microsomes as mentioned formerly (Section 

1.1.3). The screening assay was performed in human placental microsomes and the 

results obtained are shown in Table 1.4 as a percentage of inhibition (%).76 

 For the most potent inhibitor of this series, steroid 20, the IC50 was determined 

in human placental microsomes and also in MCF-7aro cells as described formerly 
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(Section 1.1.3), and the kinetic studies to characterize the type of binding to the active 

site of the enzyme and the apparent inhibition constant, were also performed (Table 

1.5). This steroid revealed to be a powerful competitive inhibitor.76 

 The effect of derivative 20 in cell viability and cell proliferation was assessed in 

MCF-7aro cells. Compound 20 inhibits aromatase in MCF-7aro cells.95 It was also 

observed that 20 induced a significant decrease in cell viability and proliferation in a 

dose- and time-dependent maner.95,96 To evaluate if the biological effect of 20 in MCF-

7aro cells was depend on ER, it was also studied the effect in an ER- human breast 

cancer cell line SK-BR-3. It was also observed a decrease in their viability, which 

means that 20 induces its effect in cells in a ER-independent way.95 

 

 

Table 1.4 – Aromatase inhibition of tested compounds in human placental 

microsomes76  

 

 

 

 

 

 

 

 
   

 * 90% was the best purity achieved 

 

 

 

 

Compounds Aromatase Inhibition (%) ± SEM 

16 56.82 ± 5.59 

17 6.59 ± 2.00 

  19* 4.60 ± 0.40 

20 93.14 ± 2.36 

21 60.84 ± 2.61 

Formestane (9) 99.65 ± 0.06 
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Table 1.5 – IC50 determined in human placental microsomes a) and in MCF-7aro cells 

b) and kinetic studies for the most potent inhibitor76,95 

 

Compounds 
IC50 

(µM)a) 

IC50 

(µM)b) 

Type of 

Inhibition 

Vm 

(mol/min./µg prot) 

Ki 

(µM) 

Real Affinity 

(Km/Ki) 

 (nM) 

20 0.183 0.600 competitive 0.225 ± 0.025 0.100 1.026 ± 0.026 

Formestane (9) 0.042 - - - - - 

 

 

1.3.1.4. Structure-activity relationships discussion and conclusions  

 It is known that aromatase establishes two main hydrogen bonds with the 

carbonyl functions at C-3 and C-17 of its natural substrate 1.28 Nevertheless, it was 

observed that the presence of the carbonyl group at C-3 is not mandatory to bind steroid 

molecules to the enzyme aromatase and to get aromatase inhibition.80 The C-17 

carbonyl group, however, seems to have a more important role in steroidal AIs. In any 

case, at least one of the referred carbonyl groups must exist in order to allow the binding 

of steroid molecules to the enzyme aromatase.90  

 In this chapter, several steroid molecules were studied as AIs, in which the 

carbonyl group at C-3 (a hydrogen bond acceptor) of the substrate of the enzyme (1), 

was replaced by a hydroxyl group (a hydrogen bond donor). In another group of 

compounds, the two carbonyl groups (C-3 and C-17) were replaced by two hydroxyl 

groups. Looking at compounds 20 and 21 (Scheme 1.5 and Tables 1.4 and 1.5), we 

observed that the substitution of the C-3 carbonyl group of 1 by a C-3 hydroxyl group, 

maintaining the C-17 carbonyl group, led to a potent AI when the C-3-OH group 

assumes the 3β stereochemistry. Compound 20 revealed to be a very strong aromatase 

inhibitor, with an IC50 of 0.180 µM and 0.600 µM in microsomes and in MCF-7aro 
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cells, respectively, and having also a high affinity to the enzyme (Ki of 0.1 µM) (Table 

1.5). The C-3α-OH analog 21 was not as good AI as 20. Changing the two C-3 and C-

17 carbonyl groups of 1 by hydroxyl groups, a dramatic decrease in the activity was 

observed (compounds 16 and 17), particularly if the C-3-OH assumes the 3α 

stereochemistry (compound 17) (Table 1.4). This decrease was also observed for other 

compounds submitted to the same type of transformation in C-17.90 The lack of both C-

3 and C-17 carbonyl groups in 16 and 17 can explain the inability of these steroids to 

bind conveniently to the enzyme with the consequent loss of activity. As the C-3-OH 

stereochemistry seems to play an important role in the aromatase inhibitory capacity of 

this kind of compound, a molecular docking study in the aromatase active site was 

performed for compounds 20 and 21.  

 Molecular modelling studies revealed the ability of both compounds to establish 

one hydrogen bond (1.8Å) between the C-17 carbonyl group and the Met374 residue. 

Accordingly, the different aromatase recognition of 20 and 21 can be addressed to the 

hydrogen bond network of C-3-OH. In the former case, 20 donates and accepts two 

hydrogen bonds with Thr310 (2.1Å) and Ile305 (2.4Å), respectively, (Figure 1.21), and 

in the latter case, 21 establishes only one hydrogen bond with Asp309 residue (2.1Å) 

(data not shown).  

 Concerning compound 19 (Scheme 1.5), the substitution of the C-17 hydroxyl 

group by the C-17 acetoxy group dramatically reduces the aromatase inhibitory activity 

(Table 1.4). The acetoxy moiety, that is a bulky group, may cause steric hindrance at the 

enzyme active site. This is in accordance with previous studies90 and is consistent with 

the short volume (400Å3) of the aromatase binding pocket, as recently described, which 

only accommodates molecules with the appropriate dimensions and with small 

substituents.28 
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Figure 1.21 - Best pose of inhibitor 20 within the aromatase binding pocket shown as a transparent cartoon. 
The ligand is represented as a yellow carbon polytube model. The heme and the labelled residues interacting via 
hydrogen bonds are, respectively, displayed by cyan and magenta carbon poytubes models. Hydrogen bonds are 

depicted as dashed black lines, and their distances are measured in Å.   
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1.3.2. A-Ring Olefins and Epoxides Derivatives of Androstenedione 

 

 1.3.2.1. Design and synthesis 

An important role in the manifestation of biological activity towards aromatase 

is played by the A-ring. Hence, there are some important features to attend when 

designing and synthesizing new compounds as AIs, like the pattern of substitution 

among the several positions and the stereochemistry at C-5 in the A,B-ring fusion. 

These will in turn be of huge influence in the planarity of A-ring, one of the most 

important features to allow a better fitting of steroids in the active site of the 

enzyme.77,91,97 

In our recent studies we also noticed that some planarity in the A-ring and in the 

A,B-ring junction is important for the inhibitory activity of steroids against 

aromatase.80,90 This planarity can be conferred by a double bond or by an epoxide 

function both containing similar bond geometries. Recently, we were interested in 

studying the influence of the position of the double bond or the epoxide function along 

the A-ring, in aromatase inhibitory activity. For this, we prepared two series of steroid 

compounds: Δ4, Δ3, Δ2 and Δ1-olefins (compounds 25, 27a, 29 and 34, respectively) and 

4,5-, 3,4-, 2,3- and 1,2-epoxides (compounds 26a, 28, 30 and 35, respectively) (Scheme 

1.6) and studied their inhibitory activity against aromatase. 

 

For the synthesis of the Δ4-olefin 25 (Scheme 1.6), we followed a strategy 

already used by Numazawa et al.98 where androstenedione (1) was subjected to a 

protection reaction of its C-3-carbonyl group followed by a reduction using sodium 

metal in liquid ammonia.  
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In the meanwhile, we have developed another synthetic strategy based on the C-

3 deoxygenation of testosterone acetate 36,81 followed by the acetate group hydrolysis, 

ending with the hydroxyl group oxidation (Scheme 1.6). Although this new strategy 

involves another step when compared with the former one, its overall yield is much 

better (62% vs 38%) and it does not form by-products.   

 For the synthesis of the Δ3-olefin 27a we followed the method of Mckenna et 

al.99 formerly optimized by our group, where androstenedione (1) was reduced with 

zinc dust in glacial acetic acid at reflux temperature (Scheme 1.6).100  

 For the preparation of the Δ1-olefin 34 we used a four step approach developed 

by Bowers et al.101 which involved an initial reduction of the enone 31 with lithium tri-

t-butoxy aluminium hydride, followed by reaction of the formed allylic alcohol 32 with 

thionyl chloride and then, lithium aluminium hydride giving compound 33a in mixture 

with 33b, which were oxidized with Jones reagent to compound 34 and 29 (Scheme 

1.6). We have also intended another alternative strategy to obtain the Δ1-olefin 34. 

Hence, we adapted the one used by Numazawa et al. for the synthesis of Δ4-olefin 25, 

which involved the C-3 carbonyl group protection followed by reduction with sodium 

metal in liquid ammonia.98 However, in this case, right in the first step of the strategy, 

the reaction of protection of the C-3 carbonyl group with ethane-1,2-dithiol, it was 

observed the production of several compounds being the desired protected one obtained 

only in very small yield which was an obstacle to proceed with this strategy.  

  

 The 4,5-, 3,4-, 2,3- and 1,2-epoxides were prepared using Δ4, Δ3, Δ2 and Δ1-

olefins, respectively, as starting materials (Scheme 1.6). For these syntheses, the 

referred olefins were treated with performic acid generated in situ, which allowed the 

formation of the desired epoxides.100 For 2,3-epoxide 30 it was also used the technique 



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 59 

formerly used by Campbell et al.102 where the oxidation reagent was peracetic acid 

instead of the performic acid, in order to try to increase the yield.  

 We were also interested in synthesizing the Δ4-olefin 25 (Scheme 1.6) using the 

four step strategy from Bowers et al.,101 previously used in the synthesis of the Δ1-

olefin 34. Surprisingly, in this case, instead of compound 25, it was obtained the Δ3,5-

diene 40 (Scheme 1.7).94 

 Preparation of compound 40, which is also an AI, was previously described by 

different synthetic strategies.103-108 However, this is the first time it is prepared by this 

way. Hence, it was performed the C-3 carbonyl reduction of testosterone acetate 

derivative (18) using lithium tri-t-butoxy aluminium hydride, followed by reaction of 

the obtained 37 with thionyl chloride, giving 38, which by hydrolysis with lithium 

aluminium hydride afforded 39. Jones oxidation of 39 led to 40. 

 

 

 1.3.2.2. Chemistry  

Androstenedione (1) was prepared through Jones oxidation of testosterone (15) 

as described before (Section 1.1.2). Protection of the C-3 carbonyl group of 

androstenedione (1) was undertaken by treatment of 1 with ethane-1,2-dithiol in 

anhydrous tetrahydrofuran and in the presence of anhydrous p-toluenesulfonic acid 

(Scheme 1.6).109 The crude product obtained was purified by column chromatography 

affording the protected compound 22 in 84% yield. Desulfurization of compound 22 

with sodium-ammonia in anhydrous tetrahydrofuran,98 afforded compound 25 in 46% 

yield and compound 23 in 26% yield.  
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Scheme 1.6 - Synthesis of A-ring olefin and epoxide derivatives of androstenedione (1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagents and conditions: (i) CrO3, H2SO4, acetone, rt; (ii) Zn dust, acetic acid reflux, 15 min; 
(iii) H2O2, HCOOH, dichloromethane, rt; (iv) CH3COOOH, CH3COONa.3H2O, chloroform, rt, 
7 h 30 min; (v) HSCH2CH2SH, pTSA, anhydrous tetrahydrofuran, rt, 4 h; (vi) Na, NH3, 
anhydrous tetrahydrofuran, -65 ºC, 25 min; (vii) (t-butoxi)3AlLiH, anhydrous tetrahydrofuran, 

      + 
5β isomer  
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reflux, 3 h 15 min; (viii) SOCl2, benzene, 5-8 ºC, 3 h 15 min; (ix) AlLiH4, diethyl ether, reflux, 
10 h 30 min; (x) CrO3, H2SO4, acetone, 0 ºC; (xi) (CH3CO)2O, pyridine, rt, 21 h 25 min; (xii) 
NaBH4, CF3COOH, CH3COOH, CH3CN, dichloromethane, rt, 3 h 30 min; (xiii) 2% NaOH, 
dioxane/water, rt, 52 h. 
 

  

 The crude material resulting from the treatment of compound 25, in 

dichloromethane, with performic acid was purified by column chromatography allowing 

the isolation of one main fraction (one TLC spot). NMR analysis of this fraction 

revealed to be a mixture of the isomers 26a and 26b, in 66:34 proportion. Further 

purification by column chromatography allowed the isolation of the pure compound 26a 

in 38% yield and 26b in 63%. Compound 23 was treated in the same way as compound 

25, allowing to obtain a fraction which after NMR analysis revealed to be an 

inseperable mixture of the two 4,5-epoxide isomers 24a and 24b (Scheme 1.6).  

In agreement with a previous description of our group,80 a Clemmenson-type 

reduction of 1 with zinc dust in acetic acid solution gave a mixture of 5α- (27a) and 5β-

epimers (27b) from which the 27a was isolated by n-hexane crystallization, in 60% 

yield. Treatment of 27a with performic acid in dichloromethane led to the epoxide 

derivative 28, in 96% yield (Scheme 1.6).80  

 Compound 30 was synthesized from the commercially available 29 using two 

different protocols: with performic acid, Procedure A,90 and with peracetic acid, 

Procedure B (Scheme 1.6).102 As the starting material 29 was only available in 92% 

purity (it is supplied in a 92:8 inseparable mixture with its isomer 27a), the resulting 

2,3-epoxide 30 was also obtained in the same purity (92%) (NMR and HPLC analysis), 

by both procedures.   
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Scheme 1.7 - Synthesis of aromatase inhibitor 40 from 15  

 

 

 

 

 

 
Reagents and conditions: (i) (CH3CO)2O, anhydrous pyridine, rt, 21 h 25 min; (ii) (t-
butoxi)3AlLiH, anhydrous tetrahydrofuran, reflux, 3 h 30 min; (iii) SOCl2, benzene, 5-8 ºC, 5 h 
30 min; (iv) AlLiH4, ethyl ether, reflux, 8 h; (v) CrO3/pyridine, pyridine, rt, 19 h. 
 

  

Compound 34 was prepared following a described strategy.101 Treatment of 

enone 31 with lithium tri-t-butoxy aluminum hydride led to the desired allylic alcohol 

32, in 94% yield (Scheme 1.6). The allylic alcohol 32 was then treated with thionyl 

chloride in benzene. From this reaction, an untractable crude (TLC, NMR and LC-MS 

control) was obtained, which was used as starting material in the next reaction. 

Treatment of this crude with lithium aluminium hydride led, after conventional workup, 

followed by column chromatography, to an isomeric mixture (one TLC spot) of 

compounds 33a and its Δ2-isomer 33b (90:10, NMR analysis) (Scheme 1.6).  

An attempt to separate compounds 33a and 33b was made using a neutral 

alumina column chromatography and n-hexane/dichloromethane. However, the isolated 

fractions, subjected to 1H NMR analysis, always revealed to be isomeric mixtures with 

variable compositions (from 25:75 to 90:10 of 33a and 33b, respectively). The 

oxidation of the isomeric mixture (90:10) of these compounds was then performed 

+ traces of 
 3α-isomer 
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using Jones reagent, giving a mixture of 29 and 34. This mixture was then subjected to 

a laborious purification process by column chromatography and consecutive 

recrystallizations, allowing the isolation of Δ1-olefin 34 in the required purity for further 

biological studies (96% by LC-MS control).  

 

Although the formation of the Δ2-isomer 33b has not been previously referred in 

the followed synthetic strategy,101 our results revealed that isomerisation of the double 

bound from the Δ1- to the more stable Δ2-position occurred in a considerable extension. 

In fact, the Δ1- and Δ2-isomers (34 and 29) revealed similar physico-chemical 

properties, presenting the same Rf values over several chromatography solvents, and 

similar crystallization conditions. Moreover, as they have the same exact mass, it was 

difficult to distinguish them by mass spectrometry and elemental analysis techniques. 

Facing these difficulties, the complete diagnosis of the double bond position in these 

compounds could only be achieved by NMR spectroscopy. The Δ1-isomer 34 presents 

two proton signals at 5.52 ppm (2-H) and 5.83 ppm (1-H) for the olefinic H-atoms, 

whereas the Δ2-isomer 29 presents only one common typical multiplet around 5.9 ppm, 

for the two olefinic 2-H and 3-H atoms, allowing the accurate identification of both 34 

and 29. Therefore, the NMR analysis appears to be the most adequate technique to 

follow the formation of these compounds.  

Treatment of 34 with a solution of performic acid in dichloromethane allowed to 

prepare and isolate compound 35 in 15% yield. 

In order to also obtain the Δ4-olefin 25 through a different strategy, to overcome 

the low yield of the first strategy described, it was applied the same approach of the four 

step pathway used for the Δ1-olefin. However, in this case, instead of Δ4-olefin we 

obtained the Δ3,5-diene 40 (Scheme 1.7). For this, testosterone (15) was converted into 
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its acetate derivative 18, in 84% yield. Treatment of 18 with lithium tri-t-

butoxyaluminum hydride, in the conditions previously described, led to the Δ4-3β-

allylic alcohol 37 with traces of its 3α-isomer. Treatment of this mixture with thionyl 

chloride in benzene, contrarily to what was expected, gave the Δ3,5-diene 38, according 

to the proposed mechanism (Scheme 1.8). Therefore, considering an E1 elimination 

mechanism, an allylic cation would be formed from the chlorosulfinate ester 

intermediate 37’. This is a particularly stable tertiary allylic cation that favours the 

elimination reaction to form 38 (Scheme 1.8). On the other side, a SN2 nucleophilic 

substitution displacement would provide a C-3 allylic chloride 37’’ with inversion of 

configuration, which could also afford compound 38 through the same allylic cation 

formed by the E1 mechanism (Scheme 1.8). As observed, both mechanisms concur for 

the formation of the stabilized tertiary allylic cation, explaining diene 38 as the only 

product formed. 

To complete the synthetic strategy, the diene 38 was treated with lithium 

aluminium hydride giving the Δ3,5-diene derivative 39, which after oxidation with 

chromium trioxide in pyridine110 led to Δ3,5-diene 40. The classical Jones reaction did 

not allow the oxidation of compound 39. This approach allowed to find a new way to 

prepare compound 40, which is also an AI.108 

As the 1H NMR did not allow to unequivocally elucidate the position of the 

diene C=C bonds in the A,B-ring system, two-dimensional COSY experiments of 

compound 38 were performed. The most relevant signals analysed in the COSY 

spectrum were for the three olefinic H-atoms at 5.9, 5.6, and 5.4 ppm; for the 17α-H 

atom at 4.5 ppm; and for the 18-CH3 and 19-CH3 H-atoms at 0.82 and 0.95 ppm, 

respectively (Figure 1.22). The 17α-H atom correlates with 18-CH3 H-atoms (3J), which 
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resonates at 0.82 ppm, therefore the resonance at 0.95 ppm is unequivocally due to 19-

CH3 H-atoms.  

 

 

Scheme 1.8 - Proposed mechanism for the formation of 38  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Focusing on the three olefinic H-atoms and concerning the Δ3,5-diene isomer 38 

(Figure 1.22), the C-4 H-atom will correlate strongly with the C-3 H-atom and weakly 

with the C-6 H-atom. In fact, we observed that an olefinic H-atom at 5.9 ppm (the 4-H) 

strongly correlates with another olefinic H-atom at 5.6 ppm (the 3-H) (3J); the same 
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olefinic H-atom at 5.9 ppm has a very weak correlation with an olefinic H-atom at 5.4 

ppm (the 6-H) (4J) and there is no observable correlation between the olefinic H-atoms 

at 5.6 ppm (the 3-H) and 5.4 ppm (the 6-H) (5J), respectively (Figure 1.22). Therefore, 

the signal at 5.6 ppm unequivocally belongs to C-3 H-atom, the signal at 5.9 ppm to C-4 

H-atom, and the signal at 5.4 ppm to C-6 H-atom, which is in agreement with the 

structure of compound 38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Since the former strategy did not turn out as we expected, Δ4-olefin 25 was 

prepared by a new alternative synthetic strategy, which is depicted in Scheme 1.6. In 

Figure 1.22 - Expansion of the COSY spectrum of compound 38 in the region of the olefinic H-atoms (bold line – 
strong correlation; plain line – weak correlation; dashed line – absence of correlation). Each olefinic H-atom is 
identified in the figure. It is also highlighted the strong correlation (full arrow), between 4-H and 3-H, and the 

very weak one (dashed arrow), between 4-H and 6-H 
 

4-H 

3-H 

6-H 
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this case, testosterone (15) was converted to its acetate derivative 18 with acetic 

anhydride, in 84% yield. Then compound 18 was treated with a mixture of sodium 

borohydride in trifluoracetic acid, glacial acetic acid and acetonitrile in nitrogen 

atmosphere,81 giving compound 36 in 99% yield. This compound was then submitted to 

a base-catalyzed hydrolysis giving quantitatively compound 23, which was then 

subjected to Jones oxidation leading to the desired Δ4-olefin 25, in 75% yield. This new 

strategy has the advantage of allowing a better overall yield without the formation of 

isomers, hence with easier purification procedures.  

 

 

1.3.2.3. Biochemistry and biology 

 Inhibition of aromatase activity by the synthesized steroids (25, 26a, 26b, 27a, 

28, 29, 30, 34 and 35) was evaluated in human placental microsomes as mentioned 

formerly (Section 1.1.3). The results obtained are shown in Table 1.6 as a percentage of 

inhibition (%).76 

 For the most powerful AIs 25, 26a, 26b, 27a, 28, 29 and 30 the IC50 in human 

placental microsomes was determined, and kinetic studies, to characterize the type of 

binding to the active site of the enzyme and the apparent inhibition constant, were also 

performed (Table 1.7). These steroids revealed to be competitive inhibitors of 

aromatase.76  

 Previously described values for the IC50 and Ki for compound 40 were also 

presented in Table 1.7.108 

 For compounds 25, 26a and 29 the IC50 was also determined in MCF-7aro cells 

as described formerly (Section 1.1.3) (Table 1.7).95  
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 Additionally, the effect of derivatives 25, 26a and 29 in cell viability and cell 

proliferation was assessed in MCF-7aro cells. These compounds inhibit aromatase in 

MCF-7aro cells causing a significant decrease in their viability and proliferation in a 

dose- and time-dependent manner, being compound 25 the most efficient while 29 is the 

less potent in decreasing cell viability.95,96  

 To evaluate if the biological effects of 25, 26a and 29 in MCF-7aro cells were 

ER-dependent or not, they were also studied in the ER- human breast cancer cell line 

SK-BR-3. All compounds induced a decrease on the viability of SK-BR-3 cells in a 

dose-dependent manner, suggesting that these AIs can induce their effects in cells in an 

ER-independent manner. Results indicate that compounds 25 and 26a induced a 

decrease in MCF-7aro cell viability in an aromatase-dependent way but ER-independent 

manner, whereas for compound 29 the reduction was both aromatase- and ER-

independent.95  

 The biological effects of compounds 25 and 26a were also investigated in 

LTEDaro cells (long-term estrogen deprivation human breast cancer cell line) that 

represent a good model to study AI acquired resistance. It was also observed a decrease 

in these cells viability being compound 25 the most efficient. An interesting observation 

was that exemestane, the only steroidal AI in clinical use, which was used as a 

reference, has no effect in this cell line,95 revealing compound 25 to be very promising 

as a drug for resistant breast cancer. 

 

 

1.3.2.4. Structure-activity relationships discussion and conclusions  

As reported before, some planarity in the A-ring and in the A,B-ring junction 

reveals to be important for steroids to have anti-aromatase activity.80,90  This planarity 
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could be achieved by introducing double bonds or epoxide functions into the A-ring, 

both possessing similar bond geometries. In this part of the work, we were interested in 

studying the effect of the double bonds and the epoxide groups in several positions 

along the A-ring, in aromatase inhibitory activity.  

 

 

Table 1.6 – Aromatase inhibition of tested compounds in human placental 

microsomes76  

 

 

 

 

 

 

 

  

 

 

 

 Considering the A-ring olefins (25, 27a, 29 and 34) and the corresponding 

epoxides (26a, 28, 30 e 35) (Scheme 1.6), it was observed that 4,5-olefin 25 and 1,2-

olefin 34 are better AIs than the corresponding epoxides 26a and 35, respectively 

(Tables 1.6 and 1.7). Interestingly, and on the contrary, the 3,4-epoxide 28 and the 2,3-

epoxide 30 are better AIs than the corresponding olefins 27a and 29 (Tables 1.6 and 

1.7). We believe that this is probably due to the possibility of the oxiran oxygen atom of 

Compounds Aromatase Inhibition (%) ± SEM 

25 97.84 ± 0.19 

26a 84.59 ± 0.51 

26b 84.54±0.62 

27a 95.90 ± 0.60 

28 96.40 ± 0.10 

29 72.05 ± 2.60 

30 70.70 ± 4.25 

34 55.99 ± 1.86 

35 40.01 ± 2.05 

Formestane (9) 99.65 ± 0.06 
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the epoxide 28 and 30, which is near the C-3 atom, may resemble the C-3 carbonyl 

oxygen of the aromatase substrate 1, allowing it to establish hydrogen bonds with 

aromatase active site residues and contributing for a strong binding of the inhibitor with 

aromatase. In fact, this hypothesis was already explored in a recently published work of 

our group, for the 3α,4α-epoxy-5α-androstan-17β-ol.90 Computer-assisted molecular 

modelling studies also indicate epoxide 28 as being able to accept two hydrogen bonds 

with the aromatase. Notably, they are both established with the Thr310 residue (Figure 

1.23), in particular with the NH (2.4Å) backbone and OH side chain (2.3Å). 

Interestingly, in the lowest energy pose, inhibitor 28 fits the receptor core adopting an 

inverted positioning when compared with aromatase substrate 1, keeping the C-19 

methyl group in the opposite side of the heme group.76 

 When we compare 4,5-epoxides 26a and 26b, we see that, contrary to what 

usually happens, in this particular case the beta stereochemistry still allows a derivative 

with enhanced inhibitory activity (IC50 = 0.530 vs 0.970 µM) (Tables 1.6 and 1.7). This 

must be a consequence of the similar conformations that the steroidal A-ring adopts in 

both epoxides.  

 Another observation related with SAR of A-ring olefins and epoxides is that 

when the double bond is closer to the A,B-ring junction in C-5, the highest aromatase 

inhibition is reached (Tables 1.6 and 1.7), confirming that the planarity in the C-5 A,B-

ring junction is very important to aromatase inhibition. In fact, among the studied olefin 

and epoxide compounds, 4,5-olefin 25 showed the best aromatase inhibition. 

Numazawa et al. had already described this compound as a very strong aromatase 

inhibitor.98 Among the epoxides, compound 28 showed the best aromatase inhibitory 

activity (IC50=0.145 µM). 
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Table 1.7 – IC50 determined in human placental microsomes a) and in MCF-7aro cells 

b) and kinetic studies for the most potent inhibitors of this series76,95 

 

Compounds 
IC50

a) 

(µM) 

IC50
b) 

(µM) 

Type of 

Inhibition 

Vm 

(mol/min./µg 

prot) 

Ki 

(µM) 

Real Affinity 

(Km/Ki) (nM) 

25 0.135 5.0 - - - - 

26a 0.970 8.5 competitive 0.015 ± 0.001 0.086 0.636 ± 0.058 

26b 0.530 - - - - - 

27a 0.225 - competitive - 0.050 - 

28 0.145 - competitive - 0.038 - 

29 

30 

1.733 

1.150 

12.5 

- 

competitive 

- 

0.200 ± 0.010 

- 

9.501 

- 

0.012 ± 0.002 

- 

40* 0.340 - competitive - 0.058 - 

Formestane (9) 0.042 - - - - - 

 
* Results described in the literature.108 

   

  

It is known that the introduction of additional double bonds into androstenedione 

based compounds gives derivatives with enhanced inhibitory activity.111 However, 

when we compare the biochemical results of compound 27a with that of 40 (Table 1.7), 

which has an additional double bound in C-5/C-6, we observed a decrease in potency 

(IC50 = 0.225 vs 0.340 µM).  
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Figure 1.23 - Best pose of inhibitor 28 within the aromatase binding pocket shown as transparent cartoon. The 
ligand is represented as a yellow carbon polytube model. The heme and the labelled residues interacting via 

hydrogen bonds with 28 are, respectively, displayed by cyan and magenta carbon polytube models  



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 73 

1.3.3. Derivatives of 5α-Androst-3-en-17-one 

  

 1.3.3.1. Design and synthesis 

 From previous studies of our group and in order to justify the strong activity of 

the 3,4-epoxide 28 (Scheme 1.6) when compared with the other A-ring epoxides, it was 

postulated that its oxiran oxygen atom could resemble the C-3 carbonyl group of 

androstenedione76,90,112 in establishing a hydrogen bond with residues of the active site 

of aromatase.28,113 To further explore this hypothesis we decided to synthesize the 

cyclopropane derivative 41 (Scheme 1.9). For this we used the Rawson and Harrison 

method114 where the Δ3-olefin was set to react with a mixture of zinc dust and cuprous 

chloride in anhydrous diethyl ether with methylidenediiodide. 

   

 On the other side, based on the importance of the C-17 carbonyl group in 

steroidal AIs,80,90 it was also performed a chemical modification by substituting the C-

17 carbonyl oxygen atom of compound 27a by its sulfur isoster 42 (Scheme 1.9). This 

was achieved by using Lawesson’s reagent, which allows the chemical conversion of 

carbonyl to thiocarbonyl compounds.115 

 

 

 1.3.3.2. Chemistry 

 The method of Simmons and Smith116 allows the stereospecific addition of an 

unsubstituted methylidenegroup to an olefin to obtain the corresponding cyclopropane 

derivative. In this method, the methylidenediiodide and a zinc-copper couple in 

anhydrous diethyl ether is usually used. The method of preparation of this couple is an 

important fact in determining its reactivity towards methylidenediiodide. Although this 
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is a convenient and very used method to promote this entry, in fact the experimental 

procedure requires the preparation of a rather irreproducible zinc-cooper reagent. 

Therefore, Rawson and Harrison114 developed a method where it was not required a 

separate preparation of the zinc-copper couple, making use of the fact that a mixture of 

zinc dust with a cuprous halide is even more effective. By this reason, we selected this 

later method to prepare compound 41. 

 

 

Scheme 1.9 - Synthesis of aromatase inhibitors 41 and 42 from 27a 

 

  

 

 

 

Reagents and conditions: (i) Zn, CuCl, CH2I2, I2, anhydrous diethyl ether, reflux, 90 h; (ii) 
Lawesson’s reagent, anhydrous toluene, reflux, 7 h. 
  

 

For this, olefin 27a was subjected to a reaction with a mixture of zinc dust and 

cuprous chloride in anhydrous diethyl ether with methylidenediiodide, under a nitrogen 

atmosphere, in ultra-sound at reflux temperature (Scheme 1.9). After 10 h of reaction, 

the TLC control revealed the presence of a product with slightly higher Rf when 

compared to the starting material. The reaction proceeded in the referred conditions for 

a total of 90 h, with further addition of reagents for several times. Even so, the reaction 

was never complete. The residue obtained after work up was purified through silica gel 
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column chromatography, which allowed isolating 10.7 mg (20% yield) of the pure 

compound 41.  

 The elucidation of the stereochemistry of the cyclopropane ring of derivative 41 

was achieved by NOESY experiments. The α-H atom of the -CH2- cyclopropyl group 

presents the strongest correlation with the geminated β-H atom and also correlates with 

5α-H and 1α-H atoms. The α-H atom with the signal at -0.12 ppm showed the following 

correlations: a very strong one with the H-atom resonating at 0.65 ppm, which 

corresponds to the β-H atom of the -CH2- cyclopropane ring; a moderate correlation 

with the H-atom resonating at 0.55 ppm, which corresponds to the 5α-H atom, and a 

weak correlation with the 1α-H atom resonating at 0.88 ppm (Figure 1.24, in green). On 

the other hand, the β-H atom from the -CH2- cyclopropane ring presents a strong 

correlation with the geminal α-H atom and strong correlations with 3β-H and 4β-H 

atoms (Figure 1.24, in red). These two H-atoms correlate strongly with each other, and 

3β-H atom also correlates with 2α-H and 2β-H atoms and in a smaller intensity with 1β-

H atom (Figure 1.24, in blue). In the spectrum, it were observed strong correlations 

between the H-atoms resonating at 0.35 and 0.80 ppm, which corresponds to 3β-H and 

4β-H atoms. The H-atom resonating at 0.35 ppm has other correlations: a strong one 

with H-atom resonating at 1.66 ppm, a moderate one with H-atom at 1.37 ppm, and a 

weak one with H-atom at 0.59 ppm. By this reason, the signal at 0.35 ppm was 

unequivocally attributed to the 3β-H atom and that at 0.80 ppm to the 4β-H atom. On 

the other side, signals at 1.66, 1.37 and 0.59 ppm are due to the resonance of 2β-H, 2α-

H and 1β-H atoms, respectively. On the other hand, 1α-H atom correlates with 2α-H and 

2β-H atoms, although in a stronger way with 2α-H atom (Figure 1.24, in grey). In 

summary, the main resonance signals for the most important H-atoms of the 

cyclopropryl derivative 41 are at: -0.12 ppm for the α-H atom of the -CH2- cyclopropyl 
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group; 0.35 ppm for 3β-H atom; 0.55 ppm for 5α-H atom, 0.65 ppm for β-H atom of the 

-CH2- cyclopropyl group, and 0.80 ppm for 4β-H atom. 

 

 

 

  

 

 

 

 

 

 

 The synthesis of compound 42 was performed under anhydrous conditions with 

Lawesson’s reagent through thionation of the C-17 carbonyl group of 27a (Scheme 1.9). 

The reaction occurred during 7 h, as reported for other compounds,115 however in our 

case it was never complete. After this period of time, the reaction mixture was worked 

up with a prior elimination of Lawesson’s reagent by an aluminium oxide neutral 

column chromatography. This chromatographic procedure constitutes an additional step 

to the conventional work up and it was implemented after observing that there was an 

undesirable reaction of Lawesson’s reagent with the silica gel, leading to a complete 

decomposition of the product, when the crude was directly chromatographed through a 

silica gel column. After the reagent elimination, the crude product was then finally 

purified by silica gel column chromatography affording thione 42, in 54% yield. 

 

 

Figure 1.24 - Compound 41 showing NOESY correlations (bold line – strong 
correlation; plain line – moderate correlation; dashed line – weak correlation)  
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1.3.3.3. Biochemistry and biology 

 Inhibition of aromatase activity by the modified steroids was evaluated as 

mentioned formerly (Section 1.1.3.). A screening assay was performed and the results 

are shown as a percentage of inhibition (%) for compounds 41 and 4276 (Table 1.8). The 

IC50 was also determined for compound 41 in human placental microsomes and in 

MCF-7aro cells (unpublished results) (Table 1.8). 

 

 

Table 1.8 – Aromatase inhibition for compounds 41 and 42 in human placental 

microsomes and IC50 determined in human placental microsomes a) and in MCF-7aro 

cells b) for compound 41 

 

 

 

 

 

 

 

1.3.3.4. Structure-activity relationships discussion and conclusions  

 In Scheme 1.9, we developed the synthesis of the cyclopropane derivative 41 

from the olefin 27a. Our expectation was that this cyclopropane derivative 41 would be 

less potent than 3,4-epoxide 28, in order to justify the strong activity of this epoxide 

through the establishment of a hydrogen bond in the active site of aromatase. However, 

and interestingly, derivative 41 revealed to have higher anti-aromatase activity than 

epoxide 28 (IC50=0.110 vs 0.145 µM) (Tables 1.7 and 1.8). We think that in this case, 

Compounds 
Aromatase Inhibition (%)  

± SEM 

IC50
a)

  

(µM) 

IC50
b)

 

 (µM) 

41 95.35 ± 0.57 0.110 1.880 

42 41.45 ± 2.05 - - 

Formestane (9) 99.65 ± 0.06 0.042 - 
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some direct van der Waals contacts between the cyclopropane ring and the side chains 

of some aminoacids, must be more determinant for the interaction of the inhibitor with 

the active site of aromatase than the hydrogen bond that can be established between the 

oxiran oxygen atom of epoxide 28 and residues of the active site, hence justifying the 

higher inhibitory activity of 41. Compound 41 is effectively the most potent AI 

synthesized and evaluated that is described in this thesis.  

 

 Compound 42 was designed based on the isosterism concept by performing the 

chemical substitution of the C-17 carbonyl oxygen atom by the corresponding sulfur 

atom. It was observed that this transformation resulted in a loss of the aromatase 

inhibitory activity, which prompted us to conclude that the sulfur atom was not as able 

as the oxygen atom to establish a hydrogen bond with the Met374 residue, in the 

aromatase active site.  
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1.4. C-6 METHYL DERIVATIVES OF ANDROSTENEDIONE 

 

1.4.1. Design and synthesis 

 From SAR studies based on steroidal androstanes with alkyl and phenyl groups 

in the C-6 position, it was accepted that the referred substituents were beneficial for 

achieving aromatase inhibitory activity. It was believed that a hydrophobic binding 

pocket of the enzyme would interact with these groups, favoring aromatase 

inhibition.111,117-121 However, when the 3D structure of aromatase, in a complex with its 

substrate androstenedione, was elucidated, no peculiar binding pocket near the C-6 

region was found. Nevertheless, a shallow hydrophobic crevice was observed to 

accommodate the extra C-6-methylidene group of exemestane (Figure 1.14), being this 

group surrounded by the side-chain atoms of Thr310, Val370 and Ser478 (Figure 1.25), 

when its molecule was built into the active site of aromatase.28,33  

 

  

 

 

 

Figure 1.25 - Modelling of exemestane (C atoms in magenta) after being built in the active site of aromatase, 
showing that it superimposes very well with androstenedione (C atoms in blue) (left image), with detail of the 

access channel (right image)28,33 

hydrogen is too far from this carbonyl (6.2 Å) to be abstracted in such
a manner. It points at and is close to the haem Fe (4.2 Å), and is
probably removed after the Fe-peroxy nucleophilic attack on the 19-
aldehyde (Fig. 3b) as previously proposed3,5,6.

To examine how a mechanism-based steroidal inhibitor could
interfere with the aromatization process, an exemestane (Aromasin;
one of the three aromatase inhibitors approved by the US Food and
Drug Administration) molecule was built into the active site (Fig. 3c)
by using the androstenedione backbone. The two steroids super-
impose quite well (root mean square (r.m.s.) deviation about 0.2 Å),
except for differences in puckering of the A-rings. The extra C6-
methylidene group in exemestane is accommodated in a shallow
hydrophobic crevice surrounded by the side-chain C atoms
Thr 310-Cc, Val 370-Cc2 and Ser 478-Cb, at the mouth of the
active-site access channel (described below). The distance between
the methylidene C and Cc-Thr 310 is 3 Å, shorter than the van der
Waals contact distance. Indeed, a slight adjustment of these side
chains on the binding of exemestane is highly likely. The clamping
of C6-methylidene in a hydrophobic surrounding, resulting in entro-
pic gain and a lowering of the free energy and the dissociation con-
stant, could greatly reduce the mobility of the Thr 310 side chain and/
or interfere with its ability to interact with the catalytic waters for the
creation of the active oxyferryl moiety. Exemestane would thus remain
tightly bound in the pocket without being hydroxylated at C19.

An access channel links the active site to the outer surface. Figure 4a
is a view of the interior of a semi-transparent solvent-excluded sur-
face28 that also excludes the active-site region, consisting of the ster-
oid-binding pocket and haem, from the protein interior by forming a
‘pouch’-like cleft that opens only to the exterior through the channel,
at the arrowhead. The inset shows a view along this channel, revealing
the locations of three water molecules within the channel and a
glimpse of the opening to the active-site cavity. The salt-bridging

–

–

–

a

b

c

Figure 3 | Steroid–protein interactions and mechanistic implications. a, A
close-up view of the Ala 306CO???HOThr 310 pair that may function in the
aromatization of the A-ring of androstenedione. Calculated hydrogen-atom
positions of C2 of the bound androstenedione are shown. Distances are in
ångströms. b, A possible mechanism for H2b abstraction and 2,3-enolization
that could be initiated by a nucleophilic attack on C2-H2b by the
Ala 306CO???HOThr 310 pair, along with an electrophilic attack on the C3
carbonyl by a protonated Asp 309 side chain. The direction of proton flow
from the proton relay network through Asp 309 carboxylate to the substrate
is indicated by arrows. Involvement of a catalytic water in H2b abstraction is
a possibility. The backbone carbonyl of the Ala 306CO???HOThr 310 pair
aided by a potential catalytic water molecule, or the water oxygen itself (as
indicated by dotted arrow) could act as the nucleophile. H1b abstraction is
drawn as proposed previously6. c, Modelling of an exemestane molecule (C
atoms in magenta) after the experimental positioning of androstenedione.
The short van der Waals contact distance (3 Å) between the C6-methylidene
carbon and Cc of Thr 310 is indicated by a black line.

a

b

Figure 2 | Views of the active site of aromatase. a, A van der Waals
interaction surface cast by the protein and haem atoms at the active site. The
semi-transparent surface, coloured green for hydrophobic interactions and
magenta for polar interactions, closely resembles the shape, size and
puckering of the steroid backbone. This figure was prepared with MOE. b, A
view along the I-helix axis from its N-terminal end. The disruption to the
helicity of the backbone at residues Pro 308-Asp 309-Thr 310 causes the helix
axis to displace by about 3.5 Å, allowing the side chain of Asp 309 to interact
with the 3-keto oxygen of the steroid. The deviation from helicity could be
stabilized by a strong Ala 306CO???HOThr 310 (2.8 Å) hydrogen bond, as
well as by Asp 309 peptide CO???water (3.4 Å) interaction as indicated.
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Antiproliferative Activity of New Compounds. The six
potent 2-alkynyloxy derivatives 4−9, as well as EXM and LTZ
as controls, were assayed for their antiproliferative properties in

the breast cancer cell MCF-7-Tet-off-3βHSD1-Arom (MCF-7a;
see Experimental Section). The results are summarized in
Figure 3c,d, and the EC50 values are given in Table 1. More
detailed antiproliferation data and individual dose response
curves for the new inhibitors and the controls are provided in
Table S2 (Supporting Information). The proliferative activity of
the MCF-7a cells is first evaluated by treating the cells with E2,
TST, and ASD. All three compounds effectively stimulate the
growth of the MCF-7a cells in a concentration-dependent
manner (Figure 3c), confirming that these cells express both a
functional estrogen receptor and an active aromatase. E2 (EC50
= 55 pM) is more potent than either TST (EC50 = 99 pM) or
ASD (EC50 = 3.6 nM) in growth stimulation, indicating that
there is a time lag for the synthesis of E2 from TST (via the
aromatase pathway) and ASD (via the aromatase-17β-
hydroxysteroid dehydrogenase type 1 pathway) in these breast
cancer cells. The maximum concentration of E2 and TST
required to stimulate MCF-7a cell proliferation in our cell-
based assay system is determined to be 1 nM (Figure 3c); this
concentration is used for subsequent proliferation inhibition
assays.
Figure 3d summarizes the results from the antiproliferative

activity assay of the 2-alkynyloxy aromatase inhibitors 4−9 in
the MCF-7a cells in comparison with the activities of LTZ and
EXM. The data show that the newly designed inhibitors abolish
the TST-stimulated proliferation of MCF-7a cells in a dose
dependent manner. The number of MCF-7a cells nearly
doubles in response to 1 nM TST treatment. However, the
addition of aromatase inhibitors 4−9 progressively inhibits the
stimulatory activity of TST as a function of concentration
(Figure 3d). The EC50 values of 4−9 are 1.7, 0.03, 3.4, 5.4, 15.7,
and 0.3 nM, respectively (Table 1). Of these inhibitors, 4, 5,
and 9 show 2.6-fold (p < 0.040), 119.6-fold (p < 0.010), and
14.7-fold (p < 0.012) antiproliferative activities, respectively,
against TST-stimulated cell growth when compared to the
steroidal AI EXM (EC50 = 5.6 nM). Thus, the structure−
activity relationship of these compounds in the cell-based
antiproliferation assay parallels their enzyme inhibitory proper-
ties in the cell-free system.

Aromatase−Androstenedione Complex Structure at
2.75 Å. The newly refined structure has yielded a better model
than the 2.90 Å structure (PDB code 3EQM)6 in terms of
overall quality and the refinement parameter statistics (Table
S3, Supporting Information). Inclusion of the higher resolution
data enabled rebuilding of some of the weakly defined loop
regions and inclusion of additional solvent atoms into the
model. The residues Ser267 to Cys275 in the G−H loop have
clearer electron densities than the previous map and are rebuilt

Figure 2. Design considerations for the new inhibitors derived from
the binding interactions and exposure of the ligands to the enzyme
interaction spaces: (a) ASD; (b) EXM. In (a) and (b) derived from
the X-ray structures, the residues lining the binding pocket making
hydrophobic and hydrogen-bonding contacts are shown (hydrophobic,
green; acidic, red; basic, blue; polar, purple; sulfur-containing, yellow).
Exposure at the C4 and C6 positions of the steroid to the access
channel opening is indicated. Also shown schematically in (a) is a
water molecule trapped between Asp309 and Arg192 side chains,
postulated to have a role in the proton relay network and enolization
of 3-keto.6

Scheme 1. Synthesis of C6β-2-Alkynyloxy Derivatives of ASDDa

aShown are chemical structures of newly synthesized C6β-alkoxy-substituted androsta-1,4-diene-3,17-dione compounds 2−9.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm300930n | J. Med. Chem. 2012, 55, 8464−84768466

 



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 80 

 In a recent work, Ghosh et al.33 have determined the crystal structures of 

inhibited complexes of aromatase with steroidal C-6-substituted 2-alkynyloxy 

compounds. It was found that, the linear C-6-alkynyloxy side chains protrude into an 

access channel cavity immobilizing the catalytic residues, which resulted in very potent 

inhibitors of aromatase. Numazawa et al.118-121 have synthesized C-6 alkyl derivatives 

and one of its most potent inhibitors was the 3-deoxy derivative of androstenedione 

with a C-6α methyl group. With all this information in mind, we decided to develop 

new molecules based in two of our better AIs, the Δ3-olefin 27a and the 3,4-epoxide 28, 

but with an additional methyl group in its C-6α position, in order to try to increase its 

inhibitory activity. 

 Therefore, we embarked on the preparation of these compounds through the 

synthesis presented in Scheme 1.10.  

 

 

1.4.2. Chemistry 

The direct γ-alkylenation of enone 1 was achieved by subjecting this to reaction 

with phosphoryl chloride and formaldehyde dimethyl acetal.70 After 9 h of reflux a 

mixture of several products was formed, being compound 2 isolated after silica gel 

column chromatography, in 17% yield.  

In order to try to prepare 44 and as a first approach, we followed the most recent 

strategy from Buzzetti et al.47 where compound 2 isomerizes to 43 and then 43 is 

catalytically reduced to compound 44. However, in our hands, when it was attempted 

the isomerization of the 6-methylene-4-en-3-one system of 2 into the 6-methyl-4,6-dien-

3-one of 43 with 5% palladium charcoal (Pd-C), in refluxing ethanol, under benzyl 

alcohol addition,122 there was no successful reaction. For this reason, compound 44 was 
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then prepared by another catalytic reduction of 2, in order to selectively reduce its C-6 

methylidene group.123 Therefore, compound 2 was subjected to reflux in a solution of 

ethanol containing cyclohexene, as hydrogen donor, in the presence of 5% Pd-C 

catalyst. The reaction was followed by UV, since λmax of the starting material 2 is 260 

nm while the λmax of the desired product 44 is 240 nm. After 3 h, the reaction was 

complete and the residue obtained after filtration of the catalyst was purified by silica 

gel column chromatography, which allowed isolating derivative 44 in 71% yield. A 

Clemmenson-type reduction of 44, with zinc dust in a glacial acetic acid solution, at 

reflux temperature afforded an isomeric mixture of 5α- and 5β-olefins 45a and 45b 

(1.7:1, by NMR). Attempt to separate these isomers was made by silica gel column 

chromatography allowing to obtain the pure compound 45b. In the case of 45a, the best 

purity achieved was 90%, after two subsequent chromatographic columns. 

Subsequently, the whole mixture of olefins 45a and 45b was treated with performic acid 

generated in situ, giving a mixture of epoxides 46a and 46b. This mixture was then 

purified by silica gel column chromatography, which allowed isolating the pure 3α,4α-

epoxide 46a, in 44% yield, and the pure 3β,4β-epoxide 46b, in 29% yield.  

  

 

1.4.3. Biochemistry  

 Inhibition of aromatase activity by the synthesized steroids (45a and 46a) was 

evaluated in human placental microsomes as formerly mentioned (Section 1.1.3). The 

results obtained are shown as a percentage of inhibition (%), in Table 1.9. The IC50 for 

both steroids was also determined (Table 1.9) (unpublished results). 
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Scheme 1.10 - Synthesis of aromatase inhibitors 45a and 46a from androstenedione (1)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Reagents and conditions: (i) anhydrous sodium acetate, formaldehyde dimethyl acetal, 
phosphoryl chloride, anhydrous chloroform, reflux, 9 h; (ii) cyclohexene, 5% Pd-C, ethanol, 
reflux, 3 h 15 min; (iii) zinc dust, glacial acetic acid, reflux, 5 h; (iv) H2O2, HCOOH, 
dichloromethane, rt, 9 h 30 min.  
 

 

 1.4.4. Structure-activity relationships discussion and conclusions  

 Compounds 45a and 46a revealed to be very active (IC50 = 0.560 and 0.175 µM, 

respectively) (Table 1.9), although slightly less potent than the corresponding 

derivatives without the C-6 alkyl substituent, 27a and 28 (IC50 = 0.225 and 0.145 µM) 

(Table 1.7). Contrarily to that observed by Numazawa et al.118-121 for the Δ4-olefin, our 

C-6α methyl derivative 45a revealed to be a weaker AI when compared with the 
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corresponding olefin 27a. As it has been observed for compounds 27a and 28, where 

the epoxide derivative 28 was more potent than the respective olefin 27a, also for these 

C-6α methyl derivatives, the epoxide 46a is more potent than the corresponding olefin 

45a. This reinforces the hypothesis that the oxiran oxygen atom in the 3,4 position 

could resemble the C-3 carbonyl oxygen atom of the aromatase substrate 

androstenedione (1), hence establishing hydrogen bonds with aromatase active site 

residues which contributes for a stronger inhibition of the enzyme.  

 

 

Table 1.9 – Aromatase inhibition and IC50 of tested compounds in human placental 

microsomes 

 

 

 

 

 

  

Compounds Aromatase Inhibition (%) ± SEM IC50 (µM) 

45a 93.47 ± 1.06 0.560 

46a 96.72 ± 0.37 0.175 

Formestane (9) 99.65 ± 0.06 0.042 
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1.5. C-7 ALLYL DERIVATIVES OF ANDROSTENEDIONE 

 

1.5.1. Design and synthesis 

 Many studies suggest that the presence of alkyl or phenyl groups in the C-6 or 

C-7 positions of the steroidal androstane scaffold is beneficial for achieving aromatase 

inhibitory activity.111,124-128 It was believed that this activity was due to the existence of 

a hydrophobic binding pocket in this region of the enzyme and that it would interact 

with those groups leading to a more effective ligand-enzyme interaction. Surprisingly, 

when recently the 3D structure of aromatase was elucidated,28 no particular binding 

pocket near the C-6 and C-7 region of androstenedione was found. Although, it was 

identified a narrow hydrophobic cleft that accommodated the extra C-6-methylidene 

group of exemestane. The recent work of Ghosh and collaborators33  has revealed the 

development of very potent C-6-substituted steroidal AIs whose linear side chains 

protruded into the access channel cavity, resulting in a very efficient inhibition of the 

enzyme. In addition, Brueggemeier and co-workers124-127 have also reported the 

synthesis of many effective C-7α-substituted androstanes as AIs, having the most part 

of the substituents a phenyl moiety. Labrie et al.128 have also described a rather active 

AI with an allyl functional group in the C-7α position. Moreover, evidence from 

previous reported works127,129 show that the aromatase inhibitory activity is similar 

when the same kind of substituent is in position C-6 or C-7 of a given steroidal 

framework.  

 Keeping this in mind, we have been interested in performing the synthesis of 

derivatives of 7α-allylandrostenedione (50) (Scheme 1.11) where two main structural 

features were considered: the introduction of a double bond in C-1 position and the 

reduction of the carbonyl group at C-3 position. The introduction of a double bond in  
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C-1 position was based on the rationale that the A-ring planarity in steroidal AIs is 

important for aromatase inhibition, as reported in previous works,76,80,90 and also 

because it has been established that the introduction of a double bond at C-1/C-2 of 

androstenedione affords AIs that causes mechanism-based inactivation of 

aromatase.29,74,130,131 In fact, the aromatization process of androstenedione 

encompasses the C-1 and C-2 hydrogen atoms elimination,132 as observed in Figure 1.5. 

There are also several studies revealing that, in some AIs, the C-3 carbonyl group, 

present in the natural substrate of the enzyme, is not essential for aromatase 

inhibition.76,77,80,91 For this reason, we have designed and synthesized a series of 7α-

allyl derivatives according to the strategy depicted in Scheme 1.11. Further, for each set 

of derivatives it was studied the influence of the functional group (carbonyl, hydroxyl or 

acetyl) at C-17 position in aromatase inhibitory activity. 

 

 

1.5.2. Chemistry 

 Testosterone (15) was converted into its acetate derivative 18, in 84% yield. 

Dehydrogenation of 18 with chloranil was undertaken in an anhydrous environment, 

leading to a brown-greenish solid residue.133 This residue was then purified by silica gel 

column chromatography affording the dienone 47, in 58% yield. Subsequently, a 

Sakurai reaction was performed in 47 with allyltrimethylsilane and titanium 

tetrachloride, at controlled atmosphere and temperature, in order to introduce the allyl 

group at the C-7α position.128,134 After work-up, an oily crude was obtained which was 

purified over silica gel column chromatography allowing the isolation of the 7α-allyl 

derivative 48, in 56% yield. Compound 48 was next submitted to alkaline hydrolysis 
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giving the alcohol 49, in 96% yield. This was subsequently oxidized using Jones 

reagent, leading to ketone 50 in 73% yield after insolubilization in diisopropylether. 

 In order to obtain the 3-deoxo derivative 51, the reaction of 48 with a mixture of 

sodium borohydride in a mixture of trifluoracetic acid, glacial acetic acid, acetonitrile 

and dichloromethane was performed under a nitrogen atmosphere81 giving, after 

column chromatography, the almost pure compound 51. An analytical sample of this 

compound was obtained by ethanol/water crystallization. Compound 51 was then 

submitted to base-catalyzed hydrolysis, at room temperature, giving a crude product 

which, after column chromatography allowed obtaining a fraction containing alcohol 

52, with traces of inseparable impurities. Treatment of this fraction with Jones reagent 

gave rise, after column chromatography, to the pure ketone 53, in 79% yield. 

Compound 52 was then further reobtained, in its pure form, as a white solid, in 29 % 

yield, by reduction of ketone 53 with sodium borohydride in ethanol.135 

 Aiming to prepare the Δ1-derivative 54, compound 49 was treated with DDQ 

and benzoic acid in refluxing toluene.136 After several filtrations and purification by 

silica gel column chromatography, the alcohol 54 was isolated in 50% yield. Compound 

54 was then treated with acetic anhydride in pyridine giving a crude product that after 

ethyl acetate/n-hexane crystallization led to acetate 55. Jones oxidation of 54 led, after 

column chromatography purification, to the pure ketone 56, in 88% yield. 

 

 

1.5.3. Biochemistry  

 Inhibition of aromatase activity by the modified steroids was evaluated as 

previously mentioned (Section 1.1.3.). A screening assay was performed and the results 

are shown as a percentage of inhibition (%) for all compounds (Table 1.10).137 
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 For steroids 50, 53, 54 and 56 the IC50 was determined, and kinetic studies, to 

characterize the type of binding to the active site of the enzyme, and the apparent 

inhibition constant were also performed (Table 1.11). All these steroids revealed to be 

competitive inhibitors of aromatase.137 

 

 

1.5.4. Structure-activity relationships discussion and conclusions 

 Regarding the 7α-allyl-3-deoxo-4-androstenes 51, 52 and 53, it was observed 

that the 3-deoxo analog 53 is slightly less potent than 50 (IC50 = 0.75 vs 0.59 µM) 

(Table 1.11) showing that, in this case, the C-3 carbonyl group appears to be important 

for aromatase inhibitory activity. In addition, when one substitutes the C-17 carbonyl 

group of 53 by a hydroxyl group, as in 52, the activity also decreased, as expected 

(Table 1.10). In this case, no C-3 or C-17 carbonyl group is present, being therefore 

difficult the binding of the inhibitor to the enzyme active site. Substituting the C-17 

carbonyl group of 53 by an acetate group, as in 51, the aromatase inhibitory activity 

decreased even more (Table 1.10). This allows us to conclude that the short volume of 

the aromatase active site (400Å3),28 does not allow bulky substituents to be present in 

this position of the androstane framework if one aims to obtain strong aromatase 

inhibitors. 

 Concerning the 7α-allyl-3-oxo-1,4-androstadienes 54, 55 and 56, it was 

observed that the Δ1 analogue 56 is a very strong AI (IC50 = 0.47 µM) with great 

affinity for the enzyme aromatase (Tables 1.10 and 1.11). 
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Scheme 1.11 - Synthesis of steroidal 7α-allyl derivatives as aromatase inhibitors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Reagents and conditions: (i) (CH3CO)2O, anhydrous pyridine, rt, 21 h 30 min; (ii) chloranil, 
acetic acid, toluene, reflux, 3 h; (iii) TiCl4, allyltrimethylsilane, anhydrous dichloromethane, -78 
ºC, 40 min; (iv) 2% NaOH, dioxane/water, rt, overnight; (v) Jones reagent, acetone/dioxane, 0 
ºC; (vi) CF3COOH, CH3COOH, CH3CN, NaBH4, anhydrous dichloromethane, rt, 1 h 30 min; 
(vii) 2% NaOH, dioxane/water, rt, 48 h; (viii) NaBH4, ethanol, -10 to 5 ºC, overnight; (ix) DDQ, 
benzoic acid, toluene, reflux, 34 h; (x) (CH3CO2)2O, anhydrous pyridine, rt, 33 h 15 min. 
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 Compound 56 is even more potent than 50 and also more potent than the 

corresponding 3-deoxo compound 53 (Tables 1.10 and 1.11), proving that the 

introduction of a double bond in C-1, which increases the planarity of the A-ring, is 

more beneficial for aromatase inhibition than the C-3 carbonyl group reduction, in the 

studied compounds. Compound 56 is structurally similar to exemestane (3) differing by 

the longer alkenyl group (allyl) at C-7 position, instead of the shorter one (methylidene 

group) at C-6 position of exemestane (3).  

 

  

Table 10 – Aromatase inhibition of tested compounds in human placental 

microsomes137  

 

 

 

 

 

 

 

 

 

 

 

 Surprisingly, when one substitutes the C-17 carbonyl group of 56 by a hydroxyl 

group, as in 54, the aromatase inhibitory activity is almost maintained (IC50 = 0.45 µM), 

showing 54 lower affinity to aromatase (Tables 1.10 and 1.11). In this case, the decrease 

Compounds Aromatase Inhibition (%) ± SEM 

48 10.12 ± 0.74 

49 24.74 ± 1.56 

50 83.14 ± 1.95 

51 31.33 ± 2.24 

52 52.44 ± 3.85 

53 84.29 ± 3.23 

54 87.94 ± 3.04 

55 13.01 ± 0.35 

56 94.49 ± 1.04 

Formestane (9) 99.65 ± 0.06 
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is much lower than that observed in the 3-deoxo derivatives series (53 and 52), probably 

because one carbonyl group, at C-3 position, remains in the molecule, allowing the 

establishment of hydrogen bonding with aromatase active site residues, and also 

because the A-ring planarity is increased, by the presence of the Δ1 double bond. By this 

reason, the A-ring planarity seems to assume an important role, since the same type of 

substitution in 50 to give 49, produces a dramatic decrease in the aromatase inhibition 

(Table 1.10). The substitution of the C-17 carbonyl group of 56 by an acetate group, as 

in 55, decreases the aromatase inhibitory activity (Table 1.10), even more than that 

observed in the 3-deoxo derivatives series. This dramatic decrease was also observed 

when it was made the substitution of the C-17 carbonyl group of 50 by an acetate group, 

as in 48. This effect can be due to stereochemical conflicts of these bulky groups with 

aromatase active site, because of the larger size of inhibitors 48 and 55, when compared 

with 51. 

 

 

Table 1.11 – IC50 and kinetic studies for compounds 50, 53, 54 and 56137 

 

Compounds 
IC50 

(µM) 

Type of 

Inhibition 

Vm 

(mol/min./µg prot) 

Ki 

(µM) 

Real Affinity 

(Km/Ki) (nM) 

50 0.59 competitive 0.009 ± 0.001 80.00 0.458 ± 0.042 

53 0.75 competitive 0.017 ± 0.003 60.00 0.014 ± 0.003 

54 0.45 competitive 0.004 ± 0.002 65.00 0.835 ± 0.041 

56 0.47 competitive 0.006 ± 0.001 45.00 0.926 ± 0.055 

Formestane (9) 0.042 - - - - 
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 In summary, several 7α-allyl derivatives of androstenedione were prepared and 

found to be strong aromatase inhibitors. Concerning its SAR, the presence of a double 

bond in C-1, as in 54 and 56, which increases the planarity of the steroidal A-ring, 

seems to be beneficial for aromatase inhibition. The reduction of the C-3 carbonyl 

group did not particularly favour the aromatase inhibitory activity, in some of these 

compounds, proving the importance of this group in the establishment of a hydrogen 

bond with the enzyme. The introduction of a double bond in C-1 seems to be more 

beneficial for aromatase inhibition since it increases the planarity in the A-ring. The 

substitution of the C-17 carbonyl group by a hydroxyl group usually decreases the 

aromatase inhibition, except if a double bond in C-1 is present, as in 54. The 

substitution of the C-17 carbonyl group by an acetate group dramatically decreases the 

aromatase inhibitory activity. This effect seems to be lower when the volume of the 

steroid molecule is also smaller as in 51. 
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1.6. CONCLUDING STRUCTURE-ACTIVITY RELATIONSHIPS 

  

 As main conclusions emerging from the observed results, it can be established 

that if one aims to design and synthesize an ideal steroidal AI we have to consider some 

important aspects, such as:  

- The existence of at least a carbonyl group at C-3 or C-17, but it is better if 

considering both of them. If we have to loose one of these groups, we should 

keep the C-17 carbonyl group.  

- Put enough planarity in A-ring and A,B-ring junction, through double bonds 

or other functions, like epoxides or cyclopropanes, since the planarity in this 

region is very important to inhibit aromatase. 

- Try to conjugate and extend the number of double bonds in convenient 

positions of the A and B-rings of the steroid, specially in positions C-1, C-4 

and C-6, like in exemestane. 

-  Avoid bulky groups in specific positions of the steroidal framework since 

the active site of the enzyme is small.  

- Some substituents in C-6 and C-7 positions can be beneficial to achieve 

strong aromatase inhibition. 
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1.7. EXPERIMENTAL SECTION 

  

 Melting points (mps) were determined on a Reichert Thermopan hot block 

apparatus and were not corrected.  

 IR spectra were recorded on a Jasco 420FT/IR spectrometer using a NaCl disk 

with chloroform solution and, when needed, KBr disk. 

 The 1H NMR spectra were recorded at 600 MHz, on a Varian Unity 600. The 

13C NMR spectra were recorded at 150 MHz on a Varian Unity 600. The 

characterization of CH3, CH2, CH and Cquaternary carbons was made by the APT 

technique.  Chemical shifts were recorded in δ values in parts per million (ppm) 

downfield from tetramethylsilane as an internal standard. All J-values are given in Hz.  

 ESI-MS (electrospray ionization-mass spectrometry) and LC-MS (liquid 

chromatography-mass spectrometry) sepctra were obtained with a mass spectrometer 

QIT-MS Thermo Finningan, model LCQ Advantage MAX coupled to a Liquid 

Chromatograph of High Performance Thermo Finningan. 

 Reactions were monitored by thin layer chromatography (TLC) in silica gel 60 

F254 aluminium sheets. The chromatographic separation of products was made using 

silica gel 60 (0.063-0.200 mm) columns. The TLC plates were revealed using ultra-

violet lamp (254 nm) and/or revealed by pulverization with a mixture of sulphuric 

acid/ethanol 95%, followed by heating at 100 ºC.  

 Testosterone (15) was purchased from STEROID, (Cologno, Monzese, MI). 

Exemestane (3) was purchased from Sequoia Research Products (Pangbourne, United 

Kingdom). Formestane (9) was purchased from Sigma-Aldrich, Inc. (St. Louis, USA). 

3β-Hydroxyandrost-4-en-17-one (20), 3α-hydroxyandrost-4-en-17-one (21), 5α-androst-

2-en-17-one (29) and 3-oxo-5α-androst-1-en-17β-yl acetate (31) were purchased from 
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Steraloids, Inc. (Newport RI, USA). Reagents and solvents were used as obtained from 

the suppliers without further purification, except dioxane, which was dried through 

reflux and distilled from sodium;138 chloroform, dichloromethane138 and pyridine,139 

which were dried from calcium hydride, and diethyl ether from sodium.138 

 Yields have not been optimized. 

 All compounds that were evaluated biochemically and biologically possess a 

purity superior to 95%, except compounds 19 and 45a (90% purity) and compounds 29 

and 30 (92% purity). The purity was checked by HPLC (high-pressure liquid 

chromatography) with a C18-reversed phase column and water/acetonitrile 40:60 as 

solvent. The purity of individual compounds was determined from the peak areas in the 

chromatogram of the sample solution.  
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Scheme 1.1 - Attempt to synthesize exemestane (3) from androstenedione (1) 

 

 6-Methylenandrost-4-ene-3,17-dione (2).  

 A suspension of anhydrous sodium acetate (1.0 g, 12.19 mmol) in anhydrous 

chloroform (30.0 mL) containing formaldehyde dimethyl acetal (30 mL, 340.0 mmol) 

and phosphoryl chloride (1.9 mL, 20.0 mmol) was stirred at reflux temperature, for 1 h. 

After that, androstenedione (1) (773.5 mg, 2.70 mmol) was added and the mixture was 

treated dropwise with phosphoryl chloride (1.9 mL, 20.0 mmol), over a period of 3 h 30 

min, and let to stir, at reflux temperature, under a stream of dry nitrogen, for a total of 

10 h. Subsequently, the reaction mixture was allowed to cool to room temperature and, 

under vigorous stirring, a saturated aqueous solution of sodium carbonate was added 

until the aqueous layer became alkaline. This mixture was afterwards diluted with 

chloroform (200 mL) and the organic layer was washed with water (4 x 100 mL), dried 

over anhydrous MgSO4, filtered and concentrated to dryness. The obtained residue was 

purified by silica gel 60 column chromatography (hexane/diethyl ether) affording the 

pure compound 2 (134.8 mg, 17%). Further crystallization from acetone/n-hexane 

afforded an analytical sample of 2. Mp(actenone/n-hexane) 162-164 ºC [lit.,70 165 ºC]. IR 

(NaCl plates, CHCl3) υmax cm-1: 3084 (=C-H), 1738 (C17=O), 1671 (C3=O), 1599 

(C=C). 1H NMR (600 MHz, CDCl3) δ: 0.78 (3H, s, 18-H3), 1.00 (3H, s, 19-H3), 4.87 

(1H, t, =CH2), 4.97 (1H, t, =CH2), 5.79 (1H, s, 4-H). 13C NMR (150 MHz, CDCl3) δ: 

11.5 (C-18), 14.9 (C-19), 18.2, 19.5, 29.0, 31.6, 32.9, 33.0, 33.6, 36.6, 36.9, 45.3, 48.9, 

50.3, 112.4 (=CH2), 119.6 (C-4), 143.2 (C-6), 166.3 (C-5), 197.4 (C-3), 217.8 (C-17). 
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 6-Methylandrosta-1,4,6-trien-17-one (4).  

 A mixture of compound 2 (253.2 mg, 0.85 mmol) and DDQ (288.9 mg, 1.27 

mmol) in anhydrous dioxane (20 mL) was refluxed under a stream of dry nitrogen for 

11 h 10 min, time after which nearest all starting material had been transformed. The 

reaction mixture was then filtered through alumina in order to remove the oxidizing 

agent. Afterwards, the solvent was removed under vacuum and the crude product was 

dissolved in ethyl acetate (150 mL); the yellow organic layer was washed with water (3 

x 100 mL), dried over anhydrous MgSO4, and concentrated to dryness. The resulting 

dark yellow oily residue was purified by silica gel column chromatography (petroleum 

ether 40-60 ºC/diethyl ether) allowing the isolation of the pure compound 4 (247.0 mg, 

98%) as a white solid. Mp(petroleum ether 40-60 ºC/diethyl ether) 216-219 ºC [lit.,47 222 ºC]. IR 

(NaCl plates, CHCl3) υmax cm-1: 1737 (C17=O), 1763 (C3=O), 1611 (C=C). 1H NMR 

(600 MHz, CDCl3) δ: 0.98 (3H, s, 18-H3), 1.18 (3H, s, 19-H3), 1.93 (3H, m, 20-H3), 

5.89 (1H, bs, 7-H), 6.20 (1H, d, J4,2=1.6, 4-H), 6.27 (1H, dd, J2,1=10.1, J2,4=1.7, 2-H), 

7.06 (1H, d, J1,2=10.1, 1-H). 13C NMR (125 MHz, CDCl3) δ: 13.8 (C-18), 19.3 (C-19), 

20.6 (C-20), 21.2, 21.3, 31.2, 35.5, 37.2, 47.7, 48.5, 48.9, 121.8 (C-7), 127.8 (C-4), 

132.4 (C-6), 132.7 (C-2), 153.2 (C-1), 162.9 (C-5), 186.4 (C-3), 219.2 (C-17).  
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Scheme 1.2 - Synthesis of derivatives of exemestane (3) 

 

 6β-Spirooxiranandrosta-1,4-diene-3,17-dione (5).  

 To a solution of exemestane (3) (250.4 mg, 0.84 mmol) in dichloromethane (7 

mL), a solution of performic acid generated in situ by addition of HCOOH 98-100% 

(0.12 mL) to H2O2 35% (0.31 mL), was added and the reaction was stirred at room 

temperature for 29 h, time after which an equivalent amount of performic acid solution 

was added and let to react for more 67 h. The reaction was worked up by addition of 

dichloromethane (200 mL) and the organic layer was washed with 10% aqueous 

NaHCO3 (2 x 100 mL) followed by water (4 x 100 mL), dried over anhydrous MgSO4, 

filtered and concentrated to dryness, giving a white solid residue.  Purification of this 

residue by column chromatography (petroleum ether 40-60ºC/ethyl acetate) afforded the 

pure compound 5 (55.7 mg, 21%) as a white crystalline solid and a mixture of 

compound 5 and its 6α-isomer (76.1 mg of a 65:35 mixture of 6β:6α, respectively, by 

NMR).  

 

 6β-Spirooxiranandrosta-1,4-diene-3,17-dione (5): Mp (petroleum ether 40-60 ºC/ethyl 

acetate) 222-224 ºC. IR (NaCl plates, CHCl3) νmax cm-1: 3045 (=CH2), 1722 (C=O), 1662 

(C=C), 1053 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.96 (3H, s, 18-H3), 1.37 (3H, s, 19-

H3), 2.79 (1H, d, Ja-b=4.2, -CHa-O-), 3.13 (1H, d, Jb-a=4.2, -CHb-O-), 6.15 (1H, d, J4-

2=1.8, 4-H), 6.26 (1H, dd, J2-1=10.2, J2-4=1.8, 2-H), 7.08 (1H, d, J1-2=10.2, 1-H). 13C 

NMR (150 MHz, CDCl3) δ: 13.8 (C-18), 18.5 (C-19), 21.7, 21.9, 31.1, 32.9, 35.5, 38.9, 

44.8, 47.6, 50.3 (-CH2-O-), 50.4, 51.6, 59.6 (C-6), 124.9 (C-2), 127.4 (C-1), 155.7 (C-

4), 161.4 (C-5), 185.9 (C-3), 219.4 (C-17). ESI: 313.2 ([M+H]+, 100%).  

 



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 98 

 6α-Spirooxiranandrosta-1,4-diene-3,17-dione (from the 6β:6α mixture): 1H 

NMR (600 MHz, CDCl3) δ: 0.95 (3H, s, 18-H3), 1.27 (3H, s, 19-H3), 2.69 (1H, d, Ja-

b=5.7, -CHa-O-), 3.01 (1H, dd, Jb-a=5.7, -CHb-O-), 6.26 (1H, dd, J2-1=10.1, J2-4=1.8, 2-

H), 6.32 (1H, d, J4-2=1.8, 4-H), 7.04 (1H, d, J1-2=10.1, 1-H). 

Note: a and b are the –CH2 protons of the exocyclic oxiran ring. 

 

 1α,2α-Epoxy-6-methylenandrost-4-ene-3,17-dione (6).  

 To a solution of exemestane (250.4 mg, 0.84 mmol) in methanol (10 mL), in an 

ice bath, it was added dropwise a cooled solution of 35% H2O2 (0.81 mL, 34.83 mmol) 

followed by a cooled solution of 4 N aqueous NaOH  (0.61 mL, 2.44 mmol). The 

reaction was stirred at 0 ºC over 30 min, and then at room temperature for 24 h. The 

alkaline solution was neutralized by addition of 0.5 N aqueous HCl. After that, water 

(150 mL) was added and the product extracted with dichloromethane (3 x 100 mL). The 

organic layer was washed successively with 10% aqueous NaHCO3 (2 x 100 mL) and 

water (3 x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness 

giving a white solid residue. This residue was purified by silica gel 60 column 

chromatography (petroleum ether 40-60 ºC/ethyl acetate) affording the pure compound 

6 (28.7 mg, 11%) as a white solid. Mp (petroleum ether 40-60 ºC/ethyl acetate) 201-203 ºC. IR (NaCl 

plates, CHCl3) νmax cm-1: 3029 (=CH2), 1722 (C=O), 1675 (C=C), 1052 (C-O). 1H NMR 

(600 MHz, CDCl3) δ: 0.93 (3H, s, 18-H3), 1.18 (3H, s, 19-H3), 3.46 (1H, dd, J2β-1β=3.9, 

J2β-4=1.9, 2β-H), 3.58 (1H, d, J1β-2β=3.9, 1β-H), 4.98 (1H, dd, Ja-b=1.75, Ja-7β=1.75, 

C6=CHa), 5.08 (1H, dd, Jb-a=1.75, Jb-7β=1.75, C6=CHb), 5.88 (1H, d, J4-2β=1.9, 4-H). 

13C NMR (150 MHz, CDCl3) δ: 13.7 (C-18), 18.9 (C-19), 21.3, 21.7, 31.0, 34.9, 35.6, 

38.6, 41.3, 47.3, 47.5, 50.7, 55.1 (C-2), 60.6 (C-1), 114.6 (C6=CH2), 118.6 (C-4), 145.1 

(C-6), 163.9 (C-5), 194.3 (C-3), 219.7 (C-17). ESI: 313.4 ([M+H]+, 100%).  
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 3-Oxo-6-methylenandrosta-1,4-dien-17β-ol (7) and 6-methylandrosta-1,4,6-

trien-17β-ol (8).  

 Sodium borohydride (63.2 mg, 1.66 mmol) was added in small proportions with 

stirring and cooling to a previously cooled mixture of trifluoracetic acid (0.4 mL), 

glacial acetic acid (0.4 mL) and acetonitrile (0.4 mL). A solution of 3 (100.0 mg, 0.337 

mmol) in dry dichloromethane (8 mL) was added to the former mixture. After this, the 

reaction mixture was let to react at room temperature, with stirring and under a stream 

of nitrogen, until all the starting material had been consumed (11 h, TLC control). The 

reaction mixture was then neutralized with a solution of 10% aqueous NaHCO3 and 

extracted with dichloromethane (3 x 100 mL). The organic layer was washed with water 

(3 x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness giving 

a white solid residue (102.5 mg). This residue was purified by silica gel column 

chromatography (petroleum ether 40-60 ºC/ethyl acetate) affording 39.1 mg of 

compound 7 (39%) and 11.3 mg of compound 8 (12%).  

 

 3-Oxo-6-methylenandrosta-1,4-dien-17β-ol (7): Mp(petroleum ether 40-60 ºC/ethyl acetate) 

87-90 ºC. IR (NaCl plates, CHCl3) νmax cm-1: 3421 (O-H), 3037 (H-C=), 1735 (C=C), 

1656 (C=C), 1057 (C-O) . 1H NMR (600 MHz, CDCl3) δ: 0.81 (3H, s, 18-H3), 1.14 (3H, 

s, 19-H3), 3.66 (1H, dd, J17α,16α= J17α,16β=8.6, 17α-H), 4.94 (1H, t, C=CH2), 5.01 (1H, t, 

C=CH2), 6.14 (1H, t, J4,2= 1.8, 4-H), 6.23 (1H, dd, J2,1=10.2, J2,4=1.8, 2-H), 7.08 (1H, d, 

J1-2=10.2, 1-H). 13C NMR (150 MHz, CDCl3) δ: 11.1 (C-18), 19.7 (C-19), 22.4, 23.4, 

30.3, 35.8, 36.2, 40.0, 43.0, 43.8, 50.0, 50.5, 81.4 (C-17), 111.9 (C=CH2), 122.5 (C-4), 

127.6 (C-2), 145.8 (C-6), 154.6 (C-1), 167.9 (C-5), 186.6 (C-3). ESI: 299.3 ([M+H]+, 

100%).  
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 6-Methylandrosta-1,4,6-trien-17β-ol (8): 1H NMR (600 MHz, CDCl3) δ: 0.81 

(3H, s, 18-H3), 0.99 (3H, s, 19-H3), 1.81 (3H, s, 6-H3), 2.77 (2H, m, 3-H), 3.65 (1H, dd, 

J17α,16α= J17α,16β=8.4, 17α-H), 5.36 (1H, s, 7-H), 5.66 (1H, t, J4,2α= J4,2β=4.3, 4-H), 5.70 

(1H, m, 2-H), 5.92 (1H, dt, J1-2=10.0, J1-3α=J1-3β=2.0, 1-H). 13C NMR (150 MHz, 

CDCl3) δ: 11.1 (C-18), 20.0 (C-19), 20.6, 21.2 (C-20), 23.2, 27.1, 30.5, 36.5, 36.7, 37.1, 

43.6, 49.1, 49.5, 81.6 (C-17), 117.8 (C-4), 122.6 (C-2), 126.1 (C-1), 131.4 (C-5), 133.3 

(C-7), 142.4 (C-6).  
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Scheme 1.3 - Synthesis of derivatives of formestane (9) 

 

 4-Acetoxyandrost-4-ene-3,17-dione (10).  

 To a solution of 9 (750.6 mg, 2.48 mmol) in anhydrous pyridine (12.5 mL), at 0 

ºC, acetyl chloride (0.27 mL, 3.80 mmol) was added dropwise. The reaction was stirred 

for 15 min at 0 ºC and then the temperature was raised to the ambient. Three subsequent 

additions of acetyl chloride (3 x 0.1 mL) were made allowing the reaction to be 

complete (total reaction time: 21 h 50 min, TLC). The solvent was then evaporated 

under vacuum and the obtained residue was crystallized with ethyl acetate/n-hexane 

after activated charcoal decolouration giving the pure compound 10 as white crystals 

(616.1 mg, 72%). Mp(chloroform) 169-171 ºC. IR (NaCl plates, CHCl3) νmax cm-1: 3018 

(=CH), 1739 (C=O), 1680 (C=C), 1059 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.91 

(3H, s, 18-H3), 1.26 (3H, s, 19-H3), 2.23 (3H, s, CH3COO). 13C NMR (150 MHz, 

CDCl3) δ: 13.7 (C-18), 17.6 (C-19), 20.2, 20.3, 21.7, 23.9, 29.7, 31.2, 33.3, 34.6, 34.7, 

35.7, 39.1, 47.4, 50.7, 53.8, 139.2, 154.9, 168.6, 190.4 (C-3), 220.2 (C-17). 

 

 4-Acetoxy-5α-androst-3-en-17-one (11).  

 To a solution of 10 (90.3 mg, 0.26 mmol) in glacial acetic acid (7.5 mL), zinc 

dust (500.0 mg, 7.65 mmol) was added. The reaction was sonicated in an ultrasound 

bath at room temperature for 25 min, time after which an excess of zinc dust (500.0 mg, 

7.65 mmol) was added and the reaction proceeded until all the starting material had 

been consumed (2 h, TLC). Zinc was then filtered, washed with diethyl ether (50 mL) 

and the filtrate was concentrated under vacuum. To the oily residue obtained, water 

(100 mL) was added and the product was extracted with dichloromethane (3 x 100 mL). 

The organic phase was sequentially washed with 10% aqueous NaHCO3 (2 x 100 mL) 
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and water (3 x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to 

dryness giving an oily residue (105.9 mg) composed by a mixture of 11 and its 5β-

epimer. Further crystallization with petroleum ether afforded the pure compound 11, as 

white crystals. Mp(petroleum ether) 116-119 ºC. IR (NaCl plates, CHCl3) νmax cm-1: 3018 

(=CH), 1737 (C=O), 1681 (C=C), 1158 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.86 

(3H, s, 18-H3), 0.88 (3H, s, 19-H3), 2.11 (3H, s, CH3COO), 5.24 (1H, dd, J3-2β=6.6, J3-

2α=3.3, 3-H). 13C NMR (150 MHz, CDCl3) δ: 12.4 (C-18), 13.9 (C-19), 20.5, 20.6, 20.7, 

21.4, 21.7, 30.1, 31.5, 33.4, 34.7, 35.8, 36.5, 47.0, 47.8, 51.3, 53.0, 112.5 (C-3), 148.8 

(C-4), 169.7, 221.0 (C-17). HRMS: m/z [M + Na]+ calcd for C21H30O3: 353.2087; 

found: 353.2080. 

 

 4-(o-Acetylsalicyloxy)androst-4-ene-3,17-dione (12).  

 To a solution of 9 (500.2 mg, 1.65 mmol) in anhydrous pyridine (6.5 mL) at 0 

ºC, o-acetylsalicyloyl chloride (492.0 mg, 2.48 mmol) was added. The reaction mixture 

was stirred at room temperature for 22 h 30 min and after that an excess of o-

acetylsalicyloyl chloride (247.4 mg, 1.25 mmol) was added. The reaction proceeded 

until complete transformation of the starting material (24 h 40 min, TLC). After 

evaporation of the solvent under vacuum, the residue was dissolved in dichloromethane 

(100 mL) and the organic layer was sequentially washed with 0.25 N aqueous HCl (4 x 

100 mL), 10% aqueous NaHCO3 (2 x 100 mL) and water (2 x 100 mL), dried over 

anhydrous MgSO4, filtered and concentrated to dryness giving a yellow oily residue 

(865.8 mg). This residue was then purified by silica gel 60 column chromatography 

(petroleum ether 40-60 ºC/ethyl acetate) allowing to separate 610.6 mg of compound 12 

in mixture with compound 10 (60:40 respectively, NMR). A portion of this mixture 

(127.7 mg) was further purified by another silica gel 60 column chromatography (n-



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 103 

hexane/diethyl ether) allowing to isolate the pure compound 12 (51.2 mg) as a white 

crystalline residue. Mp(diethyl ether/n-hexane) 183-185 ºC. IR (KBr disk) υmax cm-1: 3453 

(CHAr), 1769 (C=O ester), 1739 (C=O), 1687 (C=C), 1606 (C=CAr), 1195 (C-O). 1H 

NMR (600 MHz, CDCl3) δ: 0.92 (3H, s, 18-H3), 1.32 (3H, s, 19-H3), 2.28 (3H, s, 

CH3COO), 7.12 (1H, d, J4-3=7.8, 4-HAr), 7.32 (1H, dd, J3-4=7.8, J3-2=7.8, 3-HAr), 7.57 

(1H, dd, J2-3=7.8, J2-1=9.2, 2-HAr), 8.13 (1H, d, J1-2=9.2, 1-HAr). 13C NMR (150 MHz, 

CDCl3) δ: 13.7 (C-18), 17.8 (C-19), 20.4, 20.9, 21.7, 24.0, 29.9, 31.5, 33.4, 34.8, 34.9, 

35.7, 39.4, 47.4, 50.9, 54.0, 122.8, 123.8 (CAr-4), 125.9 (CAr-3), 132.2 (CAr-2), 134.0 

(CAr-1), 139.2, 151.1, 155.3, 162.1, 169.3, 189.8 (C-3), 219.5 (C-17). ESI: 463.7 ([M-

H]+, 100%). 

 

 4-(o-Acetylsalicyloxy)-5α-androst-3-en-17-one (13a).  

 A solution of a crude containing 12 as the main product (272.9 mg) in glacial 

acetic acid (25 mL), was sonicated with an ultrasound probe in the presence of excess of 

zinc dust (< 10 µm) (4.73 g, 17.43 mmol) until the transformation of all the starting 

material (20 min, TLC). Zinc was filtered and washed with glacial acetic acid and then 

the filtrate was concentrated under vacuum. To the oily residue obtained, water (200 

mL) was added and the product was extracted with dichloromethane (3 x 100 mL). The 

organic phase was sequentially washed with 10% aqueous NaHCO3 (2 x 150 mL) and 

water (3 x 150 mL), dried over anhydrous Na2SO4, filtered and concentrated to dryness 

giving an oily residue (242.9 mg). This residue was purified by silica gel 60 column 

chromatography (petroleum ether 40-60 ºC/ethyl acetate) allowing to isolate 101.1 mg 

of 13a in an inseparable mixture with its 5β-epimer (13b) (70:30 respectively, by 

NMR).  
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 4-(o-Acetylsalicyloxy)-5α-androst-3-en-17-one (13a): 1H NMR (600 MHz, 

CDCl3) δ: 0.87 (3H, s, 18-H3), 0.93 (3H, s, 19-H3), 2.33 (3H, s, CH3COO), 5.36 (1H, 

dd, J3-2β=6.6, J3-2α=3.3, 3-H), 7.12 (1H, d, J4-3=8.7, 4-HAr), 7.33 (1H, dd, J3-4=8.7, J3-

2=8.7, 3-HAr), 7.58 (1H, dd, J2-3=8.7, J2-1=9.6, 2-HAr), 8.07 (1H, d, J1-2=9.6, 1-HAr).  

 

 4-(o-Acetylsalicyloxy)-5β-androst-3-en-17-one (13b): 1H NMR (600 MHz, 

CDCl3) δ: 0.87 (3H, s, 18-H3), 1.05 (3H, s, 19-H3), 2.34 (3H, s, CH3COO), 5.51 (1H, 

dd, J3-2β=6.9, J3-2α=3.6, 3-H), 7.12 (1H, d, J4-3=8.7, 4-HAr), 7.33 (1H, dd, J3-4=8.7, J3-

2=8.7, 3-HAr), 7.58 (1H, dd, J2-3=8.7, J2-1=9.6, 2-HAr), 8.05 (1H, d, J1-2=9.6, 1-HAr). 

 

 3β,4β-Dihydroxy-5α-androstan-17-one (14a).  

 Sodium borohydride (62.2 mg, 1.64 mmol) was added in small portions with 

stirring and cooling to a previously cooled mixture of trifluoracetic acid (0.4 mL), 

glacial acetic acid (0.4 mL) and acetonitrile (0.4 mL). A solution of 9 (100.1 mg, 0.331 

mmol) in anhydrous dichloromethane (8 mL) was added to the former mixture. After 

this, the reaction mixture was let to react at room temperature, with stirring and under a 

stream of nitrogen, until all the starting material had been consumed (45 min, TLC 

control). The reaction mixture was then neutralized with a solution of 10% aqueous 

NaHCO3 and extracted with dichloromethane (3 x 100 mL). The organic layer was 

washed with water (3 x 100 mL), dried over anhydrous MgSO4, filtered and 

concentrated to dryness giving a white solid residue (95.7 mg). This residue was 

purified by silica gel column chromatography (petroleum ether 40-60ºC/ethyl acetate) 

affording 66.3 mg of compound 14a (65%). Mp(petroleum ether 40-60ºC/ethyl acetate) 213-216 ºC. 

IR (NaCl plates, CHCl3) νmax cm-1: 3340 (O-H), 3265 (O-H), 1747 (C=O), 1066 (C-O), 

1033 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.86 (3H, s, 18-H3), 1.05 (3H, s, 19-H3), 
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2.06 (1H, ddd, J16α,16β=18.5, J16α,15β=9.2, J16α,15α=9.2, 16α-H), 2.44 (1H, ddd, 

J16β,16α=18.5, J16β,15β=9.2, J16β,15α=9.2, 16β-H), 3.57 (1H, ddd, J3α,2β=7.2, J3α,2β=4.1, 

J3α,4α=3-4, 3α-H), 3.76 (1H, dd, J4α,3α=3-4, J4α,5α=3.1, 4α-H). 13C NMR (150 MHz, 

CDCl3) δ:13.8 (C-18), 14.7 (C-19), 19.9, 21.8, 25.6, 25.9, 31.2, 31.5, 35.0, 35.6, 35.8, 

36.8, 47.8, 48.8, 51.5, 55.3, 72.2 (C-3), 74.6 (C-4), 221.3 (C-17). 
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Scheme 1.5 – Synthesis of C-3 hydroxyl analogs of androstenedione (1) and testosterone (15)  

 

 Androst-4-ene-3β,17β-diol (16).  

 Method A. To a solution of testosterone (15) (1.0 g, 3.47 mmol) in anhydrous 

methanol (30.0 mL), sodium borohydride (350.1 mg, 9.25 mmol) was added and the 

reaction was stirred at room temperature for 1 h 20 min, after which a supplement of 

100 mg of NaBH4 was added to completely transform the starting material (2 h 40 min, 

TLC). After methanol removal under vacuum, water (100 mL) was added and the 

product extracted with ethyl acetate (3 x 200 mL). The organic layer was then washed 

with water (200 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness 

giving a white solid residue (1.04 g) composed by a mixture of 16 and its 3α-epimer 17. 

Crystallization from methanol gave the pure compound 16 (214.7 mg, 21%) as white 

crystalline plates. Mp(methanol) 149-151 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 3361 (O-

H), 1656 (C=C), 1051 (C-O). 1H (600 MHz, DMSO-d6) δ: 0.64 (3H, s, 18-H3), 0.98 

(3H, s, 19-H3), 3.41 (1H, ddd, J17α-16α=8.5, J17α-16β=8.5, J17α-17βOH=4.5, 17α-H), 3.90 

(1H, m, 3α-H), 4.44 (1H, d, J17βOH-17α=4.5, 17β-OH), 4.54 (1H, d, J3βOH-3α=5.4, 3β-OH), 

5.17 (1H, bs, 4-H). 13C (150 MHz, DMSO-d6) δ: 11.2 (C-18), 18.5 (C-19), 20.2, 23.0, 

29.0, 29.7, 31.5, 32.3, 35.3, 35.5, 36.4, 36.8, 42.4, 50.2, 54.2, 65.9 (C-3), 79.9 (C-17), 

125.3 (C-4), 144.2 (C-5). ESI: 289.2 ([M-H]+, 84%). 

 

 Method B. To a solution of testosterone (15) (1.0 g, 3.47 mmol) in anhydrous 

tetrahydrofuran (40.0 mL), lithium tri-t-butoxyaluminium hydride (1.15 g, 4.51 mmol) 

was added and the reaction was heated under reflux for 2 h 30 min. To completely 

transform the starting material (TLC), 874 mg of tri-t-butoxyaluminum hydride were 

added in several portions and the reaction stirred at room temperature for more 8 h 20 
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min. After methanol removal under vacuum, water (100 mL) was added and the product 

extracted with ethyl acetate (3 x 200 mL). The organic layer was then washed with 

water (200 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness 

giving a white solid residue (1.04 g) composed by a mixture of 16 and 17. 

Crystallization from methanol gave the pure compound 16 (222.1 mg, 22%) as white 

crystalline plates. 

 

 Androst-4-ene-3α,17β-diol (17).  

 To a solution of 21 (10 mg, 0.035 mmol) in methanol (3 mL), sodium 

borohydride (4.64 mg, 0.123 mmol) was added and the reaction mixture was stirred at 

room temperature until all the starting material has been consumed (10 min, TLC). 

After methanol evaporation and dissolution of the residue obtained with ethyl acetate 

(50 mL), the organic layer was washed with water (3 x 40 mL), dried over anhydrous 

MgSO4, filtered and evaporated affording the pure compound 17, in quantitative yield 

as a white residue. Mp(dichloromethane/methanol) 202-205 ºC. IR (KBr) νmax cm-1: 3328 (O-H), 

1655 (C=C), 1054 (C-O). 1H NMR (600 MHz, DMSO-d6) δ: 0.66 (3H, s, 18-H3), 0.92 

(3H, s, 19-H3), 3.41-3.45 (1H, m, 17-H), 3.85 (1H, bs, 3-H), 4.29 (1H, d, J=4.8, 3α-OH 

or 17β-OH), 4.38 (1H,d, J=4.8, 3α-OH or 17β-OH), 5.30 (1H, s, J=4.2, 4-H). 13C NMR 

(150 MHz, DMSO-d6) δ: 11.1 (C-18), 18.0 (C-19), 20.7, 23.0, 27.7, 29.7, 31.3, 31.6, 

32.1, 35.4, 36.5, 36.9, 40.0, 42.4, 50.3, 53.2, 62.3 (C-3), 79.9 (C-17), 122.2 (C-4). ESI: 

289.5 ([M-H]+, 100%). 

 

 3-Oxoandrost-4-en-17β-yl acetate (18).  

 To a solution of testosterone (15) (2.0 g, 6.93 mmol) in anhydrous pyridine 

(48.0 mL), acetic anhydride (7.9 mL, 83.9 mmol) was added and the reaction was 
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stirred for 21 h 25 min, at room temperature, until all the starting material was 

consumed (TLC control). Dichloromethane (250 mL) was added and the organic layer 

was washed with 10% aqueous NaHCO3 (3 x 150 mL), 10% aqueous HCl (3 x 150 mL) 

and water (3 x 150 mL), dried over anhydrous MgSO4, filtered and concentrated to 

dryness. Crystallization of the obtained residue from ethyl acetate gave the pure 

compound 18 (1.92g, 84%). Mp(ethyl acetate) 141-142 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 3018 

(=CH), 1736 (C=O), 1675 (C=C), 1248 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.82 (3H, s, 18-

H3), 1.18 (3H, s, 19-H3), 2.03 (3H, s, CH3COO), 4.58 (1H, dd, J17α-16α=9.0, J17α-16β=8.0, 17α-H), 

5.71 (1H, s, 4-H). 13C NMR (150 MHz, CDCl3) δ: 12.0 (C-18), 17.4 (C-19), 20.5, 21.1, 23.4, 

27.4, 31.4, 32.7, 33.9, 35.4, 35.7, 36.6, 38.6, 42.4, 50.2, 53.7, 82.4 (C-17), 123.9 (C-4), 170.9 (C-

5), 171.1 (OC=O), 199.4 (C3=O). 

  

 3β-Hydroxyandrost-4-en-17β-yl acetate (19). 

  To a solution of 18 (676.5 mg, 2.04 mmol) in anhydrous methanol (20 mL), 

sodium borohydride (127.5 mg, 3.37 mmol) was added and the reaction was stirred at 

room temperature until complete transformation of the starting material (45 min, TLC). 

After removal of methanol under vacuum, water (200 mL) was added and the product 

extracted with ethyl acetate (3 x 200 mL). The organic layer was washed with water 

(200 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness giving a 

white solid residue (706.4 mg). This residue was purified by silica gel 60 column 

chromatography (petroleum ether 60-80ºC/ethyl acetate) affording 430.0 mg of a 90:10 

3β/3α-epimeric mixture of 3-hydroxyandrost-4-en-17β-yl acetate (NMR and HPLC 

control). An attempt to isolate by crystallization the 3β-epimer 19, just enriched the 

mixture in the 3α-epimer.  
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 3β-Hydroxyandrost-4-en-17β-yl acetate (19): 1H NMR (600 MHz, DMSO-d6) δ: 

0.76 (3H, s, 18-H3), 0.99 (3H, s, 19-H3), 1.98 (3H, s, CH3COO), 3.90 (1H, m, 3α-H), 

4.49 (1H, dd, J17α-16α=9.0, J17α-16β=8.0, 17α-H), 4.54 (1H, d, J3bOH-3α=5.5, 3β-OH), 5.19 

(1H, bs, 4-H). 13C NMR (150 MHz, DMSO-d6) δ: 11.8 (C-18), 18.4 (C-19), 20.0, 20.8, 

22.9, 27.0, 28.9, 31.4, 32.2, 35.1, 35.2, 36.2, 36.7, 41.9, 49.7, 53.8, 65.8 (C-3), 81.8 (C-

17), 125.5 (C-4), 143.9 (C5), 170.2 (OC=O). ESI: 331.0 ([M-H]+, 100%).  

 

 3α-Hydroxyandrost-4-en-17β-yl acetate (from the mixture with 19): 1H NMR 

(600 MHz, DMSO-d6) δ: 0.77 (1H, s, 18-H3), 0.92 (1H, s, 19-H3), 1.98 (3H, s, 

CH3COO), 3.85 (1H, m, 3β-H), 4.36 (1H, d, J3αOH-3β=4.4, 3α-OH), 4.50 (1H, dd, J17α-

16α=9.0, J17α-16β=8.0, 17α-H), 5.31 (1H, d, J4-3β=4.5, 4-H). 

  



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 110 

Scheme 1.6 – Synthesis of A-ring olefin and epoxide derivatives of androstenedione (1)  

 

Androst-4-ene-3,17-dione (1).  

To a solution of testosterone (15) (11.6 g, 40.2 mmol) in acetone (500 mL) it 

was slowly added a solution of aqueous chromium trioxide in sulphuric acid – Jones 

reagent (15 mL), until the reaction mixture acquired a persistent red coloration. After 

stirring at room temperature for 15 min, the excess of the oxidant agent was destroyed 

with methanol, until it reacquired the green coloration.  Then, it was diluted with water 

(250 mL), the acetone evaporated under vacuum and it was poured into a mixture of 

water with ice (900 mL). The white precipitate formed was filtered and dried affording 

the pure compound 1 (10.4 g, 91%). IR (NaCl plates, CHCl3) υmax cm-1: 3012 (H-C=), 

1736 (C17=O), 1662 (C3=O), 1617 (C=C). 1H NMR (600 MHz, CDCl3) δ: 0.92 (3H, s, 

18-H3), 1.22 (3H, s, 19-H3), 5.76 (1H, s, 4-H). 

 

 3,3-(Ethylenedithio)androst-4-en-17-one (22).  

 A solution of androstenedione (1) (501.0 mg, 1.75 mmol) in anhydrous THF (7 

mL) was treated with anhydrous p-toluenesulfonic acid (904.2 mg, 5.25 mmol) and 

ethane-1,2-dithiol (176 µL, 2.10 mmol). A clear slightly yellowed solution was 

obtained. The reaction mixture was then stirred at room temperature for 4 h and after 

that it was diluted with water (50 mL) and brine (20 mL) and extracted with ethyl 

acetate (3 x 100 mL). The organic layer was washed with brine (4 x 70 mL), dried over 

anhydrous MgSO4, filtered and concentrated to dryness giving a slightly yellowed 

residue was obtained. Crystallization from ethyl acetate gave the pure compound 22 

(253.6 mg) as white crystals. Purification of the crystallization mother liquor by silica 

gel 60 column chromatography (n-hexane/ethyl acetate) afforded an additional portion 
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of 22, as a white crystalline solid (total yield 84%). A minor product (37.1 mg, 5%) was 

also isolated revealing to be 3,3,17,17-bis-(ethylenedithio)androst-4-ene. Compound 22: 

Mp(n-hexane/ethyl acetate) 169-170 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 3016 (=CH), 1737 

(C=O), 1647 (C=C), 663 (C-S). 1H NMR (600 MHz, CDCl3) δ: 0.87 (3H, s, 18-H3), 

1.03 (3H, s, 19-H3), 3.22-3.36 (4H, m, -SCH2CH2S-), 5.50 (1H, bs, 4-H). 13C NMR 

(150 MHz, CDCl3) δ: 13.7 (C-18), 18.5 (C-19), 20.5, 21.7, 31.3, 31.4, 31.8, 35.3, 35.8, 

36.7, 37.2, 37.9, 39.5, 40.0, 47.6, 50.9, 54.2, 65.6, 124.6 (C-4), 145.7 (C-5), 220.9 (C-

17).  

 

 Androst-4-en-17-one (25) and Androst-4-en-17β-ol (23).  

 Method A. To liquid ammonia (70 mL) at -65 ºC sodium metal (1.16 g, 50.5 

mmol) was added. To this stirred solution, compound 22 (500.2 mg, 1.38 mmol) in 

anhydrous tetrahydrofuran (10mL) was added over a period of 10 min. Ammonia was 

removed at room temperature with a stream of argon and methanol (27 mL), followed 

by chilled water (18 mL), were cautiously added affording a yellow residue. The residue 

was then acidified with a solution of 5% aqueous HCl, diluted with water (75 mL) was 

extracted with ethyl acetate (3 x 100mL). The organic layer was washed with a solution 

of 5% aqueous NaHCO3 (5 x 100 mL) and water (3 x 100 mL), dried over anhydrous 

MgSO4, filtered and concentrated to dryness giving a slightly yellowed residue. This 

crude was then purified by silica gel 60 column chromatography (n-hexane/ethyl 

acetate) yielding compound 25 (174.7 mg, 46%) as a white crystalline solid and 

compound 23 (99.4 mg, 26%) as a white solid.  

 

 Androst-4-en-17-one (25): Mp (n-hexane/ethyl acetate) 74-76 ºC. IR (NaCl plates, 

CHCl3) νmax cm-1: 3018 (=CH), 1738 (C=O), 1657 (C=C). 1H NMR (600 MHz, CDCl3) 



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 112 

δ: 0.88 (3H, s, 18-H3), 1.03 (3H, s, 19-H3), 5.32 (1H, m, 4-H). 13C NMR (150 MHz, 

CDCl3) δ: 13.7 (C-18), 19.2 (C-19), 19.4, 20.6, 21.8, 25.7, 31.5, 32.1, 32.3, 35.5, 35.8, 

37.1, 37.8, 47.7, 51.2, 54.5, 119.6 (C-4), 144.3 (C-5), 221.3 (C-17). ESI: 271.0 ([M-H]+, 

50%). 

 

 Androst-4-en-17β-ol (23): Mp (n-hexane/ethyl acetate) 143-146 ºC. IR (NaCl plates, 

CHCl3) νmax cm-1: 3278 (OH), 2959 (=CH), 1651 (C=C). 1H NMR (600 MHz, DMSO-

d6) δ: 0.65 (3H, s, 18-H3), 0.97 (3H, s, 19-H3), 3.43 (1H, ddd, J17α-16α=9, J17α-16β=9, J17α-

17βOH=5, 17α-H), 4.43 (1H, d, J17βOH-17α=5, 17β-OH), 5.24 (1H, m, 4-H). 13C NMR (150 

MHz, DMSO-d6) δ: 11.2 (C-18), 18.8 (C-19), 19.1, 20.6, 23.0, 25.1, 29.8, 31.9, 32.5, 

35.5, 36.4, 36.5, 37.2, 42.4, 50.3, 54.1, 79.9 (C-17), 118.7 (C-4), 144.2 (C-5).  

 

 3-Oxoandrost-4-en-17β-yl acetate (18). As described in Scheme 1.5. 

 

 Androst-4-en-17β-yl acetate (36).  

 Sodium borohydride (566.2 mg, 14.97 mmol) was added in small proportions 

with stirring and cooling to a previously cooled mixture of trifluoracetic acid (3.5 mL), 

glacial acetic acid (3.5 mL) and acetonitrile (3.5 mL). A solution of 18 (1.0 g, 3.03 

mmol) in anhydrous dichloromethane (18 mL) was added to the former mixture. After 

this, the reaction mixture was let to react at room temperature, with magnetic stirring 

and under a stream of nitrogen, until all the starting material had been consumed (3 h 

30min, TLC control). The reaction mixture was then neutralized with a solution of 10% 

aqueous NaHCO3 and extracted with dichloromethane (4 x 100 mL). The organic layer 

was washed with water (4 x 100mL), dried over anhydrous MgSO4, filtered and 

concentrated to dryness giving 945.0 mg (99%) of compound 36 as a white solid 
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residue. Mp(methylidenechloride/n-hexane/ethanol) 95-99 ºC. IR (NaCl plates, CHCl3) νmax cm-1: 

3024 (=CH), 1737 (C=O), 1663 (C=C), 1043 (C-O). 1H NMR (600 MHz, CDCl3) δ: 

0.80 (3H, s, 18-H3), 1.01 (3H, s, 19-H3), 2.03 (3H, s, CH3COO), 4.58 (1H, dd, J17αH-

16αH=9, J17αH-16βH=8, 17α-H), 5.29 (1H, m, 4-H). 13C NMR (150 MHz, CDCl3) δ: 12.0 

(C-18), 19.2 (C-19), 19.4, 20.9, 21.2, 23.5, 25.7, 32.4, 32.8, 35.8, 36.9, 37.1, 37.8, 42.5, 

50.5, 54.4, 82.8 (C-17), 119.3 (C-4), 144.7 (C-5), 171.2 (C=O). 

 

 Androst-4-en-17β-ol (23).  

 Method B. Compound 36 (945.0 mg, 2.99 mmol) was added to a mixture of 

dioxane/water (85:15) (90 mL) with 2% aqueous NaOH (18 mL), at room temperature. 

The reaction mixture was let to react until total transformation of the starting material (52 

h, TLC control) being after this time neutralized with a solution of 5% aqueous HCl. The 

dioxane was evaporated under vacuum leading to a white solid residue that was diluted 

with water (200 mL) and extracted with ethyl acetate (4 x 100 mL). The organic layer was 

then washed with water (4 x 100 mL), dried over anhydrous MgSO4, filtered and 

concentrated to dryness giving 819.0 mg (99%) of compound 23 as a white solid. 

 

 Androst-4-en-17-one (25).  

 Method B. Jones reagent (2.7 mL) was added dropwise to a solution of 23 

(839.8 mg, 3.06 mmol) in acetone/dioxane (60:10) (190 mL), at 0 ºC, with stirring, until 

the orange colour of the reagent remains. The excess of oxidant agent was destroyed 

with the addition of 2-propanol. The dioxane and acetone were evaporated under 

vacuum. To the remaining residue water (200 mL) was added and the resulting solution 

extracted with ethyl acetate (4 x 100 mL). The organic layer was then washed with 10% 

aqueous NaHCO3 (3 x 100 mL) and water (3 x 100 mL), dried over anhydrous Na2SO4, 
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filtered and concentrated to dryness giving a white solid residue (129.3 mg) after the 

addition of some drops of diethyl ether. This solid was then purified by silica gel 

column chromatography (hexane/ethyl acetate) affording the pure compound 25 (624.2 

mg, 75%) as a white crystalline solid. 

 

 5α-Androst-3-en-17-one (27a).  

 To a boiling solution of androstenedione (1) (1.0 g, 2.50 mmol) in glacial acetic 

acid (60 mL), zinc dust (12.0 g, 183.5 mmol) was added in two portions and after 10 

min the reaction was complete. The zinc suspension was filtered, the zinc washed with 

glacial acetic acid and the filtrate evaporated to dryness. The resulting residue was 

diluted with water (100 mL) and extracted with diethyl ether (3 x 120 mL). The organic 

layers were washed with 10% aqueous NaHCO3 (3 x 100 mL) and water (3 x 100 mL), 

dried over anhydrous MgSO4 and evaporated to dryness to give a white crystalline solid 

composed by a mixture of 5α-olefin 27a and 5β-olefin 27b. Crystallization of the 

mixture from n-hexane allowed obtaining the pure 27a (570.0 mg, 60%). 1H NMR (600, 

CDCl3) δ: 0.79 (3H, s, 18-H3), 0.87 (3H, s, 19-H3), 5.29 (1H, ddd, J4,3=9.6, J4,5α=3.8, 

J4,2α=1.9, 4-H), 5.66 (1H, ddd, J3,4=9.8, J3,2β=6.4, J3,2α=3.2, 3-H). 

 

 3β-Hydroxy-5α-androst-1-en-17β-yl acetate (32).  

 To a solution of compound 31 (500.4 mg, 1.51 mmol) in anhydrous 

tehrahydrofuran (20 mL) under nitrogen, lithium tri-t-butoxyaluminum hydride (499.7 

mg, 1.96 mmol) was added and the reaction was heated under reflux for 2 h, time after 

which an excess of lithium tri-t-butoxyaluminum hydride (99.9 mg, 0.39 mmol) was 

added. The reaction proceeded until complete transformation of the starting material (3 

h 15 min, total). After removal of the solvent under vacuum, water (200 mL) was added 
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and the aqueous layer extracted with dichloromethane (3 x 200 mL). The organic layer 

was then washed with water (200 mL), dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. Crystallization from methanol/water gave the pure compound 

32 (471.5 mg, 94%) as a white solid. Mp(methanol/water) 142-144 ºC (lit.,101 142-144 ºC). 

IR υmax (NaCl plates, CHCl3) cm-1: 3388 (OH), 3024 (=CH), 1735 (C=O), 1248 (C-O). 

1H NMR (600 MHz, DMSO-d6) δ: 0.74 (3H, s, 18-H3), 0.85 (3H, s, 19-H3), 1.98 (3H, s, 

CH3COO), 4.06 (1H, m, 4α-H), 4.50 (1H, dd, J17α-16α=8.0, J17α-16β=8.0, 17α-H), 4.63 

(1H, d, J3βOH-3α=5.8, 3-OH), 5.39 (1H, d, J1-2=10.0, 1-H), 5.75 (1H, dd, J2-1=10.0, J2-

3α=2.0, 2-H). 13C NMR (150 MHz, DMSO-d6) δ: 12.0 (C-18), 15.4 (C-19), 20.2, 20.8, 

22.9, 27.0, 27.6, 30.9, 34.8, 35.3, 36.4, 37.5, 42.2, 43.0, 50.0, 50.8, 66.8 (C-3), 81.8 (C-

17), 130.6 (C-1), 135.3 (C-2), 170.2 (C=O). ESI: 333.4 ([M+H]+, 14 %). 

 

 5α-Androst-1-en-17β-ol (33a).  

 A solution of 32 (418.0 mg, 1.25 mmol) in benzene (10 mL) was kept at 5-8 ºC, 

under nitrogen, treated with thionyl chloride (0.42 mL, 5.59 mmol) and stirred for 3 h 

15 min, never allowing complete transformation of the starting material. Benzene was 

evaporated under vacuum at room temperature and an oily residue was obtained. To this 

residue, solid NaHCO3 was added followed by 10% aqueous NaHCO3 (100 mL). The 

aqueous layer was extracted with dichloromethane (3 x 100 mL) and the resulting 

organic layer was washed with water (3 x 100 mL), dried over anhydrous Na2SO4, 

filtered and concentrated to dryness giving 422.0 mg of a transparent oily residue. To a 

solution of this residue in ethyl ether (63 mL), lithium aluminium hydride (292.4 mg, 

7.66 mmol) was added cautiously, under nitrogen, and the reaction heated under reflux 

for 10 h 30 min. A saturated sodium potassium tartrate solution (150 mL) was added 

and the mixture extracted with diethyl ether (4 x 100 mL). The organic layer was then 
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washed with water (3 x 100 mL), dried over anhydrous Na2SO4, filtered and 

concentrated to dryness giving a white solid residue (one TLC spot). 1H NMR analysis 

of this residue revealed to be composed by a mixture of 33a and its Δ2 isomer (33b) in 

similar proportions. This residue was further purified by column chromatography over 

neutral alumina and n-hexane/dichloromethane as solvent giving 239.0 mg of a white 

solid (one TLC spot). 1H NMR and LC-MS analysis of this product revealed to be 

composed by 33a in 90% purity.  

 

 5α-Androst-1-en-17β-ol (33a): 1H NMR (600 MHz, DMSO-d6) δ: 0.64 (3H, s, 

18-H3), 0.80 (3H, s, 19-H3), 3.42 (1H, ddd, J17α-16α=9.0, J17α-16β=9.0, J17α-17βOH =5.0, 

17α-H), 4.42 (1H, d, J17βOH-17α=5.0, 17β-OH), 5.45 (1H, m, 2-H), 5.82 (1H, bd, J1-

2=10.0, 1-H).  

 

 5α-Androst-2-en-17β-ol (33b) (from the mixture with 33a): 1H NMR (600 MHz, 

DMSO-d6) δ: 0.63 (3H, s, 18-H3), 0.71 (3H, s, 19-H3), 3.42 (1H, ddd, J17α-16α=9.0, J17α-

16β=9.0, J17α-17βOH =5.0, 17α-H), 4.42 (1H, d, J17βOH-17α=5.0, 17β-OH), 5.56 (2H, m, 2-H 

and 3-H). 

 

 5α-Androst-1-en-17-one (34).  

 Jones reagent (0,3 mL) was added dropwise to a solution of a mixture 33a and 

33b (90:10) (100.1 mg, 0.36 mmol) in acetone (5 mL), at 0 ºC, with stirring until the 

orange colour of the reagent remains. Then, the mixture was stirred for more 3 min, 

after which the reaction was poured into water (100 mL) and the product extracted with 

dichloromethane (3 x 100 mL). The organic layer was then washed with 10% aqueous 

NaHCO3 (2 x 100 mL) and water (2 x 100 mL), dried over anhydrous Na2SO4, filtered 
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and concentrated to dryness giving a white solid residue. This residue (one TLC spot) 

was composed by a mixture of 29 and 34. Column chromatography purification (n-

hexane/diethyl ether) followed by consecutive recrystallizations from methanol gave 

compound 34 in 96% purity (LC-MS analysis).  

 

 5α-Androst-1-en-17-one (34): 1H NMR (600 MHz, CDCl3) δ: 0.86 (3H, s, 19-

H3), 0.87 (3H, s, 18-H3), 5.52 (1H, m, 2-H), 5.83 (1H, bd, J1-2=10.0, 1-H). 13C NMR 

(150 MHz, CDCl3) δ: 13.9 (C-19), 15.7 (C-18), 20.4, 21.8, 25.3, 25.9, 28.2, 30.9, 31.6, 

35.3, 35.8, 37.6, 44.6, 47.9, 51.5, 51.8, 125.4 (C-2), 135.4 (C-1), 221.3 (C-17). ESI: 

271.3 ([M-H]+, 100%).  

 

 5α-Androst-2-en-17-one (29) (from the mixture with 34): 1H NMR (600 MHz, 

CDCl3) δ: 0.78 (3H, s, 19-H3), 0.87 (3H, s, 18-H3), 5.59 (2H, m, 2-H and 3-H). 

 

 

 General procedure to obtain 4α,5α-epoxyandrostan-17β-ol (24a) and 4β,5β-

epoxyandrostan-17β-ol (24b), 4α,5α-epoxyandrostan-17-one (26a) and 4β,5β-

epoxyandrostan-17-one (26b), 3α,4α-epoxy-5α-androstan-17-one (28), 2α,3α-epoxy-

5α-androstan-17-one (30), and 1α,2α-epoxy-5α-androstan-17-one (35).  

 To a solution of the olefin (23, 25, 27a, 29 or 34) in dichloromethane, a solution 

of performic acid, generated in situ by addition of HCOOH 98-100% to H2O2 35%, was 

added. The reaction mixture was stirred at room temperature until complete 

transformation of the starting material. Dichloromethane (100 mL) was added and the 

organic layer was washed successively with 10% aqueous NaHCO3 (2 x 100 mL) and 

water (4 x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness. 
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The obtained residue was purified by silica gel 60 column chromatography (n-

hexane/ethyl acetate). 

 

 4α,5α-Epoxyandrostan-17β-ol (24a) and 4β,5β-epoxyandrostan-17β-ol (24b).  

 Olefin 23 (82.7 mg, 0.30 mmol); dichloromethane (4.0 mL); HCOOH 98-100% 

(0.04 mL); H2O2 35% (0.11 mL); total reaction time: 7 h (TLC). Before column 

chromatography, 83.6 mg of a white solid residue was obtained. Purification by column 

chromatography afforded 39.7 mg of an inseparable epimeric mixture (60:40, by NMR) 

of 4α,5α- (24a) and 4β,5β- (24b) epimers, respectively.  

 

 4α,5α-Epoxyandrostan-17β-ol (24a) (from the mixture with 24b): 1H NMR (600 

MHz, DMSO-d6) δ: 0.65 (3H, s, 18-H3), 1.02 (3H, s, 19-H3), 3.42-3.46 (1H, m, 17α-H), 

2.86 (1H, d, J4β-3α=4.3, 4β-H), 4.42 (1H, d, J17βOH-17α=4.8, 17β-OH).  

 

 4β,5β-Epoxyandrostan-17β-ol (24b) (from the mixture with 24a): 1H NMR (600 

MHz, DMSO-d6) δ: 0.64 (3H, s, 18-H3), 0.93 (3H, s, 19-H3), 3.42-3.46 (1H, m, 17α-H), 

2.86 (1H, d, J4α-3α=4.6, 4α-H), 4.44 (1H, d, J17βOH-17α=4.9, 17β-OH). 

 

 4α,5α-Epoxyandrostan-17-one (26a) and 4β,5β-epoxyandrostan-17-one (26b).  

 Olefin 25 (300.0 mg, 1.01 mmol); dichloromethane (15.0 mL); HCOOH 98-

100% (0.14 mL); H2O2 35% (0.44 mL); total reaction time: 10 h 45 min (TLC). Before 

column chromatography it was obtained 309.7 mg of a white solid residue. Purification 

by column chromatography afforded 111.3 mg (35%) and 183.4 mg  (58%) of 4α,5α- 

and 4β,5β-epimers 26a and 26b, respectively.  
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 4α,5α-Epoxyandrostan-17-one (26a): Mp(chloroform) 142-145 ºC. IR (NaCl plates, 

CHCl3) νmax cm-1: 1734 (C=O), 1216 (C-O-C). 1H NMR (600 MHz, CDCl3) δ: 0.88 (3H, 

s, 18-H3), 1.03 (3H, s, 19-H3), 2.46 (1H, ddd, J16β-16α=19.0, J16β-15β=9.0, J16β-15β=1.0, 

16β-H), 2.90 (1H, d, J4β-3α=4.6, 4β-H). 13C NMR (150 MHz, CDCl3) δ: 13.7 (C-18), 

15.3 (C-19), 19.2, 20.5, 21.8, 23.6, 29.3, 29.6, 31.2, 31.4, 34.7, 35.8, 36.4, 46.7, 47.7, 

51.2, 61.3, 65.3 (C-5), 220.9 (C-17). ESI: 287.1 ([M-H]+, 100%).  

 

 4β,5β-Epoxyandrostan-17-one (26b): Mp(chloroform) 148-150 ºC. IR (NaCl plates, 

CHCl3) νmax cm-1: 1738 (C=O), 1016 (C-O-C). 1H NMR (600 MHz, CDCl3) δ: 0.88 (3H, 

s, 18-H3), 1.08 (3H, s, 19-H3), 2.43 (1H, ddd, J16β-16α=19.0, J16β-15β=9.0, J16β-15β=1.0, 

16β-H), 2.94 (1H, d, J4α-3β =4.1, 4α-H). ESI: 289.3 ([M+H]+, 100%). 

 

 3α,4α-Epoxy-5α-androstan-17-one (28).  

 Olefin 27a (67.5 mg, 0.25 mmol); dichloromethane (1.0 mL); HCOOH 98-100% 

(0.05 mL); H2O2 35% (0.05 mL); total reaction time: 6 h (TLC). It was afforded 75 mg 

of 28 (96%). 1H NMR (500 MHz, CDCl3) δ: 0.79 (3H, s, 19-H3), 0.86 (3H, s, 18-H3), 

2.08 (1H, ddd, J16α-16β=19.0, J16α-15α/15β=9.5, 16α-H), 2.44 (1H, ddd, J16β-16α=19.0, J16β-

15β=5.5, J16β-15α=0.0-1.0, 16β-H), 2.71 (1H, d, J4β-5α=4.0, 4β-H), 3.17 (1H, dd, J3β-2α=3.0, 

J3β-2β=3.0, 3β-H).  

 

 2α,3α-Epoxy-5α-androstan-17-one (30).  

 Method A. Olefin 29 (100.0 mg, 0.37 mmol); dichloromethane (2.0 mL); 

HCOOH 98-100% (0.1 mL); H2O2 35% (0.3 mL); total reaction time: 6 h (TLC). 

Before column chromatography it was obtained 103.5 mg of a white solid residue. 

Purification by column chromatography (chloroform) afforded compound 30 (6.7 mg, 
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6%) in 92% purity (NMR and HPLC analysis). IR (NaCl plates, CHCl3) υmax cm-1: 

1738(C=O), 1013 (C-O-C). 1H NMR (600 MHz, CDCl3) δ: 0.78 (3H, s, 19-H3), 0.84 

(3H, s, 18-H3), 2.05 (1H, ddd, J16α-16β=19.0, J16α-15β=9.0, J16α-15α=9.0, 16α-H), 2.42 (1H, 

ddd, J16β-16α=19.0, J16β-15β=9.0, J16β-15α=1.0, 16β-H), 3.11 (1H, m, J2β-1α=6.0, J2β-3β=3.95, 

2β-H) and 3.16 (1H, m, J3β-4α =6.0, J3β-2β=3.95, J3β-4β=1.69, 3β-H). 13C NMR (150 MHz, 

CDCl3) δ: 15.6 (C-19), 16.3 (C-18), 22.8, 24.4, 30.7, 31.6, 33.1, 34.1, 36.4, 37.8, 38.5, 

38.9, 40.9, 50.2, 53.5, 53.9, 55.0 (C-2), 56.4 (C-3) and 223.9 (C-17). ESI: 287.0 ([M-

H]+, 100%). 

 

 Method B. To a stirred 9% aqueous peracetic acid solution (1.0 mL) at 10 ºC, 

trihydrated sodium acetate (79.6 mg) and olefin 29 (200.2 mg, 0.73 mmol) in 

chloroform (2 mL) were added. The reaction was then stirred at room temperature until 

complete transformation of the starting material (7 h 30 min, TLC). Dichloromethane 

(150 mL) was added and the organic layer was washed with 10% aqueous NaHCO3 

(100 mL), water (4 x 100 mL), dried over anhydrous MgSO4 and concentrated to 

dryness giving 162.9 mg of a white residue. Purification by column chromatography (n-

hexane/ethyl acetate) followed by crystallization with methanol/water gave compound 

30, also in 92% purity. 

 

 1α,2α-Epoxyandrostan-17-one (35).  

 Olefin 34 (46.4 mg, 0.17 mmol); dichloromethane (3 mL); HCOOH 98-100% 

(0.03 mL); H2O2 35% (0.07 mL); total reaction time: 9 h 30 min (TLC). Before column 

chromatography, 38.6 mg of an oily residue was obtained. Purification by column 

chromatography afforded 7.4 mg (15%) of the pure compound 35. Mp(chloroform) 119-122 

ºC. IR (NaCl plates, CHCl3) υmax cm-1: 1738 (C=O), 1049 (C-O). 1H NMR (600 MHz, 
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CDCl3) δ: 0.87 (3H, s, 18-H3), 0,92 (3H, s, 19-H3), 2.07 (1H,ddd, J16α-16β=19.0, J16α-

15α=9.0, J16α-15β=9.0, 16α-H), 2.42 (1H, ddd, J16β-16α=19.0, J16β-15β=9.0, J16β-15α=1.0, 16β-

H), 2.99 (1H, d, J1β-2β=4.0, 1β-H), 3.12 (1H, dd, J2β-1β=4.0, J2β-3α=3.0, 2β-H). 13C NMR 

(150 MHz, CDCl3) δ: 11.4 (C-18), 13.8 (C-19), 20.4, 21.7, 22.7, 23.4, 27.6, 30.4, 31.3, 

34.9, 35.8, 36.6, 37.3, 47.7, 49.0, 51.3, 52.9 (C-1), 59.1 (C-2), 221.1 (C=O). ESI: 286.9 

([M-H]+, 100%). 
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Scheme 1.7 - Synthesis of aromatase inhibitor 40 from 15  

 

 3-Oxoandrost-4-en-17β-yl acetate (18). As described in Scheme 1.5 

 

 3β-Hydroxyandrost-4-en-17β-yl acetate (37).  

 To a solution of 18 (2.0 g, 6.05 mmol) in anhydrous tetrahydrofuran (75 mL) 

under nitrogen, lithium tri-t-butoxyaluminum hydride (2.0 g, 7.86 mmol) was added and 

the reaction was heated under reflux for 2 h, time after which an excess of lithium tri-t-

butoxyaluminum hydride (500.1 mg, 1.97 mmol) was added. The reaction proceeded 

until complete transformation of the starting material (3 h 30 min, total). After removal 

of the solvent under vacuum, water (200 mL) was added and the aqueous layer 

extracted with dichloromethane (3 x 200 mL). The resulting organic layer was washed 

with water (200 mL), dried over anhydrous Na2SO4, filtered and concentrated to 

dryness giving 1.97 g of a crude mainly composed by compound 37. 1H NMR (600 

MHz, DMSO-d6) δ: 0.76 (3H, s, 18-H3), 0.99 (3H, s, 19-H3), 1.98 (3H, s, CH3COO), 

3.90 (1H, m, 3α-H), 4.49 (1H, dd, J17αH-16αH=9.0, J17αH-16βH=8.0, 17α-H), 4.54 (1H, d, 

J3βOH-3αH=5.5, 3β-OH), 5.19 (1H, bs, 4-H); 13C NMR (150 MHz, DMSO-d6) δ: 11.8 (C-

18), 18.4 (C-19), 20.0, 20.8, 22.9, 27.0, 28.9, 31.4, 32.2, 35.1, 35.2, 36.2, 36.7, 41.9, 

49.7, 53.8, 65.8 (C-3), 81.8 (C-17), 125.5 (C-4), 143.9 (C5), 170.2 (OC=O). 

 

 Androsta-3,5-dien-17β-yl acetate (38).  

 A solution of the previously obtained crude (500.4 mg) in benzene (10 mL) was 

kept at 5-8 ºC, under nitrogen, treated with thionyl chloride (0.5 mL, 6.72 mmol) and 

stirred for 2 h 25 min, time after which an excess of thionyl chloride (0.1 mL, 1.38 

mmol) was added. The reaction proceeded never allowing the complete transformation 
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of the starting material (5 h 30 min, total). Benzene was evaporated under vacuum, at 

room temperature giving an oily residue to which solid NaHCO3 (500 mg) was added 

followed by 10% aqueous NaHCO3 (100 mL). The aqueous layer was extracted with 

dichloromethane (3 x 100 mL) and the resulting organic layer was washed with water (3 

x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness giving a 

white solid residue. This residue was purified by silica gel 60 column chromatography 

(petroleum ether 60-80ºC/ethyl acetate) to afford 263.4 mg of the title compound 38 as 

a white crystalline residue in an overall yield of 56% from 18. Mp(petroleum ether 60-80 ºC/ethyl 

acetate) 116-119 ºC. IR υmax (NaCl plates, CHCl3) υmax cm-1: 3018 (=CH), 1736 (C=O 

ester), 1648 (C=C), 1244 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.83 (3H, s, 18-H3), 

0.96 (3H, s, 19-H3), 2.04 (3H, s, CH3COO), 4.61 (1H, dd, J17α-16α=9.0, J17α-16β=8.0, 17α-

H), 5.38 (1H, m, 6-H), 5.59 (1H, m, 3-H), 5.92 (1H, m, 4-H). 13C NMR (150 MHz, 

CDCl3) δ: 12.0 (C-18), 18.8 (C-19), 20.4, 21.2, 22.9, 23.5, 27.5, 31.3, 31.6, 33.7, 35.2, 

36.8, 42.5, 48.3, 51.2, 82.8 (C-17), 122.6 (C-6), 125.1 (C-3), 128.8 (C-4), 141.5 (C-5), 

171.2 (OC=O). ESI: 315.1 ([M+H]+, 76%). 

 

 Androsta-3,5-dien-17β-ol (39).  

 To a solution of 38 (100.8 mg, 0.32 mmol) in ethyl ether (15 mL), lithium 

aluminium hydride (76.2 mg, 2.01 mmol) was added cautiously under nitrogen and the 

reaction heated under reflux for 8 h. A saturated sodium potassium tartrate solution (150 

mL) was added and the mixture extracted with ethyl ether (4 x 100 mL). The organic 

layer was washed with water (4 x 100 mL), dried over anhydrous MgSO4, filtered and 

concentrated to dryness giving 79.4 mg (91%) of the pure compound 39 as a white 

solid.  Mp(ethyl acetate/n-hexane) 140-142 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 3302 (OH), 

3021 (=CH), 1646 (C=C), 1054 (C-O). 1H NMR (600 MHz, DMSO-d6) δ: 0.67 (3H, s, 
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18-H3), 0.89 (3H, s, 19-H3), 3.45 (1H, ddd, J17α-17βOH=5.0, J17α-16α=9.0, J17α-16β=9.0, 17α-

H), 4.45 (1H, d, J17βOH-17α=5.0, 17β-OH), 5.34 (1H, m, 6-H), 5.57 (1H, m, 3-H), 5.88 

(1H, m, 4-H). 13C NMR (150 MHz, DMSO-d6) δ: 11.2 (C-18), 18.5 (C-19), 20.1, 22.4, 

22.9, 29.8, 30.8, 31.4, 33.2, 34.6, 36.3, 42.3, 48.0, 50.9. 79.9 (C-17), 122.6 (C-6), 124.5 

(C-3), 128.8 (C-4), 140.8 (C-5). ESI: 271.2 ([M-H]+, 100%). 

 

 Androsta-3,5-dien-17-one (40).  

 To a solution of 39 (62.0 mg, 0.23 mmol) in pyridine (3 mL), a pyridine solution 

(2.3 mL) of chromium trioxide (98 mg, 0.98 mmol) was added at 0 ºC. The reaction was 

stirred at room temperature for 19 h, until total transformation of the starting material 

(TLC control). The mixture was then diluted with ethyl ether (150 mL) and poured into 

water (50 mL). The organic phase was brined (6 x 150 mL), washed with water (3 x 200 

mL), dried over anhydrous MgSO4, filtered and concentrated to dryness giving a yellow 

residue which was purified by neutral column chromatography (petroleum ether 40-60 

ºC) giving 9.0 mg (38%) of pure compound 40. Mp(chloroform) 81-83 ºC [lit.,140 80-82 ºC]. 

IR (NaCl plates, CHCl3) υmax cm-1: 3018 (=CH), 1739 (C=O), 1652 (C=C). 1H NMR 

(600 MHz, CDCl3) δ: 0.91 (3H, s, 19-H3), 0.97 (3H, s, 18-H3), 5.40 (1H, m, 6-H), 5.61 

(1H, m, 3-H), 5.93 (1H, m, 4-H). 13C NMR (150 MHz, CDCl3) δ: 13.7 (C-19), 18.8 (C-

18), 20.2, 21.8, 22.9, 30.6, 31.3, 31.4, 33.7, 35.3, 35.8, 47.7, 48.5, 51.9, 122.1 (C-6), 

125.3 (C-3), 128.7 (C-4), 141.6 (C-5), 221.0 (C=O). ESI: 269.1 ([M-H]+, 99%). 
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Scheme 1.9 - Synthesis of aromatase inhibitors 41 and 42 from 27a 

 

 3α,4α-Methylen-5α-androstan-17-one (41).  

 A mixture of zinc dust <10 µm (409.7 mg, 6.26 mmol) and cuprous chloride 

(618.9 mg, 13.07 mmol) in anhydrous diethyl ether (15 mL) was stirred and heated to 

reflux, using a ultra-sound bath, under an atmosphere of anhydrous nitrogen, for 30 

min. A solution of 27a (50.0 mg, 0.18 mmol) in anhydrous diethyl ether (2 mL) was 

added to the former suspension followed by the addition of methylidenediiodide (0.3 

mL, 3.35 mmol) and iodine (14.6 mg). The reaction mixture was maintained at reflux 

for 37 h, time after which a new addition of the mixture of dust zinc (204.6 mg, 3.13 

mmol), cuprous chloride (309.3 mg, 6.54 mmol) in anhydrous diethyl ether (5 mL) with 

methylidenediiodide (0.15 mL, 1.68 mmol) and iodine (7 mg) (this mixture was kept at 

reflux temperature with stirring for 1 h prior to the addition to the reaction mixture) was 

made. The reaction proceeded in the same conditions for more 53 h. After this, the 

reaction mixture was filtered through an oxide aluminium filtration plate and washed 

with ethyl acetate (50 mL) and diethyl ether (100 mL). The filtrates were concentrated 

and the residue was diluted with diethyl ether (150 mL) and washed with 5% aqueous 

HCl (3 x 50 mL), 5% aqueous NaHCO3 (3 x 50 mL) and water (3 x 50 mL). The 

organic layer was dried over anhydrous Na2SO4, filtered and concentrated to dryness 

giving a white solid residue. This residue was then purified by silica gel column 

chromatography (hexane/ethyl acetate) that allowed obtaining the pure compound 41 in 

10.7 mg (21%). Mp(hexane/ethyl acetate) 120-123 ºC. IR (NaCl plates, CHCl3) νmax cm-1: 1708 

(C=O). 1H NMR (600 MHz, CDCl3) δ: -0.12 (1H, m, α cyclopropyl-H), 0.35 (1H, m, 

3β–H), 0.55 (1H, m, 5α-H), 0.65 (1H, m, β cyclopropyl-H), 0.80 (1H, m, 4β–H), 0.83 

(3H, s, 19-H3), 0.85 (3H, s, 18-H3), 2.05 (1H, ddd, J16α,16β=19.2, J16α,15β=J16α,15α=9.1, 
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16α-H), 2.42 (1H, ddd, J16β,16α=19.2, J16β,15β=8.9, J16β,15α=1.0, 16β-H). 13C NMR (150 

MHz, CDCl3) δ: 8.9 (C-3), 12.4 (CH2 cyclopropyl), 12.7 (C-19), 13.9 (C-18), 14.2 (C-

4), 19.3, 20.6, 21.8, 29.3, 30.9, 31.65, 32.3, 34.7, 35.1, 35.9, 47.8, 48.7, 51.5, 52.9, 

221.4 (C-17). ESI: 285.5 ([M-H]+, 100%). 

 

 5α-Androst-3-ene-17-thione (42).  

 To a solution of olefin 27a (420.7 mg, 1.46 mmol) in anhydrous toluene (30 

mL), Lawesson’s reagent (624.9 mg, 1.54 mmol) was added and the reaction mixture 

was heated under reflux for 7 h, in an inert atmosphere. The remaining Lawesson’s 

reagent was removed through a neutral alumina column leading to an orange residue, 

which was further purified by silica gel 60 column chromatography (petroleum ether 

40-60 ºC) affording the pure compound 42 (238.5 mg, 54%), as a light orange solid. 

Mp(petroleum ether 40-60ºC) 95 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 3015 (=CH), 1650 

(C=C), absence of C=O (peak around 1715 in compound 8). 1H NMR (600 MHz, 

CDCl3) δ: 0.79 (3H, s, 19-H3), 0.88 (3H, s, 18-H3), 2.60 (1H, ddd, J16α-16β=22.0, J16α-

15β=9.0, J16α-15α=9.0, 16α-H), 2.93 (1H, ddd, J16β-16α=22.0, J16β-15β=9.0, J16β-15α=1.0, 16β-

H), 5.27 (1 H, ddd, J4-3=9.5, J4-5α=4.0, J4-2α=2.0, 4-H), 5.54 (1 H, ddd, J3-4=9.5, J3-

2β=6.0, J3-2α=3.0, 3-H). 13C NMR (150 MHz, CDCl3) δ: 14.5 (C-19), 20.5 (C-18), 23.7, 

26.1, 27.1, 29.9, 34.3, 36.7, 37.7, 38.3, 38.6, 48.5, 51.8, 55.7 (2 carbons), 62.1, 128.2 

(C-4), 133.7 (C-3), 274.1 (C=S). ESI: 287.2 ([M-H]+, 100%). 
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Scheme 1.10 - Synthesis of aromatase inhibitors 45a and 46a from androstenedione (1) 

 

 6-Methylenandrosta-4-ene-3,17-dione (2). As described in Scheme 1.1 

 

 6α-Methylandrost-4-ene-3,17-dione (44).  

 To a solution of 2 (402.9 mg, 1.35 mmol) and cyclohexene (0.81 mL, 7.96 

mmol) in absolute ethanol (26 mL), 5% Pd-C (80.6 mg, 0.76 mmol) was added. The 

suspension was set to reflux temperature with stirring. The UV spectra of aliquots were 

periodically determined at appropriate times and after 3 h 15 min it was observed a 

complete change from λmax 260 nm to λmax 240 nm, meaning that the starting material 

had been completely transformed. The catalyst was afterwards removed by filtration 

and the filtrate was concentrated under reduced pressure giving an oily residue. This 

residue was purified by column chromatography (hexane/ethyl acetate) allowing to 

isolate the pure compound 44 (276.4 mg, 71%) as a white solid. Mp(hexane/ethyl acetate) 164-

166 ºC [lit.,118,123 166-168 ºC, 167-169 ºC]. IR (NaCl plates, CHCl3) νmax cm-1: 3050 

(H-C=), 1739 (C=O), 1671 (C=C). 1H NMR (600 MHz, CDCl3) δ: 0.92 (3H, s, 18-H3), 

1.09 (3H, d, J=6.5, 6α-H3), 1.21 (3H, s, 19-H3), 5.80 (1H, bs, 4-H). 13C NMR (150 

MHz, CDCl3) δ: 13.7 (C-18), 18.3 (C-20), 18.4 (C-19), 20.5, 21.7, 31.3, 33.6, 33.7, 

35.0, 35.8, 35.9, 38.9, 39.7, 47.5, 50.7, 54.1, 121.6 (C-4), 173.5 (C-5), 199.6 (C-3), 

220.3 (C-17).  

 

 6α-Methyl-5α-androst-3-en-17-one (45a) and 6α-methyl-5β-androst-3-en-

17-one (45b).  

 To a boiling solution of 44 (259.3 mg, 0.863 mmol) in gacial acetic acid (40 

mL), zinc dust <10 µm (1.48 g, 22.66 mmol) was added in several portions during 1 h. 
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After 3 h another amount of zinc dust (1.48 g, 22.66 mmol) was added, within 1 h. The 

reaction proceeded with a total of 5 h 15 min, although, without total transformation of 

the starting material. The zinc suspension was filtered, the zinc was washed with glacial 

acetic acid and the filtrate evaporated to dryness. The resulting residue was then diluted 

with water (100 mL) and extracted with diethyl ether (3 x 100 mL) and ethyl acetate 

(100 mL). The organic layer was washed with 10% aqueous NaHCO3  (3 x 100 mL) and 

water (3 x 100 mL), dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The NMR analysis of this crude revealed to be composed by both isomers 45a and 45b 

in a relation of 1.7:1, respectively. This crude was then purified by silica gel column 

chromatography (hexane/ethyl acetate), which allowed isolating compound 45b in 13% 

yield as a white solid residue. A mixture of isomers 45a and 45b (193.7 mg, 78% yield) 

was also obtained. A new silica gel column chromatography of this mixture allowed 

obtaining compound 45a in 90% purity (NMR and HPLC control).  

 

 6α-Methyl-5α-androst-3-en-17-one (45a): IR (NaCl plates, CHCl3) νmax cm-1: 

3030 (H-C=), 1740 (C=O), 1651 (C=C). 1H NMR (600 MHz, CDCl3) δ: 0.80 (3H, s, 19-

H3), 0.87 (3H, s, 18-H3), 0.93 (3H, d, J=6.1, 6α-H3), 5.61 (1H, ddd, J3,4=10.0, J3,2β=6.5, 

J3,2α=3.3, 3-H), 5.67 (1H, ddd, J4,3= 10.2, J4,5α=3.9, J4,2α=2.0, 4-H). 13C NMR (150 

MHz, CDCl3) δ: 12.6 (C-19), 13.9 (C-18), 19.9 (C-20), 20.3, 21.7, 23.2, 29.5, 31.6, 

34.2, 34.7, 35.3, 35.8, 35.9, 47.8, 51.4, 52.3, 53.3, 126.2 (C-3), 127.2 (C-4), 221.4 (C-

17). ESI: 287.3 ([M+H]+, 100%). 

 

 6α-Methyl-5β-androst-3-en-17-one (45b): Mp(hexane/ethyl acetate) 84-87 ºC. IR (NaCl 

plates, CHCl3) νmax cm-1: 3025 (H-C=), 1740 (C=O), 1647 (C=C). 1H NMR (600 MHz, 

CDCl3) δ: 0.86 (3H, s, 18-H3), 0.96 (3H, d, J=6.9, 6-H3), 0.97 (3H, s, 19-H3), 2.03 (1H, 
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ddd, J16α,16β=18.9, J16α,15β=9.3, J16α,15α=9.0, 16α-H), 2.42 (1H, dd, J16β,16α=19.2, 

J16β,15β=8.8, 16β-H), 5.56 (1H, dd, J4,3=10.3, J4,5β=1.7, 4-H), 5.70 (J3,4=9.8, J3,2α=3.5, 3-

H). 13C NMR (150 MHz, CDCl3) δ: 13.8 (C-18), 14.1 (C-20), 19.3 (C-19), 20.8, 21.8, 

22.3, 22.7, 22.9, 29.3, 31.8, 34.3, 34.5, 35.6, 35.9, 40.8, 49.1, 51.1, 125.7 (C-4), 127.9 

(C-3), 221.5 (C-17).  

 

 3α,4α-Epoxy-6α-methyl-5α-androstan-17-one (46a) and 3β,4β-epoxy-6α-

methyl-5β-androstan-17-one (46b).  

 A stirred solution of a crude mixture of compounds 45a and 45b (112.4 mg, 

0.39 mmol) in dichloromethane (30 mL) was treated with a solution of performic acid, 

generated in situ by the addition of 98-100% formic acid (0.10 mL) and 30% hydrogen 

peroxide (0.21 mL), at room temperature. The reaction mixture was stirred at room 

temperature for 9 h 30 min. Dichloromethane was then added (150 mL), and the organic 

layer was washed successively with 10% aqueous NaHCO3  (100 mL) and water (4 x 

100 mL), dried over anhydrous Na2SO4, filtered and concentrated to dryness giving a 

slightly yellow oily residue. This residue was purified by silica gel column 

chromatography (hexane/ethyl acetate) allowing to isolate 52.0 mg (44%) of the pure 

3α,4α-epimer 46a as a white solid, and 34.6 mg (29%)  of the pure 3β,4β-epimer 46b.  

 

 3α,4α-Epoxy-6α-methyl-5α-androstan-17-one (46a): Mp(hexane/ethyl acetate) 153-156 

ºC. IR (NaCl plates, CHCl3) νmax cm-1: 1740 (C=O), 1013 (C-O). 1H NMR (600 MHz, 

CDCl3) δ: 0.79 (3H, s, 19-H3), 0.85 (3H, s, 18-H3), 1.07 (3H, d, J=6.4, 6α-H3), 2.43 

(1H, dd, J16β,16α=19.2, J16β,15β=8.7, 16β-H), 2.92 (1H, dd, J4β,5α=4.1, J4β,6β=1.3, 4β-H), 

3.15 (1H, dd, J3β,2β=J3β,2α=3.4, 3β-H). 13C NMR (150 MHz, CDCl3) δ: 13.8 (C-19), 13.9 
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(C-18), 19.8, 20.6, 20.9, 21.7 (C-20), 29.5, 30.8, 31.5, 34.4, 34.7, 35.9, 40.2, 47.7, 51.2, 

51.9, 52.3, 53.3 (C-4), 53.4 (C-3), 221.0 (C-17). ESI: 303.1 ([M+H]+, 100%).  

 

 3β,4β-Epoxy-6α-methyl-5β-androstan-17-one (46b): Mp(hexane/ethyl acetate) 83-87 

ºC. IR (NaCl plates, CHCl3) νmax cm-1: 1738 (C=O), 1050 (C-O). 1H NMR (600 MHz, 

CDCl3) δ: 0.84 (3H, s, 18-H3), 0.87 (3H, s, 19-H3), 1.06 (3H, d, J=6.9, 6α-H3), 2.44 

(1H, dd, J16β,16α=18.3, J16β,15β=8.7, J16β,15α=0.8, 16β-H), 2.91 (1H, d, J4α,5β=3.9, 4α-H), 

3.17 (1H, dd, J3α,2α=J3α,2β=2.5, 3α-H). 13C NMR (150 MHz, CDCl3) δ: 13.6 (C-18), 13.7 

(C-19), 18.9, 20.2 (C-20), 22.1, 28.9, 29.5, 31.6, 33.6, 35.1, 35.5, 35.80, 35.81, 35.82, 

42.6, 48.9, 51.1, 52.9 (C-4), 53.0 (C-3), 220.9 (C-17).  
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Scheme 1.11 – Synthesis of 7α-allyl derivatives as aromatase inhibitors 

 

 3-Oxoandrost-4-en-17β-yl acetate (18). As described in Scheme 1.5 

 

 3-Oxoandrosta-4,6-dien-17β-yl acetate (47).  

 To a solution of 18 (3.8 g, 11.50 mmol) in acetic acid (50 mL) and toluene (10 

mL), under a stream of nitrogen, chloranil (2.5 g, 10.17 mmol) was added and the 

reaction mixture was refluxed for 3 h (UV spectrophotometric control). After cooling, 

the mixture was extracted with dichloromethane (3 x 200 mL) and the organic layer was 

sequentially washed with 2.5 N aqueous NaOH, 10% aqueous NaHCO3 (3 x 150 mL) 

and water (3 x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to 

dryness yielding a crude product, which was purified by silica gel chromatography 

(petroleum ether 40-60 ºC/diethyl ether) gave the pure compound 47 (2.2 g, 58%), as a 

yellow crystalline solid. Mp(ethyl acetate/n-hexane) 141-143 ºC. IR (NaCl plates, CHCl3) υmax 

cm-1: 3024 (=CH), 1734 (C=O), 1658 (C=C), 1617 (C=C), 1030 (C-O). 1H NMR 

(CDCl3, 600 MHz) δ: 0.88 (3H, s, 18-H3), 1.11 (3H, s, 19-H3), 2.05 (3H, s, CH3COO), 

4.63 (1H, dd, J17α,16α=J17α,16β=9.0, 17α-H), 5.67 (1H, s, 4-H), 6.09 (1H, d, J6,7=10.4, 6-

H), 6.12 (1H, dd, J7,6 =10.4, J7,8= 2.4, 7-H). 13C NMR (150 MHz, CDCl3) δ: 11.9 (C-

18), 16.3 (C-19), 20.2, 21.1, 23.1, 27.4, 33.8, 33.9, 36.0, 36.5, 37.3, 43.4, 48.0, 50.6, 

82.1 (C-17), 123.8 (C-7), 128.2 (C-6), 139.9 (C-4), 163.4 (C-5), 171.1 (OC=O), 199.4 

(C-3). 

 

 7α-Allyl-3-oxoandrost-4-en-17β-yl acetate (48).  

 To a solution of 47 (0.55 g, 1.67 mmol) in anhydrous dichloromethane (50 mL), 

under stirring and in an inert atmosphere, cooled at -78 °C, titanium tetrachloride (3.0 



Chapter I 
Steroidal Aromatase Inhibitors as Anti-tumors 

 132 

mL, 27.29 mmol) was added. After 5 min, a solution of allyltrimethylsilane (3.0 mL, 

18.6 mmol) in anhydrous dichloromethane (5.0 mL) was carefully added to the previous 

solution. The resulting mixture was stirred for 40 min and then allowed to warm to 30 

°C. After that, water was added, the mixture was extracted with dichloromethane (3 x 

100 mL) and the organic layer was washed with 10% aqueous NaHCO3 (2 x 100 mL) 

and water (3 x 100 mL), dried over anhydrous Na2SO4, filtered and concentrated to 

dryness yielding an oily product (0.674 g). Purification of this product by silica gel flash 

column chromatography (petroleum ether 40-60 ºC/diethyl ether) afforded the pure 

compound 48 (0.35 g, 56%). Mp(petroleum ether 40-60 ºC/diethyl ether) 150-152 ºC. IR (NaCl 

plates, CHCl3) υmax cm-1: 3012 (=CH), 1745 (C=O ester), 1722 (C=O), 1663 (C=C), 

1041 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.84 (3H, s, 18-H3), 1.20 (3H, s, 19-H3), 

2.04 (3H, s, CH3COO), 4.61 (1H, dd, J17α,16α=8.9, J17α,16β=8.2, 17α-H), 4.98 (1H, ddd, 

CH=CH2), 5.02 (1H, ddd, CH=CH2), 5.64 (1H, m, CH=CH2), 5.71 (1H, s, 4-H). 13C 

NMR (150 MHz, CDCl3) δ: 11.9 (C-18), 17.9 (C-19), 20.7, 21.1, 22.8, 27.3, 30.2, 33.9, 

35.9, 36.0, 36.1, 36.4, 38.3, 38.6, 42.5, 45.9, 46.9, 82.4 (C-17), 116.8 (C-24), 126.2 (C-

4), 136.8 (C-23), 169.2 (C-5), 171.1 (C=O), 199.1 (C-3). ESI: 369.53 ([M-H]+, 100%). 

 

 7α-Allyl-3-oxoandrost-4-en-17β-ol (49).  

 To a mixture of dioxane/water (85:15) (50 mL) with 2% aqueous NaOH (10 

mL), compound 48 (0.62 g, 1.67 mmol) was added and the resulting solution was stirred 

overnight, at room temperature, after which chilled water was added leading to the 

formation of a precipitate. This precipitate was separate by filtration, dissolved in ethyl 

acetate/dichloromethane (4:1), and the resulting solution was dried over anhydrous 

MgSO4 and concentrated to dryness yielding the pure compound 49 (0.57 g, 96%) as a 

white solid. Mp(ethyl acetate/dichloromethane) 216-218 ºC [lit.,128 208-210 ºC]. IR (NaCl plates, 
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CHCl3) υmax cm-1: 3421 (OH), 1722 (C=O), 1645 (C=C), 1061 (C-O). 1H NMR (600 

MHz, DMSO-d6) δ: 0.69 (3H, s, 18-H3), 1.16 (3H, s, 19-H3), 3.46 (1H, ddd, J17α,16α=8.5, 

J17α,16β=8.5, J17α,17β-OH=4.8, 17α-H), 4.47 (1H, d, J17β-OH,17α=4.8, 17β-OH), 4.94 (1H, 

ddd, CH=CH2), 5.00 (1H, m, CH=CH2), 5.56 (1H, s, 4-H), 5.72 (1H, m, CH=CH2). 13C 

NMR (150 MHz, DMSO-d6) δ: 11.0 (C-18), 17.4 (C-19), 20.4, 22.3, 29.6, 29.8, 33.6, 

35.2, 35.5, 35.7, 36.0, 37.8, 38.2, 42.4, 45.5, 46.4, 79.8 (C-17), 116.1 (C-22), 125.2 (C-

4), 137.4 (C-21), 169.2 (C-5), 197.5 (C-3). ESI: 327.31 ([M-H]+, 100%). 

 

 

 General procedure to obtain 7α-allylandrost-4-ene-3,17-dione (50), 7α-

allylandrost-4-en-17-one (53) and 7α-allylandrosta-1,4-diene-3,17-dione (56).   

 Jones reagent was added dropwise to solutions of 49, 52 or 54 in 

acetone/dioxane (60:10), at 0 ºC, with stirring until the orange colour of the reagent 

remains. The excess of oxidant agent was destroyed by addition of 2-propanol. The 

reaction mixture was added to water (150 mL), extracted with ethyl acetate (3 x 100 

mL) and the organic layer washed with 10% aqueous NaHCO3 (2 x 100 mL) and water 

(2 x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness. 

 

 7α-Allylandrost-4-ene-3,17-dione (50).  

 Jones reagent (2.6 mL); compound 49 (0.53 g, 1.61 mmol); acetone/dioxane 

(60:10) (70 mL); the residue obtained was insolubilized in diisopropylether giving the 

pure compound 50 (0.386 g, 73%) as a white crystalline compound. Mp(n-hexane/ethyl acetate) 

218-221 ºC [lit.,128 219-221 ºC]. IR (NaCl plates, CHCl3) υmax cm-1: 3076 (=CH), 1734 

(C=O), 1669 (C=C). 1H NMR (600 MHz, CDCl3) δ: 0.92 (3H, s, 18-H3), 1.22 (3H, s, 

19-H3), 5.01 (1H, ddd, CH=CH2), 5.05 (1H, ddd, CH=CH2), 5.67 (1H, m, CH=CH2), 
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5.73 (1H, s, 4-H). 13C NMR (150 MHz, CDCl3) δ: 13.5 (C-18), 17.9 (C-19), 20.5, 21.3, 

30.2, 31.1, 33.9, 35.4, 35.6, 35.9, 36.0, 38.1, 38.7, 46.7, 47.1, 47.5, 117.1 (C-22), 126.4 

(C-4), 136.4 (C-21), 168.5 (C-5), 198.9 (C-3), 220.0 (C-17). ESI: 325.13 ([M-H]+, 

100%). 

 

 7α-Allylandrost-4-en-17-one (53).  

 Jones reagent (1.1 mL); compound 52 (134.7 mg, 0.43 mmol); acetone/dioxane 

(60:10) (23 mL); the solid residue obtained (129.3 mg) was purified by silica gel 

column chromatography (n-hexane/ethyl acetate) affording the pure compound 53 

(105.6 mg, 79%) as a white crystalline solid. Mp(n-hexane/ethyl acetate) 139-142 ºC. IR (NaCl 

plates, CHCl3) υmax cm-1: 3082 (=CH), 1734 (C=O), 1640 (C=C). 1H NMR (600 MHz, 

CDCl3) δ: 0.89 (3H, s, 18-H3), 1.05 (3H, s, 19-H3), 2.44 (1H, ddd, J16β,16α=18.9, 

J16β,15β=8.5, J16β,15α=1.3, 16β-H), 4.99 (2H, m, CH=CH2), 5.28 (1H, dd, J4,3α=2.2, 

J4,3β=2.2, 4-H), 5.72 (1H, m, CH=CH2). 13C NMR (150 MHz, CDCl3) δ: 13.5 (C-18), 

19.2, 19.9 (C-19), 20.7, 21.4, 25.7, 29.5, 31.4, 35.2, 35.7, 35.7, 37.2, 37.9, 38.3, 46.9, 

47.3, 47.7, 115.8 (C-22), 122.2 (C-4), 138.0 (C-21), 140.5 (C-5), 221.1 (C=O). ESI: 

311.39 ([M-H]+, 100%). 

 

 7α-Allylandrosta-1,4-diene-3,17-dione (56).  

 Jones reagent (0.3 mL); compound 54 (25.1 mg, 0.077 mmol); acetone/dioxane 

(60:10) (10 mL); the solid residue obtained (27.5 mg) was purified by silica gel column 

chromatography (n-hexane/ethyl acetate) affording the pure compound 56 (22.1 mg, 

88%) as a white crystalline solid. Mp(n-hexane/ethyl acetate) 205-207 ºC. IR (NaCl plates, 

CHCl3) υmax cm-1: 3076 (=CH), 1737 (C=O), 1661 (C=C), 1617 (C=C). 1H NMR (600 

MHz, CDCl3) δ: 0.95 (3H, s, 18-H3), 1.26 (3H, s, 19-H3), 5.01 (1H, ddd, CH=CH2), 
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5.08 (1H, ddd, CH=CH2), 5.67 (1H, m, CH=CH2), 6.06 (1H, dd, J4,2=1.8, J4,6α=1.7, 4-

H), 6.24 (1H, dd, J2,1=10.1, J2,4=1.8, 2-H), 7.05 (1H, d, J1,2=10.1, 1-H). 13C NMR (150 

MHz, CDCl3) δ: 13.5 (C-18), 19.0 (C-19), 21.4, 21.7, 29.4, 30.9, 35.2, 35.3, 36.7, 37.7, 

43.4, 44.9, 46.3, 47.6, 117.2 (C-22), 126.5 (C-4), 127.6 (C-2), 136.1 (C-21), 154.9 (C-

1), 165.2 (C-5), 185.6 (C-3), 219.4 (C-17). ESI: 323.39 ([M-H]+, 100%). 

 

 7α-Allylandrost-4-en-17β-yl acetate (51).  

 Sodium borohydride (202.0 mg, 5.33 mmol) was added in small portions to a 

stirred and cooled mixture of trifluoracetic acid (1.24 mL), glacial acetic acid (1.24 mL) 

and acetonitrile (1.24 mL) followed by a solution of 48 (400.2 mg, 1.08 mmol) in 

anhydrous dichloromethane (20 mL). The temperature was raised up at room 

temperature and the reaction was stirred under nitrogen, until all the starting material 

had been consumed (1 h 30 min, TLC control). The reaction mixture was then 

neutralized with 10% aqueous NaHCO3, extracted with dichloromethane (4 x 100 mL) 

and the organic layer was washed with water (3 x 100 mL), dried over anhydrous 

MgSO4, filtered and concentrated to dryness giving a white solid residue (380.8 mg). 

This residue was purified by silica gel column chromatography (n-hexane/ethyl acetate) 

affording 293.8 mg of a fraction containing compound 51, which was further purified 

by crystallization from ethanol/water giving the pure 51 (26.9 mg) as clear and bright 

needle-like crystals. Mp(ethanol/water) 129-130 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 3076 

(=CH), 1728 (C=O), 1041 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.81 (3H, s, 18-H3), 

1.03 (3H, s, 19-H3), 2.04 (3H, s, CH3COO), 4.59 (1H, dd, J17α,16α=8.5, J17α,16β=8.5, 17α-

H), 4.96 (2H, m, CH=CH2), 5.25 (1H, dd, J4,3α=2.3, J4,3β=2.3, 4-H), 5.69 (1H, m, 

CH=CH2). 13C NMR (150 MHz, CDCl3) δ: 11.8 (C-18), 19.2, 19.9 (C-19), 20.9, 21.2, 

22.9, 25.8, 27.4, 29.5, 35.3, 36.2, 36.7, 37.1, 37.9, 38.5, 42.6, 46.1, 47.2, 82.8 (C-17), 
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115.9 (C-24), 121.9 (C-4), 138.4 (C-23), 140.9 (C-5), 171.2 (C=O). ESI: 355.49 ([M-

H]+, 100%). 

 

 7α-Allylandrost-4-en-17β-ol (52).  

 From 51: Compound 51 (223.2 mg, 0.63 mmol) was added to a mixture of 

dioxane/water (85:15) (18 mL) with 2% aqueous NaOH (3.6 mL), at room temperature, 

and the reaction mixture was stirred until total transformation of the starting material 

(48 h, TLC control) being after this time neutralized with a solution of 5% aqueous 

HCl. The dioxane was evaporated under vacuum leading to a white solid residue that 

was then dissolved with ethyl acetate (50 mL), diluted with water (100 mL) and 

extracted with ethyl acetate (3 x 100 mL). The organic layer was washed with water (3 

x 100 mL), dried over anhydrous MgSO4, filtered and concentrated to dryness giving a 

white solid residue (209.3 mg). A portion of this residue was separated by silica gel 

column chromatography (n-hexane/diethyl ether) affording compound 52 in mixture 

with some impurities.  

  

 A pure sample of 52 was obtained from 53 by the following procedure: 

  From 53: To a stirring solution of 53 (15.3 mg, 0.049 mmol) in ethanol (3.0 

mL), under nitrogen, at -10 ºC, sodium borohydride (0.6 mg, 0.016 mmol) was added. 

The mixture was stirred for 1 h and after two subsequent additions of sodium 

borohydride (0.6 mg, 0.016 mmol; 0.7 mg, 0.018 mmol), the reaction was stirred, at 

room temperature, overnight. The reaction mixture was then cooled at -10 ºC and 3 N 

aqueous HCl was added until pH 5 to 7. Ethanol was evaporated under vacuum and the 

oily residue obtained was poured in water (50 mL) and extracted with ethyl acetate (3 x 

50 mL). The organic layer was then washed with water (3 x 100 mL), dried over 
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anhydrous MgSO4, filtered and concentrated to dryness giving a solid residue (18.2 

mg). This residue was washed with chilled n-hexane leading to the pure compound 52 

(4.4 mg, 29%) as a white solid. Mp(ethyl acetate) 140-143 ºC. IR (NaCl plates, CHCl3) υmax 

cm-1: 3297 (OH), 3076 (=CH), 1640 (C=C), 1059 (C-O). 1H NMR (600 MHz, CDCl3) 

δ: 0.77 (3H, s, 18-H3), 1.04 (3H, s, 19-H3), 3.64 (1H, dd, J17α,16α=8.6, J17α,16β=8.6, 17α-

H), 4.96 (2H, m, CH=CH2), 5.25 (1H, dd, J4,3α=2.3, J4,3β=2.3, 4-H), 5.70 (1H, m, 

CH=CH2). 13C NMR (150 MHz, CDCl3) δ: 10.9 (C-18), 19.3, 19.9 (C-19), 21.1, 22.8, 

25.8, 29.5, 30.4, 35.3, 36.2, 36.6, 37.2, 37.9, 38.8, 42.9, 46.3, 47.3, 82.0 (C-17), 115.5 

(C-22), 121.8 (C-4), 138.5 (C-21), 141.1 (C-5). ESI: 313.49 ([M-H]+, 100%). 

 

 7α-Allyl-3-oxoandrosta-1,4-dien-17β-ol (54).  

 To a stirred solution of 49 (538.7 mg, 1.64 mmol) in toluene (55 mL), DDQ 

(645.0 mg, 2.84 mmol) and benzoic acid (215.0 mg, 1.76 mmol) were added. After 18 h 

at reflux, an additional amount of DDQ (250 mg, 1.10 mmol) and benzoic acid (150 

mg, 1.23 mmol) was added and the reaction proceeded for more 16 h. The reaction 

mixture was cooled at room temperature, filtered and the resulting filtrate was 

evaporated giving an oily residue, which was dissolved with dichloromethane and then 

mixed with silica gel. This mixture was filtered through basic alumina and washed with 

petroleum ether 40-60 ºC/ethyl acetate (8:2) (250 mL). Evaporation of the filtrate 

afforded a dark residue that was purified by silica gel column chromatography 

(toluene/diethyl ether) affording compound 54 (268 mg, 50%) as a pure solid. 

Mp(petroleum ether 40-60 ºC/toluene) 175-178 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 3378 (OH), 

3018 (=CH), 1652 (C=C), 1053 (C-O). 1H NMR (600 MHz, CDCl3) δ: 0.83 (3H, s, 18-

H3), 1.24 (3H, s, 19-H3), 3.65 (1H, dd, J17α,16α=8.6, J17α,16β=8.6, 17α-H), 5.00 (1H, ddd, 

CH=CH2), 5.05 (1H, ddd, CH=CH2), 5.64 (1H, m, CH=CH2), 6.06 (1H, dd, J4,2=1.8, 
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J4,6α=1.7, 4-H), 6.23 (1H, dd, J2,1=10.1, J2,4=1.8, 2-H), 7.06 (1H, d, J1,2=10.1, 1-H). 13C 

NMR (150 MHz, CDCl3) δ: 10.9, 19.1, 22.2, 22.9, 29.4, 30.2, 35.4, 36.1, 37.5, 38.2, 

43.1, 43.6, 45.2, 45.9, 81.4 (C-17), 116.9 (C-22), 126.3 (C-4), 127.5 (C-2), 136.7 (C-

21), 155.6 (C-1), 166.1 (C-5), 185.9 (C-3). ESI: 325.39 ([M-H]+, 100%). 

 

 7α-Allyl-3-oxoandrosta-1,4-dien-17β-yl acetate (55).  

 To a solution of 54 (50.0 mg, 0.15 mmol) in anhydrous pyridine (4.0 mL), acetic 

anhydride (0.2 mL, 1.79 mmol) was added and the reaction was stirred for 33 h 15 min 

at room temperature, until all the starting material had been consumed (TLC control). 

Dichloromethane (100 mL) was added and the organic layer was washed with 10% 

aqueous NaHCO3 (2 x 100 mL), 10% aqueous HCl (2 x 100 mL) and water (2 x 100 

mL), dried over anhydrous MgSO4, filtered and concentrated to dryness. The resulting 

residue was crystalized from ethyl acetate/n-hexane giving the pure compound 55 (29.6 

mg, 54%) as white needles. Mp(ethyl acetate/n-hexane) 156-159 ºC. IR (NaCl plates, CHCl3) 

υmax cm-1: 3076 (=CH), 1731 (C=O), 1661 (C=C), 1617 (C=C), 1042 (C-O). 1H NMR 

(600 MHz, CDCl3) δ: 0.87 (3H, s, 18-H3), 1.24 (3H, s, 19-H3), 2.04 (3H, s, CH3COO), 

4.59 (1H, dd, J17α,16α=8.5, J17α,16β=8.5, 17α-H), 5.01 (1H, ddd, CH=CH2), 5.05 (1H, ddd, 

CH=CH2), 5.64 (1H, m, CH=CH2), 6.04 (1H, dd, J4,2=1.6, J4,6α=1.5, 4-H), 6.23 (1H, dd, 

J2,1=10.1, J2,4=1.6, 2-H), 7.05 (1H, d, J1,2=10.1, 1-H). 13C NMR (150 MHz, CDCl3) δ: 

11.9 (C-18), 19.2 (C-19), 21.1, 22.1, 23.1, 27.3, 29.4, 35.4, 36.3, 37.5, 38.0, 42.7, 43.5, 

45.0, 45.7, 82.2 (C-17), 117.1 (C-24), 126.4 (C-4), 127.6 (C-2), 136.5 (C-23), 155.4 (C-

1), 165.9 (C-5), 171.0 (C=O), 185.8 (C-3). ESI: 367.49 ([M-H]+, 100%).  
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 INTRODUCTION 

 

 B.1. Prostate Cancer and Benign Prostate Hyperplasia (BPH): Some Facts 

 Androgens are responsible for many physiological functions in both males and 

females. Their action is mediated by specific intracellular hormone receptors expressed 

in androgen responsive cells,141 being essential for sex-determination and mature sexual 

development in men.142 Among the several organs responsible for androgen production, 

testes produce these hormones in the greatest amount.143 Testosterone (T), the major 

circulating androgen, is secreted by Leydig cells of the testes under the stimulation of 

pituitary-derived luteinizing hormone (LH).141 The effects of these hormones in male 

accessory sex organs are mediated primarily through the reduction of T to 

dihydrotestosterone (DHT).144 DHT is more potent than T in stimulating most of the 

androgen actions in the prostate, binding with greater affinity with androgen receptor.145 

 Despite their physiological role, androgens also play an important part in the 

genesis and progression of prostate cancer and benign prostate hyperplasia (BPH).146-

149 Besides these actions, an excessive accumulation of DHT may likewise cause male 

pattern baldness, acne, alopecia in men and hirsutism in women.150  

 Prostate cancer is typically a slow growth tumor that affects older men, being the 

average age at time of diagnosis of 70 years old. It is the most frequently diagnosed 

cancer and the leading cause of cancer death in the United States and United Kingdom 

(Figure 2.1).2 There has been a significant increase in the clinical detection of prostate 

cancer due to the progressive nature of the disease and to the increase in life expectancy 

of the male population.151 
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 BPH is a leading disorder of the elderly male population where there is an 

enlargement of the prostate gland due to an over-proliferation of the stromal and 

glandular elements of the prostate. The incidence of BPH is about 50% of males at the 

age of 50, 70% at the age of 70 and 90% of males by the age of 80, being the major 

responsible for men morbidity.145,153  

   

 

 B.2. Androgens and 5α-Reductase Enzyme 

 The conversion of T to DHT (Figure 2.2) is made by a microssomal steroid 5α-

reductase enzyme (3-oxo-steroid-4-ene dehydrogenase), which works in a two 

membrane enzyme system together with NADPH, at the level of prostatic stromal and 

basal cells.145,149,152  

  

 

 

 

important cancer in 1984 (29% of all cancers) is now in third
position (12% of male cancers), while prostate cancer now
comprises 29% of the total, having comprised only 11% of the
total in 1984. Stomach cancer, the fifth most common type of
cancer in 1984 no longer figures in the top 10 (it ranks 12th, with
o2% of the total), and melanoma (14th with just under 1% of male
cancer in 1984) is predicted to become the fourth most common
male cancer accounting for 4.6% of cases in 2030.

Comparison with Nordpred predictions

We also used the Nordpred package (with a power-5 link and
5-year step functions for age, period and cohort) to project
rates until 2023–2027. Comparison of 2052 age–sex–site–period-
specific projections (for all sites other than breast and prostate,
for ages 40þ years for all sites except for testis, and for ages
15–79 years for testis) were made (Table 2). The median of the
observed absolute differences increased from 9% for 2008–2012 to
14% for 2023–2027. The 95th percentile (i.e., the 488th largest of
the 513 comparisons in each 5-year calendar period) of the
distribution of disagreement was about four times greater than
the median (Table 2).

These results can be compared with those obtained by using the
data until 2002 in Nordpred to predict results for 2003–2008 and
comparing these with the observed data. Here the median absolute
disagreement was 7% and the 95th percentile 28%.

DISCUSSION

The observed data were annual incidence rates, for GB, by cancer
site, sex and 5-year age group from 1975 to 2007. The rates were
converted to numbers of cases for the United Kingdom by
multiplying by the ratio of the respective populations. Compared

with the actual incidence (number of recorded cases) in the United
Kingdom in 2007, the difference between observed and modelled
numbers of cases (using GB rates applied to the UK population)
was o1.5% for all sex/site combinations. In Table 1, we present the
projected changes in ASRs and in the numbers of cases of cancer
between 2007 and 2030. These can be used to split the change in
numbers between changes due to changing rates and changes due
to changing population. Thus, for instance, the 11% increase in
male stomach cancer cases is accompanied by a 33% fall in rates,
so that the effect of the population change is to increase numbers
by 66% (¼ [100þ 11]/[100#33]#1).

We have deliberately shown results on a linear rather than a
logarithmic scale because of the greater uncertainties in predicting
cancers in the young. For ovarian cancer, for instance, cancers in
young women are likely to be germ cell with very different risk
factors from epithelial cancer in older women; therefore, there is
no reason to suspect that cohort effects seen in those aged 15– 29
years will carry forward to ages 35– 49 years. Rates of melanoma,
ovarian cancer, endometrial cancer (corpus uterus) and testicular
cancer (not shown in Figure 2) are all non-negligible in those aged
25–49 years, and our model is seen to fit these observed data well.
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Figure 4 Pie charts of the most common cancers in women and men in 1984, 2007 and predicted in 2030. The areas of the pies are proportional to the
numbers of cases (scaled separately for men and women).

Table 2 Agreement between our (spline) model projections and those
of the Nordpred (step function) model

Period
Median percentage

absolute disagreement
95th percentile

absolute disagreement

2008–2012 9 35
2013–2017 10 40
2018–2022 10 37
2023–2027 14 66

UK cancer projections
M Mistry et al

1801

British Journal of Cancer (2011) 105(11), 1795 – 1803& 2011 Cancer Research UK
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Figure 2.1 - Pie charts of the most common cancers in men in 1984, 2007 and predicted for 2030, in the United 
Kingdom2 
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 In the proposed chemical mechanism for the above mentioned conversion 

(Figure 2.3),145,149,150,152 it is considered the formation of a binary complex between the 

enzyme and NADPH, followed by the formation of a ternary complex with the substrate 

T. A delocalized carbocation is formed due to the activation of the enone system by a 

strong interaction with an electrophilic residue (Enz+) present in the active site. Enolate 

of DHT is formed by the direct hydride ion transfer from NADPH to the α face of the 

delocalized carbocation leading to a selective reduction at C-5. This enolate, which is 

coordinated with the formed NADP+ on the α face, is then attacked by a proton on the 

β-face at C-4 giving the ternary complex Enz-NADP+-DHT. Binary NADP+-enzyme 

complex is formed after departure of DHT and finally the release of NADP+ leaves the 

enzyme free for further catalytic cycles.  

 

 

 

Figure 2.2 - Reduction of testosterone to dihydrotestosterone by 5α-reductase 

OH

O

OH

O HNADPH NADP+ 

5α-Reductase 
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Figure 2.3 - Mechanism for 5α-reduction of testosterone 
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 The crystal structure of 5α-reductase is not yet known due to the unstable nature 

of the enzyme not allowing its isolation and purification. Nevertheless, the modern 

molecular biology techniques allowed the identification of two different types of 5α-

reductase enzyme: type I and type II.145,152 They differ in several aspects, such as, size, 

molecular weight, localization, etc. The comparison of the properties of the two 

isoenzymes is summarized in Table 2.1.  

 Recently, a third type of 5α-reductase enzyme (type III) has been identified in 

hormone-refractory prostate cancer cells, and it is known that it also converts T to DHT, 

being active at pH 6.9. It is indeed a ubiquitous enzyme in mammals.145  

  

 

Table 2.1 – Properties of human type I and type II 5α-reductase145,152,154  

 

Properties Type I 5α-reductase Type II 5α-reductase 

Amino acids 259  245  

Molecular weight (Da) 29 462 27 000 

Optimal pH 6-8.5 5-5.5 

Biochemical properties Hydrophobic Hydrophobic 

In vitro inhibition by 

Finasteride 

 

IC50 = 410 nM 

 

IC50  = 9.4 nM 

In vitro inhibition by 

Dutasteride 

 

IC50 = 2.4 nM 

 

IC50 = 0.5 nM 

Location Peripheral skin, hair 

follicles 

Prostate, male external 

genitalia 

Selectivity to the inhibitors Inhibitors with 4-methyl-4-

aza functionalities are very 

potent 

4-Aza, 6-aza and charged 3-

substituents derivatives are 

very selective 
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B.3. 5α-Reductase Inhibitors  

 Based on the fact that the problems of the prostate are frequently associated to 

high DHT levels, the inhibition of 5α-reductase enzyme becomes a logical approach for 

their treatment. Hence, a large number of molecules have been synthesized as potential 

5α-reductase inhibitors over the past years. In addition, several compounds may act as 

androgen receptor antagonists by preventing the natural ligands of the androgen 

receptor, such as T and DHT, from binding to the receptor. Combination of these two 

therapeutical approaches provides effective androgen receptor blockage.145 

 5α-Reductase inhibitors (RIs) are classified as steroidal and nonsteroidal, based 

on their structure. 

  

 

 B.3.1. Steroidal 5α-Reductase Inhibitors  

 The first inhibitors synthesized were designed upon modifications of the natural 

substrate T. One of the main modifications was the substitution of one carbon atom of 

the A-, B-, C- and D-rings of the steroid framework by a nitrogen heteroatom leading to 

the discovery of potent inhibitors of human 5α-reductase, such as 4-azasteroids, 6-

azasteroids and 10-azasteroids. Therefore, there are several categories among these 

azasteroids, depending on the position of the nitrogen atom.145,152,155,156   

 Other derivatives, with a carboxylic acid group at the C-3 position were studied. 

They were designed to mimic the enzyme-bound enolate intermediate (Figure 2.3) by 

incorporating sp2-hybridized centers at C-3 and C-4. Nitro, sulphonic acid, phosphonic 

acid and phosphinic acid derivatives also proved to be efficient inhibitors of 5α-

reductase.145 
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 Other categories of steroidal inhibitors developed were: 4-substituted, with 

cyano and trifluoromethyl groups, 16-methyl substituted derivatives, 6-methylidene 

derivatives, as well as other oximes and tetrahydrooxazin-2-ones derivatives.145   

 Among the azasteroid derivatives developed, two of them, finasteride and 

dutasteride, are nowadays clinically used.  

 

 Finasteride (Proscar®) was the first 5α-reductase inhibitor to be approved by the 

US Food and Drug Administration (FDA) (Figure 2.4). This inhibitor blocks the 

reduction of T through the inhibition of type II 5α-reductase isoenzyme in a very potent 

fashion, when compared to the inhibition of the type I (9.4 nM versus 410 nM of IC50, 

respectively) (Table 1). At clinical dose, 5 mg/day, it causes a decrease of 65-80% of 

DHT levels in the plasma and studies have demonstrated an improvement in the 

symptoms of BPH.145 The decrease in the DHT production results in an average 

reduction in the prostate volume of 20-25% over one year.157 Finasteride and closed 

analogs are mechanism-based inactivators of type II 5α-reductase.145 It is usually used 

in combination with an α-blocker* since it is expected to have additive benefit in the 

treatment of the symptomatic BPH.157 Although, the Prostate Cancer Prevention Trial 

(PCPT) has demonstrated a reduced prevalence of prostate cancer with 

finasteride,151,158,159 it has not been approved by the FDA to be used for prevention of 

prostate cancer (www.drugs.com/pro/finasteride), since it leads to the development of 

high grade prostate cancers.160  

                                                
* α-Blockers – one of the classes of drugs used in BPH treatment; compounds such as doxazosin, 
alfuzosin and tansulosin are selective α1-andrenergic receptor blockers that have lower side effects; their 
effect occurs through reducing smooth muscle tone in the prostate.157 
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 Lately, in 2002, the FDA approved dutasteride (Avodart®) (Figure 2.5), which is 

currently available as a drug for the treatment of prostate diseases such as BPH and 

prostate cancer, and also for acne, male pattern baldness and hirsutism.161  

 

 

 

 

 

 

 

  

 

 Dutasteride has emerged as the most potent dual inhibitor being highly selective 

towards type I and II 5α-reductase isoenzymes (Table 2.1), not binding to the androgen 

receptor. It reduces DHT levels over 90% following one year of oral administration,162 

and in spite of being a time-dependent inhibitor, it is 60 more potent than finasteride 

with a surprisingly long half-life.141,145 Being a dual inhibitor, dutasteride is more 

beneficial than selective type II inhibitors since it does not allow the escape of DHT 

Figure 2.4 - Finasteride 

Figure 2.5 - Dutasteride 
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formed through the type I isoenzymes. This provides a greater efficacy and consistency 

in the suppression of DHT production. Dutasteride is usually well tolerated with 

exception to what is reported in some literature where it is described that it alters libido 

and erectile dysfunction.161  

 Although the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) 

trial has presented a decrease in the absolute prostate cancer risk, dutasteride has not 

been approved by the FDA to be used for prevention of prostate cancer, since it also 

leads to the development of high grade prostate cancer.151,159,163  

  

 

 B.3.2. Nonsteroidal 5α-Reductase Inhibitors 

 A number of classes of nonsteroidal RIs have emerged over the last years. Due 

to the potential interaction with other enzymes or receptors with hormonal action 

exhibited by steroidal compounds, the research towards the discovery of nonsteroidal 

inhibitors has gained some importance in the last years.145,163  

 Nonsteroidal RIs can be classified according to their structure. Their design is 

based on (aza)steroidal inhibitors, generally by removing one or more rings from the 

(aza)steroidal structure. These derivatives are generally thought to act by mimicking T, 

being competitive inhibitors of 5α-reductase. They include benzo[f]quinolinones, 

pyridones and quinolinones, benzo[c]quinolinones and benzo[c]quinolizinones which 

mimic 4-azasteroid, 6-azasteroid and 10-azasteroid inhibitors, respectively, and also 

indol derivatives.145,156 Among these latest derivatives (the indol group), compound 

FK-143 (Figure 2.6) was disclosed as a potent dual inhibitor145,164-166 being expected to 

be available for clinical use in the treatment of BPH. 
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Figure 2.6 - FK-143 
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 AIM OF THE WORK 

 

 Although finasteride and dutasteride are the only two 5α-reductase inhibitors 

clinically used nowadays, the research in this field has been very active over the last 40 

years and many molecules have been prepared, some of them with very promising 

results. Though the most recent research of these inhibitors has been focused on 

azasteroidal derivatives, in fact the first inhibitors designed were based on modifications 

of the natural substrate of the enzyme, T.  

 Since the diseases of the prostate have a huge incidence in the older men, and 

once the population is aging, it seems really important to continue searching for new 

5α-reductase inhibitors, with higher potency but with less side effects such as decrease 

in bone and muscle mass, and impotency. Therefore, we focused on the design, 

synthesis and on the establishment of new SAR of new RIs. With these molecules, we 

intend to investigate the biological effects of the most potent screened compounds. It is 

our hope to contribute for the development of new potent RIs.  
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2.1. STEROIDAL C-17 CARBOXY DERIVATIVES 

 

2.1.1. Design and synthesis 

 In the A-ring of T, the C-3 carbonyl group works presumably as an H-bond 

acceptor from a residue in the enzyme, which would donate a hydrogen to stabilize the 

intermediate enolate. In addition, it has been described the importance of a sp2-

hybridized center at C-3 and C-4 for the 5α-reductase inhibitory activity.145 Further, it 

was also observed that the enzyme tolerated a wide variety of side chains at the 17β-

position,167 and the presence at C-17β of lipophilic side chains, containing amide or 

ester groups, enhances potency by binding to a lipophilic pocket on the enzyme.145 

Besides this, previous studies have highlighted the importance of the 3-keto-Δ4-

androstan-17β-carboxamide steroids as RIs. 149,168,169  

 Based on this, we were interested in designing and synthesizing steroids keeping 

the 3-keto-Δ4 moiety in the A-ring, as in T, and having a carboxamide, carboxyester or 

carboxylic acid function at the C-17β position (Scheme 2.1).  

  The rationale particularly focuses on the synthesis of derivatives of finasteride 

(Figure 2.4) and dutasteride (Figure 2.5) obtained by combining in the same molecule, 

the A-ring of the substrate T with the C-17β carboxamide group of the referred RIs 

(Scheme 2.1).  

 

 Compound 1 (Scheme 2.1) was used as starting material in the synthesis of these 

derivatives and itself was previously described as a potent inhibitor of 5α-reductase, for 

the microsomal enzyme of human skin.145,152,170,171  
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Scheme 2.1 - Synthesis of 5α-reductase inhibitors from 4-androsten-3-one-17β-

carboxylic acid (1) 

 

 

 

 

 

 

 

 

 

 

 

Reagents and conditions: (i) CF3COOH, CH3COOH, CH3CN, NaBH4, anhydrous 
dichloromethane, rt, 3 h 30 min; (ii) dimethylformamide, triethylamine, tert-butylamine, or n-
propylamine, or n-hexylamine, or 2,5-bis-(trifluoromethyl)aniline, BOP, dichloromethane, rt; 
(iii) 1st: SOCl2, anhydrous tetrahydrofuran, anhydrous pyridine, rt, 40 min; 2nd: 2,5-bis-
(trifluoromethyl)aniline, anhydrous tetrahydrofuran, anhydrous pyridine, 66 ºC, 5 h. 
 

 

 The rationale behind the design of compound 2 was to study the effect of the 

absence of the C-3 carbonyl group in the inhibition of the enzyme, maintaining the 

carboxylic acid function at the C-17β. This compound was prepared by reaction 

conditions of Hanson et al.81 where it was used sodium borohydride in a mixture of 

trifluoroacetic acid, acetonitrile, acetic acid and dichloromethane. 

 Concerning the amides 3, 4, 5 and 6 (Scheme 2.1), they combine in the same 

molecule, the A-ring of the substrate T and different C-17β carboxamide groups, 
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namely the C-17β carboxamide group of finasteride (compound 3) and the C-17β 

carboxamide group of dutasteride (compound 6). The other amides, with different N-

alkyl chain lengths (4 and 5), were synthesized in order to evaluate the effect of the 

chain length in the enzyme inhibition. Amide derivatives 3 to 5 were prepared by 

reacting 1 with tert-butylamine, n-propylamine or n-hexylamine, in dimethylformamide 

(DMF) and dichloromethane, using triethylamine as catalyst and the coupling agent 

(benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP). 

The attempt to prepare amide 6 by this procedure, led to carboxyester 7. Amide 6 was 

then prepared by reaction of 1 with thionyl chloride followed by reaction of the 

resulting acyl chloride with 2,5-bis-(trifluoromethyl)aniline.  

 

 

2.1.2. Chemistry 

 The synthesis of compound 2 (Scheme 2.1), which is the C-3 deoxygenated 

derivative of 1, was performed by submitting 1 to a reduction with sodium borohydride 

in a mixture of trifluoroacetic acid, glacial acetic acid, and acetonitrile giving 2, in 71% 

yield.81  

 The amides 3, 4 and 5 (Scheme 2.1) were obtained in 69%, 54% and 35% yield, 

respectively, by reacting carboxylic acid 1 with tert-butylamine, n-propylamine or n-

hexylamine, in DMF and dichloromethane, using triethylamine as catalyst and the 

coupling agent BOP, which promotes the activation of the carboxylic acid 1 for further 

nucleophilic acyl substitution, through the mechanism presented in Scheme 2.2.172,173  

 Although amide 3 has already been prepared in 89%174 and in 95%175 using 

thionyl chloride followed by tert-butylamine, in this work we present a one-step 

reaction using milder conditions. 
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Scheme 2.2 - Mechanism for amide synthesis using BOP as activating agent 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 An attempt to prepare amide 6 from 1 (Scheme 2.1) using the above mentioned 

conditions and the amine 2,5-bis-(trifluoromethyl)aniline, afforded compound 7 in 73% 

yield. In this case, the activated intermediate ester 7 was unable to react with the amine 

2,5-bis-(trifluoromethyl)aniline to give 6, probably due to the weak nucleophilicity of 

the deactivated aromatic amine 2,5-bis-(trifluoromethyl)aniline. In order to overcome 

this limitation, amide 6 was obtained by a two-step reaction strategy.141 In the first step, 

the carboxylic acid 1 was activated to the respective acyl chloride by treatment with 

thionyl chloride, in anhydrous tetrahydrofuran and in the presence of anhydrous 

pyridine. This step allowed to transform the initial carboxylic acid into the acyl halide. 

In the second step, the acyl chloride was subjected to reaction with 2,5-bis-
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(trifluoromethyl)aniline in anhydrous tetrahydrofuran and in the presence of anhydrous 

pyridine providing compound 6, in 35% yield. 

 

 

2.1.3. Biochemistry and biology 

 The 5α-reductase inhibitory activity of each steroidal compound was evaluated 

in human prostatic microsomes by a DLLME-GC-MS method previously developed by 

our group, that identifies and quantifies T and DHT, using the internal standards T-d3 

and DHT-13C3.176 The ratio between T/T-d3 and DHT/DHT-13C3 allowed the 

quantification of T and DHT produced after 5α-reductase reaction estimating the anti-

5α-reductase activity of each compound.177  

 The percentage of 5α-reductase inhibition (%) of the synthesized RIs was made 

using the RI finasteride as reference compound (Table 2.2).178 For compounds 3, 4 and 

5, with percentage of 5α-reductase inhibition higher than 60%, the IC50 was also 

determined (Table 2.2).177   

 The effects of the most potent RIs 3, 4, 5 and finasteride were investigated in the 

viability of LNCaP cells, which is a human androgen-responsive prostate cancer cell 

line. It was observed that the tested compounds induced a significant decrease in cell 

viability, being compound 3 the most potent, even more than finasteride.177 

 

 

2.1.4. Structure-activity relationships discussion and conclusions 

 In this study, it was investigated the inhibitory activity of 5α-reductase of a set 

of synthesized steroids. It is known that one of the key structural requirements for 5α-

reductase inhibition is the presence of a 4-en-3-one system in the A-ring and a lipophilic 



Chapter II 
Steroidal 5α-Reductase Inhibitors as Anti-tumors and as Drugs for the Treatment of BPH 

 

 158 

17β-side chain in the D-ring of steroids.145 Furthermore, it has been found that the 

presence at C-17β position of lipophilic amides or esters enhances potency by binding 

to a lipophilic pocket on the enzyme.145 We have investigated these features by 

studying different C-17β chemical modifications (amide, ester or carboxylic acid 

functions) in the potential steroidal RIs. 

 

 

Table 2.2 – Percentage of 5α-reductase inhibition and IC50 values of tested compounds 

in human prostatic microsomes177 

 

 

 

 

 

 

 

 

 

 

 Based on the results obtained (Table 2.2), it is possible to infer that C-17β 

carboxylic acid analogs (1 and 2) (Scheme 2.1) of T are weak RIs, particularly the 3-

deoxo analog 2. In fact, several descriptions referred the importance of a sp2-hybridized 

center at C-3 and C-4 positions of steroids for the 5α-reductase inhibitory activity.145 

Therefore, the lack of that center at C-3 as in 2, results in a decrease in the activity. 

Concerning analog 1, it was already reported as a competitive RI, with 87.7 % 

Compounds 5α-Reductase Inhibition (%) ± SEM IC50 (µM) 

1 29.55 ± 3.09 - 

2 11.04 ± 3.42 - 

3 73.08 ± 3.05 0.37 

4 69.33 ± 1.03 0.46 

5 63.56 ± 1.08 0.61 

6 22.44 ± 2.03 - 

7 49.20 ± 2.51 - 

Finasteride 84.62 ± 1.21 0.096167 
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inhibition for the microsomal 5α-reductase enzyme of human skin.145,179 However, in 

our experimental conditions, using the prostate microsomal enzyme, analog 1 showed 

only 29.55 % of inhibition. 

 Among the amides synthesized and evaluated, the N-tert-butylcarboxamide 3 

(Scheme 2.1) showed the best inhibitory activity. In this case, we combined in the same 

molecule, the A-ring of the substrate T and the C-17β carboxamide group of finasteride 

(Figure 2.4), which resulted in a potent inhibitor. 

 Regarding the N-propylcarboxamide 4 and the N-hexylcarboxamide 5 (Scheme 

2.1) it is possible to infer that these steroids are also strong inhibitors (IC50 of 0.46 and 

0.61 µM, respectively) (Table 2.2). Further, the N-propylcarboxamide 4 is slightly more 

active than the N-hexylcarboxamide 5, however both of them are less active than N-tert-

butylcarboxamide 3, suggesting that a hindered N-alkyl group, as in 3, or a shorter N-

alkyl linear chain, as in 4, in the C-17β carboxamide function favors the 5α-reductase 

inhibitory activity. 

 Concerning compound 6, in spite of having in the C-17β position the same 

group as the potent dutasteride, the N-[2,5-bis(trifluoromethyl)phenyl]carboxamide, 

surprisingly it only exhibits minimal inhibitory activity (22.44 %). This result reveals 

that along with the C-17β carboxamide group, the steroidal A-ring type also determines 

the potency of inhibitors. Regarding the ester derivative 7, our results demonstrate that 

it is a moderate inhibitor (49.20 % inhibition). 

 In this study, it was also evaluated the effect of the most potent RIs, steroids 3, 

4, 5 and finasteride in LNCaP cells viability. This cell line is a human androgen-

responsive prostate cancer cell line, that is a good model to study hormonal therapies for 

this disease.180,181 This cell line responds positively to growth stimulation induced by 

androgens in vitro and in vivo.182,183  



Chapter II 
Steroidal 5α-Reductase Inhibitors as Anti-tumors and as Drugs for the Treatment of BPH 

 

 160 

 The results obtained with T-treated LNCaP cells with RIs 3, 4, 5 and finasteride 

indicate that compounds induced a significant decrease in cell viability, being steroid 3 

the most potent, even more than finasteride. 

 Further, our results suggested that these steroids induced the reduction in cell 

viability in a 5α-reductase-dependent manner, by inhibiting 5α-reductase and the 

conversion of T into DHT. 

   

 In summary, taking into account the studied compounds, it is possible to 

conclude that the C-17β lipophilic carboxamide chemical groups along with the 3-keto-

Δ4 moiety in the A-ring of the steroidal framework, seem to be favourable key features 

for achieving 5α-reductase inhibitory activity, being the steroid with the C-17 N-tert-

butlycarboxamide group (3), the best RI. Furthermore, steroids 3, 4 and 5 as well as 

finasteride induced a decrease in viability of stimulated LNCaP cells in a 5α-reductase 

dependent-manner, being the synthesized steroids 3, 4, and 5 even more effective than 

finasteride. This study will help in the future design of new steroidal RIs contributing to 

the discovery of new drugs with fewer side effects.  
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2.2. EXPERIMENTAL SECTION 

 

 Melting points (mps) and IR spectra were collected as mentioned before (section 

1.6.), except for compound 3 whose IR was recorded using the ATR (attenuated total 

reflectance) device. 1H, 13C NMR, ESI-MS and LC-MS mass spectra were recorded as 

mentioned in section 1.7. 

 Reactions were monitored by thin layer chromatography (TLC) in silica gel 60 

F254 aluminium sheets, as described in section 1.7.  

 4-Androsten-3-one-17β-carboxylic acid (1) was purchased from Fountain 

Limited (Malta). Reagents and solvents were used as obtained from suppliers without 

further purification, with exception to dichloromethane,138 and pyridine,139 which were 

dried through reflux and distillation from CaH2, being stored away from light in a 

brown bottle with type 4Å molecular sieves, under an atmosphere of dry N2. 

 Yields have not been optimized. 

 All compounds possess a purity superior to 98%. The purity was checked by 

HPLC with a C18-reversed phase column and water/acetonitrile 30:70 as solvent. The 

purity of individual compounds was determined from the peak areas in the 

chromatogram of the sample solution. 
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Scheme 2.1 - Synthesis of 5α-reductase inhibitors from 4-androsten-3-one-17β-

carboxylic acid (1) 

 

 4-Androstene-17β-carboxylic acid (2).  

 Sodium borohydride (590.3 mg, 15.6 mmol) was added in small portions to a 

cooled and stirred mixture of trifluoroacetic acid (3.6 mL), glacial acetic acid (3.6 mL) 

and acetonitrile (3.6 mL). After this, a solution of compound 1 (1.0 g, 3.16 mmol) in dry 

dichloromethane (53 mL) was added and the reaction proceeded at room temperature, 

under a stream of dry nitrogen, until all the starting material had been consumed (3 h 20 

min by TLC). The reaction mixture was then neutralized with 10% aqueous NaHCO3, 

extracted with chloroform (4 x 100 mL) and the organic layer washed with water (4 x 

100 mL), dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

Crystallization from ethyl acetate/hexane afforded the pure compound 2 (680.5 mg, 

71%) as white crystals. Mp(ethyl acetate/hexane) 205-208 ºC. IR (NaCl plates, CHCl3) υmax 

cm-1: 3399 (O-H carboxylic acid), 3020 (H-C=), 1701 (C=O carboxylic acid), 1676 

(C=C), 1216 (C-O carboxylic acid). 1H NMR (CDCl3, 600 MHz) δ: 0.75 (3H, s, 18-H3), 

1.02 (3H, s, 19-H3), 2.38 (1H, dd, J17α,16α=9.4, J17α,16β=9.4, 17α-H), 5.30 (1H, bs, 4-H), 

10.46 (1H, bs, COOH). 13C NMR (150 MHz, CDCl3) δ: 13.3 (C-18), 19.2 (C-19), 19.4, 

21.2, 23.4, 24.5, 25.7, 32.5, 33.2, 36.1, 37.1, 37.8, 38.2, 44.3, 54.4, 55.1, 55.9, 119.3 (C-

4), 144.7 (C-5), 179.9 (C20=O). ESI: 303.4 ([M+H]+, 100%). 
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 General method for obtaining N-tert-butyl-3-oxoandrost-4-ene-17β-

carboxamide (3), N-propyl-3-oxoandrost-4-ene-17β-carboxamide (4), N-hexyl-3-

oxoandrost-4-ene-17β-carboxamide (5) and 1H-benzo[d][1,2,3]triazol-1-yl 3-

oxoandrost-4-ene-17β-carboxylate (7). 

 Compound 1 was dissolved in dimethylformamide and triethylamine. The 

solution was cooled in an ice-water bath and the amine was added followed by a 

solution of BOP in dichloromethane. The reaction mixture was stirred at 0 ºC for 30 

min and then at room temperature for 1 h 20 min to 3 h. Dichloromethane was then 

removed under reduced pressure and the resulting solution diluted with water (25 mL) 

and extracted with ethyl acetate (2 x 25 mL). The organic layer was washed 

successively with 1 N aqueous HCl  (3 x 25 mL), water (25 mL), 1 M aqueous NaHCO3  

(3 x 25 mL) and water (2 x 25 mL), dried over anhydrous MgSO4, filtered and 

concentrated to dryness. The residue obtained was purified by silica gel column 

chromatography (petroleum ether 40-60 ºC/ethyl acetate) giving the pure compounds. 

 

 N-tert-Butyl-3-oxoandrost-4-ene-17β-carboxamide (3).  

 Compound 1 (200.0 mg, 0.632 mmol); dimethylformamide (1.3 mL); 

triethylamine (0.1 mL, 0.72 mmol); tert-butylamine (0.1 mL, 0.95 mmol); BOP (279.1 

mg, 0.63 mmol); dichloromethane (1.6 mL); reaction time: 3 h; yield (162.0 mg, 69%) 

as white solid. Mp(petroleum ether 40-60 ºC/ethyl acetate) 219-221 ºC [Lit.174 218-219 ºC from 

acetone]. IR (ATR) υmax cm-1: 3366 (N-H), 1661 (C=O amide and C=O ketone), 1615 

(C=C). 1H NMR (CDCl3, 600 MHz) δ: 0.72 (3H, s, 18-H3), 1.18 (3H, s, 19-H3), 1.35 

(9H, s, 3x -CH3), 5.08 (1H, s, -NH), 5.73 (1H, s, 4-H). 13C NMR (150 MHz, CDCl3) δ: 

13.1 (C-18), 17.4 (C-19), 21.0, 23.2, 24.4, 29.0 (3x CH3), 31.9, 32.8, 34.0, 35.6, 35.7, 
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38.5, 38.6, 43.5, 51.1, 53.8, 55.6, 57.5, 123.9 (C-4), 171.1 (C-5), 171.6 (C20=O), 199.5 

(C3=O). ESI: 372.6 ([M+H]+, 100%). 

 

 N-Propyl-3-oxoandrost-4-ene-17β-carboxamide (4).  

 Compound 1 (200.0 mg, 0.632 mmol); dimethylformamide (1.3 mL); 

triethylamine (0.1 mL, 0.72 mmol); n-propylamine (0.1 mL, 0.95 mmol); BOP (279.1 

mg, 0.63 mmol); dichloromethane (1.6 mL); reaction time: 1 h 20 min; yield (122.6 mg, 

54%). Mp(petroleum ether 40-60 ºC/ethyl acetate) 147-149 ºC. IR (NaCl plates, CHCl3) υmax cm-1: 

3368 (N-H), 1656 (C=O amide and C=O ketone), 1617 (C=C) cm-1. 1H NMR (CDCl3, 

600 MHz) δ: 0.72 (3H, s, 18-H3), 0.92 (3H, t, J=7.4Hz, -CH3), 1.18 (3H, s, 19-H3), 

2.40 (1H, dd, J17α,16α=14.6, J17α,16β=4.9, 17α-H), 3.12-3.33 (2H, m, -CH2-), 5.38 (1H, bs, 

-NH), 5.72 (1H, s, 4-H). 13C NMR (150 MHz, CDCl3) δ: 11.4 (C-18), 13.2 (-CH3), 17.3 

(C-19), 20.9, 23.1, 23.6, 24.4, 31.9, 32.8, 33.9, 35.6, 35.7, 38.6, 41.2, 43.6, 53.8, 55.5, 

57.0, 123.8 (C-4), 171.1 (C-5), 172.4 (C20=O), 199.5 (C3=O). ESI: 358.8 ([M+H]+, 

100%). 

 

 N-Hexyl-3-oxoandrost-4-ene-17β-carboxamide (5).  

 Compound 1 (177.8 mg, 0.562 mmol); dimethylformamide (1.3 mL); 

triethylamine (0.09 mL, 0.64 mmol); n-hexylamine (0.11 mL, 0.84 mmol); BOP (167.2 

mg, 0.38 mmol); dichloromethane (1.6 mL); reaction time 3 h; yield (78.4 mg, 35%). 

Mp(petroleum ether 40-60 ºC/ethyl acetate) 56-61 ºC. IR (NaCl plates, CHCl3) υmax cm-1:  3389 (N-

H), 1656 (C=O amide and C=O ketone), 1621 (C=C). 1H NMR (CDCl3, 600 MHz) δ: 

0.72 (3H, s, 18-H3), 0.87 (3H, t, J=7.0 Hz, -CH3), 1.18 (3H, s, 19-H3), 2.40 (1H, dd, 

J17α,16α=14.5, J17α,16β=5.0, 17α-H), 3.15-3.35 (2H, m, -CH2-), 5.34 (1H, bs, -NH), 5.72 

(1H, s, 4-H). 13C NMR (150 MHz, CDCl3) δ: 13.2 (C-18), 13.9 (-CH3), 17.4 (C-19), 
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20.9, 22.5, 23.6, 24.4, 26.6, 29.8, 31.4, 31.9, 32.8, 33.9, 35.6, 35.7, 38.3, 38.6, 39.5, 

43.6, 53.8, 55.5, 57.0, 123.9 (C-4), 171.1 (C-5), 172.3 (C20=O), 199.4 (C3=O). ESI: 

400.6 ([M+H]+, 100%). 

 

 1H-Benzo[d][1,2,3]triazol-1-yl 3-oxoandrost-4-ene-17β-carboxylate (7).  

 Compound 1 (200.1 mg, 0.632 mmol); dimethylformamide (1.3 mL); 

triethylamine (0.1 mL, 0.72 mmol); 2,5-bis(trifluoromethyl)aniline (0.15 mL, 0.95 

mmol); BOP (279.8 mg, 0.63 mmol); dichloromethane (3 mL); reaction time: 5 h, 

without completion. Crystallization from ethyl acetate gave the pure compound 7 (200.5 

mg, 73%) as white shiny needles. Mp(ethyl acetate) 210-213 ºC. IR (NaCl plates, CDCl3) 

υmax cm-1: 3311 (H-C= aromatic), 3021 (H-C=), 1809 (C=O ester), 1669 (C=C), 1616 

and 1447 (C=C arom), 1070 (C-O ester). 1H NMR (CDCl3, 600 MHz) δ: 0.98 (3H, s, 

18-H3), 1.22 (3H, s, 19-H3), 2.86 (1H, dd, J17α,16α=9.4 Hz, J17α,16β=9.4 Hz, 17α-H), 5.75 

(1H, s, 4-H), 7.41 (1H, m, J=7.4, J=0.9, J=0.9, 3’-H or 6’-H), 7.42 (1H, m, J=7.9, 

J=7.1, J=0.8, 4’-H or 5’-H), 7.54 (1H, m, J=7.9, J=7.1, J=0.8, 4’-H or 5’-H), 8.06 (1H, 

m, J=7.4, J=0.9, J=0.9, 3’-H or 6’-H). 13C NMR (150 MHz, CDCl3) δ: 13.8 (C-18), 

17.4 (C-19), 20.9, 24.0, 24.5, 31.8, 32.7, 33.9, 35.70, 35.74, 37.9, 38.6, 45.2, 52.7, 53.5, 

55.5, 108.2 (C-4), 120.5, 124.0, 124.7, 128.5, 128.6, 143.5, 170.1 (C-5), 170.4 (C20=O), 

199.3 (C3=O). ESI: 434.5 ([M+H]+, 100%). 

 

 17β-N-[2,5-bis(Trifluoromethyl)phenyl]3-oxoandrost-4-ene-17β- carboxamide (6).  

 A solution compound 1 (400.0 mg, 1.26 mmol) in anhydrous tetrahydrofuran 

(15 mL) and anhydrous pyridine (0.1 mL), under a stream of dry nitrogen, was set at 2 

ºC. To this solution, thionyl chloride (0.12 mL, 1,64 mmol) was added and the reaction 

mixture was stirred at 2 ºC for 20 min and then at room temperature for 40 min. The 
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reaction mixture was then filtered and the obtained residue washed with anhydrous 

toluene. The filtered was concentrated under vacuum giving a yellow oil which was 

diluted with anhydrous tetrahydrofuran (20 mL) and anhydrous pyridine (0.1 mL). To 

the resulting solution it was added 2,5-bis-(trifluoromethyl)aniline (0.22 mL, 1.39 

mmol) and the reaction mixture was refluxed for 5 h. After that, it was diluted with 

chloroform (300 mL), and the resulting organic layer was then washed with 1 N 

aqueous HCl  (4 x 100 mL), brine (4 x 100 mL) and water (100 mL), dried over 

anhydrous Na2SO4, filtered and concentrated. The residue obtained was purified by 

silica gel column chromatography (hexane/ethyl acetate) giving the pure compound 6 

(230.9 mg, 35%) as a white solid. Mp(hexane/ ethyl acetate) 204-207 ºC. IR (NaCl plates, 

CHCl3) υmax cm-1: 3315 (H-C= aromatic), 3017 (H-C=), 1706 (C=O ketone), 1664 (C=O 

amide), 1645 (C=C), 1616 and 1473 (C=C aromatic), 1137 (C-F), 1591 (N-H). 1H NMR 

(CDCl3, 600 MHz) δ: 0.82 (3H, s, 18-H3), 1.19 (3H, s, 19-H3), 5.74 (1H, s, 4-H), 7.44 

(1H, d, J4’,3’=8.2, 4’-H), 7.50 (1H, s, 6’-H), 7.72 (1H, d, J3’,4’=8.2, 3’-H), 8.78 (1H, s, -

NH). 13C NMR (150 MHz, CDCl3) δ: 13.2 (C-18), 17.4 (C-19), 20.9, 23.6, 24.3, 31.9, 

32.7, 33.9, 35.6, 35.7, 37.9, 38.6, 44.5, 53.6, 55.7, 58.4, 120.2 (C-4’), 120.4 (C-6’), 

124.0 (C-4), 126.7 (C-3’), 170.7 (C-5), 171.4 (C20=O), 199.4 (C3=O). ESI: 528.5 

([M+H]+, 100%). 
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 INTRODUCTION 

  

 Phytochemicals are powerful food factors, found in fruits, vegetables, and other 

whole foods, that promote profound effects on the human health. It has been found that 

some of these compounds interact with enzymes and nuclear receptors, which leads to 

the modulation of selective physiological mechanisms.184  

 For instance, genistein (Figure 3.1) in soybeans is known to be an agonist of 

ER,184 thus competing with estrogen for binding to the receptor. Chen et al. have also 

shown that isoflavones and flavones (Figure 3.1) are agonists of estrogen-related 

receptors (ERRs)185 and have also isolated and identified procyanidin B dimers (Figure 

3.1) that act as competitive inhibitors of aromatase, supressing the growth of aromatase-

mediated tumors in mice.186  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Structures of some phytochemicals 
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 Among phytochemicals, coumarin also called 1,2-benzopyrone (Figure 3.2) and 

its derivatives (coumarins) are widely distributed in nature and many of them exhibit 

useful and diverse biological activities.187-189  

 

 

 

 

 

 

 Coumarin derivatives have been found to have several potential therapeutic 

activities190 including photochemotherapy, anti-tumor and antiviral therapy,191,192 

stimulation of central nervous system, antibacterial,193-195 anti-inflamatory and anti-

coagulant activities.196,197 

 The pattern of substitutions on the coumarin basic chemical structure is believed 

to influence both the pharmacological and biochemical properties of coumarins, 

determining therapeutic applications and toxicity profiles.190,198 For example, coumarin 

and its active metabolite, 7-hydroxycoumarin (umbelliferone) (Figure 3.3), have 

demonstrated growth-inhibitory activity in human breast cancer cell lines such as MCF-

7 and prostate cancer cell lines such as LNCaP.199,200 

 

 

 

 

 

 

O OHO

Figure 3.3 - Structure of 7-hydroxycoumarin 

Figure 3.2 - Structure of coumarin 
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 Among the diverse biological activities of coumarins, the most intriguing one is 

the notable effect of some derivatives against breast cancer.201 By this reason, some 

coumarin derivatives have been evaluated in the last years for breast cancer 

therapy.202,203 Chen et al.184 found 4-benzyl-3-(4’-chlorophenyl)-7-methoxycoumarin 

(Figure 3.4) to be a potent competitive AI (IC50=0.08 µM), suppressing aromatase 

activity and the proliferation of ER-positive MCF-7 breast cancer cells.204  

 The molecular superimposition of the chemical structure of this coumarin 

derivative with the chemical structure of the substrate of aromatase, androstenedione 

(Figure 3.4), allowed establishing the following similarities:184 

- the coumarin rings mimic the A- and B-rings of androstenedione; 

- the 3-(4’-chlorophenyl) group of the coumarin mimics the D-ring and aligns 

near the steroidal C-17 keto oxygen;  

- the 4-benzyl group of the coumarin aligns very closely to the C-19 methyl 

group of the steroidal substrate; 

- the coumarin 7-methoxyl group also aligns very closely with the C-3 keto 

oxygen of the steroidal substrate. 

 

 

 

 

 

 

 

 

 

Figure 3.4 - Alignment of androstenedione with 4-benzyl-3-(4’-chlorophenyl)-7-methoxycoumarin 
(adopted from Chen et al. 184) 

Androstenedione 4-Benzyl-3-(4’-chlorophenyl)-7-
methoxycoumarin 

aromatase. We cannot yet adequately explain these results. On
the opposite end of the molecule, the 3-(4!-chlorophenyl) group
aligns near the C-17 keto oxygen. Both of these groups are
electron-withdrawing groups, suggesting that a compound with
an electron-pulling group in this vicinity will be favored. This
may explain why 4-benzyl-7-methoxy-3-phenylcoumarin
(which is missing an electron-withdrawing group at this posi-
tion) shows weaker activity. These FlexS alignment results,
together with our structure-activity results, strongly suggest
that these three functional groups are crucial for the inhibition
of aromatase by coumarin derivatives.

Interaction of Coumarins with Other Enzymes and Nuclear
Receptors—To assess the potential usage of 4-benzyl-3-(4!-chlo-
rophenyl)-7-methoxycoumarin (the most potent coumarin iden-
tified in this study) as an aromatase inhibitor, we need to rule
out that this compound is cytotoxic. MCF-7aro cells were cul-
tured for 3 days in the presence of up to 40 !M 4-benzyl-3-(4!-
chlorophenyl)-7-methoxycoumarin, letrozole, or anastrozole
but in the absence of the androgen substrate. The coumarin did
not produce any noticeable cytotoxicity (i.e. suppression of cell
proliferation), and this observation was consistent with letro-
zole and anastrozole, which have been Food and Drug Admin-
istration-approved and are currently in use for the treatment of
advanced breast cancer. As expected, aromatase inhibitors sup-
pressed breast tumor growth by inhibiting estrogen biosynthe-
sis and should not act as cytotoxic agents that kill cells in a
non-selective manner.

Furthermore, the selectivity of this coumarin inhibitor was
investigated. We checked the ability of this compound to inhibit
other enzymes and hormone receptors, including steroid 5"-
reductase (which also utilizes androgen as a substrate), andro-
gen receptor, ER", ER#, ERR", ERR#, and ERR$. Both type 1
and 2 steroid 5"-reductase isozymes were inhibited only 11%
with 20 !M of 4-benzyl-3-(4!-chlorophenyl)-7-methoxycouma-
rin.2 Furthermore, through receptor transfection assays, this
coumarin was found not to be an agonist of ER and ERR
isoforms (Fig. 5). It was also found not to interfere with the
interaction of 17#-estradiol (E2) with ERs (data not shown),
indicating that this compound is not an antagonist of ERs.
Although estrogen-related receptors (ERR", ERR#, and ERR$)
share a high amino acid sequence homology with ERs, estro-
gens are not ligands of ERRs. These receptors have been dem-
onstrated to bind as a monomer, with a high affinity binding
site containing the sequence, 5!-TCAAGGTCA-3!, that is also
recognized by another orphan receptor, steroidogenic factor 1.

2 J. Ye and S. Chen, unpublished results.

FIG. 5. Interaction of 4-benzyl-3-(4!-chlorophenyl)-7-methoxy-
coumarin with ER and ERR isoforms. Top panel, co-transfection
experiments with ER binding site containing luciferase reporter
(pGL3(ERE)3_Luc, 0.25 !g) and the expression plasmid for ER" (pSG5-
hER", 100 ng) or the expression plasmid for ER# (pSG5-hER#, 100 ng)
were performed in HeLa cells. After incubation for 24 h in the presence
of 100 nM E2 or 20 !M coumarin, cells were harvested, and the luciferase
activity in the cell lysates was measured. The relative luciferase activ-
ities were calculated by taking that of the vehicle (DMSO) control as “1”
and expressed as the mean " S.D. of three independent transfection
experiments. Bottom panel, co-transfection experiments with the ste-
roidogenic factor 1-binding site containing luciferase reporter ((steroi-
dogenic factor 1)3_SV40_Luc, 0.25 !g) and the expression plasmids for
ERRs (pSG5-ERR", pSG5-ERR#, or pSG5-ERR$, 0.5 !g) were per-
formed in HeLa cells. After 24 h in the presence of 20 !M coumarin, cells
were harvested, and the luciferase activity in the cell lysate was meas-
ured. The relative luciferase activities were calculated by taking that of
the samples without ERR transfection as “1” and expressed as the
mean " S.D. of three independent transfection experiments.

FIG. 4. Alignment of androstenedi-
one with 4-benzyl-3-(4!-chlorophe-
nyl)-7-methoxycoumarin. A, FlexS
alignment of androstenedione with 4-ben-
zyl-3-(4!-chlorophenyl)-7-methoxycouma-
rin. B, chemical structures of the two
compounds.
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 The described alignment strongly suggests that the three functional groups – 3-

(4’-chlorophenyl), 4-benzyl and 7-methoxyl – share the same enzymatic interactions 

with the mentioned groups within androstenedione being superimposable with them. By 

these reasons, the referred functional groups are believed to be responsible for the 

inhibition of aromatase by the mentioned coumarin derivatives. Also, a favourable 

interaction at the 7-position of the coumarin ring is due to the formation of a hydrogen 

bond by the 7-oxygen atom.204  
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 AIM OF THE WORK‡ 

 

  The main goal of this work was to synthesize a set of coumarin compounds in 

order to be further biologically evaluated against aromatase. For this aim, we used the 

4-benzyl-3-(4’-chlorophenyl)-7-methoxycoumarin (Figure 3.4) as a hit compound since 

it has formerly proved to be a potent competitive aromatase inhibitor. Subsequently we 

modified the chemical groups that are believed to be important for the inhibitory 

activity against the enzyme aromatase. With this rationale we intended to explore the 

interactions that aromatase establishes with these groups, in order to understand the 

SAR of this kind of compounds, which will allow the future design and synthesis of 

valuable AIs. It is important to mention that this is a very recent ongoing work and that 

the biological assays are just starting. In this way, here we present our first approaches 

to the design and synthesis of coumarin compounds as potential aromatase inhibitors. 

 

  

  

                                                
‡ This work was developed in the Department of Organic Chemistry of the Faculty of Pharmacy of the 
University of Santiago de Compostela, Spain. 
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3.1 3-THIOPHENE COUMARIN DERIVATIVES 

 

3.1.1. Design and synthesis 

 Although there have been elucidated some features in the coumarin framework 

that enhance the inhibitory activity towards aromatase, as mentioned above, in our work 

we have also been interested in exploring the following modifications: 

i. To substitute the 3-(4’-chlorophenyl) group of the hit coumarin 4-

benzyl-3-(4’-chlorophenyl)-7-methoxycoumarin (Figure 3.4) by a smaller aromatic ring 

with an electronegative hetero atom, as in thiophene ring in order to explore: a) the 

different positioning of the sulphur atom in the thiophene ring, and b) the effect of an 

additional electronegative atom in that ring, such as a bromine atom. 

ii. To remove the 4-benzyl group in order to study how it would affect the 

interaction with the enzyme aromatase. 

iii. To evaluate the influence of different functional groups such as (methyl, 

methoxyl, acetyl and hydroxyl) between C-5 and C-8 positions.  

 

 There are several methods for preparing coumarin derivatives. These include, 

just to mention a few, the classic Pechmann, Claisen, Perkin and Wittig reactions.204-206 

 In the present work, it was followed the Perkin method, which is indeed the 

most versatile process and the one that can use a higher number of starting materials at 

lower cost. The Perkin reaction involves the condensation of a carboxylic acid 

anhydride with an aldehyde in the presence of a weak base to give unsaturated 

carboxylic acids (Scheme 3.1).207,208 The first example of this reaction was described 

by Perkin in 1868 and curiously it involved the synthesis of a coumarin compound by 

heating the sodium salt of salicylaldehyde with acetic anhydride.207,209 The Perkin 
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approach is a very important method for the synthesis of substituted coumarins and the 

reaction presumably proceeds through cinnamic acids as intermediates.207  

 

Scheme 3.1 - General Perkin reaction 

 

 

  

  

 

3.1.2. Chemistry 

 Coumarin derivatives 1-11 were efficiently synthesized according to the 

protocol outlined in Scheme 3.2. This protocol consists in a direct synthetic route 

involving the classical Perkin procedure followed by an intramolecular esterification 

reaction forming the cyclic ester, in this case, the desired coumarin.210-212  

 

Scheme 3.2 - Synthesis of coumarin derivatives using Perkin conditions 

 

 

 

 

 

 

 
 
Reagents and Conditions: (i) DCC, DMSO, 110 ºC. 
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 The reactions were accomplished by condensation of the appropriate substituted 

salicylaldehydes with the adequate substituted α-aryl acetic acids, using N,N’-

dicyclohexylcarbodiimide (DCC), as dehydrating agent. This is a very versatile reaction 

affording different families of substituted coumarins. The mechanism for the formation 

of the desired coumarins is depicted bellow (Scheme 3.3). 

 

 

Scheme 3.3 – Proposed mechanism for the Perkin reaction using DCC 
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 The referred mechanism involves DCC to promote the condensation between 

two molecules of the α-aryl acetic acid (A) in order to form the anhydride (B). This 

anhydride will then react with salicylaldehyde (C) leading afterwards to the cyclic 

intermediate (D), which will then open and react with another molecule of the 

anhydride (B). The reaction proceeds with the formation of derivative (G) through 

species (E) and (F), which will then cyclize affording the desired coumarin (H). 

 

 The acetoxylated coumarin derivatives (12-16, 22-26, 32-36) were synthesized 

by the Perkin-Oglialoro reaction using the convenient α-arylacetic acids and 

salicylaldehyde, in acetic anhydride and potassium acetate (Scheme 3.4).213,214 The 

corresponding hydroxylated derivatives (17-21, 27-31, 37-41) were obtained by 

hydrolysis of the previously obtained esters in the presence of aqueous HCl solution and 

methanol (Scheme 3.4).213,214 

 

 The Perkin-Oglialoro reaction is indeed the most important modification of the 

Perkin reaction, where it occurs the condensation of aromatic aldehydes with α-

arylacetic acids in acetic anhydride and in the presence of a weak base to obtain α-

arylcinnamic acids, being this adaptation an improvement in the classical synthesis of 

coumarins.206,208 
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Scheme 3.4 - Synthesis of coumarin derivatives using Perkin-Oglialoro conditions 

 

 

 

 

 

 

 

 

 

 

 

Reagents and Conditions: (i) CH3COOK, Ac2O, reflux; (ii) HCl 2 N, CH3OH, reflux. 
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3.2. EXPERIMENTAL SECTION 

 

 The 1H and 13C NMR spectra were recorded at 300 and 75.5 MHz, respectively, 

on a Bruker AXM spectrometer. Chemical shifts were recorded in δ values in parts per 

million (ppm) downfield from tetramethylsilane as an internal standard. All J-values are 

given in Hz.  

 Mass spectra were obtained using a Hewlett-Packard 5988A spectrometer.  

 Reactions were monitored by thin layer chromatography (TLC) in silica gel 60 

F254 aluminium sheets. The chromatographic separation of products was made using 

silica gel 60 (230-00 mesh) flash column chromatography. The TLC plates were 

revealed using ultra-violet lamp (254 nm).  

 Yields have not been optimized. 
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Scheme 3.2 - Synthesis of coumarin derivatives using Perkin conditions 

 

 General procedure for the preparation of 3-thiophenylcoumarins (1-11).  

 A solution of 2-hydroxybenzaldehyde/2-hydroxy-5-methylbenzaldehyde/2-

hydroxy-5-methoxybenzaldehyde and the corresponding thiophene acetic acid, 3-

thiophene acetic acid/2-thiophene acetic acid/4-bromo-2-thiophene acetic acid, in 

dimethyl sulfoxide was prepared. DCC was added and the mixture was heated at 110 ºC 

for the adequate period of time, until total transformation of the starting material.  Ice 

and acetic acid were added to the reaction mixture. After keeping it at room temperature 

for 2 hours, the mixture was extracted with diethyl ether (3 x 50 mL). The organic layer 

was extracted with 5% aqueous NaHCO3 (3 x 50 mL) and then water (3 x 50 mL), dried 

over anhydrous Na2SO4, filtered and concentrated to dryness. The residue was purified 

by flash column chromatography (hexane/ethyl acetate).  

 

 3-(3-Thiophenyl)coumarin (1).  

 2-Hydroxybenzaldehyde (506.6 mg; 4.09 mmol); 3-thiophene acetic acid (728.9 

mg; 5.13 mmol); DCC (1.31 g; 6.35 mmol); DMSO (4 mL). Yield 44 %. 1H NMR (250 

MHz, CDCl3) δ: 7.26-7.39 (m, 3H, H-5’, H-8’), 7.47-7.55 (m, 3H, H-2’, H-4’, H-7’), 

7.92 (s, 1H, H-4), 8.18 (m, 1H, H-5). 13C NMR (75.5 MHz, CDCl3) δ: 116.4, 119.4, 

122.7, 122.9, 124.5, 125.7, 126.0, 126.2, 127.7, 131.1, 134.4, 137.2, 152.6. MS: 228.9 

([M+H]+, 28 %). 

 

 6-Methoxy-3-(3-thiophenyl)coumarin (2).  

 2-Hydroxy-5-methoxybenzaldehyde (500.8 mg; 3.29 mmol); 3-thiophene acetic 

acid (728.9 mg; 4.11 mmol); DCC (1.06 g; 5.14 mmol); DMSO (5 mL). Yield 41 %. 1H 
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NMR (250 MHz, CDCl3) δ:  3.86 (s, 3H, -OCH3), 6.97 (d, 1H, J5,7=2.9, H-5), 7.09 (dd, 

1H, J7,8=9.0, J7,5=2.9, H-7), 7.29 (d, 1H, J8,7=9.0, H-8), 7.39 (dd, 1H, J4’,5’=5.1, 

J4’,2’=3.0, H-4’), 7.52 (dd, 1H, J5’,4’=5.1, J5’,2’=1.3, H-5’), 7.89 (s, 1H, H-4), 8.20 (dd, 

1H, J2’,5’=3.0, J2’,4’=1.3, H-2’). 13C NMR (75.5 MHz, CDCl3) δ: 55.7, 109.5, 110.5, 

117.3, 118.9, 119.7, 121.5, 125.6, 126.0, 126.1, 134.3, 135.4, 136.9, 156.1. MS: 258.8 

([M+H]+, 33 %). 

 

 6-Bromo-3-(3-thiophenyl)coumarin (3).  

 2-Hydroxy-5-bromobenzaldehyde (500.2 mg; 2.49 mmol); 3-thiophene acetic 

acid (442.7 mg; 3.11 mmol); DCC (801.9 mg; 3.89 mmol); DMSO (4 mL). Yield 58 %. 

1H NMR (250 MHz, CDCl3) δ:  7.24 (d, 1H, J8,7=9.7, H-8), 7.41 (m, 1H, H-4’), 7.50 (d, 

1H, J5’,4’=5.1, H-5’), 7.59 (m, 1H, H-7), 7.68 (bs, 1H, H-2’), 7.84 (s, 1H, H-4), 8.21 (m, 

1H, H-5). 13C NMR (75.5 MHz, CDCl3) δ: 116.3, 118.3, 121.5, 122.6, 126.4, 126.7, 

126.9, 130.4, 133.9, 134.3, 137.0, 151.5, 158.9. MS: 307.8 ([M+H]+, 100 %). 

 

 3-(2-Thiophenyl)coumarin (4).  

 2-Hydroxybenzaldehyde (504.3 mg; 4.13 mmol); 2-thiophene acetic acid (728.3 

mg; 5.12 mmol); DCC (1.33 mg; 6.44 mmol); DMSO (4 mL). Yield 44 %.  1H NMR 

(250 MHz, CDCl3) δ:  7.13 (m, 1H, H-4’), 7.33 (m, 2H, H6, H8), 7.42 (dt, 1H, H-5’), 

7.52 (m, 2H, H-5, H-7), 7.80 (dt, 1H, H-3’), 7.99 (s, 1H, H-4). 13C NMR (75.5 MHz, 

CDCl3) δ: 110.2, 116.3, 119.3, 124.6, 126.9, 127.4, 127.6, 129.3, 131.1, 132.6, 135.4, 

152.6, 163.8. MS: 229.0 ([M+H]+, 26%). 
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 6-Methyl-3-(2-Thiophenyl)coumarin (5).  

 2-Hydroxy-5-methylbenzaldehyde (500.9 mg; 3.67 mmol); 2-thiophene acetic 

acid (651.9 mg; 4.59 mmol); DCC (1.18 g; 5.73 mmol); DMSO (4 mL). Yield 53 %. 1H 

NMR (250 MHz, CDCl3) δ:  2.42 (s, 3H, -CH3), 7.12 (dd, 1H, J4’,5’=5.1, J4’,3’=3.8, H-

4’), 7.29 (m, 3H, H-5, H-7, H-8), 7.42 (dd, 1H, J5’,4’=5.1, J5’,3’=0.9, H-5’), 7.78 (dd, 1H, 

J3’,4’=3.8, J3’,5’=0.9, H-3’), 7.95 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 20.7, 

116.0, 119.1, 121.7, 124.6, 126.8, 127.4, 132.2, 134.1, 135.5, 150.7, 159.6. MS: 243.0 

([M+H]+, 31 %). 

 

 6-Methoxy-3-(2-thiophenyl)coumarin (6). 

  2-Hydroxy-5-methoxybenzaldehyde (500.6 mg; 3.29 mmol); 2-thiophene acetic 

acid (585.3 mg; 4.12 mmol); DCC (1.06 g; 5.14 mmol); DMSO (5 mL). Yield 47 %. 1H 

NMR (250 MHz, CDCl3) δ:  3.86 (s, 3H, -OCH3), 6.97 (d, 1H, J5,7=2.9, H-5), 7.09 (dd, 

1H, J7,8=9.1, J7,5=2.9, H-7), 7.13 (dd, 1H, J4’,5’=5.2, J4’,3’=3.9, H-4’), 7.28 (d, 1H, 

J8,7=9.0, H-8), 7.43 (dd, 1H, J5’,4’=5.2, J5’,3’=0.7, H-5’), 7.80 (dd, 1H, J3’,4’=3.9, 

J3’,5’=0.9, H-3’), 7.96 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 55.7, 100.0, 106.5, 

109.1, 111.7, 117.3, 118.3, 119.0, 126.9, 127.4, 127.7, 135.2, 142.8, 156.1. MS: 258.8 

([M+H]+, 27 %). 

 

 6-Bromo-3-(2-thiophenyl)coumarin (7).  

 2-Hydroxy-5-bromobenzaldehyde (502.7 mg; 2.50 mmol); 2-thiophene acetic 

acid (443.8 mg; 3.12 mmol); DCC (801.3 mg; 3.89 mmol); DMSO (4 mL). Yield 51 %. 

1H NMR (250 MHz, CDCl3) δ: 7.20 (m, 1H, H-4’), 7.42 (d, 1H, J8,7=8.8, H-8), 7.71 (m, 

2H, H-7, H-5’), 7.84 (d, 1H, J3’,4’=3.5, H-3’), 8.00 (d, 1H, J5,7=2.2, H-5), 8.49 (s, 1H, H-
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4). 13C NMR (75.5 MHz, CDCl3) δ: 95.5, 116.5, 118.3, 119.2, 121.4, 127.2, 127.6, 

129.5, 130.4, 133.8, 134.8, 147.9, 151.3. MS: 307.8 ([M+H]+, 100 %). 

 

 3-(4-Bromo-2-thiophenyl)coumarin (8). 

  2-Hydroxybenzaldehyde (250.4 mg; 2.05 mmol); 4-bromo-2-thiophene acetic 

acid (568.4 mg; 2.57 mmol); DCC (658.5 mg; 3.19 mmol); DMSO (5 mL). Yield 38 %.  

1H NMR (250 MHz, CDCl3) δ: 7.33 (d, 1H, J5’,3’=1.4, H-5’), 7.38 (dd, 2H, J=8.0, J=1.6, 

H-5, H-8), 7.54 (t, 1H, J=7.6, H-6), 7.55 (t, 1H, J=7.4, H-7), 7.68 (d, 1H, J3’,5’=1.4, H-

3’), 8.01 (s, 1H, H-4). 13C NMR (75.5 MHz, DMSO) δ: 110.7, 115.9, 116.4, 119.2, 

124.5, 126.6, 127.1, 130.8, 138.5, 139.7, 156.9, 157.8, 168.9. MS: 307.8 ([M+H]+, 100 

%). 

 

 6-Methyl-3-(4-bromo-2-thiophenyl)coumarin (9).  

 2-Hydroxy-5-methylbenzaldehyde (252.4 mg; 1.85 mmol); 4-bromo-2-

thiophene acetic acid (508.2 mg; 2.29 mmol); DCC (595.9 mg; 2.89 mmol); DMSO (5 

mL). Yield 34 %. 1H NMR (250 MHz, CDCl3) δ: 2.42 (s, 3H, -CH3), 7.26 (m, 3H, H-5, 

H-7, H-8), 7.31 (m, 1H, H-5’), 7.66 (d, 1H, J=1.4, H-3’), 7.95 (s, 1H, H-4). 13C NMR 

(75.5 MHz, CDCl3) δ: 20.6, 100.0, 108.4, 116.2, 121.8, 124.9, 127.6, 128.9, 132.8, 

134.5, 134.6, 135.9, 153.7, 155.4. MS: 321.7 ([M+H]+, 100 %). 

 

 6-Methoxy-3-(4-bromo-2-thiophenyl)coumarin (10).  

 2-Hydroxy-5-methoxybenzaldehyde (250.5 mg; 1.65 mmol); 4-bromo-2-

thiophene acetic acid (457.1 mg; 2.07 mmol); DCC (532.5 mg; 2.58 mmol); DMSO (5 

mL). Yield 36 %. 1H NMR (250 MHz, CDCl3) δ: 3.89 (s, 3H, -OCH3), 6.98 (d, 1H, 

J5,7=2.9, H-5), 7.12 (dd, 1H, J7,8=9.1 , J7,5=2.9, H-7), 7.27 (d, 1H, J8,7=6.0, H-8), 7.32 
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(d, 1H, J5’,3’=1.5, H-5’), 7.68 (d, 1H, J3’,5’=1.4, H-3’), 7.97 (s, 1H, H-4). MS: 338.0 

([M+H]+, 100 %). 

 

 6-Bromo-3-(4-bromo-2-thiophenyl)coumarin (11).  

 2-Hydroxy-5-bromobenzaldehyde (251.8 mg; 1.25 mmol); 4-bromo-2-thiophene 

acetic acid (344.4 mg; 1.56 mmol); DCC (401.1 mg; 1.94 mmol); DMSO (5 mL). Yield 

59 %. 1H NMR (250 MHz, DMSO) δ: 7.45 (d, 1H, J8,7=8.9, H-8), 7.79 (dd, 1H, 

J7,8=8.7, J7,5=2.3, H-7), 7.84 (bs, 2H, H-3’, H-5’), 7.96 (d, 1H, J5,8=2.4, H-5), 8.63 (s, 

1H, H-4). 13C NMR (75.5 MHz, DMSO) δ: 99.8, 100.8, 102.9, 115.1, 125.9, 134.4, 

141.8, 147.5, 160.5, 164.2, 171.5, 173.4, 175.4. MS: 387.1 ([M+H]+, 23 %). 
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Scheme 3.4 - Synthesis of coumarin derivatives using Perkin-Oglialoro conditions 

 

 General procedure for the preparation of 3-thiophenylcoumarins (12-16, 22-

26 and 32-36).  

 The solution containing CH3COOK, the appropriate thiophene acetic acid, and 

hydroxylated benzaldehyde in Ac2O was refluxed (138 °C) with stirring during different 

periods of time. The reaction mixture was then cooled, neutralized with 10% aqueous 

NaHCO3, and extracted with ethyl acetate.  The organic layers were washed with water, 

dried over anhydrous Na2SO4, filtered, and concentrated to dryness. The products were 

purified by recrystallization in ethyl acetate or ethyl acetate/ethanol. 

 

 6-Acetoxy-3-(3-thiophenyl)coumarin (12).  

 2,5-Dihydroxybenzaldehyde (501.1 mg; 3.63 mmol); 3-thiophene acetic acid 

(515.1 mg; 3.62 mmol); CH3COOK (640.4 mg; 6.52 mmol); Ac2O (4 mL). Yield 54 %. 

1H NMR (250 MHz, CDCl3) δ: 2.34 (s, 3H, -OAc), 7.23 (dd, 1H, J7,8=8.9, J7,5=2.7, H-

7), 7.35 (d, 1H, J8,7=8.9, H-8), 7.30 (d, 1H, J5,7=2.7, H-5), 7.40 (dd, 1H, J5’,4’=5.1, 

J5’,2’=3.2, H-5’), 7.49 (dd, 1H, J4’,5’=5.1, J4’,2’=1.2, H-4’), 7.88 (s, 1H, H-4), 8.20 (m, 

1H, H-2’). 13C NMR (75.5 MHz, CDCl3) δ: 20.9, 117.3, 119.7, 119.8, 124.5, 125.8, 

126.0, 126.1, 126.4, 126.5, 133.9, 136.3, 146.6, 169.2. MS: 287.0 ([M+H]+, 10 %). 

 

 7-Acetoxy-3-(3-thiophenyl)coumarin (13).  

 2,4-Dihydroxybenzaldehyde (502.9 mg; 3.64 mmol); 3-thiophene acetic acid 

(515.8 mg; 3.63 mmol); CH3COOK (639.4 mg; 6.52 mmol); Ac2O (4 mL). Yield 38 %. 

1H NMR (250 MHz, CDCl3) δ: 2.30 (s, 3H, -OAc), 7.04-7.09 (m, 2H, H-6, H-8), 7.35-

7.49 (m, 3H, H-4’, H-5’, H-5), 7.87 (s, 1H, H-2’), 8.14 (s, 1H, H-4). 13C NMR (75.5 
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MHz, CDCl3) δ: 21.0, 99.9, 109.6, 109.7, 118.4, 125.6, 125.9, 126.1, 128.3, 130.7, 

133.9, 136.5, 139.8, 152.3, 168.4. MS: 286.9 ([M+H]+, 5 %). 

 

 8-Acetoxy-3-(3-thiophenyl)coumarin (14).  

 2,3-Dihydroxybenzaldehyde (500.4 mg; 3.62 mmol); 3-thiophene acetic acid 

(515.3 mg; 3.62 mmol); CH3COOK (639.0 mg; 6.51 mmol); Ac2O (4 mL). Yield 45 %. 

1H NMR (250 MHz, CDCl3) δ: 2.42 (s, 3H, -OAc), 7.23-7.26 (m, 2H, H-6, H-7), 7.35-

7.39 (m, 2H, H-5’, H-5), 7.48 (dd, 1H, J4’,2’=1.3, J4’,5’=5.1, H-4’), 7.89 (s, 1H, H-4), 

8.15 (dd, 1H, J=1.3, J=2.9, H-2’). 13C NMR (75.5 MHz, CDCl3) δ: 20.6, 120.4, 120.7, 

124.1, 124.2, 124.4, 125.1, 125.7, 126.1, 126.3, 133.9, 136.6, 137.3, 158.7, 168.6. MS: 

287.0 ([M+H]+, 5 %). 

 

 7,8-Diacetoxy-3-(3-thiophenyl)coumarin (15).  

 2,3,4-Trihydroxybenzaldehyde (500.5 mg; 3.25 mmol); 3-thiophene acetic acid 

(461.1 mg; 3.24 mmol); CH3COOK (573.5 mg; 5.84 mmol); Ac2O (4 mL). Yield 49 %. 

1H NMR (250 MHz, CDCl3) δ: 2.35 (s, 3H, 7-OAc), 2.44 (s, 3H, 8-OAc), 7.13 (d, 1H, 

J=8.6, H-6), 7.39-7.51 (m, 3H, H-4’, H-5’, H-5), 7.90 (s, 1H, H-2’), 8.17 (m, 1H, H-4). 

13C NMR (75.5 MHz, CDCl3) δ: 20.2, 20.6, 118.3, 119.0, 122.3, 124.7, 125.8, 126.0, 

126.3, 129.8, 133.8, 136.3, 144.6, 145.6, 158.6, 167.3, 167.8. MS: 344.9 ([M+H]+, 14 

%). 

 

 5,7-Diacetoxy-3-(3-thiophenyl)coumarin (16).  

 2,4,6-Trihydroxybenzaldehyde (501.7 mg; 3.26 mmol); 3-thiophene acetic acid 

(461.7 mg; 3.25 mmol); CH3COOK (573.0 mg; 5.84 mmol); Ac2O (4 mL). Yield 35 %. 

1H NMR (250 MHz, CDCl3) δ: 2.33 (s, 3H, -OAc), 2.43 (s, 3H, -OAc), 6.99 (d, 1H, 
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J8,6=2.1, H-8), 7.04 (d, 1H, J6,8=2.1, H-6), 7.39 (dd, 1H, J5’,4’=5.1, J5’,2’=3.0, H-5’), 7.48 

(dd, 1H, J4’,5’=5.1, J4’,2’=1.2, H-4’), 7.87 (s, 1H, H-4), 8.13 (dd, 1H, J2’,4’=2.9, J2’,5’=1.2, 

H-2’). 13C NMR (75.5 MHz, CDCl3) δ: 20.9, 21.0, 107.3, 110.9, 112.2, 122.1, 125.8, 

126.2, 126.4, 130.4, 134.0, 146.9, 152.0, 153.4, 168.2, 168.3. MS: 345.0 ([M+H]+, 6 

%). 

 

 6-Acetoxy-3-(2-thiophenyl)coumarin (22). 

 2,5-Dihydroxybenzaldehyde (500.5 mg; 3.62 mmol); 2-thiophene acetic acid 

(515.5 mg; 3.63 mmol); CH3COOK (640.1 mg; 6.53 mmol); Ac2O (4 mL). Yield 53 %. 

1H NMR (250 MHz, CDCl3) δ: 2.34 (s, 3H, -OAc), 7.13 (dd, 1H, J4’,3’=5.1, J4’,5’=3.8, H-

4’), 7.23 (dd, 1H, J7,8=8.9, J7,5=2.5, H-7), 7.31 (d, 1H, J5,7=2.5, H-5), 7.36 (d, 1H, 

J8,7=8.9, H-8), 7.45 (dd, 1H, J5’,4’=5.1, J5’,3’=1.0, H-5’), 7.81 (dd, 1H, J3’,4’=3.8, 

J3’,5’=1.0, H-3’), 7.94 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 20.8, 117.3, 117.4, 

119.7, 122.2, 124.5, 127.4, 127.5, 128.1, 134.5, 135.5, 146.8, 150.0, 169.1, 169.3. MS: 

287.0 ([M+H]+, 3 %). 

 

 7-Acetoxy-3-(2-thiophenyl)coumarin (23).  

 2,4-Dihydroxybenzaldehyde (501.9 mg; 3.63 mmol); 2-thiophene acetic acid 

(515.7 mg; 3.63 mmol); CH3COOK (639.9 mg; 6.52 mmol); Ac2O (4 mL). Yield 52 %. 

1H NMR (250 MHz, CDCl3) δ: 2.35 (s, 3H, -OAc), 7.11 (m, 3H, H-8, H-6, H-4’), 7.42 

(dd, 1H, J5’,4’=5.1, J5’,3’=1.0, H-5’), 7.54 (d, 1H, J5,6=8.5, H-5), 7.79 (dd, 1H, J3’,4’=3.7, 

J3’,5’=1.0, H-3’), 7.98 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 21.2, 100.0, 109.9, 

117.1, 118.6, 123.6, 127.1, 127.5, 127.7, 128.3, 132.9, 134.8, 147.8, 152.7, 169.1. MS: 

287.0 ([M+H]+, 4 %). 
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 8-Acetoxy-3-(2-thiophenyl)coumarin (24).  

 2,3-Dihydroxybenzaldehyde (500.8 mg; 3.62 mmol); 2-thiophene acetic acid 

(515.3 mg; 3.62 mmol); CH3COOK (640.8 mg; 6.52 mmol); Ac2O (4 mL). Yield 42 %. 

1H NMR (250 MHz, CDCl3) δ: 2.44 (s, 3H, -OAc), 7.13 (dd, 1H, J4’,5’=5.1, J4’,3’=3.8, H-

4’), 7.28 (m, 2H, H-6, H-7), 7.42 (m, 2H, H-5, H-5’), 7.79 (dd, 1H, J3’,4’=3.8, J3’,5’=1.1, 

H-3’), 7.99 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 20.6, 120.6, 122.2, 124.4, 

124.5, 125.0, 127.4, 127.6, 127.9, 134.9, 135.6, 137.4, 143.1, 158.2, 168.5. MS: 287.0 

([M+H]+, 7 %). 

 

 7,8-Diacetoxy-3-(2-thiophenyl)coumarin (25).  

 2,3,4-Trihydroxybenzaldehyde (500.3 mg; 3.24 mmol); 2-thiophene acetic acid 

(462.3 mg; 3.24 mmol); CH3COOK (575.6 mg; 5.84 mmol); Ac2O (4 mL). Yield 41 %. 

1H NMR (250 MHz, CDCl3) δ: 2.34 (s, 3H, -OAc), 2.43 (s, 3H, -OAc), 7.13 (m, 2H, H-

6, H-4’), 7.42 (m, 2H, H-5, H-5’), 7.78 (d, 1H, J3’,4’=3.8, H-3’), 7.96 (s, 1H, H-4). 13C 

NMR (75.5 MHz, CDCl3) δ: 20.2, 20.6, 99.9, 117.9, 119.2, 121.7, 123.5, 124.6, 127.4, 

127.6, 127.9, 129.9, 134.6, 144.5, 167.1, 167.7, 168.2. MS: 345.0 ([M+H]+, 3 %).  

 

 5,7-Diacetoxy-3-(2-thiophenyl)coumarin (26).  

 2,4,6-Trihydroxybenzaldehyde (500.4 mg; 3.24 mmol); 2-thiophene acetic acid 

(461.2 mg; 3.24 mmol); CH3COOK (575.8 mg; 5.84 mmol); Ac2O (4 mL). Yield 54 %. 

1H NMR (250 MHz, CDCl3) δ: 2.33 (s, 3H, -OAc), 2.45 (s, 3H, -OAc), 7.01 (d, 1H, 

J8,6=2.1, H-8), 7.07 (d, 1H, J6,8=2.0, H-6), 7.13 (dd, 1H, J4’,5’=5.0, J4’,3’=3.9, H-4’), 7.44 

(bd, 1H, J5’,4’=5.1, H-5’), 7.77 (bd, 1H, J3’,4’=3.7, H-3’), 7.94 (s, 1H, H-4). 13C NMR 

(75.5 MHz, CDCl3) δ: 20.9, 21.0, 97.6, 107.4, 109.9, 112.3, 127.4, 127.5, 128.1, 128.6, 

130.9, 136.7, 146.8, 151.8, 153.1, 168.1, 168.2. MS: 345.0 ([M+H]+, 13 %). 
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 6-Acetoxy-3-(4-bromo-2-thiophenyl)coumarin (32).  

 2,5-Dihydroxybenzaldehyde (300.0 mg; 2.17 mmol); 4-bromo-2-thiophene 

acetic acid (479.9 mg; 2.17 mmol); CH3COOK (387.3 mg; 3.95 mmol); Ac2O (4 mL). 

Yield 52 %. 1H NMR (250 MHz, CDCl3) δ: 2.35 (s, 3H, -OAc), 7.32 (m, 4H, H-5’, H-5, 

H-7, H-8), 7.69 (s, 1H, H-3’), 7.94 (s, 1H, H-4). MS: 365.9 ([M+H]+, 27 %). 

 

 7-Acetoxy-3-(4-bromo-2-thiophenyl)coumarin (33).  

 2,4-Dihydroxybenzaldehyde (312.5 mg; 2.26 mmol); 4-bromo-2-thiophene 

acetic acid (499.5 mg; 2.26 mmol); CH3COOK (402.8 mg; 4.10 mmol); Ac2O (4 mL). 

Yield 55 %. 1H NMR (250 MHz, CDCl3) δ: 2.35 (s, 3H, -OAc), 7.10 (m, 1H, H-5), 7.16 

(bs, 1H, H-8), 7.32 (bd, 1H, J5’,3’=1.2, H-5’), 7.55 (dd, 1H, J7,5=8.4, J7,8=0.7, H-7), 7.67 

(bd, J3’,5’=1.2, H-3’), 7.97 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 21.1, 109.5, 

110.1, 117.2, 119.5, 126.2, 126.6, 128.2, 129.6, 136.9, 153.1, 158.9, 168.9, 175.5, 

183.7. MS: 365.8 ([M+H]+, 20 %). 

 

 8-Acetoxy-3-(4-bromo-2-thiophenyl)coumarin (34).  

 2,3-Dihydroxybenzaldehyde (299.9 mg; 2.17 mmol); 4-bromo-2-thiophene 

acetic acid (481.4 mg; 2.18 mmol); CH3COOK (384.4 mg; 3.92 mmol); Ac2O (4 mL). 

Yield 64 %. 1H NMR (250 MHz, CDCl3) δ: 2.44 (s, 3H, -OAc), 7.30 (m, 3H, H-5’, H-6, 

H-7), 7.43 (m, 1H, H-5), 7.67 (d, 1H, J3’,5’=1.3, H-3’), 7.98 (s, 1H, H-4). 13C NMR 

(75.5 MHz, CDCl3) δ: 25.5, 114.5, 124.6, 125.4, 130.1, 130.6, 131.2, 131.9, 133.6, 

141.6, 141.9, 142.2, 149.0, 163.0, 173.5. MS: 365.8 ([M+H]+, 25 %). 
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 7,8-Diacetoxy-3-(4-bromo-2-thiophenyl)coumarin (35).  

 2,3,4-Trihydroxybenzaldehyde (348.8 mg; 2.26 mmol); 4-bromo-2-thiophene 

acetic acid (500.6 mg; 2.26 mmol); CH3COOK (401.2 mg; 4.09 mmol); Ac2O (4 mL). 

Yield 58 %. 1H NMR (250 MHz, CDCl3) δ: 2.34 (s, 3H, -OAc), 2.42 (s, 3H, -OAc), 

7.18 (bd, 1H, J6,5=8.6, H-6), 7.33 (bs, 1H, H-5’), 7.42 (bd, 1H, J5,6=8.6, H-5), 7.66 (bs, 

1H, H-3’), 7.96 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 20.1, 20.5, 101.5, 109.6, 

118.2, 119.1, 120.1, 126.1, 126.9, 128.6, 136.7, 137.0, 144.9, 157.9, 158.0, 167.6, 

168.2. MS: 423.8 ([M+H]+, 7 %). 

 

 5,7-Diacetoxy-3-(4-bromo-2-thiophenyl)coumarin (36).  

 2,4,6-Trihydroxybenzaldehyde (349.6 mg; 2.27 mmol); 4-bromo-2-thiophene 

acetic acid (502.2 mg; 2.27 mmol); CH3COOK (404.0 mg; 4.09 mmol); Ac2O (4 mL). 

Yield 31 %. 1H NMR (250 MHz, CDCl3) δ: 2.34 (s, 3H, -OAc), 2.47 (s, 3H, -OAc), 

7.03 (d, 1H, J8,6=2.1, H-6), 7.35 (d, 1H, J5’,3’=1.2, H-5’), 7.63 (d, 1H, J3’,5’=1.3, H-3’), 

7.94 (s, 1H, H-4). 13C NMR (75.5 MHz, CDCl3) δ: 20.9, 21.0, 98.7, 107.4, 110.4, 112.5, 

125.6, 129.0, 129.2, 136.4, 139.4, 147.1, 151.6, 152.5, 153.3, 168.0, 168.1. MS: 424.0 

([M+H]+, 25 %). 

 

 

 General procedure for the preparation of hydroxylated thiophenylcoumarins 

(17-21, 27-31 and 37-41).  

 Hydroxylated 3-thiophenylcoumarins were obtained by hydrolysis of their 

acetoxylated counterparts. Hence, the appropriate acetoxylated coumarin was mixed 

with 2 N aqueous HCl and MeOH and refluxed (100 °C) with stirring during different 

periods of time. The resulting reaction mixture was cooled in an ice-bath and the 



Chapter III 
Development of Coumarins as Aromatase Inhibitors 

 

 193 

reaction products, obtained as solids, were filtered, washed with cold distilled water, 

and dried under vacuum.  

 

 6-Hydroxy-3-(3-thiophenyl)coumarin (17).  

 Compound 12 (251.4 mg; 0.88 mmol); 2 N HCl (20.6 mL); MeOH (8.8 mL). 

Yield 92 %. 1H NMR (250 MHz, DMSO-d6) δ: 7.01 (d, 1H, J5,7=2.8, H-5), 7.06 (dd, 

1H, J7,8=9.0, J7,5=2.8, H-7), 7.27 (d, 1H, J8,7=8.8, H-8), 7.65 (dd, 1H, J5’,4’=5.0, 

J5’,2’=2.9, H-5’), 7.71 (dd, 1H, J4’,5’=5.2, J4’,2’=1.3, H-4’), 8.23 (dd, 1H, J2’,5’=2.9, 

J2’,4’=1.2, H-2’), 8.42 (s, 1H, H-4), 9.78 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) 

δ: 112.4, 116.9, 119.8, 120.0, 121.5, 125.7, 126.4, 127.1, 134.9, 137.4, 138.5, 145.9, 

154.0. MS: 245.0 ([M+H]+, 29 %). 

 

 7-Hydroxy-3-(3-thiophenyl)coumarin (18).  

 Compound 13 (227.4 mg; 0.79 mmol); 2 N (20.6 mL); MeOH (8.8 mL). Yield 

91 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.76 (bs, 1H, J=1.6, H-2’), 6.83 (dd, 1H, 

J6,5=8.4,  J6,8=2.1, H-6), 7.58 (d, 1H, J5,6=8.5, H-5), 7.63 (m, 2H, H-4’, H-5’), 8.14 (bs, 

1H, J=2.6, H-8), 8.39 (s, 1H, H-4), 10.62 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-

d6) δ: 101.8, 111.9, 113.6, 113.7, 117.0, 124.3, 126.2, 126.8, 129.9, 139.2, 154.5, 161.3. 

MS: 344.9 ([M+H]+, 14 %). 

 

 8-Hydroxy-3-(3-thiophenyl)coumarin (19). 

  Compound 14 (250.7 mg; 0.88 mmol); 2 N HCl (20.6 mL); MeOH (8.8 mL). 

Yield 91 %. 1H NMR (250 MHz, DMSO-d6) δ: 7.09-7.18 (m, 3H, H-5, H-6, H-7), 7.66 

(d, 1H, J=2.8, H-5’), 7.72 (bd, 1H, J=5.1, H-4’), 8.26 (bs, 1H, J=2.8, H-2’), 8.45 (s, 1H, 

H-4), 10.27 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 117.9, 118.0, 118.5, 
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118.6, 124.6, 124.8, 125.7, 126.4, 127.0, 138.9, 142.9, 144.5, 153.1. MS: 245.0 

([M+H]+, 25 %). 

 

 7,8-Dihydroxy-3-(3-thiophenyl)coumarin (20).  

 Compound 15 (250.2 mg; 0.73 mmol); 2 N HCl (20.6 mL); MeOH (8.8 mL). 

Yield 91 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.85 (d, 1H, J6,5=8.4, H-6), 7.09 (d, 1H, 

J5,6=8.4, H-5), 7.63 (dd, 1H, J5’,4’=4.9, J5’,2’=2.0, H-5’), 7.67 (dd, 1H, J4’,5’=4.9, 

J4’,2’=1.1, H-4’), 8.15 (d, 1H, J2’,5’=2.9, H-2’), 8.36 (s, 1H, H-4), 9.44 (s, 1H, -OH), 

10.17 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 112.7, 113.1, 116.9, 119.2, 

124.3, 126.2, 126.9, 131.9, 135.2, 139.8, 149.6, 159.8, 176.4. MS: 261.0 ([M+H]+, 24 

%). 

 

 5,7-Dihydroxy-3-(3-thiophenyl)coumarin (21).  

 Compound 16 (249.8 mg; 0.72 mmol); 2 N HCl (20.6 mL); MeOH (8.8 mL). 

Yield 92 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.23 (d, 1H, J8,6=2.9, H-8), 6.29 (d, 1H, 

J6,8=2.0, H-8), 7.60 (m, 2H, H-4, H-5), 8.09 ( dd, 1H, H-2’), 8.27 (s, 1H, H-4), 10.44 (s, 

1H, -OH), 10.77 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 93.8, 98.5, 102.2, 

105.4, 123.7, 126.2, 126.7, 134.0, 135.4, 140.7, 155.4, 156.3, 162.1. MS: 260.8 

([M+H]+, 20 %). 

 

 6-Hydroxy-3-(2-thiophenyl)coumarin (27).  

 Compound 22 (257.3 mg; 0.90 mmol); 2 N HCl (20.6 mL); MeOH (8.8 mL). 

Yield 91 %. 1H NMR (250 MHz, DMSO-d6) δ: 7.03 (dd, 1H, J7,8=8.9, J7,5=1.9, H-7), 

7.10 (d, 1H, J5,7=2.0, H-5), 7.19 (m, 1H, H-4’), 7.30 (d, 1H, J8,7=8.7, H-8), 7.68 (d, 1H, 

J5’,4’=5.0, H-5’), 7.87 (d, 1H, J3’,4’=3.7, H-3’), 8.52 (s, 1H, H-4), 9.82 (s, 1H, -OH). 13C 
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NMR (75.5 MHz, DMSO-d6) δ: 112.3, 116.9, 119.8, 119.9, 120.0, 126.7, 127.4, 129.0, 

129.0, 135.5, 136.3, 154.2, 154.2. MS: 245.0 ([M+H]+, 11 %). 

 

 7-Hydroxy-3-(2-thiophenyl)coumarin (28).  

 Compound 23 (300.0 mg; 1.05 mmol); 2 N HCl (24.7 mL); MeOH (10.6 mL). 

Yield 86 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.78 (bs, 1H, H-8), 6.85 (m, 1H, H-6), 

7.16 (m, 1H, H-4’), 7.62 (m, 2H, H-5’, H-5), 7.76 (m, 1H, H-3’), 8.45 (s, 1H, H-4), 

10.68 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 101.9, 111.9, 113.9, 116.3, 

125.5, 127.4, 127.7, 136.0, 137.3, 154.3, 159.5, 161.4. MS: 244.8 ([M+H]+, 23 %). 

 

 8-Hydroxy-3-(2-thiophenyl)coumarin (29). 

 Compound 24 (301.2 mg; 1.05 mmol); 2 N HCl (25.0 mL); MeOH (10.6 mL). 

Yield 43 %. 1H NMR (250 MHz, DMSO-d6) δ: 7.10 (dd, 1H, H-4’), 7.19 (m, 3H, H-5, 

H-6, H-7), 7.69 (d, 1H, H-5’), 7.88 (d, 1H, H-3’), 8.54 (s, 1H, H-4), 10.33 (bs, 1H, H-

4). 13C NMR (75.5 MHz, DMSO-d6) δ: 118.0, 118.6, 120.4, 120.5, 124.9, 126.6, 126.7, 

127.5, 128.9, 135.5, 136.8, 144.5, 150.7. MS: 244.9 ([M+H]+, 6 %). 

 

 7,8-Dihydroxy-3-(2-thiophenyl)coumarin (30).  

 Compound 25 (155.6 mg; 0.45 mmol); 2 N HCl (13.0 mL); MeOH (5.5 mL). 

Yield 51 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.86 (d, 1H, J6,5=8.4, H-6), 7.13 (d, 1H, 

J5,6=8.5, H-5), 7.15 (dd, 1H, J4’,5’=5.1, J4’,3’=3.7, H-4’), 7.61 (dd, 1H, J5’,3’=1.0, 

J5’,4’=5.1, H-5’), 7.77 (dd, 1H, J3’,4’=3.7, J3’,5’=1.0, H-3’), 8.45 (s, 1H, H-4), 9.84 (bs, 

2H, -OH, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 112.7, 113.3, 119.3, 125.5, 127.4, 

127.7, 129.1, 132.1, 136.2, 137.9, 139.8, 142.6, 149.9. MS: 260.8 ([M+H]+, 16 %). 
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 5,7-Dihydroxy-3-(2-thiophenyl)coumarin (31).  

 Compound 26 (250.0 mg; 0.73 mmol); 2 N HCl (25.0 mL); MeOH (8.8 mL). 

Yield 98 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.25 (d, 1H, J8,6=2.1, H-8), 6.31 (d, 1H, 

J6,8=2.1, H-6), 7.12 (dd, 1H, J4’,3’=5.1, J4’,5’=3.8, H-4’), 7.56 (dd, 1H, J3’,4’=5.1, 

J3’,5’=1.0, H-3’), 7.72 (dd, 1H, J5’,3’=1.0, J5’,4’=3.8, H-5’), 8.33 (s, 1H, H-4), 10.52 (s, 

1H, -OH), 10.88 (s, 1H, -OH).  13C NMR (75.5 MHz, DMSO-d6) δ: 94.0, 102.4, 107.1, 

113.9, 125.2, 127.1, 127.6, 132.3, 136.6, 149.5, 155.2, 156.4, 162.4. MS: 260.9 

([M+H]+, 29 %). 

 

 6-Hydroxy-3-(4-bromo-2-thiophenyl)coumarin (37).   

 Compound 32 (250.0 mg; 0.68 mmol); 2 N HCl (20.6 mL); MeOH (8.8 mL). 

Yield 60 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.42 (d, 1H, J5,7=8.4, H-5), 6.82-7.02 

(m, 3H, H-3’, H-5’, H-4), 7.24 (d, 1H, J7,8=9.5, H-7), 7.97 (d, 1H, J8,7=9.7, H-8), 10.18 

(s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 112.6, 116.4, 117.3, 118.4, 118.9, 

119.9, 122.4, 124.7, 127.2, 144.3, 150.1, 153.9, 159.8. MS: 323.7 ([M+H]+, 18 %). 

 

 7-Hydroxy-3-(4-bromo-2-thiophenyl)coumarin (38).   

 Compound 33 (100.3 mg; 0.27 mmol); 2 N HCl (8.2 mL); MeOH (8.2 mL). 

Yield 45 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.79 (d, 1H, J8,5=2.1, H-8), 6.87 (dd, 

1H, J6,5=8.5, J6,8=2.1, H-6), 7.59 (d, 1H, J5,6=8.6, H-5), 7.72 (d, 1H, J5’,3’=1.2, H-5’), 

7.77 (d, 1H, J3’,5’=1.2, H-3’), 8.62 (s, 1H, H-4), 10.78 (s, 1H, -OH). 13C NMR (75.5 

MHz, DMSO-d6) δ: 101.9, 109.1, 111.5, 113.9, 114.6, 125.1, 126.7, 130.1, 137.5, 

138.0, 154.3, 157.5, 161.7. MS: 323.9 ([M+H]+, 100 %). 
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 8-Hydroxy-3-(4-bromo-2-thiophenyl)coumarin (39).  

 Compound 34 (100.3 mg; 0.27 mmol); 2 N HCl (8 mL); MeOH (5 mL). Yield 

90 %. 1H NMR (250 MHz, DMSO-d6) δ: 7.18 (m, 3H, H-5, H-6, H-7), 7.79 (s, 1H, H-

5’), 7.88 (s, 1H, H-3’), 8.66 (s, 1H, H-4), 10.37 (bs, 1H, -OH). 13C NMR (75.5 MHz, 

DMSO-d6) δ: 103.3, 118.5, 118.7, 118.9, 120.0, 125.0, 126.4, 127.9, 136.9, 137.7, 

139.1, 140.9, 144.4. MS: 323.8 ([M+H]+, 100 %). 

 

 7,8-Dihydroxy-3-(4-bromo-2-thiophenyl)coumarin (40).  

 Compound 35 (130.0 mg; 0.31 mmol); 2 N HCl (16.2 mL); MeOH (4.6 mL). 

Yield 80 %. 1H NMR (250 MHz, DMSO-d6) δ: 6.88 (d, 1H, J6,5=8.4, H-6), 7.11 (d, 1H, 

J5,6=8.4, H-5), 7.72 (s, 1H, H-5’), 7.78 (s, 1H, H-3’), 8.59 (s, 1H, H-4), 9.54 (s, 1H, -

OH), 10.37 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 109.3, 112.5, 113.5, 

114.5, 119.6, 125.3, 126.9, 132.1, 132.2, 137.8, 138.9, 150.4, 159.4. MS: 339.9 

([M+H]+, 100 %). 

 

 5,7-Dihydroxy-3-(4-bromo-2-thiophenyl)coumarin (41).  

 Compound 36 (50.0 mg; 0.12 mmol); 2 N HCl (8 mL); MeOH (2 mL). Yield 75 

%. 1H NMR (250 MHz, DMSO-d6) δ: 6.26 (d, 1H, J8,6=2.0, H-8), 6.31 (d, 1H, J5,8=2.0, 

H-5), 7.67 (d, 1H, J5’,3’=1.3, H-5’), 7.76 (d, 1H, J3’,5’=1.3, H-3’), 8.44 (s, 1H, H-4), 

10.61 (s, 1H, -OH), 10.94 (s, 1H, -OH). 13C NMR (75.5 MHz, DMSO-d6) δ: 111.1, 

114.4, 124.2, 131.2, 136.3, 143.9, 147.9, 159.8, 165.9, 166.5, 173.5, 174.1, 184.6. MS: 

339.7 ([M+H]+, 100 %). 
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