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Thesis Abstract 
 

 

The development of noninvasive platforms to assess cell fate after transplantation is of utmost 

importance in the context of Regenerative Medicine. Magnetic Resonance Imaging (MRI) is a powerful 

non-invasive imaging platform, heavily relying on the use of contrast agents, mostly nanoparticles 

(NPs). Gadolinium (Gd) and Superparamagnetic Iron Oxide (SPIO) NPs are contrast agents in clinical 

use, however these agents may cause liver toxicity, give rise to image artifacts in MRI, and typically 

have not been used as a drug delivery system. In this work, we developed a novel NP formulation 

containing fluorine to overcome the previous limitations. The NPs are based on poly(lactic-co-glycolic 

acid) (PLGA) which is a biocompatible and versatile polymer approved for human use
 
. PLGA NPs 

containing fluorine were developed to label and track cells overtime and as vectors for microRNA 

(miR) delivery, which improves cell survival in hypoxic conditions. Herein we show that the fluorine-

based NPs are a reliable approach to track non-invasively cells with clinical relevance (endothelial cells 

and cord-blood derived mononuclear cells) and simultaneously control the intracellular delivery of pro-

survival and pro-angiogenic miRs. Also systems for in vitro and in vivo imaging via MRI of fluorine 

are developed and here explained. Furthermore in vivo studies are performed which show the 

therapeutic uses of such system. Additionally we also address the optimization of protocols for stem 

cell culture which may enhance proliferation and promote pluripotency in cardiac stem cells (CSCs) so 

as we can fully explore the potential of these cells in vivo using out novel theranostic NPs platform. 

We are the first authors developing and relating these novel developments.  
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Resumo de Tese 

O desenvolvimento de plataformas não-invasivas para avaliar o destino das células após o transplante é 

de extrema importância no contexto da medicina regenerativa. Imagem por Ressonância Magnética 

(MRI) é uma plataforma de imagem não invasiva poderosa, baseando-se fortemente na utilização de 

agentes de contraste, principalmente nanopartículas (NP). Gadolínio (Gd) e NPs de óxido de ferro 

superparamagnéticas (SPIO) são os agentes de contraste em utilização clínica, no entanto, estes agentes 

podem provocar toxicidade hepática, dar origem a artefactos de imagem em MRI, e, tipicamente, não 

têm sido utilizados como um sistema de entrega de biomoleculas. Neste trabalho, foi desenvolvida uma 

nova formulação de NPs com contendo  de flúor para superar as limitações anteriores. As NPs são 

baseados em poli (ácido láctico-co-glicólico) (PLGA), que é um polímero biocompatível e versátil 

aprovado para uso humano. PLGA NPs contendo flúor foram desenvolvidas a usadas para marcação de 

células e como vectores para entrega microRNA (miR), que melhora a sobrevivência das células em 

condições de hipóxia. Aqui, mostramos que os NP com flúor são uma abordagem fiável para rastrear as 

células de forma não invasiva com relevância clínica (células endoteliais e células mononucleares 

derivadas de sangue do cordão) e, simultaneamente, controlar a entrega intracelular de miRs de pró-

sobrevivência e pró-angiogénicos. Para sistemas in vitro e in vivo de imagens por meio de ressonância 

magnética do flúor também foram também desenvolvidos sistemas aqui demonstrados. Além disso, em 

estudos in vivo realizados mostramos os usos terapêuticos de tal sistema. Além disso, também 

abordamos a optimização de protocolos de cultura de células estaminais que podem aumentar a 

proliferação e promover a pluripotência em células estaminais cardíacas (CSCs), de modo que 

possamos explorar plenamente o potencial dessas células in vivo utilizando a nova plataforma NP. Nós 

somos os primeiros autores a desenvolvimento e relatar estes novos desenvolvimentos. 
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1.1. Brief overview 

 

Magnetic resonance imaging (MRI) provides a long-term non-invasive, in vivo method for studying the 

fate of transplanted cells labelled with superparamagnetic iron oxide (SPIO) nanoparticles (diameter 

below 200 nm) 
3
. In most cases, the internalization of these NPs by stem cells do not affect cell 

viability, growth, or differentiation 
3
. These NPs are composed of an iron oxide core coated with 

dextran or carboxydextran, which ensures aqueous solubility and prevents nanoparticle aggregation 
4, 5

. 

The NPs can induce strong field inhomogeneities in proximal water molecules during MRI. As such, 

when NPs are internalised by targeted cells they can create a significant dephasing of protons, which 

predominantly reduces the T2 and T2* relaxation times 
6
. MRI offers several advantages over other 

techniques such as positron emission tomography, which include greater speed, higher spatial 

resolution, a direct anatomical correlation, and lower costs 
7
. In vivo images with a spatial resolution of 

50 x 50 x 500 micrometer can be acquired over 2-3 h 
8
. Unfortunately, SPIOs are not detected directly, 

but indirectly through microscopic disturbances of the magnetic field that misalign the orientation of 

water protons from which the magnetic resonance signal is derived 
9
. Therefore, it is difficult to 

correlate the magnetic resonance signal to the number of cells. Furthermore, anatomic (
1
H) MRIs often 

are difficult to interpret because it is not always clear whether dark areas are caused by these NPs or by 

other inhomogeneities 
10

. In addition, it is not possible to differentiate two or more groups of cells, 

which are labelled with iron oxide agents. Therefore, there is the need for the development of new NPs 

for MRI.  

Fluorine-based NPs, can be detected directly by 
19

F imaging, offer an alternative to SPIOs for accurate 

counting of local cells, to overcome MRI artifacts, and label two or more groups of cells 
11

. Because 

the human body naturally lacks fluorine, 
19

F signals originating from injected 
19

F-containing 

compounds exhibit an excellent degree of specificity. Furthermore, 
19

F MRI using fluorine-based NPs 
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can be used to report the pressure of O2 in ischemic tissue environments such as the myocardium 
12

. 

Finally, fluorine-based NPs provide an unequivocal and unique signature for stem/progenitor cells and 

permit quantification and detection of multiple fluorine signatures via 
19

F MR spectroscopy 
13

.  

The main goal of this project was to develop NPs containing fluorine to track stem cells by 
19

F MR 

spectroscopy after being transplanted into models of vascular disease.  The developed NPs should 

incorporate biomolecules to enhance for stem/progenitor while simultaneously tracking them.  

 

 

1.2. Thesis outlines 

The main objective of this project is to develop fluorine-based nanoparticles that can be used to track 

stem cells or their progenies by MRI and simultaneously deliver biomolecules. The following specific 

objectives will be addressed: 

1. Characterization of nanoparticles containing fluorine.  

2. Development of efficient methodologies to introduce NPs within cells.  

3. Study cell viability and proliferation of cells labeled with fluorine-based NPs. 

4. Develop methodologies for miR attachment to the NPs. 

5. Study the effect of the NPs complex with miR within cells. 

6. NP delivery carrying miR in models of vascular disease and study its effects.  

7. In vivo applications of this novel technology. 
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2.1. Cardiac and ischemic disease 

Cardiovascular disease (CVD) is responsible for 50% of deaths in developed nations; nowadays CVD 

equals the rate of morbidity as caused by viral and bacterial epidemics of previous centuries. According 

to the British Heart Foundation statistics, in the UK a person suffers a heart attack every 2 minutes. The 

burden on national healthcare systems is enormous and expected to worsen 
14

, current therapies are 

falling patients not only for myocardial infarction therapies but also for vascular regeneration and 

ischemic episodes. Life expectancy and quality are severely diminished despite modest improvement 

on the major therapies developed in the 1960’s. The 5-year mortality rate remains between to 45-50% 
1
. 

CVD is characterized by many conditions such as: coronary heart disease, ischemic heart disease, 

myocardial infarction, angina pectoris, cerebrovascular disease, hypertension heart disease, 

peripheral/ischemic vascular disease, heart failure, rheumatic heart disease, congenital heart disease, 

cardiomyopathies.   

Any CVD episode prior de age of 64 is considered premature; at present most cases of CVD are 

premature and based on environmental factors related to inadequate and undisciplined nutritional diets 

2
.  Most CVD episodes are highly correlated with high cholesterol levels cumulating into 

atherosclerotic plaque formation responsible for cardiac and vascular ischemia as shown in Figure 1.  

 

2.2. Common therapies 

Commonly on the event of CVD the first line of prevention for further episodes and response rely on 

the use of pharmaceutical drugs and surgical procedures. 
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2.2.1. Pharmacological interventions 

The first lines of combat traditionally target hypertension pharmacologically by the use of angiotensin-

converting enzyme inhibitors (ACE), beta-bloquers and calcium channel blockers. Hypertension is 

responsible only not for elevated blood pressure but also remodeling of vessels and tissues. 

Angiotensin-Converting Enzyme Inhibitors (ACE) have been developed in the 1980’s. This system is 

characterized by the interaction between renin, an enzyme released from the kidney, and 

angiotensinogen, a peptide circulating in the blood stream 
15

. The rational for ACE use is that inhibit 

synthesis of angiotensin II in the bloodstream and in various tissues it decreases angiotensin II-

mediated vasoconstriction and vascular structural changes. It can also promote proliferation of vascular 

smooth muscle cells essential for vessel remodeling 
16

. Diuretics can also be referred to however they 

are a less sophisticated formulation to lower hypertension, which can lead to dehydration.  

Another pharmacological intervention for hypertension is by the use of beta-bloquers. Beta-bloquers 

are used in case of hypertension that results from increased sympathetic stimulation of the heart. 

Developed in the 1960’s, some beta-blockers bind to beta-1 adrenergic receptors located on the 

myocardium blocking the cardio acceleration effects of endogenous catecholamines (norepinephrine, 

epinephrine); whereas alpha-blockers bind to alpha- adrenergic receptors located on the smooth muscle 

of the peripheral vasculature helping to reduce catecholamine-induced vasoconstriction. Both types of 

drugs have been used extensively for treating hypertension, and both groups have additional properties 

that potentially can affect the long-term control of blood pressure 
17, 18

. 
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Calcium channel blockers, are also heavily used in hypertension which limit the entry of calcium into 

vascular tissues, thus limiting contraction of vascular smooth muscle 
19

. Calcium channel blockers 

prevent some cardiovascular remodeling associated with hypertension. Long-term (6 months) 

administration of calcium channel blockers may help reduce structural changes in the left ventricle as 

well as small resistance vessels 
20, 21

. These drugs seem to inhibit structural changes in the vasculature 

primarily through inhibition of vascular smooth-muscle cell proliferation and secondarily through 

inhibition of atherosclerotic plaque formation in the vascular cell wall 
22

.  

In addition to drugs targeting hypertension, lipid-lowering drugs such as statins and stenols are 

included in the first line of combat to prevent further events as a result of arteriosclerosis 
23

. 

Anticoagulants and aspirin are either initiated as a treatment therapy or preventive measure mostly for 

episodes of myocardial infarction and vessel occlusion.  

 

 

Figure 1. Correlation between cholesterol 

levels and CVD mortality. Total age-

standardized cholesterol and ischemic 

heart disease mortality (per 100 000) in 30 

MONICA centers: Men aged 35 to 64 

years. Adapted from Circulation Research 
2
. 
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2.2.2. Other Interventions 

Surgical interventions are rather invasive but often needed in combination with pharmacological 

therapy. Stents in combination with angioplasty are common practice and the least invasive of 

procedures, an effective manner to unblock arteries and reinforce them as stents can also be left in situ 

in some situations 
24

. However taking into consideration CVD epidemiology, heart bypass surgery has 

become more common as coronary arteries are often largely blocked 
24

. Cardioversion and ablation are 

commonly used, as drugs alone by majority cannot convert arrhythmia to a normal heart rhythm after 

heart ischemic episodes. Pacemakers are a more extreme option, often used to target congestive heart 

failure and hypertrophic cardiomyopathy. In addition, left ventricular assist devices (LVAD) are 

commonly used nowadays as the “plastic hearts” as there is a scarce in human hearts for heart 

transplant. Although the combination between surgical and pharmacological procedures may delay the 

onset of disease development and in the short term improve life quality there is no evidence that 

traditional therapies improve life expectancy, as a consequence 45-50% of patients die within the first 5 

years of disease manifestation 
1
. Therefore new therapies are sought after. Great promise is seen within 

the use of cells, mostly stem cells as a tool for regeneration and homeostatic maintenance for CVD.  

 

2.3. Cells as a therapeutic approach 

Early studies in vascular regeneration either post myocardial infarction of for peripheral arterial disease 

as a result of limb ischemia have focused on the usage of angiogenic proteins such as vascular 

endothelial growth factor (VEGF) ad fibroblast growth factor (FGF). Pre-clinical and early phase trials 

were promising however did not achieve long lasting results, possibly due to single dosages or the 

proteins short half-life. However these proteins were followed up with viral vectors so as to over-

express these proteins, however the gene transfer was not efficient in vivo 
25-30

. Taking into 
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consideration that patients suffering from ischemic disease, for example, peripheral or ischemic arterial 

disease have been shown to have the same quality of life as a terminally ill cancer patients 
31

 it is very 

important to look into regeneration strategies. 

 

The strategy is to focus on stimulation of angiogenesis in vivo, pro-angiogenesis. Angiogenesis is a 

multi-factorial process where endothelial cells are the leading players in angiogenesis; pericytes are 

part of the basement membrane coating endothelial cells as an angiogenic scaffold support system 
32

. 

An angiogenic response will follow upon vascular degradation where migration of endothelial stalk 

cells occurs, recruitment of pericytes to the endothelial lumen follows and vascular stabilization might 

finally occur depending on the adhesion junctions at the basement membrane 
33

. The angiogenic 

response is highly synchronized system where through specific receptors on vascular endothelial cells, 

VEGF, FGF, angiopoietins (ANGPT1 and ANGPT2), Notch ligands and transforming growth factor-β 

(TGF-β), angiogenesis is regulated, as shown in Figure 2. VEGF activates the eNOS, SRC, RAS-ERK 

and PI3K-AKT signalling cascades through VEGFR2 receptor on endothelial cells, inducing vascular 

permeability, endothelial migration, proliferation and survival, respectively 
32, 34

. FGF2 promotes 

angiogenesis via the FGFR1 receptor on endothelial cells with signalling cascades similar to VEGF 
35

. 

ANGPT1, secreted from pericytes, activates TEK/TIE2 receptor to maintain endothelial quiescence or 

stabilization, whereas ANGPT2, secreted from endothelial cells themselves by VEGF or hypoxia 

signalling, inhibits TEK to promote endothelial activation or sprouting 
36

. JAG1-Notch signalling 

promotes angiogenic sprouting, whereas DLL4-Notch signalling inhibits angiogenic sprouting 
37

. TGF-

β signalling depending via which cascade can either inhibits endothelial cell activation or promote the 

migration and proliferation of endothelial cells 
32

. The VEGF, FGF, Notch and TGF-β signalling 

cascades are directly involved in the angiogenic signalling of endothelial. The VEGF, FGF, Notch and 
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TGF-β signalling cascades cross-talk with WNT and Hedgehog signalling cascades to constitute the 

stem-cell signalling network 
38

. FGF, Notch and canonical WNT signalling are involved in cell-fate 

determination based on mutual transcriptional regulation, whereas FGF, Notch, TGF-β, Hedgehog and 

non-canonical WNT signalling are involved in epithelial-to-mesenchymal transition (EMT) due to the 

up-regulation of SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 and TWIST 
39

. EMT is a cellular process 

similar to endothelial-to-mesenchymal transition (EndMT). Hypoxia induces angiogenesis as a result of 

VEGF up-regulation 
40

 and controls cancer stem cells and EMT transition through the stem-cell 

signalling network. In summary, angiogenesis is orchestrated by the VEGF, FGF, Notch, TGF-β, 

Hedgehog and WNT signalling cascades, which directly or indirectly regulate the quiescence, 

migration and proliferation of endothelial cells. 

 

 

 

 

 

 

 

Figure 2 – Illustration for the angiogenic process. Extracted from Clapp et al 
41

. The phases of angiogenesis as 

described in detail previously. In summary, hypoxia will trigger nitric oxide (NO), vascular endothelial growth 

factor (VEGF) and angiopoietin-1 and -2 (Ang 1 and Ang 2) expression. These molecules bind to the 

extracellular matrix and increase vessel permeability. Cells then migrate during the destabilization phase. New 

vessels are formed and maturated due to an increased expression of factors.  
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Stem cells have been widely used for many purposes namely vascular and cardiac regeneration. The 

ability of these cells to self-renew and differentiate into cardiovascular lineages render them as good 

candidates to aid where all therapies kept disappointing and are inconsistent among patient cohorts. 

Many stem cell types have been used for the regeneration such as Endothelial Progenitor Cells, Bone 

Marrow or Peripheral Blood mobilized Mononuclear Cells (MNCs), Mesenchymal Stem Cells (MSCs) 

and Cardiac Stem Cells (CSC) 
41

. 

 

2.3.1. Endothelial Progenitor Cells (EPCs) 

EPCs are defined as cells circulating in blood with the capability of producing endothelium lining. The 

exact identification of EPCs is difficult and are always referred to, or characterized by positive 

selection of several of its membrane receptors. EPCs are often obtained from bone marrow, peripheral 

blood, adipose tissue 
42

 and umbilical cord blood 
43

. It is well established that CD34+ cells are known 

as EPCs due to their capacity of forming endothelial cells 
44

. CD133+ are also EPCs and can be 

classified as “early”(CD34++,CD133++,KDR+), “mature” (CD133+, CD34low, KDR+, CD31+, VE-

Cadherin+ and vWFR+) or “more mature” (CD133+, CD34+, KDR+) EPCs, as illustrated bellow 

(Figure 3). EPCs are either isolated from circulating blood, where they are present at very low numbers 

however after stimulation of the bone marrow with either granulocyte-colony stimulating factors (G-

CSF) or granulocyte macrophage-colony stimulating factors (GM-CSF) larger numbers of EPCs can be 

collected.  

Mobilized EPCs retain their ability to expand and form vascular structures in vivo 
45

; however there 

have been many challenges in choosing the best delivery method and dosage. For peripheral arterial 

disease (PAD), many clinical trials have been performed where EPCs were mobilized using the colony 
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stimulating factors; most studies show improvements in pain symptoms in the ankle-brachial index 

(ABI) after 1-month treatment 
46

 or in pain free movement such as walking time 
47, 48

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Illustration of Endothelial Progenitor Cells (EPCs) from the Bone Marrow (illustration from 

Shantsila et al 
49

). EPCs are released into the blood stream and can be sub-categorized into early EPCs (CD34++, 

CD133++, KDR+), more mature EPCs (CD34+, CD133+, KDR+), and matures EPCs (CD133+, CD34low, 

KDR+, CD31+, VE-Cadherin+ and vWFR+). 

 

EPCs have also been isolated and then implanted into limb ischemic areas 
50-57

. Higashi et al 
51

 

delivered an enriched population of CD34+ cells (10
7
 cells) intramuscularly and at a 4 week follow up 

there were significant improvements in transcutaneous oxygen pressure (TcPo2), a non-invasive 

method to quantify skin oxygenation, is particularly useful in advanced stages of arteriopathy of the 

lower limbs for evaluation of cutaneous ischemia. Furthermore there was a significant improvement in 

pain-free walking time, acetylcholine-mediated endothelium-dependent blood flow with cell therapy 

compared to baseline. Motokuru et al 
53

 also observed significant improvements in TcPo2 at 6 months 
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follow up (2 months further into treatment than Higashi et al). Patients reported significantly less ABI 

pain and significant ulcer healing was observed in comparison to controls, however all patients had 

stop smoking during the trial period and this by itself could have confounding implications as smoking 

and diabetes can influence PAD. Duong Van Huyen et al 
50

 performed a 1-year follow up on patients, 

which had received intramuscular delivery of an enriched cell population of CD34+ cells (10
6
). These 

patients shown active angiogenesis distal to the injection site seen in histological samples with higher 

endothelial cells markers such as CD31+, CD34+ and vWF+ in comparison to age and sex matched 

controls. Ruiz-Salmeron et al 
54

 also performed a 1-year follow up however cells here were delivered 

intra-arterially (enriched cell population with 10
6
 CD34+ cells), yet the improvements in ABI pain 

rating, wound healing and blow flow were also significantly improved. At an earlier time point follow 

up, at 6 months after intra-arterial delivery of again enriched cell population with 10
6
 CD34+ cells in a 

single or double doe escalation therapy, Walter et al 
56

 reported significant improvement skin ulcer 

healing and rest pain however no improvements in ABI pain ratings or limb salvage. Another 1-year 

follow up study using again enriched cell populations with 10
6
 CD34+ cells, yet Van Tongeren et al 

55
 

wanted to see whether the combination of intramuscular and intra-arterial delivery would be of even 

higher benefit to the patients. Significant improvements were seen in both movement and ABI pain 

ratings. However the ultimate goal of limb salvage was not significant. 

Angiogenesis is a multi-factorial process which can be affected by many factors, it is clear that diabetes 

and smoking can affect the treatment outcomes and in the above studies the possibility that statins 

which was taken by nearly all patients could be interfering with mechanisms that could render total 

limb salvage, however these mechanisms are yet still to be understood. 
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2.3.2. Mononuclear Cells (MNCs) 

Total MNCs, are simply blood cells with a round nucleus and are a very homogenous population which 

have not only been widely used in PDA in similar methodologies and rational as mentioned above for 

EPCs but have been the focus for myocardial regeneration after infarction. For acute myocardial 

infarction, TOPCARE-AMI (Transplantation of Progenitor Cells and Regeneration Enhancement in 

Acute Myocardial Infarction) is the most well known trial where bone marrow derived MNCs (BM-

MNCs) were expanded ex-vivo and enriched with EPCs from peripheral blood and transplanted via 

intracoronary infusion. The 5-year follow up demonstrates long-term safety and a small yet significant 

improvements of left ventricle ejection fraction (LVEF) comparing to the control group 
58

. A further 2 

trials (one concluded the other ongoing) (Transplantation in Myocardial Infarction Evaluation (TIME) 

study) is comparing the safety and efficacy of intracoronary delivery of BM-MNCs at 3 and 7 days 

post-MI in patients with ST-segment elevation 
59

. The completed trial the LateTIME trial investigated 

whether delaying BM-MNC delivery for 2 to 3 weeks following MI and primary percutaneous 

coronary intervention improves global and regional left ventricle function 
60

. No significant changes 

between baseline and 6-month measures were observed in LVEF and wall motion in the infarct and 

border zones, as measured by cardiac magnetic resonance imaging (MRI), in the BM-MNC group 

compared to placebo. Cell transplantation 2-3 week post-MI time point may exceed the therapeutic 

window of intracoronary BM-MNC therapy. A recent meta-analysis of 50 trials with over 2600 patients 

shown that there is a long-term clinical improvement in patients receiving BM-MNC therapy. BM-

MNC therapy reduces death, recurrence of MI and thrombosis 
61

, and is a beneficial clinical practice 

even in sight of laborious methodologies for the in vivo transplantation. 

Also for chronic cardiac ischemia or disease, many studies were performed using MNCs. FOCUS-

CCTRN was the 1st trial in the USA injecting MNCs, a phase 2 trial in patients with chronic ischemic 
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cardiomyopathy that investigated the 6-month efficacy of transendocardial delivery of BM-MNCs on 

myocardial function and perfusion 
62

. No significant effect on LV end-systolic volume, maximal 

oxygen consumption, or myocardial perfusion, exploratory analyses demonstrated significant 

improvement in stroke volume and LVEF, which correlated with higher bone marrow CD34+ and 

CD133+ progenitor cell counts. These findings support the notion that certain bone marrow-derived 

cell populations may provide a greater regenerative benefit and thereby determine clinical efficacy. As 

a consequence studies using only BM-MNC derived EPCs such as CD34+ were persuaded, in the 

ACT34-CMI trial (Adult Autologous CD34+ Stem Cells) the trial aimed to evaluate the safety and 

efficacy of intramyocardial injections of autologous CD34+ cells in patients with refractory chronic 

myocardial ischemia, which were not suitable candidates for conventional revascularization 
63

.  There 

was a significant improvement in exercise tolerance at both 6 and 12 months compared to placebo 

treatment, the trial preceded to larger scale studies. As many studies were also performed, looking into 

the meta-analysis of these is helpful. A meta-analysis of randomized controlled trials of BMSCT in 

patients with chronic ischemic cardiomyopathy was undertaken 
64

. On the basis of a random-effects 

model, BM-MNCs improved the LVEF at 6 months by 4.48%. A greater improvement in the LVEF 

was seen with intramyocardial injection compared with intracoronary infusion. In summary BM-MNCs 

improve LVEF and favourably remodel the heart in patients with chronic ischemic cardiomyopathy. 

Intramyocardial injection may be superior to intracoronary infusion in patients with LV systolic 

dysfunction. 

 

2.3.3. Mesenchymal Stem Cells (MSCs) 

First described in 1974 
65

, mesenchymal stem cells (MSCs) are another heterogeneous group of cells 

that can be isolated from many adult tissues, however these have limited cellular differentiation ability. 
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MSCs express on their surface mostly CD73, CD90 and CD105, while lacking the expression of 

CD11b, CD14, CD19, CD34, CD45, CD79a and HLA-DR surface markers under culture 
66

. Data 

suggests that these cells are promising due their immunomodulatory and paracrine properties 
67

. These 

cells have been shown to improve function in many disease models such as acute lung injury 
68

, sepsis 

69
 and acute myocardial infarction 

70
. Manny clinical trials have followed mostly for acute myocardial 

treatments. In a small simple cohort Mohyeddin-Bonab et al 
71

 investigated the safety and effect of 

transplantation of MSCs in patients post MI at the time of coronary artery bypass grafting or 

percutaneous coronary intervention and compared with controls. On average 5.55x10
6
 MSCs were 

injected intramyocardial or intracoronary. Follow up was done by echocardiography plus single-photon 

emission computed tomography before and six months after the procedure. Serial clinical examination 

was performed every month through New York Heart Association class.  It was reported that single-

photon emission computed tomography scan results that infarct size decreased significantly in the test 

group after the procedure at six months follow-up. LVEF increased significantly. Therefore the 

transplantation of ex vivo expanded bone marrow derived mesenchymal stem cell in patients was a safe 

and feasible procedure and improved cardiac function without serious adverse effects. 

In another study Yang et al 
72

 evaluated the safety and feasibility of autologous bone marrow MSC 

transplantation in patients with acute myocardial infarction (AMI) who had successfully undergone 

percutaneous coronary intervention (PCI). Cultured bone marrow MSCs were injected (average of 

1.2x10
7
 cells per patient) into the myocardium via either the infarct-relative artery (left anterior 

descending branch artery, LAD) or a non-infarct relative artery (right coronary artery, RCA). A 6-

month follow up was done using 2D echocardiography, technetium-99methoxyisobutylisonitrile 

(99mTc-MIBI) and 
18

F-deoxyglucose single photon emission computed tomography to examine 

cardiac function, myocardial perfusion, and viable cardiomyocytes, respectively, at day 4 after PCI and 

https://en.wikipedia.org/wiki/CD73
https://en.wikipedia.org/wiki/CD90
https://en.wikipedia.org/wiki/CD105
https://en.wikipedia.org/wiki/CD11b
https://en.wikipedia.org/wiki/CD14
https://en.wikipedia.org/wiki/CD19
https://en.wikipedia.org/wiki/CD34
https://en.wikipedia.org/wiki/CD45
https://en.wikipedia.org/wiki/CD79a
https://en.wikipedia.org/wiki/HLA-DR
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6 months after the cell infusion. There were no arrhythmia and any other side effects, including 

infections, allergic reactions or adverse clinical events, during, immediately after, or 6 months after cell 

transplantation. Cardiac function and myocardial perfusion had significantly improved; viable 

cardiomyocytes metabolism was detected in the infarcted areas in both groups after the cell infusion, 

shown by 
18

F-deoxyglucose. Delivery via the non-infarct relative artery appears safe and feasible.  

A meta-analysis for the use of MSCs was done by Lalu et al 
73

. A total of 1012 participants with 

clinical conditions such as ischemic stroke, cardiomyopathy and MI were included in this analysis. 

Many parameters were assessed such as acute infusional toxicity, organ system complications, 

infection, death or malignancy. This study demonstrated that MSC therapy seems to be safe although 

there is a significant correlation between MSC infusion and transient fever. However from many other 

reports MSC transplant is causing improvements in cardiac prognosis and transient fever does not 

cause any worrying long term or side effects. 

 

2.3.4. Cardiac Stem Cells (CSC) 

Intrinsic cell mediated repair in the heart has been recently reported by the ability of forming new heart 

tissue in vivo 
74-76

, implying the existence of a stem cell-mediated tissue repair mechanism in the heart 

77
. Cells expressing stem cell markers, including c-kit and Sca-1, can be isolated from adult tissue and 

expanded in culture 
76

. In vitro clonal analysis has revealed that these cardiac stem cells (CSC) can give 

rise to immature cardiomyocytes, smooth muscle cells and endothelial cells 
75, 76

, and in vivo can 

generate cardiomyocytes and improve function after injection into the myocardium of infarcted rodents 

78
. Quickly after its identification, CSCs were put into clinical trials. Phase I clinical trial Cardiac Stem 

Cell Infusion in Patients With Ischemic CardiOmyopathy (SCIPIO) 
79

 demonstrated that intracoronary 
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infusion of autologous C-Kit+ cardiac stem cells (CSCs) is safe and effective at improving LV systolic 

function and reducing infarct size in patients with chronic ischemic cardiomyopathy. The 

CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction (CADUCEUS) 
80

 

trial, a phase I randomized clinical trial of cardiospheres as a cell-based therapeutic, demonstrated a 

reduction in scar mass and an increase in viable heart mass, regional contractility, and regional systolic 

wall thickening at 6 months after cell therapy.  

Great controversy over the CSCs over the recent months has raised many questions and a closer 

examination of the true identity of these CSC is under investigation 
81, 82

. However some researchers 

have been using combinations of stem cell therapies, which seems promising.  A preclinical study by 

Williams et al 
83

 shows that the combination of MSCs and C-Kit+ CSCs is more effective at reducing 

infarct size and restoring cardiac function than either cell type alone. In this study intramyocardial 

combination hCSCs/hMSCs (1x10
6
/200x10

6
), hCSCs alone (1x10

6
), hMSCs alone (200x10

6
), or 

placebo (phosphate-buffered saline) was injected into the infarct border zones at 14 days after MI. 

Cardiac function post transplantation was assessed via magnetic resonance imaging and 

micromanometer conductance catheterization hemodynamics. Each cell therapy by itself significantly 

reduced MI however the MI size reduction was 2-fold greater in combination versus either cell therapy 

alone, LVEF was also significantly improved in the combined therapy. Post-mortem histology showed 

7-fold enhanced engraftment of stem cells in the combination therapy group versus either cell type 

alone. 

A summary of the use and effect of all the above-mentioned stem cell types as therapeutic approach 

follows bellow on Table 1. 
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Stem Cell Type &  

Sub-population 

 

Dosage, Delivery mode,  

Disease Model and end point 

 

Results 

 

Reference 

 

EPCs with CD34+ 

enriched populations 

 

Total cells count of 1.6×10
9
±0.3×10

9
   

containing 3.8×10
7
±1.6×10

7
 CD34+, 

intramuscular delivery  in human limb 

ischemia, end point 4 months 

 transcutaneous oxygen pressure (TcPo2) 

 pain during walking time 

 acetylcholine-mediated endothelium-dependent 

blood flow 

 

Higashi et al 

51
 

 

EPCs with CD34+ 

enriched populations 

 

Total cells count of 5.8 × 10
7
 ± 4 × 10

7
 

containing 9.8 ± 9.91 × 10
6 

CD34+, in 

human limb ischemia, end point 6 months 

 transcutaneous oxygen pressure (TcPo2) 

 pain during walking time 

 ulcer healing  

 

Motukuru et al 

 
53

 

 

EPCs with CD34+ 

enriched populations 

 

Total cells count of 1.11–4.49 × 10
9
 

containing 0.39–1.93 × 10
6 

CD34+, 

intramuscular delivery in human limb 

ischemia, end point 1 year 

 active angiogenesis  

 endothelial cells markers: CD31+, CD34+ and 

vWFR+ 

 amount of amputations 

 

Duong Van 

Huyen et al 

50
 

 

EPCs with CD34+ 

enriched populations 

 

Total cells count of 1-4 × 10
8 

containing 1 × 

10
6 

CD34+, intra-arterially delivery in 

human limb ischemia, end point 1 year 

 pain during walking time 

 wound healing  

 blood flow at 3 months under angiographic 

analysis  

 

Ruiz-Salmeron 

et al 
54

 

Table 1 – Summary of the various types of stem cells used on regeneration. 
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Stem Cell Type &  

Sub-population 

 

Dosage, Delivery mode,  

Disease Model and end point 

 

Results 

 

Reference 

 

EPCs with CD34+ 

enriched populations 

 

Total cells count of 1-2 × 10
8 

containing 2-3 

× 10
6 

CD34+, intra-arterially delivery in 

human limb ischemia, end point 6 months 

 pain during walking time 

 ulcer healing 

 amount of amputations 

 

Walter et al 

56
 

 

EPCs with CD34+ 

enriched populations 

 

Total cells count of 1-5 × 10
8 

containing  1-4 

× 10
6 

CD34+, intramuscular  & intra-

arterially delivery in human limb ischemia, 

end point 1 year 

 mobility 

 pain during walking time 

 amount of amputations 

 

Van 

Tongeren et 

al 
55

 

 

 

BM-MNCs enriched 

with EPCs 

 

 

Total cells count of 60-90 x 10
8 

containing 

10
6 

CD34+, intramuscular delivery in human 

myocardial infarction, 5 year follow up but 

ongoing trial (TOPCARE-AMI) 

 Left Ventricle Ejection Fraction (LVEF) 

 MI reoccurrence  

 serum levels of N-terminal pro-hormone brain 

natriuretic peptide (NT-proBNP) 

 none of the patients showed any signs of 

intramyocardial calcification or tumours 

 functional infarct size 

 

 

Leistner et al 

58
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Stem Cell Type &  

Sub-population 

 

Dosage, Delivery mode,  

Disease Model and end point 

 

Results 

 

Reference 

 

 

BM-MNCs 

 

Total cells count of 150 × 10
6
, intra-

coronary infusions, human acute myocardial 

infarction (AMI), 6 months (LateTIME) 

 

 demonstrates timing of cell delivery following AMI 

is a critical factor in determining the efficacy of cell 

therapy 

   no improvement in  global or regional function at 6 

months 

 

Traverse et al 

59, 60
 

 

 

BM-MNCs 

 

Total cells count of 1×10
8
 transendocardial 

delivery, chronic ischemic heart failure, 6 

months (FOCUS-CCTRN) 

 

 LV end-systolic volume 

 maximal oxygen consumption & myocardial 

perfusion 

 stroke volume 

  LVEF 

 

Perrin et al 

62
 

 

 

EPCs, CD34+ only 

 

Total cells count of 1×10
5
 or 5×10

5
, 

intramyocardial, human refractory angina, 1 

year (ACT34-CMI) 

 

 in exercise tolerance ( at 6 and 12 months) 

 

Losordo et al 

63
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Stem Cell Type &  

Sub-population 

 

Dosage, Delivery mode,  

Disease Model and end point 

 

Results 

 

Reference 

 

 

CSCs 

 

Patient own expanded cells from 

endomyocardial biopsy suffering from 

human ischemic cardiomyopathy, ongoing 

clinical trial (CADUCEUS) 

 scar mass 

 viable heart mass 

 regional contractility  

 regional systolic wall thickening  

 

Makkar et al 

80
 

 

 

Combination of 

MSCs and C-Kit+ 

CSCs 

 

Intramyocardial delivery, human myocardial 

infarction, ongoing clinical trial 

(CADUCEUS) 

 infarct size  

cardiac function 

 LVEF  

 Post-mortem histology showed 7-fold 

enhanced engraftment of stem cells  

 

 

Williams et al 
83
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Stem Cell Type &  

Sub-population 

 

Dosage, Delivery mode,  

Disease Model and end point 

 

Results 

 

Reference 

 

BM-MSCs 

 

Total cells count of 5.55×10
6
, at the time of 

coronary artery bypass grafting or 

percutaneous coronary intervention on 

human myocardial infarction, 6 months 

 infarct  size 

  LVEF  

 was a safe and feasible procedure  

 

 

Mohyeddin-Bonab 

et al  

71
 

 

 

BM-MSCs 

 

Total cells count of 1.2×10
7
, delivered via 

infarct-relative artery (left anterior 

descending branch artery, LAD) or a non-

infarct relative artery (right coronary artery, 

RCA) on human myocardial infarction, 6 

months 

 procedure was safe and feasibile  

 no arrhythmia and any other side effects 

 cardiac function 

  myocardial perfusion  

 viable cardiomyocytes detected in the infarcted 

areas  

 

 

Yang et al 

72
 

 

CSCs , C-Kit+ 

enriched 

 

Patient own expanded cells from aortic 

biopsy suffering from human ischemic 

cardiomyopathy, ongoing clinical trial 

(SCIPIO) 

 procedure was safe  

 LV systolic function 

 infarct size  

 

Chugh et al 

79
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 2.3.4.1.  Expansion of CSCs  

Beltrami et al were some of the pioneers in CSC isolation; they first reported the isolation and usage of 

CSCs 
74

. They isolated CSCs by positive selection of Ckit marker also know as CD116 using magnetic 

beads and also FACS. These cells were expanded under normoxia for 5-7 days to attain enough 

numbers for transplantation. However proliferation was slow, doubling times were of 40 hours and not 

much more than 20,000 cells were available for each sort. At passage 2, after a starting with 20,000 

cells only 100,000 cells were available and these were transplanted in vivo. Furthermore fibroblast 

contamination in these cultures was detected. Yet these protocols are widely used, including ourselves 

78
 and within the clinical trials cell preparations 

79, 80
. Here as illustrated in Figure 4, cell are explanted 

from tissue removed from the atria, cells outgrow from the explanted tissue and are harvested to so as 

to form cardiospheres which later are made to adhere and create monolayers of cells cardiosphere 

derived cells (CDCs) 
84

.  From these protocols a total of 15 x 10
6
 CDCs can be attained from one 

neonatal rat heart after 10 days of culture.  
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Figure 4. Isolation of CDCs. Extracted from Tan et al 
84

; Cardiac stem cell isolation by explant culture. (A) 

Heart tissue is minced into pieces and explanted on a fibronectin-coated petri dish. (B) Phase-bright cells grow 

from the explant on top of a layer of stromal-like cells after 7 days. (C) Cardiospheres form after 4 days on poly-

D-lysine. (D) Cardiospheres are expanded in a fibronectin-coated flask to become a monolayer. (E) Passage-0 

cardiosphere-derived cells become confluent after 5 to 7 days. (F) Cardiosphere derived cells form second-

generation cardiospheres at passage 5. Scale bar is 250 μm. 

 

 

Oh et al were set to determine the best isolation method for progenitor cells within the adult heart after 

digestion, so as to attain cultures as pure as possible. They used a double isolation method, first isolated 

cells via FACS and based on hematopoietic cell surface markers including Ckit and Sca-1. They found 

a side population based on Hoechst efflux. They concluded that 14-17% of the murine cells were Sca-

1+ yet none positive for blood markers. Afterwards a second selection was done using magnetic 

enrichment for Sca-1+ cells, here there was above 90% purity of the cultures. This study was important 
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by the identification of markers for CSCs selection and that these cells could then be after isolation 

differentiated using 5-azacytidine (5-aza) and form “cardiomyocyte like cells”. No cell numbers or 

doubling times were reported here 
85

. Tang et al also followed a double isolation method 
86

, first, by 

expansion of endogenous cardiac stem cells through primary heart tissue explant, second, by isolation 

of stem cells from fibroblasts by cell sorting with stem cell markers, and cloning.  The end product was 

a fibroblast-free culture system of Sca-1+ cells, which kept cellular self-renewal, and clonogenic 

character untouched, and also as shown by Oh et al, can differentiate into cardiomyocytes-like cells. 

Tang et al also show that these cells can double and from a starting point of 2 x 10
6
 cells 10 x 10

6
 cells 

can be attained 14 days later.  

Nonetheless the antigens that are targeted for the isolation CSCs varies a lot between laboratories.  

These cells for lab or clinical trial usage have been produced under traditional cell culture setting, 

expansion has not been done any bioreactors, expansion is slow and extraction of tissue for culture is 

very invasive.  

 

A summary of the isolation procedures above-mentioned follows bellow on Table 2. 
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Table 2 – Summary of the isolation procedure of the various sub-types of CSCs used on regeneration. 

 

 

2.3.4.2. CDCs and hypoxic pre-conditioning 

Hypoxia might be beneficial for stem cell maintenance, as stem cells have been shown to live in niche 

of reduced oxygen levels. Recent studies show the importance of hypoxia in human MSCs and induced 

pluripotent stem cells (iPSCs), indicative that hypoxia promotes an undifferentiated state 
87-90

. It is 

believed that the hypoxic environment maintains cell pluripotency by maintaining cells in a non-

Cardiac Stem 

cell sub-type 

Isolation 

technology 
Source 

Selection 

Marker 
Characteristics Reference 

Cardiac c-kit +  
Heart digestion + 

MACS/FACS 
Rat heart Lin-c-kit + 

Self-renewing, 

clonogenic and 

multipotent 

 

 

Beltrami et al 

 
74

 

 

Cardiac Sca-1+  
Heart digestion + 

MACS 
Mouse heart 

Lin-, Sca-1 

+, CD31 +, 

CD38 +, c-

kit-, Flk-1-, 

CD45 − 

Expression of 

cardiogenic 

transcription factors; 

differentiation after 

5-aza induction 

Oh et al 

 
85

 

 

Two-step 

procedure: tissue 

explanting + 

MACS 

 

Mouse heart 

Sca-1 +, c-

kit + and 

CD45 − 

Self-renewing, 

clonogenic and 

multipotent 

Tang et al 

 
86

 

Cardiosphere-

derived cells 

(CDCs) 

Sphere-forming 

cells from tissue 

explanting 

technology 

Human atrial, 

ventricular 

biopsy; 

postnatal 

mouse hearts 

KDR + 

CD31 +, 

CD34 +, c-

kit +, Sca-1 

+ 

Clonogenic 

 

Messina et al 

 
75
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dividing, or slow cycling stage and protected from detrimental accumulation of reactive oxygen species 

(ROS). It is reported that ROS would be reduced to secure the maintenance of stem cells in the case of 

hypoxia 
91

. A study with adipose stem cells (ASC) demonstrates that these proliferate and migrate more 

significantly by increasing the intracellular levels of ROS 
92, 93

 yet the mechanisms are still unclear.  

Hypoxia triggers a number of physiological and cellular mechanisms to adapt to reduced oxygen levels. 

Many processes involved in oxygen homeostasis are mediated by the hypoxia-inducible factor 
94

 

transcriptional complex, which was discovered in 1992, and which comprises HIF-α and HIF-β 

subunits 
95

. HIF-α protein is only detectable under hypoxic conditions while HIF-β protein is 

constitutively stable. Human HIF-α exists as three isoforms, the two best characterized of which (HIF-

1α and HIF-2α) each contain two sites of prolyl hydroxylation and a single site of asparaginyl 

hydroxylation 
96

. Prolyl hydroxylation occurs at residues Pro402 and Pro564 catalyzed by prolyl-4-

hydroxylase (PHD) whereas asparaginyl hydroxylation at residues Asn803 catalyzed by factor-

inhibiting HIF (FIH) enzymes 
97

. Both hydroxylation inhibit HIF system, but yet in a slightly different 

mechanism. Prolyl hydroxylation marks the protein for degradation by the von Hippel Lindau protein 

(pVHL), leading to proteasomal degradation of total HIF-α protein, while asparaginyl hydroxylation 

within HIF-α C-terminal transactivation domain 
98

 inhibit the interaction of CAD with CBP/p300 

(Creb-binding protein/protein 300), which is essential to link the HIF-α to the hypoxia response 

element (HRE) transcriptional factor, thus silencing the HIF system 
99, 100

. Under hypoxia, HIF-α 

escapes both the prolyl and asparaginyl hydroxylation, translocates to the nucleus and dimerises with 

HIF-1β to form functional heterodimeric HIF. 

No studies have been performed on effects on effects of hypoxia and CSCa, as a result we have in 

chapter V examined the effects on both proliferation and differentiation of CSCs. 
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2.4 Delivery of angiogenic growth factors  

Limb ischemia often results from arterial occlusion and stenosis as a consequence of atherosclerosis. 

Endothelial dysfunction is an important factor in pathogenesis for plaque initiation and progression 

within limb ischemia 
101, 102

.  It is common clinical practice to tackle limb ischemia involves surgical 

revascularization either by stent implantation, laser revascularization or bypass surgery, however the 

success rates are still disappointing, leading to gangrene and amputation in a large majority of cases. It 

is speculated that successful treatment with the above therapies may eventually cause restenosis due to 

phenotypic redifferentiation of neovascular intimal smooth muscle cells 
103

.  

Various forms of delivery of angiogenic growth factors have been approached using biomaterials 
104-

106
. When looking into growth factor delivery via biomaterials many factors are taken into account. 

Firstly, efficiency of factor entrapment and release is very important, taking into consideration the high 

cost of the growth factors. Furthermore, it is important that a sustained delivery is achieved rather than 

a burst effect for greater effect of biomolecules such as angiogenic factors 
107

. Burst effects can be 

achieved with ease via traditional local injection, however these also introduce needle track injuries and 

responses to such.  

In many cases, PLGA NPs, porous matrices and scaffolds, hydrogels, liquid-injectable hydrophobic 

polymers have been used for the delivery of growth factors 
107-111

. In this chapter we focus on the use of 

PLGA NPs for delivery of biomolecules. NPs, namely PLGA NPs are capable of delivering sustained 

amounts of encapsulated factors and proteins over a relatively long-time in vivo 
112-114

. NPs can deliver 

a range of biomolecules from interleukins to factors and proteins, used as vaccination systems too, for 

cancer or localized tumour regression.  
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PLGA renders these NPs biocompatible, have a reasonable shelf life and degrade completely in vivo. 

Yet polymer (PLGA) degradation can be an issue when delivering larger proteins, in terms of protein 

stability 
115

. PLGA degradation can be responsible for creation of acidic environments, which in turn 

can induce the unfolding of the proteins. Furthermore, acidity might cause tissue inflammation where 

PLGA NPs degraded in vivo 
116

. 

PLGA NPs can be used for growth factor delivery. Although burst release and creation of acidic 

environments in vivo can influence effectiveness of biomolecule delivery many authors have exploited 

the PLGA NPs for VEGF165 delivery. Classical studies such as by Cleland et al 
117

, demonstrated that 

9% (weight per volume) of the VEGF loaded into the NPs had a low affinity, overtime the VEGF 

aggregated and were not recognizable to ELISA assays, however the delivery was sustained over 28 

days without a burst period. Nevertheless the VEGF release increased local angiogenesis without 

systemic side effects.  

Several examples in the use of PLGA nano/microparticles for VEGF165 delivery are documented in the 

literature. The first thorough report of VEGF degradation within PLGA NPs was by Kim et al 
118

. The 

authors have used a system to release VEGF in order to develop a pharmacokinetic model for 

controlled VEGF release. However the in vivo release profiles of the proteins were slower than the in 

vitro release profiles but they followed similar trends. The PLGA microsphere degradation was the 

determinant step for VEGF release from the microspheres and its absorption at the subcutaneous site. It 

was found that 25% of VEGF activity was lost following release from PLGA NPs. This loss of activity 

may be due to degradation in acidic environments as a result of PLGA degradation 
118

. The main 

problem for an efficient VEGF delivery was the acidic environments 
119-122

, therefore many have 

attempted to incorporate PEG and basic salts into the NP formulations. Inclusion of basic salts into 

formulations did not prevent acidity and the usage of PEG only kept the pH between 5-5.8. 



 39 

2.5. Micro RNAs (miRs) for enhancing angiogenesis and cell survival 

Taking into consideration the delivery of angiogenic proteins is rather problematic and somethimes 

inefficient; the delivery of oligonucleotide and smaller fragment such as miRs has been explored 
123

.  

miRs are small 20-24 nucleotide long RNAs which regulate gene expression by binding to mRNAs. 

MiRs can regulate 30-50% of protein coding genes 
124

. miRs are transcribed as a primary miR (pri-

miRNA) transcript by RNA polymerase II. The miR transcripts are cleaved by a heterodimer of double 

strand RNA binding proteins, Drosha and DiGeorge Syndrome Critical Region 8 (DGCR8), releasing a 

55-70 nucleotide small RNA hairpin, the pre-miR. This RNA hairpin is then exported out of the 

nucleus by Exportin-5 and Ran-GTP. In the cytoplasm, another RNAse III enzyme, Dicer cleaves the 

pre-miRs to generate 22nt duplex RNAs. These are by now mature miRs that get included into RNA 

induced silencing complex, the RISC complex, consisting of two major classes of proteins Argonaute 

and GW182. Translational repression or deadenylation will follow as shown in Figure 5. This is the 

accepted pathway of miR biogenesis, however recent research has shown several alternative pathways 

depending on cell type, organism and biological contexts 
125, 126

. 

Initially it was proposed that miRs bind to target mRNAs using a seed sequence consisting of 6-8 

continuous bases and a few more complementary bases along the miR sequence. In mammalia, the 

miRs rarely have a perfect complementarity with their targets. Therefore, it has been hypothesized that 

mammalian miRs suppressed translation of target mRNAs leading to a decrease in target proteins 
127

. It 

has been proposed that miRs maintain robustness of gene expression by insulating biological systems 

against noise 
128

. miRs offer a unique advantage by regulating gene expression in the cytoplasm this 

because of regulatory mechanisms that control gene expression programs such as transcriptional 

regulators, epigenetic modifications. Also there are miRs that could be up-regulated quickly in cells 

achieving greater potency than possible via other mechanisms. There have been simulations that 
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demonstrate that miR mediated feed forward loops are more effective than transcriptional repressors in 

buffering gene expression against external perturbations 
129

. The beauty of miRs is that they can 

regulate multiple targets, often several of them in a single pathway, making it an effective tool to 

modulate gene expression in response to specific stimuli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Illustration of miR biogenesis and function. Extracted from Suarez and Sessa 
130

. Nuclear miRs 

originate in the nucleus as RNA polymerase II primary transcripts (pri-miRs), transcribed from miR genes, from 

polycistronic transcripts, or from introns of protein-coding genes. Pri-miRNAs are then processed and catalyzed 

by RNase III type endonuclease Drosha and Dicer. These function in complexes with double-stranded RNA–



 41 

binding domain proteins, DGCR8 and TRBP for Drosha and Dicer, respectively. Drosha-DGCR8 processes pri-

miRs to premiRs. A subset of miRs, miRtrons, also derived from introns, is processed into pre-miRNAs by the 

spliceosome and the debranching enzyme. Both miRs and miRtrons are exported to the cytoplasm via Exportin5, 

where they are further processed by Dicer-TRBP to yield 20-bp miRNA duplexes. One strand is selected to 

function as mature miR and loaded into the RISC, whereas the partner miR* strand is degraded. The mature miR 

leads to translational repression or mRNA degradation. The key components of the RISC are components of the 

Argonaute family. Fraction of miR* species can also access Ago complex and regulate targets. Perfect 

complementarity between miR and mRNA leads to an endonucleolytic cleavage, catalyzed by the human Ago2 

in the RISC. Animal miRs usually show only partial complementarity to the target mRNA promoting 

translational repression or deadenylation coupled to exonucleolytic degradation of target mRNA. mRNAs 

repressed by deadenylation or at the translation–initiation step are moved to P-bodies for either degradation or 

storage  
130

. 

 

2.5.2. miRs with pro-survival and pro-angiogenic activity 

From the STRING database it can be seen that many miRs interact affecting receptors, ligand and 

transcription factors related to cell survival and angiogenesis. Some miRs when down-regulated such as 

miRs 21, 27, 34a, 34ac, 124, 130, 148, 221, 222 and 503, have been predicted to target NOTCH and 

VEGF signaling 
131

, a few miRs can amplify a pro-angiogenic signalling network. In contrast, up-

regulation of miR-132 and 126 induce angiogenesis by negative regulators of VEGF signalling, like 

p120RasGAP and SPRED1, respectively. Poliseno et al performed the first study implying that miRs 

were involved in endothelial cell regulation 
132

. Once the most abundant miRs were arrayed from 

HUVECs many miRs were predicted to target angiogenic growth factor receptors such as miR221/222 

as negative regulators of angiogenesis 
132

. miR126 is the most abundant miR in endothelial cells and in 

2008 two studies reported the first evidence for in vivo function of miR126 
133, 134

. It was shown that 

miR126 was important for developmental and pathological angiogenesis and implicated Sprouty 

Related EVH Domain containing protein 1(SPRED1), a negative regulator of VEGF. It has also been 

reported that miR126 regulates endothelial cell recruitment to metastatic breast cancer cells, in vitro 

and in vivo by down-regulating a complex network of targets (suppressed metastatic endothelial 

recruitment, metastatic angiogenesis and metastatic colonization) 
135

. miR92a was shown to have an 
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anti-angiogenic effect partly through targeting the integrin subunit α5 
136, 137

. Loss of miR92a improved 

functional recovery after myocardial infarction and limb ischemia by enhancing blood vessel growth 

136, 137
.  

Angiogenesis is highly dependent on stimuli; during developmental and pathological angiogenesis 

many stimuli can trigger distinct miR expression profiles. miR210 and miR424 are up-regulated in 

response to hypoxia 
138-141

. Some specific miRs are up-regulated in response to angiogenic growth 

factors VEGF and bFGF 
142

; while others are regulated by Notch pathway signalling 
143

 and cytokines 

such as IL-3 
144

. All the above have been demonstrated to trigger miR expression via classic signal 

transduction pathways and transcription factors. 

 

2.5.3. Nanomaterials for the delivery of miRs.   

The success of a gene therapy application depends on three factors, a) the choice of an appropriate 

therapeutic gene, b) the delivery of this gene to a sufficient number of cells, c) the achievement of 

appropriate levels of gene expression 
145

. The lack of an ideal vector, capable of fulfilling the above 

requirements is a constant hurdle. The highly effective vectors render worries about safety for human 

usage and others considered safe are not efficient enough. Importantly, a theranostic approach for the 

delivery of miR was not described before the performance of the current PhD thesis.  

miR delivery in vitro is often done using cholesterol conjugated 2’-O-methyl antisense 

oligonucleotides, locked nucleic acid based antisense oligos (LNAs), oligos with multiple miR binding 

sites to act as competitive inhibitors (miR sponges) or oligos with gene specific sequences 

complementary to miR binding sites (miR masks) 
146

.  

The effectiveness of these delivery methods depends on the miR to deliver and where within the cells. 
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It has been postulated that it is desirable to deliver exogenously prepared miRs because naked miRs are 

often unstable and destroyed 
147

, therefore delivery of miRs using NPs makes a lot of sense.  

In vivo miR delivery has traditionally been done using naked injections which results in delivery of 

miRs to the liver however for specific tissue targeting, our practical experience is that to deliver miR 

within ischemic injury or tumour vasculature the naked injections are disappointing and challenging. 

From the literature there is over 50 reports published for the delivery of miRs using NPs, bellow are 

described some of the most interesting. Table 3 shows as reviewed by Kanwar et al 
148

, various types 

of nanomaterials can be used for miR delivery, however our focus shall be on NPs. 
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Table 3 – Summary of namomaterials for miR delivery, extracted and adapted from Kanwar et al 
148

. 

Name Composition Features and uses Reference 

Carbon nanotubule 

 

 

 

 

Composed of fullerenes 

(C60 compounds) 

and/or carbon-based 

hollow cage-like 

structures 

 

Increased internal volume and ease of functional modification of 

internal and external surfaces. Single-walled nanotubes are used 

for drug and gene delivery. Double-walled nanoparticles have 

better implications for transfection 
 

Foley et al  
149

 

Martin et al 
150

 

Liposome Amphipathic lipids 

 

SUVs composed of single lipid bilayer, where as LUVs consist 

of multiple layers. They alter the pharmacokinetic profile of 

loaded drug molecules 
 

Rawat et al 
151

 

Solid lipid 

nanoparticle Amphipathic lipids 

 

Comprise a hydrophobic core (50-100 nm in diameter); they can 

be used as an effective adjuvant for vaccines and as non-viral 

transfection agents 
 

Cevc  et al 
152

 

Polymeric 

nanoparticle 

Biodegradable and 

biocompatible polymers 

 

Nanocapsules entrap the drug and nanospheres can be used for 

coating the drug on their surfaces. They enable greater control of 

the pharmacokinetic behavior of the loaded drug, leading to more 

appropriate steady levels of the drug 
 

Rawat et al 
153

 

Polymeric micelles Amphipathic lipids 

 

They are formed in hydrophobic environments and are suitable 

for the delivery of water-insoluble drugs because of their core 

shell structure 
 

Torchilin et al 
153

 

Functionalized 

nanoparticle 

Inorganic metal such as 

Pt, Pd, Au and Ag 

 

Fluorescent properties can be incorporated to be used as 

biosensors. They can also be used as markers for research in 

molecular biology, targeted drug delivery and biosensing Sechneider et al 
154
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The delivery of miRs by NPs is recent and mostly used for in vitro applications. For example, most 

recently, Sohn et al 
155

, used polyketal polymer PK3-miR loaded NPs to deliver miR to somatic cells 

for 6 days. Resulted in the formation of colonies which when assayed for various pluripotency markers, 

there was a substantial induction Oct4, Sox2, and Nanog expression. These colonies were also SSEA-1 

positive. Sohn et al, demonstrated that using NPs and miRs activation of pluripotency associated genes 

in mouse BM-mononuclear cells using embryonic stem cell (ESC)-specific miRs encapsulated in the 

acid sensitive polyketal PK3 is possible. Magnetic NPs have also been used for successful transfection 

and miR delivery 
156

.  

Schade et al, developed a technique to deliver miR335 into hMSCs with using magnetic non-viral 

vector based on cationic polymer polyethylenimine (PEI) bound to iron oxide magnetic NPs. The 

toxicity of various constructs was tested; the release, processing and functionality of delivered miR335 

were assessed. They found that these NPs were able deliver functional miR335 however at maximal NP 

internalization (~75%) there was a moderate cytotoxicity in hMSCs. Another interesting study shows 

introduction of short seed-directed LNA oligonucleotides (12- or 14-mer antiseeds) with a 

phosphodiester backbone (PO) for efficient miR inhibition, which lead to the formation of polymeric 

NPs 
157

. The authors show the successful functional delivery of LNA (PO) 14-mer anti-seeds into cells. 

The LNA (PO) 14-mer antiseeds are attractive miR inhibitors, and their PEI-based delivery may 

represent a promising new strategy for therapeutic applications. 

NPs have been also used as miR delivery vectors in vivo. Chen et al, developed a LPH (liposome-

polycation-hyaluronic acid) NP formulation modified with tumor targeting single-chain antibody 

fragment (scFv) for systemic delivery of small interfering RNA (siRNA) and miR34a into experimental 

lung metastasis of murine B16F10 melanoma 
158

. The two daily intravenous injections of the combined 

NPs significantly reduced the tumour in the lung.  In this study it was shown that the simultaneously 
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delivery of miR34a and siRNAs within the NPs enhanced the anticancer effect. In a different model, 

Zhou et al used PLGA NPs to form NP/TGF-β1 miR plasmid (NP/plasmid) to silence the expression of 

TGF-β1 gene associated with scar and adhesion formation in the flexor tendons. Both in vitro and 

in vivo transfection against tenocytes revealed that the NP/plasmid complexes have significantly 

superior transfection efficiency over the lipofectamine/plasmid complexes 
159

.  

In another study PLGA NPs were used to deliver antisense oligonucleotides to inhibits miR155 mouse 

model of lymphoma. It was shown that systemic delivery of antisense peptide nucleic acids 

encapsulated in the NPs inhibits miR155 and slows the growth of these "addicted" pre-B-cell tumours 

in vivo, suggesting a promising therapeutic option for lymphoma/leukemia 
160

. 

 

Table 4 shows some other types of miRs that have been delivered using NPs, its characteristics and 

effects. 
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Table 4 – Summary of miR delivery by NPs. 

 

NP type, size, charge 

 

Loading efficiency, location of delivery,  

miR stability 

 

Effect, theranostic system? 

 

Reference 

 

Iron oxide NPs, size range 50-220 

nm, final charge of 41.54  1.61 

mV. 

 

 

5pmol of miR335 per 1g NP, delivered into 

mesenchymal stem cells, miR rendered 

functional, 74% of cells labelled and 

formulation delivered within the cytoplasm.   

 

Target genes of miR335 were down 

regulates, is a possible theranostic modality 

however this study dies not show in vivo 

testing or MRI imaging of labelled cells. 

 

Schade et al 
156

  

 

Silica NPs, 74 nm, charge not 

mentioned. 

 

 

6.8×10
9
 particles/mL (40 µg/mL) delivered 

into NB1691, SK-N-AS and HEK293 cells 

carrying miR34a. Delivered into solid tumors 

after in vitro testing. The miR carried was 

stable and functional. 

  

NPs were able to deliver miR to the tumor, 

which over-express miR-34a from 4 to 25 

fold in NB1691 tumours, and 2 to 7 fold in 

SK-N-AS tumours. Imaging done using in 

vivo fluorescence system (IVIS). 

 

Tivnan et al 
161

 

 

Silencing nanoparticles made of 

poly-L-lysine ( iNOP-7) 

 

2 mg kg
−1

 of iNOP-7 were systemically 

delivered into mice to determine  the rolemiR-

122 silencing on cholesterol metabolism. 

  

iNOP-7 efficiently delivered anti-miR122 

into cells, specifically silenced miR122 in a 

dose-dependent manner. Endogenous miR-

122 was slightly reduced by 10 pM, ~90% 

of miR-122 was silenced at 1 nM. In vivo it 

was seen that  miR122  participates in 

regulation of the cholesterol biosynthetic 

pathway and that silencing was achieved 

without apparent toxicities. 

 

 

 

Su et al 
162
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2.6. Cell tracking 

One of the main issues related to the cell-based therapies for heart regeneration is to understand the 

ultimate fate of the transplanted cells, their location, survival and function. Multiple clinical trials 

are examining the therapeutic effect of different stem cells and it is necessary to develop approaches 

to monitor their mechanism and safety. Monitoring the fate of stem cells in clinical trials requires 

the use of non-invasive imaging techniques. Ideally, these imaging techniques would have single-

cell sensitivity and would permit quantification of exact cell number at any anatomic location 
163

. In 

addition, it is desirable to have a technique to track the injected cells for months to years for long-

term follow-up of cell function and survival.  

Several imaging techniques are available for in vivo tracking of stem cells, including X-ray-based 

methods (e.g. computed tomography), optical imaging (bioluminescence and fluorescence), 

ultrasound (e.g. echocardiography), single-photon emission computed tomography, positron 

emission tomography, and magnetic resonance imaging (MRI) 
163, 164

. Echo is widely used of easy 

access and low cost, used in urgent bedside cases and useful to access vascular function and valve 

functions as well as other abnormalities 
165

, remains heavily used, especially given the benefits 

recently achieved by contrast and strain imaging. However echocardiography results are heavily 

dependent on the user and deviations are relatively high mostly due to user interface and might not 

be so comparable to more robust less prone to bias methodologies 
166

. Three-dimensional Echo 

could overcome some of the above issues however it is not widely available 
167

. SPECT is well 

established for the detection of myocardial ischemia in heart failure and other ischemic episodes 
165

. 

Radionuclides are heavily used and present significant kidney and radiation risks. They are widely 

available and highly reproducible but limited spatial resolution and artifacts are common 
168

.  PET 

and MRI are widely used but of limited availability (due to expense) and safety concerns regarding 

the contrast agents used. MRI is the most comprehensive cardiac and vascular imaging tool, 
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offering high-quality information on cardiac structure, function, blood flow, and tissue 

characterization. SPECT provides high diagnostic accuracy and offers high hopes for incrementally 

offering perfusion and myocardial scar imaging but ionizing radiation exposure becomes an 

increasing concern with combined CT-based evaluations, and efforts to limit such exposure are of 

high priority for both CT and nuclear imaging-based technology development. 

MRI combines the chemical sensitivity of nuclear magnetic resonance with high spatial and 

temporal resolution, therefore provides optimal technical characteristics to track stem cells at the 

myocardium. Beyond anatomical imaging, MRI has the ability to examine organ functionality and 

perfusion 
169

. MRI can detect a wide range of biologic information, including flow, motion, 

morphology and tissue composition. The ability to label stem cells with NPs, such as 

superparamagnetic iron oxide (SPIO) NPs, gadolinium, fluorine, iodine and manganese-based NPs, 

can provide a method to initially localize the stem cells and monitor their migration. Some of these 

formulations are commercially available 
3
. SPIO NPs are negative contrast MRI agents composed 

of an iron oxide core, responsible for the imaging contrast, and a dextran, carboxydextran or starch 

coat, which inhibits NP aggregation 
170, 171

. Gadolinium-containing NPs are positive contrast MRI 

agents, which have gadolinium oxide, Gd2O3, at its core, providing high-contrast enhancement in 

MRI 
172

. These NPs are mainly used as cardiovascular system contrast agents rather than a specific 

organ or cell markers; nevertheless they may be used for specific cell marking. Fluorine containing 

NPs are also emerging as an alternative formulation to label stem cells. In contrast to SPIO NPs, 

fluorine NPs allows the selective visualization of the labelled cells by 
19

F MRI, while anatomical 

information is attained by 
1
H MRI 

3, 171
 an example of use of 

19
F/

1
H MRI is shown on Figure 6, 

however here a fluorinated compound is used not fluorinated NPs. 
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Figure 6 -
 19

F/
1
H imaging. Images extracted from Flögel et al 

10
 of he mouse thorax after ligation of the left 

anterior descending coronary artery (LAD) showing an accumulation of 
19

F signal near the infarcted region 

(I) and also at the location of surgery, where the thorax was opened (T). Fluorinated compounds were 

injected at day 0 via the tail vein. (B) Sections of 
1
H images superimposed with the matching 

19
F images 

(red) acquired 1, 3, and 6 days after surgery indicate a time-dependent infiltration of PFCs into injured areas 

of the heart and the adjacent region of the chest affected by thoracotomy. 

 

The detection threshold for NP-labelled cells is affected by a number of factors, including field 

strength, signal-to-noise ratio, pulse sequence and acquisition parameters 
173, 174

. The minimum 

detectable dose of cells has been reported to be 1x10
5
 for a MRI with 1.5 T of field strength 

175
, but 

this number can be affected by differences in hardware, resolution of acquired images, cell type, 

and uptake of NPs by cells 
174

 . Cell labelling is initiated by the incubation of cells with the NPs. In 

most cases, the cellular uptake of the NPs requires the use of transfection agents, including 

protamine sulphate, poly-L-lysine or other polycationic polymers. Alternatively, cell labelling can 

be performed by electroporation using electrical pulses of approximately 130 volts to induce 

temporal permeability changes in cell membranes, thereby facilitating the diffusion of MRI contrast 

agents 
176

. Of note, several studies indicate that the cellular uptake of NPs has minimal impact on 

stem cell viability and their differentiation program 
3
. 

There are already examples of the clinical translation of SPIO labelled cells in the context of other 

cell-based therapies. The first study reported SPIO labelling of dendritic cells in human patients as 

cancer vaccines 
177

. This approach allowed the assessment of the accuracy of dendritic cell delivery 
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and of inter- and intra- nodal cell migration patterns. The second example reported the use of SPIO-

labelled neural stem cells for human brain regeneration 
178

. Both studies seem to indicate the 

feasibility of using NP- labelled stem cells in humans. The use of MRI allows one to accurately 

deliver the NP- labelled stem cells to the infarcted area. This has been demonstrated for the catheter 

delivery of skeletal muscle-derived mesenchymal progenitor cells (110
8
) labelled with iron oxide 

NPs to the anterior left ventricle myocardium in pigs 
179

. The cells and the heart were imaged under 

a 1.5T MRI. A similar strategy has been adopted for the delivery of bone marrow aspirate (1 to 

210
6
 cells) at the periphery of the infarcted myocardium of a porcine model 

180
. The use of MRI, 

labelled stem cells and catheters allow efficient and safe cell delivery into myocardial segments 

under direct and live imaging. 

The use of NP-labelled stem cells and MRI makes it possible to monitor cell survival after 

transplantation. Rat bone marrow mesenchymal stem cells labelled with iron NPs (1.2510
5
) can 

successfully be tracked for at least 16 weeks once injected into the myocardium under a 11.7 Tesla 

MRI 
181

. Results showed that the hypointense signal attained from labelled cells on the myocardium 

decreased every time the animals were imaged (up to week 16), suggesting that the cells were lost 

or died over time. The loss of exogenous stem cells transplanted at the myocardium has been 

observed in other studies. The 1.5 T MRI signals of labelled swine mesenchymal stem cells with 

iron oxide NPs (2.810
7
 to 1.610

8
 cells), delivered intra-myocardially into a swine myocardial 

infarction model, decreased over time 
182

. The results suggest that the decrease was due to 

mesenchymal stem cell death. The use of labelled cells allows examining the efficiency of stem cell 

delivery. For example, bone marrow-derived mesenchymal stem cells (610
7
) labelled with iridium 

NPs and delivered intracoronary, intravenously or endocardially at the infarcted heart of pigs show 

that the intracoronary route was the most efficient. The labelled cells were retained within the 

myocardium for at least 14 days 
183

. 
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3.1. Abstract 

Herein, we report the use of biodegradable nanoparticles 
185

 containing perfluoro-1,5-crown ether 

186
, a fluorine-based compound (NP170-PFCE), with the capacity to track cells in vivo by Magnetic 

Ressonance Imaging (MRI) and efficiently release miRNA. NP170-PFCE complexed with miRNAs 

accumulate whitin the cell’s endolysosomal compartment and interact with higher frequency with 

Argonaute 2 (Ago2) and GW182 proteins, which are involved in the biological action of miRNAs, 

than commercial complexes formed by commercial reagents and miRNA, which in turn accumulate 

in the cell cytoplasm. The release of miRNA132 (miR132) from the NPs increased 3-fold the 

survival of endothelial cells (ECs) transplanted in vivo and 3.5-fold the blood perfusion in ischemic 

limbs relatively to control.  
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3.2. Introduction 

Several pro-angiogenic strategies have been proposed in the past years for the treatment of ischemic 

diseases, including growth factor delivery, cell-based therapies and gene therapies. Cell-based 

therapies, specifically the ones based on the use of vascular cells, hold high promisse as they can 

contribute simultaneously for the formation of neovessels and secrete angiogenic factors. 

Unfortunately, most transplanted cells die a few days after delivery 
187, 188

. Cell modulation by 

miRNAs has been recently tested as a strategy to enhance cell survival and pro-angiogenic activity 

189-191
. MiRNAs are non-conding single-strand RNAs that post-transcriptionally regulate gene 

expression 
192

. In comparison to classical drugs, individual miRNAs can regulate many target genes 

and influence a whole gene network. Strategies have been reported for the in vivo delivery of 

miRNAs, including (i) chemical modification, (ii) liposomes, (iii) adeno-associated virus or 

lentivirus and (iv) biodegradable NPs 
147, 193-195

. Unfortunately, there is no formulation for the 

delivery of miRNA that simultaneously offers control for intracellular location and the possibility to 

track the transfected cells. The technology would offer high efficiency in the regulatory mechanism 

of miRNAs and the possibility of monitoring cells transplanted into ischemic tissues by the use of 

non-invasive imaging techniques such as magnetic resonance imaging (MRI) 
196

.   

Studies for miRNA delivery have explored NPs which accumulate in the cytoplasm and not in the 

endolysosomal compartment 
197, 198

 as it was believed RNA regulation occurred largely within the 

cytoplasmic, membrane-free cellular regions 
199

. In the cytoplasm, Ago proteins bind to Dicer, 

which are able to interact with the miRNA duplex and induce the removal of one of the miRNA 

strands. The complex Ago-miRNA is then ready to bind target mRNA 
199

. However, recent data 

indicates that RNA regulation occurs in the endolysosomal compartments 
199, 200

. Many RNA 

processes may be spatially restricted in the endolysosomal compartments to promote specificity and 

kinetic efficiency 
201

. Thus far, no NP formulation has been shown to accumulate in the 

endolysosomal compartment and efficiently release the miRNA.  
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Here we report a novel NP formulation that can be used simultaneously for cell tracking and 

miRNA delivery. The NP core was formed of poly(lactic acid-co-glycolic acid) (PLGA) and PFCE 

11, 202
, a fluorine compound which can be tracked non-invasively by 

19
F-MRI (Figs. 1 and 4a). PFCE 

contains 20 equivalent 
19

F spins that generate a single resonance in NMR imaging and it is 

relatively non-cytotoxic 
202

. 
19

F MRI can selectively image transplanted cells labelled with NP170-

PFCE formulation since no fluorine exists endogenously within the human body. The NPs were 

further coated with protamine sulphate (PS), a polycationic peptide that has been shown to 

efficiently condense plasmid DNA 
203

. All NP components are FDA-approved for biomedical 

applications 
3
. We show that endothelial and mononuclear cells can rapidly internalize the NPs, 

which largely remained within the endolysosomal compartment. Most importantly, the NPs 

mediated the intracellular delivery of miR132, which subsequently exerted a pro-survival effect in 

cells exposed to hypoxia, both in in vitro and in vivo models. Finally, we demonstrated the 

possibility of tracking the transplanted cells with 
19

F-MRI.  
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3.3. Results and Discussion 

3.3.1. NP Engineering for cell labelling.  

PLGA NPs without PFCE had an average diameter of 170 nm and a negative (~ -9 mV) zeta 

potential (Table 1). The PFCE encapsulation within the NPs increased their average diameter from 

170 to 213 nm. 
19

F NMR analysis, demonstrated the encapsulation efficiency was between 4.9 and 

13.8% (Table 2). The NP170-PFCE formulation contained between 111.0 and 176.5 mg of PFCE 

per mg of PLGA. To facilitate the NP170-PFCE intracellular delivery and the loading of miRNA, 

the NPs were coated with PS, a small cationic agent (Table 3) 
204

. The NPs were relatively stable at 

intracellular pHs and, at concentrations up to 1 mg/mL, did not exert substantial cytotoxicity to 

human umbilical vein endothelial cells (HUVECs) or mononuclear cells (MNCs) (Figs. 1 and 2).  

  Table 1- Properties of blank and PFCE-loaded PLGA NPs (average ± S.D., n=3). 

NPs Diameter 

(nm)[b] 

Poly dispersity 

index (PDI) 

Zeta potential 

(mV)[c] 

Recovery yield 

(%)[d] 

NP170 [a] 169.8 ± 7.1 0.680 -9.3 ± 2.8 80.5 ± 8.7 

NP170-PFCE [a] 212.9 ± 14.3 0.244 -9.7 ± 0.7 75.3 ± 8.6 

NP170-PFCE-PS [a] 218.0 ± 9.3 0.381 +7.0 ± 1.7 83.9 ± 3.1 

[a] NP formulations were fluorescently labeled with fluoresceinimine (see Materials and Methods for 

details). [b] Diameter measurements were performed in 10 mM KCl, pH 5.5. [c] Zeta potential 

measurements were performed in 10 mM KCl, pH 5.5. [d] Recovery yield of NPs after production was 

calculated according to the following equation: recovery yield= (NP weight × 100) / (initial PLGA weight + 

mass of PFCE used).  

 

Table 2- PFCE concentration and encapsulation efficiency in PLGA NPs. 

NP formulation PFCE (mg per mg 

of PLGA) [a] 

Encapsulation efficiency 

(%, w/w) [b] 

Fluorine concentration (mg 

of fluorine per mg of NP) 

NP170-PFCE (3.6 mg 

PFCE: 1 mg PLGA) 

176.5 4.9% 98.0 

NP170-PFCE (0.8 mg 

PFCE: 1 mg PLGA) 

111.0 13.8% 65.3 
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[a] The concentration of PFCE in the NPs was determined by dissolving 3 mg of NPs in dichloromethane 

(300 mL) in a 5 mm NMR tube. A sealed 3 mm tube containing trifluoroacetic acid with 1H-

dichloromethane was inserted in the 5 mm and used as internal reference. A total of 50 scans were run with 

pulses at 90
o
 after a relaxation time of 15 sec. [b] Encapsulation efficiency (% w/w) =  (experimental amount 

of PFCE in NPs  100) / initial amount of PFCE. 

 

Table 3- Titration of PS to coat NP170-PFCE. For the ratio of NP:PS of 1:1 (i.e. 1000 mg of NPs and 

1000 mg of PS) the coated NPs do not significantly aggregate. For this ratio, approximately 13 mg of PS was 

adsorbed per mg of NPs as assessed by a ninhydrin assay. 

[a] NP170-PFCE (1 mg/mL of PBS) and PS (at variable concentration according to the table) were incubated 

for 10 min under agitation, at room temperature. After the incubation period, the NPs were centrifuged 

(4,200 rpm; 15 min) and resuspended in distilled water. This cycle was repeated 2 times and at the end the 

NP suspension was freeze-dried. The above measurements were done after washing before freeze-dry. [b] 

All measurements were done in KCl pH 5.5 10 mM. Results are average  SD, n=3. All data were recorded 

with at least 6 runs with a relative residual value (measure of data fit quality) of 0.03. [c] All measurements 

were done in KCl pH 5.5 10 mM. Results are average  SD, n=3.  

 

 

 

 

 

 

 

Figure 1- Properties of NP170-PFCE. (a) Chemical structure of PFCE. (b) NP size was evaluated by TEM 

(JEOL JEM-100 SX microscope at 80 kV). NPs were stained with osmium tetroxide before imaging. A NP 

PS (mg/mL in PBS) [a] Zeta (mVSD) [b] PDI Size (nmSD) [c] 

0 -10.56  2.91 0.083 139.53  2.74 

1 -9.67  3.62 0.692 - 

10 -10.02  2.46 0.143 - 

100 -8.92  1.83 0.262 - 

1000 +9.83  1.67 0.174 - 

2000 +7.65  2.59 0.215 148.95  1.94 
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suspension (5 μL, 5 mg/mL in water) and osmium tetroxide solution (5 μL, 5% w/v) were placed on a 400 

mesh copper grid with a carbon-coated Formvar membrane. The sample was then dried overnight before 

examination by TEM. Bar corresponds to 1 μm. (c) Mass loss of NP170-PFCE suspended in buffered 

solutions at pH 5.5 and 7.4 for several days, at 37ºC. NPs (20 mg/mL) were resuspended in PBS (pH 7.4) or 

KCl (pH 5.5) buffers and dialyzed against the corresponding buffers at 37ºC. At specific time points the NP 

suspension was lyophilized and percentage of mass loss was calculated by subtracting the final mass from 

the initial mass. Results are shown as mean ± SD, n=3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Quantitative assessment of NP uptake and viability by FACS on HUVECs (a) and MNCs (b). 

Cells were incubated with fluorescently-labelled NP formulations in serum-free EGM2 (HUVECs) or M199 

(MNCs) media for 4 h. At the end of incubation, cells were washed and characterized by FACS. Cells 

labeled with non-fluorescent NPs were used to define the gates during FACS acquisition. Cell survival was 

quantified by the Mitrotracker CMX-ROS assay, during FACS. Cells positive for Mitrotracker CMX-ROS 

have mitochondrial activity and thus were considered as live cells. In all plots, results are average ± SD, n=3. 

 

To characterize the intracellular delivery of NP170-PFCE into the cytoplasm of HUVECs or 

MNCs, we performed confocal microscopy analyses. The NPs were labelled with fluoresceinimine 

as a reporter to follow NP delivery in cells. Both cell types were incubated with 500 mg/mL of NPs 
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for 4 h in serum free media. NPs were internalised by HUVECs and accumulated in the 

endolysosomal compartment (Fig. 3). Endosomal sequestration persisted up to 144 h following 

incubation, indicating little self-mediated escape or disruption of endosomal membranes by the NPs 

themselves. Similar results were obtained for MNCs (Fig. 3). 

To quantify cell-labelling efficiency under the different conditions, we performed Fluorescence 

Activated Cell Sorting (FACS) and 
19

F-NMR. Cells were incubated with NPs at concentrations 

between 0.5 and 4 mg/mL for 4 h, washed to remove loosely bound particles, and then 

characterized by FACS. When 500 mg/mL of NP170-PFCE-PS was incubated with cells, 65% 

(HUVECs) and 80% (MNCs) of the cells were labelled after 4 h (Fig. 2). 
19

F-NMR measurements 

indicated that this labelling corresponded to the internalization of 0.27 (HUVECs) and 0.15 ng 

(MNCs) of PFCE per cell, which was sufficient for cells to be detected on a 
19

F 7T MRI volume 

coil (Fig. 4b). As expected, PS-coated NP170-PFCE formulation was internalised at higher levels 

by cells (approximately 2 times) than when given PS uncoated NP170 (Fig. 2).  

 

Figure 3- Confocal images showing the 

internalization of NPs by HUVECs (a) 

and human umbilical cord blood-

derived MNCs (b). The NPs (500 

μg/mL) were incubated with the cells for 

4 h, after which the cells were washed 

with PBS, centrifuged, and cultured in 

EGM2 media (HUVECs) or EGM-2 

supplemented with 18% serum (MNCs). 

T means time, and the numbers after T 

means hours. At different times, the cells 

were fixed and co-stained with DAPI 

(blue, cell nuclei), lysotracker 

(endosomes, red) and CD31 (cell 

membrane, grey; just in case of 

HUVECs). 
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Long-term observation of NP170-PFCE-labeled cells could be limited by of dilution of NPs 

following cell division. Therefore, we quantified cell NP labelling overtime using MRI (Fig. 4b). 

HUVECs were labelled with NPs for 4 h, and the labelled cell population isolated by cell sorting 

and cultured for 7 days in EGM-2 medium. During this time, cells proliferated and the percentage 

of NP170-PFCE labelled cells decreased overtime and was not detected by 
19

F MRI at day 7 

(approximately 4 cell doublings). When cell cycle was inhibited by Mitomycin C, the intracellular 

levels of NPs remained fairly constant over 7 days, confirming the decrease in the proportion of 

NP-labelled cells was due to cell division (Fig. 4b).  

 

 

 

 

 

Figure 

4- Cell 

tracking and NP170 mediated delivery of miRNAs. (a) Schematic representation of NP preparation. The 

NPs are formed by PLGA encapsulating PFCE. The NP is then coated with PS, which has a dual role: (i) to 

facilitate cell internalization and (ii) to mediate the complexation of miRNAs. (b) 19F signal during cell 

proliferation. MR images of eppendorfs containing unlabelled cells in PBS or cells transfected with NP170-

PFCE (in both 10  106 cells) at day 0 (D0), 1 (D1), 3 (D3), 5 (D5) and 7 (D7) after labelling, with or 

without treatment with mitomycin. Eppendorfs were positioned in a support inside a 
19

F/
1
H MRI volume coil 

in a 7T magnet. The acquisition time was 10 min (5 averages) for 1010cm, matrix 256256, TR = 500 ms, 

Flip angle 500. (c) Representative images of the intracellular distribution of NP-PFCE-FITC (NPs) and miR-

DY547 
205

 in relation to the early endosome (EEA1) and late endosome/ lysosome (Rab7) vesicles (top 

panels) and the association between NP and miR-Dy547 foci with Ago2 (bottom panels). The amiR-92a 

associates with both GW182 and Ago2 proteins. (d) Intracellular localization of NP and miR-Dy547 foci in 
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relation to the endomembrane system. It is presented as the number of foci inside the cell (% from the total), 

which are interacting with the species in the denominator. (e) Quantification of the number of Ago2 foci 

present inside the cell under different transfection conditions showing that the number of Ago2 foci present 

in the cell increases with increased concentrations of NPs carrying miR-Dy547. ***P<0.001. (f) Analysis of 

Ago2 association profile in NP170-PFCE: miR-Dy547-transfected cells. Quantification of the degree of 

association of Ago2 foci and NP-only foci (Ago2/NP), NP foci and miR foci (Ago2/NP-miR), and foci 

containing only miR (Ago2/miR). In c, d, e and f, the analyses were performed at 24 h after cell transfection. 

 

3.3.2. Intracellular release of miRNA. Next, we tested whether NP170-PFCE-PS could be used to 

deliver pro-survival miRNAs such as miR132, miR424 and antagomir-92a (amiR92a) within cells. 

MiR132 has been reported to induce EC proliferation and tube formation in a three-dimensional 

collagen matrix 
194

. miR424 stabilizes hypoxia-inducible factor 1a and plays an important 

physiological role in post-ischemic vascular remodelling and angiogenesis 
206

. AmiR92a induces 

angiogenesis in vitro and in vivo by regulating the expression of the integrin subunit a5 
190

. 

To investigate the internalization of miRNAs by the cells, Dy547-labeled miRNA was complexed 

with FITC-labeled NP170-PFCE for 1 h (under these conditions, 12 μg of miRNA were complexed 

per mg of NPs), washed, and then incubated with HUVECs for 4 h. Dy547-labeled miRNA is a 

mimic microRNA without any human targets (no fluorescent miR132 and miR424 could be 

obtained commercially). Cells were washed with PBS to remove NPs that were not internalized, 

and characterized by confocal microscopy. To evaluate the potential of our approach, we performed 

the same experiment using a commercial transfection agent - SIPORT NeoFX. The complex 

Dy547-miRNA: FITC-NP170-PFCE was highly internalized by cells, with over 90% of the cells 

transfected using NP170-PFCE: Dy547-miRNA, while only 50% of the cells were transfected using 

SIPORT: Dy547-miRNA (Fig. 5). However, cells transfected using SIPORT had more Dy547-

miRNA within the cell cytoplasm than those transfected using NP170-PFCE: Dy547-miRNA.  
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Figure 5- Comparison of miR-Dy547 transfection efficiency between NP170 and SIPORT delivery. 

Graph on the left shows that the percentage of cells transfected with the fluorescent miRNA is significantly 

higher (P<0.01) than using SIPORT delivery. Representative microscopic fields were used for quantification 

spanning a total area of 4.3 mm2. Graph on the right shows the total loading (integrated density = mean 

fluorescence x area) of miR-Dy547 in transfected cells (area of 0.250 mm2; approximately 200 cells were 

analysed). 

 

 

 

 

 

 

 

Figure 6- Representative photographs of SIPORT delivery of miR-Dy547 (miR, top panel) and amiR-

92a (bottom panel). Both oligonucleotides fail to interact with Ago2. In addition, amiR-92a shows no 

association with GW182 using the SIPORT delivery system. 

 

FITC-labelled NP170-PFCE formulation internalized by HUVECs was localized in restricted cell 

areas (Fig. 4c). At 24 h post-transfection, 50% of the miRNA co-localized with the NPs, showing 

that half of the miRNA had already been released by the NPs (Fig. 4d). Approximately 35% of the 

miR-Dy547 foci were associated with early endosome vesicles (EEA1+ vesicles) while only 5% 

were located in late endosome and lysosome vesicles (Rab7+ vesicles). Overall, there was a low 
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degree of association of both NP and miR with late endosome and lysosome vesicles. In contrast, 

the Dy547-miRNA released by SIPORT NeoFX was distributed across the cell cytoplasm and not 

within confined intracellular areas (Fig. 6). Importantly, the NP170-PFCE formulation was able to 

present miRs to the RISC protein Ago2 more efficiently than SIPORT. NP delivery induced more 

Ago2 foci than SIPORT delivery (Figs. 4e and 4f). The same was observed in cells transfected with 

fluorescent amiR-92a (Fig. 4c). Amir-92a foci showed association with both Ago2 and GW182 

proteins, indicating that this anti-miR oligonucleotide may be capable of microRNA-RISC strand 

invasion. Interestingly, the number of foci was higher in cells cultured under hypoxia than in 

normoxia, indicating higher efficiency for the biological effect of miRNA under these conditions 

(Fig. 7).  

 

 

 

 

 

 

 

 

Figure 7- Effect of hypoxia in co-localization of miR with Ago2 and EEA1. HUVECs were transfected 

with NP170-PFCE: miR-Dy547 for 4 h, washed to remove NPs that were not internalized and incubated for 

24 h in hypoxia and serum- deprived conditions. (A) Confocal microscopy results showing the association of 

miR-Dy547 with Ago2 and the early endosome protein EEA1. (B) Quantification of Ago2 foci per cell. 

Representative microscopic fields were used for quantification spanning a total area of 3.8 mm2 

(approximately 120 cells were analyzed). Results are mean ± SEM (n=8-18). P ≤ 0.01 (**) and P ≤ 0.001 

(***). 
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3.3.3. Pro-survival and pro-angiogenic activity of the miRNA-containing NPs. To demonstrate 

the pro-survival activity of different miRNAs, HUVECs were incubated for 4 h with miRNA-

complexed NPs, washed, and finally cultured in ischemic conditions (pO2 of 0.1%; media without 

serum) for 48 h. miR132, miR424 and amiR92a: NP170-PFCE formulations each significantly 

(P0.05, n=3) increased cell survival, and this effect was dependent on the miRNA concentration 

(Fig. 8a). No significant differences were seen between the different miRNAs tested (P0.05, n=3). 

miRNAs delivered by the SIPORT transfection agent mediated cell survival only at concentrations 

higher than those which gave increased survival using NP170-PFCE.  

To demonstrate the pro-angiogenic effects of the miRNA-containing NP formulations, HUVECs 

were incubated for 4 h with miRNA-complexed NPs, washed, and finally cultured on top of 

Matrigel to assess their capacity to form vascular networks. The transfection of the cells with 

miR132- and miR424-containing NP170-PFCE yielded vascular networks with greater tube length 

and more branching points than cells transfected with SIPORT for the same miRNAs (Figs. 8b and 

8c). 

 

Figure 8- Pro-survival and pro-angiogenic effects of NP170-PFCE:miR complexes on ECs. (a) 

HUVECs survival under hypoxia and serum-deprived for 48 h as assessed by an ATP-based assay. NPs were 

complexed with 100 nM (stripe pattern) or 200 nM (no pattern) of miR. (b, c) HUVECs treated with 

different formulations in normoxia were cultured in a Matrigel assay for 24 h, after which the tube length (b) 

or branching points (c) were measured. In all graphs, results are average  SEM (n=3). P  0.05 (*) and P ≤ 

0.01 (**). 
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Figure 9- NP170-PFCE:miR-132 complexes target Rasa1. (a) Rasa1 gene expression in HUVECs treated 

with NP170-PFCE:scrambled miR or NP170-PFCE:miR132. Gene expression was normalized to GAPDH as 

a housekeeping gene. In all graphs, results show average  SEM (n=4). P ≤ 0.001 (***). (b) Rasa1 protein 

expression in HUVECs treated with different formulations. Levels of Rasa1 (integrated density: average  

SEM) were measured with ImageJ after immunofluorescence and imaging of 10 representative fields (20 

Objective;  300 cells). (c) Schematic representation of the translocation of miRNAs involving HSPs. (d) 

Immunoprecipitation of HSP90 and detection of Ago2 under different conditions by Western blot.  

 

From all the miRNAs tested, we selected miR132 for subsequent analysis. miR132 is expressed by 

ECs after 3-6 h of exposure to vascular endothelial growth factor or basic fibroblast growth factor 



 66 

194
. In addition, the constitutive expression of miR132 in HUVECs considerably increases cell 

proliferation and tube formation. One of the identified targets of miR132 is Rasa1, which encodes 

p120RasGAP. HUVECs transfected with miR132 have a decreased endogenous p120RasGAP 

expression, which increased Ras activity and mitogen-activated protein kinase extracellular related 

protein kinase-1 (MEK-1). To demonstrate that Rasa1 was indeed down-regulated in HUVECs 

transfected with NP170-PFCE: miR132, we performed quantitative real time polymerase chain 

reaction (qRT-PCR) (Fig. 9a) and protein quantification by immunofluorescence analysis (Fig. 9b). 

HUVECs were incubated for 4 h with NP170-PFCE: miR132 or NP170-PFCE: scrambled miR or 

only NP170-PFCE, followed by washing and evaluation of mRNA levels after 24 h and protein 

expression after 48 h. HUVECs transfected with NP170-PFCE: miR132 had a down-regulation in 

the expression of Rasa1 mRNA, while no effect was observed in control groups. Moreover, the NP-

miR132 delivery was more effective in down-regulating p120RasGAP protein levels than SIPORT. 

Overall, our results obtained on pro-survival, pro-angiogenic and molecular assays show that 

NP170-PFCE formulation is able to present miRNAs very effectively to the RISC complex 

machinery, outperforming the commercial transfection system (SIPORT) in terms of Ago2 

assembly, evidenced by an increased number of Ago2 foci with increasing NP-miR concentrations. 

We hypothesize the better efficiency is related to the close association between the NP with the 

endomembrane system 
199

 (Fig. 9c). The close relationship between the RISC machinery and the 

endomembrane system may promote frequent encounters with the exogenous oligonucleotides and 

NPs, while these encounters are reduced with SIPORT delivery, due to the diffusion and dilution of 

the oligonucleotides in the cytoplasm. Since Ago proteins are located in the membrane of the 

endolysosomal compartment 
199

, and the miRNA binding site is located in the cytosolic part of the 

protein, the miRNA released from the NP has to cross the membrane of the endolysosomal 

compartment. This process may be mediated by the cationic NPs. Previous studies have shown that 

cationic NPs have the capacity to penetrate the endolysosomal membrane by generating transient 
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holes and to rupture the endosomal vesicles by the well known “proton sponge effect” 
207

. 

Alternatively, the miRNA release from the endolysosomal compartment may be mediated by Ago-

chaperones heat shock proteins (HSPs), such as HSP90 and Hsc70 
208

, which have been reported to 

interact with acidic phospholipid membranes to create functionally stable ATP-dependent cationic 

pathways 
209

. We decided to investigate the interaction between Ago2 and the chaperone HSP90. 

Immunoprecipitation studies show that when the NP170-PFCE is used to deliver miR, the pull-

down of HSP90 binds more Ago2, indicating a closer interaction with its chaperone (Fig. 9d). Also, 

the interaction of Ago2-HSP90 was higher in cells cultured under hypoxia than in normoxia, 

corroborating the observed increase in the number of Ago2 foci (Fig 9d and Fig. 10). These results 

suggest that the NP170-PFCE are able to serve as a scaffold or to bridge the assembly of more 

Ago2-HSP90 complexes.   

 

 

 

 

 

 

 

Figure 10- Association between HSPs (HSP70 and HSP90), Ago2 and NP170-PFCE: miR-Dy547. 

HUVECs were transfected with NP170-PFCE: miR-Dy547 for 4 h, washed to remove NPs that were not 

internalized and incubated for 48 h in hypoxia and serum- deprived conditions. Confocal microscopy results 

show the association of miR-Dy547 with both HSPs and Ago2 protein (arrows). 

 

 3.3.4. In vivo monitoring and activity of NP170-PFCE-miR132-transfected ECs in a hind limb 

ischemia animal model. Next, the potential for NP170-PFCE: miR132 to enhance EC survival and 

promote neovascularization in an in vivo model of hind limb ischemia was investigated. Mouse ECs 

labelled with a 1,1´-dioctadecyl-3,3,3´,3´-tetramethylindotricarbocyanine iodide (DiR) fluorescent 

probe were transfected with NP170-PFCE: miR132 for 4 h, washed and injected in mice legs 
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following ligation of the right femoral artery. Survival of the transplanted cells was assessed using a 

bioluminescence imaging system (IVIS), allowing evaluation of the spatiotemporal kinetics of EC 

survival. ECs transfected with NP170-PFCE-miR132 or SIPORT-miR132 proliferated by day 3, as 

confirmed by an increase in the radiant efficiency. At day 7, the number of cells transfected with 

NP170-PFCE-miR132 was 3-fold higher (P0.001, n=5) than with NP170-PFCE without miR132 

or cells alone (Fig. 11a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11- EC survival and angiogenic properties after transfection with NP170-PFCE:miR132 

complexes, in a ischemic hindlimb animal model. (a) Representative bioluminescence images and 

quantified bioluminescence intensity of mice following ligation of the femoral artery and injection of 
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endothelial cells. (b) Representative images and quantification of blood perfusion analyses by VeVo. (c) 

Representative images and quantification of 
19

F-MRI analysis. The intensity of the region of interest (ROI, in 

white) of the 
19

F signal was measured and calibrated against an internal standard (phantom, P, in red). (d) 

Representative images of ischemic hindlimbs treated with ECs alone or ECs transfected with NP170-PFCE 

or NP170-PFCE: miR132 and quantification of limb necrosis and lost of toes. Images and quantifications 

were obtained at day 7. Limbs treated with ECs alone or transfected with NP170-PFCE show high sign of 

necrosis. Limbs treated with ECs transfected with NP170-PFCE: miR132 or SIPORT: miR132 have low 

signs of necrosis. (e) Immunohistochemical staining for CD31 and quantification of capillaries per muscle 

fiber at 7 days after ligation, for the various experimental groups. In all graphs, values are average  SEM 

(n=4-8). P  0.05 (*), P ≤ 0.01 (**) and P ≤ 0.001 (***). 

 

The bioluminescence results were confirmed by evaluation of blood perfusion using a VeVo system 

(Fig. 11b), which was also able to ensure an effective surgical procedure, as shown by a reduction 

of the blood perfusion in the injured limb. Over time, blood flow increased 2- to 3-fold (P0.001, 

n=4-8) in animals treated with cells transfected with NP170-PFCE: miR132 or SIPORT: miR132 

compared with animals treated with cells alone or cells labelled with NP170-PFCE without 

miR132. This increase correlated with cell survival data attained from IVIS measurements. 

Importantly, animals treated with NP170-PFCE: miR132 had higher blood perfusion (P0.05, n=4-

8) than animals treated with SIPORT: miR132. 

To monitor cell administration and survival we also used 
19

F-MRI. The intensity of the region of 

interest in 
19

F MRI images was measured (see Methods) (Fig. 11c). For both experimental groups 

tested, (animals treated with ECs transfected with NP170-PFCE or NP170-PFCE: miR132), there 

was a decrease in the 
19

F signal over time. However, after 5 days, animals treated with ECs 

transfected with NP170-PFCE: miR132 had a higher 
19

F signal, and thus higher cell number, than 

animals treated with cells transfected with NP170-PFCE without miR132 (P0.05, n=5-6) (Fig. 

11c).  

To further characterize cell engraftment and neovascularization, gross anatomy recordings and 

histology were performed. Animals treated with ECs alone or cells transfected with NP170-PFCE 

showed necrotic limbs and auto-amputation of toes, while animals treated with NP170-PFCE: 
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miR132 or SIPORT: miR132 showed lower levels of necrosis (Fig. 11d). The muscles of the 

injured limbs were further characterized by immunohistochemical staining for CD31 as a marker of 

ECs and neovascularization. Higher levels of CD31 were observed in animals treated with ECs 

transfected with NP170-PFCE: miR132 as compared to cells transfected with NPs without miR 

(P0.001, n=5) or with SIPORT: miR132 (P0.05, n=5) (Fig. 11e) 

Overall, our results show that ECs treated with NP170-PFCE: miR132 have a 3-fold higher survival 

and pro-angiogenic activity than cells without miRNA, in an ischemic hindlimb animal model. To 

the best of our knowledge this is the first study demonstrating the therapeutic effect of a NP 

formulation with miR132. Recently the therapeutic activity of miR132 has been shown after the 

transplantation of saphenous vein-derived pericyte progenitor cells in the infarcted mouse heart, 

where miR132 released from pericyte progenitor cells, stimulated endothelial tube formation by a 

Ras-dependent induction mechanism which in turn activated the PI3K/Akt pathway 
210

. In our 

study, animals treated with cells transfected with NP170-PFCE: miR132 had an increase in blood 

perfusion, correlating with an increase in the near-infrared signal using IVIS and a decrease of 

signal in 
19

F-MRI. Furthermore, immunohistochemistry results show a 2.5-fold increase in the 

number of cells expressing the endothelial marker CD31 indicative of neo-angiogenesis. 

Importantly, ECs transfected with NP170-PFCE: miR132 decreased limb necrosis (4-fold relatively 

to control) and number of toes per leg (6-fold relatively to control). The reduction in necrosis is 

similar to the one reported for mouse ischemic limbs treated with genetically modified human 

mesenchymal stem cells (hMSCs) transfected with vascular endothelial growth factor 
211

. 

Furthermore, the percentage of animals without necrotic toes (60%) using cells transfected with 

NP170-PFCE:miR132 is superior to the ones treated with endothelial progenitor cells and 

outgrowth ECs in an alginate scaffold (below 20%) 
212

. 

 



 71 

3.4. Conclusion 

 In conclusion, we have developed a NP formulation with potential clinical relevance for in vivo cell 

tracking and miRNA delivery. The theranostic aspect of our formulation makes it very promising 

for cardiovascular applications. We demonstrate the release of miR132 from the NPs increased by 

3-fold the survival of ECs transplanted in vivo and 3.5-fold the blood perfusion in ischemic limbs 

relatively to control (cells transfected with empty NPs). Although some strategies are being 

investigated for the intracellular delivery of miRNA in cells, such as liposomes, adeno-associated 

virus and lentivirus 
147

, some of these strategies (viruses) raise several issues in terms of clinical 

translation while others (liposomes) have limitations in stability, versatility and traceability for 

miRNA delivery. The formulation reported in this work uses FDA-approved components, which 

should facilitate its biomedical translation. The formulation can be prepared with controlled size, 

incorporate multiple ligands, and monitored by 
19

F-MRI. 
19

F-MRI is the ideal tool for non-invasive 

assessment of cell fate after transplantation providing positive, quantitative and background free 

contrast. Our formulation is an alternative to superparamagnetic iron oxide NPs currently used in 

the clinic for MRI applications. Our work further highlights the importance of the targeted 

intracellular delivery to enhance the efficacy of miRNAs. We show several experimental evidences 

that the miRNA delivery within the endolysosomal compartment offers an excellent opportunity to 

enhance the biological effect of miRNAs. This creates new opportunities for the development of 

more effective synthetic formulations for miRNA delivery. 
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3.5. Materials and Methods 

 

Preparation of PLGA NPs containing PFCE. Where required, PLGA (Resomers 502 H; 50:50 

lactic acid: glycolic acid) (Boehringer Ingelheim) was covalently conjugated to fluoresceinamine 

(Sigma-Aldrich) according to a protocol reported elsewhere 
213

. NPs were prepared by dissolving 

PLGA (100 mg, optionally labelled with fluoresceinamine) in a solution of dichloromethane: 

trifluoroethanol (1:8, 6.3 mL) containing perfluoro-1,5-crown ether (PFCE) (100 mg) (Fluorochem, 

UK). This solution was then added dropwise to a PVA solution (40 mL, 5% w/v in water) and 

stirred for 3 h. The NPs were centrifuged and washed with distilled water before freeze-drying. 

Where NPs were coated with PS, NPs (1 mg/mL) and PS (1 mg/mL) were incubated for 10 min 

under agitation, at room temperature. After the incubation period, the NPs were dialysed (MWCO 

of 50 kDa) against distilled water and freeze-dried. Measurement of the average diameter, and 

amount of fluorine in the NPs, was performed as described bellow. 

 

NP characterization. Particle size was determined using light scattering via Zeta PALS Zeta 

Potential Analyzer and ZetaPlus Particle Sizing Software, v. 2.27 (Brookhaven Instruments 

Corporation). The NPs were suspended in 1 mM potassium chloride buffer pH 5.5 (500 mg/mL) 

and sonicated for short times (<1 min) before characterization. Size measurements were performed 

at 25°C, and data was recorded at 90° angle, with an equilibration time of 5 min and individual run 

times of 120 s (5 runs per measurement). The average diameters described in this work are number-

weighted average diameters. The zeta potential of NPs was determined in a 1 mM KCl pH 6 

solution, at 25ºC. All data was recorded with at least 6 runs with a relative residual value (measure 

of data fit quality) of 0.03.  
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Quantification of fluorine in NPs and NP-labelled cells by 
19

F-NMR. 
19

F NMR analyses were 

performed in a 600 MHz NMR Varian Instrument. NPs (5 mg) were dissolved in dichloromethane 

(300 µL) and transferred to a 5 mm NMR tube containing a sealed 3 mm tube with trifluoroacetic 

acid and 
1
H-dichloromethane as an internal reference. A total of 50 averages were run, with pulses 

at 90
o
 angle after a relaxation time of 15 seconds. Batches of 2 × 10

6 
cells/condition, were labelled 

with NPs (between 0.5 mg/mL and 8 mg/mL) for 4 h in serum free EGM-2 (HUVECs) or serum 

free M199 (MNCs). After incubation, HUVECs were washed 3 times with PBS and trypsinized 

(0.2% trypsin), while MNCs were washed 3 times with PBS and then passed through a MACS 

column (Miltenyi Biotec) to further separate the cells from the non-internalized NPs. At the end, all 

cells were counted with trypan blue, resuspended in PBS, frozen at 80ºC and freeze-dried. The 

lyophilized cells were then dissolved in 1H- dichloromethane (300 µL), transferred to a 5 mm NMR 

tube and characterized by 
19

F NMR according to the parameters described previously. 

 

Development of 
19

F MRI coil and NP imaging via MRI. Taking into consideration that radio 

frequency (RF) coils are extremely expensive and detuning imaging coils is difficult it was decided 

to build a coil, which would allow simultaneous 
19

F and 
1
H imaging. As the Lamour frequency of 

19
F (25.16 107rad/s/T) is close to 

1
H frequency (26.75 107rad/s/T) it was believed that the coil 

could be “home made”. The coil built was based on a low pass birdcage design. Figure 12 shows 

the schematic drawing of the initial prototype and the built coil used for the experiments. In this 

design RF shields were used to reduce the interaction between hardware within the MRI system and 

the RF coil built, reducing noise, thereby increasing signal noise ratio (SNR). The shielding 

decreased the effective inductance of a circuit, causing the resonant frequency to increase. 
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Figure 12. 
19

F/
1
H purpose built coil. Schematic drawing of the birdcage and the build coil. 

 

A removable inner RF inductive shield for 
1
H resonance (sliding adjustment) was added so the 

1
H resoning 

frequency could be precisely attained when positioned inside de outer RF inductive coil for 
19

F. Once the 

inner RF inductive shield for 
1
H was removed the resonance precisely matched 

19
F frequency as shown in the 

diagram of Figure 13. 
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A 

B 

Figure 13.  Schematics of the Purpose Built 
19

F/
1
H coil. A) Detailed drawing of the coil with internal view, showing positioning of the outer 

RF inductive shield for 
19

F resonance and the removable 
1
H RF shield to allow adjustment of resonances. B) Effect of sliding the removable 

inner RF inductive shield for 
1
H resonance, it is seen that with this shield it is possible to image both at 

19
F and 

1
H resonance simply by sliding 

the removable shield changes the tune and match as shown in the frequency measurement graphs. 
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Next, it was important to determine whether it was possible to detect a signal from the NPs using MRI 

as this technique shows lower sensitivity than liquid state NMR. Using a 7T horizontal bore it was 

determined that the 
19

F T1 was 1393 ± 5ms in solution and was easily located permitting acquisition of 

high-resolution fluorine images (Fig. 14). Figure 14 shows that NPs, in this case NP170-PFCE can be 

visualized via MRI and using the purpose built coil.  

 

 

 

 

 

 

 

Figure 14- Magnetic Resonance Imaging (MRI) of NPs. Image acquisition on 7T horizontal bore 

MRI, coronal slices in relation to the magnet, axial cross sections of the eppendorphs, 10 minute 

acquisition (5 averages) on volume coil. Image acquired on 8mgs of NP170-FCE and 750μg of 

PFCE. 

 

Isolation of mononuclear cells (MNCs) from umbilical cord blood (UCB). All human UCB 

samples were collected from donors, who signed an informed consent form, in compliance with 

Portuguese legislation. The collection was approved by the ethical committee at Hospital Infante D. 
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Pedro. The samples were stored in sterile bags containing 35 mL of citrate-phosphate-dextrose 

anticoagulant solution. MNCs were obtained from UCB samples after Ficoll (Histopaque-1077 Hybri 

Max; Sigma-Aldrich, St. Louis, USA) density gradient separation. MNCs were immediately used for 

experiments without further treatment. 

 

Complexing of NPs with miRNAs and cell transfection. NP170-PFCE were weighed, sterilized 

under ultraviolet light (UV) light for 30 min, and resuspended in EGM-2 serum free medium to a 

final concentration of 500 mg/mL. The NP suspension was dispersed by ultrasound (2  10s, 

BRANSON 2510), and miRs added (100 or 200 nM, as specified in the text) and allowed to complex 

to the NPs for 1 h at 37ºC, with intermittent agitation. Cells were washed 2 times with pre-warmed 

PBS and the NP170-miR suspension was added to the cells for incubation at 37ºC for 4 h. Cells were 

transfected at a ratio of 1.25 mg of NP170-miRNA per million HUVEC cells.  

For SIPORT (Ambion) transfection, SIPORT transfection agent and miRs were diluted in EGM-2 

serum free medium and incubated at room temperature separately. After 10 min, the solutions were 

combined and incubated for another 10 min to allow the complexing of both components. The 

suspension was then dispensed on top of PBS-pre-washed cells and incubated for 4 h at 37ºC, as in 

the NP170 procedure. For visualization of transfection using fluorescence microscopy, NP170-PFCE 

with fluorescein and miR-Dy547 (Dharmacon) was used. Commercial oligos used in these studies 

were: miR132 (Ambion), miR424 (Ambion) and amiR92a (Exiqon). 

 

FACS analysis. MNCs (1×10
6 

cells) or HUVECs (0.2×10
6
 cells) were incubated for 4 h in serum 

free M199 or serum free EGM-2, respectively, containing variable concentrations of NPs in a 24 
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well plate. After 4 h, HUVECs were washed with PBS on the plate 3 times. The cells were then re-

suspended in serum free EGM-2, with or without mitotracker red CMX-ROS at 50 nM for 15 min at 

370C in a CO2 incubator. The cells were later trypsinized with 0.2% (w/v) trypsin solution, 

centrifuged at 1000 rpm for 5 min, and fixed with 4% paraformaldehyde for 10 min at room 

temperature. After fixation they were re-washed and then re-suspended in PBS (500 µL), ready for 

FACS analysis. MNCs were transferred to a 2 mL eppendorf and centrifuged for 15 min at 20
0
C, 

1300 rcfs, then cells were further washed by using anti-CD45 human microbeads via Miltenyi Biotec 

Mini MACS system and protocol (Miltenyi Biotec, UK) to ensure that only MNCs were present in 

the final solution and no free NPs, the cells were then incubated with mitotracker (50 nM) for 15 min 

at 37
0
C, washed once with PBS and fixed with 4% paraformaldehyde for 10 min at room 

temperature. After fixation, the cells were washed and resuspended in 500 mL of PBS before FACS 

analysis. A total of 80,000 events were recorded per measurement. 

 

Confocal microscopy analyses. Cells were seeded onto circular 20 mm glass coverslips, coated with 

0.2% gelatine, inside a 24 well plate and left to adhere. The cells were then incubated with NPs (500 

µg/mL) for 4 h. Once the incubations were terminated, the coverslips were washed gently. In some 

conditions live cells were stained for lysosomes (using LysoTracker red DND-99 at 50 nM, 20 min 

incubation) or mitochondrial activity (using MitoTracker Red CM-Ros, 50 nM, 5 min incubation). 

Cells were fixed with 4% (w/v, in water) paraformaldehyde (EMS, Hatfield, USA) for 10 min at 

room temperature and then washed with PBS. For certain conditions, the slides were mounted 

straight away with mounting medium-4',6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) on a 

glass slide. Cell membrane staining was also performed. In this case, mouse antibodies against 

human CD31 (Dako, Glostrup, Denmark) or CD45 (BD Biosciences, Spain) were used to stain the 
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membrane of HUVECs or cord blood mononuclear cells (MNCs). Cells were washed 3 times after 

fixation (MNCs were washed by centrifugation), the cells were then blocked with 2% bovine serum 

albumin (BSA) (Sigma-Aldrich) in PBS for 30 min at room temperature. The CD31/CD45 (both at 

1:50 dilution) primary antibody was added in PBS for 1 h at room temperature followed by 3 washes 

in PBS. The binding of primary antibodies was detected with anti-mouse DyLight 649 conjugate (at 

a dilution of 1:200) (Jackson ImmunoResearch, USA). 

Transfection efficiency was evaluated by incubating cells grown on glass coverslips (4 h at 37ºC) 

with fluorescent miR-Dy547 (control mimic Dharmacon, red) carried by fluorescent NPs (NP-

fluorescein, green) or using SiPORT transfection agent. Low magnification (20 objective, Zeiss 

Laser Scanning Microscope Meta 510) photographs were taken, observing the need for total signal 

capture (maximally opening the pinhole) and background normalization. Quantification of the 

percentage of transfected cells was done by counting the number of miR-DY547 positive cells and 

compared with the levels of fluorescence in non-transfected cells using ImageJ. Representative 

microscopic fields were used for quantification spanning a total area of 4.3 mm
2
. The total loading 

per cell was calculated with ImageJ as the “integrated density” that is given by the product between 

the mean fluorescence intensity and the area of the cell; 200 cells were analyzed in each condition 

giving a total area of 0.250 mm
2
. 

For the intracellular distribution studies, NPs (fluorescein-labelled or unlabelled) or SiPORT 

complexed with fluorescent oligonucleotides (mimic miRNA transfection control miR-Dy547 

(Dharmacon); antagomir-92a fluorescein labelled (Dharmacon)) were incubated with cells for 4 h at 

37ºC. Cells were fixed as described above, permeabilized with 0.5% tritonX-100/ PBS, and blocked 

with PBB (2% BSA plus 2% FCS in PBS). Cells were incubated with primary antibodies diluted in 

PBB according to manufacturer’s instructions and incubated overnight at 4ºC with anti-human 
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argonaute2 (Ago2, 1B1-E2H5 clone active motif, 1:500), Rasa1 (1:100) and anti-human GW182 

(H70, Santa Cruz Biotechnology sc-66915, 1:100). Other antibodies were incubated for 1 hour at 

room temperature; namely, the early endosomal marker EEA1 (Cell Signaling C45B10, 1:200 

dilution) and the late endosome/lysosome marker protein RAB7 (Cell Signaling D95F2, 1:100 

dilution). Secondary antibodies were anti-mouse Cy3 (Sigma C2181), anti-rabbit Cy3 and anti-

mouse DyLight 649 (Jackson ImmunoResearch). The nucleus of cells was stained with DAPI. After 

the indirect labelling, high magnification confocal images (60x objective) were taken, using the 

optimal pinhole for better discrimination between foci and assuring no over-exposure or bleed-

through between channels. Usually images were composed of 4 channels (blue, green, red and far-

red) where different interactions were analysed. NPs were green or non-fluorescent depending on 

how many co-interactions were analysed, e.g. when assessing the association between miR-Dy547/ 

AGO2/ GW182 or antagomir-92a/ AGO2/ GW182 non-fluorescent NPs were used. Images were 

exported to imajeJ and analysis was performed with stacks containing the different channels. The 

interaction of NPs and/ or miRs with the different proteins was assessed, considering positive 

associations to be within 500 nm distance between centres of foci using ImageJ. All the discrete foci 

(fluorescence levels higher than background) present inside the cell were analysed by overlaying a 

ruler of 500 nm length in all directions from the centre of each of the foci and scoring the number of 

foci in the other channels that were contained inside this area; at least 100 cells were analysed in 

each condition. Due to the highly variable number of foci present inside the cell (e.g. Ago2 low, 

EEA1 high, miRs high) we found automated co-localization tools available in ImageJ to be 

inadequate for this type of analysis. 
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Immunoprecipitation studies. For the heat shock protein 90 (anti HSP90 Santa Cruz Biotechnology 

– SC-59577) pull-down assay, HUVECs growing in 100 mm petri dishes were tripsinized washed 

with PBS and resuspended in ice cold low salt lysis buffer (1% Igepal, 50 mM Tris-HCl pH 8) 

supplemented with a cocktail of proteinase inhibitors. μMACSTM Protein A/G Separation kit was 

used for the immunoprecipitation assay. First, the samples were labelled with the antibody of interest 

(anti HSP90 – 2 μg of antibody per 2 mg of protein in 1 mL of cell lysate). The antibody of interest 

was captured by addition of protein G MicroBeadsTM (130-071-101 Miltenyi Biotec). Further 

processing of the samples was performed in accordance with the instructions provided by the 

manufacture company. Protein quantification was done with QuantiProTM BCA Assay Kit (Sigma; 

QPBCA). The obtained eluates from the μColums were loaded in a NuPAGE® Novex® 3-8% Tris-

Acetate Gel and the electrophoresis was performed in a XCell SureLockTM system (≈1 h of running 

time, 150 V with NuPAGE® Tris-Acetate SDS Running Buffer). The transfer was done with 

Invitrolon™ PVDF membrane in an XCell II TM Blot Module (≈1 h 30V with NuPAGE® Transfer 

Buffer). To detect the interaction of Ago2 with HSP90 the membrane was blocked (30 min in PBS- 

0.1% Tween® 20 –Sigma;-5% low fat milk) and incubated with anti-Ago2 antibody (1:500 in a 

PBS-0.1% Tween® solution; Ago2 Abcam – ab32381) overnight at 4ºC. The membrane was then 

incubated with specific secondary antibody (anti-rabbit: GE Healthcare Life Sciences). The detection 

of Ago2 bands was performed by enhanced chemiofluorescence methodology [(ECF); GE 

Healthcare Life Sciences] and using a Biorad FX Molecular Imager System (Bio-Rad). Lane 

detection and band quantification was done with Image Lab software. 
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RT-PCR for gene expression profile of treated cells. The gene expression profile of specific 

targets of miR132 was evaluated in HUVECs transfected with NPs, with or without miRNA. Total 

RNA from experimental groups was isolated using TRIzol (Invitrogen) and a RNeasy Minikit 

(Qiagen, Valencia). cDNA was prepared from 1 mg total RNA using Taqman Reverse transcription 

reagents (Applied Biosystems, CA). Quantitative PCR (qPCR) was performed using Power SYBR 

Green PCR Master Mix and the detection using an ABI PRISM 7500 System (Applied Biosystems). 

Quantification of target genes was performed relative to the reference gene GAPDH: relative 

expression= 2[-(Ctsample-CtGADPH)]. The mean minimal cycle threshold values 
164

 were 

calculated from quadruplicate reactions. Primer sequences are published in supporting information 

(Table 4). 

 

Table 4- Primers for qRT- PCR 

 [a] PCR conditions: initial denaturation step at 94ºC for 5 min; 40 cycles of denaturation at 94ºC for 30 sec, 

annealing at 60ºC for 33 sec and extension at 72ºC for 30 sec. At the end was performed a final 7 minutes 

extension at 72ºC. After amplification, the melting curve profile or agarose gel electrophoresis was used to 

determine the specificity of PCR products. [b] GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) and 

RASA1 (RAS p21 protein activator). 

 

Target gene Sense primer sequence Anti-sense primer sequence                Concentration         

(nM) 

GAPDH [b] AGCCACATCGCTCAGACACC GTACTCAGCGCCAGCATCG                            10 

RASA1 [b] TTCTTAGCCAGATGAATGTTG GTCTTCCACCAATGTAGTATCTC                             4 
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Survival and angiogenesis assays. After transfection, cells were washed 3 times with warm PBS 

and left in complete EGM2 medium overnight. Cells were incubated under low oxygen (0.1%), in 

serum deprived conditions for another 48 h. Survival was assessed using the ATP-based assay Cell 

Titer Glow (Promega) following manufacturer’s instructions. An in vitro angiogenesis assay was 

conducted using IBIDI micro-angiogenesis slides (IBIDI) and Matrigel according to manufacturer 

instructions 
214

. After 24 h, tube length and number of branching points was measured (blinded 

analysis) and compared between conditions. 

 

In vivo studies. The Experimental Animal Committee of University of Eastern Finland approved all 

procedures. Unilateral hindlimb ischemia (UHI) was induced by ligating the right femoral artery 

proximal to the bifurcation of the saphenous and popliteal arteries (by ligation of both femoral artery 

and vein proximal to the origin of the deep femoral branch) in C57BL/6J male mice (Jackson 

Laboratory, Bar Harbor, ME). Prior (Pre OP) and after UHI (Post OP) the leg which received the 

injury was examined using VeVo Doppler to determine the perfusion levels of the femoral artery. 

Animals were then treated with mouse endothelial cells (MS1 cell line) alone, or cells transfected 

with NP170-PFCE, cells transfected with NP170-PFCE-miR132 or cells transfected with SIPORT-

miR132. The cells (5  10
6
 cells per animal) were initially labelled with DiR and then suspended in a 

fibrin gel (50 mL) precursor solution and injected into the gastrocnemius muscle of the operated 

hindlimb. 

 

Preparation of mouse endothelial cells. MILE SVEN 1 (MS1) endothelial cell line derived from 

mouse pancreatic islet was obtained from ATCC (CRL-2279). MS1 cells were cultured in Dulbecco's 
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Modified Eagle's Medium (DMEM) (Sigma Aldrich) supplemented with fetal bovine serum (5%, 

FBS) (Biosera) and penicillin-streptomycin solution (1%, Pen/Strep) (Sigma Aldrich). Prior to 

injection into the animal, the cells were incubated in medium (containing 2% FBS) with NP170-

PFCE (500 mg/mL per 400,000 MS1 cells), NP170-PFCE-miR132 (500 mg/mL per 400,000 MS1 

cells, 200 nM miRNA), or SIPORT-miR132 (200 nM of miRNA) for 4 h. After cell transfection, 

cells were washed 3 times with PBS, and then labelled with an IVIS probe for fluorescence detection 

using near-infrared lipophilic carbocyanine dye denoted by 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindotricarbocyanine iodide (DiR) (1.75 g/mL dye in PBS per 510
6
 cells, the incubation 

was done for 30 min at 370C, as recommended by the vendor (Caliper LifeSciences)). The cells were 

then washed with PBS, trypsinized, centrifuged. The pellet was re-suspended in a fibrin gel (50 mL); 

the solution was placed in a 1 mL diabetic syringe and kept on ice until needed for injection into the 

animals. For injection, 5 106 cells were prepared per syringe for injection in the mouse hindlimb. 

The fibrin gels were made by crosslinking fibrinogen in the presence of thrombin (both from Sigma-

Aldrich). The fibrinogen solution was prepared by dissolving human fibrinogen in Tris-buffered 

saline (TBS) (Sigma-Aldrich), pH 7.4 (20 mg/mL), and then sterilized by filtering through a 0.22 μm 

syringe filter (Acrodisc, Pall). Fresh thrombin solutions were prepared by dissolving human 

thrombin in TBS at pH 7.4 at a concentration of 50 U/mL. Fibrin gels (50 μL, unless otherwise 

stated) were prepared by mixing three different components: fibrinogen (10 mg/mL), CaCl2 (Merck, 

NJ, USA) (2.5 mM) and thrombin (2 U/mL).  
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In Vivo Imaging System (IVIS) analysis. Animals were imaged under isofluorane anaesthesia, at 

days 1, 3, 5 and 7 post-surgery. IVIS was performed to image the transplanted cells using IVIS 

Lumina II hardware (Caliper LifeSciences). A laser with the values for far-red Cy5 imaging at a 640 

nm excitation and 670 nm emission filter was used, after an exposure time of 0.5 seconds images 

were obtained. The imaging field was of 12.5  12.5 cm. 

 

VeVo analysis. Ischemic gastrocnemius muscle perfusion was measured on day 0 (pre- and post-

operative), day 3, 5 and day 7 after surgery. Perfusion data were acquired with a high-resolution 

imaging system (Vevo 770, VisualSonics Inc., Toronto, ON, Canada), using an ultrasound probe 

(RMV-704) in Power Doppler mode (power 100%, RF-cycle 5, gain 25, velocity medium, wall filter 

15, scan speed 15, priority 100, intensity range maximum 53 and minimum 19). Video clips 

containing approximately 50 frames were captured and the vascularity index (normalized to the area 

of the muscle) in three evenly separated frames was quantified with VeVo 770 measurement 

software (VisualSonics). The results are represented as group means of ratios to intact values to 

reduce measurement dependent variation. 

 

19
F/

1
H in vivo MRI. MRI analysis was performed using a 9.4T horizontal bore (60 G/cm, inner bore 

diameter 120 mm) system (Varian), using Direct Drive console (VJ NMR) with a linear transmit and 

receiver, on animals 1, 3 5 and 7 days post-surgery. 19F MRI was performed to detect NP-labelled 

cells while 1H MRI was done for anatomy of the limbs. 19F MR images were acquired using a 

purpose built circular surface coil tunable to 19F. Mice were anesthetized by the use of isoflurane 
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(4%) in oxygen (100%) and placed in a purpose built cradle for horizontal positioning in the magnet 

bore. Maintenance anaesthesia was 1.5–2% isoflurane at 1 l min−1 oxygen flow. For 1H imaging, 

coronal GEMS images of the legs were taken at matrix size of 128 (later zero filled to 256), 30 

averages, field of view 35 × 35 cm, 10 imaging planes of 1mm depth, TE/TR = 4/1.2 ms with a flip 

angle of 70 degrees. The 1H images were later isotropically zero-filled by a factor of two and filtered 

(modified third-order Butterworth filter) before Fourier transformation. For 19F imaging, coronal 

GEMS images of the legs cloned from the 1H images were taken at matrix size of 256, 60 averages, 

field of view 35 × 35 cm, 1 imaging plane of 10mm depth, TE/TR = 4/1.2 ms with a flip angle of 90 

degrees. All images were Fourier transformed and overlaid. At all times a phantom, denoted P, was 

present to allow shimming and pulse calibration, and to aid orientation within the surface coil. 

 

Post-mortem histological analysis. The animals were sacrificed 7 days post-surgery. The mice were 

perfused with PFA (1%) in citrate buffer through the abdominal aorta, the test muscle was excised 

and fixed with 4% PFA in 7.5% sucrose for 4 h. Sections (4 µm) were immunostained with rat anti-

mouse CD31 antibody (dilution 1:25, MEC 13.3; BD Biosciences Pharmingen, San Diego, CA). As 

a secondary antibody, biotinylated rabbit anti-rat antibody (Vector Laboratories, Burlingame, CA) 

was used and detected using the avidin-biotin-horseradish peroxidise system (Vector Laboratories, 

CA, USA) with DAB as a chromogen (Zymed, San Francisko, California and Tyramide signal 

amplification system (TBA, Biotin System, PerkinElmer, Shelton, USA). Photographs of the stained 

sections were taken and processed using an Olympus AX70 microscope (Olympus Optical, Tokyo, 

Japan) and analySIS imaging software (Soft Imaging System GmbH, Muenster, Germany), 

respectively. Capillary density (capillary/muscle fibre ratios) was measured from three microscopic 
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fields of CD31 immunostained sections taken in a close proximity to the needle track at 100 

magnification in a blinded manner.  
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3.A1. Abstract  

Herein we report a methodology to transfect cells in vivo with oligonucleotides. Angiogenic 

oligonucleotides were attached to NPs and delivered within mouse limbs. A significant increase in 

capillary formation overtime was registered, the NPs were also successfully tracked via MRI and no 

signs of local inflammation, oedema or necrosis were seem, inferring little or no acidity produced in 

the limbs from the NPs PLGA degradation. We further report the therapeutic effect of cells 

transfected with miR132 and transplanted in a rabbit animal model to validate the results obtained in 

chapter 3 in a large animal model. Smooth muscle cells transfected with NPs carrying miRs and 

delivered within rabbits limbs, created an increase in angiogenesis again seen by a significant 

increase in capillary formation as well as notable perfusion illustrated by power doppler. MRI 

systems were sensitive enough to detect the NP labelled cells in these larger animals too. Here it is 

shown that methodologies for inductions of efficient angiogenesis without viral vectors are possible 

and practically feasible.  



 90  

3.A2. Introduction 

Limb ischemia often results from arterial occlusion and stenosis as a consequence of atherosclerosis. 

Endothelial dysfunction is an important factor in pathogenesis for plaque initiation and progression 

within limb ischemia 
102, 215

.  Common clinical practice to tackle limb ischemia involves surgical 

revascularization either by stent implantation, laiser revascularization or bypass surgery, however the 

success rates are still disappointing, leading to gangrene and amputation in a large majority of cases. 

It is speculated that successful treatment with the above therapies may eventually cause restenosis 

due to phenotypic redifferentiation of neovascular intimal smooth muscle cells 
103

.  

Several approaches have been reported to treat ischemic limb including the use of endothelial 

progenitor cells 
216

, genetic engineered stem cells 
217

, and growth factors 
218-220

. Yet the possibility to 

monitor the therapies by Magnetic Resonance Imaging (MRI) and to demonstrate their effect in vivo 

has not been demonstrated.  

Here we report a theranostic platform to deliver angiogenic oligonucleotide. Biodegradable 

nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE), a fluorine-based compound 

(NP170-PFCE), were initially loaded with an angiogenic oligonucleotide and its effect was evaluated 

in a ischemic mouse animal model. We further demonstrate the therapeutic effect of smooth muscle 

cells transfected with NPs carrying miR132 in a rabbit ischemic limb model. The results described in 

this chapter have been used to optimize the animal protocol that has been used in chapter III.  
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3.A3. Results and Discussion 

3.A3.1. Angiogenic oligonucleotide-containing NPs administered at ischemic limbs increase 

neovascularization 

To investigate whether NPs could also be used as a cell free vector for oligonucleotide delivery and 

also test for any possible toxicological effects of the biomaterial alone in the in vivo setting, we 

performed a small-scale animal trial. The NPs were monitored by MRI, which required the 

development of MRI sequences and the design of a new coil. A circular surface coil for higher 

sensitivity was modified and used on a 9.4T Varian MRI. The coil was adapted from a commercially 

available 
1
H, re-tuned and capacitors for simultaneous 

1
H/

19
F imaging were added. All adaptations 

were done following principles from the developed volume birdcage coil for the 7T Varian MRI as 

described on the previous chapter (Chapter III). Healthy animals (C57Bl6 mice) received an injection 

of either NPs or NPs carrying an oligonucleotide, which was developed to induce angiogenesis when 

delivered using viral vectors (kindly provided by Dr Petra Korpisalo, University of Eastern Finland).  

Animals were sacrificed either at day 3 or day 7 and post mortem histology was performed followed 

by the MRI. Animals receiving only NPs overtime, shown no increase on the amount of capillaries 

per muscle fiber, as quantified and shown on the representative images (Fig. 1 and 2), however as 

shown by the MRI, the NPs were delivered and present in the limb muscle (Fig. 3). When NPs 

carrying the oligonucleotide were injected, a significant increase of the number of capillaries per 

muscle fiber was already noted at day 3 and further increased at day 7 (Fig. 1 and 2). Again MRI 

images demonstrate successful NP delivery and retention overtime. Other organs were also 

examined, namely the liver and kidneys so as to look for any NP toxicological in vivo effects. No 

modifications were observed (data not shown), therefore it is clear that the NPs by itself cannot cause 

any modifications of healthy tissue and can deliver biomolecules.  
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Figure 1- Quantification of number of capillaries per muscle fiber overtime. No significant increase in the 

number of capillaries overtime was observed when limbs were given NPs only. However when limbs received 

NPs carrying the oligonucleotidenucleotide (NPs with oligonucleotide) there was a significant increase in the 

number of capillaries per muscle fiber in comparison to NPs only (***p<0.0001), also there was significant 

increase overtime, from day 3 to day 7 (*p=0.0114). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Histological and immunocytochemistry characterization of mouse limbs treated with NPs and 

oligonucleotide-containing NPs at different time points. Limbs were stained with hematoxylin and eosin 

and CD31 for neovascularization. NPs were monitored by their intrinsic fluorescence. Areas of increased 

CD31 staining co-localize with areas of NP presence. (Scale bar represents 50 m). 
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Figure 3- MRI images of limbs overtime. Representative MRI limb images overtime after receiving NPs 

only or NPs with oligonucleotide (NP + oligonucleotide). When delivering NPs only, one animal was kept 

with a non-injected leg to use as a calibration control for histological analysis, as well as for MRI null signal. 

However all other limb were injected with NPs. The MRI signal from the NPs is visible overtime in both 

cases, in the absence or presence of oligonucleotide.  

 

3.A3.2. Smooth muscle cells transfected with miR132 increase the neovascularization of rabbit 

limbs  

Next, the ability to label cells with the NPs and deliver SMCs in vivo was examined using rabbits. 

SMCs only (cells only), SMCs labeled with NPs (Cells +NPs) or SMCs labeled with miR132 (Cells 

+ NP-miR) (in all cases 2010
6
 SMCs in fibrin gels) were delivered in the limb muscles of healthy 

rabbits where no limb injury was induced. The purpose of this study was to define a protocol for 

labelling SMCs and track them within medium sized animals and include VeVo measurements in 

addition to MRI and terminal histology. Also was important to increase the animal size to determine 

if our optimized protocols still allow MRI detection of the NPs in larger animals with more pre-

clinical relevant dimensions. Cells alone or containing only NPs can proliferate overtime within the 

non-injured muscle at similar rates, indicative that NPs only do not induce any inhibition or 

enhancement of survival and proliferation. However cells which contained NPs carrying miR132 

proliferated at a significantly higher rate when compared to cells only or cells + NP as shown by 

quantification of capillaries per muscle fiber (Figure 4) and in illustrative Figure 5. 
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Figure 4- Quantification of number of capillaries per muscle fiber overtime. No significant increase in the 

number of capillaries was observed when limbs were given cells only or cells + NP. However when limbs 

received cells with NPs carrying miR132 (Cells + NP-miR) there was a significant increase in the number of 

capillaries per muscle fiber in comparison to controls (***p<0.0001), also there was significant increase 

overtime, from day 3 to 5 and again to day 7. 

 

 

 

 

 

 

 

Figure 5- Representative images 

of limb staining. Limbs were 

stained for capillaries, with 

CD31 antibody, after receiving 

cells only or cells with NPs 

(Cells + NP) and cells with NPs 

carrying miR132  (Cells + NP-

miR) (scale bar represents 50 

m).  
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Next, we determined whether 
19

F imaging could be used to monitor the transplanted cells. As shown 

(Figure 6) with the purpose built coil for 
19

F/
1
H after further adaptations it could be detected from 

the cells transplanted in the limbs carrying miR or not. Unfortunately as the coil had to be re-tuned 

and extra capacitors added to increase sensitivity for the larger animals throughout the study, 
19

F 

imaging for the rabbits was only available for day 14. It should be noted that the 
19

F signal in animals 

treated with cells transfected with NP-miR132 is more dispersed. This might be due to in vivo cell 

division, as from the VeVo imaging (Figure 7) it is clear that the limbs of animals treated with cells 

containing NP-miR132 had improved blood perfusion. Furthermore, the number of capillaries per 

muscle fiber in the limbs of animals treated with cells containing NP-miR132 is higher than the ones 

treated with NPs without miR132. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6- MRI images of limbs at day 14. Representative MRI limb images at day 14 after smooth muscle 

cell transplantation. Either cells containing NPs (Cells + NP) or cells containing NPs carrying miR 132 (Cells 

+ NP-miR) were injected into healthy rabbit muscle. Where cells containing NP-miR were delivered a dilution 

of the 
19

F signal is notable, inferring in vivo cell proliferation. 
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Figure 7- VeVo imaging of limbs at day 14. Representative VeVo imaging at day 14 after smooth muscle 

cell transplantation. Either cells containing NPs (Cells + NP) or cells containing NPs carrying miR 132 (Cells 

+ NP-miR) were injected into healthy rabbit muscle. Where cells containing NP-miR were injected an 

increase in blood perfusion is clearly visible most probably due to in vivo cell proliferation and 

neovascularization.  

 

 

3.A4. Conclusions 

Our results show that NPs containing oligonucleotide neovascularization after administration in mice 

ischemic limbs. Animals treated with NPs carrying oligonucleotide show an increase in the number 

of capillaries overtime in comparison to its control. Furthermore, the newly developed circular 

surface coil to image via MRI the NPs has enough sensitivity to show NP tracking overtime. No 

signs of oedema or necrosis were observed in the animals, which indicate that NPs were not 

substantially toxic. This study was used as a form to establish protocols and set routines for larger 

animal trials. Furthermore it was interesting to see whether the oligonucleotide delivery via NPs was 

effective enough to compare with viral delivery. The group has a long-standing history of usage of 

viral vectors for cardiovascular gene therapy using angiogenic growth factor promotion 
26, 30, 221-226

 

however interest is shifting towards the usage of non-viral vectors to promote angiogenesis. 
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Angiogenesis is a multi-factorial event and there is the need to deliver various angiogenic factors 

simultaneously, however regulations halt the use of various viral vectors simultaneously clinically, 

thus the deeper interest shifting towards using the NPs as delivery vectors. Whether the delivery via 

the NPs can match the efficiency of viral vectors is yet to be established and does not seem likely. 

However if significant levels of angiogenesis can be achieved and dual delivery permitted this might 

be enough reasoning to replace viral delivery in instance for promotion of neo-angiogenesis in vivo. 

Next we evaluated the therapeutic effect of smooth muscle cells transfected with NPs carrying 

miR132 in a rabbit ischemic model. It was clear that cells transfected with NPs carrying miR132 

have a higher proliferation rate than cells transfected with NPs without miR132 or cells alone. In 

addition we were able to re-tune the sensitivity of a surface coil to detect 
19

F signals from the 

transplanted cells in rabbit limbs, many orders of magnitude bigger than the mice limbs. VeVo 

measurements on power doppler mode were also possible to further permit studies on perfusion after 

implantation. All protocols and systems were well in place to allow full studies to be performed as it 

was with the in vivo study next done by us 
227

.   

 

3.A5. Methods 

In vivo studies. Immunologically competent mice, C57BL/6J male mice (Jackson Laboratory, Bar 

Harbor, ME) or immunologically competent rabbits, New Zealand White male rabbits (Charles 

River), were used in the studies. Animals were kept in standard housing conditions. 

 

Delivery of NPs containing oligonucleotides in C57BL/6J mice. NPs carrying an oligonucleotide 

(oligonucleotide) responsible for VEGF165A up-regulation 
223

 was delivered on normal legs, meaning 

no limb ischemia was performed in these animals. The conjugation between the oligonucleotide and 



 98  

the NPs was performed in the same manner as miRs were conjugated to NPs, as described in Chapter 

III. Briefly, if cells were transplanted, 510
6
 endothelial cells were injected per area, therefore for 

oligonucleotide delivery only with NPs, the amounts used were as if 510
6
 cells were in use. For 

510
6
 endothelial cells, cells were labelled with 6.25 mg of NPs. Therefore, 6.25 mg were incubated 

with 93.75 g of oligonucleotide, which results in approximately retention of 75 g of 

oligonucleotide. The NPs were injected in a final volume of 50 L of PBS per area. For this in vivo 

test, 2 groups were done, control group where NPs were injected (n=8, 4 terminated at each time 

point) and test group where NPs with oligonucleotide were delivered (n=8, 4 terminated at each time 

point). Animals were imaged under MRI at day 3 and 7 and terminated at both time points for 

histology as shown in the experimental diagram bellow. 

 

 

 

 

Figure 1- Experimental in vivo design.  Schedule for NP delivery, imaging and termination points in mice, 

which did not undergo limb ischemia surgery.  

 

Delivery of smooth muscle cells transfected with NPs in New Zealand White rabbits. Rabbit 

smooth muscle cells obtained and isolated from rabbit aortas were cultured under and expanded 

within recommended conditions (DMEM media containing 10% serum and 1% (v/v) penicillin and 

streptomycin). Once enough cells were sub-cultured, cells were transfected with NPs only or NPs 

carrying miR132. NP-miR conjugation was performed as previously described (see chapter III). 

Three experimental groups have been performed: (i) SMCs alone were injected into rabbits (n=3), 

(ii) SMCs transfected with NPs only (n=3) or (iii) SMCs transfected with NPs carrying miR132 
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(n=3). Each injection was made of 2010
6
 SMCs in fibrin gels. Animals underwent, MRI, 

VeVo/Power Doppler at each time point as shown in Figure 2.  

 

Figure 2- Experimental in vivo design.  Schedule for SMC delivery, imaging and termination points in 

rabbits, which did not undergo limb ischemia surgery  

 

Fibrin gel preparation. The fibrin gels were made by crosslinking fibrinogen in the presence of 

thrombin (both from Sigma-Aldrich). The fibrinogen solution was prepared by dissolving human 

fibrinogen in Tris-buffered saline (TBS) (Sigma-Aldrich), pH 7.4 (20 mg/mL), and then sterilized by 

filtering through a 0.22 μm syringe filter (Acrodisc, Pall). Fresh thrombin solutions were prepared by 

dissolving human thrombin in TBS at pH 7.4 at a concentration of 50 U/mL. Fibrin gels (50 μL for 

mice or 200 μL for rabbits) were prepared by mixing three different components: fibrinogen (10 

mg/mL), CaCl2 (Merck, NJ, USA) (2.5 mM) and thrombin (2 U/mL).  

High-resolution ultrasound micro-imaging (VeVo). Muscle perfusion was measured where 

appropriate. Perfusion data was acquired with a high-resolution imaging system (Vevo 770, 

VisualSonics Inc.), using an ultrasound probe (RMV-704) in Power Doppler mode (power 100%, 

RF-cycle 5, gain 25, velocity medium, wall filter 15, scan speed 15, priority 100, intensity range 

maximum 53 and minimum 19). Video clips containing approximately 50 frames were captured and 

the vascularity index (normalized to the area of the muscle) in three evenly separated frames was 
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quantified with VeVo 770 measurement software (VisualSonics). The results are represented as 

group means of ratios to intact values to reduce measurement dependent variation. 

 

19
F/

1
H in vivo MRI. MRI was performed on the animals at the stated time points in each in vivo 

group. 
19

F MRI was performed to detect the labelled cells with NPs and 
1
H done for anatomy of the 

limbs, this was done using a purpose built circular surface coil tunable to 
19

F. Anesthesia was 

induced using 4% isoflurane in 100% oxygen. Animals were placed in a purpose built cradle for 

subsequent horizontal positioning in the magnet bore. Maintenance anaesthesia was 1.5–2% 

isoflurane at 1 Lmin
−1

 oxygen flow. MRI was performed on a 9.4T horizontal bore (60 G/cm, inner 

bore diameter 120 mm) system (Varian), using Direct Drive
 
console (VJ NMR) with a linear transmit 

and receiver. For 
1
H imaging, coronal GEMS images of the legs were taken at matrix size of 125 

(later zero filled to 256), 30 averages were taken, field of view was 35 × 35 cm, 10 imaging planes 

each of 1mm depth, TE/TR = 4/1.2 ms with a flip angle of 70 degrees resulting in a total 

experimental time of approximately 11 minutes. The 
1
H images were later isotropically zero-filled by 

a factor of two and filtered (modified third-order Butterworth filter) before Fourier transformation. 

For 
19

F imaging, coronal GEMS images of the legs cloned from the 
1
H images were taken at matrix 

size of 256, 60 averages were taken, field of view was 35 × 35 cm, 1 imaging plane of 10 mm depth 

TE/TR = 4/1.2 ms with a flip angle of 90 degrees resulting in a total experimental time of 

approximately 37 min. All images were Fourier transformed and overlaid, green/red shows the 

labelled cells with NPs by the 
19

F signals and grey denotes the anatomy by 
1
H. At all times a 

phantom, denoted P, was present to allow shimming and pulse calibrations, furthermore aided 

orientation within the surface coil. 
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Post mortem histological analysis. Paraffin embedded sections (4 µm), immersion fixed with 4% 

PFA in 7.5% sucrose for 4 h, were used for immunohistochemical analysis. Sections were 

immunostained with rat anti-mouse CD31 antibody (dilution 1:25, Biosciences Pharmingen). As a 

secondary antibody, biotinylated rabbit anti-rat antibody (Vector Laboratories) was used. The avidin-

biotin-horseradish peroxidise system (Vector Laboratories) with DAB as a chromogen (Zymed) and 

tyramide signal amplification system (TBA, Biotin System, PerkinElmer) for amplification of the 

signal was used. Photographs of the stained sections were taken and processed using an Olympus 

AX70 microscope (Olympus Optical) and analySIS imaging software (Soft Imaging System GmbH), 

respectively. It should be noted that CD31 for capillary staining was manually quantified in order to 

avoid inclusion of stained monocytes as a capillary (automated quantification, such as using ImageJ, 

in this case would not distinguish between CD31 staining from actual capillaries or other cells, e.g. 

monocytes). Capillary density (capillary/muscle fibre ratios) was measured from three microscopic 

fields of CD31 immunostained sections taken in a close proximity to the needle track at 100 

magnification in a blinded manner.  

 

Statistical analysis. For analysis involving three or more groups, ANOVA was used, followed by a 

Student-Newman-Keuls post hoc test. For analysis of two groups, a paired t-test was used. Statistical 

analysis was performed using GraphPad Prism software (San Diego, CA, USA, 

http://www.graphpad.com/). Results were considered significant when P 0.05. 
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This chapter, optimizing in vitro cell culture procedures for stem cells (CDCs), constitutes parts of the 

paper in press at Molecular Biology Reports done with Dr Suat Cheng Tan. 

 

4.1. Abstract 

Myocardial infarction (MI) results in severe ischemia still causing high mortality rates 
1
. The 

ischemia is downstream from occluded arteries causes cardiomyocytic necrosis and apoptosis within 

few hours. There is growing evidence that heart muscle has the ability to regenerate through the 

activation of resident cardiac stem cells or through recruitment of a stem cell population from other 

tissues 
228

. Cardiosphere-derived cells (CDCs), isolated from heart explants, are a promising to 

restore myocardial plasticity and prevent further heart failure 
229

. However, current protocols used to 
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expand CDCs require at least one month in vitro culture to obtain sufficient cells for transplantation. 

Here, CDC culture was optimized by preconditioning the cells under hypoxia (2% oxygen), which 

reflected the physiological oxygen level of the stem cell niche. The proliferation rate of cells from 

explants was 1.4-fold greater under hypoxia than under normoxia, generating 6  10
6
 CDCs with 

higher expression of cardiac stem cell marker, c-Kit and pluripotency genes Oct-4, Nanog, Sox 2 and 

Klf4, within 21 days, a week faster than under normoxia. Hypoxic-preconditioning was mimicked by 

treatment with three HIF prolyl-4-hydroxylase inhibitors (PHDIs), dimethyloxaloylglycine (DMOG), 

ethyl 2-(2,3-dihyroxybenzamido) acetate (EDBA) and 2-(1-chloro-4-hydroxyisoquinoline-3-

carboxamido) acetic acid) (BIC), which prevented degradation of the hypoxia inducible factors 

(HIFs) and activated the HIF-regulated genes, EPO, VEGF, CXCR-4 and TERT. Cell culture under 

hypoxia enhanced the therapeutic potential for MI and could be mimicked, in part, by treatment with 

PHDIs. In addition we show that we can label CDCs with PLGA NPs containing fluorine, both under 

normoxic or hypoxic conditions, without affecting their ability to differentiate in vitro. Furthermore, 

we can transplant labelled CDCs with NPs into in vivo models of rodent myocardial infarction, 

tracking them up to 13 days. 
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4.2. Introduction 

Cardiac stem cells (CSCs) were first identified in the heart in 2003 
230

, challenging the paradigm that 

the heart is a postmitotic organ 
231, 232

. CSCs could be isolated based on a specific single cell marker 

such as c-Kit 
74

 or Sca-1 
86, 233

. In 2004, Messina et al developed a method to isolate CSCs from 

human and murine heart and expand them as cardiospheres 
75

. The cardiospheres were expanded in 

vitro to obtain sufficient cardiosphere-derived cells (CDC) for transplantation 
234

. The CDCs were 

clonogenic, expressed stem and endothelial progenitor cell markers, appeared to have the properties 

of adult cardiac stem cells and resulted in myocardial regeneration and functional improvement when 

injected into the infarcted rodent heart 
75, 234, 235

. However, the culture protocol required at least one 

month to obtain sufficient CDCs for therapy. During this period, the infarcted heart will undergo the 

initial stages of scar formation and remodelling 
236

. CDCs may be of better use if they could be 

administered as soon as possible after infarction.  

Stem cells reside in complex microenvironments, which play an important role in signalling stem 

cell division, function and differentiation 
237, 238

. Most in vitro tissue cultures are routinely 

maintained at atmospheric levels of 21% oxygen, whereas the average oxygen concentration at in 

vivo tissue level is about 2-9%, with considerable variation based on location 
239-241

. Adult stem cell 

niches are hypoxic, with some oxygen levels as low as 1-2% 
239

. In vitro cultivation of stem cells in a 

traditional incubator supplied by room air does not recapitulate the in vivo physiological condition 

and could result in a gradual loss of primitive stem cell characteristics 
242

. Enhanced cell proliferation 

rates and reduced apoptosis have been reported for human and rat mesenchymal stem cells 
243-245

, 

neural stem cells 
246-248

, embryonic stem cells 
249, 250

 and adipose-derived stem cells 
92, 251

 when 

cultured under low oxygen concentrations (2% – 6% O2).  



 106  

In understanding the dual control system of HIF system in the presence of oxygen, it is important to 

understand the differential sensitivity of prolyl and asparaginyl hydroxylation by hypoxia and its 

potential manipulation by PHD inhibitory (PHDI) agents. Here, the effects of three different PHDIs 

for HIF stabilization in CDC culture were compared: dimethyloxaloylglycine (DMOG) – a cell 

permeable, competitive inhibitor of the HIF cofactor, 2-oxoglutarate (2OG) 
252

; ethyl 2-(2,3-

dihyroxybenzamido) acetate (EDBA) – an aspirin metabolite that acts as an iron chelator to activate 

the HIF system via generic 2OG-oxygenase inhibition 
253

; and 2-(1-chloro-4-hydroxyisoquinoline-3-

carboxamido)acetic acid) (BIC, also known as FG2216) – a specific PHD inhibitor which has been 

used in clinical trials as a pro-angiogenic compound acting via the HIF-1α system 
96

. 

In this work we investigated the effects of normoxia and hypoxic culture systems on CDCs. We 

further investigated the effect of a variety of chemicals, which have the ability to induce and 

maintain hypoxia, in order to maximize CDC stem properties during culture so these could be 

transplanted in vivo.  

This novel study compared the effects of these three different inhibitors of PHD enzymes for HIF 

stabilization in CDC culture and investigated whether pharmacological inhibition of PHDs 

successfully mimicked the effects of hypoxic preconditioning. Also, the effects of these PHD 

inhibitors (PHDIs) on FIH reactivity were observed. Furthermore the ability to track cells labelled 

with NPs by magnetic resonance imaging (MRI) was also evaluated. 
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4.3. Results and Discussion 

4.3.1. Optimizing in vitro cell culture procedures for stem cells (CDCs) 

Sprague Dawley neonatal rat heart (0.07 to 0.10 g) explanted on fibronectin coated dishes adhered 

well to the surface and generated a layer of thin, flat fibroblast-like cells after 1-2 days. Phase bright 

cells were observed growing from the explants and migrated over a fibroblast-like cell layer after 4 

days. One neonatal rat heart generated approximately 1  10
6
 explant derived cells (EDCs) after 7 

days. The explants could be harvested up to 3 times with an interval of 1 week between each harvest.  

Adult rat atrial explants were cultured under normoxia (21% O2) or hypoxia (2% O2) (Fig. 1A). After 

3 to 6 days in both normoxic and hypoxic culture, fibroblast–like cells started to migrate away from 

the edge of the explants. Typically, under hypoxia, EDCs became confluent and were ready for 

harvesting within 10 days of plating, 5 days faster than normoxic EDCs. After 9 days in culture 

under hypoxia, 10.3 ± 0.3  10
5
 EDCs were produced from 0.1 g explants tissue, 1.4 fold more than 

those generated under normoxia (7.3 ± 1  10
5
 EDC/0.1 g). These rates were maintained up to day 

18, with hypoxic culture generating 22 ± 1  10
5
 EDCs/0.1 g while normoxic culture generated 18 ± 

1  10
5
 EDCs/0.1 g (Fig. 1B). EDCs aggregated to form cardiospheres after 2 days in culture. 

Approximately 400 cardiospheres were obtained from each well after 4 days of incubation under 

normoxia or hypoxia (Fig. 1C), with hypoxic cardiospheres forming larger cell clusters (0.033 ± 

0.004 mm
2
) compared with those under normoxia (0.017 ± 0.002 mm

2
) (Fig. 1D). Isolated 

cardiospheres were replated on fibronectin and formed cardiosphere-derived cells (CDCs) after 3-4 

days of incubation. Hypoxic culture yielded higher cell numbers than normoxia at day 5 of each 

passage from P1 until P5 (Fig. 1E). On average, 5.2 ± 0.3-fold expansion was observed at each 

passage for hypoxic cells, whereas normoxic CDCs maintained a 3.0 ± 0.1-fold increase during each 
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passage. Approximately 6  10
6
 P2 CDCs were obtained from hypoxic explants within 21 days, a 

week faster than the normoxic explants. 

Adult atrial CDCs cultured under hypoxia expressed significantly higher HIF-1α mRNA (2.9 ± 0.6-

fold), compared with normoxic CDCs (Fig. 2A). In line with this, HIF-1α protein levels were 

increased by 3.7 ± 0.5-fold in hypoxic CDCs, compared with normoxic CDCs (Fig. 2A). Activation 

of HIF-1α under hypoxia subsequently upregulated several important HIF-regulated genes including 

VEGF (3.5 ± 0.6-fold), EPO (3.3 ± 0.9-fold), CXCR4 (6.7 ± 1. 0) and TERT (2.7 ± 0.4-fold) (Fig. 

2A). Elevated VEGF protein levels were confirmed. 

 

 

 

Figure 1- Hypoxic preconditioning 

of CDCs. (A) Adult rat atrial heart 

tissue was cultured under normoxia 

or hypoxia for 12 days.  (B) EDCs 

generated under normoxia or hypoxia 

were harvested and cell numbers 

were counted. (C) Morphology of 

normoxic & hypoxic cardiospheres 

(Csp) were significantly different, 

with (D) hypoxic Csp 1.9-fold larger 

than the normoxic Csp. (E) Hypoxia 

also yielded higher cardiosphere-

derived cell (CDC) numbers than 

normoxia at day 5 of each passage 

from P1 until P5 (* p < 0.05 vs. 

normoxia). 
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Under hypoxia, CDCs showed significantly increased mRNA expression for c-Kit (2.3 ± 0.1-fold) 

and the pluripotent markers, Oct-4 (2.9 ± 0.5-fold), Klf4 (3.1 ± 0.6-fold), Nanog  (4.5 ± 1.1-fold) and 

Sox 2 (5.4 ± 1.5-fold), with reduced expression of mesenchymal markers CD90 and CD105 (32% 

and 65%, respectively). The mRNA expression of cardiac transcription factors (Nkx 2.5 and GATA 

4) and the mature cardiomyocyte markers, Tnnt and MyHC was not significantly different after 

hypoxic culture (Fig. 2A).  

Hypoxic CDCs were treated with either normal cell culture medium (negative control) or 

differentiation medium for 2 weeks. qRT-PCR showed that differentiation medium containing 

DMSO significantly increased Nkx 2.5 and Tnnt mRNA expression by 1.4 ± 0.1-fold and 2.0 ± 0.3-

fold, respectively, compared with non-treated hypoxic CDCs, indicating that hypoxic CDCs began to 

differentiate when treated with cardiomyogenic stimuli (Fig. 3A). However, it was found that the 

levels of Nkx 2.5 and TnnT2 in DMSO-treated hypoxic CDCs were significantly lower by 33% and 

45%, respectively, compared to DMSO-treated normoxic CDCs (Fig. 3B). Similar with qPCR data, 

immunostaining data also indicated that both normoxic and hypoxic CDCs showed positive staining 

for α-sarcomeric actin and TnnT2 after induction by DMSO, compared to non-treated CDCs (Fig. 

3C). Furthermore, it was found that normoxic CDCs displayed a more obvious positive staining for 

α-sarcomeric actin and the structure of cardiomyocyte-like cells became organized (illustrated by 

TnnT2 staining, Fig. 3C), compared to hypoxic cells. Together, these findings indicate that cells 

cultured under hypoxia retained the ability to differentiate into cardiomyocytes, however, this ability 

was attenuated after hypoxia culture. 
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Figure 2. Relative mRNA and protein expression. (A) The relative mRNA of HIF-1α, (B) EPO, (C) 

VEGF, (D) CXCR 4, (E) TERT, (F) c-Kit, (G) CD90, (H) CD105, (I) Oct-4, (J) Klf-4, (K) Nanog, (L) Sox 2, 

(M) Nkx 2.5, (N) GATA 4, (O) Troponin T, TnnT2 and (P) myosin heavy chain, MyHC for normoxic P2 

CDCs (represented by black boxes) and hypoxic P2 CDCs (represented by white boxes) (n = 3). * p < 0.01 

vs. normoxic P2 CDCs. (B) Representative confocal images of the DMSO differentiation protocol for the 

corresponding gene products of A. Scale bars = 20 μm.  
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Figure 3. Cardiomyocyte differentiation of P2 CDCs. (A) The relative mRNA expression of Nkx 2.5, 

TnnT2 and MyHC for non-treated hypoxic CDCs (control) and hypoxic CDCs treated with DMSO for 2 

weeks, normalized to non-treated hypoxic CDCs as control. * p < 0.05 vs. control. (B) The relative mRNA 

expression of Nkx 2.5, TnnT2 and MyHC for normoxic and hypoxic P2 CDC (n = 3) after treatment with 

DMSO for 2 weeks. mRNA expression of hypoxic cells was normalized to the geometric mean of GAPDH 

and Actb (housekeeping genes) and normoxic cells (calibrator). * p < 0.05 vs. normoxia. (C) 

Representative confocal images of the DMSO differentiation protocol. Scale bars = 20 μm.



 112  

Three PHDIs- DMOG, EDBA and BIC were used to mimic hypoxic preconditioning. The 

toxic effects of PHDIs across a gradient of PHDI drug concentrations chosen from the 

literature were assessed using the LDH assay over 4 days. An optimal, sub-lethal PHDI 

treatment for CDCs was chosen. Protein levels of HIF-1α and the HIF-regulated glucose 

transporter, GLUT-1 in P2 CDCs treated with DMOG, EDBA and BIC in gradient 

concentrations for 24 hours and 4 days were determined. It was found that HIF-1α activation 

by DMOG was time and concentration dependent, being maximal after 24 hours of 0.5 mM or 

1 mM DMOG treatment but not significantly increased at the highest DMOG concentration  

(2 mM) or after prolonged treatment (4 days) (Fig. 4 A(i)). Similarly, GLUT-1 expression 

peaked after treatment with 1mM DMOG for 24 hours but decreased after prolonged 

treatment or at increased concentrations of DMOG (Fig. 4 B(i)). With EDBA, HIF-1α protein 

levels peaked after treatment with 0.5 mM for 24 hours (2.4 ± 0.3-fold), compared with non-

treated control cells (Fig. 4 A(ii)). GLUT-1 protein expressions was significantly up-regulated 

in cells treated with 0.1 mM EDBA (3.3 ± 0.3-fold), 0.25 mM EDBA (3.4 ± 0.3-fold), and 0.5 

mM EDBA (4.0 ± 0.3-fold), compared with the non-treated control cells (Figure 4 B(ii)). As 

anticipated, no HIF-1α and GLUT-1 protein expression was observed with EDBA treatment 

at high concentrations and after a prolonged culture period as this had been shown to be toxic 

to the cells (Fig. 4 A and B (ii)). BIC is a specific PHD inhibitor and thus significantly up-

regulated both HIF-1α and GLUT-1 at low concentrations (30 μM). Also, due to the non-toxic 

nature of this drug, CDCs treated with BIC at higher concentrations for 4 days did not show 

decreased HIF-1α and GLUT-1, compared to non-treated cells (Fig. 4 B(iii)). Therefore, 

treatment for 24 hours with 1 mM DMOG, 0.5 mM EDBA or 30 μM BIC was applied in all 

the following experiments.  
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Image 4. Western blot analysis and quantification. Western blot analysis of (A) HIF-1α (left panel) 

and (B) GLUT-1 (right panel) protein levels in P2 CDCs treated with (i) DMOG, (ii) EDBA and (iii) 

BIC at a range of concentrations for 24 hours or 4 days (n = 3). Protein levels were expressed in 

arbitrary units relative to control cells at 24 hours. * p < 0.05 vs. control at 24 hours; # p < 0.05 vs. 

corresponding concentration at 24 hours; $ p < 0.05 between the two groups indicated. 

 

Adult atrial CDCs were exposed to the three PHDIs for 6, 12, 24, 72 and 120 h and viable cell 

numbers were counted. PHDI-treatment did not result in a significant increase in CDC 

proliferation compared with non-treated control cells (Fig. 5A) and cell growth stopped after 

exposure to these PHDIs for 72 h. DMOG, EDBA and BIC treatment increased c-Kit mRNA 

expression by 1.59 ± 0.17-fold, 1.48 ± 0.16-fold and 1.60 ± 0.17-fold, respectively, compared 

with non-treated normoxic CDCs (Fig. 5B). However, the induction of c-Kit expression by 

these PHDIs was significantly lower than that induced by hypoxic culture (2.3 ± 0.1-fold, as 
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shown Fig. 2A). CD90 mRNA levels were significantly reduced after treatment with each 

PHDI, compared with normoxic cells, however only EDBA significantly reduced the 

expression of CD105 (Fig. 5B). Unlike culture under hypoxia, treatment with PHDIs did not 

significantly increase mRNA levels of Oct-4, Klf 4, Sox 2 and Nanog (data not shown). 

DMOG and EDBA treatment significantly increased the mRNA levels of EPO, VEGF and 

CXCR 4, compared with normoxic CDCs, mimicking the hypoxic-preconditioned CDCs. 

BIC-treatment resulted in significantly higher EPO levels, compared both with normoxic 

controls and with DMOG-treated CDCs, but did not induce upregulation of VEGF mRNA 

(Fig. 5B). After induction of cardiomyogenic differentiation of PHDI-treated cells using 

DMSO, increased protein expression of sarcomeric actin and troponin T indicated that PHDI 

treatment did not impair the cardiomyocyte differentiation potential of CDCs (Fig. 5C). 
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Figure 5.  CDC proliferation, gene and protein expression after PHDI treatment and 

differentiation procedures. (A) PHDI-treated CDC proliferation over 120 h of treatment with 30 μM 

BIC, 1 mM DMOG and 0.5 mM EDBA (n = 4). All PHDIs significantly reduced cell numbers after 

prolonged treatment (over 72 h), compared with control. (B) Relative mRNA expression of c-Kit, 

CD90, CD105, EPO, VEGF and CXCR-4, in non-treated P2 CDCs (control) and CDCs treated with 1 

mM DMOG, 0.5 mM EDBA and 30 μM BIC for 24 h (n = 4), normalized to the geometric mean of 
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GAPDH and Actb (housekeeping genes) and non-treated control cells (calibrator). * p < 0.05 vs. 

control. # p < 0.05 between two groups indicated. (C) Representative confocal images (of three 

independent experiments) of CDCs treated with DMSO, EDBA or BIC for 24 hours, followed by 

differentiation with DMSO for 2 weeks. An equal number of cells (8  10
5
 per chamber) of each 

condition were trypsinized and seeded on 4-well chamber slides coated with fibronectin (10 μg/mL) 

and stained with DAPI and α-sarcomeric actin or troponin T. Scale bars = 20 μm. 

 

4.3.2. Optimization of in vivo systems for tracking of CDCs in myocardial infarction 

models  

NPs previously developed and used for limb ischemia models, were explored as a platform to 

label cells for in vivo tracking and miR delivery, however here NPs are only explored as a 

tracking platform for CDCs prepared under normoxic and hypoxic culture conditions. CDCs 

were labelled with NP-170-PFCE with 500 g/mL for different time points. It was seen that 

CDCs within 4 h become close to 100% labelled and this does not affect their viability or 

proliferation (Fig. 6 A.1 – A.3). Furthermore the retention of NPs within CDCs was evaluated 

overtime, in order to establish their retention profile overtime, which can elucidate further 

issues in the in vivo settings. CDCs were labelled with NPs for 4 hours and then left within 

cell culture for up to 7 days, overtime up to 30% of the initial NPs was lost during 

proliferation. CDCs proliferated extensively, much more than the rate at which NPs were lost, 

this was because CDCs have a large cytoplasm and some cells were extremely overloaded 

with NPs, meaning that even after many doublings, the daughter cells were retaining a 

considerably large amount of NPs (Fig. 6 B.1 – B.2). When cell division was inhibited by 

using Mitomycin C, the amount of cells labelled with NPs was constant (Fig. 6 B.1).  
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Figure 6- Quantitative assessment of NP uptake in CDCs (A.1 and B.1), viability (A.2 and B.2) 

and proliferation (A.3 and B.3) by FACS. Cells were incubated with fluorescently labelled NPs for 

4 h. After incubation, cells were washed and characterized by FACS. Cell survival was quantified by 

the Mitotracker CMX-ROS assay, via FACS. Cells positive for Mitrotracker CMX-ROS have 

mitochondrial activity and thus were considered as live cells. In all plots, results are average ± SD, 

n=3.   

 

CDCs either under normoxic or hypoxic culture conditions were able to internalise NPs. Even 

after 2 weeks of culture the NPs were still visible, to a lesser extent in hypoxia. However 
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under hypoxia CDCs proliferated even more, although they provide the daughter cells with 

NPs the individual cell NP load was smaller as shown (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Confocal imaging of CDCs labelled with NP170-PFCE-PS (NPs) under normoxia and 

hypoxia. CDCs were labelled with NPs (green signal), and probed with rhodamine phalloidin dye for 

F-actin filament staining two weeks (14 days) after culture.  

 

Next, we evaluate whether the presence of the biomaterial could impair or affect the 

differentiation of CDCs into cardiomyocyte like cells. CDCs labelled with NPs or not under 

hypoxia or normoxia were differentiated into cardiomyocyte-like cells following the protocols 
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described in Methods section. NPs do not affect the patterns of C-kit gene expression in 

CDCs. Under normoxia or hypoxia, CDCs treated with NPs have similar C-kit gene 

expression as untreated cells (Fig. 8A). Similarly, CDCs treated with NPs have similar 

expression of Nkx2.5 gene than untreated cells, both in normoxia or hypoxia conditions (Fig. 

8B). Yet, the cells differentiate into cardiomyocyte-like cells since the expression of Nkx2.5 

and TnnT2 genes is higher in differentiative conditions than in control conditions (Fig. 8C). 

In addition, cells express Troponin T at protein level (Fig. 9).  

 

 

 

 

 

 

 

 

 

Figure 8.  Gene expression on CDCs with or without NPs. The relative mRNA expression 

(normalised to Beta Actin and GAPDH genes) of C-kit (A), Nkx2.4 (B) and Troponin T, (TnnT2, C) 

for normoxic P2 CDCs (black boxes) and hypoxic P2 CDCs (white boxes). Prior differentiation 

(DIFF), some cells were labelled with nanoparticles (NPs) (n=3).  * p < 0.0.1 (all plots show n=3 

SD). 
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Figure 9- Expression of Troponin T, as assessed by confocal microscopy imaging, in cells differentiated in normoxic or hypoxic conditions 

in the presence of absence of NPs.  Cells were cultured for 20 days under the differentiation protocols previously described.  
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Next, we investigated whether the NP-labelled cells could be successfully delivered into an in 

vivo model of myocardial infarction. As shown in Figure 10, CDCs were successfully labelled 

with NPs to the extent of attaining very clear images under the 
19

F channel denoting for the 

labelled cells with the NPs. 

 

 

After induction of myocardial infarction, CDCs labelled with NPs were injected into the 

infarcted area and it was possible to track the cells using 
19

F MRI for up to 13 days as shown in 

Figure 11. At day 13 it was noted that the 
19

F signal started to disperse. Here it is shown that 

suitable protocols and routines where developed so CDCs under normoxia or hypoxia could be 

labelled with NPs, delivered within in vivo models of cardiac infraction and monitor overtime 

using MRI.  

Figure 10- MRI imaging of 

delivered CDCs. CDCs (20 

 10
6
) were labelled with 

NPs and delivered in the 

heart of a rodent model of 

myocardial infarction. 

Cardiac gated MRI images 

on 
19

F channel show the
 

presence of cells labelled 

with NPs. 

 

Figure 11- MRI imaging of 

delivered CDCs. CDCs (20 

x 10
6
) were labelled with 

NPs and delivered in the 

heart of a rodent model of 

myocardial infarction. 

Cardiac gated MRI images 

on 
19

F channel show the 

presence of cells labelled 

with NPs up to day 13.  

 



4.4. Conclusion 

Stem cells reside in niches where they maintain their self-renewal capacity. In order to optimize 

the therapeutic potential of adult CDCs, cells were preconditioned with low oxygen culture or the 

prolyl hydroxylase inhibitors, DMOG, EDBA and BIC. Enhanced cell proliferation rates were 

found for hypoxic EDCs and CDCs under hypoxia, compared with normoxic cells. Further, 

hypoxic EDCs formed larger cardiospheres, compare with normoxic EDCs, which most likely 

resulted from rapid proliferation of cardiac stem cells in the core of the sphere 
254

. Under hypoxia, 

cardiospheres showed a significant increase in the expression of vascular endothelial growth factor 

(VEGF), suggesting that hypoxic pre-treatment would improve the cardiosphere’s ability to 

generate vascular networks 
255

.  

Hypoxic preconditioning successfully increased the expression of c-Kit and reduced that of the 

mesenchymal markers CD90 and CD105 in the heterogeneous CDC population. In addition, 

proliferating hypoxic cells maintained expression of pluripotency factors Oct-4, Klf-4, Sox 2 and 

Nanog, with decreased expression of cardiac genes, in agreement with previous findings 
243, 256-258

. 

Also, hypoxic-preconditioned CDCs showed increased expression of CXCR-4 (~3.2-fold), EPO 

(~3-fold) and VEGF (~1.5-fold), indicating preconditioning might stimulate stem cell homing and 

neovascularization in the infarcted myocardium. Implantation of the hypoxic CDCs into the 

infarcted mouse heart has been shown to result in greater cell engraftment and better functional 

recovery than treatment with conventionally cultured (normoxic) CDCs 
259

. 

This was the first study using PHDIs to stabilize HIF in CDCs, mimicking the effects of hypoxic 

cell culture. Simulation of the hypoxic response using PHD inhibitors would remove the necessity 

for culture in hypoxic incubators, prior to in vivo application of stem cells, provided the beneficial 

effects of hypoxic culture could be recapitulated pharmacologically. The optimal PHDI treatment 
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for CDCs, with respect to their negative cytotoxicity effects and optimal potential to activate HIF-

1α expression, was found to be 1 mM DMOG, 0.5 mM EDBA or 30 μM BIC for 24 hours. Cell 

proliferation was not affected by PHDI treatment at these doses. HIF is regulated by dual 

pathways involving oxygen-dependent prolyl and asparaginyl hydroxylation of its HIF-α subunits. 

BIC efficiently inhibited the PHD enzyme in CDC culture, but was not able to prevent the FIH 

enzyme from degrading HIF-α subunits, causing an incomplete activation of HIF.  

PHDI-preconditioning using DMOG, EDBA and BIC partly mimicked the effects of hypoxic 

preconditioning as all three PHDIs significantly stabilized and activated HIF, and therefore 

induced metabolic changes and up-regulation of important cytokines such as CXCR-4. In 

addition, all three PHDIs significantly reduced the cardiac mesenchymal cell marker, CD90, and 

induced the expression of GLUT-1 protein.  All PHDIs also were found to have no effect on CDC 

cardiomyocyte differentiation potential, in contrast to hypoxic CDCs, which showed attenuated 

cardiomyocyte differentiation after hypoxic preconditioning. Also, whilst DMOG and EDBA-

treated CDCs had significantly increased c-Kit, EPO and VEGF mRNA expression, BIC treatment 

did not increase VEGF mRNA expression. The difference in PHDI effects on CDCs was probably 

due to the different affinity of the PHDIs to activate the HIF system. 

Hypoxic treatment significantly increased the cell proliferation, shortening the time required to 

obtain adequate cell numbers for therapy, while both hypoxic and PHDI-preconditioning enhanced 

the therapeutic potential of CDCs by increasing the expression of CXCR-4, EPO and VEGF.  

Being able to attain feasible cells numbers in real time is as important as the ability to non-

invasively monitor these cells once transplanted in vivo. MRI is the most attractive imaging 

modality to track cells in vivo because it provides high-quality 3-dimensional functional and 
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anatomic information with high contrast 
7
. Using this methodology is possible to track cells as 

they migrate within living tissues such as the heart. MRI combines the chemical sensitivity of 

nuclear magnetic resonance with high spatial and temporal resolution and therefore provides 

optimal technical characteristics to track stem cells at the myocardium. Beyond anatomical 

imaging, MRI has the ability to examine organ functionality and perfusion 
164

, detect a wide range 

of biologic information, including flow, motion, morphology and tissue composition. 

However, cells need to be labelled with contrast agents before transplantation so that they can be 

imaged and distinguished from cells of resident tissues. Current labelling methods typically 

employ superparamagnetic iron oxide nanoparticles (SPIONs) to produce contrast effects in MRI 

proton images 
3
. SPIONs are negative contrast MRI agents composed of an iron oxide core, 

responsible for the imaging contrast, and a dextran, carboxydextran or starch coating, which 

inhibits NP aggregation 
4, 5

. Gadolinium containing NPs are positive contrast MRI agents, which 

have gadolinium oxide, Gd2O3, at its core, providing high-contrast enhancement in MRI 
172

. These 

NPs are mainly used as a cardiovascular system contrast agent rather than a specific organ or cell 

marker; nevertheless they may be used for specific cell marking. All these NPs are usually 

introduced into cells by the use of transfection agents. Intracellular labelling with NPs may present 

several challenges, including the task of discriminating labelled cells from the image background. 

Often these methods require image interpretation of subtle contrast or relativity changes in regions 

believed to contain the cells. Quantification of cell numbers is challenging because several 

subject-dependent parameters must be determined.  

NPs containing fluorine can be an alternative to SPIONs and NPs containing gadolinium since 

there is no fluorine in the human body, and therefore cells labelled with these NPs can be 

selectively imaged by 
19

F MRI 
11

. Importantly, the absolute number of labelled cells can be 
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estimated directly from the in vivo 
19

F images 
171

 and its viability. Few studies have used fluorine-

based nanomaterials to track stem cells, and in all these studies liposome containing fluorine were 

used. Unfortunately, these liposomes are susceptible to oxidation, aggregation, and have 

heterogeneous size 
260

. As an alternative, poly(lactic-co-glycolic acid) (PLGA) NPs can be used to 

encapsulate fluorine. These NPs have not been used to label vascular cells, vascular progenitor 

cells or resident stem cells for cardiac remodelling. Here we show how fluorine-containing NPs 

can be used to label CDCs, without affecting their viability and proliferative capacity.  

 

The detection threshold for NP-labeled cells is affected by a number of factors, including field 

strength, signal-to-noise ratio, pulse sequence and acquisition parameters, among others 
173, 174

. 

The minimum detectable dose of cells has been reported to be 110
5
 for a MRI with 1.5 T of field 

strength 
175

, but this number can be affected by differences in hardware, resolution of acquired 

images, cell type, and uptake of NPs by cells 
174

. 

To the best of our knowledge, no example has been reported so far of the clinical use of NP-

labeled stem cells in the myocardial infarction setting. However, there are already examples of the 

clinical translation of SPION-labeled cells in the context of other cell-based therapies. One study 

reports SPION labeling of dendritic cells in human patients as cancer vaccines 
177

. This approach 

allowed the assessment of the accuracy of dendritic cell delivery and of inter and intra nodal cell 

migration patterns. The other reports the use of SPION-labeled neural stem cells for human brain 

regeneration 
178

. Both studies seem to indicate the feasibility of using NP-labelled stem cells in 

humans. 

The use of MRI allows one to accurately deliver the NP labeled stem cells to the infarcted area. 

This has been demonstrated for the catheter delivery of skeletal muscle-derived mesenchymal 
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progenitor cells (110
8
) labeled with SPIONs to the anterior left ventricle myocardium in pigs 

179
. 

The cells and the heart were imaged under a 1.5T MRI. A similar strategy has been adopted for 

the delivery of bone marrow aspirate (1 to 210
6
 cells) at the periphery of the infarcted 

myocardium of a porcine model 
180

. The use of MRI, labeled stem cells and catheters allow 

efficient and safe cell delivery into myocardial segments under direct and live imaging. The use of 

NP-labeled stem cells and MRI makes it possible to monitor cell survival after transplantation. Rat 

bone marrow mesenchymal stem cells labeled with SPIONs (1.2510
5
) can successfully be 

tracked for at least 16 weeks once injected into the myocardium under a 11.7 Tesla MRI 
181

. 

Results showed that the hypointense signal attained from labeled cells on the myocardium 

decreased every time the animals were imaged (up to week 16), suggesting that the cells were lost 

or died over time. The loss of exogenous stem cells transplanted at the myocardium has been 

observed in other studies. The 1.5 T MRI signal of labelled swine mesenchymal stem cells with 

SPIONs (2.810
7
 to 1.610

8
 cells), delivered intra-myocardially into a swine myocardial 

infarction model, decreased over time 
182

. The results suggest that the decrease was due to 

mesenchymal stem cell death. 

The use of labeled cells allows researchers to examine the efficiency of stem cell delivery. For 

example, bone marrow-derived mesenchymal stem cells (610
7
) labeled with iridium NPs and 

delivered intracoronary, intravenously or endocardially at the infarcted heart of pigs show that the 

intracoronary route was the most efficient. The labeled cells were retained within the myocardium 

for at least 14 days 
183

. 

We have shown that we can label CDCs under either hypoxia or normoxia and transplant them in 

a model of rodent myocardial infarction, tracking them for at least 13 days. Unfortunately we were 

not able to directly quantify the number of cells via the 
19

F signals, as our spectroscopy channels 
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were not in tune with the imaging channels. However the goal was to establish methodologies to 

allow rapid in vitro labelling of CDCs without affecting their viability, proliferation and ability to 

differentiate and transplant them into in vivo models, was achieved. Nonetheless, we were still left 

with two challenges; firstly we need to further develop the simultaneous imaging and 

spectroscopy sequences so as to using 
19

F signals simultaneously for tracking and quantification of 

cell numbers; secondly we need to perfect systems to use 
19

F to also measure oxygen levels in the 

imaged areas, as this can be indicative of cell/tissue death/regeneration. At the moment we are 

able to use the 
19

F system to track the labelled cells with our NP construct and from cardiac gated 

imaging calculate left ventricle ejection fraction and correlate any improvement with the presence 

of the transplanted cells at the site, but not to directly show that they are still viable via in situ 

oxygen measurements. 

 

4.5. Methods 

 

Animals. Sprague Dawley rats were obtained from a commercial breeder (Harlan, Oxon, UK). 

Animals were kept under controlled conditions for temperature, humidity and light, with water 

and rat chow available ad libitum. Rats were anaesthetised with sodium pentobarbital (270 mg/kg 

body weight, IP; Euthatal, Merial, UK) to allow tissue removal. Body and heart weights were 

routinely recorded. All procedures performed had the necessary UK Home Office and local ethical 

approval. 
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Primary cell culture. Isolation and expansion of CDCs. Rat CDCs were cultured as previously 

described 
234, 235

. Briefly adult (4 months) Sprague Dawley rat hearts were excised and heart 

weight was measured (n = 4). Adult heart atria were cut into two equal portions, which were 

minced into 1 mm explant tissue fragments in 0.05% trypsin-EDTA (Invitrogen). Digested tissue 

fragments were plated on fibronectin (Sigma) coated-petri dishes with 2 mL of complete explant 

medium (CEM) (Iscove’s modified Dulbecco medium, IMDM supplemented with 20% foetal 

bovine serum, FBS) and allocated to two different incubators (Wolf Laboratories, UK) adjustable 

to different O2 concentrations by infusion of nitrogen 
261

. Normoxic cell culture was set at 21% 

O2, whereas hypoxic cell culture was set at 2% O2, both buffered with 5% CO2. The O2 

concentration was monitored continuously using an oxygen sensor (Wolf Laboratories, UK). 

Supporting cells and phase bright cells (collectively known as explant-derived cells, EDC) grown 

out from the explants were harvested and re-suspended in poly-D-lysine-coated 24 well plates 

with cardiosphere growth medium, at a density of 3  10
4
 cells per well. Cardiospheres were 

subsequently expanded in CEM on fibronectin-coated tissue culture flasks to generate 

cardiosphere-derived cells (CDCs), which were maintained in culture with CEM changed every 3 

days and passaged every 5 days until passage 2 (P2). All experiments in this study used P2 CDCs 

at 70 to 80% confluence, unless otherwise stated.  

 

Treatment of cells with PHDIs and cytotoxicity assay. A cytotoxity test across a gradient of 

PHDI concentrations was carried out to determine the optimal, sublethal PHDI treatment for 

CDCs. Three PHDIs: DMOG, EDBA and BIC were dissolved in CEM to give final concentrations 

ranging from 0.01 mM to 2 mM, based on concentrations used previously 
262-264

. Cell death was 
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determined by measuring the concentration of lactate dehydrogenase 
263

 in cell culture medium 

using an ABX Pentra 400 Chemistry Analyzer.  

 

Treatment of cells with PHDI at optimal concentrations. For subsequent PHDI experiments, 

CDCs were treated with 1 mM DMOG, 0.5 mM EDBA and BIC a 100µM for 24 h under 

normoxia (21% O2).  

 

CDCs differentiation. CDCs were maintained under normoxia or hypoxia for 7 days before 

cardiomyocyte differentiation was induced using cardiomyocyte differentiation medium (CDM) 

(2% FBS ESQ (embroyonic stem cell-qualified) (Invitrogen), 1% insulin transferring selenium in 

IMDM: DMEM/F12; 1:1, Sigma, UK) supplemented with 1 μM dimethylsulfoxide (DMSO). The 

DMSO supplemented CDM was changed every two days for 6 days. Then, all cells were aspirated 

with PBS to remove the dead cells and 2 mL CDM supplemented with 50 μL of 1 μM ascorbic 

acid were added to the plate. The medium was changed every 2 days for the following 6 days 

before the cells were immunostained with antibodies against cardiac troponin T and α-sarcomeric 

actin. Protein and RNA were harvested from cell differentiated using CDM only. Negative control 

cells were treated with CEM for 5 days or 2 weeks, with medium changed every 2 days. 

 

Primer design. Primer pairs were designed using Primer3 software based on interpretation of 

GenBank or Ensembl Genome Browser. Primer specificity was enhanced by designing a primer 

pair that flanked the exon-exon border of the gene of interest. Specific cardiac stem cell markers 
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(c-Kit), pluripotent stem cell markers (Oct-4, Sox 2, Klf-4, and Nanog), cardiac differentiation 

transcription factors (Nkx 2.5 and GATA 4), matured cardiomyocyte markers (Tnnt and MyHC) 

and mesenchymal stem cell markers (CD90 and CD105) were designed for CDC characterization. 

Specific hypoxia target genes such as hypoxia-induced factor-1 alpha (HIF-1α), vascular 

endothelial growth factor (VEGF), erythropoietin 
265

 and C-X-C chemokine receptor type 4 

(CXCR-4), were designed to investigate the effects of hypoxia on CDC culture (Table 1). 

 

Quantitative (real time) reverse transcriptase PCR (qRT-PCR). Total RNA was extracted 

from cultured cells using Trizol reagent (Sigma) according to the manufacturer’s instructions, and 

treated with Turbo DNA-free (Ambion) to degrade any DNA present. Complementary DNA 

(cDNA) was synthesized from the RNA template using the AB high capacity transcriptase kit 

(Applied Biosystem). Real time PCR amplification was performed using the Applied Biosystems 

StepOnePlus Real-Time PCR System (AB International). After amplification, a melting curve was 

acquired by heating the product at 4°C/sec to 95°C, cooling it at 4°C/sec to 70°C, keeping it at 

70°C for 20 secs, and then slowly heating it at 4°C/sec to 95°C to determine the specificity of 

PCR products. All qRT-PCR data were normalized to glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and beta actin (Actb) as the reference genes, as previously described 
266

. 
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Table 1 – Primer list and details. 

No. Function Primer Gene name Sense primer sequence Anti-sense primer sequence 

1  

 

 

Markers for pluripotent stem cells 

OCT-4 # POU class 5 homeobox 

1 (Pou5f1) 

 

GAGGGATGTGGTTCG

AGTGT 

CCAGAGCAGTGACAGG

AACA 

2 Sox-2 # SRY (sex determining 

region Y)-box 2  

CACAACTCGGAGATC

AGCAA 

CTCCGGGAAGCGTGTA

CTTA 

3 Klf-4 # Kruppel-like factor 4  CCACAGACCTGGAAA

GTGGT 

GGAAGACGAGGATGA

AGCTG 

4 Nanog # Homeobox protein 

NANOG 

TACCTCAGCCTCCAG

CAGAT 

AGGCCGTTGCTAGTCT

TCAA 

5  

Cardiac stem cell marker 

c-Kit* Stem cell factor 

cytokine receptor 

AATCCGACAACCAAA

GCAAC 

TGACATCAGAGTTGGA

CACCA 

 

6 Involved in stem cell homing to 

infarcted heart 

CXCR-4 chemokine receptor type 

4 

GCTACCTTGCCATTGT

CCAC 

ACATCGGCGAAGATGA

TGTC 

7  

Early cardiac transcription markers 

 

Nkx 2.5* Homeobox protein 

NKX2-5 

CATTTTATCCGCGAG

CCTAC  

GTCTGTCTCGGCTTTGT

CCA  

8 GATA 4 GATA binding protein 4 CAGTCCTGCACAGCC

TACCT  

CCGCAGTTGACACACT

CTCT  
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No. Function Primer Gene name Sense primer sequence Anti-sense primer 

sequence 

9  

Markers of mature cardiomyocyte 

 

Tnnt 2  Troponin T type 2 

(cardiac) 

CGTATTCGCAATGAAC

GAGA 

CTGTTCTCCTCCTCCT

CACG 

10 MyHC Myosin heavy chain TATGAGACGGACGCCA

TACA 

 

CTCCAGAGAGGAGCA

CTTGG 

 

11  

Markers for mesenchymal cells or 

fibroblasts 

CD90 Thy-1 cell surface 

antigen 

CAGAATCCCACAAGCT

CCAA 

GCCAGGAAGTGTTTT

GAACC 

12 CD105  Endoglin GGTACAGTGCATCGAC

ATGG 

GCTGGCCTAGCTCTA

TGGTG 

13 Hypoxia induced transcription factor HIF-1α  Hypoxia induced factor-

1 alpha 

GGTGGATATGTCTGGG

TTGAG 

TTCAACTGGTTTGAG

GACAGA  

14 Induce production of red blood cell EPO Erythropoietin CCAGCCACCAGAGAGT

CTTC 

TGTGAGTGTTCGGAG

TGGAG 

15 Stimulate vasculogenesis and 

angiogenesis 

VEGF-

α* 

vascular endothelial 

growth factor A 

AATGATGAAGCCCTGG

AGTG 

ATGCTGCAGGAAGCT

CATCT 

16 Catalytic subunit of the  enzyme 

telomerase 

TERT # telomerase reverse 

transcriptase 

AGTGGTGAACTTCCCT

GTGG 

CAACCGCAAGACTGA

CAAGA 
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* Exon sequences browsed using Ensembl Genome Browser; others were browsed using GenBank Genome Browser. 

# Primer sequences were kindly provided by Dr. Georgina M. Ellison

No. Function Primer Gene name Sense primer sequence Anti-sense primer 

sequence 

17  

 

Housekeeping genes 

 

 

 

GAPD

H  

glyceraldehyde-3-

phosphate 

dehydrogenase 

 

GGGTGTGAACCACGAG

AAAT 

ACTGTGGTCATGAGC

CCTTC 

 

18 Actb Beta-actin CTAAGGCCAACCGTGA

AAAG 

 

AACACAGCCTGGATG

GCTAC 

 

20 Encodes acidic ribosomal 

phosphoprotein. Used as 

housekeeping gene in telomere 

length measurement assay. 

 

36β4 acidic ribosomal 

phosphoprotein  

ACTGGTCTAGGACCCG

AGAAG 

TCAATGGTGCCTCTG

GAGATT 
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Western Blot analyses. A total of 50 g of protein extracted from normoxic, hypoxic and 

PHDI-treated CDCs using lysis buffer containing protease inhibitors (Sigma), was subjected to 

immunoblot assay with anti-HIF-1α (1:2000, Novus), anti-HIF-2α (1:1000, Novus), anti-HIF-

1α hydroxyl-Asn803 (1:4000, kindly provided by Ya-Min Tian, University of Oxford), anti-

GLUT-1 (1:1000, Abcam) and anti-citrate synthase, CISY11-A (1:2000, Apha Diagnostic) as 

previously described 
267

. Protein loading and transfer were confirmed by Ponceau S staining 

(Sigma), and protein levels were related to internal standards to ensure homogeneity between 

samples and gels. Bands were quantified using UN-SCAN-IT gel software (Silk Scientific, 

USA), and all samples were run in duplicate on separate gels to confirm results.  

 

Immunocytochemistry. Conditioned CDCs were grown on Nunc Lab-Tek® 4-well chamber 

slides pre-coated with 10 μg/mL fibronectin and fixed with 4% (w/v) paraformaldehyde 

(Sigma, UK) for 10 minutes on ice. Fixed cells were blocked with 10% (v/v) donkey serum 

(Biosera, UK) in 0.1% (v/v) PBS-Tween for an hour at room temperature and then incubated 

with the anti-cardiac troponin I (cTnI) (1:100, Abcam) and anti-α-sacromeric actin (1:100, 

Abcam) primary antibodies diluted in PBS, overnight at 4
o
C in a humidified chamber. Cells 

were then incubated with donkey anti-goat lgG-FITC (AF488) and the immunefluorescence 

detected using a confocal microscope (Zeiss Confocal LSM 700). 

 

CDCs labelling with NP170 and viability overtime. CDCs  (P2) were incubated for 4 h 

(unless stated differently, as in the time titration for optimal labelling, labelling times consisted 

of 4 h, 12 h, 1 day, 2 days and 3 days) in IMDM medium with 2% (v/v) FBS containing 500 

μg/mL or no NPs. After 4 h, cells were washed with PBS three times. Cells were then 

incubated with mitotracker red CMX-ROS at 50 nM for 15 min at 37
0
C in a CO2 incubator. 
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Cells were later trypsinized with 0.2% (w/v) trypsin solution, centrifuged at 1300 rpm for 5 

minutes, and fixed with 4% paraformaldehyde for 10 min at room temperature.  After fixation 

they were re-washed and then re-suspended in 500 µL of PBS, ready for FACS analysis. The 

samples were run on FACS Calibur and analyzed on Cell Quest. 80,000 events were gated.  

 

Differentiation of NP170 labelled cells. After incubation with NP170 (the control condition 

did not receive NP170), CDCs underwent differentiation under normoxic conditions only as 

described before. 

 

Rodent model of myocardial infarction. The left anterior descending 
268

 coronary artery of 

female SD rats (200–250 g) was occluded using the method of Michael et al 
269

. In brief, 

following anaesthesia, using 2% isoflurane in O2, and thoracotamy, the pericardium was 

removed and a 5-0 prolene suture placed under the LAD, about 2 mm from the origin. The 

suture was tied, occluding the LAD, CDCs (1010
6
 cells in 50 L of PBS) were injected over 

four sites in the peri-infarct region and the chest was closed.  

 

Cardiac MRI for 
19

F/
1
H in purpose built coil and cradle. Animals were anaesthetized with 

2.5% isoflurane in O2 and positioned supine in a purpose built cradle, as shown in Figure 11, 

courtesy of Dr Daniel Stuckey, University of Oxford & Imperial College.  
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Figure 11- Purpose built cradle. Schematic drawing of the purpose built cradle, courtesy of 

Dr Daniel Stuckey. 

 

ECG electrodes were inserted into the forepaws and a respiration loop was taped across the 

chest. The cradle was placed into a horizontal bore 7T MR system with a Varian console and 

60 mm birdcage coil. ECG and respiration trigger levels were adjusted so acquisitions were 

triggered at the same point in the cardiac cycle. Scout images were acquired to determine the 

position of the heart. A long axis image (Figure 12) was planned from a stack of 6 axial images 

(Figure 12A-B show slice 1 and 6), and then another long axis image was acquired 

perpendicular to the first (Figure 12C). A true short axis image was planned from both long 

axis images (Figure 12D). The coil was tuned and matched between 
19

F and 
1
H and shim coils 

were used to homogenize the magnetic field across the heart. Contiguous 1.5 mm short axis, 

ECG and respiration gated cine images (field of view 40 mm
2
, matrix size 256x256, echo 

time/repetition time (TE/TR) 1.43/4.6 ms, 17.5° pulse, 25-35 frames per cardiac cycle) were 

acquired to cover the entire left ventricle. 
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Figure 12- Axis planning. A long axis image was planned from a stack of 6 images (A-B, 

showing slice 1 and 6), and then another long axis image was acquired perpendicular to the 

first (C). A true short axis image was planned from both long axis images and imaged the 

entire left ventricle (D). 

 

Statistical analysis. Data obtained were expressed as mean ± standard error of the mean 
95

. All 

statistical analysis was performed using SPSS software. The statistical differences of 

measurement made in the same animals were analysed using a paired T-test, whereas multiple 

comparisons between groups were analysed using a one-way analysis of variance (ANOVA). 

Repeated Measures ANOVA was performed to compare curves. A Tukey post hoc test was 

used to analyze statistical difference between groups or curves. A value of p < 0.05 was 

considered statistically significant. 



 138 

 

 

 

 

Chapter V 

General Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 139 

5. General Conclusions 

The development of tools to control cell activity is of utmost importance in Regenerative 

Medicine. For clinical efficacy, it is required that stem cells or their progenies survive and 

engraft into the host tissue. Traditional injection methods, widely used in animal models, often 

result in poor cell survival and low levels of cell integration into host tissue
270

. A significant 

number of cells die or are lost within hours after transplantation (typically >70 % in few days). 

Some methodologies have been proposed to augment cell survival including the exposure of 

donor cells to temperature shock, genetic modification to over-express growth factors, 

transduction of anti-apoptotic proteins, or preconditioning the cells with pharmacological 

agents and cytokines (reviewed in references 
271, 272

). Despite these advances, the proposed 

methodologies have shown limited effectiveness 
271

. In chapter III, the aim of the work was to 

develop fluorine-based NPs that could be used to track stem cells or their progenies by MRI 

and simultaneously deliver biomolecules, namely miRs, to enhance survival and angiogenic 

activity. The NPs had a fluorinated core to be monitored by MRI. NP170-PFCE, referred to as 

the NPs, were produced using a single emulsion protocol. These NPs had an effective diameter 

ranging from 170-218 nm and a negative zeta potential (-9 mV). Once coated with a cationic 

peptide, protamine sulphate (PS), NPs changed its zeta potential to positive (+7 mV). NP170-

PFCE coated with PS also became suitable for biomolecule attachment. Furthermore these NPs 

were shown to be stable in cell culture media. The NP degradation was notably slow, bellow 

20% over 21 days when exposed to both physiological and lysosomal pHs.  

Our results show that NP170-PFCE NPs are a good vehicle for miR delivery. We determined 

that these NPs were able to carry 12g of miR per mg of NP. We show that HUVECs 

internalize NP170-PFCE-PS and a significant part of the NPs remained within the early 

endosomes (EEA1
+
 organelles, 45%, 24 h) and were not substantially trafficked to late 

endosomes/lysosomes (Rab7
+
 organelles, 10%). This lead to the hypothesis that the 
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accumulation of miR in the endolysomal compartment facilitated the higher pro-survival and 

pro-angiogenic activities achieved for the delivery of miR132, miR424 and amiR92a by 

NP170-PFCE-PS not observed by siPORT (the commercial transfection reagent), which 

accumulated in the cytoplasm. Both miRs and amiRs have the potential to interact with Ago2. 

Furthermore, the number of Ago foci in the cells was null in the presence of NP170-PFCE-PS 

only, showing that Ago2 is activated only in the presence or delivery of miR.  

A particular innovative aspect of the work of chapter III was to investigate if the accumulation 

of NPs containing miRs in the endolysosomal compartment could increase the efficacy of the 

delivered miR. This was the case because the machinery to process the miRNA is located in 

the membrane of the endolysosomes. Our work also raised hypothesis about the translocation 

of the miR from the endolysosomal compartment to the cytoplasm. HSP90 and HSP70 

chaperones co-localize with miR and Ago2 foci, which suggests their involvement in the 

recognition and translocation of miR. NP170-PFCE (either by its geometry or protamine 

coating 
198

) are recognized by HSP chaperones while miR is recognized by Ago2. In addition, 

the higher association with RISC after NP delivery under hypoxia may be related with the up-

regulation of HSP chaperones 
273

, as proposed in the diagram bellow (Figure 1). 

 

Figure 1. Schematic drawing of NP delivery of miR in vitro. miR delivery via NPs recruits higher 

levels of heat shock proteins (HSPs) which in turn transport miR from the endolysomal compartment to 



 141 

the cytoplasm, allowing more effective RISC strand invasion for miR. This translates into a down 

regulation of RASA 1 gene expression which in turns enhance cell survival, via AKT pathway, and 

angiogenic activity.   

 

Our results show that NPs can be tracked by MRI. MRI coils and imaging sequences have 

been developed to allow imaging cells labelled with NPs on fluorine and hydrogen 

frequencies. Unique volume cage coils were built suited for cardiac imaging. Manny validation 

studies were done at the in vitro level and it was clear that with these systems the NPs could be 

imaged as quickly as in 10 minutes producing high quality images. 

Our NP170-PFCE NPs containing miR132 was very effective platform to track and manipulate 

in vivo transplanted cells. After optimisation in mice and rabbit models, we show that the 

delivery of angiogenic oligonucleotides attached to NPs, via local injection, increased capillary 

formation relatively to control. Furthermore we could track NPs via MRI over time in vivo and 

we saw no signs of oedema or necrosis, which led to believe that in situ acidity as a result from 

PLGA degradation, was not an issue.  The pilot studies were indicative that we had 

methodologies for induction of efficient angiogenesis without using viral vectors. These results 

were validated in a full study in a limb ischemia mouse model where we hoped to ultimately 

create some regeneration or halt degradation of damaged limbs by the delivery of cells 

carrying NPs. We showed that the release of miR132 from the NPs increased by 3-fold the 

survival of ECs transplanted in vivo and 3.5-fold the blood perfusion in ischemic limbs relative 

to control.  

Prior to this thesis, although some studies have reported the use of nanoparticles for the 

delivery of the miR, no study has used a theranostic approach. Therefore, a major contribution 

of this work was to develop a NP formulation with clinical relevance for in vivo cell tracking 

and miR delivery.  
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In chapter IV, we have applied our theranostic formulation in the context of cardiac stem cells 

transplantation.  We optimised the expansion of CDCs in vitro so as to maximise its potential. 

It consisted in maintaining constant hypoxia either under hypoxic chambers or via the use of 

prolyl hydroxylase inhibitors (PHDI). Here it was clear that hypoxia enhances cell 

proliferation as well as increased retention of pluripotency gene and protein expression. 

Hypoxic preconditioning increased the expression of c-Kit and reduced mesenchymal markers 

CD90 and CD105 in the heterogeneous CDC population. In addition, proliferating hypoxic 

cells maintained expression of pluripotency factors Oct-4, Klf-4, Sox 2 and Nanog, with 

decreased expression of cardiac genes, in agreement with previous findings 
243, 256-258

. Our 

results further indicate that preconditioning might stimulate stem cell homing and 

neovascularization in the infarcted myocardium. Hypoxic treatment significantly increased the 

cell proliferation, shortening the time required to obtain adequate cell numbers for therapy, 

while both hypoxic and PHDI-preconditioning enhanced the therapeutic potential of CDCs by 

increasing the expression of CXCR-4, EPO and VEGF. This was the first study using PHDIs 

to stabilize HIF in CDCs, mimicking the effects of hypoxic cell culture. 

Being able to attain feasible cells numbers in real time is as important as the ability to non-

invasively monitor these cells once transplanted in vivo via MRI. Using MRI it is possible to 

track cells as they migrate within living tissues such as the heart. However, cells need to be 

labelled with contrast agents, therefore we used our novel NP construct, NP170-PFCE. We 

have shown that we can label CDCs under either hypoxia or normoxia and transplant them in a 

model of rodent myocardial infarction, tracking them for at least 13 days. The labelling of 

these cells with the NPs did not alter its gene profiling or differentiation capability in vitro, 

therefore was a promising platform for tracking. However this study lacked on data for cell 

number quantification in vivo as our spectroscopy channels were not in tune with the imaging 

channels on the 
19

F system that we had developed. Nevertheless our main goal was to establish 
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methodologies to allow rapid in vitro labelling of CDCs without affecting their viability, 

proliferation and ability to differentiate and transplant them into in vivo models. Yet we were 

still left with two challenges. First, to further develop the simultaneous imaging and 

spectroscopy sequences so as to using 
19

F signals simultaneously for tracking and 

quantification of cell numbers. Second, to optimize our system in order to measure oxygen 

levels in the imaged areas, as this can be indicative of cell or tissue death and also 

regeneration.  

At the moment we are able to the 
19

F system to track the labelled cells with our NP construct 

and from cardiac gated imaging calculate left ventricle ejection fraction and correlate any 

improvement with the presence of the transplanted cells at the site. Furthermore we can label 

cells and deliver miRs using these NPs in limb ischemia models and salvage limbs as a 

consequence of increased cell survival due to intracellular delivery of miRs via NPs. 
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6. Future Work  

 

6.1. Issues to address from previous work  

Although we were able to establish a teranostic platform to deliver miR, creating ne-

vascularization and simultaneously allow non-invasive tracking we were still left with two 

challenges at the imaging level.  

The inability to measure oxygen levels in the imaged areas with 
19

F MRI to determine in vivo 

oxygen levels indicative of regional death or regeneration, and also the incapacity to execute 

simultaneous imaging and spectroscopy for tracking and quantification of cells. 

Modifications are under course to allow in vivo determination by modifying coils to do 

relaxometry targeting echo planar imaging for dynamic oxygen mapping which will allow 

partial oxygen  (pO2) measurements. The pO2 value can be calculated by a pixel-by-pixel 

based method on the quantified 
19

F R1 and a priori calibrated 
19

F R1–pO2 curve of 

hexafluorobenzene (HFB) or another fluorinated compound 
274

. To address the issue of 

sequential imaging and in vivo spectroscopy, there is a need to re-design the cage coils to 

incorporate extra capacitors to increase sensitivity so MRS is performed straight after MRI. 

There is a need to re-design the electronics systems and the shell of the coils as well as to 

program and establish more sequences for the 
19

F imaging. 

Work in chapter IV was geared towards in vivo tracking of stem cell therapies in the infarcted 

myocardium where we previously performed trials however using iron oxide nanoparticles and 

CDCs not optimally cultured, meaning not under hypoxic conditions 
78

. From this work, we 

show that our NP construct is ideal for tracking without affecting cell integrity and its 

differentiation abilities. Here we lack the experiments where we validate a miR which can 
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enhance the CDCs survival, to be carried by the NPs and deliver these cells in vivo for both 

tracking and enhancement of cell survival in the infarcted myocardium. In this manner we can 

perform a full animal study to determine the regional effects of combined stem cells therapy 

with miR delivery within the infarcted myocardium compared to the controls.  In this study the 

newly developed coils to perform simultaneous 
19

F MRI and MRS would be used. 

 

6.2. Proposal of new ideas 

The CDC therapy reported in here has tremendous potential for preventing heart failure 

following acute myocardial infarction (AMI), but limited availability of cells and the required 

numbers for transplant in the injured heart is problematic. Studies have shown that the 

therapeutic effect of CDCs is largely a paracrine effect, e.g, the cells secrete factors that exert 

an effect on the surviving heart cells 
275

. Paracrine factors are contained in vesicles, exosomes, 

which are secreted by cells. Exosomes have angiogenic properties when delivered to sites of 

injury; exosomes from CD34+ cord blood derived cells were shown to have a regenerative 

effect 
276

. Exosome secretion can be stimulated and genetically engineered to express peptide 

sequences in it outer membrane such as angiotensin receptor 1 peptide (AT1), which would 

bind to AT1 receptors, expressed in infarcted tissue. Our hypothesis is that the AT1 peptide 

expression facilitates site-specific homing of the exosomes in vivo to the injured heart 
277

. 

Exosomes can be produced in xeno-free conditions to avoid immune complications. However, 

the current strategy for exosome delivery does not allow in vivo non-invasive tracking. 

Therefore, we are planning to use our NPs to track in vivo exosomes. The exosomes will also 

encapsulate NPs carrying angiogenic miR. The nanoparticles within the exosomes will be 

tracked in vivo using 
19

F MRI. This strategy would allow a greater delivery of paracrine 

factors to the injured tissue that will stimulate rescue of remaining myocytes. I propose to 

develop a nanoparticle-exosomal complex (NpEx) targeting AT1 and other receptors expressed 
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in the damaged heart, to deliver miR. The NpEx complex will be tracked in vivo using 
19

F MRI 

and the cardiac function monitored using in vivo cardiac gated 
1
H MRI. 

 

 

 

 

 

 

 

Figure 1 – Confocal images of labelled cells. Image shows 
19

F NPs internalised by CD34+ 

differentiate cells into endothelial cells within endosomes shown in red. 

 

 

 

Figure 2- MRI imaging of delivered CDCs. CDCs (20  10
6
) were labelled with NPs and 

delivered in the heart of a rodent model of myocardial infarction. Cardiac gated MRI images 

on 
19

F channel show the
 
presence of cells labelled with NPs. 

 

I will address the following research question: Can the function of the damaged heart be 

improved using nanoparticle-exosomal (NpEx) complexes? 

I will focus on the following objectives:  
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1. Design of lentiviral constructs for production of exosomal vesicles expressing AT1 

peptide 
277

 - I will develop a lentiviral construct where the AT1 peptide would be 

inserted with a fluorescent reporter and a blasticidin resistance motif, which will allow 

proof of expression of the peptide and make the exosomes fluorescent. In addition other 

peptide sequences will be exploited and other lentiviral constructs will be made, to 

explore the most effective exosomal surface recognition system for homing to the 

damaged heart. 

 

2. Establishment of a CD34+ progenitor-derived cell line and cardiac stem cell lines 

infected with the lentiviral constructs - Cord blood CD34+ progenitor and cardiac 

stem cells will be collected and infected with the lentivirus. Once infected, selection of 

the infected cells will be made via blasticidin exposure. The CD34+ cells will be 

guided towards an endothelial lineage where proliferation and manipulation will be 

straightforward. Exosomes from CD34+ derived cells will be attained from widely 

available umbilical cord blood; CD34+ cells are reported to be the sub-population, 

which holds the greatest regenerative potential for AMI 
276

. Cardiac stem cells can be 

attained from primary culture; human cardiac stem cells extracted from aortic biopsies 

taken during bypass surgery are also available for manipulation. 

 

3. Labelling of established cell lines with novel fluorine nanoparticles carrying pro-

angiogenic microRNA Cells will be labelled with our fluorinated NP construct 

containing pro-angiogenic miRNA. Labelled exosomes (NpEx) will be collected and 

purified.  
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4. Delivery of NpEx complexes to in vivo animal models of AMI (rodent and porcine 

models) - Purified NpEx complexes will be delivered to the infarcted myocardium 

either via infusion or cardiac injection or both.  The retention of the NpEx complexes 

will be recorded, and cardiac function measured, using in vivo cardiac gated MRI at 

various time points after delivery. 

 

5. Incorporation of further biochemical tools to verify and enhance results - The 

effect of the NpEx complexes from CD34+ progenitor-derived cells and cardiac stem 

cells will be validated by verifying the expression of markers for neo-angiogenesis and 

regeneration both at protein and gene level. The signalling cascade by which the NpEx 

complex acts will be examined. 
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