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Abstract

Despite their ecological and economical importance, estuaries receive and retain numerous 
chemical contaminants. Persistent organic pollutants (POPs) such as polychlorinated 
dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like 
polychlorinated biphenyls (dl-PCBs) are widely recognized by the scientific community 
as being a risk to wildlife and human health due to their high toxicity and ability to 
bioaccumulate in biota and biomagnify in food webs. In this regard, the occurrence and 
distribution of 2,3,7,8-substituted PCDD/Fs and dl-PCBs was investigated in the Portuguese 
estuarine environment, through four different studies.
The initial study provided a general overview of the occurrence of PCDD/Fs and dl-PCBs 
in superficial sediments from several estuaries along the Portuguese coast (Lima, Ria de 
Aveiro, Mondego, Tejo, Sado, Mira and Ria Formosa). In general, the higher concentrations 
were detected near large populated regions and industrial complexes (e.g. Tejo estuary), 
while the lowest PCDD/F and dl-PCB values were measured in less impacted areas (e.g. 
Ria Formosa). The different PCDD/F profiles detected among the Portuguese estuaries 
suggest the existence of different contamination sources. Furthermore, this work showed 
that the most abundant PCDD/F congeners existing in superficial sediments are those with 
more chlorine substitutions. In contrast, the dl-PCB profiles were fairly similar among the 
estuaries. The contamination levels found in the collected sediments were lower than those 
found in highly impacted areas from different parts of the globe. Nevertheless, comparison 
with guidelines and quality standards from other countries indicated that some Portuguese 
estuarine areas with a high industrialization level present PCDD/F and dl-PCB concentrations 
in superficial sediment that may constitute a risk to aquatic organisms. 
The following study focused on the salt marsh plants Sarcocornia perennis and Halimione 
portulacoides capacity to accumulate PCDD/Fs and dl-PCB. According to this work carried 
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out in the Tejo estuary (Portugal), the selected species retain PCDD/Fs and dl-PCBs in 
their organs. However, the major fraction of these contaminants remains associated with 
sediment. In addition, both plant species accumulate significantly higher concentrations of 
PCDD/Fs and dl-PCBs in its roots in comparison with its aboveground tissues, suggesting 
that despite part of the sediment contaminants being incorporated in the roots, they are 
not substantially translocated to the aboveground vegetation. This study also showed that 
S. perennis accumulate lower quantities of dioxin-like compounds in comparison with H. 
portulacoides, confirming the diversity in uptake and translocation of organic contaminants 
among plant species. It was also possible to verify that salt marsh sediments without 
vegetation show higher PCDD/F and dl-PCB concentrations, suggesting that these plant 
species may contribute to reduce dioxin-like compound concentrations in contaminated 
sediments, although in a minor extent. Moreover, congener profiles changed between 
sediments and plant tissues, reflecting a selective accumulation of low chlorinated PCDD/
Fs and non-ortho dl-PCBs in the studied plants.
The third study addressed the contamination of juvenile European flounder (Platichthys 
flesus) contamination by PCDD/Fs and dl-PCBs in a number of nursery areas along the 
species’ geographical distribution in the northeastern Atlantic Ocean. According with 
results obtained, the lowest tissue residue levels were detected in juveniles caught in the 
Sørfjord (Norway), whereas the highest value was found in P. flesus captured in the Wadden 
Sea (Netherlands), in agreement with the long history of pollution reported in this area. 
The PCDD/F and dl-PCB concentrations detected in the muscle of juvenile flounder are not 
expected to adversely affect fish.
Finally, a preliminary survey was carried out in the Mondego estuary (Portugal) to investigate 
the occurrence of PCDD/Fs and dl-PCBs in sediment and biota. The contamination levels 
found in the study area were lower when compared with PCDD/F and dl-PCB concentrations 
reported in impacted estuarine and coastal systems around the world. This study suggests 
different behaviors of PCDD/Fs and PCBs along the food web. While concentrations of 
PCDD/Fs were lower in higher trophic-level organisms, higher dl-PCB values were generally 
found in fish. In addition, our results showed differences between PCDD/F and dl-PCB 
profiles. In the Mondego estuary, macroalgae, plants and benthic invertebrates maintained 
the sediment PCDD/F profile, whereas organisms at higher levels of the food web (i.e., fish) 
tend to selectively accumulate lower chlorinated PCDD/F homologues. On the other hand, 
quite similar dl-PCB profiles were observed in the different species from the Mondego 
estuary (except algae and plants). From a human health perspective, the concentrations 
detected in edible aquatic organisms collected in the Mondego estuary were below the 
maximum permissible levels established by the European legislation and, therefore, are 
safe for human consumption.
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Resumo

Os sistemas estuarinos são de extrema importância, quer do ponto de vista ecológico 
quer económico, mas são também ameaçados pela presença de diversos contaminantes. 
Os poluentes orgânicos persistentes (POPs) tais como as dibenzo–p–dioxinas policloradas 
(PCDDs), os dibenzofuranos policlorados (PCDFs) e os bifenilos policlorados sob a forma de 
dioxinas (dl-PCBs), são conhecidos pelos seus efeitos adversos para a saúde humana e animal 
devido à sua elevada toxicidade e capacidade de se bioacumularem e biomagnificarem 
ao longo da cadeia trófica. Neste sentido, a presente tese teve como objectivo estudar a 
ocorrência e a distribuição de PCDD/Fs e dl-PCBs em sistemas estuarinos portugueses.
O primeiro estudo apresentado avalia os níveis de contaminação por PCDD/Fs e dl-PCBs 
em sedimentos superficiais de vários estuários portugueses (Lima, Ria de Aveiro, Mondego, 
Tejo, Sado, Mira e Ria Formosa). No geral, as concentrações mais elevadas foram detectadas 
na proximidade de grandes centros urbanos e zonas industriais (e.g. Tejo), enquanto 
os valores mais baixos foram encontrados em sistemas menos perturbados (e.g. Ria 
Formosa). Verificou-se ainda a existência de diferentes perfis de PCDD/Fs entre os sistemas 
estuarinos em estudo, apesar dos congéneres mais clorados se encontrarem sempre em 
maior proporção. Por outro lado, os perfis de dl-PCBs são bastante semelhantes entre os 
locais amostrados. Os níveis de contaminação dos sistemas estuarinos portugueses são 
inferiores aos reportados em várias zonas costeiras e estuarinas sujeitas a grandes pressões 
antropogénicas a nível mundial. No entanto, alguns dos locais de estudo apresentam 
sedimentos superficiais com concentrações de PCDD/Fs e dl-PCBs superiores aos valores 
definidos em directrizes de outros países, podendo, por isso, representar algum perigo para 
a vida aquática.
No segundo estudo foi avaliada a capacidade das plantas de sapal, nomeadamente 
Sarcocornia perennis e Halimione portulacoides, acumularem PCDD/Fs e dl-PCBs. De 
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acordo com este trabalho, desenvolvido no estuário do Tejo, ambas as espécies têm a 
capacidade de reter PCDD/Fs e dl-PCBs nos seus órgãos. No entanto, a maior fracção destes 
contaminantes permanece associada aos sedimentos. Os resultados obtidos indicam que 
ambas as espécies acumulam maior quantidade de PCDD/Fs e dl-PCBs nas raízes do que 
nos caules ou nas folhas, sugerindo que, apesar de parte dos contaminantes presentes 
nos sedimentos ser acumulada nas raízes, eles não são translocados significativamente 
para a parte aérea das plantas. Este estudo também demonstrou que S. perennis acumula 
menores quantidades de PCDD/Fs e dl-PCBs em comparação com Halimione portulacoides, 
confirmando a existência de diferentes capacidades de captação e translocação de 
contaminantes orgânicos dependendo das espécies. Também se verificou que sedimentos 
sem coberto vegetal apresentam maior concentração de PCDD/Fs e dl-PCBs. Para além 
disso, foi possível observar uma alteração entre os perfis de contaminação dos sedimentos 
e dos tecidos vegetais, reflectindo uma acumulação selectiva de PCDD/Fs menos clorados e 
não-ortho dl-PCBs nas plantas de sapal estudadas.
O terceiro estudo centra-se na contaminação de juvenis de solha (Platichthys flesus) por 
PCDD/Fs e dl-PCBs em diferentes áreas estuarinas e costeiras, utilizadas pela espécie como 
zonas de viveiro, ao longo da sua distribuição geográfica no nordeste do Oceano Atlântico. 
Os resultados obtidos indicam que os indivíduos capturados em Sørfjord (Noruega) 
apresentam os menores níveis de contaminação, enquanto os juvenis do Wadden Sea 
(Holanda) são os mais contaminados. Tendo em consideração as concentrações de PCDD/
Fs e dl-PCBs detectadas, não são esperados efeitos adversos nos juvenis de P. flesus em 
nenhum dos locais de estudo.
Por fim, são ainda apresentados os resultados de uma investigação realizada no estuário do 
Mondego com o objectivo de estudar a ocorrência de PCDD/Fs e dl-PCBs em sedimento e 
em várias espécies típicas de sistemas temperados. O presente estudo sugere que os PCDD/
Fs se comportam de uma forma particular relativamente aos dl-PCBs. Os PCDD/Fs foram 
encontrados em menor concentração em organismos de maior nível trófico, ao passo que 
foi nestes que se registaram valores mais elevados de dl-PCBs. Além demais, os resultados 
obtidos mostram diferenças entre os perfis de PCDD/fs e dl-PCBs. Enquanto as macroalgas, 
plantas e organismos bentónicos recolhidos no estuário do Mondego apresentam um perfil 
de PCDD/Fs  semelhante ao dos sedimentos, os peixes tendem a acumular selectivamente 
PCDD/F menos clorados. Por outro lado, observou-se perfis semelhantes de dl-PCBs na 
maioria das espécies. Em termos de saúde pública, as concentrações reportadas em 
organismos aquáticos capturados no estuário de Mondego, são inferiores ao valor máximo 
de PCDD/Fs e dl-PCBs estabelecido pela legislação da União Europeia, e deste modo, 
considera-se que o consumo destas espécies não representa perigo para o homem.
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1Chapter I

CHAPTER

General IntroductionI
During the 20th century, as a consequence of the rapid technical development, the 

environment became increasingly contaminated with numerous organic chemicals. Many 

of them were either produced as undesirable industrial by-products or used in several 

applications. Over the years, scientists began to recognize that certain chemicals were 

able to persist for long periods of time in the environment and to bioaccumulate, reaching 

levels that could adversely affect wildlife and human health (UNEP 2001). These chemical 

contaminants are commonly known as persistent organic pollutants (POPs). With the 

awareness of the potential hazards of POPs, numerous countries imposed a strict control 

on their use and release, leading to a substantial reduction of primary sources (UNEP 2001). 

Nevertheless, human and wildlife exposure to these chemicals continues to be a concern, 

since significant concentrations persist in the global environment.

Estuaries are characterized by high biological productivity and have been considered to 

be among the most valuable ecosystems on earth in terms of services and functions that 

support human society (Costanza et al. 1997; Able 2005; Barbier et al. 2011). Although 

estuarine systems represent important nursery and recruitment areas for many species 

(McLusky and Elliott 2004; Martinho et al. 2009; van der Veer et al. 2011), due to their 

fine-grained sediments high in organic matter content, they are also sinks for POPs such 
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as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and 

polychlorinated biphenyls (PCBs).

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)

The PCDDs and PCDFs are two families of chlorinated aromatic compounds with very 

similar chemical properties (Fig. 1). The number of chlorine substitutions on the benzene 

rings may range from one to eight, which means that 75 PCDDs and 135 PCDFs congeners 

are theoretically possible. The most toxic and thoroughly researched PCDD/F congener is 

the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (van den Berg et al. 1998). PCDD/Fs can 

be categorized by their degree of chlorination. The term homologue is hence used for all 

compounds with the same number of chlorines, e.g., PCDD congeners with eight chlorines 

attached are termed octachlorodibenzo-p-dioxins (OCDDs).

Figure 1 Structural formula of (a) polychlorinated dibenzo-p-dioxins (PCDDs) and (b) polychlorinated 
dibenzofurans (PCDFs) and numbering of the carbon atoms (ClX + ClY = 1 to 8).

Despite the global distribution of PCDD/Fs, they have never been intentionally produced 

other than for scientific purposes (Altarawneh et al. 2009). However, PCDD/Fs are formed 

in a multitude of industrial and non-industrial processes, through homogeneous and 

heterogeneous pathways (Altarawneh et al. 2009). The homogeneous pathway involves the 

formation of PCDD/Fs in the gas phase from structurally related precursors, at temperatures 

ranging from 400 to 800 °C. The heterogeneous pathways comprise two different routes: a 

catalytic formation of PCDD/Fs from precursors, at temperature between 200 and 400 °C, 

and the so-called de novo mechanism, which consists on breakdown of a carbon matrix in 

a series of oxidation and chlorination reactions, also between 200 and 400 °C (Altarawneh 

et al. 2009). Chemical processes known to produce significant amounts of PCDD/Fs include 
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the bleaching of paper pulp (Rappe et al. 1990), the production of chlorine-alkali using 

graphite electrodes (Xu et al. 2000) and the chemical manufacture of chlorinated chemicals 

such as phenoxyacetic acid, a major constituent of defoliant Agent Orange used in the 

Vietnam War, the pesticide pentachlorophenol (PCP) and PCBs (Quaß et al. 2004; Young et 

al. 2004; Fiedler 2007). PCDD/Fs are also formed in combustion processes such as waste 

incineration, ferrous and non-ferrous metal production, transports (diesel and heavy oil-

fired engines), manufacture of mineral products (cement, lime and bricks) and power 

generation and heating using fossil fuels and biomass (Fiedler 2007). In Portugal, the main 

industrial sources of atmospheric emissions of these organic chemicals are linked to the 

burning of fossil fuels, municipal and hospital waste incineration plants, thermal processes 

in metallurgical industry and cement production industry burning non-hazardous waste 

(Pereira et al. 2009). In addition to anthropogenic activities, PCDD/F formation may also 

occur in forest fires and other natural processes (Ingersoll et al. 1997; Rappe et al. 2001; 

Kim et al. 2003).

Due to process changes and improvements in the cleansing technology, the industrial 

emissions of PCDD/Fs have been globally reduced (Quaß et al. 2004). For example, 

Portuguese pulp industry have made investments in order to eliminate the use of elemental 

chlorine for the purpose of bleaching thus, reducing pollutant loads in liquid effluents 

(APA 2010). However, emissions from non-industrial sources hardly decreased (Quaß et 

al. 2004). In the near future, PCDD/F emissions from non-industrial sources are thus likely 

to exceed those from industrial installations, dominating the overall annual emissions in 

Europe (Quaß et al. 2004).

Polychlorinated biphenyls (PCBs)

PCBs are a group of chemical compounds synthesized by catalyzed chlorination of biphenyl 

(IPCS 2003). The theoretically possible PCB 209 congeners differ in the number of chlorine 

atoms (1 to 10) and their position in the molecule (Fig. 2). Positions 2, 2’, 6, 6’ are called 

ortho, positions 3, 3’, 5, 5’ are named meta and positions 4, 4’ are called para. An important 

characteristic of PCBs is that their benzene rings can rotate around the bond connecting 

them. The rings are forced towards either the same plane (called coplanar PCBs) or 

perpendicular planes (named non-planar PCBs) by the electrostatic repulsion of the highly 

electronegative chlorine atoms (Andersson et al. 1997). The degree of planarity of a PCB 
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congener depends on the number of chlorine substitutions in the ortho positions. Thus, 

all non-ortho-substituted PCBs and some mono-ortho-substituted PCBs are considered to 

be coplanar, whereas a non-planar orientation is produced by multiple substitutions in the 

ortho positions (IPCS 2003).

Figure 2 Structural formula of polychlorinated biphenyls (PCBs) and numbering of the carbon 
atoms (ClX + ClY = 1 to 10).

PCBs began to be produced commercially in 1929 as technical products comprising complex 

mixtures of congeners and were sold under various trade names such as Aroclor, Pyranol 

(USA), Phenochlor, Pyralene (France), Clophen, Elaol (Germany), Sovol (USSR), Kanechlor 

and Santotherm (Japan) (Frame et al. 1996; IPCS 2003). Due to their physical and chemical 

stability, non-flammability, high boiling point, low heat conductivity and high dielectric 

constants, these compounds were produced on a large scale to be used in a wide range of 

industrial and commercial applications (de Voogt and Brinkman 1989). For example, PCBs 

were used in electric, hydraulic and heat transfer equipment (e.g. transformers, capacitors 

and hydraulic fluids) (Erickson 1997). They were also used as flame retardants and additives 

in pesticides, plastics and paints (Erickson 1997).

Manufacture and importation of PCBs were forbidden in the European Community in 1985, 

when prohibition of their commercial use was approved due to their high toxicity, suspected 

carcinogenicity and environmental persistence (EC 1985). The cumulative global production 

of PCBs has been estimated to be over 1.3 million tons from 1930 to 1993 (Breivik et al. 2002), 

when Sovol manufacture ceased in Russia, presumably ending worldwide manufacture of 

PCBs (AMAP 2000). Monsanto Industrial Chemicals Co. was the responsible for almost 50% 

of the known reported historical production (Breivik et al. 2002). Although the commercial 

manufacture and use of PCBs was banned, leakage from old equipment, building materials, 

stockpiles and landfill sites continues to constitute a threat of PCB emissions (Bignert et al. 

1998). For instance, according to the national Portuguese inventory, these compounds can 
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still be found in old equipment in use, such as air conditioning, capacitors, transformers, 

induction coils and rectifiers (APA 2010). Furthermore, PCBs may also be unintentionally 

formed as by-products of a variety of chemical processes (Erdal et al. 2008; Mansour 2009).

Physicochemical properties of PCDD/Fs and PCBs

The knowledge on physical and chemical properties of compounds is essential for 

understanding and predicting their mobility, degradation and accumulation potential in the 

environment. Vapor pressure, water solubility, octanol-water partition coefficient (KOW) and 

organic carbon-water partition coefficient (KOC) are some of the key properties that affect 

PCDD/F and PCB environmental behavior (Li et al. 2003; Åberg et al. 2008).

PCDD/Fs and PCBs comprise a large number of congeners that differ substantially in 

their physicochemical characteristics according to the degree and position of chlorine 

substitutes. Moreover, since different methodologies are used to determine PCDD/F and 

PCB characteristics, the measured values reported in the literature can vary widely (Mackay 

et al. 2006). As an illustration, a compilation of key physicochemical properties of 2,3,7,8-

TCDD, the most potent congener within PCDD/Fs and PCBs, is given in Table 1.

In general, PCDD/Fs and PCBs have low vapor pressure and very low solubility in water, 

and their volatility and aqueous solubility change with molecular size, namely, they tend to 

decrease with an increase in the number of chlorine substituents (Li et al. 2003). Moreover, 

values for PCB compounds are typically one to two orders of magnitude greater than the 

equivalent chlorinated PCDD/F congeners (Mackay et al. 2006). Additionally, within PCB 

homologue groups, congeners with chlorine substitutions in the ortho positions have higher 

vapor pressure, i.e., the more planar PCB congeners have a lower volatility (IPCS 2003; 

Li et al. 2003). The Henry’s law constant (KH) combines the properties of vapor pressure 

and water solubility of an individual compound and estimates its distribution between 

gaseous and aqueous phase (Åberg et al.  2008). PCDD/Fs and PCBs generally have quite 

low KH values, reflecting their low volatility. Nevertheless, as the number of ortho-chlorine 

substitutions increases in PCB congeners, decreasing their planarity, the KH increases (Li et 

al. 2003).

The octanol-water partition coefficient (KOW) provides information on how an organic 

chemical will partition between aqueous and organic phases. Considering the extensive 

range of values found for this parameter, KOW is normally expressed as its logarithm (van 



6 Persistent Organic Pollutants in Portuguese Estuaries

Leeuwen and Vermeire 2007). This partition coefficient is widely used in risk assessment 

to predict the distribution of hydrophobic organic chemicals between aqueous and organic 

media due to its relation with water solubility, soil/sediment adsorption coefficients and 

bioconcentration factors for aquatic life (Kenaga 1980; Meylan et al. 1996). The log KOW 

values are generally inversely related to aqueous solubility and increase with chlorine 

content (Chen et al. 2001; Wang and Wong 2002). PCDD/Fs and PCBs are referred 

to as highly hydrophobic because of their great log KOW values, i.e., greater than 6. 

Behavior and bioavailability of PCDD/Fs and PCBs in the environment are also determined 

Table 1 Physicochemical properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD).

Physicochemical	
  property	
   	
   Reference	
  
	
   	
   	
  

Molecular	
  weight	
  (g	
  mol-­‐1)	
   321.971	
   Mackay	
  et	
  al.	
  2006	
  
	
   	
   	
  

Melting	
  point	
  (°C)	
   295	
   Lide	
  2003	
  
	
   	
   	
  

Boiling	
  point	
  (°C)	
   421.2	
   Schroy	
  et	
  al.	
  1985	
  
	
   	
   	
  

Vapor	
  pressure	
   8.14	
  x	
  10-­‐8	
  –	
  6.17	
  x	
  10-­‐4	
  	
   	
  
(Pa,	
  25	
  °C	
  or	
  as	
  indicated)	
   4.50	
  x	
  10-­‐6	
  (gas	
  saturation	
  GC)	
   Rordorf	
  1985a	
  
	
   4.61	
  x	
  10-­‐7	
  (30.1°C,	
  gas	
  saturation	
  GC/MS)	
   Schroy	
  et	
  al.	
  1985	
  
	
   9.87	
  x	
  10-­‐8	
  (14C-­‐gas	
  saturation	
  method)	
   Podoll	
  et	
  al.	
  1986	
  
	
   8.14	
  x	
  10-­‐8	
  (20	
  °C,	
  solid	
  vapor	
  pressure)	
  

6.00	
  x	
  10-­‐5	
  (20	
  °C,	
  supercooled	
  liquid	
  pressure)	
  
Bidleman	
  and	
  Foreman	
  1987	
  
Bidleman	
  and	
  Foreman	
  1987	
  

	
   6.17	
  x	
  10-­‐4	
  (supercooled	
  liquid	
  pressure)	
  
5.25	
  x	
  10-­‐4	
  (supercooled	
  liquid	
  pressure)	
  

Passivirta	
  et	
  al.	
  1999	
  
Harner	
  et	
  al.	
  2000	
  

	
   2.57	
  x	
  10-­‐5	
  (GC-­‐RI	
  correlation)	
   Wang	
  and	
  Wong	
  2002	
  
	
   5.75	
  x	
  10-­‐5	
  (SOFA	
  method)	
   Wang	
  and	
  Wong	
  2002	
  
	
   5.56	
  x	
  10-­‐7	
  (gas	
  saturation	
  GC/MS)	
   Mader	
  and	
  Pankow	
  2003	
  
	
   	
   	
  

Water	
  solubility	
   1.29	
  x	
  10-­‐5	
  –	
  1.58	
  x	
  10-­‐2	
  	
   	
  
(mg	
  l-­‐1,	
  25	
  °C	
  or	
  as	
  indicated)	
   2.0	
  x	
  10-­‐4	
  (shake	
  flask-­‐GC/ECD)	
   Crummett	
  and	
  Stehl	
  1973	
  
	
   3.17	
  x	
  10-­‐4	
  (generator	
  column	
  HPLC/LSC)	
   Webster	
  et	
  al.	
  1983	
  
	
   1.93	
  x	
  10-­‐5	
  (22	
  °C,	
  shake	
  flask	
  GC/MS)	
  	
   Marple	
  et	
  al.	
  1986a	
  
	
   1.29	
  x	
  10-­‐5	
  (4.3	
  °C,	
  generator	
  column	
  GC/MS)	
  

4.83	
  x	
  10-­‐4	
  (17.3	
  °C,	
  generator	
  column	
  GC/MS)	
  
Lodge	
  1989	
  
Lodge	
  1989	
  

	
   1.58	
  x	
  10-­‐2	
  (GC-­‐RI	
  correlation)	
  	
   Wang	
  and	
  Wong	
  2002	
  
	
   	
   	
  

Henry’s	
  law	
  constant	
  	
   0.12	
  –	
  1.64	
  	
   	
  
(Pa	
  m3	
  mol-­‐1,	
  25	
  °C	
  or	
  as	
  indicated)	
   1.64	
  (calculated)	
   Podoll	
  et	
  al.	
  1986	
  
	
   1.62	
  (SOFA	
  method)	
   Govers	
  and	
  Krop	
  1998	
  
	
   1.12	
  (GC-­‐RI	
  correlation)	
  

1.62	
  (SOFA	
  method)	
  
Wang	
  and	
  Wong	
  2002	
  
Wang	
  and	
  Wong	
  2002	
  

	
   	
   	
  

Octanol-­‐water	
  partition	
   6.42	
  –	
  7.06	
   	
  
coefficient,	
  express	
  as	
  log	
  KOW	
   6.64	
   Marple	
  et	
  al.	
  1986b	
  
	
   6.42	
   Sijm	
  et	
  al.	
  1989a	
  
	
   6.80	
   Mackay	
  et	
  al.	
  1992a	
  
	
   7.02	
   Sangster	
  1993	
  
	
   6.53	
   Hansch	
  et	
  al.	
  1995	
  
	
   7.06	
   Wang	
  and	
  Wong	
  2002	
  
	
   6.67	
   Åberg	
  et	
  al.	
  	
  2008	
  
	
   	
   	
  

Organic	
  carbon-­‐water	
  partition	
  	
   6.14	
  –	
  7.59	
   	
  
coefficient,	
  express	
  as	
  log	
  KOC	
   7.39	
  –	
  7.58	
   Jackson	
  et	
  al.	
  1986	
  
	
   6.60	
   Walters	
  and	
  Guiseppi-­‐Elie	
  1988	
  
	
   7.25	
  –	
  7.59	
  	
   Lodge	
  and	
  Cook	
  1989	
  
	
   6.14	
   Jury	
  et	
  al.	
  1990	
  
	
   6.80	
   Broman	
  et	
  al.	
  1991	
  
	
   	
   	
  

	
  



7Chapter I

by their distribution between solid and liquid phases. The organic carbon-water partition 

coefficient (KOC) may be used, for example, to estimate the adsorption partition coefficient 

that describes the distribution of contaminants between suspended sediment and the 

water column (Dueri et al. 2008). Compounds with low water solubility and high adsorption 

coefficient such PCDD/Fs and PCBs occur in aquatic systems predominantly adsorb to 

particulate matter (Gotz et al. 1994).

Toxicity and effects of PCDD/Fs and PCBs

The toxicity of each PCDD/F congener is highly dependent on the position of the chlorine 

substituents (van den Berg et al. 1994). Their toxic action is mediated through an interaction 

between the congeners and the intracellular aryl hydrocarbon receptor (AhR), which is 

present in most vertebrate tissue (Okey 2007). The AhR has high affinity for 2,3,7,8-substituted 

PCDD/Fs, and thus, once in cells, these congeners bind to the receptor  and activate it. 

As a result, the abnormal AhR activation may disrupt the cell function by changing the 

transcription of genes, causing an extensive range of toxic effects (Poland et al. 1985). Of 

the 210 possible PCDD/F congeners, there are 7 PCDDs and 10 PCDFs with chlorine atoms in 

the 2, 3, 7 and 8 positions and hence those are the 17 PCDD/Fs considered of toxicological 

concern (Poland et al. 1985). Furthermore, due to their chlorine substitution pattern, 12 

PCBs can easily adopt a planar conformation similar to PCDD/Fs and consequently bind to 

the AhR (Safe et al. 1985). These 12 coplanar congeners are called dioxin-like PCBs (dl-PCBs) 

because they exhibit the same mode of toxicological action as PCDD/Fs (Poland et al. 1985).

PCDD/Fs and PCBs are found in the environment as complex congener mixtures, complicating 

the risk evaluation for animals and humans (Safe 1990). Therefore, the concept of toxic 

equivalency factors (TEFs) was developed and introduced to facilitate the risk assessment 

and regulatory control of exposure to these mixtures (e.g Barnes 1991; Ahlborg et al. 1992; 

Safe 1990; van den Berg et al. 1998). Different TEF systems were established for PCDD/Fs 

and dl-PCBs, but since the early 90’s, the World Health Organization (WHO) has organized 

expert meetings with the purpose of harmonize the TEFs on the international level. It 

was proposed that to be included in the WHO-TEF scheme a compound should: 1) show 

structural relationship to PCDD/Fs; 2) bind to the AhR; 3) elicit AhR-mediated biochemical 

and toxic responses; and 4) be persistent and accumulate in the food chain (van den Berg 

et al. 1998, 2006). The WHO scheme assigned individual TEFs to each 2,3,7,8-substituted 
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PCDD/F and dl-PCB congener using the 2,3,7,8-TCDD as a reference (TEF = 1) (van den Berg 

et al. 1998, 2006). 

The sensitivity of species that possess the AhR to dioxin-like toxicity varies greatly between 

taxonomic classes (van den Berg et al. 1998). Further, the relative sensitivity of organisms 

is not constant across chemical groups. For instance, fish are generally quite sensitive to 

2,3,7,8-substituted PCDD/Fs, as are birds and mammals (Clemons et al. 1994; Richter et al. 

1997). However they are very insensitive to mono-ortho PCBs, while these PCBs are toxic 

to birds and mammals (van der Weiden et al. 1994; Newsted et al. 1995). Therefore, there 

was a need to develop separated sets of TEFs for each class. In 1998, the WHO derived 

consensus TEFs for fish, wildlife and human risk assessment (van den Berg et al. 1998) (Table 

2). The WHO-TEFs for fish and birds were determined based essentially on concentrations 

of chemicals measured in organism tissues. In contrast, the mammalian WHO-TEFs are 

largely based on data associated with the administered dose. For that reason, in order to 

obtain a more accurate estimation of toxicological risks, mammalian TEFs should be applied 

to dietary exposures rather than to concentration in tissues (van den Berg et al. 2006). 

In the latest re-evaluation of the WHO-TEF system, in 2005, the human/mammalian TEFs 

established in 1998 were modified (van den Berg et al. 2006) (Table 2). Presently, there is 

not definitive evidence of the presence of AhR in amphibians and reptiles to propose TEFs 

for these groups (Hahn et al. 1998; van den Berg et al. 1998). Moreover, since invertebrates 

are considered to be insensitive to 2,3,7,8-TCDD-induced toxicity, the TEF methodology is 

not applicable to them (West et al. 1997; Hahn et al. 1998; Barber et al. 1998; van den Berg 

et al. 1998). 

Additivity is a fundamental assumption of the TEF concept (van den Berg et al. 1998, 2006). 

The total toxic equivalent (TEQ) of a given mixture of PCDD/F and dl-PCB congeners express 

its dioxin-like toxicity and can be calculated as the sum of the products of the concentration 

of each compound multiplied by its individual TEF, as shown by the following equation:

TEQ= (PCDDn

7

	
  n=1

×TEFn)+ (PCDFp

10

	
  p=1

×TEFp)+ (PCBq

12

	
  q=1

×TEFq)	
  

where, PCDDn, PCDFp and PCBq represent the concentration of n PCDD, p PCDF and q dl-PCB 

congeners present in the mixture under analysis, and TEFn,p,q are the TEF for each individual 

PCDD, PCDF, and dl-PCB congener, respectively.
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The TEF concept was primarily developed to calculate the potential toxic effects associated 

with the exposure to dioxin-like compounds using concentrations in either the tissues of 

organisms being assessed or their food (van den Berg et al. 1998). However, the WHO expert 

panel recognized that is currently common practice to use TEQ concentration directly to 

characterize contamination of abiotic environmental samples by 2,3,7,8-substituted PCDD/

Fs and dl-PCBs, and to evaluate their toxicity to biota (van den Berg et al. 1998). In fact, 

the TEF scheme was even adopted in national and international legislation. For example, 

the Canadian Council of Ministers of the Environment (CCME) established sediment quality 

guidelines for PCDD/Fs and PCBs expressed as WHO-TEQ fish (CCME 2001). 

PCDD/Fs and PCBs have been classified as human carcinogens (IARC 1997; Lauby-Secretan 

et al. 2013). Besides being carcinogenic, a broad spectrum of adverse effects has also been 

reported in animals and humans, including endocrine disruption actions (Longnecker and 

Table 2 Toxicity equivalency factors (TEFs) assigned for 2,3,7,8-substituted PCDD/F and dioxin-like 
PCB congeners (van den Berg et al. 1998, 2006).

Compound	
   	
   WHO-­‐TEF1998	
   WHO-­‐TEF2005	
  

	
   	
   Fish	
   Birds	
   Humans/mammals	
   Humans/mammals	
  
	
   	
   	
   	
   	
   	
  

Polychlorinated	
  dibenzo-­‐p-­‐dioxins	
   	
   	
   	
   	
   	
  
2,3,7,8-­‐Tetrachlorodibenzo-­‐p-­‐dioxin	
   2,3,7,8-­‐TCDD	
   1	
   1	
   1	
   1	
  
1,2,3,7,8-­‐Pentachlorodibenzo-­‐p-­‐dioxin	
   1,2,3,7,8-­‐PeCDD	
   1	
   1	
   1	
   1	
  
1,2,3,4,7,8-­‐Hexachlorodibenzo-­‐p-­‐dioxin	
   1,2,3,4,7,8-­‐HxCDD	
   0.5	
   0.05	
   0.1	
   0.1	
  
1,2,3,6,7,8-­‐Hexachlorodibenzo-­‐p-­‐dioxin	
   1,2,3,6,7,8-­‐HxCDD	
   0.01	
   0.01	
   0.1	
   0.1	
  
1,2,3,7,8,9-­‐Hexachlorodibenzo-­‐p-­‐dioxin	
   1,2,3,7,8,9-­‐HxCDD	
   0.01	
   0.1	
   0.1	
   0.1	
  
1,2,3,4,6,7,8-­‐Heptachlorodibenzo-­‐p-­‐dioxin	
   1,2,3,4,6,7,8-­‐HpCDD	
   0.001	
   <0.001	
   0.01	
   0.01	
  
1,2,3,4,6,7,8,9-­‐Octachlorodibenzo-­‐p-­‐dioxin	
   OCDD	
   <0.0001	
   0.0001	
   0.0001	
   0.0003	
  
	
   	
   	
   	
   	
   	
  
Polychlorinated	
  dibenzofurans	
   	
   	
   	
   	
   	
  
2,3,7,8-­‐Tetrachlorodibenzofuran	
   2,3,7,8-­‐TCDF	
   0.05	
   1	
   0.1	
   0.1	
  
1,2,3,7,8-­‐Pentachlorodibenzofuran	
   1,2,3,7,8-­‐PeCDF	
   0.05	
   0.1	
   0.05	
   0.03	
  
2,3,4,7,8-­‐Pentachlorodibenzofuran	
   2,3,4,7,8-­‐PeCDF	
   0.5	
   1	
   0.5	
   0.3	
  
1,2,3,4,7,8-­‐Hexachlorodibenzofuran	
   1,2,3,4,7,8-­‐HxCDF	
   0.1	
   0.1	
   0.1	
   0.1	
  
1,2,3,6,7,8-­‐Hexachlorodibenzofuran	
   1,2,3,6,7,8-­‐HxCDF	
   0.1	
   0.1	
   0.1	
   0.1	
  
1,2,3,7,8,9-­‐Hexachlorodibenzofuran	
   1,2,3,7,8,9-­‐HxCDF	
   0.1	
   0.1	
   0.1	
   0.1	
  
2,3,4,6,7,8-­‐Hexachlorodibenzofuran	
   2,3,4,6,7,8-­‐HxCDF	
   0.1	
   0.1	
   0.1	
   0.1	
  
1,2,3,4,6,7,8-­‐Heptachlorodibenzofuran	
   1,2,3,4,6,7,8-­‐HpCDF	
   0.01	
   0.01	
   0.01	
   0.01	
  
1,2,3,4,7,8,9-­‐Heptachlorodibenzofuran	
   1,2,3,4,7,8,9-­‐HpCDF	
   0.01	
   0.01	
   0.01	
   0.01	
  
1,2,3,4,6,7,8,9-­‐Octachlorodibenzofuran	
   OCDF	
   <0.0001	
   0.0001	
   0.0001	
   0.0003	
  
	
   	
   	
   	
   	
   	
  
Non-­‐ortho	
  polychlorinated	
  biphenys	
   	
   	
   	
   	
   	
  
3,3’,4,4’-­‐Tetrachlorobiphenyl	
   PCB	
  77	
   0.0001	
   0.05	
   0.0001	
   0.0001	
  
3,3’,4,5-­‐Tetrachlorobiphenyl	
   PCB	
  81	
   0.0005	
   0.1	
   0.0001	
   0.0003	
  
3,3’,4,4’,5-­‐Pentachlorobiphenyl	
   PCB	
  126	
   0.005	
   0.1	
   0.1	
   0.1	
  
3,3’,4,4’,5,5’-­‐Hexachlorobiphenyl	
   PCB	
  169	
   0.00005	
   0.001	
   0.01	
   0.03	
  
	
   	
   	
   	
   	
   	
  
Mono-­‐ortho	
  polychlorinated	
  biphenys	
   	
   	
   	
   	
   	
  
2,3,3’,4,4-­‐Pentachlorobiphenyl	
   PCB	
  105	
   <0.000005	
   0.0001	
   0.0001	
   0.00003	
  
2,3,4,4’,5-­‐Pentachlorobiphenyl	
   PCB	
  114	
   <0.000005	
   0.0001	
   0.0005	
   0.00003	
  
2,3',4,4',5-­‐Pentachlorobiphenyl	
   PCB	
  118	
   <0.000005	
   0.00001	
   0.0001	
   0.00003	
  
2',3,4,4',5-­‐Pentachlorobiphenyl	
   PCB	
  123	
   <0.000005	
   0.00001	
   0.0001	
   0.00003	
  
2,3,3',4,4',5-­‐Hexachlorobiphenyl	
   PCB	
  156	
   <0.000005	
   0.0001	
   0.0005	
   0.00003	
  
2,3,3',4,4',5'-­‐Hexachlorobiphenyl	
   PCB	
  157	
   <0.000005	
   0.0001	
   0.0005	
   0.00003	
  
2,3’,4,4’,5,5’-­‐Hexachlorobiphenyl	
   PCB	
  167	
   <0.000005	
   0.00001	
   0.00001	
   0.00003	
  
2,3,3',4,4',5,5'-­‐Heptachlorobiphenyl	
   PCB	
  189	
   <0.000005	
   0.00001	
   0.0001	
   0.00003	
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Michalek 2000; Pavuk et al. 2003), neurological dysfunctions (Guo et al. 2003; Kakeyama 

and Tohyama, 2003), immunosuppression (Weisglas-Kuperus et al. 2000; Ten Tusscher 

et al. 2003), dermal toxicity (Guo et al. 1999; Schecter et al. 2006), teratogenicity and 

reproductive disorders (Guo et al. 2003; Miettinen et al. 2004; Balabanič et al. 2011). 

Nevertheless, toxicological effects are not only congener dependent, as mentioned before, 

but may also differ according to species and gender, in part as a result of differences in body 

fat composition and metabolism (Geyer et al. 1990; Roeder et al. 1998).

Fate of PCDD/Fs and PCBs in the aquatic environment

Once released in the environment, POPs can be transported over short and long distances, 

and consequently are distributed in different media and biological systems (air, water, 

sediment, soil, plants, animals and humans) (Mackay and Paterson 1991). Their entry in the 

aquatic environment may occur through various pathways. For instance, direct industrial 

and municipal effluent discharges, riverine and groundwater transport, runoff from land 

and atmospheric deposition have been regarded as possible sources of PCDD/Fs and PCBs 

to estuarine systems (Schwarzbauer 2006; Castro-Jiménez et al. 2008; Addison et al. 2005).

In the aquatic environment, 2,3,7,8-substituted PCDD/Fs and dl-PCBs adsorb to organic 

matter due to their very low water solubility and high degree of hydrophobicity (i.e., log KOW 

> 6), becoming readily associated with suspended material and ultimately settling in bottom 

sediment (Lohmann and Jones 1998; Dueri et al. 2008). Therefore, measurement of their 

concentrations in water is very difficult, in particular for PCDD/Fs because they are present 

in the environment in much smaller amounts than PCBs (Rose et al. 1994). Since strong 

regulations on the use and release of these chemicals have been imposed worldwide, their 

input into the environment has decreased significantly. Nevertheless, large amounts of 

PCDD/Fs and PCBs are still accumulated in aquatic sediment and are continuously dispersed 

to organisms living in constant association with this sediment. This contamination can 

continue for extended time periods, and it is believed that the secondary sources, such as 

contaminated sediment, can become the major source of PCDD/Fs and PCBs as the releases 

from primary sources decrease (Weber et al. 2008).

PCDD/Fs and PCBs retained in sediment may be taken up by benthic organisms through 

absorption from pore-water via dermal surfaces or through dietary absorption after 

ingestion of contaminated particles (Shaw and Connell 1987; Forbes et al. 1998). In the 
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case of hydrophobic compounds the uptake from ingestion is the more significant route of 

contamination (Thomann et al. 1992). Differences in feeding strategies (e.g. deposit-feeding 

or suspension-feeding) may also affect the bioaccumulation of these chemicals (McLeod 

et al. 2008). The 2,3,7,8-substituted PCDD/Fs and coplanar PCBs have the potential to 

bioaccumulate and biomagnify along the food web because of their high lipophilic nature 

and resistance to metabolism (Fisk et al. 2003; Wan et al. 2005).

Estuaries are crucial habitats in the life history of many species providing food, shelter and 

nursery areas. Therefore, through bioaccumulation and biomagnification processes, the 

presence of PCDD/Fs and dl-PCBs in the estuarine environment can represent a threat not 

only to biodiversity and ecosystem function but also to human health. In fact, with the 

exception of specific cases of accidental or occupational exposure, general population is 

exposed to POPs mainly through diet, being fish and fishery products the main contributors 

to total dietary intake of PCDD/Fs and dl-PCBs (EFSA 2012; Caspersen et al. 2013). In order 

to protect the consumers’ health and reduce human intake to levels below the tolerable 

weekly intake of 14 pg WHO-TEQ kg-1 body weight established by the European Union 

Scientific Committee on Food (2001), new maximum levels of PCDD/Fs and dl-PCBs in fish 

and fishery products (EC 2011) were settled.

General objectives

Despite their ecological and economical importance, estuaries receive and retain numerous 

chemical contaminants. For that reason, the characterization of levels and distribution of 

toxic compounds in these ecosystems is essential to identify possible risks to human and 

ecological health. Nevertheless, the presence of PCDD/Fs and PCBs in estuarine ecosystems 

has been poorly studied in Portugal. In this context, the purpose of the thesis was to gain 

an insight into the contamination of Portuguese estuaries by POPs. The occurrence and 

distribution of 2,3,7,8-substituted PCDD/Fs and dl-PCBs was investigated in different 

estuarine compartments and the results obtained are described in four chapters (Chapter 

II – Chapter V).

Chapter II reports the contamination profiles of the target compounds in superficial 

sediments collected from seven estuaries along the Portuguese coast (Lima, Ria de Aveiro, 

Mondego, Tejo, Sado, Mira e Ria Formosa). The results are compared with available sediment 

guidelines and quality standards, together with concentrations found in sediments from 
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estuarine systems around the world.

Chapter III focused on two plant species growing in a contaminated salt marsh from the Tejo 

estuary (Portugal). Accordingly, potential differences in PCDD/F and dl-PCB concentrations 

between plant tissues (roots, stems and roots) are explored, and the accumulation capability 

of Sarcocornia perennis and Halimione portulacoides is compared. In addition, the relation 

between congener/homologue profiles of sediments and plant tissues is investigated in 

order to understand the incorporation mechanism of these compounds in S. perennis and 

H. portulacoides.

Chapter IV investigates the early contamination of different populations of European 

flounder (Platichthys flesus) to persistent organic pollutants. A comparison is made between 

PCDD/F and PCB levels and profiles in juveniles along the species’ geographical distribution 

range in the northeastern Atlantic.

Chapter V presents an overview of the PCDD/F and dl-PCB contamination in the Mondego 

estuary (Portugal). Levels and profiles are described in sediment and key-species 

representative of different trophic levels of temperate estuarine systems. Moreover, in the 

context of human consumption, concentrations detected in fish and bivalves are compared 

with maximum limit values established by the European Commission (EC).

At last, chapter VI summarizes the main outcomes of this thesis and identifies future 

research needs.
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CHAPTER

Occurrence of PCDD/Fs and dioxin-like PCBs in 
superficial sediment of Portuguese estuariesII

Superficial sediments collected from seven 
estuarine systems located along the Portuguese 
coast were analyzed for 7 polychlorinated 
dibenzo-p-dioxins (PCDDs), 10 polychlorinated 
dibenzofurans (PCDFs) and 12 dioxin-like 
polychlorinated biphenyls (dl-PCBs). Total 
PCDD/F concentration ranged from 4.6 to 463.9 
pg g-1 dry weight (dw), while those of dl-PCBs 
varied from 26.6 to 8698.2 pg g-1 dw. In general, 
the highest PCDD/F and dl-PCB concentrations 
were associated with densely populated and 
industrially impacted areas. Additionally, PCDD/F 
and dl-PCB profiles revealed a predominance of 
OCDD to total PCDD/Fs, while PCB 118 was the 
major contributor to total dl-PCBs.

This study provided a global perspective of the 
contamination status of Portuguese estuaries by 
dioxin-like compounds and allowed a comparison 
between the investigated systems and others 
worldwide. PCDD/F and dl-PCB levels found in 
the collected sediments were lower than those 
of highly impacted areas from different parts 
of the globe. Nevertheless, comparison with 
guidelines and quality standards from other 
countries indicated that some Portuguese 
estuarine areas with a high industrialization level 
present PCDD/F and dl-PCB concentrations in 
superficial sediment that may constitute a risk to 
aquatic organisms.

Keywords
PCDD/Fs; PCBs; persistent organic pollutants; sediment; estuary; Portugal

Abstract
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Introduction

Dioxin-like compounds such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated 

dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) were classified as priority 

persistent organic pollutants (POPs) at the Stockholm Convention (UNEP 2001). Due to their 

chemical stability and hydrophobicity, these compounds have been detected globally in 

various compartments of the environment including air, water, sediment and biota (He et 

al. 2006; Castro-Jiménez et al. 2008). PCDD/Fs have never been intentionally manufactured, 

and are generally released in the environment as unwanted by-products resulting from 

thermal processes (Weber et al. 2008). As for PCBs, they were synthesized and produced 

for commercial and industrial purposes but, despite an almost worldwide ban on PCBs 

production and usage, these compounds continue to be released from old equipment, 

landfills and contaminated soil and sediment (Breivik et al. 2007; Davis et al. 2007).

The ecological and socioeconomic value of estuarine systems is unquestionable. These 

ecosystems are highly productive and play an important role in the life history of many 

species, serving as nursery grounds, feeding and migration routes (Doi et al. 2005; Dolbeth 

et al. 2008; Martinho et al. 2009). Nevertheless, the presence of dioxin-like contaminants in 

estuarine systems has been highlighted in several reports, particularly in sediments (Davis et 

al. 2007; Castro-Jiménez et al. 2008). Due to their low solubility in water and high octanol–

water partition coefficients (KOW), in aquatic environments PCDD/Fs and PCBs quickly become 

associated with particulate matter, and eventually end up in bottom sediments (Dueri et al. 

2008). Consequently, estuarine sediments constitute a major repository for PCDD/Fs and 

PCBs, and a source of potential exposure to organisms living in or having direct contact 

with them (Guerzoni et al. 2007). Once present in the food web, these compounds can 

bioaccumulate and be transferred to higher trophic levels, thus representing a potentially 

significant hazard to aquatic ecosystems and ultimately affect human health (van der Oost 

et al. 2003; Weber et al. 2008).

The occurrence of PCDD/Fs and dl-PCBs in estuaries has been poorly studied in Portugal. 

Therefore, it is important to assess sediment contamination by dioxin-like compounds for 

better management and protection of these valuable coastal ecosystems. The present 

study investigated the PCDD/F and dl-PCB concentrations and profiles in superficial 

sediments to ascertain the contamination status in estuarine systems along the Portuguese 

coast. In addition, a comparison of PCDD/F and dl-PCB values with different sediment 

quality guidelines (SQG) is included to evaluate the potential risk posed by the dioxin-like 
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contaminants in the studied sediments to aquatic life.

Material and methods

Sampling and preparation of samples

Surface sediments (0-10 cm) were collected between January and February 2011 in seven 

estuarine systems distributed along the Portuguese coast: (1) Lima estuary, (2) Ria de 

Aveiro, (3) Mondego estuary, (4) Tejo estuary, (5) Sado estuary, (6) Mira estuary and (7) Ria 

Formosa (Fig. 1).

Figure 1 Location of the Portuguese estuarine systems studied and respective sampling sites.
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Sampling was conducted in the intertidal mudflats during low tide. To obtain more 

representative samples of the sediment contamination within a site, six individual samples 

were collected using a stainless steel scoop at each location and pooled into two to five 

composite samples. An additional composite sample was also taken for determination of 

total organic carbon (TOC) and fine fraction (< 63 μm). Prior to PCDD/F and dl-PCB analysis, 

samples were thoroughly homogenized after removing pebbles, shells and twigs, oven-

dried and ground. TOC content in sediments was quantified using a CHN analyzer (Carlo Erba 

Instruments) and grain size analysis was performed according to Brown and McLachland 

(1990) classification method.

PCDD/Fs and dl-PCBs analysis

The toxicity of the 210 possible PCDD/F and 209 PCB congeners varies widely, depending on 

the number and position of chlorine atoms within the molecules. Of these, only 17 PCDD/

Fs and 12 PCBs that were assigned toxic equivalency factors (TEFs) by the World Health 

Organization (WHO) (van den Berg et al. 1998, 2006) were analyzed.

Detailed descriptions of extraction and cleanup procedures can be found elsewhere (e.g. 

Costera et al. 2006). Briefly, sediments were extracted in a Pressurized Liquid Extraction 

system (ASE, Dionex, Sunnyvale, CA, USA) followed by three successive static extraction 

cycles using a mixture of toluene/acetone 70:30 (v/v) at 100 bar and 120 °C. Finally, extracts 

were purified by sequential multilayered silica gel, Florisil and carbon chromatographic 

columns.

Identification and quantification of PCDD/Fs and dl-PCBs were performed by gas 

chromatography coupled to high-resolution mass spectrometry (GC-HRMS) using a Hewlett–

Packard 6890 gas chromatograph (Palo Alto, CA, USA) equipped with a DB-5MS column and 

coupled to a JEOL JMS-800D double sector mass spectrometer (Tokyo, Japan). The HRMS 

was operated in electron ionization mode at 38-40 eV and the ion source temperature was 

set to 280 °C. All target compounds were quantified using the isotope-dilution method.

All profile determinations were undertaken at LABERCA, the French National Reference 

Laboratory in charge of PCDD/Fs and PCBs analysis in food and feed. The procedure integrated 

the quality assurance parameters to fulfill the requirements of the European legislation 

laying down sampling procedures and the method of analysis for determination of PCDD/Fs 

and dl-PCBs (EC 2006). Procedural blanks were included in every series of samples and did 

not contain quantifiable amounts of any target compounds. The chromatographic separation 
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was checked (<25% peak to peak between 1,2,3,4,7,8-HxCDF and 1,2,2,6,7,8-HxCDF) and 

recoveries of individual congeners were within 30-140% as required by the EC regulation 

1883/2006. The limits of detection (LOD) ranged from 0.001 to 0.020 pg.g-1 of dry weight 

(dw) for PCDD/Fs and 0.036 to 0.080 pg.g-1 dw for dl-PCBs.

Data analysis

For comparison with other studies, concentrations of PCDD/Fs and dl-PCBs in sediments 

are reported on a dry weight basis. Pearson’s correlation analysis was performed to assess 

the correlations between TOC content and fine particles (< 63 m) with PCDD/Fs and dl-PCBs 

in sediment samples. These statistical analyses were performed using SigmaStat (Systat 

Software Inc., California, USA).

To evaluate the potential risk posed to aquatic organisms exposed to PCDD/Fs and dl-PCBs 

present in the sediment, toxic equivalent (TEQ) concentrations were calculated based on 

TEFs values for fish derived by the WHO in 1998 (WHO-TEQfish; van den Berg et al. 1998). 

In addition, since some SQGs available are expressed in TEQ based on human TEFs (WHO-

TEQ2005), those values are also presented (van den Berg et al. 2006).

Results and Discussion

Sediment characteristics

Properties such as grain size and TOC may play a significant role in controlling hydrophobic 

organic contaminants levels in sediments (Hung et al. 2010). As expected from sampling 

in natural deposition areas, silt and clay (< 63 μm) accounted for 22 to 58% of superficial 

sediment samples (data available in Appendix A). The TOC content of the analyzed 

sediments ranged from 1.4 to 6.1% (data available in Appendix A). The significant positive 

correlation (r = 0.80, p < 0.001) found between percentage of fine particles and TOC content 

reflects the larger surface area of fine-grained sediments, and thus the greater amount of 

organic carbon that can be adsorbed (Lee et al. 2006). Nevertheless, in the present study 

no significant correlation was observed between sediment characteristics and dioxin-like 

contaminants, contrarily to the expectation (fine content and PCDD/Fs: r = 0.31, p > 0.05; 

fine content and dl-PCBs: r = 0.35, p > 0.05; TOC and PCDD/Fs: r = 0.37, p > 0.05; TOC and 

dl-PCBs: r = 0.39, p > 0.05). The existence of different contamination levels among sampling 

sites with similar sediment characteristics can explain the absence of correlation between 
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both variables.

PCDD/F and dl-PCB concentrations

All collected samples exhibited detectable concentrations of the 17 PCDD/F and 12 dl-

PCB congeners analyzed (data available in Appendix A), indicating their ubiquity in the 

Portuguese estuaries. Our sediment samples showed lower PCDD/F levels than those of 

dl-PCBs, except in site A from Ria Formosa (Fig. 2).

Figure 2 Total concentration of (a) 2,3,7,8-substituted PCDD/Fs and (b) dioxin-like PCBs in superficial 
sediments from seven Portuguese estuarine systems (pg g-1 dw). Results are expressed as the mean + 
standard deviation.

In general, dioxin-like compounds were found at higher concentrations in points near 

large populated areas and industrial complexes, whereas their lowest values were 
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measured in less impacted areas (Table 1). Accordingly, the lowest PCDD/F and dl-PCB total 

concentrations were found in Ria Formosa, a natural protected area with status of Ramsar 

site. On the contrary, Tejo estuary, one of the largest in Europe, displayed the most elevated 

ΣPCDD/F and Σdl-PCB values in this study (Fig. 2). The widespread distribution of these 

contaminants within Tejo is most likely due to domestic effluents from the metropolitan 

Table 1 Total concentration of 2,3,7,8-substituted PCDD/Fs and dioxin-like PCBs (pg g-1 dw) and 
WHO-TEQ concentration based on TEFs for fish (WHO-TEQfish; pg TEQ g-1 dw) and for humans 
(WHO-TEQ2005; pg TEQ g-1 dw) in superficial sediment from seven Portuguese estuarine systems. 
Results are expressed as the mean ± standard deviation.

Location	
   ΣPCDD/Fs	
  a	
   Σdl-­‐PCBs	
  b	
   WHO-­‐TEQ	
  fish	
   WHO-­‐TEQ	
  2005	
  

	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
  

1.	
  Lima	
   A	
   41.74	
  ±	
  5.92	
   105.60	
  ±	
  22.71	
   0.30	
  ±	
  0.05	
   0.43	
  ±	
  0.06	
  
	
   B	
   60.56	
  ±	
  11.29	
   88.71	
  ±	
  13.60	
   0.42	
  ±	
  0.04	
   0.63	
  ±	
  0.07	
  
	
   C	
   128.18	
  ±	
  6.89	
   129.48	
  ±	
  30.14	
   0.74	
  ±	
  0.19	
   1.14	
  ±	
  0.25	
  
	
   	
   	
   	
   	
   	
  2.	
  Ria	
  de	
  Aveiro	
   A	
   30.59	
  ±	
  13.07	
   62.93	
  ±	
  16.75	
   0.28	
  ±	
  0.16	
   0.35	
  ±	
  0.20	
  

	
   B	
   46.74	
  ±	
  1.94	
   97.88	
  ±	
  14.47	
   0.37	
  ±	
  0.04	
   0.53	
  ±	
  0.06	
  
	
   C	
   75.22	
  ±	
  10.06	
   238.59	
  ±	
  98.37	
   0.87	
  ±	
  0.10	
  c	
   1.17	
  ±	
  0.001	
  
	
   D	
   32.45	
  ±	
  10.51	
   75.92	
  ±	
  3.97	
   0.39	
  ±	
  0.11	
   0.54	
  ±	
  0.14	
  
	
   E	
   356.81	
  ±	
  197.70	
   811.66	
  ±	
  287.58	
   3.71	
  ±	
  1.27	
  c	
   4.37	
  ±	
  1.25	
  d	
  
	
   F	
   86.10	
  ±	
  1.87	
   150.34	
  ±	
  5.79	
   0.75	
  ±	
  0.01	
   1.05	
  ±	
  0.04	
  
	
   	
   	
   	
   	
   	
  3.	
  Mondego	
   A	
   115.77	
  ±	
  5.39	
   234.98	
  ±	
  55.35	
   0.74	
  ±	
  0.03	
   1.07	
  ±	
  0.09	
  
	
   B	
   56.34	
  ±	
  31.87	
   51.69	
  ±	
  29.36	
   0.32	
  ±	
  0.17	
   0.49	
  ±	
  0.15	
  
	
   C	
   112.22	
  ±	
  7.08	
   99.99	
  ±	
  5.75	
   0.58	
  ±	
  0.03	
   0.85	
  ±	
  0.01	
  
	
   	
   	
   	
   	
   	
  4.	
  Tejo	
   A	
   463.93	
  ±	
  241.40	
   1911.97	
  ±	
  898.25	
   4.06	
  ±	
  1.13	
  c	
   4.74	
  ±	
  0.280	
  d	
  
	
   B	
   257.34	
  ±	
  49.47	
   1856.13	
  ±	
  1406.65	
   3.57	
  ±	
  2.00	
  c	
   4.23	
  ±	
  1.094	
  d	
  
	
   C	
   220.98	
  ±	
  5.26	
   632.95	
  ±	
  53.00	
   3.62	
  ±	
  0.21	
  c	
   4.62.	
  ±	
  0.251	
  d	
  
	
   D	
   283.52	
  ±	
  19.77	
   8692.76	
  ±	
  2854.38	
   3.61	
  ±	
  0.68	
  c	
   5.57	
  ±	
  1.014	
  d	
  
	
   E	
   189.04	
  ±	
  6.51	
   666.29	
  ±	
  10.29	
   2.17	
  ±	
  0.01	
  C	
   2.54	
  ±	
  0.021	
  d	
  
	
   	
   	
   	
   	
   	
  5.	
  Sado	
   A	
   29.35	
  ±	
  6.36	
   224.82	
  ±	
  29.97	
   0.70	
  ±	
  0.02	
   1.10	
  ±	
  0.11	
  
	
   B	
   310.87	
  ±	
  24.43	
   7197.41	
  ±	
  671.31	
   3.49	
  ±	
  0.04	
  c	
   11.07	
  ±	
  0.72	
  d,	
  e	
  

	
   C	
   47.39	
  ±	
  0.75	
   219.52	
  ±	
  15.80	
   1.14	
  ±	
  0.12	
  c	
   1.59	
  ±	
  0.21	
  
	
   D	
   116.59	
  ±	
  2.01	
   175.71	
  ±	
  3.01	
   3.03	
  ±	
  0.02	
  c	
   3.38	
  ±	
  0.002	
  d	
  
	
   E	
   135.74	
  ±	
  12.12	
   347.27	
  ±	
  19.23	
   4.74	
  ±	
  0.46	
  c	
   4.99	
  ±	
  0.45	
  d	
  
	
   	
   	
   	
   	
   	
  6.	
  Mira	
   A	
   42.29	
  ±	
  12.77	
   115.12	
  ±	
  39.43	
   1.01	
  ±	
  0.36	
  c	
   1.16	
  ±	
  0.33	
  
	
   B	
   40.62	
  ±	
  3.37	
   171.57	
  ±	
  6.88	
   0.58	
  ±	
  0.09	
   0.79	
  ±	
  0.10	
  
	
   C	
   39.77	
  ±	
  2.86	
   56.80	
  ±	
  4.44	
   0.37	
  ±	
  0.09	
   0.51	
  ±	
  0.10	
  
	
   D	
   44.45	
  ±	
  2.32	
   61.43	
  ±	
  10.71	
   0.38	
  ±	
  0.04	
   0.54	
  ±	
  0.04	
  
	
   	
   	
   	
   	
   	
  7.	
  Ria	
  Formosa	
  
	
  
	
  

A	
   316.57	
  ±	
  2.93	
   170.37	
  ±	
  13.85	
   1.27	
  ±	
  0.11	
  c	
   1.84	
  ±	
  0.45	
  
	
   B	
   13.31	
  ±	
  0.13	
   54.61	
  ±	
  19.03	
   0.17	
  ±	
  0.02	
   0.31	
  ±	
  0.04	
  

	
   C	
   8.83	
  ±	
  1.00	
   66.40	
  ±	
  7.61	
   0.10	
  ±	
  0.01	
   0.15	
  ±	
  0.02	
  
	
   D	
   4.64	
  ±	
  0.05	
   26.59	
  ±	
  15.85	
   0.09	
  ±	
  0.01	
   0.14	
  ±	
  0.02	
  
	
   E	
   56.15	
  ±	
  4.97	
   92.08	
  ±	
  45.91	
   0.27	
  ±	
  0.01	
   0.46	
  ±	
  0.07	
  
	
   	
   	
   	
   	
   	
  a	
  PCDD/Fs	
  =	
  2,3,7,8-­‐TCDD	
  +	
  1,2,3,7,8-­‐PeCDD	
  +	
  1,2,3,4,7,8-­‐HxCDD	
  +	
  1,2,3,6,7,8-­‐HxCDD	
  +	
  1,2,3,7,8,9-­‐HxCDD	
  +	
  1,2,3,4,6,7,8-­‐HpCDD	
  

+	
  OCDD	
  +	
  2,3,7,8-­‐TCDF	
  +	
  1,2,3,7,8-­‐PeCDF	
  +	
  2,3,4,7,8-­‐PeCDF	
  +	
  1,2,3,4,7,8-­‐HxCDF	
  +	
  1,2,3,6,7,8-­‐HxCDF	
  +	
  2,3,4,6,7,8-­‐HxCDF	
  +	
  
1,2,3,7,8,9-­‐HxCDF	
  +	
  1,2,3,4,6,7,8-­‐HpCDF	
  +	
  1,2,3,4,7,8,9-­‐HpCDF	
  +	
  OCDF	
  

b	
  dl-­‐PCBs	
  =	
  PCB	
  77	
  +	
  PCB	
  81	
  +	
  PCB	
  126	
  +	
  PCB	
  189	
  +	
  PCB	
  105	
  +	
  PCB	
  114	
  +	
  PCB	
  118	
  +	
  PCB	
  123	
  +	
  PCB	
  156	
  +	
  PCB	
  157+	
  PCB	
  167+	
  PCB	
  
189	
  

c	
  Value	
  above	
  the	
  threshold	
  effect	
  level	
  proposed	
  for	
  Canada	
  (0.85	
  pg	
  TEQfish	
  g
−1	
  dw;	
  CCME	
  2001)	
  

d	
  Value	
  above	
  the	
  Italian	
  EQS	
  (2	
  pg	
  TEQ2005	
  g
-­‐1	
  dw;	
  Decreto	
  Legislativo	
  219/2010)	
  

e	
  Value	
  above	
  the	
  background	
  level	
  established	
  for	
  Norway	
  (10	
  pg	
  TEQ2005	
  g
-­‐1	
  dw;	
  NEA	
  2011)	
  

	
  

Location	
   ΣPCDD/Fs	
  a	
   Σdl-­‐PCBs	
  b	
   WHO-­‐TEQ	
  fish	
   WHO-­‐TEQ	
  2005	
  

	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
  

1.	
  Lima	
   A	
   41.74	
  ±	
  5.92	
   105.60	
  ±	
  22.71	
   0.30	
  ±	
  0.05	
   0.43	
  ±	
  0.06	
  
	
   B	
   60.56	
  ±	
  11.29	
   88.71	
  ±	
  13.60	
   0.42	
  ±	
  0.04	
   0.63	
  ±	
  0.07	
  
	
   C	
   128.18	
  ±	
  6.89	
   129.48	
  ±	
  30.14	
   0.74	
  ±	
  0.19	
   1.14	
  ±	
  0.25	
  
	
   	
   	
   	
   	
   	
  2.	
  Ria	
  de	
  Aveiro	
   A	
   30.59	
  ±	
  13.07	
   62.93	
  ±	
  16.75	
   0.28	
  ±	
  0.16	
   0.35	
  ±	
  0.20	
  

	
   B	
   46.74	
  ±	
  1.94	
   97.88	
  ±	
  14.47	
   0.37	
  ±	
  0.04	
   0.53	
  ±	
  0.06	
  
	
   C	
   75.22	
  ±	
  10.06	
   238.59	
  ±	
  98.37	
   0.87	
  ±	
  0.10	
  c	
   1.17	
  ±	
  0.001	
  
	
   D	
   32.45	
  ±	
  10.51	
   75.92	
  ±	
  3.97	
   0.39	
  ±	
  0.11	
   0.54	
  ±	
  0.14	
  
	
   E	
   356.81	
  ±	
  197.70	
   811.66	
  ±	
  287.58	
   3.71	
  ±	
  1.27	
  c	
   4.37	
  ±	
  1.25	
  d	
  
	
   F	
   86.10	
  ±	
  1.87	
   150.34	
  ±	
  5.79	
   0.75	
  ±	
  0.01	
   1.05	
  ±	
  0.04	
  
	
   	
   	
   	
   	
   	
  3.	
  Mondego	
   A	
   115.77	
  ±	
  5.39	
   234.98	
  ±	
  55.35	
   0.74	
  ±	
  0.03	
   1.07	
  ±	
  0.09	
  
	
   B	
   56.34	
  ±	
  31.87	
   51.69	
  ±	
  29.36	
   0.32	
  ±	
  0.17	
   0.49	
  ±	
  0.15	
  
	
   C	
   112.22	
  ±	
  7.08	
   99.99	
  ±	
  5.75	
   0.58	
  ±	
  0.03	
   0.85	
  ±	
  0.01	
  
	
   	
   	
   	
   	
   	
  4.	
  Tejo	
   A	
   463.93	
  ±	
  241.40	
   1911.97	
  ±	
  898.25	
   4.06	
  ±	
  1.13	
  c	
   4.74	
  ±	
  0.280	
  d	
  
	
   B	
   257.34	
  ±	
  49.47	
   1856.13	
  ±	
  1406.65	
   3.57	
  ±	
  2.00	
  c	
   4.23	
  ±	
  1.094	
  d	
  
	
   C	
   220.98	
  ±	
  5.26	
   632.95	
  ±	
  53.00	
   3.62	
  ±	
  0.21	
  c	
   4.62.	
  ±	
  0.251	
  d	
  
	
   D	
   283.52	
  ±	
  19.77	
   8692.76	
  ±	
  2854.38	
   3.61	
  ±	
  0.68	
  c	
   5.57	
  ±	
  1.014	
  d	
  
	
   E	
   189.04	
  ±	
  6.51	
   666.29	
  ±	
  10.29	
   2.17	
  ±	
  0.01	
  C	
   2.54	
  ±	
  0.021	
  d	
  
	
   	
   	
   	
   	
   	
  5.	
  Sado	
   A	
   29.35	
  ±	
  6.36	
   224.82	
  ±	
  29.97	
   0.70	
  ±	
  0.02	
   1.10	
  ±	
  0.11	
  
	
   B	
   310.87	
  ±	
  24.43	
   7197.41	
  ±	
  671.31	
   3.49	
  ±	
  0.04	
  c	
   11.07	
  ±	
  0.72	
  d,	
  e	
  

	
   C	
   47.39	
  ±	
  0.75	
   219.52	
  ±	
  15.80	
   1.14	
  ±	
  0.12	
  c	
   1.59	
  ±	
  0.21	
  
	
   D	
   116.59	
  ±	
  2.01	
   175.71	
  ±	
  3.01	
   3.03	
  ±	
  0.02	
  c	
   3.38	
  ±	
  0.002	
  d	
  
	
   E	
   135.74	
  ±	
  12.12	
   347.27	
  ±	
  19.23	
   4.74	
  ±	
  0.46	
  c	
   4.99	
  ±	
  0.45	
  d	
  
	
   	
   	
   	
   	
   	
  6.	
  Mira	
   A	
   42.29	
  ±	
  12.77	
   115.12	
  ±	
  39.43	
   1.01	
  ±	
  0.36	
  c	
   1.16	
  ±	
  0.33	
  
	
   B	
   40.62	
  ±	
  3.37	
   171.57	
  ±	
  6.88	
   0.58	
  ±	
  0.09	
   0.79	
  ±	
  0.10	
  
	
   C	
   39.77	
  ±	
  2.86	
   56.80	
  ±	
  4.44	
   0.37	
  ±	
  0.09	
   0.51	
  ±	
  0.10	
  
	
   D	
   44.45	
  ±	
  2.32	
   61.43	
  ±	
  10.71	
   0.38	
  ±	
  0.04	
   0.54	
  ±	
  0.04	
  
	
   	
   	
   	
   	
   	
  7.	
  Ria	
  Formosa	
  
	
  
	
  

A	
   316.57	
  ±	
  2.93	
   170.37	
  ±	
  13.85	
   1.27	
  ±	
  0.11	
  c	
   1.84	
  ±	
  0.45	
  
	
   B	
   13.31	
  ±	
  0.13	
   54.61	
  ±	
  19.03	
   0.17	
  ±	
  0.02	
   0.31	
  ±	
  0.04	
  

	
   C	
   8.83	
  ±	
  1.00	
   66.40	
  ±	
  7.61	
   0.10	
  ±	
  0.01	
   0.15	
  ±	
  0.02	
  
	
   D	
   4.64	
  ±	
  0.05	
   26.59	
  ±	
  15.85	
   0.09	
  ±	
  0.01	
   0.14	
  ±	
  0.02	
  
	
   E	
   56.15	
  ±	
  4.97	
   92.08	
  ±	
  45.91	
   0.27	
  ±	
  0.01	
   0.46	
  ±	
  0.07	
  
	
   	
   	
   	
   	
   	
  a	
  PCDD/Fs	
  =	
  2,3,7,8-­‐TCDD	
  +	
  1,2,3,7,8-­‐PeCDD	
  +	
  1,2,3,4,7,8-­‐HxCDD	
  +	
  1,2,3,6,7,8-­‐HxCDD	
  +	
  1,2,3,7,8,9-­‐HxCDD	
  +	
  1,2,3,4,6,7,8-­‐HpCDD	
  

+	
  OCDD	
  +	
  2,3,7,8-­‐TCDF	
  +	
  1,2,3,7,8-­‐PeCDF	
  +	
  2,3,4,7,8-­‐PeCDF	
  +	
  1,2,3,4,7,8-­‐HxCDF	
  +	
  1,2,3,6,7,8-­‐HxCDF	
  +	
  2,3,4,6,7,8-­‐HxCDF	
  +	
  
1,2,3,7,8,9-­‐HxCDF	
  +	
  1,2,3,4,6,7,8-­‐HpCDF	
  +	
  1,2,3,4,7,8,9-­‐HpCDF	
  +	
  OCDF	
  

b	
  dl-­‐PCBs	
  =	
  PCB	
  77	
  +	
  PCB	
  81	
  +	
  PCB	
  126	
  +	
  PCB	
  189	
  +	
  PCB	
  105	
  +	
  PCB	
  114	
  +	
  PCB	
  118	
  +	
  PCB	
  123	
  +	
  PCB	
  156	
  +	
  PCB	
  157+	
  PCB	
  167+	
  PCB	
  
189	
  

c	
  Value	
  above	
  the	
  threshold	
  effect	
  level	
  proposed	
  for	
  Canada	
  (0.85	
  pg	
  TEQfish	
  g
−1	
  dw;	
  CCME	
  2001)	
  

d	
  Value	
  above	
  the	
  Italian	
  EQS	
  (2	
  pg	
  TEQ2005	
  g
-­‐1	
  dw;	
  Decreto	
  Legislativo	
  219/2010)	
  

e	
  Value	
  above	
  the	
  background	
  level	
  established	
  for	
  Norway	
  (10	
  pg	
  TEQ2005	
  g
-­‐1	
  dw;	
  NEA	
  2011)	
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area of Lisbon and to the several industries scattered all over the region (e.g. chemicals, 

petrochemicals, metallurgic industries, shipyards and cement manufacturing) (Canário et 

al. 2007). In particular, the prominent Σdl-PCB concentrations found in site D can be the 

result of former uncontrolled industrial activities such as paper and chemical manufacture 

(Pinheiro et al. 1999). The second most PCDD/F contaminated site was located in Ria de 

Aveiro (site E). Elevated concentrations of toxic metals have already been identified in 

sediments from this area (Monterroso et al. 2007; Nunes et al. 2008; Cardoso et al. 2013) as 

a consequence of indiscriminate discharges of industrial effluents from a chemical complex 

for several decades. Considering that conventional chlor-alkali procedure released elevated 

levels of PCDD/Fs from the electrolysis process (Xu et al. 2000), the concentrations found 

there may be related to the past discharges from the chlor-alkali plant. In Ria de Aveiro, 

the heterogeneous concentrations of dioxin-like compounds within the system may hence 

be indicative of local sources of PCDD/Fs and dl-PCBs. The same pattern was observed in 

other estuaries. In the Sado estuary, site B is in the vicinity of a pulp mill and is characterized 

by high anthropogenic pressure combined with low hydrodynamics (Caeiro et al. 2005), 

which can explain the high dioxin-like compound concentrations. The elevated ΣPCDD/F 

values detected in sediments from site A of Ria Formosa also suggest that a significant 

source exists (or existed) in the area, although no anthropogenic cause was found nearby.

PCDD/F and dl-PCB profiles

Different PCDD/F homologue profiles can be found among the studied estuaries (Fig. 3a). 

OCDD was always the major contributor, ranging from 44 to 92%, in agreement with most 

results of sediment investigation in other parts of the world (Ren et al. 2009; Naile et al. 

2011). This typical predominance of OCDD may be a result of its higher stability in the 

environment compared to other congeners (Sinkkonen and Paasivirta 2000). Its lower 

water solubility and greater affinity to fine particles may lead to long-term accumulation, 

particularly in organic rich sediment (Sinkkonen and Paasivirta 2000). The hepta-CDDs, and 

octa- and hepta-CDFs are the following most abundant homologues.

The remarkable high contribution of OCDD in samples from site A of Ria Formosa together 

with its high concentration in these sediments, show strong similarities to other specific 

sites worldwide (e.g. Müller et al. 2002). Natural formation processes have been previously 

considered a possible source resulting in high OCDD concentrations found in American ball 

clay and in kaolin clay from Germany and Spain (Rappe et al. 2001), in sediments from 

Queensland area (Gaus et al. 2001) and in mudflats of the Mai Po Marshes Nature Reserve 
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in Hong Kong (Müller et al. 2002). To the best of our knowledge, there is no anthropogenic 

source of OCDD near the site A of Ria Formosa, suggesting that its geological history and 

environmental conditions may favor processes that result or have resulted in the formation 

of OCDD.

Figure 3 Homologue and congener profiles of (a) 2,3,7,8-substituted PCDD/Fs and (b) dioxin-like 
PCBs in superficial sediments from seven Portuguese estuarine systems. Results are expressed as 
percentage of tota§l concentration of 2,3,7,8-substituted PCDD/Fs or dioxin-like PCBs.
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A global view of Fig. 3a shows that, in general, estuaries north of Tejo have similar PCDD/F 

profiles. This spatial homogeneity of the profiles indicates possible similar PCDD/F origins 

between estuaries and underlines the absence of relevant local sources (with exception of 

site E of Ria de Aveiro). Furthermore, considerably higher PCDF percentages, in particular 

higher chlorinated PCDFs, were detected in samples collected in the Tejo estuary. This 

estuarine system was also the one that showed the highest overall PCDF concentrations. 

Higher proportion of PCDFs in sediments has been described in other regions affected by 

anthropogenic contamination from industrial and urban areas (Terauchi et al. 2009; Antunes 

et al. 2012). The remaining estuarine systems show slightly different PCDD/F homologue 

profiles among sampling sites. This heterogeneity between profiles suggests that sites 

located in the same estuary have either different sources of PCDD/Fs or that they have 

similar origins but underwent advanced differential decomposition.

As for dl-PCBs, PCB 118, followed by 105 and 156 were the most abundant congeners (Fig. 

3b). The predominance of PCB 118, which in the analyzed sediments represented 35 to 58% 

of Σdl-PCB, has been reported in various matrices in the environment (El-Kady et al. 2007; 

Okay et al. 2009). Although dl-PCB concentrations differed from site to site, the congener 

profiles for the superficial sediments were fairly similar among the studied estuaries.

WHO-TEQ concentration and ecotoxicological concern

WHO-TEQfish concentration in estuarine sediments ranged from 0.09 ± 0.01 to 4.74 ± 0.46 

pg TEQfish g
-1 dw (Fig. 4). The maximum WHO-TEQfish values were recorded at site E of Sado 

estuary, while the lowest were found in Ria Formosa. The low contribution of PCBs to total 

WHO-TEQfish concentration is explained by the low PCB TEFs established for fish. According 

to van den Berg et al. (1998), fish are generally quite sensitive to PCDD/F toxicity, as are 

birds and mammals, but are very insensitive to mono-ortho PCBs.

Contaminated sediments may constitute a particular threat for aquatic organisms. Therefore, 

sediment quality guidelines (SQGs) have been developed and implemented by regulatory 

authorities in order to evaluate ecotoxicological risks and predict adverse biological effects 

of sediment-associated pollutants on aquatic organisms. In the absence of environmental 

assessment criteria for these contaminants in Portugal, the data obtained in the present 

study were compared to SQGs proposed for Canada, Italy and Norway (CCME 2001; Decreto 

Legislativo 219/2010; NEA 2011). Based on Canadian guidelines, adverse biological effects 

would rarely be observed at WHO-TEQfish concentrations below the threshold effect level 

(TEL; 0.85 pg TEQfish g
−1 dw) whereas concentrations above the probable effect level (PEL; 
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21.5 pg TEQfish g
−1 dw) are expected to cause adverse effects on aquatic biota (CCME 2001). 

The Italian legislation establishes an environmental quality standard with a recommended 

exposure limit of 2 pg TEQ2005 g
−1 dw in order to assure a good chemical status of the aquatic 

environment (based on human TEFs; Decreto Legislativo 219/2010). 

In Norway, a national guideline for classification of environmental quality in coastal waters 

and fiords divides sediment quality into five classes, from the background level to very bad 

quality (background level < 10 pg TEQ2005 g
−1 dw; NEA 2011). Although the TEQ concept is 

not directly applicable to abiotic matrices, it has been very useful to evaluate the toxicity 

of environmental samples, including sediment (van den Berg et al. 2006; Yang et al. 2009).

The comparison of the dioxin-like compound concentrations obtained in this study against 

the previously mentioned guidelines showed that more than 40% of the sampling sites 

exceeded the strictest guideline from Canada (TEL) (Fig. 4). This percentage decreased to 

29% when comparing the WHO-TEQ2005 values with the Italian quality standard (Table 1). 

Most of these sites are mainly located in Tejo and Sado estuaries, systems clearly impacted by 

several anthropogenic activities (Table 1). Nevertheless, only site B of Sado estuary showed 

WHO-TEQ2005 concentration higher than the upper limit of the background class established 

for Norway (10 pg TEQ2005 g
−1 dw), and none of the studied sites exceed the PEL value of the 

Canadian guidelines (21.5 pg TEQfish g
−1 dw) (Table 1). Although many of the sampling sites 

Figure 4 WHO-TEQfish concentration (pg TEQ g-1 dw) in superficial sediments from seven Portuguese 
estuarine systems based on TEFs for fish. Results are expressed as the mean + standard deviation. 
Sediment quality guideline proposed for Canada is also represented (- - -) (CCME 2001).
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had low WHO-TEQ concentrations in superficial sediments, the highest values found in the 

studied Portuguese estuaries exceeded some of the available thresholds, indicating that 

adverse biological effects on aquatic organisms may occur due to the presence of PCDD/Fs 

and dl-PCBs in sediments.

Global comparison of PCDD/Fs and dl-PCBs in sediments

The characterization of sediment contamination by dioxin-like compounds presented in 

this study allows a comparison between Portuguese estuaries and coastal ecosystems from 

other parts of the globe. Although data on PCDD/F and PCB levels in sediment are quite 

numerous, different sampling and analytical procedures together with different ways of 

reporting data make the comparison difficult. Moreover, dl-PCBs are not so frequently 

analyzed due to their low concentration and ease of co-elution with other congeners. In spite 

of these difficulties, levels of PCDD/Fs and dl-PCBs in sediments from the studied Portuguese 

estuaries were found to be lower than those observed in various highly anthropogenic 

impacted locations as for example, Venice lagoon in Italy (Bellucci et al. 2000), Houston Ship 

Channel in the USA (Suarez et al. 2006), Haihe estuary in China (Liu et al. 2007) and Port 

Jackson in Australia (Birch et al. 2007) (Table 2). Additionally, concentrations observed in 

part of our studied sites (e.g. Ria Formosa) are comparable to less disturbed estuarine and 

coastal areas including Santoña estuary in Spain (Gómez-Lavín et al. 2011), St. Lawrence 

estuary in Canada (Brochu et al. 1995), coastal lagoons of Nador and Moulay Bousselham 

in Morocco (Piazza et al. 2009), Changjiang estuary in China (Wen et al. 2008) and Torrens 

estuary in Australia (Birch et al. 2007) (Table 2).

 

Conclusions

In the light of our findings, the following conclusions can be drawn. PCDD/Fs and dl-PCBs were 

detected in all the analyzed samples, showing their ubiquity in sediments from Portuguese 

estuaries. Both ΣPCDD/F and Σdl-PCB concentrations were found to be variable not only 

among estuaries, reflecting the different degrees of urbanization and industrialization of the 

studied estuarine systems, but also within each estuary, suggesting the existence of local 

contamination sources. Furthermore, samples collected in the most highly contaminated 

system, the Tejo estuary, revealed a different PCDD/F homologue profile.

The data obtained in this study provide a global perspective of contamination of Portuguese 
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Table 2 (Continued)

Location 
ΣPC

D
D

/Fs 
ΣPC

B
s 

W
H

O
-TEQ

1988  
W

H
O

-TEQ
2005  

R
eference 

PC
D

D
/Fs 

PC
B

s 
Total 

PC
D

D
/Fs 

PC
B

s 
Total 

 
 

 
 

 
 

 
 

 
 

 

A
sia 

 
 

 
 

 
 

 
 

 
 

Japan, Toyano Lagoon 
370 - 54000 

- 
0.5 – 76.0 

- 
- 

- 
- 

- 
S

akai et al. 2008 
Japan, Tokyo B

ay 
 

 
 

3.1 - 49 
0.2 - 3.0 

3.3 - 52.0 
- 

- 
- 

H
osom

i et al. 2003 
South K

orea, industrialized bays 
- 

- 
- 

- 
- 

1.2 - 7.2 
0.1 - 5.4 

1.3 - 10.8 
M

oon et al. 2008 
South K

orea, M
asan B

ay 
720 - 4684  

- 
18.7 - 248.4 

- 
- 

16.8 - 222 
- 

- 
H

ong et al. 2009 
South K

orea, G
w

angyang B
ay 

1178 - 384 
14 - 220 

1.0 - 4.2 
0.1 - 0.2 
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estuaries by dioxin-like compounds and allow comparison with studies made in other 

countries. The sediments analyzed show PCDD/F and dl-PCB concentrations lower than those 

found in highly impacted areas from other parts of the world. However, some guidelines 

and quality standards defined for other countries are exceeded at sites located essentially 

in Tejo and Sado estuaries. Thus, in some Portuguese estuarine areas the PCDD/F and 

dl-PCB concentrations in superficial sediment may eventually constitute a risk to aquatic 

organisms. Nevertheless, because of their different values and definitions, the available 

guidelines and quality standards allowed just a rough evaluation whether the PCDD/F and 

dl-PCB concentrations detected in Portuguese estuarine sediments may be considered as 

safe or may constitute a risk to aquatic organisms. Hence, site-relevant or national SQG 

should be developed for Portuguese estuaries in order to take into account site-specific 

conditions (e.g. bioavailability, sensitivity of indigenous organisms, exposure pathways).
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CHAPTER

Distribution of PCDD/Fs and dioxin-like PCBs in 
sediment and plants from a contaminated salt 
marsh (Tejo estuary, Portugal)III

Concentrations and profiles of 
2,3,7,8-substituted polychlorinated dibenzo-p-
dioxins, polychlorinated dibenzofurans (PCDD/
Fs) and dioxin-like polychlorinated biphenyls 
(dl-PCBs) were investigated in sediment and 
plants collected from a salt marsh in the 
Tejo estuary, Portugal. The highest PCDD/F 
and dl-PCB concentrations were detected in 
uncolonized sediments, averaging 325.2 ± 57.6 
pg g-1 dry weight (dw) and 8146.3 ± 2142.1 
pg g-1 dw, respectively. The plants Sarcocornia 
perennis and Halimione portulacoides growing 
in PCDD/F and dl-PCB contaminated sediments 
accumulated contaminants in both roots, stems 

and leaves. PCDD/F and dl-PCB concentrations 
in aboveground tissues were significantly 
lower in comparison with roots, suggesting 
that these contaminants are not substantially 
transported inside the studied plants. In general, 
concentration of ΣPCDD/Fs and Σdl-PCBs in H. 
portulacoides tissues were found to be two 
fold higher than those in S. perennis. Therefore, 
the results indicate that there is a difference in 
the accumulation capability of both species. 
Furthermore, congener profiles changed 
between sediments and plant tissues, reflecting 
a selective accumulation of low chlorinated 
PCDD/Fs and non-ortho dl-PCBs in plants. 

Keywords
Persistent organic pollutants; PCDD/Fs; PCBs; sediment; halophytes; salt marsh; estuary

Abstract
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Introduction

Assessment of dioxin-like compound contamination in estuarine systems continues to 

be of concern all over the world due to their deleterious effects on ecosystem functions 

and human health (UNEP 2001). Chemical contaminants such as polychlorinated dibenzo-

p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) have the 

propensity to bioaccumulate in biota and biomagnify in food webs. They are also known 

to cause adverse effects including carcinogenicity, reproductive impairment and endocrine 

disruption in wildlife and humans (van den Berg et al. 2006; Wenning et al. 2011). 

Salt  marshes are deposition areas of suspended particulate matter transported by tidal 

currents, and consequently act as sinks for sediment bound contaminants (Barra et al. 

2004; Hwang et al. 2006). Since salt marsh plants make significant contributions to the 

detrital estuarine food web (Masters and Inman 2000; Wall et al. 2001; Sousa et al. 2010), 

the uptake of dioxin-like compounds accumulated in sediments may be responsible for a 

further transfer of pollutants into the food web.

Several studies have evaluated the ability of marsh vegetation to accumulate heavy metals 

(Válega et al. 2008; Castro et al. 2009), polycyclic aromatic hydrocarbons (Watts et al. 2006), 

organochlorine pesticides (Liu et al. 2006) and tributyltin (Carvalho et al. 2010). However, 

little information is available on PCDD/F and PCB contamination in salt marsh plants (Mrozek 

and Leidy 1981; Masters and Inman 2000). Moreover, plant uptake of PCDD/Fs and PCBs 

has been a controversial topic, with numerous authors considering that the hydrophobic 

nature of such compounds and the consequent strong adsorption on sediment particles 

rendered them less available to be up taken by roots (Wu et al. 2002; Schuhmacher et 

al. 2006; Uegaki et al. 2006). On the contrary, other researchers state that the primary 

pathway of PCDD/F and PCB contamination in plants is uptake from roots and possible 

translocation to aboveground parts (Engwall and Hjelm 2000; Zeeb et al. 2006; Greenwood 

et al. 2011). Thus, the objectives of this work were (1) to determine the concentration of 

2,3,7,8-substituted PCDD/Fs and dl-PCBs in two plant species commonly found in temperate 

estuaries and associated sediments; (2) to compare the dioxin-like compound contents 

between plant species and between tissues (root, stems and leaves); and (3) to explore the 

relationship between PCDD/F and dl-PCB profiles of sediments and plant tissues.
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Material and methods

Study site and sampling

Tejo estuary is the largest in the western European coast. It covers an area of about 320 km2 

and is considered the most impacted estuarine system in Portugal, as a result of different 

anthropogenic pressures arising from heavy industrialization and urbanization. The estuary 

has extensive intertidal mudflats with about 15% of the area covered by salt marshes, where 

Sarcocornia perennis (Caryophyllalles, Chenopodiaceae) and Halimione portulacoides 

(Caryophyllalles, Chenopodiaceae) are two of the most representative halophyte species 

found (Caçador and Duarte 2012). This study was carried out in a salt marsh located at the 

mouth of a polluted tributary, the Trancão River (38°79’N 9°09’W), that discharges directly 

into Tejo estuary (Fig. 1).

Figure 1 Tejo estuary and location of the sampling area.

Samples were randomly collected over an area of 500 m2 in August 2011 during low tide. 

Five replicates of leaves, stems and belowground tissues were taken from each species 

(S. perennis and H. portulacoides), together with rhizosediment samples (sediment 
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surrounding plant roots and rhizomes). Since S. perennis does not have a true shoot system 

with leaves and stems, the swollen photosynthetic stems (referred to as leaves hereafter) 

were differentiated from the dry perennial shoots (referred to as stems hereafter). 

Aboveground material was harvested, and belowground material and rhizosediment were 

taken with a spade from the same place to a depth of 15 cm, where most roots and rhizome 

are present. Five composite sediment samples from the lower uncolonized intertidal area 

were also collected. Each sample consisted of sediment from 0 to 15 cm depth taken in 

three random points within 1 m2. All samples were stored in aluminium foil and transported 

to the laboratory where they where kept in a fridge at 4 °C.

Sample preparation

Belowground plant parts were carefully separated from sediment under a flux of water 

using a 500 μm mesh size. Roots, stems and leaves were carefully rinsed with ultra-pure 

Milli-Q water to remove any adhering particles. Prior to PCDD/F and dl-PCB analysis, plant 

tissues were oven-dried at 60 °C until a constant weight was reached. The dry sample was 

then ground to a power using a grinding mill.

Similarly, sediment samples were oven-dried, cleaned of roots and debris, homogenized and 

ground using a pestle and mortar. Sediment samples were also analyzed for total organic 

carbon (TOC) and fine fraction (< 63 μm) content. TOC was determined using a Carlo Erba 

CHN analyzer and grain size analysis was performed according to the classification method 

of Brown and McLachland (1990).

PCDD/F and PCB analysis

The 17 PCDD/F congeners with chlorine substitution in the 2, 3, 7 and 8 positions and the 

12 PCBs with dioxin-like activity (non-ortho PCBs 77, 81, 126 and 169, and mono-ortho PCBs 

105, 114, 118, 123, 156, 157, 167 and 189) were considered for this purpose.

The analysis was performed as described by Costera et al. (2006). Samples were extracted 

in an Accelerated Solvent Extraction device (ASE 300, Dionex, Sunnyvale, USA), using as 

solvent a mixture composed of toluene and acetone at 70:30 (v/v) and with pressure and 

temperature set to 100 bar and 120 °C, respectively. The resultant extract were purified 

and fractionated in three successive chromatographic steps involving multilayered silica gel, 

Florisil and carbon columns. Analysis of clean extracts was conducted using a Hewlett–

Packard 6890 gas chromatograph (Palo Alto, CA, USA) equipped with a high-resolution mass 

spectrometer. All target compounds were quantified using the isotope dilution method.
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Samples were analyzed according to a validated and accredited method (ISO 17025:2005 

standard). The procedure integrated the quality assurance and quality control criteria to 

fulfill the requirements of the European legislation laying down sampling procedures and 

the analysis methods for determination of PCDD/Fs and dl-PCBs (EC 2006). To ensure quality 

of our data, blanks were included in every series of samples to check for interference and 

cross-contamination. The recoveries of individual congeners were within 30 to 140% as 

required by the EC regulation 1883/2006. The limits of detection (LOD) ranged from 0.003 

to 0.010 pg g-1 of dry weight (dw) for PCDD/Fs and from 0.009 to 0.062 pg g-1 dw for dl-PCBs.

Data analysis

The relationship between PCDD/F and dl-PCB concentrations and physical characteristics 

of sediment (TOC and fine fraction content) were tested using Pearson’s correlation. 

Analysis of variance (one-way ANOVA) was performed to determine differences in sediment 

characteristics between colonized and uncolonized sediments, and to evaluate differences 

in PCDD/F and dl-PCB concentrations between sediments, and between tissues of the same 

plant species. Student’s t-test was used to compare PCDD/F and dl-PCB concentrations 

between similar tissues of S. perennis and H. portulacoides. All statistical tests were 

performed using the software Statistica 8.0 (StatSoft Inc., USA). Principal component 

analysis (PCA) was used to further explore differences in the PCDD/F and PCB congener 

profiles between sediments and tissues of both plant species. Multivariate analysis was 

carried out using the software package CANOCO 4.5 (Microcomputer Power, USA).

Results and discussion

PCDD/F and dl-PCB concentrations in sediments

The highest PCDD/F and dl-PCB concentrations were detected in uncolonized sediments, 

averaging 325.2 ± 57.6 pg g-1 dw and 8146.3 ± 2142.1 pg g-1 dw, respectively (data available 

in Appendix B). S. perennis rhizosediments were found to have a total PCDD/F concentration 

(ΣPCDD/Fs) of 293.1 ± 39.0 pg g-1 dw and those of H. portulacoides had 294.9 ± 75.9 pg g-1 

dw. Whereas, the total dl-PCB concentration (Σdl-PCBs) was 6404.6 ± 3781.6 pg g-1 dw in 

S. perennis rhizosediments and 5874.2 ± 3255.2 pg g-1 dw in those of H. portulacoides. The 

lower ΣPCDD/F and Σdl-PCB levels found in rhizosediments may be a result of the presence 

of salt marsh plants. However, the difference of ΣPCDD/F and Σdl-PCB concentrations 
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between colonized and uncolonized sediments was not statistically significant (H = 1.860 

for PCDD/Fs; F = 0.512 for dl-PCBs, always with p > 0.05). Nevertheless, this result suggests 

that salt marsh plants may play some role in reducing dioxin-like compound concentration 

from contaminated sediments. Highly hydrophobic contaminants (octanol-water partition 

coefficient > 6) bind strongly to sediment particles and therefore, are not expected to be 

susceptible to plant uptake (Wu et al. 2002). However, a few studies reported uptake of PCDD/

Fs and dl-PCBs by plants, considering that root exudates may be involved in a mechanism 

of solubilization of hydrophobic compounds, and consequently in enhanced desorption 

from soil and increased root uptake (Campanella and Paul 2000). Moreover, even when 

compounds are poorly taken up by plants, roots can interact with the surrounding sediment 

by different processes, stimulating the microbial activity in the rhizosphere and increasing 

compound degradation and/or removal. For example, plant exudates contain molecules 

that can be used by microorganisms as substrate or as factors inducing dehalogenation of 

chlorinated compounds (Chaudhry et al. 2005). Plants can also secrete enzymes into the 

rhizosphere that can initiate transformation of organic compounds and facilitate further 

microbial metabolism (Alkorta and Garbisu 2001). Furthermore, plants increase oxygen 

diffusion in the rhizosphere, which potentially enhances microbial oxidative transformation 

(Chaudhry et al. 2005).

Sediments were constituted mainly by silt and clay (< 63 μm), independently of the 

presence of plants. Nevertheless, uncolonized sediment had lower fined grain content 

compared with rhizosediments, which had more than 60% of total particle size inferior to 

63 μm (data available in Appendix B). TOC content ranged from 3.0 ± 0.28% to 3.7 ± 0.42%. 

Rhizosediments of S. perennis and H. portulacoides contained higher percentage of fine 

particles (one-way ANOVA, F = 13.334, p < 0.001) and TOC than uncolonized sediments (one-

way ANOVA, F = 4.158, p < 0.05). Since fine particles exhibit a large surface area available 

for adsorption of organic carbon (Lee et al. 2006), it is not surprising that a significant 

correlation (r = 0.869, p < 0.001) was found between fine fraction and TOC content in the 

analyzed sediments. However, no significant correlation between the referred sediment 

characteristics and dioxin-like contaminants was observed in the present study (fines and 

PCDD/Fs: r = 0.122; fines and dl-PCBs: r = 0.119; TOC and PCDD/Fs: r = 0.083; TOC and dl-

PCBs: r = 0.479; always with p > 0.05).

PCDD/F and dl-PCB distribution in plant tissues

All target analytes were detected in the analyzed plant tissues (data available in Appendix 
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B). Mean ΣPCDD/F concentrations in S. perennis varied from 17.3 ± 1.6 pg g-1 dw in roots 

to 1.7 ± 0.1 pg g-1 dw in leaves. In H. portulacoides values ranged between 30.9 ± 11.9 pg 

g-1 dw in roots and 2.3 ± 0.5 pg g-1 dw in leaves (Fig. 2a). Mean Σdl-PCB concentrations in 

S. perennis varied between 971.6 ± 139.6 pg g-1 dw in roots and 159.1 ± 45.7 pg g-1 dw in 

stems; whereas in H. portulacoides, it ranged from 2253.7 ± 822.2 pg g-1 dw in roots to 

247.7 ± 54.3 pg g-1 dw in stems (Fig. 2b). Due to the strong adsorption of PCDD/Fs and PCBs 

to fine-grained sediments rich in organic matter, a low bioavailability and subsequent low 

uptake by roots was expected for these highly hydrophobic compounds (Liu and Schnoor 

2008). As a matter of fact, S. perennis root tissue showed only 6% of ΣPCDD/F concentration 

of the corresponding rhizosediment, and 15% of Σdl-PCBs. The ΣPCDD/F concentration on 

H. portulacoides roots was found to be 11% of the respective rhizosediment, while Σdl-PCB 

concentration was 38%. Moreover, the results indicate a minor root accumulation of PCDD/

Fs compared to dl-PCBs.

Figure 2 Total concentration of (a) 2,3,7,8-substituted PCDD/Fs and (b) dioxin-like PCBs in roots, 
stems and leaves of two plant species (Sarcocornia perennis and Halimione portulacoides) from 
the Tejo estuary (pg g-1 dw). Results are expressed as the mean + standard deviation (n=5). 
Different symbols above bars indicate statistically significant differences between tissues of the 
same species (one-way ANOVA, p < 0.05).

a b

A similar partition of PCDD/F and PCB content was observed in S. perennis and H. 

portulacoides (Fig. 2a, b). In general, PCDD/F concentrations in tissues showed a declining 

gradient from roots >> stems > leaves, while dl-PCB values decreased in the order roots >> 

leaves > stems. In addition, both species accumulated significantly lower (one-way ANOVA, 

F = 325.21 for PCDD/Fs in S. perennis; F = 139.83 for PCBs in S. perennis; F = 89.66 for 

PCDD/Fs in H. portulacoides; F = 108.23 for PCBs in H. portulacoides; always with p < 0.001) 
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concentrations in the aboveground tissues in comparison with roots, suggesting that PCDD/

Fs and dl-PCBs are not substantially transported inside S. perennis and H. portulacoides. In 

fact, dioxin-like compounds with a log octanol-water partition coefficient (log KOW) higher 

than 5 have been reported to be insignificantly translocated within plants (Hülster and 

Marschner 1993; Liu and Schnoor 2008), with the exception of the species Cucurbita pepo 

(Zeeb et al. 2006; Greenwood et al. 2011).

The interpretation of PCDD/F and dl-PCB concentrations in stems and leaves is difficult since 

accumulation of contaminants in aboveground tissues may be attributed to a combination 

of translocation after root uptake, foliar uptake from air or by direct contact between 

sediment particles and plant surfaces (Smith and Jones 2000). Moreover, possible losses/

transformation of compounds due to metabolism within plants cannot be excluded (Wild 

et al. 2005; Liu et al. 2009).

Previous studies showed that there is a remarkable diversity in uptake and translocation 

of organic contaminants, dependent not only on the specific properties of each compound 

but also on the characteristics of the plant species (Liu and Schnoor 2008; Matsuo et al. 

2011). In the present study, the two species showed significantly different (t-test, p < 

0.05) concentrations of dioxin-like compounds in analogous tissues (the only exception 

occurred for PCDD/Fs in leaves). ΣPCDD/F and Σdl-PCB concentrations in H. portulacoides 

tissues was found to be roughly twice as much as that in S. perennis, with exception of 

PCDD/Fs in leaves where values are only slightly higher in H. portulacoides (Fig. 2a, b). The 

different concentration levels found in belowground tissues may be caused by distinct type 

or amount of organic exudates from the roots of the studied species (Ryan et al. 2001). 

Also, Dettenmaier et al. (2009) suggested that differences in root lipid contents might 

influence plants uptake of hydrophobic compounds from sediment, since these chemicals 

can be predicted to adsorb to lipids present in root endodermis and not actually taken up. 

Similarly, the foliage area, lipid composition and roughness of the leaves can be species-

specific properties that influence the retention and accumulation of pollutants in vegetation 

(Wagrowski and Hites 1998).

Root concentration factors 

To compare the ability of S. perennis and H. portulacoides roots to accumulate dioxin-like 

compounds, the root concentration factor (RCF), defined as the ratio between concentration 

of a given chemical in roots and in the surrounding medium, was calculated (Fig. 3). RCFs 

in S. perennis were significantly lower (t-test, p < 0.05) than in H. portulacoides for most of 
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the PCDD/F homologues (except HpCDD, OCDD and TCDF) and dl-PCB congeners (except 

mono-ortho PCBs 104, 115 and 123). These results indicate that there is a difference in 

accumulation capability between the two plant species, as mentioned above.

Figure 3 Root concentration factors (RCFs) for 2,3,7,8-substituted PCDD/F homologues and 
dioxin-like PCB congeners in Sarcocornia perennis and Halimione portulacoides roots. Results are 
expressed as the mean + standard deviation (n=5).

The log KOW is used to predict and model the migration of hydrophobic organic compounds 

in water and sediment/soil. For PCDD/F and PCB congeners, log KOW rises with increasing 

chlorine content (Chen et al. 2001; Yeh and Hong 2002). This means that higher chlorinated 

forms are less soluble and in consequence are expected to be less bioavailable to plants 

(Zeeb et al. 2006). In the present study, both plant species showed lower RCFs for PCDD/Fs 

than for dl-PCBs with corresponding number of chlorine substitutions (Fig. 3). The superior 

log KOW of PCDD/Fs in comparison with the coefficient of dl-PCBs with identical chlorine 

content might explain why dl-PCBs seem to be more susceptible to accumulate in roots than 

PCDD/Fs. In addition, a reduction of RCFs with increase in chlorine substitutions in PCDD/F 

was observed for both plants (Fig. 3). The significant negative correlation (r = -0.639, p < 0.05 

for S. perennis; r = -0.738, p < 0.001 for H. portulacoides) found between RCFs and log KOW 

confirms that PCDD/F accumulation by roots can be influenced by the number of chlorines 

in the molecules and, thus, by their solubility (Satchivi et al. 2001). Inui et al. (2008) also 

observed this decrease in accumulation of PCDD/Fs with increasing hydrophobicity.

In contrast, dl-PCB accumulation in both studied plants seems to be affected not only by 
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chlorine content, and hence log KOW and molecular weight, but also by the presence of 

chlorine atoms in ortho-positions; congeners with no substitution in the ortho-positions 

had higher RCFs in comparison with mono-ortho congeners with an identical number of 

chlorines (Fig. 3). In agreement, RCFs for dl-PCB congeners were not significantly correlated 

with log KOW. Structure-selective accumulation was documented before for dioxin-like 

compounds (Inui et al. 2008; Matsuo et al. 2011) in some particular zucchini cultivars. 

However, in opposition to our findings, they reported bioconcentration factors for mono-

ortho-chlorinated biphenyls several times as high as those for PCBs without chlorine at the 

ortho-positions. Since only ortho-substituted congeners may be polar molecules with the 

ability to form hydrogen bonds and, thus, show higher solubility in water (IPCS, 2003), the 

results found in the present study are contrary to our expectations. Further studies are 

necessary to understand the mechanism underlying the preferential uptake of non-ortho 

by these salt marsh plants.

PCDD/F and dl-PCB profiles in sediment and plant tissues

Both sediment and plant tissues presented PCDD/F profiles with greater contributions of 

higher chlorinated homologues, namely octa-CDD/F and hepta-CDF (Fig. 4a). However, 

plant tissues showed greater percentages of tetra-, penta- and hexa-CDD/F than sediments. 

Regarding dl-PCB congener contributions, PCB 118 and 105 were the most abundant in all 

analyzed samples (Fig. 4b). Further, non-ortho PCBs (congeners 77, 81, 126 and 169) had 

higher contributions in tissues of S. perennis and H. portulacoides in comparison with the 

surrounding sediments, again suggesting the existence of selective accumulation of dl-PCBs 

with no chlorine at the ortho-positions in plants.

PCA results confirmed the distinct PCDD/F and dl-PCB profiles of sediments and plant 

tissues (Fig. 5). For PCDD/Fs, the first principal component (PC1) explained 98.2% of 

data variability. PC1 showed that sediment samples are clearly associated with higher 

contributions of octa-CDD/F, hepta-CDF and hexa-CDF homologue groups, whereas plant 

tissues are mostly related with less chlorinated PCDD/Fs (Fig. 5a). These differences may 

reflect an easier adsorption/absorption of congeners with a low degree of chlorination, 

due to their lower log KOW, higher solubility and smaller molecular weight (Zeeb et al. 2006; 

Inui et al. 2008). Although S. perennis and H. portulacoides showed significantly different 

PCDD/F concentrations (Fig. 3a), according to the PCA no distinction was found between 

their tissue profiles (Fig. 5a). The second principal component (PC2) described a very small 

fraction of total variance (0.9%), and allowed a slight separation of root samples from stems 
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and leaves, independently of the plant species (Fig. 5a). The profile found in roots illustrates 

the transition between sediments and aboveground plant tissues. The structure of root 

epidermis, particularly the thickness of waxes on its surface, determines the root capacity 

for adsorbing PCDD/Fs and consequently the diffusion into the root core and vascular 

tissues (Müller et al. 1994; Meneses et al. 2002). Thus, the lipid nature of root epidermis 

may result in higher chlorinated congeners adsorbed to root surface, while less chlorinated 

PCDD/Fs are preferentially taken up. Sediment samples also showed a gradient along PC2 

(Fig. 5a). This profile variation demonstrates that the presence of salt marsh plants may in 

fact influence the PCDD/F content of sediments.

As for dl-PCBs, the PCA showed that the profiles of all three sediment types were similar, 

but differed considerably in comparison with plant samples (Fig. 5b). The two principal 

components accounted for 90.8% of total variance (84.0% for PC1 and 6.8% for PC2). 

According to PC1, sediment samples showed higher contributions of mono-ortho PCBs, while 

plant tissues were mainly associated with non-ortho PCBs. Thus, the absence of chlorine 

atoms in the ortho-positions seems to facilitate the accumulation of dl-PCB congeners 

in plant tissues, despite their lower water solubility. Similarly to PCDD/Fs, root samples 

revealed an intermediary dl-PCB profile. In addition, PC2 highlighted the dissimilarities 

between aboveground tissues of S. perennis and H. portulacoides: all samples are associated 

with non-ortho dl-PCBs, but H. portulacoides tissues, and especially their leaves, displayed 

Figure 4. Mean relative contribution of (a) 2,3,7,8-substituted PCDD/F homologues and (b) 
dioxin-like PCB congeners in sediments and tissues of salt marsh plants Sarcocornia perennis and 
Halimione portulacoides collected from the Tejo estuary (n=5).

a b
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a higher contribution of PCB 77 and PCB 126. Contrary to the observed for PCDD/Fs, the 

Figure 5 Principal component analysis (PCA) biplots of (a) 2,3,7,8-substituted PCDD/F homo-
logues and (b) dioxin-like PCB congeners in tissues of salt marsh plants Sarcocornia perennis and 
Halimione portulacoides and surrounding sediments collected from the Tejo estuary.

a

b
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two plant species not only accumulated different dl-PCB concentrations (Fig. 3b), but also 

showed distinct dl-PCB profiles (Fig. 5b).

As mentioned before, contamination of aboveground vegetation by dioxin-like compounds 

may occur from sediment through a variety of mechanisms as follows: root uptake and 

consequent translocation, volatilization from the sediment surface following by adsorption 

onto the plant surface, contamination of the plant’s foliage by direct contact with sediment 

particles and direct deposition from atmosphere (Trapp and Matthies 1997; Wagrowski and 

Hites 1998; Smith and Jones 2000). Although volatilization followed by plant adsorption may 

be a major PCDD/F and PCB pathway in greenhouses, in the field, this mechanism is thought 

to be of minor importance (Trapp and Matthies 1997). In the present study there are no 

indications regarding sediment deposition constituting a pathway of foliage contamination. 

The differences found between PCDD/F and dl-PCB profiles in the aboveground parts of S. 

perennis and H. portulacoides may be a result of each plant’s characteristics. Plants may also 

be impacted by atmospheric contamination from sources such as municipal and hospital 

waste incineration plants (Wagrowski and Hites 1998; Schuhmacher et al. 2000). Yet, 

according to Coutinho et al. (2007), PCDD/F concentrations measured in ambient air from 

Lisbon region are comparable to those found in low contaminated urban areas. Moreover, 

similar locations in the Tejo estuary showed inferior dioxin-like concentrations in sediment 

(Nunes et al. submitted). Thus, atmospheric inputs of dioxin-like compounds in the studied 

salt marsh are assumed to be insignificant compared to the inputs from the Trancão River. 

Therefore, in this study, root uptake and transportation within plants might be a primary 

mechanism of PCDD/F and dl-PCB contamination of aboveground tissues, although only 

very small amounts can reach stems and leaves. 

Conclusions

The presence of plants was associated with lower levels of dioxin-like compounds in 

salt marsh sediments. Furthermore, differences in homologue profiles of uncolonized 

sediment and rhizosediment samples suggests that vegetation may influence their PCDD/F 

composition.

Both plant species incorporated lower concentrations in the aboveground tissues in 

comparison with its roots, suggesting that despite the contaminant transfer occurred 

from sediments to the roots, PCDD/Fs and dl-PCBs are not significantly translocated inside 
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plants. For instance, PCDD/F levels in rhizosediments are one to two orders of magnitude 

higher than concentrations in roots and aboveground parts, respectively. Nevertheless, root 

uptake and transportation within plants might be a main mechanism of PCDD/F and dl-PCB 

contamination of aboveground vegetation in the study area, although involving reduced 

amounts of compounds.

This work also revealed that S. perennis accumulated lower quantities of dioxin-like 

compounds in comparison with H. portulacoides, meaning that one species may have a 

higher contribution in PCDD/F and PCB transfer from sediment to the food web. PCDD/F 

concentrations varied between S. perennis and H. portulacoides but their homologue 

compositions were similar, suggesting that the mechanisms controlling the distribution 

of PCDD/Fs were similar in the two species. On the other hand, S. perennis and H. 

portulacoides not only accumulated different dl-PCB concentrations, but also showed 

distinct dl-PCB profiles. These results reveal that accumulation capability and eventual 

metabolism mechanisms of salt marsh plants vary, depending on the specific properties 

of each compound and on the characteristics of the plant species. Moreover, congener 

profiles shifted between sediments and plant, reflecting a selective accumulation of low 

chlorinated PCDD/Fs and non-ortho PCBs in plants.
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CHAPTER

Early contamination of European flounder 
(Platichthys flesus) by PCDD/Fs and dioxin-like 
PCBs in European watersIV

Estuarine and coastal habitats constitute nursery 
areas for the European flounder  (Platichthys flesus) 
during its critical juvenile period. However, these 
systems are also known to accumulate various 
chemical contaminants. Therefore, the present 
work aimed to investigate the contamination 
levels and profiles of 7 polychlorinated-p-
dioxins, 10 polychlorinated furans (PCDD/Fs) 
and 12 dioxin-like polychlorinated biphenyls (dl-
PCBs) in juvenile P. flesus captured in different 
nursery areas in the northeastern Atlantic coast 
across its geographical distribution range. The 
toxic equivalency concentrations (WHO-TEQfish) 

were also determined in order to evaluate 
which P. flesus population was more exposed 
to dioxin-like toxicity. Juveniles caught in the 
Sørfjord (Norway) showed the lowest WHO-
TEQfish concentration (0.052 pg g-1 wet weight) 
whereas the highest value was observed in fish 
from the Wadden Sea (Netherlands, 0.291 pg g-1 
ww), mainly due to the greater contribution of 
2,3,7,8-tetrachlorodibenzo-p-dioxin, the most 
toxic congener. Nonetheless, the PCDD/F and 
dl-PCB concentrations detected in the muscle of 
juvenile flounder are not expected to adversely 
affect fish.

Keywords
PCDD/Fs; PCBs; fish; flounder; juvenile; nursery; latitude
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Introduction

The European flounder Platichthys flesus (Linnaeus 1758) is an abundant flatfish species 

commonly found in coastal waters of the northeastern Atlantic Ocean, with a latitudinal 

distribution range from 40 to 72°N (Wheeler 1978; Martinho et al. 2013). This species 

supports an important commercial fishery in the northeast Atlantic with an estimated global 

annual catch above 18,000 tons between 2000 and 2011 (FAO 2011). Regarding life cycle, P. 

flesus spawn in marine waters and the pelagic larvae migrate to inshore to settle in shallow 

coastal and estuarine habitats, where they remain during the juvenile stage (van der Veer et 

al. 1991; Grioche et al. 1997; Martinho et al. 2008, 2013). These important nursery habitats 

are essential for fish population renewal, being characterized by high food availability and 

providing refuge against predators and favorable conditions for a rapid growth (Gibson 

1994; Able et al. 2005; Cabral et al. 2007; Vasconcelos et al. 2011).

Because of their benthic lifestyle and bottom-feeding behavior, the European flounder is 

particularly exposed to sediment-associated pollutants such as polychlorinated dibenzo-p-

dioxins, polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls 

(dl-PCBs) (Shelepchikov et al. 2008). In addition, early life stages are more susceptible to 

dioxin-like toxicity compared to adult fish (Lanham et al. 2012), requiring considerably 

lower body burdens to elicit adverse effects (Peterson et al. 1993; Lanham et al. 2012). 

Growth retardation, cutaneous hemorrhage, craniofacial malformations, histopathologic 

lesions in several tissues or lethality have been described in early life stages of different 

fish species exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (Henry et al. 1997; Elonen et al. 

1998; Lanham et al. 2012). The exposure of juvenile P. flesus might, thus, induce disruption 

in their growth and survival, and consequently affect the viability of adult population 

(Courrat et al. 2009). Due to their physicochemical properties, PCDD/Fs and dl-PCBs can also 

bioaccumulate and biomagnify in the food web, reaching levels that could adversely affect 

wildlife and human health (UNEP 2001; Wan et al. 2005). In addition, the consumption of 

fish and seafood is the main pathway of human exposure to these contaminants (Domingo 

and Bocio 2007; EFSA 2012).

The present study investigated the PCDD/F and dl-PCB concentrations and congeners profiles 

in flounder juveniles in a number of nurseries along the species’ geographical distribution in 

the northeastern Atlantic. The objective was to report the early contamination of different 

populations of P. flesus and to explore the possibility of adverse effects associated with 

dioxin-like compounds (i.e., 2,3,7,8-substituted PCDD/Fs and dl-PCB congeners).
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Material and methods

Flounder juveniles (0-group) were collected at several estuarine and shallow coastal 

nurseries: Mondego estuary (Portugal), Vilaine estuary (France), Slack estuary (France), 

western Wadden Sea (Netherlands) and Sørfjord (Norway) (Fig. 1). These sampling sites 

were selected in order to cover most of the geographical distribution range of P. flesus in 

European waters, comprising a range of 20° in latitude. Juvenile flounders were collected 

during the estuarine colonization stage between mid-June to mid-July 2010, using a beam 

trawl in all sampling sites. After collection, fish were transported on iceboxes back to the 

laboratory and frozen for later analysis.

Figure 1 Location of the sampling sites across the main geographical 
distribution of Platichthys flesus in the northeastern Atlantic.

At the laboratory, fish were measured (total length, mm) and weighed (wet weight, mg). 

Muscle samples were removed from each individual and pooled together in order to 

prepare composite samples, after which they were freeze-dried and stored for later analysis 

(Table 1).
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Nursery	
  area	
   	
   Sampling	
  
date	
  

Number	
  of	
  
individuals	
  

Total	
  length	
  
(mm)	
  

Total	
  weight	
  
(mm)	
  

Number	
  of	
  
	
  samples	
  

	
   	
   	
   	
   	
   	
   	
  

Mondego	
  Estuary,	
  Portugal	
   40°08'N,	
  8°52'W	
   17.06.2010	
   23	
   75.09	
  ±	
  16.49	
   3.51	
  ±	
  1.59	
   2	
  

Vilaine	
  Estuary,	
  France	
   47°30'N,	
  2°30'W	
   02.07.2010	
   32	
   76.44	
  ±	
  7.47	
   4.59	
  ±	
  1.48	
   3	
  

Slack	
  Estuary,	
  France	
   50°48'N,	
  1°36'E	
   01.07.2010	
   84	
   51.83	
  ±	
  6.42	
   1.35	
  ±	
  0.62	
   2	
  

Wadden	
  Sea,	
  Netherlands	
   53°04'N,	
  5°03'E	
   17.07.2010	
   44	
   53.55	
  ±	
  6.27	
   1.60	
  ±	
  0.71	
   1	
  

Sørfjord,	
  Norway	
   60°30'N,	
  5°24'E	
   17.07.2010	
   58	
   56.67	
  ±	
  7.48	
   1.81	
  ±	
  1.05	
   2	
  
	
   	
   	
   	
   	
   	
   	
  

	
  

Table 1 Location of Plactichtys flesus nursery areas selected across the geographical distribution 
in the northeastern Atlantic, respective sampling date, number of juveniles collected, total 
length (average ± standard deviation), total weight (average ± standard deviation) and number of 
composite samples analyzed.

Samples were analyzed for the 17 2,3,7,8-substituted PCDD/Fs and the 12 PCBs that have 

dioxin-like activity (non-ortho PCBs 77, 81, 126 and 169, and mono-ortho PCBs 105, 114, 

118, 123, 156, 157, 167 and 189). Those are the 29 congeners with toxic equivalency factors 

(TEFs) assigned by the World Health Organization (WHO) (van den Berg et al. 1998, 2006).

Detailed descriptions of extraction and cleanup procedures can be found elsewhere (e.g. 

Costera et al. 2006). Briefly, samples were extracted automatically in an Accelerated 

Solvent Extraction device (ASE 300, Dionex, Sunnyvale, CA, USA), followed by purification 

and fractionation in three successive chromatographic steps involving multilayered silica 

gel, Florisil and carbon columns. Analysis of PCDD/Fs and dl-PCBs was performed by 

gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) using a 

Hewlett–Packard 6890 gas chromatograph (Palo Alto, CA, USA), equipped with a DB-5MS 

column and coupled to a JEOL JMS-800D double sector mass spectrometer (Tokyo, Japan). 

All target compounds were quantified using the isotope dilution method.

Samples were analyzed at LABERCA, the French National Reference Laboratory in charge of 

PCDD/F and PCB analysis in food and feed, according to a validated and accredited method 

(ISO 17025:2005 standard). The procedure integrated the quality assurance and quality 

control criteria according to European legislation laying down sampling procedures and 

the analysis methods for determination of PCDD/Fs and dl-PCBs (EC 2006). Blanks were 

included in every series of samples to check for interference and cross-contamination. 

Chromatographic separation was checked (<25% peak to peak between 1,2,3,4,7,8-HxCDF 

and 1,2,2,6,7,8-HxCDF) and recoveries of individual congeners were within 30 to 140% as 

required by the EC regulation 1883/2006. Limits of detection (LOD) were 0.007 pg g-1 of wet 

weight (ww) for PCDD/Fs and 0.05 pg g-1 ww for dl-PCBs.
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Since the size of the individuals caught for this study was well below the minimum length 

for capture (Table 1), it was not considered that they were suitable for human consumption. 

Thus, instead of using the toxic equivalency factors (TEFs) derived for human assessment 

risk, the toxic equivalency (WHO-TEQ) concentrations were calculated based on TEFs 

specific for fish in order to compare the dioxin-like toxicity affecting the P. flesus juveniles 

(van den Berg et al. 1998).

Results

The 17 PCDD/F and 12 dl-PCB congeners were detected in all samples, indicating a global 

contamination by these compounds in P. flesus captured in the different nursery areas 

(data available in Appendix C). Total 2,3,7,8-substituted PCDD/F concentrations (ΣPCDD/Fs) 

ranged from 0.39 to 1.30 pg g-1 ww. The lowest value was detected in fish from the Sørfjord 

(Norway) whereas the highest was found in juveniles from the Wadden Sea (Netherlands) 

(Fig. 2a). Total dl-PCB concentrations (ΣPCBs) were at least two orders of magnitude higher 

than ΣPCDD/Fs. Fish caught in the Mondego estuary (Portugal) showed the lowest Σdl-PCB 

concentration (170.34 pg g-1 ww). The highest ΣPCB value (1002.09 pg g-1 ww) was recorded 

in P. flesus from the Slack estuary (France), although it was comparable to levels found in 

the Wadden Sea and Vilaine estuary (France) (Fig. 2b).

Since PCDD/Fs and PCBs are highly lipophilic compounds, the fat content is an important 

factor that influences individual body burden (Pastor et al. 1996). Results on a lipid basis 

clearly showed higher PCDD/F and dl-PCB contamination levels in the muscle of juveniles 

from the Wadden Sea when compared with samples from other nursery areas (data 

available in Appendix C). Regarding ΣPCDD/Fs, fish from the Wadden Sea were up to five 

times more contaminated than those from the Sørfjord (233.48 and 49.76 pg g-1 lipid weight 

(lw), respectively). Similarly, P. flesus from the Wadden Sea showed also the highest ΣPCB 

concentration (166.91 ng g-1 lw). As seen for ΣPCB concentration expressed on wet weight, 

the fish captured in the Mondego estuary exhibited the lowest PCB contamination (22.44 

ng g-1 lw).

WHO-TEQfish concentrations ranging from 0.05 and 0.29 pg g-1 ww were found in the 

analyzed samples. The lowest value was observed in the Sørfjord while the highest WHO-

TEQfish concentration, which stands out from the rest, was found in the Wadden Sea. The 

range for WHO-TEQfish concentrations on a lipid basis was between 6.90 pg g-1 lw (Sørfjord) 

and 52.21 pg g-1 lw (Wadden Sea). In all samples, PCDD/Fs constituted more than 70% of 
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WHO-TEQfish concentration.

The relative contribution of each PCDD/F homologue group to the total concentration varied 

among the studied nursery grounds (Fig. 3). The two areas where the least contaminated 

juveniles were caught (Sørfjord and Mondego estuary) showed comparable PCDD/F profiles, 

with OCDD being the most abundant congener. In the Wadden Sea, Vilaine estuary and Slack 

estuary, PCDFs displayed higher contributions to ΣPCDD/F concentration (> 70%), mainly 

Figure 2 Total concentration of (a) 2,3,7,8-substituted PCDD/Fs, (b) dioxin-like PCBs and (c) 
WHO-TEQfish in juvenile Plactichtys flesus from five nursery areas across the northeastern Atlantic.

a

b

c
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due to the higher percentage of TCDF congener. An evident higher contribution of TCDD 

congener was reported in muscle of P. flesus from the Wadden Sea. In contrast to PCDD/Fs, 

juveniles from different areas showed rather similar profiles of dl-PCB congeners, although 

PCB 156 had a slightly higher percentage in the Sørfjord. PCB 118 was the most abundant 

congener in all P. flesus samples, while PCB 81 showed an insignificant contribution to Σdl-

PCB concentration (< 0.007%).

Figure 3 Profiles of (a) 2,3,7,8-substituted PCDD/F homologues and (b) dioxin-like PCB congeners 
in juvenile Plactichtys flesus from five nursery areas across the northeastern Atlantic. Results are 
expressed as percentage of total concentration of 2,3,7,8-substituted PCDD/Fs or dioxin-like PCBs.

ba

Discussion

This work provided reference values on juvenile flounder contamination by PCDD/Fs and dl-

PCBs in nursery areas along the main geographical distribution in the northeastern Atlantic. 

Most information available is focused on adult P. flesus samples from the coastal Baltic Sea 

and Grenlandfjords due to the very high amounts of dioxin-like compounds found in these 

regions (Knutzen et al. 2003; Pandelova et al. 2008; Shelepchikov et al. 2008; Isosaari et al. 

2006; Ruus et al. 2006b). The ΣPCDD/F concentration in flounder caught in Grenlandfjords 

and Baltic Sea has been reported to reach 184 pg g-1 ww (Knutzen et al. 2003) and 8140 pg 

g-1 lw (Ruus et al. 2006), respectively. These values are much higher than those obtained in 

the samples analyzed in this study.

The fish tissue residue data indicated that P. flesus juveniles captured in the Wadden Sea 
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were more subjected to PCDD/Fs and dl-PCBs than those caught in the other nursery areas. 

The greater WHO-TEQfish concentrations were a result of higher accumulation levels of 

TCDD, which is considered the most toxic congener. The Wadden Sea has a long history 

of pollution, and has been monitored for several decades (Duinker, 1986; Vethaak and Jol 

1996; Becker et al. 2001; Vethaak et al. 2009; Laane et al. 2013). The massive decline of 

the Dutch harbor seal population in the sixties and seventies was demonstrated to have 

been caused by accumulation of PCBs in their tissues, impairing its reproductive capacity 

(Reijnders 1980, 1986). Moreover, it has been suggested that the relatively high prevalence 

of neoplastic liver lesions observed in European flounder from the Dutch Wadden Sea in 

the eighties was also due to persistent organic pollutants (Vethaak and Jol, 1996; Vethaak 

and Wester, 1996). Nevertheless, in the last years the input and concentration of chemical 

contaminants have significantly decreased in water, sediments and biota from the Wadden 

Sea, and consequently, the adverse effects on organisms have also declined (Vethaak et al. 

2009; Laane et al. 2013).

The exposure to contaminants, including PCDD/Fs, may lead to altered energy balance and 

depletion of lipid content in fish (van der Weiden et al. 1994; Meador et al. 2006). Although 

the fat content determined in juvenile flounder from the Wadden Sea was lower than the 

remaining estuaries, the few samples analyzed do not allow a sound statistical evaluation 

of the data, even though the number of individuals in each composite sample was high 

(Table 1). Thus, it is not possible to conclude that the PCDD/F and dl-PCB levels found in the 

Wadden Sea were directly related with the lower lipid content in fish.

Bioaccumulation of highly hydrophobic compounds in adult fish occurs manly through diet 

(Ruus et al. 2006a), while in early life stages maternal transfer to eggs is considered the most 

significant source of contaminants (Tietge et al. 1998; Loizeau et al. 2001). For example, 

Tietge et al. (1998) verified that approximately 39% of maternal tissue residues of TCDD 

were transferred to eggs of brook trout (Salvelinus fontinalis) during development. This fact, 

together with the possible reduction in concentration by growth dilution (Buckman et al. 

2006), could explain the higher PCDD/F and dl-PCB values found in flounder juveniles from 

the Mondego estuary in comparison with adults caught in the same location (Baptista et al. 

2013). The migration of adult P. flesus to marine waters, a less contaminated environment 

(Gómez-Gutiérrez et al. 2007; Parnell et al. 2008), may also be associated with a decrease 

of PCDD/F and dl-PCB levels in fish (Baptista et al. 2013).

Literature data on concentrations of PCDD/Fs and dl-PCBs in juvenile P. flesus and associated 

toxicity could not be found. Therefore, in the present study tissue residues determined on 
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flounder were compared with benchmark values proposed by Steevens et al. (2005). These 

tissue residue-based toxicity benchmarks were estimated based on information concerning 

early life stage toxicity for several fish species (mainly freshwater salmonids). The WHO-

TEQfish concentrations obtained in this study for European flounder juveniles were below 

the residue effect concentration protecting 90 and 99% of the fish community of 0.699 and 

0.057 pg g-1 lw (expressed as WHO-TEQfish), respectively (Steevens et al. 2005). In general, no 

adverse effects are expected in P. flesus at the detected concentrations, although differences 

in species sensitivity introduce uncertainty into this comparison. Nevertheless, salmonids 

are among the most sensitive species to contaminants having a dioxin-like mechanism of 

toxic action (Elonen et al. 1998; Kannan et al. 2000), whereas P. flesus has been reported 

as relatively insensitive to TCDD exposure (Grinwis et al. 2000). In addition, it should be 

noted that some fish populations with long-term exposure to contaminated conditions 

could develop resistance to toxicity of PCDD/Fs and PCBs (Nacci et al. 2002; Marchand et 

al. 2004).
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CHAPTER

PCDD/Fs and dioxin-like PCBs in sediment and 
biota from the Mondego estuary (Portugal)V

The concentrations of 17 polychlorinated 
dibenzo-p-dioxins and furans (PCDD/Fs), and 12 
dioxin-like polychlorinated biphenyls (dl-PCBs) 
were measured in sediment and key species 
as an initial investigation on PCDD/F and dl-
PCB contamination in the Mondego estuary 
(Portugal). The results demonstrated that total 
PCDD/F concentrations were considerably 
lower than those of dl-PCBs in all the studied 
samples. Regarding the contribution of individual 
congeners, OCDD was the predominant PCDD/F 
and the mono-ortho PCB 118 and PCB 105 

were the dominant PCBs in the majority of 
the samples. Our results suggest that PCDD/
Fs and PCBs behave quite differently along the 
aquatic food web: total PCDD/F concentrations 
were lower in higher trophic-level organisms 
with fish presenting a distinct PCDD/F profiles; 
on the contrary, the higher total dl-PCB values 
were found in upper-level biota, although not 
exclusively, and quite similar dl-PCB congener 
profiles were observed in nearly all the studied 
species.

Keywords
PCDD/Fs; PCBs; profile; Mondego estuary; Portugal
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Introduction

Coastal and estuarine environments are subjected to numerous disturbances, among which 

chemical pollution is a major concern. Over the last decades, increasing attention has been 

paid to the occurrence of persistent organic pollutants (POPs) in these ecosystems. POPs 

such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) 

and polychlorinated biphenyls (PCBs) are widely recognized by the scientific community 

as being a risk to wildlife and human health due to their high toxicity and ability to 

bioaccumulate (Mandal 2005). These pollutants enter the coastal and estuarine systems via 

atmospheric deposition, river input and point sources along the coast, leading to relatively 

high concentrations in water, sediment and biota adjacent to major coastal and riverine 

industrial and urban zones (Suarez et al. 2005; Wu et al. 2001). Due to their hydrophobic 

nature, PCDD/Fs and PCBs strongly adsorb to suspended and bottom sediments in the aquatic 

environment. For that reason sediments represent both a sink and a source of contamination 

to benthic organisms as a result of their intimate and constant relationship with sediment. 

Once present in food webs, these compounds bioaccumulate and biomagnify, reaching 

higher concentrations in species at upper trophic levels (Binelli and Provini 2003; Naso et 

al. 2005). Moreover, the dietary intake, especially the consumption of aquatic organisms, 

is considered to be the main pathway of human exposure to these pollutants (Darnerud et 

al. 2006; Domingo and Bocio 2007). Numerous contamination episodes have demonstrated 

how PCDD/Fs and PCBs can easily reach the top of food webs, including humans (Bernard 

et al. 2002; Malish 2000). Thus, the presence of these contaminants in food webs and its 

consequences to food safety has raised awareness and concern of researchers and policy 

makers.

Mondego River flows along 227 km, draining a hydrological basin of approximately 6670 

km2, the largest entirely comprised in the Portuguese territory. During its course, it runs 

through rural as well as highly urbanized and industrialized areas before reaching its 1,600 

ha estuary. The Mondego River basin supports over half a million inhabitants and as a result 

the estuary has been subjected to a strong anthropogenic pressure. Its main pollution 

sources are wastewaters, most resulting from high population density through domestic 

sewage (partially untreated) and high industrial activities through industrial sewage. The 

system also receives agricultural runoff from 15,000 ha of agricultural land, which requires 

the use of great amounts of fertilizers and pesticides. Additionally, the port of Figueira da 

Foz is also responsible for industrial pressure in the estuarine area.
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Over the last 15 years, applied research has been conducted in the Mondego estuary, 

providing a comprehensive dataset on several areas (e.g. Baeta et al. 2008; Coelho et al. 

2004; Dolbeth et al. 2007; Marques et al. 2007; Martinho et al. 2007; Verdelhos et al. 2005) 

and an insight into the pollution levels of the estuary (e.g. Ferreira et al. 2004; Pereira et al. 

2005; Ribeiro et al. 2009). However, regarding PCDD/F levels there is no published data, and 

the information available on PCB contamination is scarce and limited to sediment samples. 

Based on this, a preliminary survey was carried out in order to investigate the occurrence of 

2,3,7,8-substituted PCDD/Fs and dioxin-like PCBs (dl-PCBs) in sediment and selected biota 

collected from the Mondego estuary (Portugal).

Material and methods

Study site

Mondego estuary is a relatively small, warm-temperate, polyhaline intertidal system 

located in the Atlantic coast of Portugal (40°08′ N, 8°50′ W, Fig. 1). It consists of two arms 

separated by an alluvium-formed island. The northern arm is deeper and constitutes the 

main navigation channel and the location of the Figueira da Foz harbor. The southern arm is 

shallower and is characterized by large areas of intertidal mudflats (almost 75% of the area) 

exposed during low tide.

Figure 1 Mondego estuary and location of the sampling area.
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Sample collection and preparation

The sampling campaign was carried out in a well-documented part of the south arm in 

November 2009 (Fig. 1). The study area corresponds to a deposition zone, and sediment 

grain-size distribution does not differ within this part of the estuary, mainly constituted by 

fine particles (silt and clay) (Cunha and Dinis 2002).

Sediment samples from the upper 5 cm were collected manually during low tide in the 

intertidal area, together with green macroalgae Ulva sp., red macroalgae Gracilaria sp. and 

macrophyta Spartina maritima. Polychaete Hediste diversicolor and bivalves Scrobicularia 

plana and Cerastoderma edule were simultaneously taken from the corresponding area. 

Common shrimp Crangon crangon and fish, specifically sea bass (Dicentrarchus labrax), sole 

(Solea solea) and European eel (Anguilla anguilla) were sampled by beam-trawl surveys.

At the laboratory, the 5 sediment samples collected randomly were homogenized and 

combined into a single composite, and then sub-sampled for analysis of contaminants and 

grain size. Sediment organic matter content was quantified by weight difference between 

sediment oven dried at 60 °C for 72 h and combusted at 450 °C for 8 h. Grain size analysis 

was carried out by mechanical separation through a column of sieves with different mesh 

sizes. S. maritima specimens were divided into roots and aerial part. The ragworms N. 

diversicolor and shellfish were depurated in water from the sampling site for 24 h. Next, 

bivalves were shelled, the head and tail were cut-off from shrimp, and muscle was taken 

from fish. Specimens belonging to the same species were pooled to prepare a composite 

sample for chemical analysis (180 C. edule, 168 S. plana, 155 N. diversicolor, 171 C. crangon, 

2 undifferentiated sex D. labrax, 2 females S. solea and 2 undifferentiated sex A. Anguilla).

PCDD/F and PCB analysis

The 17 PCDD/Fs with chlorine substitution in the 2,3,7,8 positions and the 12 dl-PCBs that 

were assigned toxic equivalency factors (TEFs) by the World Health Organization (WHO) 

(van den Berg et al. 1998, 2006) were analyzed as described by Costera et al. (2006). Briefly, 

extraction was performed in an Accelerated Solvent Extraction device (Dionex ASE 300), 

using as solvent a mixture composed of toluene and acetone at 70:30 (v/v). Purification 

included three successive chromatographic steps with silica, Florisil and celite/carbon 

columns. Detection and identification of PCDD/Fs and PCBs was carried out using a 

Hewlett–Packard 6890 gas chromatograph, equipped with a DB-5MS column and coupled 

to a Jeol JMS-800D double sector mass spectrometer set at a resolution of 10,000. All target 

compounds were quantified using the isotope dilution method.
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Quality assurance/quality control

All profile determinations were undertaken at LABERCA, the French National Reference 

Laboratory in charge of PCDD/F and PCB analysis in food and feed. The procedure integrated 

the quality assurance parameters to fulfill the requirements of the European legislation 

laying down sampling methods and the methods of analysis for determination of PCDD/

Fs and dl-PCBs (EC 2006b) such as: (1) the method has been validated and accredited (ISO 

17025:2005); (2) the laboratory has successfully participated in several interlaboratory 

studies to test the method; (3) a blank control and a sample from a certified reference 

material were run with each series of samples; (4) recoveries of individual congeners 

were within 30-140%; (5) chromatographic separation was checked (< 25% peak to peak 

between 1,2,3,4,7,8-HxCDF and 1,2,2,6,7,8-HxCDF). Limits of detection (LOD) for sediment 

were 0.0009 pg.g-1 of dry weight for PCDD/Fs and 0.036 pg.g-1 dw for dl-PCBs, and for biota 

matrices were 0.0005 pg.g-1 of wet weight (ww) for PCDD/Fs and 0.02 pg.g-1 ww for dl-PCBs. 

Results and discussion

PCDD/F and dl-PCB concentrations

In general, ΣPCDD/F concentrations were lower than those of Σdl-PCBs (data available in 

Appendix D). In addition, results demonstrated differences in ΣPCDD/F and Σdl-PCB levels 

depending on the type of matrices (Figs. 2, 3). Sediment was characterized by fine sediments, 

composed essentially by fine sand (73%) and silt (20%), and higher organic matter content 

(mean 6.2% ± 1.8). The concentration on a dry weight basis was 109.68 pg.g-1 dw for ΣPCDD/

Fs and 199.23 pg.g-1 dw for Σdl-PCBs (data available in Appendix D).

Concerning biota samples, concentration of ΣPCDD/Fs in green macroalgae Ulva sp. and red 

macroalgae Gracilaria sp. was low, however they were higher than those reported in Sendai 

bay, Japan (Okumura et al. 2004) (Fig. 2). S. maritima showed higher ΣPCDD/F concentration 

in roots than in leaves, suggesting that these contaminants are not transported inside the 

plants extensively. As regards bivalves, ΣPCDD/F values are higher in clam S. plana than in 

cockle C. edule. The discrepancy observed between the two bivalves could be explained 

taking into account its different feeding mode (McLeod et al. 2008). While S. plana is 

predominantly a surface deposit feeder, especially at low tide, C. edule is mainly a filter 

feeder, though it may occasionally use its siphons to collect nutritional particles from the 

mud flats. Considering concentration on a wet weight basis, the fish S. solea, followed by 
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common shrimp and sea bass, presented the lowest PCDD/F values (Fig. 2a). The first one is 

a top predator consuming small fish and a large variety of invertebrates, whereas common 

shrimp feeds on fish larvae and invertebrates living close to the bottom such as polychaetes 

and bivalves, and the third species is a voracious predator of polychaetes. Results on a lipid 

basis (Fig. 2b) showed clearly that in the study area concentrations of PCDD/Fs declined 

with increasing trophic level, assessed based on isotopic information reported in Baeta 

et al. (2008). These results are consistent with findings of others (Wan et al. 2005; Ruus 

Figure 2 Total concentration of 2,3,7,8-substituted PCDD/Fs in biota from the Mondego estuary 
expressed in (a) pg g-1 of wet weight and in (b) pg g-1 of lipid weight.

a

b
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et al. 2006). As Ruus et al. (2006) suggested in a study conducted in the Grenland fjord 

system, Norway, two mechanisms may explain the lower concentrations of total PCDD/

Fs in the food web in upper trophic levels. There may be a less effective uptake of 2,3,7,8-

PCDD/Fs in organisms at higher trophic levels than in organisms at lower trophic levels, and 

on the other hand, there may be a higher metabolization and/or elimination of the same 

compounds by organisms higher in the food chain.

Contribution of ΣPCDDs to ΣPCDD/F concentration varied among samples (data available 

in Appendix D). While sediment, algae, cordgrass S. maritima and benthic invertebrates 

presented a greater percentage of PCDDs (> 82%), in sole and sea bass PCDDs contribute 

to less than 37%. Okay et al. (2009) described the dominance of PCDDs in sediment 

samples from Turkey coast, and Hashimoto and Morita (1995) reported higher levels of 

these compounds in macroalgae from the Japanese coast. The present results were also 

comparable to those reported by Bordajandi et al. (2006), who found a predominance 

of the PCDDs in shellfish species, and a similar presence of both compounds or a slightly 

predominance of the PCDFs in fish species.

As seen for PCDD/Fs, Σdl-PCB concentration varied largely between the matrices analyzed 

with values ranging from 0.015 ng g-1 ww in green algae to 2.808 ng g-1 ww in eel, and from 

1.24 ng g-1 lipid weight (lw) in common shrimp to 29.46 ng g-1 lw in red algae (Fig. 3). Total dl-

PCB concentrations were considerably higher than those of the PCDD/Fs in all the studied 

samples, which may be due to the greater bioaccumulative properties of PCBs compared 

with PCDD/Fs (Niimi 1996). Furthermore, Σdl-PCB showed different contributions to the 

sum of PCDD/Fs and dl-PCBs, depending on the studied samples. Whereas in sediment Σdl-

PCBs accounted for approximately 65%, in biota samples they represented a higher fraction 

ranging between 88.0 and 99.9%. Concentrations of Σdl-PCBs detected in macroalgae are 

similar with those obtained in other studies. Pavoni et al. (2003) considered the life cycle as 

the most meaningful factor in determining the PCB concentration in seaweeds to explain 

the higher levels of PCBs in Gracilaria, which is a perennial macroalgae, compared to Ulva, 

which has a short seasonal life cycle. Concentrations of Σdl-PCBs in cordgrass samples were 

quite low and roots and leaves showed similar values.

On a wet weight basis (Fig. 3a), Σdl-PCB concentration increased from primary producers, to 

benthic invertebrates and ultimately to fish, with eel presenting the greatest value (2.808 ng 

g-1 ww), followed by sea bass (0.598 ng g-1 ww) and sole (0.143 ng g-1 ww). Lipid-normalised 

concentrations were higher on both fish and macroalgae (Fig. 3b). Common shrimp showed 

quite low values of dl-PCB contamination, as well as of PCDD/Fs.
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Figure 3 Total concentration of dioxin-like PCBs in biota from the Mondego estuary expressed in (a) 
pg g-1 of wet weight and in (b) pg g-1 of lipid weight.

b

a

The contribution of mono-ortho PCBs to the total dl-PCB concentration ranged between 

92.10% (sediment) and 99.94% (eel), while non-ortho PCBs represented a very small 

percentage (0.35–7.90%). The very lower contribution of non-ortho substituted congeners 

is in accordance, for example, with findings of Okumura et al. (2003) for sediments, and of 

Bordajandi et al. (2006) for seafood and fish from the Spanish Atlantic southwest coast.

Numerous factors can influence the contamination levels of aquatic animals, for instance, 

biological factors such as age or size class, reproductive status, trophic level, and 
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environmental factors such as season or habitat location (Matthews et al. 2008; Niimi 

1996; Pandelova et al. 2007). While this study attempted to analyze a wide range of species 

from the  Mondego estuary, the number of samples is limited and does not allow further 

conclusions on PCDD/F and PCB contamination.

PCDD/F and dl-PCB profiles

PCDD/F homologue profiles differed among the samples collected in the Mondego 

estuary (Fig. 4a). Wu et al. (2001) reported that in the food web of Ya-Er Lake area (China) 

some aquatic plants and benthic invertebrate animals can accumulate PCDD/Fs from 

sediment or suspended particulate matter and maintained the sediment pattern, whereas 

organisms at higher levels of the food web (i.e. fish) tended to selectively accumulate 

some 2,3,7,8-substituted congeners. A similar picture could also be observed in the 

present survey, being possible to recognize two main profiles. The first (for sediment, 

algae, cordgrass, bivalves and ragworm) was mainly characterized by the presence of 

OCDD and 1,2,3,4,6,7,8-HpCDD, which together accounted for more than 78% of total 

PCDD/F concentration. In contrast, fish samples contained a wide range of congeners. 

Furthermore, there is no distinct predominance of one particular congener, and OCDD and 

1,2,3,4,6,7,8-HpCDD combined accounted for no more than 35%. The common shrimp 

presented an intermediate pattern, in which these two compounds together contributed 

to 50% of the ΣPCDD/Fs. The higher percentage contribution of OCDD in invertebrates in 

comparison with fish was already reported in other studies (e.g. Matthews et al. 2008). This 

congener is known to be present in high proportions in sewage sludge (Baker and Hites 

2000). Geyer et al. (2000) also reports that OCDD is often the most prevalent PCDD found in 

pentachlorophenol (PCP). PCP has primarily been utilized in the timber processing industry 

to protect against fungal rot or wood-boring insects, but may also be used as a general pre-

emergence herbicide and as a biocide in industrial water systems. However, the authors are 

not aware of information related to the application of PCP within the Mondego drainage 

basin. It should be noted that the high contribution of OCDF observed in fish samples is 

unexpected, since compounds with higher levels of chlorination and high KOW values are 

usually reported to accumulate in organisms to a lesser extent and at slower rates because 

of steric constraints and high hydrophobicity (Marvin et al. 2002; Ruus et al. 2006).

In general, dl-PCB profiles showed a predominance of the mono-ortho PCB 118 and PCB 

105, with exception of S. maritima roots were PCB 189 prevailed (Fig. 4b). Profiles were 

very similar for all matrices and the two prevalent congeners together accounted for 64% 
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to 88% of total dl-PCB concentration. The exceptions to the common pattern were S. 

maritima samples, where these compounds represented only 37% and 48%, in roots and 

leaves, respectively. In agreement with our data, the predominance of PCB 118 and PCB 

105 congeners has been reported in various matrices in the environment (Bayarri et al. 

2001; Bodin et al. 2007; Okay et al. 2009). Results suggest that congener profiles may not be 

altered by differential metabolism and other toxicokinetic differences of the various species. 

If the individual congeners were differently metabolized and taken up by organisms (Kay et 

al. 2005), it would be expected that the proportion of each congener could change along 

the food web and the profile in higher trophic animals (i.e., fish) might be quite different 

Figure 4 Relative contribution of (a) 2,3,7,8-substituted PCDD/F homologues and (b) dioxin-like 
PCB congeners in sediments and biota from the Mondego estuary.

a

b
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from that of the source. However, our data showed similarities in dl-PCB profiles among the 

studied samples, apart from cordgrass.

WHO-TEQ values

WHO-TEQ2005 concentration based on current TEFs for humans ranged from 0.01 and 0.59 

pg g-1 ww. The highest WHO-TEQ levels corresponded to fish, with eel exhibiting the highest 

value (data available in Appendix D). Differences between the relative contribution of 

WHO-PCDD/F-TEQ and WHO-PCB-TEQ to the total WHO-TEQ were observed. Eel samples 

presented a clearly higher percentage of PCDD/Fs (> 75%) of the total WHO-TEQ, while in 

other matrices PCDD/F-TEQ and PCB-TEQ accounted for similar contributions. On contrary, 

in sea bass and sole samples, the WHO-TEQ of PCDD/Fs was very low (< 20 %), with dl-PCBs 

contributing to the majority of the TEQ values.

The European Commission established maximum permissible levels of 4 pg WHO-TEQ1998 

g-1 ww for PCDD/Fs and 8 pg WHO-TEQ1998 g
-1 ww for the sum of PCDD/Fs and dl-PCBs in 

the muscle meat of fish, excluding eel, and fishery products for human consumption (EC 

2006a). The maximum levels defined for eel are 4 WHO-TEQ1998 g
-1 ww for PCDD/Fs and 12 

WHO-TEQ1998 g
-1 ww for the sum of PCDD/Fs and dl-PCBs. The bivalves, common shrimp, 

sole, sea bass and eel samples analyzed in the current survey presented levels well below 

those established by European legislation (data available in Appendix D).

Conclusions

Based upon this study, contamination levels found in the study area were quite lower 

compared with levels reported in impacted ecosystems around the world (e.g., Eljarrat et 

al. 2001; Kim et al. 2009; Schelepchikov et al. 2008; Suarez et al. 2005; Verta et al. 2007; Wu 

et al. 2001). However, only a part of the Mondego estuary was contemplated in the present 

survey, and future research on PCDD/Fs and PCBs in all extension of the Mondego estuary 

should be considered. 

This initial investigation into contamination of the Mondego estuary suggests different 

behaviors of PCDD/Fs and PCBs along the food web. While concentrations of PCDD/Fs 

were lower in higher trophic-level organisms, higher Σdl-PCB values were found in upper-

level biota, although not exclusively. However, it should be referred that concentrations 

of pollutants were measured only in muscle tissue and not in whole fish, whereas it is 
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well known that these compounds are also accumulated in other body parts, as liver and 

gonads. In addition, our results showed differences between PCDD/F and dl-PCB profiles.

Regarding PCDD/F homologues, macroalgae, aquatic plants and benthic invertebrate 

animals maintained the sediment pattern, whereas organisms at higher levels of the food 

web (i.e., fish) tended to selectively accumulate PCDD/F congeners. On the contrary, quite 

similar dl-PCB congener profiles were observed in the different trophic levels (with the 

exception of cordgrass).
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CHAPTER

General conclusions and final remarksVI
The environmental consequences of POPs and their threats to human health, due to their 

persistence and high toxicity, led to the establishment of the Stockholm Convention on 

Persistent Organic Pollutants in 2001 (UNEP 2001). This treaty, which entered into force 

on May 2004, establishes a strong international framework for promoting global action 

on POPs and focuses on eliminating or reducing their environmental releases (Stockholm 

Convention 2008). In this context, several regulatory measures were adopted, resulting 

in a significant decrease of environmental emissions of contaminants such as PCDD/Fs 

and PCBs (EEA 2013). However, due to their high stability and resistance to degradation, 

these compounds released from former sources, can persist in soils, sediments and waste 

reservoirs over decades or even centuries (Weber et al. 2008). Therefore, both PCDD/

Fs and dl-PCBs continue to be detected at dangerous levels in a multitude of matrices all 

over the globe (Sundqvist et al. 2009; Chan et al. 2013; Hu et al. 2013; Miller et al. 2013). 

Special attention has been paid to the estuarine environment since they receive and retain 

large quantities of organic pollutants (Bellucci et al. 2000; Müller et al. 2002; Hu et al. 

2005; Salo et al. 2008). The lack of data regarding PCDD/F and dl-PCB concentrations in 

Portuguese estuaries prompted a survey to obtain relevant information about the national 

contamination status of this environment. This work confirmed the ubiquitous presence 
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of these organic pollutants in Portuguese estuaries, as has been reported in other similar 

systems worldwide (Brochu et al. 1995; Hurst et al. 2004; Müeller et al. 2004; Gómez-Lavín 

et al. 2011; Piazza et al. 2010).

Pollutants with low water solubility and high particle affinity have the tendency to settle 

with particles and accumulate in the bottom sediment (Dueri et al. 2008). Regarding PCDD/F 

and dl-PCB contamination, in the aquatic environment, sediment is considered a better 

descriptor than water (Rose et al. 1994). Moreover, sediments comprise an important 

component of the aquatic ecosystem, providing habitat for a wide range of benthic organisms 

and consequently, representing an established route of entry of pollutants into the aquatic 

trophic web (Forbes et al. 1998; Wan et al. 2005). In this regard, it is important to gain a 

better knowledge of the sediment chemical contamination and consequent risk to biota. 

Chapter II provided a general idea of the occurrence of PCDD/Fs and dl-PCBs in sediments 

from several estuaries along the Portuguese coast. The studied estuarine systems showed a 

wide range of PCDD/F and dl-PCB levels. In general, the higher concentrations were detected 

near large populated regions and industrial complexes (e.g. Tejo estuary), while the lowest 

PCDD/F and dl-PCB values were measured in less impacted areas (e.g. Ria Formosa). Similar 

results were observed in previous studies, with concentrations decreasing with increasing 

distance from industrialized areas (Bazzanti et al. 1997; Gómez-Gutiérrez et al. 2007; Moon 

et al. 2012; Grilo et al. 2013). Since both PCDD/Fs and dl-PCBs are historically associated 

with industrial activities (Erickson 1997; Altarawneh et al. 2009; Weber et al. 2008), the 

results are as expected, even though the environmental releases have declined significantly 

over the years (EEA 2013). 

The different PCDD/F profiles detected among the Portuguese estuaries suggest the 

existence of different contamination sources. For instance, the profiles found in sediment 

from the Tejo estuary showed higher proportion of PCDFs, which have been related with 

emissions from industrial and urban areas in past studies (Terauchi et al. 2009; Antunes 

et al. 2012). Furthermore, this work showed that the most abundant PCDD/F congeners 

existing in superficial sediments are those with more chlorine substitutions. Their lower 

water solubility and greater affinity to fine particles could result in relatively long term 

accumulation, especially in organic rich sediment, explaining the greater proportion of the 

congener OCDD in estuarine sediment (Sinkkonen and Paasivirta 2000; Hu et al. 2005; Wan 

et al. 2005).  In contrast, the dl-PCB profiles were fairly similar among the estuaries and less 

variable when compared with those of PCDD/Fs. Moreover, the predominance of PCB 118 

observed in sediment is in agreement with prior research (El-Kady et al. 2007; Okay et al. 
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2009).

The data presented in Chapter II provides a general insight into the sediment contamination 

of several Portuguese estuaries by dioxin-like compounds, allowing a comparison with 

PCDD/F and dl-PCB levels reported in other countries. In addition, the work developed may 

also establish a basis for future monitoring programs aimed at evaluating if the environmental 

PCDD/F and PCB concentrations in Portuguese estuaries reflect the effectiveness of the 

existing policies and legislation implemented to reduce the emissions of POPs.

The chemical contaminants existent in aquatic ecosystems have the potential to cause 

adverse effects on biota. Thus, the need for appropriate legislation to ensure that such 

impairments are minimal or non-existent has long been recognized. In Europe, the Water 

Framework Directive (WFD; EC 2000) was introduced to protect and improve the ecological 

status of European aquatic environments, including transitional waters such as estuaries. 

The recent Directive 2013/39/EU added the PCDD/Fs and dl-PCBs to the priority substances 

list (EC 2013). However, despite good chemical quality of a water body being also dependent 

on sediment, no environmental quality standards (EQS) were defined for these dioxin-like 

compounds in sediment (Dueri et al. 2008). Nonetheless, the development of EQS values 

for this aquatic compartment is particularly important for hydrophobic contaminants, since 

these may be taken up by organisms in close contact with sediment (Forbes et al. 1998; Wan 

et al. 2005). In addition, no EQS exist for PCDD/Fs and dl-PCBs concentrations in sediment 

at a national level and therefore, no threshold is available to evaluate the risk Portuguese 

estuarine sediments may pose to aquatic organisms. The present work showed that 

guideline values and quality standards defined for other countries were exceeded in some 

locations. Nevertheless, a proper assessment of their applicability regarding Portuguese 

estuaries should be done to assure a correct evaluation of the hazard these sediments 

represent to aquatic organisms. 

Given the PCDD/F and dl-PCB contamination of salt marshes sediments and the significant 

contribution of plants to the detrital estuarine food web (Wall et al. 2001; Sousa et al. 

2010), Chapter III focuses on Sarcocornia perennis and Halimione portulacoides capacity 

to accumulate these chemical compounds. According to this work carried out in the Tejo 

estuary (Portugal), the selected salt marsh plants retain PCDD/Fs and dl-PCBs in their organs. 

However, the major fraction of these contaminants remains associated with sediment. In 

addition, both plant species accumulate significantly higher concentrations of PCDD/Fs and 

dl-PCBs in its roots in comparison with its aboveground tissues, suggesting that despite part 

of the sediment contaminants being incorporated in the roots, they are not substantially 
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translocated to the aboveground vegetation. These results are consistent with the existing 

literature regarding the limited translocation of these highly hydrophobic compounds 

(Hülster and Marschner 1993; Liu and Schnoor 2008).

Once contaminants are incorporated in plant tissues, they can enter the estuarine trophic 

web. Although salt marsh plants are not a usual direct food source for organisms, as the 

halophytes decay, they become reduced to organic detritus that detritivores and juvenile 

fish can consume. However, according to this work, the amounts of PCDD/Fs and dl-

PCBs accumulated in S. perennis and H. portulacoides are minimal when compared with 

the amounts existing in sediment. Therefore, the consumption of detrital plant material 

by estuarine organisms and consequent toxicological risk resulting from faunal uptake is 

probably of no consequence in the studied system.

This study showed that S. perennis accumulate lower quantities of dioxin-like compounds 

in comparison with H. portulacoides, confirming the diversity in uptake and translocation 

of organic contaminants among plant species (Liu and Schnoor 2008; Matsuo et al. 2011). 

The disparities found between concentrations in belowground tissues of S. perennis and H. 

portulacoides may be caused by a distinct type or amount of organic exudates released from 

the roots of the studied species and/or may be a result of differences in root lipid contents 

(Ryan et al. 2001; Dettenmaier et al. 2009). A plant with higher capability for taking up 

organic contaminants from sediment can have higher potential for food web contamination 

but can also have a higher potential to remove the target compound from contaminated 

environments in phytoremediation applications. However, despite H. portulacoides having 

a higher accumulation capability for PCDD/Fs and dl-PCBs, the amount of contaminants 

involved is so low that, independently of the plant species, the trophic web contamination 

and the phytoremediation efficacy are likely to be negligible.

It was also possible to verify that salt marsh sediments without vegetation show higher 

PCDD/F and dl-PCB concentrations, suggesting that salt marsh plants may contribute to 

reduce dioxin-like compound concentrations in contaminated sediments, although in 

a small extent. Even when compounds are slightly incorporated by plants, as is the case 

with S. perennis and H. portulacoides, roots can interact with the surrounding sediment 

by different processes, stimulating the microbial activity in the rhizosphere and increasing 

compound degradation and/or removal (Alkorta and Garbisu 2001; Chaudhry et al. 2005). 

Moreover, PCDD/F and dl-PCB profiles changed between sediments and plant tissues, 

reflecting a selective accumulation of low chlorinated PCDD/Fs and non-ortho dl-PCBs in 

the studied plants.
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Chapter IV presented, for the first time, values on juvenile flounder (Platichthys flesus) 

contamination by PCDD/Fs and dl-PCBs in a number of nursery areas along the species’ 

geographical distribution in the northeastern Atlantic Ocean. Although the determination 

of dioxin-like compounds in fish is important from the human health point of view, it 

also essential to evaluate the risk posed by PCDD/Fs and dl-PCBs to fish populations. The 

exposure of juvenile fish to these contaminants might induce disruption in their growth and 

survival, compromising the viability of adult population (Courrat et al. 2009). According with 

results obtained, the highest tissue residue levels were detected in juveniles caught in the 

Wadden Sea (Netherlands), in agreement with the long history of pollution reported in this 

area (Duinker 1986; Vethaak and Jol 1996; Becker et al. 2001; Vethaak et al. 2009; Laane et 

al. 2013). The dl-PCB concentrations found in P. flesus from the Mondego estuary (Portugal) 

were noticeable low when compared with the other studied areas. Nevertheless, these 

dl-PCB values are higher than those found in adults caught in the same location (Baptista 

et al. 2013). The migration of adult P. flesus to marine waters (Martinho et al. 2013), a less 

contaminated environment (Gómez-Gutiérrez et al. 2007; Parnell et al. 2008), may be related 

with the decreasing contamination levels throughout P. flesus lifespan in the Mondego 

estuary. Growth dilution, defined as the reduction of biomass-specific concentration of 

pollutants due to accumulation of new biomass, may also explain the decrease of dioxin-

like compound levels in adult P. flesus  (Buckman et al. 2006). In the present study, the 

PCDD/F and dl-PCB concentrations detected in European flounder juveniles were below 

the residue effect concentration established by Steevens et al. (2005) and, thus, no adverse 

effects caused by dioxin-like compounds are expected in fish.

A preliminary survey was carried out to investigate the occurrence of PCDD/Fs and dl-PCBs 

in sediment and biota from the Mondego estuary. The contamination levels found in the 

study area, whether in sediment or in organisms, were lower when compared with PCDD/F 

and dl-PCB concentrations reported in impacted estuarine and coastal systems around 

the world. Results presented in Chapter V also revealed that higher PCDD/F values were 

detected in lower trophic-level organisms. According to Wu et al. 2005, it can be related 

with a less effective uptake of PCDD/Fs in organisms at higher trophic levels and in addition, 

biota at a higher position in the food web may have a higher PCDD/F metabolism. Contrary 

to PCDD/Fs, the highest dl-PCB levels were generally found in fish.

Contaminated sediments can act as a source of pollutants to the aquatic trophic web (Forbes 

et al. 1998; Wan et al. 2005). However, the specific properties of each PCDD/F and dl-PCB 

congener affect its bioavailability, bioaccumulation and metabolism in biota, together with 



70 Persistent Organic Pollutants in Portuguese Estuaries

its biomagnification along the food web (Wan et al. 2005). As a consequence, the relative 

concentration of individual chemicals compounds in organisms usually does not reflect the 

profile observed in the sediment, and varies with species and trophic level. In the Mondego 

estuary, macroalgae, plants and benthic invertebrates maintained the sediment PCDD/F 

profile, whereas organisms at higher levels of the food web (i.e., fish) tend to selectively 

accumulate lower chlorinated PCDD/F homologues. Ruus et al. (2006) also verified a similar 

change in the relative contribution of PCDD/F homologues with trophic level. On the other 

hand, quite similar dl-PCB profiles were observed in the different species from the Mondego 

estuary (except algae and plants). 

In the context of human health, the concentrations found in edible aquatic organisms 

collected in the Mondego estuary were below the maximum permissible levels established 

by the European legislation (EC 2006) and therefore, are safe for human consumption.

During the course of this work, aspects about the occurrence of PCDD/Fs and dl-PCBs in 

Portuguese estuaries have been clarified. Nevertheless, some uncertainties remained, 

namely, the risks PCDD/Fs and dl-PCBs present in estuarine sediments could pose to aquatic 

organisms. The determination of the ecological risk of contaminated sediments has long 

been recognized as a key issue to assess the effects of anthropogenic pressure onto the 

natural environments. Therefore, future research efforts should be directed towards the 

development of national EQS for estuarine systems to allow an assessment of the potential 

of PCDD/F and dl-PCB sediment contamination to adversely affect aquatic organisms.
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