
Michel Antunes 

 
 

Stereo Reconstruction  

using Induced Symmetry  

and 3D scene priors  
 
 

Tese de doutoramento em  Engenharia Electrotécnica e de 

Computadores, orientada por João Pedro Barreto e apresentada 

no Departamento de Engenharia Electrotécnica e de 

Computadores da Universidade de Coimbra 

 

2013 



University of Coimbra

Faculty of Sciences and Technology

Department of Electrical and Computer Engineering

Stereo Reconstruction using Induced

Symmetry and 3D scene priors

Michel Antunes

PhD Thesis

Coimbra, 2013



Stereo Reconstruction using Induced Symmetry
and 3D scene priors

By

Michel Antunes

Advisor:

Professor Doutor João Pedro de Almeida Barreto

PhD Thesis

Department of Electrical and Computer Engineering

Faculty of Sciences and Technology, University of Coimbra

September 2013



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Stereo Matching using Induced Symmetry: a geometric account 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Notation and Terminology . . . . . . . . . . . . . . . . . 9

2.2 Mirroring effect and Stereo from Induced Symmetry . . . . . . . 10

2.3 Geometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Condition for a virtual plane Π to intersect the baseline . . 13

2.3.2 Proof of the Mirroring Effect . . . . . . . . . . . . . . . . 15

2.3.3 Singular Configuration . . . . . . . . . . . . . . . . . . . 16

2.4 Perfect symmetry in the presence of surface slant . . . . . . . . . 17

2.5 Mapping Π into a plane Γ in the DSI domain . . . . . . . . . . . 19

2.6 Sweeping the scene by vertical virtual planes . . . . . . . . . . . 20

2.7 Generating the symmetry/anti-symmetry images in 3D . . . . . . 22

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 SymStereo for dense matching and Stereo-Rangefinding 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Measuring local symmetry and anti-symmetry . . . . . . . . . . . 26

3.2.1 SymBT . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 SymCen . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 logN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Experiments in dense stereo matching . . . . . . . . . . . . . . . 36

3.3.1 Methodology and tuning of parameters . . . . . . . . . . 36

3.3.2 Tests in Middlebury . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Tests in Oxford Corridor . . . . . . . . . . . . . . . . . . 42

3.3.4 Experiments in wide-baseline stereo . . . . . . . . . . . . 44

i



3.4 Experiments in Stereo-Rangefinding (SRF) . . . . . . . . . . . . 44

3.4.1 Methodology and tuning of parameters . . . . . . . . . . 45

3.4.2 Tests in Middlebury . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Experiments in wide-baseline stereo . . . . . . . . . . . . 48

3.5 Stereo-Rangefinding vs. Laser-Rangefinding . . . . . . . . . . . . 49

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Detection of the profile cut . . . . . . . . . . . . . . . . . 50

3.5.3 Experimental results . . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Vanishing points and mutually orthogonal vanishing directions 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 The Facility Location Problem . . . . . . . . . . . . . . . . . . . 60

4.2.1 Uncapacited Facility Location (UFL) . . . . . . . . . . . 60

4.2.2 Hierarchical Facility Location (HFL) . . . . . . . . . . . 61

4.2.3 Solving UFL and HFL using the max-sum algorithm . . . 62

4.3 Algorithm for vanishing point (VP) detection . . . . . . . . . . . 63

4.3.1 Vanishing point detection as a UFL problem . . . . . . . . 63

4.3.2 The consistency function D(e,v) . . . . . . . . . . . . . 64

4.3.3 The function W (S) for updating the VP estimate . . . . . 65

4.4 Detection of multiple orthogonal triplets . . . . . . . . . . . . . . 66

4.5 Experiments with synthetic data . . . . . . . . . . . . . . . . . . 68

4.6 Experiments in real images . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 YUD using the supplied lines . . . . . . . . . . . . . . . 69

4.6.2 YUD using extracted edges . . . . . . . . . . . . . . . . 71

4.6.3 Scenes containing multiple orthogonal triplets . . . . . . . 72

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Piecewise Planar Reconstruction using two views 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Planarity prior for SymStereo . . . . . . . . . . . . . . . 76

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Energy-based multi-model fitting using PEARL . . . . . . 78

5.3.2 MRF for Plane Labeling . . . . . . . . . . . . . . . . . . 79

5.4 Reconstruction of lines along a single cut plane . . . . . . . . . . 80

5.4.1 Line cut detection using Hough and PEARL . . . . . . . . 81

5.4.2 Experiments in line cut detection . . . . . . . . . . . . . . 82

5.5 PPR using SymStereo and PEARL . . . . . . . . . . . . . . . . . 84

5.5.1 Formulation of the global framework . . . . . . . . . . . 84

5.5.2 Initial plane hypotheses . . . . . . . . . . . . . . . . . . . 86

5.5.3 Data and smoothness term . . . . . . . . . . . . . . . . . 86

5.5.4 Plane refinement . . . . . . . . . . . . . . . . . . . . . . 88

ii



5.5.5 Plane refinement after PEARL . . . . . . . . . . . . . . . 88

5.5.6 Results in semi-dense PPR . . . . . . . . . . . . . . . . . 89

5.5.7 Independent line cut reconstruction vs. semi-dense PPR . 91

5.6 Experiments in Piecewise Planar Reconstruction (PPR) . . . . . . 91

5.6.1 Compared Algorithms . . . . . . . . . . . . . . . . . . . 92

5.6.2 Accuracy analysis and parameter tuning . . . . . . . . . . 92

5.6.3 Comparison results . . . . . . . . . . . . . . . . . . . . . 93

5.6.4 Two view piecewise planar models . . . . . . . . . . . . . 94

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Stereo Matching using Multiple Slant Hypotheses 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Local stereo using Histogram Aggregation (HA) . . . . . . . . . . 102

6.3.1 Why is disparity selection useful? . . . . . . . . . . . . . 103

6.4 Aggregation with different window orientations α . . . . . . . . . 103

6.4.1 Mapping slants into support window orientations . . . . . 104

6.4.2 Visibility limits for the orientation α . . . . . . . . . . . . 105

6.4.3 Discretization of the aggregation window . . . . . . . . . 106

6.5 HA with multiple slant hypotheses . . . . . . . . . . . . . . . . . 107

6.5.1 Cost aggregation in the (p, d,α) domain . . . . . . . . . 108

6.5.2 Sampling the space of the aggregation orientations α . . . 108

6.5.3 Standard aggregation vs. HA . . . . . . . . . . . . . . . . 109

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6.1 Comparison of different aggregation configurations . . . . 111

6.6.2 Evaluation in Middlebury . . . . . . . . . . . . . . . . . 112

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Conclusions 115

A Additional Results for Chapter 4Vanishing points and mutually or-

thogonal vanishing directionschapter.4 117

A.1 Results on YUD using detected edges . . . . . . . . . . . . . . . 117

iii



List of Figures

1.1 Applications using stereo vision . . . . . . . . . . . . . . . . . . 2

1.2 Problematic situations to stereo matching . . . . . . . . . . . . . 3

2.1 Plane Sweeping vs SymStereo . . . . . . . . . . . . . . . . . . . 9

2.2 Stereo matching costs based on photo-similarity . . . . . . . . . . 11

2.3 The SymStereo framework . . . . . . . . . . . . . . . . . . . . . 12

2.4 Geometric analysis of SymStereo . . . . . . . . . . . . . . . . . . 14

2.5 Singular configuration of SymStereo . . . . . . . . . . . . . . . . 17

2.6 Refinement using slant prior . . . . . . . . . . . . . . . . . . . . 18

2.7 Back-projection onto a virtual cut plane . . . . . . . . . . . . . . 22

3.1 SymBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 SymCen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 logN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Efficient implementation of logN . . . . . . . . . . . . . . . . . . 33

3.5 (Qualitative) space-frequency behavior of log-Gabor wavelets . . 35

3.6 Tuning the number of wavelets scales N for dense stereo . . . . . 38

3.7 Results for the standard Middlebury benchmark . . . . . . . . . . 38

3.8 Short-baseline stereo dataset . . . . . . . . . . . . . . . . . . . . 39

3.9 Average percentage of disparity errors . . . . . . . . . . . . . . . 39

3.10 Average percentage of disparity errors in semi-dense disparity maps 39

3.11 Normalized number of disparity errors . . . . . . . . . . . . . . . 39

3.12 Overlay of the disparity errors . . . . . . . . . . . . . . . . . . . 40

3.13 Percentage of disparity errors in the Oxford Corridor . . . . . . . 43

3.14 Disparity maps obtained on the Oxford Corridor . . . . . . . . . . 43

3.15 Mean errors on the fountain-P11 dataset (dense stereo) . . . . . . 44

3.16 Tuning of parameters for SRF . . . . . . . . . . . . . . . . . . . 45

3.17 Benchmark of the cost functions for Stereo-Rangefinding (SRF) . 45

3.18 Pros and cons of logN . . . . . . . . . . . . . . . . . . . . . . . . 46

3.19 Mean errors on the fountain-P11 dataset [1] . . . . . . . . . . . . 48

3.20 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.21 Example of the estimation of the profile cut location . . . . . . . . 51

3.22 Image matches from SRF and LRF . . . . . . . . . . . . . . . . . 54

iv



3.23 Multi-cut example. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.24 Qualitative comparison between SRF and LRF . . . . . . . . . . 56

4.1 Two images of man-made environments. . . . . . . . . . . . . . . 58

4.2 The UFL problem . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 The HFL problem . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Consistency function and VP estimator . . . . . . . . . . . . . . . 64

4.5 Clustering of line pencils in synthetic data . . . . . . . . . . . . . 68

4.6 Accuracy of the estimation of VPs given a pencil of lines . . . . . 69

4.7 Comparison between our UFL approach with Tardif [2] . . . . . . 70

4.8 Cumulative consistency error . . . . . . . . . . . . . . . . . . . . 70

4.9 Cumulative consistency error - edges are automatically extracted . 71

4.10 Two cases from the YUD. . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Scenes containing multiple orthogonal triplets - digital camera . . 72

4.12 Scenes containing multiple orthogonal triplets - Flickr image . . . 73

5.1 Line prior for SymStereo . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Reconstruction of 3D line cuts using SymStereo . . . . . . . . . . 80

5.3 Results produced by our line cut detection algorithm . . . . . . . 83

5.4 Results for two different parameter settings . . . . . . . . . . . . 83

5.5 Pipeline for PPR . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 The cyclopean eye . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Crease edges and line segment clustering . . . . . . . . . . . . . 87

5.8 Results produced by our semi-dense piecewise planar algorithm . 90

5.9 Independent line cut reconstruction and semi-dense PPR . . . . . 91

5.10 Comparison between DS, SymS and SS for PPR. . . . . . . . . . 96

5.11 Indoor results produced by our PPR algorithm. . . . . . . . . . . 97

5.12 Outdoor results produced by our PPR algorithm. . . . . . . . . . . 98

6.1 Aggregation in slanted surfaces . . . . . . . . . . . . . . . . . . . 100

6.2 Disparity selection before HA . . . . . . . . . . . . . . . . . . . 104

6.3 Implications of varying α1 . . . . . . . . . . . . . . . . . . . . . 105

6.4 Differences between standard and HA . . . . . . . . . . . . . . . 109

6.5 Results in Middlebury . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 We show 8 examples from YUD - Example 1 . . . . . . . . . . . 118

A.2 We show 8 examples from YUD - Example 2 . . . . . . . . . . . 119

A.3 We show 8 examples from our dataset - Example 1 . . . . . . . . 120

A.4 We show 6 examples from our dataset - Example 2 . . . . . . . . 121

v



List of Tables

3.1 Summary of the parameters . . . . . . . . . . . . . . . . . . . . . 37

3.2 Runtime for evaluating the DSI . . . . . . . . . . . . . . . . . . . 42

3.3 Computational complexity of the matching costs . . . . . . . . . 42

3.4 Runtime of SRF . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Specifications of the camera and the LRF . . . . . . . . . . . . . 49

6.1 Spatial matching distribution . . . . . . . . . . . . . . . . . . . . 107

6.2 Aggregation configurations used . . . . . . . . . . . . . . . . . . 110

6.3 Comparison of 4 aggregation configurations . . . . . . . . . . . . 111

6.4 Evaluation in Middlebury . . . . . . . . . . . . . . . . . . . . . . 112

vi



Acknowledgments

During these five years of PhD research, that in terms of motivation could be de-
scribed as being a sinusoid of quite high frequency, a lot of persons were important
to me. Some of them helped me to become a better researcher and engineer, others
helped simply standing by my side during this long journey.

I want to thank my Advisor João Pedro Barreto for the observation ”What if
the virtual planes in plane-sweeping intersect the baseline? There is some type of
symmetry that could be a cue for estimating depth!!! Investigate!!!”. And so was
born SymStereo, the main research of this PhD. I also what to thank his constant
support in all stages of my PhD, as well as letting me ”divagate” and follow my
own research ideas (some of them quite ”strange”).

I acknowledge the Portuguese Science Foundation (FCT) that generously funded
my PhD through the grant SFRH/BD/47488/2008, and also the support of Profes-
sor Doutor Urbano Nunes and FCT under the project grants PTDC/SEN-TRA/
099413/2008 and PTDC/EEA-AUT/113818/2009.

I want to thank Mom and Dad. Without them I could never be here. Thank you
for all your efforts. I want to thank my Lab mates and friends Melo, Miguel, Defeat
Saints, Francis, Vitor, DogAndYou, Butters, Abed two beds three beds, Pacheco,
Salty, Lamb, Carolina,... and many others that in one way or another made this
time more enjoyable. I want to thank my sister and my friends. Thank you friends
for being my friends.

The biggest acknowledgment goes to my girlfriend and since 2012 my wife
Teresa. This PhD was a long and demanding journey, but you make every day look
fantastic.

vii



Abstract

Recovering the 3D geometry from two or more views, known as stereo reconstruc-

tion, is one of the earliest and most investigated topics in computer vision. The

computation of 3D models of an environment is useful for a very large number of

applications, ranging from robotics, consumer utilization to medical procedures.

The principle to recover the 3D scene structure is quite simple, however, there are

some issues that considerable complicate the reconstruction process. Objects con-

taining complicated structures, including low and repetitive textures, and highly

slanted surfaces still pose difficulties to state-of-the-art algorithms.

This PhD thesis tackles this issues and introduces a new stereo framework that

is completely different from conventional approaches. We propose to use symme-

try instead of photo-similarity for assessing the likelihood of two image locations

being a match. The framework is called SymStereo, and is based on the mirroring

effect that arises whenever one view is mapped into the other using the homography

induced by a virtual cut plane that intersects the baseline. Extensive experiments

in dense stereo show that our symmetry-based cost functions compare favorably

against the best performing photo-similarity matching costs. In addition, we inves-

tigate the possibility of accomplishing Stereo-Rangefinding that consists in using

passive stereo to exclusively recover depth along a scan plane. Thorough experi-

ments provide evidence that Stereo from Induced Symmetry is specially well suited

for this purpose.

As a second research line, we propose to overcome the previous issues using

priors about the 3D scene for increasing the robustness of the reconstruction pro-

cess. For this purpose, we present a new global approach for detecting vanishing

points and groups of mutually orthogonal vanishing directions in man-made envi-

ronments. Experiments in both synthetic and real images show that our algorithms

outperform the state-of-the-art methods while keeping computation tractable. In

addition, we show for the first time results in simultaneously detecting multiple

Manhattan-world configurations. This prior information about the scene struc-

ture is then included in a reconstruction pipeline that generates piece-wise planar

models of man-made environments from two calibrated views. Our formulation

combines SymStereo and PEARL clustering [3], and alternates between a discrete

optimization step, that merges planar surface hypotheses and discards detections

with poor support, and a continuous optimization step, that refines the plane poses.

Experiments with both indoor and outdoor stereo pairs show significant improve-

ments over state-of-the-art methods with respect to accuracy and robustness.

Finally, and as a third contribution to improve stereo matching in the pres-

ence of surface slant, we extend the recent framework of Histogram Aggregation

[4]. The original algorithm uses a fronto-parallel support window for cost aggre-

gation, leading to inaccurate results in the presence of significant surface slant. We



address the problem by considering discrete orientation hypotheses. The experi-

mental results prove the effectiveness of the approach, which enables to improve

the matching accuracy while preserving a low computational complexity.
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Resumo

Recuperar a geometria 3D a partir de dois vistas, conhecida como reconstrução

estéreo, é um dos tópicos mais antigos e mais investigado em visão por computa-

dor. A computação de modelos 3D do ambiente é útil para uma grande número de

aplicações, desde a robótica, passando pela sua utilização do consumidor comum,

até a procedimentos médicos. O princı́pio para recuperar a estrutura 3D cena é

bastante simples, no entanto, existem algumas situações que complicam consid-

eravelmente o processo de reconstrução. Objetos que contêm estruturas pouco

texturadas ou repetitivas, e superfı́cies com bastante inclinação ainda colocam em

dificuldade os algoritmos state-of-the-art.

Esta tese de doutoramento aborda estas questões e apresenta um novo frame-

work estéreo que é completamente diferente das abordagens convencionais. Propo-

mos a utilização de simetria em vez de foto-similaridade para avaliar a verosimilhança

de pontos em duas imagens distintas serem uma correspondência. O framework

é chamado SymStereo, e baseia-se no efeito de espelhagem que surge sempre

que uma imagem é mapeada para a outra câmara usando a homografia induzida

por um plano de corte virtual que intersecta a baseline. Experiências em estéreo

denso comprovam que as nossas funções de custo baseadas em simetria se com-

param favoravelmente com os custos baseados em foto-consistência de melhor

desempenho. Param além disso, investigamos a possibilidade de realizar Stereo-

Rangefinding, que consiste em usar estéreo passivo para recuperar exclusivamente

a profundidade ao longo de um plano de varrimento. Experiências abrangentes

fornecem evidência de que estéreo baseada em simetria induzida é especialmente

eficaz para esta finalidade.

Como segunda linha de investigação, propomos superar os problemas descritos

anteriormente usando informação a priori sobre o ambiente 3D, com o objectivo de

aumentar a robustez do processo de reconstrução. Para tal, apresentamos uma nova

abordagem global para detectar pontos de desvanecimento e grupos de direções de

desvanecimento mutuamente ortogonais em ambientes Manhattan. Experiências

quer em imagens sintéticas quer em imagens reais demonstram que os nossos al-

goritmos superaram os métodos state-of-the-art, mantendo a computação aceitável.

Além disso, mostramos pela primeira vez resultados na detecção simultânea de

múltiplas configurações de Manhattan. Esta informação a priori sobre a estrutura

da cena é depois usada numa pipeline de reconstrução que gera modelos piece-

wise planares de ambientes urbanos a partir de duas vistas calibradas. A nossa

formulação combina SymStereo e o algoritmo de clustering PEARL [3], e alterna

entre um passo de otimização discreto, que funde hipóteses de superfı́cies planares

e descarta detecções com pouco suporte, e uma etapa de otimização contı́nua, que



refina as poses dos planos. Expêriencias com pares estéreo de ambientes interi-

ores e exteriores confirmam melhorias significativas sobre métodos state-of-the-art

relativamente a precisão e robustez.

Finalmente, e como terceira contribuição para melhorar a visão estéreo na

presença de superfı́cies inclinadas, estendemos o recente framework de agregação

estéreo baseada em histogramas [4]. O algoritmo original utiliza janelas de su-

porte fronto-paralelas para a agregação de custo, o que leva a resultados impre-

cisos na presença de superfı́cies com inclinação significativa. Nós abordamos o

problema considerando hipóteses de orientação discretas. Os resultados experi-

mentais obtidos comprovam a eficácia do método, permitindo melhorar a precisão

de correspondência, preservando simultaneamente uma baixa complexidade com-

putacional.
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Chapter 1

Introduction

1.1 Motivation

Photographs capture moments, places and events that are important and useful for

a wide variety of personal and economical purposes. However, an image taken by

a single camera is a low-dimensional representation of a rich 3D world, meaning

that there is information lost during the physical imaging process. Computer vision

tackles the inverse problem of recovering the 3D shape of objects and geometry of

the environment from one or more images taken from the same object or scene. The

computation of 3D models of an environment is advantageous for a very large num-

ber of applications, like city modeling and 3D mapping (e.g. [5, 6, 7, 8, 9]), robot

navigation and autonomous drivers (e.g. [10, 11, 12, 13, 14, 15]), tele-immersion

and view synthesis (e.g. [16, 17, 18, 19]). Computer vision is also applied in many

medical procedures, for example in Minimally Invasive Surgery (MIS) it is used

for registering the endoscopic video to a pre-operative 3D model of the anatomies

of the patient (e.g. [20, 21, 22]).

Recovering the 3D geometry from two or more views, known as stereo recon-

struction, is one of the earliest and most investigated topics in computer vision

[23, 24, 25, 26]. The principle to recover the scene structure from a set of images

is quite simple. Knowing the location of the same scene point in images taken by

calibrated cameras, then it is possible to obtain the position of the point in 3D space

using a technique known as triangulation [27]. This process of finding pixels in two

or more images that correspond to the same 3D scene point is called stereo match-

ing. Given that the parameters of the cameras (intrinsic calibration) and the relative

position between the cameras (extrinsic calibration) is known, then the 2D dimen-

sional pixel search (R2 → R2) can be transformed to a 1D dimensional matching

process (R → R) based on the epipolar constraint [24].

This thesis focuses exclusively on the minimal problem of computing depth

1



Figure 1.1: Three application scenarios that use stereo vision, from left to right: au-
tonomous driving [14]; stereo pair downloaded from Flickr that was captured using a Sony
Bloggie 3D; and stereo laparoscopy [28]

.

from a single pair of calibrated images. This has the disadvantage of having much

less scene information available when compared to multi-view approaches [29],

making the process considerably more error prone. But there are many advantages.

First, and the main reason why we decided to explore the two view approach, is

due to its larger amount of real application scenarios (refer to Figure 1.1). Setting

up a (binocular) stereo vision system is nowadays quite uncomplicated, and camera

calibration is a well studied topic [30, 31, 32, 33]. This makes stereo vision widely

used in a large number of robotic tasks (e.g. [34, 11, 35, 36, 37, 13, 38]), many of

which can work indoors as well as outdoors. This is important to stress, because

the recent research in RGB-D cameras is not a viable alternative in case large depth

ranges of operation or variable lighting conditions are considered. Besides these

applications in robotics, very recently started to appear stereo cameras as consumer

electronics being available either as standalone hand-held cameras (e.g. Fujifilm

Finepix 3D, Sony Bloggie 3D) or integrated into smartphones (e.g. HTC Evo 3D).

The work described in this thesis is also motivated by this proliferation of stereo

cameras that we believe will create an urge for robust algorithms able to render

complete, photo-realistic 3D models in an automatic manner. Finally, the compu-

tation of the 3D structure of organs, tissues and surgical instruments during MIS

is important for computer assisted interventions (e.g. [20, 21, 22, 39, 40]). In the

last few years, endoscope manufacturers started to produce equipments with two

lenses, and in particular stereoscopic laparoscopes (e.g. Olympus 3D endoscopy).

We are in the opinion that the research reported in this thesis will also have impact

in this field, where robust approaches for extracting depth information from two

views are required.

As stated, the research in this thesis will only consider two view stereo. In this

case, the procedure of stereo matching is considerably simplified when the input

images are previously rectified so that the epipolar lines are horizontally aligned

[41, 23, 24, 26]. After rectification, the similarity of the pixels are compared at

corresponding pixel locations (x, y) in the left view and (x′, y′) = (x − d, y) in

the right view, where d is the disparity, and is inversely proportional to the depth.

The computation of the matching cost for each pixel (x, y) and each disparity hy-

pothesis d creates a volume called Disparity Space Image (DSI) [42]. The final

disparity map is obtained by analyzing the DSI and selecting a disparity d for each

pixel (x, y).
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The principle to recover the 3D scene structure is simple, however, and as

discussed in my thesis project [43], there are some issues that considerable com-

plicate the reconstruction process. This thesis mainly tackles two of them, which

are mostly due to the captured 3D scene, other problems like errors in the camera

calibration are not considered.

(a) Textured scenes

(b) Low and repetitive textured scenes

(c) Scenes containing slanted surfaces

Figure 1.2: Problematic situations to stereo matching. (a) The objects contained in these
scenes are mostly textured and it is quite easy for stereo matching to identify the correct
matches [23, 44, 45]; (b) These scenes contain mostly low and repetitive textures, it is
difficult even for humans to identify correctly all the matching pixels [44, 45]; (c) surfaces
that are non-frontal to the cameras pose additional difficulties to stereo matching, as we will
see later, this occurs because a particular region in one view is warped in the right view
depending on the slant of the surface. Note that all stereo scenarios depicted in Figure 1.1
contain these type of difficulties.

The first issue is due to the ambiguity in the stereo matching process that oc-

curs in scene regions with low and/or repetitive textures (refer to Figure 1.2). All

stereo algorithms need somehow to measure the likelihood of pixels in different

views being a match, which is usually done by quantifying the photo-consistency

between pixels or image regions. It was concluded in [23, 45] that the choice of

this matching cost is crucial for the final performance of the stereo algorithm, but

top-performing metrics still have difficulties in handling this type of complicated

textures.

The second problem is posed by slanted surfaces contained in the scene, which

difficult almost all stages of traditional stereo matching pipelines (refer to Fig-

ure 1.2). This occurs because most existing approaches assume, for simplicity
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and tractability purposes, that the surfaces to be reconstructed are fronto-parallel

to the cameras. As we will discuss later, there is a vast literature [46, 47, 48, 49,

50, 51, 52, 53] that tries to overcome this problem by estimating simultaneously

depth and the local slant around the pixel being analyzed. I am in the opinion that

the most recent approaches already do a good job in terms of accuracy, but bet-

ter matching costs would certainly improve their performance. However, must of

these approaches are not often used because they are complex and time consuming.

In contrast to standard stereo matching techniques, many authors propose to

overcome the previous issues using priors about the 3D scene during the regulariza-

tion process (e.g. [5, 7, 8, 9]). These approaches have the advantage of providing

3D models of the scene that are perceptually pleasing and geometrically simple,

and, thus, their rendering, storage and transmission is computationally less com-

plex. These approaches use multiple views, however, and as referred previously,

our focus is on stereo reconstruction from a single pair of images. I think that, for

this specific case, the literature lacks an appropriate pipeline.

Finally, and after a thorough review of the stereo literature (mostly documented

in [43]), we wondered if it is always necessary to compute a complete disparity map

whenever stereo vision is used? We are in the opinion that, in contrast to 3D mod-

eling purposes, there are many applications (specially in robotics) in which a less

dense 3D reconstruction could be sufficient for accomplishing the objectives (e.g.

navigation, pedestrian detection, self-localization). How can this be done with-

out loosing much accuracy, and being more efficient that computing the complete

depth map (of course, it is useless if it is slower)?

1.2 Organization

This thesis is divided into three main parts. The first part faces the two issues

described previously (matching ambiguity and surface slant), and also investigates

the possibility of efficiently estimating depth only for a subset of image pixels

without severely affecting the accuracy. It is organized as follows:

• Chapter 2 presents the SymStereo framework, providing an intuitive descrip-

tion of the mirroring effect that is induced by a virtual plane intersecting the

baseline. The mirroring effect is the cornerstone of SymStereo because it

enables the rendering of image signals that are either symmetric or anti-

symmetric with respect to the contour where a virtual plane cuts meets the

scene. Following this, stereo matching is achieved by finding the image of

this contour in the two views using symmetry cues. A geometric analysis

of the framework is performed, providing a formal proof of the mirroring

effect, discussing singular configurations, and explaining how to select an

appropriate set of virtual cut planes.

• Chapter 3 derives suitable symmetry metrics for quantifying the likelihood
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of a certain image pixel being locally symmetric and/or anti-symmetric. We

experimentally evaluate the symmetry-based metrics against photo-similar-

ity for the purpose of data association in dense stereo. Moreover, and since

the symmetries are induced using virtual cut planes, these new matching

functions are particularly well suited for recovering depth along pre-defined

scan planes. The independent estimation of depth along a scan plane is called

Stereo-Rangefinding (SRF). We evaluate symmetry against photo-consis-

tency based matching costs for the purpose of SRF, and also compare the

depth estimation obtained using a SRF pipeline against the readings pro-

vided by a Laser-Rangefinder.

The second part investigates the problem of extracting geometric information

from the scene, and how to use this information to improve the 3D reconstruction

process. It is composed by two chapters:

• Chapter 4 addresses the problem of detecting vanishing points (VPs) and

their grouping into sets of mutually orthogonal vanishing directions (VDs).

These problems are cast as Uncapacited Facility Location (UFL) and Hier-

archical Facility Location (HFL) problems, respectively, and solved using a

message passing approach. We provide experimental result in synthetic and

real images, and compare the performance of our algorithms against state-

of-the-art approaches.

• Chapter 5 investigates the use of the planarity prior about the 3D scene for

enhancing the 3D reconstruction. We propose a pipeline that combines SRF

and PEARL optimization [3] for this purpose, and use the VPs obtained from

the approach described in Chapter 4 for constraining the planar segmenta-

tion. The experiments show that the plane hypotheses computed using our

symmetry-based pipeline outperform the approaches based on dense stereo

reconstruction and sparse feature matching.

Finally, Chapter 6 extends the work presented in [4], and proposes a new stereo

aggregation scheme able to cope with surface slant. The strategy consists in se-

lecting the most suitable aggregation direction within a pre-defined set of discrete

hypotheses. The approach is able to combine high matching accuracy with small

computational overhead when compared to the state-of-the-art.

1.3 Contributions

There are some challenges, identified previously, that this thesis has the ambition

to overcome. This work makes the following contributions:

• A new cue for stereo vision - Chapter 2 presents the first work in the litera-

ture proposing to use symmetry instead of photo-similarity for assessing the
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likelihood of two image locations being a match. The framework is called

SymStereo, and is based on the mirroring effect that arises whenever one

view is mapped into the other using the homography induced by a virtual cut

plane that intersects the baseline.

• New matching costs based on symmetry - Chapter 3 proposes three symmetry-

based matching costs. The new matching costs are benchmarked against the

state-of-the-art metrics for accomplishing dense disparity labeling in both

short and wide-baseline images. The results show that the symmetry-based

functions consistently outperform their similarity-based counterparts, sug-

gesting that symmetry is superior to standard photo-consistency as a stereo

metric.

• Stereo-Rangefinding (SRF) - Chapter 2 and Chapter 3 investigate the use of

passive stereo for estimating depth along a single scan plane. The technique,

named SRF, provides profile cuts of the scene similar to the ones that would

be obtained by a Laser-Rangefinder (LRF). We provide the first benchmark

of SRF, and compare the depth estimates obtained using a SRF pipeline with

the readings provided by a 2D Laser-Rangefinding (LRF). The experimental

results demonstrate that SRF can be leveraged to meet the robustness and

depth accuracy of laser range data.

• A global approach for detecting VPs and groups of mutually orthog-

onal VDs - Chapter 4 presents an automatic and global approach for the

detection of VPs and mutual orthogonal VDs. The core of the framework

is the formulation of these multi-model fitting problems as Uncapacited Fa-

cility Location (UFL) and Hierarchical Facility Location (HFL) instances,

respectively. Its effectiveness is experimentally evaluated in real scenarios

containing multiple Manhattan-world configurations.

• A Piecewise Planar Reconstruction (PPR) pipeline - A new pipeline (refer

to Chapter 5) that combines the SymStereo framework and PEARL [3] for

the purpose of PPR. The experimental results obtained with this system

demonstrate that it is possible to obtain accurate and simple 3D models of

indoor and outdoor scenes from only two calibrated images.

• A Histogram Aggregation (HA) framework that accounts for surface

slant - The strategy described in Chapter 6 consists in selecting the most

appropriate aggregation direction for HA within a set of discrete hypothe-

ses. The approach is able to combine high matching accuracy with small

computational overhead when compared to existing approaches.

6



Chapter 2

Stereo Matching using Induced

Symmetry: a geometric account

Stereo methods always require a matching function for assessing the likelihood of

two pixels being in correspondence. Such functions, commonly referred as match-

ing costs, measure the photo-consistency between image regions centered in pu-

tative matches. This chapter proposes a new framework from which a new family

of stereo cost functions that measure symmetry instead of photo-similarity for as-

sociating pixels across views are derived. We start by observing that, given two

stereo views and an arbitrary virtual plane intersecting the baseline, it is possible

to render image signals that are either symmetric or anti-symmetric with respect

to the contour where the virtual plane meets the scene. The fact is investigated in

detail and used as cornerstone to develop a new stereo framework that relies in

symmetry cues for solving the data association problem.

2.1 Introduction

Stereo correspondence methods require a metric for assessing the likelihood of

two image locations being a match. Typically, the first step of a dense stereo algo-

rithm is the evaluation of this matching function for all pixel locations and dispar-

ity range. The result is the DSI [42] over which is carried either local aggregation

or global optimization with the objective of computing a depth map [23]. Local

stereo methods aggregate the matching function over a support region for obtain-

ing a spatially coherent DSI [54, 55]. This is usually followed by a Winner-Takes-

All (WTA) procedure along the disparity dimension. In global stereo methods, the

pixel correspondence between views is formulated as a global optimization prob-
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(c) SymStereo (d) DSI SymStereo

Figure 2.1: Plane Sweeping vs SymStereo. (a) and (b): Conventional stereo matching is
a particular instance of plane sweeping [58]. The DSI is evaluated for increasing values
of disparity di. Each disparity hypothesis di is associated with a virtual plane Φi that
is fronto-parallel. The chosen matching cost implicitly measures the photo-similarity be-
tween IB and I′B , that are the results of back-projecting I and I′ onto Φi; (c) and (d) - In
SymStereo the virtual planes Πi intersect the baseline, and the back-projection images are
reflected with respect to the curve where Πi intersects the scene structure (mirroring ef-
fect). This enables to perform stereo matching using symmetry instead of photo-similarity.
In the same manner that each plane Φi in (a) is associated with a constant disparity plane
in (b), each plane Πi in (c) corresponds to an oblique plane Γi in (d). Thus, the entire DSI
domain can be fully covered by carefully choosing the set of virtual cut planes Πi.

lem over the DSI, which is solved using an energy minimization framework [56].
There is a third strategy called Semi-Global Matching (SGM) that minimizes a 2D
energy function defined over the DSI by performing pathwise optimization along
multiple directions [57].

This chapter revisits the construction of the DSI using a new type of matching
functions. The functions described in the stereo literature rely in measuring the
photo-consistency between two image locations. We show that, given a calibrated
stereo pair, it is possible to render image signals that are either symmetric or anti-
symmetric around the projection of the contour where an arbitrary virtual cut plane
intersects the scene. This allows to use symmetry instead of photo-consistency for
quantifying the likelihood of two pixels being a match.

2.1.1 Notation and Terminology

We represent scalars in italic, e.g. s , vectors in bold characters, e.g. p, matrices in
sans serif font, e.g. M, image signals in typewriter font, e.g. I, and curves in calli-
graphic symbols, e.g. C. Unless stated otherwise, we use homogeneous coordinates
for points and other geometric entities, e.g. a point with non-homogeneous image
coordinates (p1, p2) is represented by p∼(p1 p2 1)

T, with ∼ denoting equality up
to a scale. Finally, [v]× denotes the skew symmetric matrix defined by the 3-vector
v, and I3×3 refers to the 3× 3 identity matrix.

Although SymStereo can be used with any stereo pair, we assume, if not oth-
erwise stated, rectified stereo for most derivations and experiments throughout this
thesis. Thus, a generic 1-D line of the image signal I is denoted by I(p1), with
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p1 being the free coordinate along the horizontal axis. The 1-D signal I(p1) has a

local symmetry about a point q1 in its domain iff the following holds:

I(q1 + δ) = I(q1 − δ), ∀δ ∈N

with N being an interval centered in zero. In a similar manner, I(p1) is said to be

anti-symmetric in a local neighborhood around q1 iff

I(q1)− I(q1 + δ) = −(I(q1)− I(q1 − δ)), ∀δ ∈N

The stereo matching will be carried by quantifying 1-D signal symmetry and anti-

symmetry in successive pixel locations along epipolar lines.

We will often refer to a matching function as being a ”matching cost” or a ”cost

function” without distinguishing if the function measures photo-similarity, photo-

dissimilarity, local symmetry or lack of local symmetry. We will also employ the

term ”similarity-based matching cost” to designate matching functions that use

conventional photo-consistency metrics, as opposed to the new stereo functions

that exploit induced symmetry cues.

2.2 Mirroring effect and Stereo from Induced Symmetry

Let I and I
′ be a pair of rectified images acquired by two cameras with projection

centers C and C′. The scheme of Figure 2.1(a) is a top-view of this situation,

where the two cameras observe a concave surface S with five regions identified

with different colors. The 3D volume of Figure 2.1(b) is the corresponding DSI,

with each point (p, d) representing the disparity hypothesis d for the pixel location

p = (x, y) [42]. The matching cost is a scalar function with domain (p, d), and the

DSI is the result of evaluating this function across the entire domain. Ideally, the

cost function should be such that for each pixel p there is a single extremum along

the disparity axis that signals the correct disparity value d. In this case, the set of all

extrema define a surface in the DSI that enables the accurate 3D reconstruction of

the scene. In practice, several ambiguities arise, and the evaluation of the matching

cost usually leads to multiple incorrect extrema. The steps of local aggregation

and/or global optimization over the DSI aim to overcome this problem by refining

the matching surface taking into account spatial consistency.

It is well known that, for the case of rectified stereo, image points lying in a

fronto-parallel plane Φ0 are related by the same disparity amount d0. Thus, the dis-

parity plane d0 in the DSI can be evaluated by back-projecting the two input views

I and I
′ onto the virtual plane Φ0, followed by comparing the results IB and I

′
B

using some type of photo-similarity metric. As shown in the scheme of Figure 2.1

(a), the back-projected images IB and I
′
B overlap in the points where Φ0 inter-
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(a) Image I (b) 3D model (c) Image I′ (d) SAD (e) ZNCC (f) Census

Figure 2.2: Conventional stereo matching costs based in photo-similarity. I and I
′ are

stereo views of the 3D scene shown in (b). The virtual plane Φ0 (yellow) corresponds
to a constant disparity d0 in the DSI domain. Let Î be the result of mapping I

′ into I

using the plane-homography. The disparity hypothesis d0 is evaluated by measuring the
photo-similarity between I and Î, such that the image of the regions where Φ0 intersects
the scene structure becomes highlighted (d)-(f).

sects the scene surface and, consequently, the quantification of photo-similarity

tends to highlight these image locations enabling a correct disparity assignment.

This way of addressing the problem was introduced by Collins, that suggested to

find matches across multiple views by sweeping the 3D space with a pre-defined

set of virtual planes [59]. The computation of the DSI in rectified stereo can be

understood as a particular instance of plane sweeping, with the sweeping direction

being parallel to the camera axis, and each plane Φi corresponding to a constant

disparity di (see Figure 2.1(a)-(b)).

SymStereo relates with plane sweeping in the sense that it also samples the 3D

space by a set of virtual planes. However, there are two major differences: (i) the

virtual planes intersect the baseline, which is considered a degenerate configuration

in plane sweeping [60]; and (ii) the pixel association between views is achieved

using symmetry cues instead of photo-similarity metrics.

Consider the scheme of Figure 2.1(c), with Π0 being a plane that intersects the

baseline, and IB and I
′
B being the result of back-projecting views I and I

′ onto

Π0. Remark that, while in Figure 2.1(a) the back-projection images correlate in

the pixel locations where the virtual plane meets the 3D surface, in Figure 2.1(c)

the images IB and I
′
B are mirrored with respect to the curve C where Π0 intersects

the scene structure. SymStereo explores this mirroring effect for accurately recon-

structing the contour C (the profile cut) using symmetry analysis. As discussed

next, the strategy is effective not only for recovering depth along a virtual cut plane

(SRF), but also for achieving dense stereo matching. It can be proved that the

mirroring effect holds for any plane Πi intersecting the baseline, corresponding to

an oblique plane Γi in the DSI domain. Thus, and in a similar manner to plane

sweeping, it is possible to carefully select the virtual cut planes such that the DSI

is fully evaluated and the correct disparity surface is recovered (Figure 2.1 (d)).

Figure 2.2 aims to illustrate the evaluation of the disparity hypothesis d0 using

a conventional stereo matching cost such as Sum of Absolute Differences (SAD),

Zero-mean Normalized Cross-Correlation (ZNCC) or Census. The plane d=d0 in

the DSI domain (Figure 2.1(b)) corresponds to a fronto-parallel virtual plane Φ0

that is marked in yellow in the 3D model of Figure 2.2(b). Let Î be the warping

10



(a) Image I (b) 3D model (c) Image I′

(d) I
S = I+ Î (e) I

A = I− Î
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(f) Epipolar Lines

Figure 2.3: SymStereo: The virtual cut plane Π0 in yellow intersects the scene structure
in a non-continuous 3D curve C marked in magenta (the profile cut). Let Î be the result of
warping I

′ by the plane-homography induced by Π0. The image signals IS and I
A, ob-

tained by adding and subtracting I with Î, are respectively symmetric and anti-symmetric
around the image of the profile cut C (d)-(e). In (f) we show the pixel intensities of IS and
I
A along three distinct epipolar lines (green, cyan and blue). Remark that the intersections

with the locus where C is projected can be identified with almost no ambiguity by searching
common pixel locations for which the top and bottom 1D-signals are respectively locally
symmetric and anti-symmetric.

result of mapping the right view I
′ into the left reference view using the plane-

homography induced by Φ0. For the particular case of rectified stereo, the warping

is a simple image shift by d0 pixels along the horizontal axis. The DSI values of the

points lying in the plane d = d0 is determined by measuring the similarity between

images I and Î using a specific metric. As shown by the results of Figure 2.2(d)-(f),

this enables depth recovery by highlighting the pixel locations corresponding to the

regions where Φ0 intersects the scene structure (magenta marks in Figure 2.2(a)-

(c)).

In this chapter, we propose to evaluate the DSI using a different strategy. Con-

sider the virtual cut plane Π0 that intersects the scene surfaces in the profile cut C
marked with magenta in the model of Figure 2.3(b). Let H be the plane-homogra-

phy associated with Π0 that maps the right image into the reference view. If Î is

the warping result of mapping I
′ by H, then it comes from the mirroring effect that

I and Î are reflected around the image of the profile cut. Thus, the sum of I and Î

yields an image signal IS that is symmetric around the locus where C is projected

(Figure 2.3(d)). In a similar manner, the difference between I and Î gives rise to an

image signal IA that is anti-symmetric at the exact same location (Figure 2.3 (e)).

SymStereo detects the image of the profile cut by jointly evaluating symmetry and

anti-symmetry of IS and I
A at every pixel location (Figure 2.3 (f)). This provides
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Figure 2.4: Geometric analysis of SymStereo. The analysis is carried in an arbitrary
epipolar plane Ψ assuming that the images are rectified. The camera centers C and C′ are
separated by a distance b (baseline), and the world frame is coincident with the coordinate
system of the left view (reference view). For the sake of graphical clarity the image points
are projected behind the optical centers.

an implicit manner of recovering depth along Π0 and achieving data association

across views. Since Π0 is mapped into an oblique plane Γ0 in the DSI domain, the

joint symmetry and anti-symmetry metric assigns a matching cost to every point

(p, d) lying on Γ0. Thus, and as stated above, the DSI can be fully evaluated by

stacking the results of a set of planes Πi such that the corresponding planes Γi

cover the entire (p, d) domain (Figure 2.1(d)).

2.3 Geometric Analysis

This section derives the conditions for a generic 3D plane Π to intersect the base-

line, proves that the mirroring effect holds for any virtual plane intersecting the

baseline iff corresponding image pixels have the same order in both views, and

discusses the mapping of planes Πi in 3D space into planes Γi in the DSI domain.

2.3.1 Necessary and sufficient condition for a virtual plane Π to inter-

sect the baseline

As shown in Figure 2.4, consider a rectified stereo pair acquired by two cameras

with centers in C and C′. Since the camera reference frames are aligned, the

transformation T that maps the right view coordinates into left view coordinates is

T =

(
I3×3 t

0T 1

)
, (2.1)
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with

t =




b
0
0



 .

We assume that the world coordinate system is coincident with the reference frame

centered in C. The virtual cut plane Π, that passes between the cameras, is repre-

sented by the following homogeneous vector

Π ∼

(
n

−h

)
, (2.2)

where n indicates the direction orthogonal to the plane

n ∼




n1

n2

n3



 .

In addition, the centers C and C′ define a line L that contains the baseline and has

Plücker coordinates [61]

L ∼

(
t

0

)
.

The intersection of the virtual cut plane with the baseline can be computed by

multiplying the 4-vector Π with the Plücker matrix of the dual of L [62]. It follows

that the homogeneous coordinates of the intersection point O are

O ∼

(
−[0]× t

−tT 0

)
Π ∼





h
n1

0
0
1



 .

Using β to denote the ratio between the signed distances CO and CC′ comes that

the plane Π intersects the baseline iff the following condition holds

0 <
(
β =

O1

b

)
< 1 ⇐⇒ β−1 =

b n1

h
> 1. (2.3)

2.3.2 Proof of the Mirroring Effect

Consider a generic 3D point P that is projected into points p and p′ in the stereo

views as shown in Figure 2.4. Since we are assuming rectified stereo, then the non-
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homogeneous coordinates p2 and p′2 have the same value y. In a similar manner,

consider a point Q that lies in the intersection of the same epipolar plane Ψ with

the virtual plane Π. Since the image points p, q in the left view and p′, q′ in the

right view only differ in terms of the first coordinates, we define the following pair

of signed distances:
g = p1 − q1
g′ = p′1 − q′1

(2.4)

Remark that g and g′ have the same sign iff the points P and Q are imaged with

the same order in the two views. We assume henceforth that this condition holds.

The plane Π defines a homography H that maps points from the right view into

the left view. Given the relative camera pose of Equation 2.1 and the homogeneous

plane representation of Equation 2.2, it comes that [61]

H ∼
(
I3×3 +

t nT

h

)−1

∼




1 + bn1

h−bn1

bn2
h−bn1

bn3
h−bn1

0 1 0
0 0 1



 (2.5)

Using H to map p′ in the right view onto p̂ in the left view yields

p̂1 =

(
1 +

bn1

h− bn1

)
p′1 + ky,

with ky depending on the second coordinate y and being a constant for points on the

same epipolar line. From Equation 2.4 comes that p′1 = g′ + q′1 and the expression

above can be re-written as

p̂1 =

(
1 +

bn1

h− bn1

)
q′1 + ky +

(
1 +

bn1

h− bn1

)
g′. (2.6)

In a similar manner, let q̂ be the mapping result of q′ such that q̂ ∼ Hq′. Since Q

lies in the cut plane Π that defines the homography, then point q̂ must be coincident

with q and the following holds

q1 =

(
1 +

bn1

h− bn1

)
q′1 + ky .

Replacing the result above in Equation 2.6 comes that the signed image distance
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(c) Double Nail Illusion

Figure 2.5: (a) In the case the virtual cut plane Π intersects the scene in a continuous
surface, most of the back-projected image regions contribute for the mirroring effect. (b)
In the presence of occlusions (the yellow region is occluded in the left view and the red
region is occluded in the right view), the symmetry extend is reduced and limited by the
depth occlusion boundaries. (c) In the presence of double nail illusion, the virtual cut plane
intersects two surfaces, in which case the mirroring effect occurs in two distinct regions -
one corresponding to the surface in front (grey) and one corresponding to the surface in the
back (blue).

between q and p̂ is

ĝ = p̂1 − q1 =

(
1− bn1

h

)−1

g′ . (2.7)

For the case of the virtual plane Π passing between the cameras, the condition
of Equation 2.3 holds, which means that g′ and ĝ have opposite signs. Thus, and
assuming that distances g and g′ have always the same sign, we have just proved
that points p and p̂ must be on opposite sides of q, so that the mirroring effect holds
for any plane Π that intersects the baseline. Regarding the modulus of the distances
g and ĝ, it should be equal in order for the image symmetry of Figure 2.3(d) to be
geometrically accurate. It can be analytically shown that in general |g| "= |ĝ| (refer
to Section 2.4), leading to a deviation in the rendered symmetry that depends both
on the point where Π intersects the baseline, and on the position and slant of the
imaged 3D surface.

2.3.3 Singular Configuration

We have proved that the homography associated with a cut plane causes a reflection
iff the scene points are projected in the two views in the same order. For most stereo
applications, the spatial order of corresponding points in the two views is the same,
and the mirroring effect is verified (refer to Figure 2.5 (a) and (b)). However,
there is a singular configuration for which the ordering constraint is not verified.
This configuration, known as double nail illusion, typically arises in scenes with
foreground objects that are finer than the baseline, or narrow holes [63]. Consider
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the scheme of Figure 2.5 (c), in which case the thin foreground object (grey) causes
a double nail illusion - the grey region is projected to the right of the blue region
in the left view, while to the left in the right view. In this case, the virtual cut
plane Π intersects the scene in two distinct regions (grey and blue) visible by both
cameras. The mirroring effect occurs in both regions and two different symmetries
are induced using SymStereo, each one precluding the detection of the other. Since
the double nail illusion arises seldom in practice, we will ignore it for the rest of the
paper, and consider that the mirroring effect is always verified, with the cut plane
intersecting the scene in a single point per epipolar line.

2.4 Perfect symmetry in the presence of surface slant

!"#$%"&"%'()

!"#$%"&"%'(*

Figure 2.6: Refinement using slant prior (top view of scene in Figure 2.4). Assume that
Q lies on the plane Ω. Then, we can determine the position on the baseline 01 (see Equa-
tion 2.11) that improves the induced symmetries. Using the vertical virtual cut plane de-
fined by 01 and Q, it is possible to induce new symmetries from which the refined point
Q1 is estimated. di,r is the intersection between the virtual cut plane Πi and the epipolar
plane Ψr.

In plane-sweeping [58] it is possible to integrate prior knowledge of the scene
to select the sweeping directions that maximize the performance of photo-consistency
based stereo [60, 64]. We show in this section that slant priors can also be used in
SymStereo for choosing the cut planes that render perfect signal symmetries, and
improve the overall accuracy and robustness of the approach.

Consider again generic point P and a point Q that lies on the same epipolar
plane Ψ, and also assume that Q belongs to the virtual cut plane Π (see Figure 2.4).
Let dp = p1−p′1 and dq = q1−q′1 be the disparities of P and Q, respectively, and
define

∆ = dp − dq .

From Equation 2.4 follows that g′=g −∆, and Equation 2.7 can be written as

ĝ =

(
β

β − 1

)
(g − ∆). (2.8)
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The deviation in perfect mirroring (ĝ=−g) around the projection of the profile

cut is function of the differences in pixel disparities, which is directly related to

the depth variation in the neighborhood of the 3D profile cut. Note that the virtual

cut plane Π only affects the symmetry in terms of the intersection point with the

baseline. For similar conditions of relative depth variation, any cut plane going

through the same point O generates symmetries with equivalent quality, regardless

of its orientation. Also note that, for the particular case of planes Π intersecting the

baseline in the midpoint (β=0.5), the symmetry is perfect whenever the surfaces

to be reconstructed are fronto-parallel to the stereo rig (∆ = 0).

Assume that the points P and Q also lie on the same scene plane Ω ∼
(
m −l

)T

that defines a homography M, similar to Equation 2.5, mapping points in the right

view into points in the left view. Following this, q=Mq′ and it can be shown that

dq =
m1b

l
q1 +

m2b

l
q2 +

−m1bq1 −m2bq2 + ldq
l

.

Since p is also the projection of the same planar surface, by applying the homog-

raphy M comes that ∆p differs from ∆q by

∆ = α1(p1 − q1).

where

α1 =
m1b

l
(2.9)

is proportional to the slant of the plane along the horizontal direction. Replacing

in Equation 2.8 comes that

ĝ =

(
β

β − 1

)
(1− α1)g. (2.10)

The conclusion that can be drawn is that having prior knowledge about the position

and orientation of the surface to be reconstructed, we can determine the point of in-

tersection between the virtual plane Π and the baseline that grants perfect induced

symmetry. The image signals are perfectly symmetric whenever ĝ = −g, so that

solving with respect to β in Equation 2.10 yields

β =
1

2− α1
. (2.11)

Following the previous analysis, and in case there is slant information available

a priori, we suggest a simple approach for refining the SymStereo depth estimates.

Referring to Figure 2.6, we start by applying a virtual cut plane Πi intersecting
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the baseline in its midpoint O1 = 0.5b, from which the 3D point Q is estimated.

Assume that Q lies on the plane Ω, whose horizontal slant defines a particular

direction α1 (Equation 2.9). Using Equation 2.11, we can determine the position on

the baseline 011=β1b that a new virtual cut plane should intersect for enhancing the

quality of the induced symmetries. This new vertical virtual cut plane Π1
i is defined

by the points 01 and Q, from which a refined 3D estimation Q1 can be computed.

Following this, the overall quality of the 3D points obtained using SymStereo can

be iteratively refined by selecting appropriate virtual planes intersecting specific

points on the baseline.

2.5 Mapping Π into a plane Γ in the DSI domain

In the same manner that a fronto-parallel plane Ψ induces a constant disparity d, a

virtual cut plane Π defines a pixel association between views that corresponds to

a particular surface Γ in the DSI domain (see Figure 2.1). Consider the inverse of

the plane homography given by Equation 2.5. The transformation H−1 enables to

map points q in the left image into points q′ in the right image, such that

q′1 = (1 +
bn1

h
) q1 +

bn2

h
q2 +

bn3

h
. (2.12)

It can be verified that the cut plane Π defines for each point q a putative disparity

d = q1 − q′1 given by

d = −
bn1

h
q1 −

bn2

h
q2 −

bn3

h

The equation above specifies a plane in the 3D space parametrized by (q1, q2, d).
Thus, the matching hypotheses defined by Π (Equation 2.2) correspond to a plane

Γ in the DSI domain, with homogeneous representation

Γ ∼





bn1
h

bn2
h

1
bn3
h



 . (2.13)
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2.6 Sweeping the scene by a pencil of vertical virtual planes

bisecting the baseline

As stated previously, dense stereo matching with SymStereo requires using multi-

ple virtual cut planes Πi such that the corresponding planes Γi completely sweep

the DSI domain. Assume that the planes Πi belong to a vertical pencil with the

axis intersecting the midpoint of the baseline. In this case, the homogeneous rep-

resentation of each plane is given by

Πi ∼





1
0

− tan(θi)
b
2



 ,

with θi denoting the rotation angle around the vertical axis, and the plane homog-

raphy of Equation 2.2 becomes

Hi ∼




−1 0 2 tan(θi)
0 1 0
0 0 1



 .

Consider now that the points q and q′ are expressed in pixel coordinates, and

that both cameras have the same intrinsic parameters

K ∼




f 0 c1
0 f c2
0 0 1



 .

The homography mapping q ∼ KHi K
−1 q′ defines a possible pixel association

between images that can be written as

q1 = 2 c1 − q′1︸ ︷︷ ︸
flip

+λi , (2.14)

with

λi = 2 f tan(θi) .

Moreover, and from the discussion of Section 2.5, each virtual cut plane Πi corre-
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(a) Top view (b) Image of C′ (c) Normalization using HN

Figure 2.7: Back-projection onto a virtual cut plane Π with arbitrary normal orienta-
tion. (a) top view where the scene is assumed to lie between the cameras and the plane
of maximum depth ΠZ . The entire left image is considered an interest region because it
back-projects in the area between the origin O and the line LZ . In the case of view C′,
the right image side is back-projected behind O, while the middle part of the image is
back-projected beyond LZ . Thus, the interest region is limited to the top most side (b).
The search for the contour where Π cuts the scene surfaces needs only to be carried in the
polygon of intersection of the left and right interest regions (red). (c) The alignment of
the epipolar lines and the definition of a suitable tessellation are achieved by inscribing the
search polygon into a unit square using the homography HN .

sponds to a plane Γi in the DSI domain with homogeneous coordinates

Γi ∼





2
0
−1

−2 c1 − λi



 . (2.15)

Two important conclusions can be drawn. The first is that the range of dis-

parities in the DSI domain is fully covered by a set of planes Γi such that the

parameters λi take successive integer values. This enables to choose the angles θi
that define a suitable set of virtual planes Πi in the 3D scene space. The second is

that the homography mapping of Equation 2.14 considerably simplifies the render-

ing of images Îi required for generating the symmetries and anti-symmetries (see

Figure 2.3). The warping can be efficiently achieved by flipping the original image

I
′ around the vertical axis passing through the principal point, followed by shifting

the result by an integer amount λi along the horizontal image direction.

2.7 Generating the symmetry/anti-symmetry images in the

3D virtual cut plane

In the previous sections, the homography induced by a vertical virtual cut plane Π

intersecting the baseline was used for mapping the right view onto the left view for

generating the symmetry and anti-symmetry signals. This section briefly explains

how to explicitly back-project the input images onto the 3D virtual cut planes with
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arbitrary orientation. This is important for future developments of the proposed

framework, e.g. Multi-View SymStereo, where it might be interesting/necessary to

back-project the views directly on the 3D planes.

Without lack of generality, assume a maximum value for the scene depth,

which means that the profile cut C must lie on the area spreading between O and

line Lz where the plane of maximum depth meets Π (Figure 2.7(a)). Thus, for

each image we can define an interest region by the following steps (refer to Fig-

ure 2.7(b)):

1. Determine lines lz and π (l′z and π′) by projecting LZ and the line at infinity

using the homography HC (HC′) that relate the virtual plane Π with the left

and right view, respectively

2. For each image corner Ai, consider the line defined by the corner and the

epipole e, and determine the intersections Zi and Si with lz and π

3. If the cross-ratio {Zi, e;Ai,Si} is negative, then the corner Ai is in the in-

terest region, otherwise it is outside; if the cross-ratios are all positive then

the interest region is empty, if the cross-ratios are all negative then the in-

terest region is the entire image, otherwise the interest region is the polygon

defined by the corners Ai with negative cross-ratio and the intersections of

lz with the image borders.

The profile cut C can only be recovered if it is simultaneously seen in both

views. Thus, the search region can be further constrained by back-projecting the

boundaries of the bottom and top interest regions onto Π and finding their inter-

section polygon (Figure 2.7(c)). Mapping the polygon back into the input views

yields the image regions that must be warped.

Two issues remain: (i) the epipolar lines are not vertically aligned, which can

complicate subsequent processing and (ii) a uniform plane tessellation does ac-

count for the original image resolution, causing a magnification that increases with

depth. We address these problems by rectifying the back-projections using a nor-

malizing transformation HN . HN is a projective transformation on the cut plane Π

that inscribes the search polygon in an unitary square as shown by Figure 2.7(c).

Lines h1 and h2, that join the origin O with the top and bottom vertex of the

polygon, are mapped into the top and bottom sides of the square. This grants that

epipolar lines become vertically aligned. Lines v1 and v2 are chosen so that the

transformed polygon is enclosed by the square and has maximum area. The resolu-

tion of the tessellation is determined by averaging the pixel length of the diagonal

diag that is mapped back in the two stereo images.

2.8 Conclusions

This chapter presented the first work in the literature proposing to use symmetry

instead of photo-similarity for assessing the likelihood of two image locations be-
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ing a match. Stereo from symmetry is possible because of the mirroring effect that

arises whenever one view is mapped into the other using the homography induced

by a virtual cut plane that intersects the baseline. We provided a formal proof of

this effect, studied the singularities, and investigated its usage for solving the data

association problem in stereo.
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Chapter 3

SymStereo for dense matching

and Stereo-Rangefinding

The SymStereo framework proposes to associate pixels across views by jointly us-

ing symmetry and anti-symmetry measurements. This chapter introduces metrics

for quantifying symmetry and anti-symmetry that are used for matching pixels.

We show through extensive experiments that symmetry-based metrics outperform

photo-similarity metrics for the purpose of data association in dense stereo. More-

over, and since the symmetries are induced using virtual cut planes, these new

matching functions are particularly well suited for recovering depth along a sin-

gle scan plane. This is an effective way of probing into the 3D structure result-

ing in profile cuts of the scene that resemble the ones obtained with a 2D Laser-

Rangefinder. The independent estimation of depth along a scan plane will be re-

ferred as SRF. The results confirm that, also in this case, symmetry-based matching

costs are the top-performer.

3.1 Introduction

Dense stereo matching is a mature research topic and the literature reports a large

number of matching functions. Following the taxonomy used in [45], the match-

ing costs can be broadly divided into four types. Pixel-wise matching costs, like

Absolute Differences (AD), measure the dissimilarity between single pixels, be-

ing popular because of their simplicity and fast computation. However, pixel-wise

metrics tend to be ambiguous even when used in conjunction with local aggrega-

tion methods, e.g. SAD. Since pixel-wise matching functions do not make implicit

assumptions about the image neighborhood surrounding the pixel, they are mostly
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used for evaluating the DSI in global stereo approaches. In this case, the sampling-

insensitive metric proposed by Birchfield-Tomasi (BT) is usually preferred to a

straightforward AD implementation. BT computes the absolute difference between

the pixel of interest in one view and a linear interpolation of the neighborhood of

the hypothesized match in the other view [65]. A pre-processing step that signif-

icantly improves the stereo matching performance of BT is Bilateral Background

Subtraction (BBS) that smooths the images without blurring the depth discontinu-

ities [66].

Window-based matching costs evaluate the similarity (or dissimilarity) between

2D regions in the stereo images. Normalized Cross-Correlation (NCC) is an ex-

ample of this type of matching functions that is widely used because of its good

trade-off between accuracy and computational efficiency. ZNCC is a variant of

NCC that compensates for gains and offsets [45].

Non-parametric matching costs use the ordering of image intensities in a local

neighborhood around the pixels of interest. The most popular metric of this type is

probably the Census filter introduced in [67]. The approach consist in constructing

a bit string where each bit corresponds to a pixel in a local neighborhood around

the pixel of interest q. The bit is set iff the pixel intensity value is lower than

the intensity of q. The filtered images are compared by computing the Hamming

distance between corresponding bit strings.

Lastly, Mutual Information computed from the entropy of the input images

can also be used as a stereo matching cost [57]. The idea is to transform views

according to the disparity assignment such that the mutual information between

the transformed images is maximized.

Several works in stereo have benchmarked not only competing matching costs

[68, 23, 69, 70, 71, 45], but also cost aggregation methods [23, 70, 72, 54, 73, 55]

and global optimization schemes [23, 70, 56]. In this chapter, we are only interested

in the formers, among which the work of Hirschmuller and Scharstein [45] is of

special relevance because of its systematic methodology and thorough evaluation

using images of the Middlebury dataset [23, 44]. In their evaluation, each cost

function gives rise to the DSI that leads to a final disparity map after using local

aggregation, SGM or a straightforward Markov Random Field formulation with

Graph-Cut (GC) optimization. The results show that BT with BBS, ZNCC, and

Census are, respectively, the top-performers among pixel-wise, window-based, and

non-parametric matching costs. In absolute terms, Census proved to have the best

matching performance throughout the evaluation.

Following the discussion of the previous chapter, the objective of SymStereo

is to associate pixels across views by jointly using symmetry and anti-symmetry

measurements. This chapter proposes techniques for quantifying local symmetry

and anti-symmetry for matching pixels. In Section 3.3, we use the same method-

ology of [45] for comparing our symmetry-based matching costs against BT with

BBS, ZNCC and Census, in an effort to show that symmetry can be more effective

than photo-similarity for solving the dense stereo problem.

Finally, and since the symmetries are induced using virtual cut planes, the
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(a) BT (b) SymBT (c) Efficient SymBT

Figure 3.1: The SymBT metric: In (a) the standard BT cost compares value of pixel q1 in
the reference view against the intensity range [m′,M ′] around the putative match q1 − d.
The scheme (b) illustrates how SymBT quantifies the symmetry and anti-symmetry along
the epipolar lines of IS and I

A. Given a particular pixel location q1, the idea is to use
the BT metric to compare the interpolated intensity value on one side against the intensity
interval on the other side. Finally (c) shows how the SymBT metric can be efficiently
implemented without requiring the explicit rendering of the image signals IS and I

A.

new framework is particularly well suited for recovering depth along pre-defined

scan planes. This is an effective way of probing into the 3D structure resulting

in profile cuts of the scene that resemble the ones obtained with a 2D Laser-

Rangefinding (LRF). The independent estimation of depth along a scan plane

will be referred as Stereo-Rangefinding (SRF) in order to be distinguished from

conventional dense stereo. We show in Section 3.4 through extensive compara-

tive experiments that symmetry-based metrics outperforms photo-similarity for the

purpose of SRF. Moreover, we compare in Section 3.5 the depth estimates ob-

tained using SRF with the ones provided by a LRF. As will be shown, SRF can be

a plausible alternative to LRF in several application scenarios.

3.2 Measuring local symmetry and anti-symmetry

This section discusses techniques for quantifying local signal symmetry and anti-

symmetry at every pixel of I
S and I

A. We describe three alternative metrics:

SymBT that adapts the famous BT matching cost for measuring signal asymme-

try instead of dissimilarity [65]; SymCen that is a non-parametric symmetry metric

inspired in the Census transform [67]; and logN that has been originally proposed

by Kovesi in [74], and uses a bank of N log-Gabor wavelets for evaluating local

symmetry.

3.2.1 SymBT

Consider a pair of corresponding epipolar lines in the stereo images I and I′, and let

d be a putative disparity value that associates pixel q1 in I with pixel q1 − d in I
′.

The matching likelihood can be inferred by measuring the dissimilarity between
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I(q1) and I
′(q1 − d). In order to avoid sampling issues, Birchfield and Tomasi

(BT) suggest to compare the intensity value I(q1) in the reference view against a

brightness interval [m′, M ′] around the putative image correspondence I′(q1 − d)
in the second view [65]. This is illustrated in Figure 3.1(a), where the boundaries

of the intensity range are

m′ = min
(
I
′(q1 − d); I′−; I

′
+

)

M ′ = max
(
I
′(q1 − d); I′−; I

′
+

)
,

with I
′
− and I

′
+ being interpolated brightness values at the sub-pixel locations

around q1 − d. The dissimilarity between I(q1) and I
′(q1 − d) is quantified by

C = max
(
0; I(q1)−M ′; m′ − I(q1)

)
.

Considering now that I′ is the reference view, it comes in a similar manner that

C
′ = max

(
0; I′(q1 − d)−M ; m− I

′(q1 − d)
)
,

where

m = min
(
I(q1); I−; I+

)

M = max
(
I(q1); I−; I+

)
,

The final BT score handles the two views symmetrically and is given by

CBT (q1, d) = min
(
C ; C ′

)

3.2.1.1 Modifying BT to measure asymmetry

Inspired by the BT cost, we can define a metric for measuring asymmetry along the

epipolar lines of the image signal IS that is invariant to sampling issues. Let IS− and

I
S
+ be interpolated image values in the neighborhood of a particular pixel location

q1 in I
S (see Figure 3.1(b)). The 1-D image signal symmetry can be evaluated

by verifying if the sub-pixel image value in one side of q1 is within the brightness

interval in the opposite side. Thus, we propose to quantify the asymmetry of the

image signal IS about the pixel location q1 by

D
S
BT = max

(
0, IS− −MS

+; m
S
+ − I

S
−; I

S
+ −MS

−; m
S
− − I

S
+

)
,
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(b) SymCen (c) Efficient SymCensus

Figure 3.2: The SymCen transform. In (a) the standard Census transform defines a bit
string b for each image point q1, with each bit bj corresponding to a particular pixel in a
local patch centered in q1. In (b) SymCen is used to quantify the signal symmetry in IS by
comparing the regions WS

− and WS
+ on both sides of q1. In (c) the SymCen is implemented

without requiring the explicit rendering of IS and IA. The bit strings bS−, bS+, bA− and bA+
are computed by performing simple operations over W−, W+, W ′

− and W ′
+.

with

mS
± = min

(
IS(q1); I

S(q1 ± 1)
)

MS
± = max

(
IS(q1); I

S(q1 ± 1)
)
.

A similar approach can be used for scoring the anti-symmetry of the image
signal IA at particular pixel locations. Consider the scheme in the bottom of Figure
3.1(b), where IA−, IA+ are the interpolated image values at sub-pixel locations, and
[mA

−, M
A
− ], [mA

+, M
A
+ ] are the brightness intervals defined above. It is easy to

understand that, if the image signal is anti-symmetric about q1, then the following
must hold:

IA(q1) + (IA(q1)− IA−) ∈ [mA
+, M

A
+ ]

IA(q1) + (IA(q1)− IA+) ∈ [mA
−, M

A
− ] .

Thus, we can modify the asymmetry score defined above for quantifying lack of
signal anti-symmetry about q1

DA
BT = max

(
0; 2IA(q1)− IA− −MA

+ ; mA
+ − 2IA(q1) + IA−;

. . . 2IA(q1)− IA+ −MA
− ; mA

− − 2IA(q1) + IA+
)
.

Finally, the SymBT score for finding pixel locations that are simultaneously
symmetric in IS and anti-symmetric in IA is defined as:

DBT (q1) = max
(
DS

BT ; D
A
BT

)
. (3.1)
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3.2.1.2 Efficient Implementation

The SymBT metric described in the previous section has the inconvenient of re-

quiring the explicit rendering of the image signals IS and I
A for each considered

virtual cut plane. As discussed in Section 2.6, a particular choice of cut plane

implicitly assigns points q1 in I to points q1−d in I
′. It is now shown how to com-

pute the SymBT score for a particular matching hypothesis (q1, d) without having

to explicitly render the image signals IS and I
A. Let’s consider the scheme of Fig-

ure 3.1(c) where I−, I+ are interpolated image values in the neighborhood of the

pixel location q1 in I, and [m′
−, M

′
−], [m

′
+, M

′
+] are the brightness intervals on the

sides of the putative correspondence q1−d in I
′. The metric S evaluates till which

extent I− and I+ are within the ranges [m′
−, M

′
−] and [m′

+, M
′
+], respectively.

S− = max
(
0, I− −M ′

−; m
′
− − I−)

S+ = max
(
0, I+ −M ′

+; m
′
+ − I+

)

S = S− + S+.

Considering now that I′ is the reference view, it comes in a similar manner that

S ′
− = max

(
0, I′− −M−; m− − I

′
−)

S ′
+ = max

(
0, I′+ −M+; m+ − I

′
+
)

S ′ = S ′
− + S ′

+.

Finally, the SymBT score is given by

SBT (q1, d) = max(S, S′). (3.2)

It is important to note that Equation 3.1 and Equation 3.2 are not strictly equiva-

lent. However, we verified experimentally that the metric of Equation 3.1 provides

similar results than the metric of Equation 3.2, while avoiding the rendering of IS

and I
A.

3.2.2 SymCen

The Census transform is a non-parametric filter that analyzes the differences be-

tween image intensity values in a m×n neighborhood around the pixel of interest.

For illustration purposes consider a 5 × 5 patch centered in a pixel location de-

noted by q1, and let Ij be the image intensity values for the entries j in this patch

(j = 1, . . . , 24) as shown in Figure 3.2(a)). The output of the Census transform is
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a string b, with 24 bits, where each bit bj is set as follows:

bj =

{
1 if I(q1) > Ij

0 if I(q1) ≤ Ij
. (3.3)

Considering that the pixel q1 in I corresponds to pixel q1 − d in I
′, we build a

second bit string b′ encoding the intensity values around q1 − d and compute the

Census dissimilarity as

CC(q1, d) = H (b;b′) ,

with H denoting the Hamming distance.

3.2.2.1 Modifying Census to measure dissymmetry

Figure 3.2(b) shows how the Census transform can be used to quantify symmetry

instead of dissimilarity. In this case, the 5 × 5 neighborhood is divided into two

5 × 2 regions, WS
− and WS

+ , that are respectively in the left and right sides of the

pixel of interest. The intensity values of the two patches are encoded in the bit

strings bS
− and bS

+ using Equation 3.3, and a new bit string is computed which

describes the symmetry of the image signal IS about the pixel location q1

bS = (bS
− == bS

+),

where == is the bitwise equality operator. The anti-symmetry in image IA can be

encoded in a similar manner by

bA = (bA
− == b̄A

+),

where bA
− is the bit string of the left side region WA

− , and b̄A
+ is the binary com-

plement of the bitstring of the right side patch WA
+ . The final SymCen score for

the pixel q1 is obtained by comparing corresponding symmetry and anti-symmetry

bits bS
j and bA

j , and then summing all the bit responses:

SC(q1) =
∑

j

bS
j &bA

j , (3.4)

where & is the bitwise and operator. Remark that different from the Census metric,

larger values of the SymCen cost correspond to higher matching likelihood.
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(a) E
S (b) E

A (c) E = E
S · EA

Figure 3.3: The logN metric: (a) is the symmetry energy E
S of the image signal IS , while

(b) is the anti-symmetry energy E
A of image IA. The final joint energy E in (c) is obtained

by pixel-wise multiplication of ES and E
A.

3.2.2.2 Efficient Implementation

The bit strings bS−, bS+, bA−, and bA+, required for evaluating the SymCen cost of

Equation 3.4, can be directly computed from the stereo pair I and I
′ as shown in

Figure 3.2(c). Let W− and W+ be the patches on both sides of pixel q1 in the refer-

ence view I, and W ′
− and W ′

+ be the patches around the putative correspondence

q1 − d in the secondary view I
′. Subtract I(q1) to the intensity values in regions

W− and W+. Repeat the procedure in the secondary view using I
′(q1 − d). It

can be proved that the bit strings for evaluating the score SC can be determined as

follows:
bS
− = T (W−; −W ′

−)
bS
+ = T (W+; −W ′

+)
bA
− = T (W−; W ′

+)
bA
+ = T (W+; W ′

−)

with T being an operator that compares the intensity values of corresponding pixels

in two patches W and W ′, generating a bit string with the jth bit being given by

Tj(W ; W ′) =

{
1 if Ij > I

′
j

0 if Ij ≤ I
′
j

.

This alternative scheme for computing the SymCen score has the obvious ad-

vantage of avoiding the explicit rendering of image signals IS and I
A, which sub-

stantially decreases the computational complexity.

3.2.3 logN

Kovesi shows that an intensity distribution that is symmetric about a particular pixel

location gives rise to specific phase patterns in the Fourier series of the image signal

[74]. Thus, he proposes to detect symmetry and anti-symmetry based on frequency

information obtained using a bank of log-Gabor filters. This section describes the
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joint application of Kovesi’s algorithms with the SymStereo framework, leading to

a new stereo matching cost that is referred as logN, with N standing for the number

of wavelet scales that are considered for the signal analysis.

Since the log-Gabor wavelets are analytical signals, the image filtering is car-

ried in the spectral domain. Let Gk, with k = 1, . . . N , be the frequency response

of the pre-selected wavelet scales, and IS be the spectrum of a generic epipolar

line I
S(q1) in the symmetry image (see Figure 2.3(d)). The filtering result is the

following 1D complex signal

sSk (q1) + i aSk (q1) = F
−1(IS · Gk) , (3.5)

with F denoting the Fourier transform and i2 = −1. It can be shown that, if the

image is symmetric about the pixel location q1, then the real component sSk takes

high values, while the imaginary component aSk takes small values [74]. Therefore,

and given the N wavelet scale responses, we can establish the following energy of

symmetry:

E
S(q1) =

N∑

k=1

| sSk (q1) | − | aSk (q1) |

∑

k

√(
sSk (q1)

)2
+
(
aSk (q1)

)2 , (3.6)

where the normalization by the sum of the magnitudes provides invariance to

changes in illumination [74]. Figure 3.3(a) shows the result of stacking the lines

E
S(q1) arising from each row of image IS of Figure 2.3(d). It can be observed that

the highlights correspond to pixel locations where the image signals is symmetric

along the horizontal direction.

Consider now the anti-symmetric image I
A of Figure 2.3(e), we can use the

same bank of wavelets and compute

sAk (q1) + i aAk (q1) = F
−1(IA · Gk) . (3.7)

By applying a similar approach for deriving an energy of anti-symmetry yields

E
A(q1) =

N∑

k=1

| aAk (q1) | −| sAk (q1) |

∑

k

√(
sAk (q1)

)2
+
(
aAk (q1)

)2
. (3.8)

The resulting energy E
A is depicted in Figure 3.3(b), with the locations of image

anti-symmetry being emphasized.
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Figure 3.4: Efficient implementation of the logN stereo matching cost. In a first step the
rectified stereo pair is filtered by the considered wavelet scales Gk in order to obtain the
left and right complex signals sk(q1)+ i ak(q1) and s′k(q1)+ i a′k(q1) with k = 1, 2 . . . N .
In a second stage, and for each scale k, the right-side signal is shifted by an amount λi,
which depends on the virtual cut plane Πi, and the result is added and subtracted to the
left-side signal. The operation provides the input coefficients for computing the symmetry
and anti-symmetry energies of Equations 3.6 and 3.8, ultimately leading to the energy Ei.

Both ES and EA have several local maxima along the horizontal lines, which
preclude a straightforward detection of the image of the profile cut C, that is over-
laid in Figure 2.3(d) and Figure 2.3(e). Since points in C must be simultaneously
local maxima in ES and EA, the pixel-wise multiplication of the two energies en-
ables to discard most spurious detections. Thus, we consider the following joint
energy E

E = ES · EA (3.9)

where the image of the contour C is clearly distinguishable as shown in Figure 3.3(c)

3.2.3.1 Efficient implementation

The joint energy E is computed from the images IS and IA, which are rendered for
a particular virtual cut plane Π. As discussed in Section 2.6, each plane Πi in the
scene gives rise to a plane Γi in the DSI that is function of an integer parameter λi

(see Equation 2.15). As discussed in this section, the energy E can be computed
without explicitly rendering the image signals IS and IA, and the evaluation of
logN across the entire DSI domain can be carried very efficiently.

Let IS(q1) be the 1D signal arising from a generic epipolar line in the symme-
try image IS . If I(q1) and I′(q1) are the corresponding lines in the rectified stereo
pair, then it follows from Equation 2.14 that:

IS(q1) = I(q1) + Î(q1)

= I(q1) + I′f (q1 − λ) ,

where λ is a shift amount that depends on the choice of the virtual plane Π, and I′f
is a horizontally flipped version of the right image

I′f (q1) = I′(2c1 − q1) .
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Figure 3.5: (Qualitative) space-frequency behavior of the log-Gabor wavelets Gk. The
horizontal axis refers to the spatial support σ of the filter kernel, while the vertical axis
concerns the response frequency ω.

From the reasoning above, and exploring the linear properties of the Fourier trans-
form, it comes that Equation 3.5 can be re-written as:

sSk (q1) + i aSk (q1) =
(
sk(q1) + s′k(q1 − λ)

)

+ i
(
ak(q1) + a′k(q1 − λ)

)
,

with {
sk(q1) + i ak(q1) = F−1(I · Gk)
s′k(q1) + i a′k(q1) = F−1(I ′

f · Gk)
,

where I and I ′
f stand for the Fourier transform of I(q1) and I′f (q1), respectively.

The response of Equation 3.7 for the anti-symmetric image signal IA(q1) can be
computed in a similar manner by

sAk (q1) + i aAk (q1) =
(
sk(q1)− s′k(q1 − λ)

)

+ i
(
ak(q1)− a′k(q1 − λ)

)
.

Figure 3.4 is a schematic of the computation pipeline for obtaining the energy
Ei for a particular choice Πi of virtual cut plane. The new formulation avoids the
explicit rendering of the symmetric and anti-symmetric images, but also enables to
efficiently evaluate the entire DSI by simply varying the shifting amount λi with
i = 1, 2 . . .M .
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3.2.3.2 Selection of wavelet scales

The choice of the log-Gabor wavelets for filtering the input images has a strong

influence in the final stereo estimations. Despite of the fact that log-Gabor filters

are analytical signals with no real representation in the spatial domain, the scheme

of Figure 3.5 tries to provide an intuition about how the wavelet parameters relate

with the space-frequency response of the filter. The horizontal axis refers to the

spatial extent or support of the filter kernel, while the vertical axis concerns the

frequency components of the image signal to which Gk responds. If the image

region is very textured, then it is advisable to operate in the top-left corner of

the (ω, σ) plane, and choose filters with high-frequency response and small space

extent. On the other hand, if the image region is textureless, then we must consider

wavelets that respond to low-frequency components, but that have a larger support

which tends to diminish the pixel accuracy of the analysis.

As discussed in [75], the bank of log-Gabor wavelets Gk is usually parametrized

by the shape-factor Ω, the center frequency of the mother wavelet ω1, the scaling

step s, and the total number N of wavelets. The shape-factor Ω can be related with

the filter bandwidth, and defines a contour in the (ω, σ) domain containing the

wavelets that can be selected (see Figure 3.5). The center frequency ω1, together

with the shape factor Ω, defines uniquely the first wavelet scale G1. The scaling

step s sets the distance between the center frequencies of successive wavelet scales

k and k + 1 along the contour. In this chapter, we have manually set Ω = 0.55,

ω1 = 0.25, and s = 1.05, and kept these values constant throughout the entire set

of experiments. The only parameter that is allowed to vary is the number of scales

N that controls the ability of obtaining response in low textured image regions by

using filters with a larger spatial support.

3.3 Experiments in dense stereo matching

We proposed in this chapter three matching costs - SymBT, SymCen, and logN -

that use symmetry instead of photo-consistency for accomplishing data association.

This section runs a set of experiments in dense stereo matching for comparing

symmetry-based stereo with respect to state-of-the-art matching costs.

3.3.1 Methodology and tuning of parameters

Since the stereo literature is vast, it is virtually impossible to compare SymStereo

against every possible method and approach. Thus, and in order to assure a rigorous

and conclusive study, the evaluation herein presented follows the methodology and

takes into account the results of the benchmark of Hirschmüller and Scharstein

[45]. We compare three symmetry-based matching costs against the cost functions

that were considered to be top-performers in [45]. These stereo cost functions are:
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• Birchfield-Tomasi (BT) quantifies pixel dissimilarity by comparing 1-Dimen-

sional (1D) neighborhoods defined along the epipolar lines [65]. Accord-

ing to [45], the BT metric combined with Bilateral Background Subtrac-

tion (BBS) [66] provides the best matching results among pixelwise para-

metric costs.

• Zero-mean Normalized Cross-Correlation (ZNCC) considers a 2-Dimensional

(2D) support region for quantifying photo-similarity, and proved to be the a

top-performer among window-based parametric matching costs.

• Census is a window-based non-parametric cost function [67] that consis-

tently proved to be the top similarity measure for dense disparity estimation.

The evaluation is carried using stereo pairs with ground truth disparity that

include challenging situations, e.g. slanted surfaces, low and repetitive textures. As

in [45], most experiments are performed using the Middlebury dataset [23, 44, 45]

but, while they run the benchmarking in 6 image pairs, we consider a set of 15
examples that covers a wider range of situations (see Figure 3.8). For each cost

function under analysis, we build the DSI of the different image pairs, estimate

the corresponding disparity maps using a particular stereo method, and score the

estimation result by counting the number of pixel locations in non-occluded regions

with a disparity error greater than one. The matching costs under benchmark are

ranked by averaging the error score across all stereo pairs in the test set. Since the

focus is in evaluating the performance of matching costs, the disparity estimation

must be carried by the exact same stereo method for all costs in order to assure fair

comparison. As in [45], we present results using three distinct approaches:

• Local Aggregation aggregates the DSI by summing the costs over a window

and each image pixel is assigned with the disparity value that has the lowest

cost.

• Semi-Global Matching (SGM) minimizes a 2D energy by solving multiple

1D minimization problems [57].

• Graph-Cut (GC) estimates a disparity map by global minimization of an

energy function defined in the DSI using graph-cuts [76, 77, 78, 56].

GC and SGM are formulated in the standard manner, and post-processing steps,

e.g. left-right consistency check or sub-pixel interpolation, are not considered.

It can be argued that using local aggregation is better suited for comparing

different matching costs than using SGM or GC. It is a fact that global and semi-

global methods, being more sophisticated techniques, can eventually hide issues

and weaknesses of the cost function. Although we agree that local aggregation

provides the most relevant benchmarking information, this section also presents

the scores obtained with SGM and GC for the sake of completeness and to assure

full compliance with the methodology and results described in [45].
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Figure 3.6: Tuning the number of wavelets scales N for dense stereo using the standard
Middlebury dataset. The figure plots the average error in disparity estimation using local
aggregation when N increases.

Table 3.1: Summary of the parameters used in the experiments throughout the article in
Dense Stereo (DS), Stereo Rangefinder (SRF), and wide-baseline (WB) images.

DS DS-WB SRF SRF-WB

(Sec. 3.3) (Sec. 3.3) (Sec. 3.4) (Sec. 3.4)

BT 1× 3 1× 3 1× 3 1× 3
SymBT 1× 3 1× 3 1× 3 1× 3
logN 20 50 40 70

ZNCCM 9× 9 7× 7 15× 15 9× 9
CensusH 9× 7 9× 19 9× 19 9× 23
SymCenH 9× 7 9× 19 9× 9 9× 23

It can also be argued that choosing adaptive-weight aggregation [79] instead

of standard aggregation improves the disparity estimation in image regions that

are close to depth discontinuities. This is true, but it is important to keep in mind

that such improvements are transverse to all matching costs and do not necessarily

change the relative disparity scores.

Finally, for every matching cost under study, the computation of the DSI is car-

ried in C++ assuming input images with approximate size 460× 370 and disparity

range of 64 pixels. The C++ implementations are straightforward and only use the

standard code optimizations described in the literature.

3.3.1.1 Tuning of parameters

As in [45], the parameters are manually tuned using the standard Middlebury

dataset [23], which comprises the images Tsukuba, Venus, Teddy and Cones (from

top to bottom in Figure 6.5). These pairs are not considered latter in the benchmark

to avoid bias effects. Whenever applicable, we use the optimal values reported in

[45], this is, the local aggregation window is 9 × 9, the ZNCC window is 9 × 9,

and the Census window is 9 × 7. In order to allow a direct comparison between

Census and SymCen, we also consider a window of 9×7 for the second. As shown

in Figure 3.6, the number of wavelet scales to be used with logN is set to N = 20 .

As expected, increasing N does not necessarily improve the performance because

low frequency wavelets have wider space support that decreases the accuracy of the
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Figure 3.7: Result after tuning the parameters: the figure plots the percentage of errors in
dense disparity estimation across the images of the standard Middlebury dataset.

disparity estimation (see Figure 3.5). For the case of BT and SymBT, we always

apply bilateral filtering and consider a 3 pixel neighborhood. Table 3.1 summarizes

the choice of parameters for this and the following section. For the latter experi-

ments wide-baseline stereo and SRF, we will re-tune the window size of ZNCC,

the horizontal window size of Census and SymCen, and the number of scales of

logN.

After tuning the cost functions assuming local aggregation, we move to the set-

ting of the parameters for SGM and GC that will be used with each matching cost.

The tuning is carried by selecting the parameter values that provide the smallest

percentage of disparity errors in the images of the standard dataset. These errors

are plotted in Figure 3.7 where it can be observed that the results for BT, ZNCC,

and Census are close to the ones reported in [45].

3.3.2 Tests in Middlebury

The matching costs are compared by analyzing the errors in dense disparity esti-

mation in the Middlebury images of Figure 3.8. Figure 3.9 shows the mean of the

percentage of pixels with incorrect disparity label for a particular combination of

matching cost and stereo method. The first observation is that pixel-based 1D met-

rics tend to perform worse than window based 2D costs. This is to expect because

most surfaces in the Middlebury dataset have moderate or no slant. More impor-

tant is the fact that the symmetry-based metrics, SymBT and SymCen, consistently

beat their similarity-based counterparts, BT and Census. Thus, the experimental

evidence clearly suggests that the symmetry cues are more effective than the stan-

dard photo-consistency measurements for matching pixels across views.

It can also be observed that log20 has an erratic behavior ranking differently

according to the stereo method that is considered. For the case of local aggregation,

it is the most inaccurate metric among the 1D matching costs, although it performs

significantly better than ZNCC. Apparently the use of global minimization changes

the ranking of relative performances, with log20 becoming respectively the best

and second best pixel-based cost function when combined with SGM and GC. The

reasons for this behavior require a more detailed analysis of the experimental data.

For this purpose, the input set is divided into two subsets:
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Figure 3.8: The stereo pairs that are used as input for the experiments of Sections 3.3
and 3.4. The benchmark is carried in 15 images of the Middlebury dataset [44, 45]. The
top row shows the Set I comprising frames with several objects and depth discontinuities.
The bottom row exhibits the Set II consisting in scenes dominated by continuous surfaces
with low or repetitive texture. The image in the bottom right corner refers to the Oxford
Corridor that is used in Section 3.3.3 for evaluating the performance in case of surface
slant.
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Figure 3.9: Average percentage of disparity errors in the dense disparity maps of the 15
images of the Middlebury dataset (Set I + Set II).

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Density of disparity map (%)

e
rr

o
r

(a) Set I

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Density of disparity map (%)

e
rr

o
r

 

 

BT
SymBT
log20
ZNCC9
Census7
SymCen7

(b) Set II

Figure 3.10: Average percentage of disparity errors in the semi-dense disparity maps of
Set I (a) and Set II (b) obtained by selecting the first L% matches with lowest cost [80].
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Figure 3.11: The number of disparity errors for each input image normalized by the aver-
age number of errors across all matching costs [45].
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Figure 3.12: Overlay of the disparity errors (left) and disparity map (right) in the Laun-

dry example for every possible combination of matching cost (rows) and stereo method
(columns). Remark that there is no post-processing step after local stereo aggregation.

1. Set I: comprises the images with many objects and surface discontinuities

(yellow in Figure 3.8).

2. Set II: contains the images that are dominated by large surfaces that mostly

present poor or repetitive texture (green in Figure 3.8).

The estimation in the two sets is analyzed using the criterion introduced in

[80] that tests the ability of a matching cost to rank the matches according to their

reliability. After using local aggregation for the dense disparity labeling, the pixel

locations are sorted in ascending order of cost, and a semi-dense disparity map

is obtained by selecting the first L% pixels for which the matching confidence is

higher. Figure 3.10 shows the mean percentage of errors in the semi-dense disparity

estimation for increasing values of L. Looking to the scores for L = 100%, it can

be seen that all matching costs perform worse in Set II than in Set I, suggesting that

the former dataset is more challenging than the latter. It can also be observed that

SymBT and SymCen behave equal or better than BT and Census, respectively, for

all levels of completeness L. The most striking difference between the two plots

is the fact that log20 has the second worse reliability performance in the images

of Set I, but it is clearly the most accurate matching cost for a completeness up

to L = 85% in Set II, only loosing the advantage in the disparity labeling of the

last 15% of pixels with highest cost scores. It happens that these pixels are usually

located close to discontinuities and/or occlusion regions, suggesting that log20 is
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Table 3.2: Runtime for evaluating the DSI assuming 375 × 450 images and a disparity
range of 64 pixels.

Match. Cost Time (ms) Match. Cost Time (ms)

BT (+BBS) 120 (+296) SymBT (+BBS) 170 (+296)

Census7 160 SymCen7 185
ZNCC9 3200 log20 3900

Table 3.3: The left column shows how complexity scales with respect to image size L×W ,
disparity range D, window size l×w or number of wavelet scales N . The right column
reports the number of addition or subtraction (B), and comparison (C) operations required
for evaluating each matching cost. We do not provide the last information for the case of
logN and ZNCC because the analysis is difficult to carry and the result cannot be directly
compared.

Match. Cost Big O Operations

BT O(LWD) LWD × (8B+11C)
SymBT O(LWD) LWD × (14B+15C)
Census O(LWDlw) LWlw×(2C) + LWDlw×(1C)
SymCen O(LWDlw) LWl(w−1)/2×(2B) + LWDl(w−1)/2×(2B+4C)

logN O(LW(log(W)N+D))
ZNCC O(LWDlw)

very effective in estimating the disparity along the continuous surfaces with low

or repetitive texture, but has more difficulty than other matching costs in handling

the depth discontinuities. This can also explain the improvements of log20 in the

ranking of relative performances that were observed in Figure 3.9. Since the pixels

in the continuous surfaces have lower cost values at the correct disparities, they

have a stronger regularization effect during the SGM and GC minimizations that

leverages the depth estimation close to the discontinuities.

Figure 3.11 shows, for each stereo pair and matching cost, the error normalized

by the mean error over all matching functions [45]. The objective of the plots is to

provide a perspective about the relative performance of the different matching cost

in a particular input image. The results show that log20 always compares well for

the images of Set II confirming the hypothesis that, despite of being a 1D matching

cost, it is specially effective in scenes dominated by large surfaces with low and/or

repetitive texture. It can also be seen that SGM and GC boost the relative accuracy

of log20 in Set II but not in Set I, which is in accordance with the interpretation that

the improvements in the ranking of Figure 3.9 are because of the low cost values

at correct pixel disparities observed in Figure 3.10(b).

Figure 3.12 shows the disparity errors in the Laundry example. It is interesting

to observe that SymBT and SymCen tend to outperform BT and Census in the

continuous regions, while presenting similar performance close to discontinuities.

In general the log20 is very accurate in the continuous surfaces, proving to be

resilient to low and repetitive textures, but the error regions are considerably larger

close to depth discontinuities and occlusions.

Table 3.2 summarizes the runtimes for evaluating the DSI of the Teddy stereo
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Figure 3.13: Percentage of disparity errors in the dense disparity map of the Oxford Cor-

ridor. The estimation was carried after local aggregation with a 9× 9 window.

.

(a) BT (b) SymBT (c) log20 (d) ZNCC (e) Census (f) SymCen

Figure 3.14: Disparity maps obtained for each matching cost on the Oxford Corridor.
Remark that there is no post-processing step after local stereo aggregation.

.

pair using the different matching functions, while Table 3.3 analyzes the compu-

tational complexity (Big O notation) and the principal operations required during

the evaluation. As stated previously, BT and SymBT are always evaluated in a

1×3 region, while for the case of Census, SymCen and ZNCC we generalize the

computational complexity analysis for a window of size l×w. In general, the

symmetry-based matching functions require more operations, but the magnitude

of additional effort does not preclude the possibility of real-time dense disparity

estimation, largely justifying the observed improvements in accuracy.

3.3.3 Tests in Oxford Corridor

Figure 3.13 shows the percentage of disparity errors for the Oxford Corridor that

is exhibited in the bottom-right corner of Figure 3.8, while Figure 3.14 displays

the disparity maps obtained using the different matching costs. The disparity es-

timation is carried by a WTA strategy after local aggregation of the DSI using a

9×9 window. The relative performance of the matching functions differs from the

one observed in the equivalent experiment using the Middlebury dataset (see Fig-

ure 3.9(a)). First, for the Oxford Corridor the 1D matching costs outperform the

2D functions because now the scene is dominated by highly slanted surfaces. Sec-

ond, the differences in accuracy between symmetry and similarity-based matching
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functions are more striking in Figure 3.13 than in Figure 3.9(a). with the log20

being the top-performing metric. This is explained by the fact that most textures in

the Oxford Corridor are either flat, e.g. the walls, or repetitive, e.g. the checker-

board pattern of the floor. Thus, the results of this experiment seem to confirm

that the symmetry-based costs in general, and the logN metric in particular, are

specially well suited for estimating the disparity in continuous regions with low or

repetitive texture and high slant, clearly beating the similarity-based counterparts.

3.3.4 Experiments in wide-baseline stereo
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Figure 3.15: Mean errors on the fountain-P11 dataset [1]. The top row shows the 8 input
images, while the bottom row shows the results of the different matching costs for dense
stereo matching across the different image combinations (i) middle-baseline (blue), and
(ii) wide-baseline (green).

In order to complete the evaluation for dense stereo, this section compares the

performance of the matching functions in wide-baseline images. We consider the

8 frames of the fountain-P11 dataset [1] that are exhibited in the top row of Fig-

ure 3.15. The sequence gives rise to 7 medium-baseline examples, corresponding

to pairwise consecutive frames, and 6 wide-baseline examples obtained by pairing

the frames with one image interval. We randomly select one of the stereo pairs

for tuning the matching functions, and later discard the example for the evaluation.

The selected parameters are shown in the 3th column of Table 3.1. The disparity

range r is set by the minimum and maximum of the ground truth disparity maps

for images with size 440 × 640, and the threshold e for deciding about the cor-

rectness of the disparity labeling is chosen such that the ratio e/r is the same as in

Section 3.3.2.

The bottom plot of Figure 3.15 shows the percentage of errors for dense dis-

parity labeling in medium-baseline and wide-baseline stereo pairs. The relative

performance of the matching functions is in accordance with the observed in the

previous sections, suggesting that all the conclusions drawn up to now hold for the

case of wide-baseline imagery.
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3.4 Experiments in Stereo-Rangefinding (SRF)

! " "# $# %# &#'#!# (# )# !##*#
+,-./012345/2617

89+:;8129</61=

) " !" !% !* (!!)% * !! ("()

Figure 3.16: Tuning of parameters for SRF: average percentage of errors in the standard
Middlebury dataset for logN and ZNNC when the spatial support increases. The disparity
labeling is independently carried for each virtual cut plane by a WTA approach after local
aggregation using a 9× 1 window.
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(a) Average percentage of disparity errors (b) log40 vs ZNCC15

Figure 3.17: Benchmark of the cost functions for Stereo-Rangefinding (SRF): (a) average
percentage of disparity errors in the 15 Middlebury images of Figure 3.8 for the 6 matching
costs; (b) disparity errors in the Wood1 example when using log40 and ZNCC15. The
disparity labeling is independently carried for each virtual cut plane by a WTA approach
after local aggregation using a 9 × 1 window. The overlay refers to the image of the
mirroring contour where green is correct estimation of both (log40 and ZNCC15), black
is wrong detection of both, magenta and blue means log40 is correct and ZNCC15 is
wrong, respectively, whereas red and cyan means log40 is wrong and ZNCC15 is correct,
respectively.

Stereo-Rangefinding (SRF) consists in using passive stereo for estimating depth
along a virtual cut plane (scan plane) in order to reconstruct the contour C where
the plane meets the scene. As discussed previously, SRF enables a trade-off be-
tween runtime and 3D model resolution that, as we will see, does not interfere with
depth accuracy. This section evaluates the performance of the matching functions
for the purpose of SRF. Henceforth, we will only present the disparity estimation
results obtained using local aggregation.
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3.4.1 Methodology and tuning of parameters

From Section 2.6 follows that a virtual cut plane Πi intersecting the baseline corre-

sponds to a plane Γi in the DSI domain. While dense stereo evaluates the matching

function for the entire DSI, SRF only considers the disparity hypotheses corre-

sponding to 3D points lying in Πi, meaning that the cost is exclusively evaluated

along the plane Γi in the DSI. In our experiments, the scores in Γi are locally ag-

gregated using a vertical 9×1 window (no horizontal aggregation), and a disparity

label is assigned to each epipolar line using WTA. Since the winning labels must

always occur in the pixel locations where the profile cut C is projected, the number

of errors in SRF is determined by counting the winners that are more than 1 pixel

apart from the ground truth image contour (see Figure 2.3).

The performance of the matching functions is benchmarked by averaging the

results obtained in the 15 Middlebury images of Figure 3.8. In each case, the scene

depth is independently estimated along 201 vertical cut planes Πi with uniformly

distributed rotation angles θi (see Section 2.6). The objective of using such a large

number of cut planes is to cover a broad range of possible SRF situations, with

Πi either intersecting the scene in a continuous surfaces or passing nearby a depth

discontinuity. As in the dense stereo experiments, the parameters of the matching

functions are manually tuned using the standard Middlebury dataset. Figure 3.16

plots the average percentage of errors for logN and ZNCC in case of increasing

number of scales and window size, respectively. The choice of parameters is sum-

marized in the second column of Table 3.1, where a comparison with dense stereo

shows that SRF benefits from computing the matching costs across a wider pixel

neighborhood. This is not surprising if we take into account that the larger im-

age patches tend to compensate the fact that the aggregation is only carried in the

1D-vertical direction.

3.4.2 Tests in Middlebury

Figure 3.17(a) shows the percentage of disparity errors averaged across the 15 im-

age pairs of Figure 3.8. Comparing with the dense stereo results of Figure 3.9, it

comes that the disparity estimation in SRF is less accurate for all matching func-

tions. The higher percentage of errors is justified by the fact that SRF uses less

information than dense stereo for the disparity labeling, since it only evaluates and

aggregates the cost along a plane Γi in the DSI domain. The second observa-

tion is that symmetry-based matching costs still outperform their similarity-based

counterparts, with SymBT and SymCen19 having less 20% and 1% of errors than

BT and Census, respectively. The relative lower performance of the BT family is

largely due to the fact that the scores are computed across a small 3-pixel neigh-

borhood, which seems to be an insufficient image support for handling the lack of

horizontal aggregation. Finally, ZNCC15 is the most accurate metric among the

similarity-based matching functions, but it is beaten by log40 that presents 4% less

errors. The figure also shows the accuracy of log40 when the local aggregation is
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(a) Strength (b) Weakness

Figure 3.18: Pros and cons of logN. Figures (a) and (b) show the symmetry images IS for
particular choices of Πi. The overlay refers to the image of the mirroring contour where
blue is the ground truth, green is correct estimation and red wrong detection. The logN
matching function performs well in low textured and slanted surfaces (a) but fails in flat
regions close to depth discontinuities (b). In (b) the edge of the foreground object induces
an apparent symmetry that misleads the logN estimation.

.

replaced by global optimization using a standard MRF formulation that enforces

continuity in the mirroring contour. The error percentage becomes 13% which is

about 5.8% more than the best result observed for dense stereo (SymCen7 with

GC), and just 2% more than the best result accomplished with log20 (log20 with

SGM).

Figure 3.17(b) compares the performance of logN and ZNCC in the Wood1

stereo pair by overlaying the results in detecting the mirroring contours for the 201
virtual cut planes. It can be observed that the latter, being a 2D metric with a large

window support, has difficulties in handling depth discontinuities (e.g. errors in

the horizontal depth transition at the top of the image, and in the occlusion region

at the image center) and surface slant (e.g. errors in the boards lying on the floor).

On the other hand, logN seems to combine the benefits of being a pixel-based

matching cost, with a good discriminative power for pairing pixels in low textured

regions. This is illustrated in Figure 3.18(a) that shows the symmetry image IS for

a virtual cut plane that meets the scene in the vertical wooden board with significant

slant. Since the pixel matching is accomplished using symmetry, the lack of local

texture is partially compensated by nearby structures, such as edges and wood

nodes that contribute to successfully detect the image of the mirroring contour.

Thus, the good performance in the presence of low texture is explained by the

global character of the induced symmetry cue. However, and as exemplified by the

situation of Figure 3.18(b), such global character can become an issue whenever the

contour passes in a flat region close to a depth discontinuity. In this case, the edge

of the foreground object gives raise to an apparent image symmetry in the wrong

location that, together with the absence of background texture, completely misleads

the logN detection. It is also this phenomena that explains the poor performance

of log20 close to discontinuities and occlusion regions during the dense stereo

experiments (e.g. see the third column of Figure 3.12). The problem can eventually
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Table 3.4: Runtime of SRF measured in the Teddy stereo pair. The column toh refers
to the initialization overhead whenever applicable, and the column tΠ reports the time
for estimating disparity along a single virtual cut plane. The total time for processing K
independent profile cuts is given by t = toh +K · tΠ.

Cost toh (ms) tΠ (ms) Cost toh (ms) tΠ (ms)

BT 98 0.42 SymBT 98 0.60

Census19 32 SymCen19 33
ZNCC15 39 log40 378 13

be solved by using local texture information for selecting the wavelet scales at each

pixel location, however the development of such a strategy was beyond the work

of this research.
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(a) Profile Cut Stereo

Figure 3.19: Mean errors on the fountain-P11 dataset [1]. The top row shows the 8 input
images, while the bottom row shows the results of the different matching costs for SRF
across the different stereo combinations (i) middle-baseline (blue), and (ii) wide-baseline
(green).

Table 3.4 provides the average runtime for estimating the depth along a single

virtual cut plane using SRF. Since the BBS filtering in BT and SymBT, and the

spectral convolution in logN are executed only once independently of the number

K of profile cuts, the workload required by these one time operations is accounted

as an initialization overhead toh. The table shows that for K = 1 logN is about

10× slower than Census, SymCen and ZNCC, but a quick calculation shows that

for K ≥ 20 the former becomes faster than the laters. Remark that there is no

linear relationship between the runtimes of Tables 3.2 and 3.4 based on the number

of image columns. The reasons are that the matching costs in SRF have larger

window support and the scoring along a single plane in the DSI domain does not

benefit from an efficient memory management.
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3.4.3 Experiments in wide-baseline stereo

This section evaluates the performance of the matching functions when the input

image pairs have a wide-baseline. As in the previous section concerning dense

stereo matching, we use the fountain-P11 dataset [1] for the evaluation (see top

row of Figure 3.19). The sequence gives rise to 7 medium-baseline and 6 wide-

baseline examples. The selected parameters for SRF are shown in the 4th columns

of Table 3.1. Since the images are larger than the dataset used in Section 3.4, the

scene depth is independently estimated along 401 vertical cut planes. The bottom

plot of Figure 3.19 shows the percentage of errors for SRF in medium-baseline and

wide-baseline images. Also in this case, the relative performance of the matching

functions is in accordance with the observed in Figure 3.17(a) for the case of short-

baseline stereo.

3.5 Stereo-Rangefinding vs. Laser-Rangefinding

There are many applications in robotics that make simultaneous use of visual data

and laser-scans e.g. [35, 81, 82, 83]. Laser-Rangefinding is popular because it

enables accurate depth measures in real-time, being effective under most operat-

ing conditions. On the other hand, passive vision is an extremely versatile sensor

modality, providing rich image information. Replacing two sensor modalities by a

single one without sacrificing skills or system capabilities is an appealing proposi-

tion. This would lead to savings in equipment with a positive impact in the overall

cost of the final system. It is unlikely that LRF can ever replace passive vision with-

out losses in versatility and system capabilities. Fortunately, the opposite seems

much more feasible specially in cases where two calibrated cameras are available.

As discussed in Chapter 2, stereo vision enables 3D reconstruction by associating

pixels across images. Thus, it is plausible that it can succeed in estimating depth

along a scan plane with an accuracy close to LRF.

This section is motivated by the possibility of replacing LRF by stereo vision in

robotic applications. We compare the depth estimates obtained with SRF against

range data acquired by a LRF. The experiment clearly shows the strengths and

weaknesses of each technology.

3.5.1 Experimental Setup

We briefly introduce the experimental setup for the synchronous acquisition of

stereo images and range data. The setup combines a 2D LRF with two perspective

cameras for which the specifications are provided in Table 3.5. The sensors are

mounted on a rigid mobile platform with the laser placed between the cameras

as shown in Figure 3.20. The camera baseline is around 45cm and the distance

between the top camera and the laser is roughly 19.5cm. The cameras are not
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Figure 3.20: Experimental setup. The top camera C (reference view) points down, the
bottom camera C′ points up, and the LRF is positioned between the cameras. The LRF
recovers the profile cut C that is the contour where the scan plane Π meets the scene
structure. C is projected in the two images I and I′ using the extrinsic calibration.

Table 3.5: Specifications of the camera and the LRF

Camera LRF
Manufacturer Point-Grey Manufacturer Sick

Baseline ≈ 45 cm Model LMS200
Resolution 1280× 960 Horiz. Res. 0.25o

aligned, and C is the reference view.
Referring to Figure 3.20, the stereo cameras are calibrated using Bouguet’s

calibration toolbox [84], and the relative pose between the LRF and the reference
camera C is estimated using the minimal solution proposed by Vasconcelos et al.
[85]. This enables to determine the homogeneous representation of the scan plane
Π in the stereo coordinate system, and compute the homographies HC and HC′

that accurately map range data into images I and I′, respectively.

3.5.2 Detection of the profile cut

In order to compare the depth estimates obtained using SRF and the readings pro-
vided by the LRF, the virtual cut plane of SymStereo is aligned with the known
scan plane of the LRF. It is important to remark that, contrary to the properties
described in Section 2.6, the homography induced by the cut plane, in this case, is
not a simple flipping and shifting of the input images. Following the experimental
results of the previous section, we select the logN matching cost, being the top-
performer in SRF. It is also important to note that, given the particular stereo con-
figuration of the experimental setup described in the previous section, the epipolar
lines have vertical orientation. This section considers the traditional setup, where
the stereo cameras are horizontally aligned, but the algorithm generalizes for any
calibrated stereo setup.

A naive approach for locating the profile contour C, would be to simply se-

48



(a) I (b) I
′ (c) Î (d) I

S

(e) maxima of E (f) CDP (g) Csi (h) CMRF

Figure 3.21: Example of the estimation of the profile cut location in a traditional stereo
setup (baseline has horizontal displacement); magenta is ground truth. The global opti-
mization correctly decides between straight (blue) and non-straight (cyan) points on the
profile cut.

lect the maxima along each column in the joint energy E computed using logN.

However, and as shown in Figure 3.21, this would lead to noisy estimates. This

section proposes to improve the estimation of the profile cut by considering two

soft constraints for SRF.

3.5.2.1 Dynamic Programming (DP)

We use a simple optimization approach for obtaining a binary labeling for I, where

each epipolar line has only one pixel y set to one, corresponding to the most likely

pixel location lying in the image of the profile cut. This is accomplished using a

straightforward Dynamic Programming (DP) approach [23]. The algorithm com-

putes the maximum cost path in E, where the energy for each pixel p is re-defined

as:

D(p1, p2)=E(p1, p2) + min
y

(D(p1−1, y)+VDP(p2, y)) , (3.10)

with VDP being a smoothness term given by

VDP(p2, y)=

{
λDP

∆IS
if |p2 − y| > 0

0 otherwise
,

∆IS = |IS(p1, p2) − IS(p1 − 1, y)| and λDP is a constant parameter. The binary

labeling is accomplished by selecting for each column p2, the pixel p with max-

imum cost D. Thus, we obtain a contour corresponding to a possible location of

the profile cut expressed in discrete terms. In order to refine the contour estima-

tion and obtain sub-pixel precision, we fit to each p1 a parabola in E around the

neighborhood of p2. The output of this step is the contour CDP (see Figure 3.21).
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3.5.2.2 Line detection using the Hough transform

In order to detect straight lines in I, which correspond to the intersection of Π with

a plane in the scene, a weighted Hough Transform is applied to the joint energy E.

We extract at most NHT line parameters si, where i = 1, . . . , NHT . Figure 3.21

shows the contours Csi , obtained from the intersection of si with each epipolar line

of I (Csi(x) is the point of intersection between si and the epipolar line x).

3.5.2.3 MRF for straight and non-straight profile cut labeling

Given a particular epipolar line, there are NHT+1 possible locations for the profile

cut, NHT corresponding to the extracted lines segments Csi , and one corresponding

to the estimation CDP using DP. In order to decide which one is the most suitable

point on each epipolar line, we formulate the decision as a labeling problem in

a MRF. Following the notation used in Section 5.3.1, the objective is to assign to

each image row d ∈ D, a label fd in the set L, which is the union of all line segment

labels fsi and the non-straight label fDP. The energy to minimize is given by:

E =
∑

d∈D

D(fd) + λMRF

∑

d∈N

Vd,e(fd, fe).

The data function is defined as:

Dd(f) =

{
− (Ed(f) + γS(1− Sd(f))) if f = fDP

−Ed(f) otherwise

where Ed(f) = E(d, Cf (d)), S denotes the image entropy in the neighborhood of

Cf (d), and γS is a constant parameter. We use S for penalizing the label fDP in

low-textured regions. Finally, the smoothness term is given by:

Vd,e(fd, fe) =






0 if fd = fe
|Cfd(d)−Cfe(e)| if (fd∨fe) = fDP

min
(
|Cfd(d)−pf(d,e) |, |Cfe(e)−pf(d,e)

)
if (fd∧fe) = fs

,

where pf(d,e) is the intersection point between lines sd and se, and fs represent

any line segment label. The third term aims to penalize transitions between line

contours that are far away from the corresponding point of intersection. The energy

is minimized using α-expansion [76, 77, 78], and the output is the profile cut CMRF,

one point per epipolar line. Figure 3.21 present an example of the estimation of

CMRF. As can be observed, the global optimization distinguishes between straight

and non-straight segments in the scene. This ability is crucial for overcoming low
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and repetitive textured surfaces, as will be shown next.

3.5.3 Experimental results

This section compares the depth estimates achieved with our algorithm for SRF

against real range data obtained with a LRF. Figure 3.24 shows pairs of stereo im-

ages and corresponding top views of the scan plane with different depth estimates

overlaid. The green contour refers to the laser readings, the red points concern the

depth estimates obtained by SymStereo with DP refinement, and the blue contour

represents the final results after MRF labeling, with dark blue denoting straight

line segments (Hough Transform estimates) and light blue denoting non-straight

segments (DP estimates). The different profile cuts are projected onto the stereo

views for analysis purposes. The examples try to cover a broad range of operating

conditions including indoor and outdoor scenes, planar and non-planar surfaces,

variable illumination, low textured regions and slanted surfaces.

The overall results are quite encouraging. Referring to Figure 3.24, SymStereo

followed by DP provides accurate depth estimates whenever the profile cut C lies

in textured surfaces or is close to strong edges. On the other hand, the DP depth

results are often inaccurate in low-textured regions because the joint energy E tends

to become disperse around the contour location, and the path optimization is unable

to handle the ambiguity. Fortunately, and for the case of planar surfaces, the line

segment prior followed by MRF selection seems to be effective in correcting most

of the errors.

Major failure occurs in the most distant walls (b), (d), (i), and (j). Curiously,

these poor estimates do not happen in the cases (e), (g), and (h), despite of similar

circumstances in terms of texture, slant and depth range. This apparent contradic-

tion can be explained by the fact that the induced symmetry, that is quantified by

SymStereo, is only perfect for a particular combination of surface slant and point O

where the virtual scan plane intersects the baseline (for further details refer to Sec-

tion 2.4). Whenever the orientation of the surface to be reconstructed differs from

the surface slant that grants perfect induced symmetries for a particular O, then

the symmetry deviation is source of errors. This problem is usually handled by the

log-Gabor wavelets with wider spatial support (refer to Section 3.2.3). However, in

the absence of large textured support, the symmetry deviation is not compensated

by the log-Gabor wavelets, and the energy E does not present a well-defined ridge

along the contour C. This is the main reason for the failures observed in examples

(d), (i) and (j) of Figure 3.24. In the case (e), the scan plane intersects the surface

further away from the white wall, which is enough for creating a wider textured

support region. In the examples (g) and (h), the cameras are closer to the slanted

surfaces and the texture is better perceived.

So far the comparison was carried in the scan plane considering metric depth

estimates. Let us briefly analyze what happens in the image domain, where the

projection of the profile cut C is supposed to go through corresponding pixels in
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(a) I (b) I
′ (c) Zoom of I (d) Zoom of I′

Figure 3.22: Image matches obtained in case (a) of Figure 3.24 for the region outlined
in yellow in (a) and (b). As in the previous examples, (green) corresponds to the LRF
measurements, (red) is CDP, and (blue and cyan) is CMRF; where in (cyan) the MRF decided
for CDP, while in (blue) the labeling corresponds to Csi . In the case the virtual scan plane
intersects a textured region or near strong edges, the matching obtained from DP is very
accurate.

the two views. Figure 3.22 shows the zoom of a region in the stereo pair of ex-

ample (a) in Figure 3.24. The DP estimation leads to the best matching results,

proving that SymStereo can achieve accuracies of 1−2 pixels for an image resolu-

tion of 1280×960 whenever the surface is textured. It is also interesting to observe

that the projection of the range data obtained with LRF is slightly off in terms of

stereo correspondence. This is explained by small errors in the extrinsic calibration

between the cameras and the LRF that can hardly be avoided.

(a) Top Image (I) (b) Bottom Image (I′)

Figure 3.23: Multi-cut example. The correspondence between contours in the top and
bottom images can be idenfied by the color coding.

Finally, Figure 3.23 shows that our algorithm enables independent depth esti-

mate along multiple virtual scan planes, with the only constraint being that the scan

planes must intersect the baseline (refer to Chapter 2).

3.6 Conclusions

This chapter proposed three symmetry-based matching costs for the SymStereo

framework: SymBT, SymCen and logN. The first two are closely related with the

top-performing cost function BT [65] and Census [67], being in a large extent mere

modifications for measuring symmetry instead of similarity, while the later relies

in wavelet transforms for detecting local signal symmetry. The new matching costs
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were benchmarked against the state-of-the-art metrics for accomplishing dense dis-

parity labeling in both short and wide-baseline images. The results showed that

the symmetry based functions, SymBT and SymCen, consistently outperform their

similarity-based counterparts, BT and Census, suggesting that symmetry is supe-

rior to standard photo-consistency as a stereo metric. The logN cost proved to be

particularly effective in scenes with slanted surfaces and difficult textures, being

the top-performer matching function in the Oxford Corridor dataset. The major

weakness is its relative poor performance close to discontinuities and occlusion

regions.

We also investigated the use of passive stereo for estimating depth along a sin-

gle scan plane. The technique, named Stereo-Rangefinding (SRF), provides profile

cuts of the scene similar to the ones that would be obtained by a LRF. For the pur-

pose of SRF, logN was clearly the top-performing metric. Additionally, SRF was

experimentally compared against LRF in several indoor and outdoor scenes. The

results were encouraging in terms of showing that passive stereo can be leveraged

to meet the robustness and depth accuracy of laser range data. SRF proved to be

as accurate as LRF in most of the tests, but important issues remain for the case of

the profile cut lying in slanted surfaces with very low texture.
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(a) eMRF ={1.1 pix, 64mm}, d̄≈3.6m (b) eMRF ={0.8 pix, 53mm}, d̄≈3.6m

(c) eMRF ={3.8 pix, 57mm}, d̄≈2.6m (d) eMRF ={2.4 pix, 109mm}, d̄≈3m

(e) eMRF ={0.3 pix, 62mm}, d̄≈8m (f) eMRF ={1 pix, 27mm}, d̄≈3.8m

(g) eMRF ={2 pix, 13mm}, d̄≈2m (h) eMRF ={1.5 pix, 47mm}, d̄≈3.2m

(i) eMRF ={7 pix, 288mm}, d̄≈3.3m (j) eMRF ={6 pix, 178mm}, d̄≈2.9m
!"#$%&'"("&)!* +,-+(%.%/&01(2&'3 +,-+(%.%/&01(2&4!* 4!*&5%615%5&7/.&81#%&69(: 4!*&5%615%5&7/.&'3

Figure 3.24: Qualitative comparison between C estimated using SRF and the measure-
ments provided by a LRF. (Green) - Measurements of the LRF, (red) CDP estimated using
DP, (blue and cyan) labeling obtained from the MRF, where (blue) are points to which a
line segment was assigned, while for the (cyan) points the MRF decided for the non-straight
label (CDP). eMRF (final estimation) - average distance between the range data provided by
the LRF and the points CMRF (the first value is measured in the reference image, while the
second value concerns depth measurements). d̄ represents the average distance of the LRF
readings from the origin.
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Chapter 4

Vanishing points and mutually

orthogonal vanishing directions

This chapter presents a new global approach for detecting VPs and groups of mu-

tually orthogonal VDs in man-made environments. These multi-model fitting prob-

lems are respectively cast as UFL and HFL instances that are solved using a mes-

sage passing inference algorithm. We also propose new functions for measuring

the consistency between an edge and a putative VP, and for computing the VP de-

fined by a subset of edges. Experiments in both synthetic and real images show that

our algorithms outperform the state-of-the-art methods while keeping computation

tractable. In addition, we show for the first time results in simultaneously detecting

multiple Manhattan-world configurations.

4.1 Introduction

A set of parallel lines in the scene project into a pencil of lines intersecting in the

so-called vanishing point (VP). The VP is the image of the point at infinity where

the parallel lines intersect and encodes their common direction. In the case of man-

made environments, the sets of parallel lines are usually orthogonal to each other,

and the detection of the corresponding VPs enables to accomplish different tasks.

Applications include intrinsic camera calibration [86], estimation of the camera

rotation with respect to the scene [87, 88], 3D reconstruction [89], and recognition

[90].

The automatic detection of VPs using sparse edges [91] or edge gradients [92]

is a problem of multi-model fitting where the models are line pencils. It is in

general a ”chicken-and-egg” problem because we neither know the number and
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(a) Manhattan World (b) Multiple orthogonal triplets

Figure 4.1: Two images of man-made environments.

parameters of the models (the VPs), nor the edges that belong to each model (the

membership). The first attempt of automatic detection of VPs goes back to the

80’s when Barnard proposed to use the Hough transform on a quantized Gaus-

sian sphere [93]. It was latter shown that the accuracy of such an approach highly

depends on the choice of the voting bins, and that the detection results are of-

ten spurious. In [87], Antone and Teller suggests to carry the VP detection using

Expectation-Maximization (EM) with the E-step computing the probability distri-

butions of the input lines passing through the hypothesized VPs, and the M-step

refining the VP models by maximizing the likelihood of the observed data. Later,

the EM framework was successfully extended to the case of uncalibrated cameras

[88, 92]. However, the process is iterative and requires a good initial estimate that

is typically accomplished by clustering the edges assuming a world dominated by

either 3 (Manhattan) [87, 88] or 5 (Atlanta) [92] mutually orthogonal VDs. In [94],

Rother combines RANSAC search with several heuristics for recovering the VPs

of Manhattan directions, but the final algorithm is computationally expensive and

requires distinguishing between finite and infinite VPs. Finally, Tardif has recently

proposed a new image-based consistency metric to be used with J-Linkage for clus-

tering the edges into pencils of lines [2]. The algorithm is fast, robust, and accurate,

being one of the best performing VP detectors that are currently available.

The works above perform the separate estimation of the VPs in the image,

which, in many cases, is followed by grouping the result into directions that are

mutually orthogonal [2]. A different approach is to consider a priori that the scene

follows the Manhattan world assumption and determine the rotation that is aligned

with the 3 dominant VDs. In this case, the VP detection is no longer a problem

of multiple model fitting, but the problem of fitting a single triplet of mutually

orthogonal VPs in the presence of edges that are outliers. Such fitting can be ac-

complished through EM [91], by using minimal solutions as hypothesis generator

in a RANSAC paradigm [95], or by applying Branch-and-Bound to solve a con-

sensus set maximization that assures global optimality [96]. The disadvantages of

this type of approach are that additional VDs that might exist are passed unde-

tected, and the methods have difficulty in handling images with more than one set

of Manhattan-world directions for which multi-model fitting is again required (see

Figure 4.1(b)).
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This chapter addresses the problem of detecting VPs in uncalibrated images us-

ing either edgels (by edgel we mean a discrete set of edge points that are connected)

or line segments, and (given the intrinsic calibration) the problem of grouping the

detection results into sets of mutually orthogonal VDs. We propose three main

contributions with respect to the state-of-the-art.

The first contribution is a a global solution for the detection of VP. As dis-

cussed in Section 5.3.1, methods that greedily search for models with most inliers

(within a threshold) while ignoring the overall classification of data are in general

a flawed approach to multi-model fitting, and that formulating the fitting as an op-

timal labeling problem with a global energy function is usually preferable [3]. Our

research goes towards this direction and formulates for the first time the detection

of VPs as an Uncapacited Facility Location (UFL) problem [97] that can be solved

using a local message passing approach [97, 98]. Experiments show that such a

global approach is very competitive with the state-of-the-art algorithm [2] that re-

lies in J-Linkage and EM. Very recently, Tretyak et al. [99] presented a method

that integrates the estimation of line segments, lines, VPs, the horizon and zenith

in a single energy optimization framework. Besides of being complex and time

consuming, this formulation already assumes that a discrete number of accurate

VPs has been obtained.

Independently of the multi-model fitting approach, the detection of VPs always

requires a consistency function D(e,v), which measures the likelihood of the edgel

e being in a line l passing through the putative VP v, and a function W (S) that

computes the most likely VP given a set of edges S . Many prior works formulate

the consistency function in the Gaussian sphere after back-projecting the edges

and VPs [93, 87, 88, 96, 92]. However, and as argued in [2], measurements in the

image space are usually preferred because the non-linear mapping into the sphere

changes the statistics of noise ultimately leading to biased estimation results [94].

Therefore, Tardif proposes to formulate D(e,v) and W (S) using the geometric

distance measured in the image [2]. However, and in order to avoid iterative non-

linear minimization, he works with the maximum orthogonal distances to the edge

endpoints rather than considering the mean distance to all points. As our second

contribution, we show that this minimization problem can be solved in closed-

form and propose new functions D(e,v) and W (S) that improve the overall fitting

results while keeping computation tractable.

Finally, our last contribution is a global solution for detecting multiple sets of

mutually orthogonal VDs. The existing methods for detecting mutually orthog-

onal VDs assume that the image depicts a single Manhattan-world configuration

[95, 96]. In practice, these algorithms often become unstable and/or inaccurate

whenever there is no image evidence for one of the Manhattan directions, and can-

not cope with frames like the one of Figure 4.1(b) showing more than one group

of mutually orthogonal directions. We propose for the first time an algorithm that,

given an initial set of VPs, is able to detect multiple Manhattan-world configura-

tions that can either be complete or incomplete (two directions), and be indepen-

dent or have one direction in common (Atlanta-world). The multi-model fitting
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Figure 4.2: The UFL problem. The objective is to assign to each customer ei a facility
v0
j , minimizing the sum of the customer-facility costs c0ij plus the sum of facility opening

costs v0j (see Equation 4.1).

is solved in a global manner by casting the problem as an Hierarchical Facility

Location (HFL) problem [100].

4.2 The Facility Location Problem

This section briefly introduces the problems of UFL and HFL that play a key

role in the global approaches for detecting VPs and clustering mutually orthog-

onal VDs. To the best of our knowledge these frameworks were seldom used in

the context of computer vision. In [98] and [101] the problems of subspace seg-

mentation and two-view motion segmentation are formulated as UFL problems,

respectively, while in [102] Xiao et al. formulated the simultaneous segmentation

of registered 2D images and 3D points as a hierarchical exemplar-based clustering

instance [103], a problem that is closely related to UFL, and that was solved using

a greedy bottom-up affinity propagation approach [102]. The UFL is a classical

NP-hard problem that can be solved by applying an optimization method based

on the max-sum algorithm [97, 98]. This method is more robust than the greedy

solver for UFL discussed by Delong et al. in [104], and has been recently extended

for also handling the HFL problem [100]. Since this extension has never been ap-

plied in computer vision, we briefly outline the solver that relies in local message

passing.

4.2.1 Uncapacited Facility Location (UFL)

Suppose that you need to open a set of facilities v0
j to serve Ne customers ei ∈

E whose locations are known (see Figure 4.1). Given a set V0 comprising M0

possible facility locations, the cost c0ij : E × V0 → R for assigning the facility v0
j

to the customer ei, and the cost v0j : V0 → R for opening the particular facility v0
j ,

the goal of the UFL problem is to select a subset of V0 such that each customer is

served by one facility, and the sum of the customer-facility costs plus the sum of
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Figure 4.3: The HFL problem. The objective is to assign to each customer ei a facility v0
j ,

minimizing the sum of the customer-facility costs c0ij , the sum of facility opening costs v0j ,

and the storage facilities opening costs v1k (see Equation 4.2).

facility opening costs is minimized. This leads to an integer programming problem

that is usually formulated using unary indicator variables y0j and binary indicator

variables x0ij , and whose objective is to find the vector x0 = {x011...x
0
ij ...x

0
NeM0

}
such that :

min
x0

Ne∑
i=1

M0∑
j=1

c0ij x
0
ij +

M0∑
j=1

v0j y
0
j

subject to






x0ij , y
0
j ∈ {0, 1}, ∀i, j

M0∑
j=1

x0ij = 1, ∀i

y0j ≥ x0ij , ∀i, j

(4.1)

The equality in the second constraint ensures that each customer is assigned to

exactly one facility, while inequality of the last constraint guarantees that each

customer is only served by facilities that were opened.

4.2.2 Hierarchical Facility Location (HFL)

Let’s now imagine that the facilities v0
j need to be stocked by storage facilities

(warehouses) v1
k, which in turn need to be stocked by larger warehouses v2

m, and

so forth till the graph of the UFL problem is extended by L additional levels (Fig-

ure 4.3 shows an example of a HFL with two levels). Given a set of potential Ml

facility locations Vl at layer l, the cost vlj : Vl → R for opening the facility vl
j ,

and the cost cljk : Vl−1×Vl →R for the facility vl
k supplying the facility vl−1

j , the

goal of HFL is to find the vector x = {x0...xl...xL} that minimizes the following
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function:

min
x

Ne∑
i=1

M0∑
j=1

c0ijx
0
ij +

L∑

l=1

Ml−1∑
j=1

Ml∑

k=1
cljkx

l
jk +

L∑

l=0

Ml∑
j=1

vljy
l
j

s.t.:






xlij , y
l
j ∈ {0, 1}

M0∑
j=1

x0ij = 1, ∀i
∧ Ml∑

k=1
xljk = yl−1

j , ∀j, l>0

y0j ≥ x0ij , ∀i, j
∧

ylk ≥ xljk, ∀j, k, l>0

(4.2)

The additional restrictions compared to Equation 4.1 are that if a facility vl−1
j is

closed in layer l−1, then vl−1
j will not need to be stocked by a storage facility vl

j .

Whereas if a facility vl−1
j is open, then it must be stocked by a facility in the next

layer l. Note that in the case of a single layer, the HFL problem reduces to the UFL

problem (see Figure 4.2).

4.2.3 Solving UFL and HFL using the max-sum algorithm

In [98, 97] Lazic et al show how to solve the UFL problem using a local message

passing approach. They formulate the UFL problem as a maximum-a-posteriori

(MAP) problem and represent it using a factor graph [105]. The MAP estimates

for x0ij can then be inferred using the max-sum algorithm [105], which is a log-

domain equivalent of the max-product solver [105]. More recently, Givoni et al.

[100] extended this message passing framework for solving the HFL problem. The

basic idea is to iteratively update the following messages until convergence1:

ηlij=−clij +min(τ li ,−max
k %=j

(αl
ik − clik)), l>0

ηlij=−clij −max
k %=j

(αl
ik − clik), l=0

αl
ij=min[0,−vlj+φl

j +
∑

k %=i

max(0, ηlkj)], l<L+ 1

αl
ij=min[0,−vlj+

∑

k %=i

max(0, ηlkj)], l=L+ 1

1Remark that initially η = 0 and α = 0.
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where the messages

τ l+1k =
M l∑

j=1

max(0, ηljk)− vlk , φl−1
j =max

k
(αl

jk − f l
jk)

are required for connecting successive layers. The message τ l+1k is passed upwards

from layer l to layer l+1, while the message φl−1
j goes down from layer l to layer

l−1. The max-sum algorithm is guaranteed to converge on tree graphs, and has

shown good performance for L = 1 on graphs with cycles in many applications,

e.g. [98]. It is important to mention that a practical way of dealing with message

oscillations is to damp the messages at each iteration [97]

η = γηprev + (1− γ)η

where γ ∈ [0, 1[ is the damping factor and ηprev is the previous message. Upon con-

vergence, the set of facilitiesF l in layer l that are open are F l = {vl
j |
(
αl
ij + ηlij

)
>

0}. The optimal MAP estimation for x is given by

xlij =

{
1 if clij ≤ clik

∧
vl
j ,v

l
k ∈ F , ∀j, k

0 otherwise

4.3 Algorithm for VP detection

This section shows that the detection and estimation of VPs can be formulated as an

instance of the UFL problem discussed in Section 4.2.1. Such formulation requires

defining a consistency metric D(ei,v0
j ) that measures the consistency of an edgel

ei with a putative VP v0
j , and a function W (S,w) that, given a subset of edges S ,

computes the most likely VP v.

4.3.1 Vanishing point detection as a UFL problem

Let ei ∈ E with i = 1...N be the ith edgel extracted from an image. The objective

is to assign to each ei a VP v0
j ∈ V 0 using as few unique VP models as possible.

This multi-model fitting problem can be cast as an instance of the UFL problem

as follows: consider that the edgels ei are the customers and the putative VPs v0
j

are the facilities. Let the cost c0ij be given by the function D(ei,v0
j ) that evaluates

the consistency between ei and v0
j , and let v0j be the cost for adding v0

j in the final

VP assignment. The goal is to select a subset of VPs in V0 such that sum of the

consistency measures c0ij and the costs v0
j is minimized, which corresponds exactly
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(a) Consistency function D (b) VP estimator W

Figure 4.4: Consistency function and VP estimator. (a) We compute the line lj(λ0) that
intersects v0

j and minimizes the sum of the squares of the geometric distances to the points

on ei for measuring the consistency between ei and v0
j ; (b) We compute v by finding the

point location that minimizes the weighted sum of the square of geometric distances to the
lines li.

to the minimization of Equation 4.1. There are however some issues that must be

addressed:

1. the selection of the set V0 of VP hypotheses

2. the definition of the function D(ei,v0
j ) that provides the client-facility cost

c0ij by measuring the consistency between ei and v0
j

3. the choice of the function W (S,w) that, after clustering a subset S of line

segments, updates the VP location.

The set V0 containing the initial VP hypotheses depends mainly on the time

constraints of the particular application. In the case of no time limitations, V0

can comprise all the point intersections between pairs of lines li, lj fitting every

possible pair of edgels ei, ej , respectively. Otherwise, a fast RANSAC procedure

can be used for quickly extract model hypotheses using minimal sample sets. The

issues 2 and 3 are addressed next.

4.3.2 The consistency function D(e,v)

Given an edgel ei comprising Pi points ek with k = 1...Pi and a putative VP v0
j , the

objective is to find a cost function D(ei,v0
j ) that evaluates how well a line lj in the

pencil centered in v0
j can fit the edge points in ek (see Figure 4.4(a)). We propose

to determine the line lj that minimizes the sum of the squares of the geometric

distances to the points, and use the root mean value of this sum as the client-facility

cost c0ij . Contrary to what is suggested in [2], the minimization problem can be

solved in a closed-form manner. Any line lj going through v0
j can be parametrized

as follows

lj(λ) ∼ (1− λ)[a]×v
0
j + λ[b]×v

0
j ,

with a and b being any two points non-collinear with v0
j , and λ being a free param-

eter. For the sake of convenience, the points a and b are typically chosen as being

the endpoints of a line segment orthogonal to ei and passing through its midpoint.
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We want to find the λ value such that:

min
λ

Pi∑

k=1
d2⊥(ek, lj(λ))

From the formula for the orthogonal distance d⊥, it comes after some algebraic

manipulations that

Pi∑

k=1

d2⊥(e
k
i , lj)=

(v0
j
T
A2v

0
j )λ

2+(v0
j
T
A1v

0
j )λ+v0

j
T
A0v

0
j

(v0
j
T
B2v

0
j )λ

2+(v0
j
T
B1v

0
j )λ+v0

j
T
B0v

0
j

(4.3)

where

A0=
Pi∑

k=1
[a]×ekeTk [a]× A1=

Pi∑

k=1
([a]×ekeTk [b]×+[b]×ekeTk [a]×)−2A0

B0=
Pi∑

k=1
[a]×Is[a]× B1=

Pi∑

k=1
([a]×Is[b]×+[b]×Is[a]×)−2B0

B2=
Pi∑

k=1
([b]×Is[b]×)−B0−B1 A2=

Pi∑

k=1
([b]×ekeTk [b]×)−A0−A1

The minima and maxima of the objective function are the λ values for which

the derivative is zero. By differentiating the expression of Equation 4.3, it comes

that these extrema can be easily computed by solving a second order equation.

Given the particular arrangement between a, b, and ei, we choose the root λ0 that

is closest to 0.5, and replace the result in the equation below:

c0ij ≡ D(ei,v
0
j ) =

√√√√√
Pi∑

k=1
d2⊥(ek, lj(λ0))

Pi
(4.4)

4.3.3 The function W (S) for updating the VP estimate

After solving the UFL problem, the edgels sharing the same label are clustered

into a subset S , and the objective is to determine the most likely intersection point

v ∼ W (S) for the lines li fitting the edgels ei∈S (see Figure 4.4(b)). We propose

to update the VP by finding the point location that minimizes the weighted sum of

the square of geometric distances to the lines li. Taking into account the formula
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of the orthogonal distance, it comes after some algebraic manipulations that

W (S) = min
v

vTQv

subject to : vT p = 1

with

Q =
Ni∑

i=1

w2
i

li l
T
i

lTi Isli

where wi is the length of each edge ei, and p = (0 0 1)T. Remark that the purpose

of the constraint is to assure that v3 = 1 complies with the formula for computing

the orthogonal distance d⊥. We can rewrite the constrained minimization problem

as an unconstrained one:

W (S) = min
v,λ

vTQv−λ(vTp− 1).

with λ being a Lagrange multiplier. By differentiating the objective function, it

comes that the minima can be determined by solving following matrix equation

[
2Q −p

]
︸ ︷︷ ︸

Q′

(
v

λ

)
= 0,

Note that if the lines li are quasi-parallel, the problem becomes undetermined,

which can be observed by the matrix Q′ becoming poorly conditioned. In this

case, the VP v is at infinity, and its direction can be computed by simply averaging

over the directions of li.

4.4 Detection of multiple orthogonal triplets

We assume in this section that a set of VPs has already been extracted using any

type of VP detection approach e.g. the approach proposed in Section 4.3, and the

objective is to detect multiple mutually orthogonal directions in the scene. As will

be shown, this problem can be easily cast as a HFL problem.

Given the intrinsic calibration matrix K, two VPs v0
j and v0

k are orthogonal if

the following relation is verified

v0
j
T
ωv0

k = 0, (4.5)
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where ω = K−TK−1 is the image of the absolute conic [106]. Let the set

v1
m = {v0

j ,v
0
k,v

0
l }

be a mutually orthogonal triplet, meaning that each pair of VPs in v1
m verifies

Equation 4.5. Consider again a set of edgels ei ∈ E , a set of VPs v0
j ∈ V0 and a set

of orthogonal triplets v1k ∈ V1, whose VP elements are known and are contained

in V0. The objective is to assign a VP to each ei, minimizing not only the number

of VPs, but also the number of orthogonal triplets. This problem is cast as a HFL

instance with two different layers (see Figure 4.3): at the bottom layer l = 0 we

have ei and v0
j , and at the top layer l = 1 we have the orthogonal triplets v1k. In

addition to the costs c0ij and v0j described in Section 4.3, there is a new penalization

v1k : V1 → R for v1
k being contained in the scene. The connection costs c1jk

between v0
j and v1

k are given by

c1jk =

{
0 if v0

j ∈ v1
k

∞ otherwise

There are three issues that must be addressed:

1. how to propose an initial set of orthogonal triplets V1

2. there might exist VPs in V0 that are not part of any orthogonal triplet v1
k

3. the orthogonal triplets can share a common VD.

The issue 1 is solved as follows: for each pair v0
j ,v

0
k in V0 whose angle is in the

range [π2−θ, π2+θ], we obtain an exact orthogonal triplet v1
m computed as follows

v0
1 = v0

j

v1
m = {v0

1,v
0
2,v

0
3} v0

2 = Null(ω(v0
1 v0

k))
v0
3 = Null(ω(v0

1 v0
2))

which is added to V1, and where the operator Null(M) returns the left nullspace of

the matrix M. Note that the additional created VPs are also added to V0, which im-

plies having very similar or even equal VPs in V0. This problem is easily handled

by the HFL solver that prefers assignments with less VPs.

For solving 2, we add the groups v1
m = {v0

j} containing a single VP to V1

whenever there is no VP in V0 whose direction makes up an angle in the range

[π2−θ, π2+θ] with v0
j . The costs v1m for sets v1

m containing a single VP are always

less than for orthogonal triplets, keeping these VPs in the final labeling. Finally,

the issue 3 is solved by noting that, since we construct each orthogonal triplet v1
m

individually, we can keep track of similar VPs in v1
m after the HFL labeling.
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4.5 Experiments with synthetic data
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Figure 4.5: Clustering of line pencils in synthetic data. We compare UFL using four
different consistency metrics.

In this section, we conduct a set of experiments in a simulation environment

that considers an image of size 640×480 and the intrinsic parameters provided

by the York Urban Database (YUD) [91]. We randomly generate 3 VDs in the

Gaussian sphere, with the angles between them being always less than 20◦. For

each VP vj , we generate a pencil of N line segments in the image, which are

sampled into a discrete set of points ek with k = 1...Pi. Each set ei has a length

between 20 to 200 pixels. The points are then perturbed with Gaussian noise of

different magnitudes and 200 trials are run for each noise level.

Figure 4.5 compares four different consistency metrics for quantifying c0ij for

the UFL clustering method:

1. UFL+D - our measure D described in Equation4.4 using all the points in ei

2. UFL+D2 - the same measure D using only the end points of li

3. UFL+Tar.D - the consistency metric of Tardif described in [2]

4. UFL+Gauss - operate on the Gaussian sphere by analyzing the angle be-

tween the normal to the line li and v0
j .

Clearly, UFL operating on the Gaussian sphere provides the worst labeling results

with increasing magnitude of noise. The performance of the three metrics operat-

ing in the image plane are similar for low noise, but our metric D(ei,v0
j ), which

uses all the points in ei being clearly the top-performer for higher noise magni-

tudes. The consistency metric D(ei,v0
j ) operating on the two end points of li

performs slightly worse, but with a high increase in computational efficiency. By

taking this results in consideration, we decided to select UFL+D2 for measuring

the consistency between edgels and VPs, being a good trade-off between accuracy

and computational efficiency.

Given a cluster S containing N lines li, we need to compute a better VP estima-

tion. As in the previous experiment, we randomly generate a pencil S containing

N lines, sample the lines into a discrete set of points, perturb the points using

Gaussian noise of different magnitudes, and then fit a line li to these points in the

least-squares sense. We compare in Figure 4.6:
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Figure 4.6: Accuracy of the estimation of VPs given a pencil of N lines. The error cor-
responds to the angle in the Gaussian sphere between the ground truth and the estimated
VP.

1. W - our function W (S) described in Equation 4.3.3

2. Tar.W - VP estimator proposed by Tardif in [2]

A careful analysis of the graphic shows that our VP estimator provides better es-

timates for the same pencil of lines, being considerably more robust to the noise

level. These results justify our choice for selecting W (S) as VP estimator.

4.6 Experiments in real images

This section presents experimental results carried in real data. Our algorithm was

implemented in Matlab, being the UFL and HFL solver run in MEX files. We

compute an initial set of 5000 VP hypotheses for UFL using RANSAC over a

minimal set of two edges. In order to handle possible outlier edges detected in the

images, we added the empty sets v0
∅ and v1

∅ to both UFL and HFL, which have the

facility costs v
0,1
∅ =0 and constant connections costs.

4.6.1 YUD using the supplied lines
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Figure 4.7: Comparison between our UFL approach with the method proposed by Tardif
[2] for the detection of VPs.

We tested our algorithm for VP detection in the YUD [91], which consists in

102 calibrated images of man-made environments. Each image contains two or
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Figure 4.8: Cumulative consistency error computed using our D for the three groups of
ground truth edges (belonging to orthogonal VDs). For each image we compute the rms
consistency error across all lines fitting the estimated VPs; GT corresponds to the ground
truth VPs provided by YUD.
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Figure 4.9: Cumulative consistency error computed using D for the three groups of ground
truth edges. The results for Ours and Tardif were obtained using edges automatically
detected.

three VPs, line segments that were manually extracted, and whose VP membership

is provided. Given the set of line segments, we run our UFL algorithm and com-

pared the results against the ones obtained using the algorithm proposed by Tardif

[2]. The results are shown in Figure 4.7. The accuracy of the estimation of the

VPs positions is very similar, whereas concerning the clustering of the lines, our

approach shows some improvements, having in 92% of the images less than 2% of

the lines wrongly labeled. In terms of computation time, Tardif takes on average

0.5 seconds on images of YUD, while our UFL approach needs 1 second (note that

the number of initial VPs is the same for both).

Given the initial set of VPs obtained using the UFL algorithm, the objective

now is to detect the Manhattan directions, or similarly, a single rotation. We run

our HFL method and compared it against (1) the globally optimal line clustering

approach proposed by Bazin et al. [96], and (2) the rotation obtained using the

three most orthogonal VDs of Tardif after fitting a perfect orthogonal frame [91].

The results are shown in Figure 4.8. Despite of the close performance in terms of

estimating the three orthogonal VDs, our method is computational more efficient,

running more than 50 times faster than Bazin.

4.6.2 YUD using extracted edges

In this section, we test our HFL algorithm for detecting the Manhattan frame in

the YUD, but using edges extracted trough Tardif’s detector [2] instead of the line
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(a) We simultaneously detected the Manhattan directions

(red,green,blue) and 1 non-orthogonal VD (magenta).

(b) Our algorithm detected 2 orthogonal triplets (middle and right), and assigned the

blue direction as being common for both.

Figure 4.10: Two cases from the YUD. The left images show the extracted edges (orange),
while the detection results are shown on the right. Black lines were assigned to the empty
set (no VP).

segments supplied by the database (see Figure 4.10). The comparison with respect

to Tardif is shown in Figure 4.9. We consistently outperform Tardif, reaching

100% of success only approximately 1.5 pixels later than using the ground truth

lines, which proves the robustness of our approach. The Bazin method was not

included in this experiment due to its higher computational cost when compared to

Ours and Tardif.

Figure 4.10 shows two particularly interesting results obtained by our approach

(refer to Figure A.1 and Figure A.2 for additional results). Using the HFL, we

correctly identified in Figure 4.10(a) the Manhattan frame and simultaneously es-

timated the VDs corresponding to the handrails of the stairs. In Figure 4.10(b), we

identified two different mutually orthogonal triplets (remark that for the analysis

in Figure 4.9, the orthogonal triplet with more lines was automatically selected),

one corresponding to the Manhattan frame and the other is due to the squares on

the floor. We also identified that both orthogonal frames share the same vertical

direction.

4.6.3 Scenes containing multiple orthogonal triplets

This section shows experiments on real images containing more than one orthogo-

nal triplet of VDs. The images shown in Figure 4.11 were obtained using a Pana-

sonic DMC digital camera (refer to Figure A.3 and Figure A.4 for additional re-

sults), while the image shown in Figure 4.12 was downloaded from Flickr. The
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Figure 4.11: (Left) extracted edges, and (right) detection results. In each example (row)
we detected 2 groups of orthogonal triplets with the blue VD in common. The VD in
magenta (row 3) was detected but (incorrectly) not assigned to any triplet.

Figure 4.12: (Row 1) extracted edges (left) and clustering obtained using UFL (right);
(Row 2) 3 groups of orthogonal triplets were detected using HFL, the 2 on the left have the
blue VD in common

input edges for our UFL and HFL algorithms are obtained using Tardif’s edge

detector. We are able to handle high-resolution images containing many edges,

detecting simultaneously both multiple orthogonal triplets as well as single VDs.

Figure 4.12 shows results for both the UFL labeling (top,right) and the following

HFL procedure (bottom). There is one error in the hierarchical clustering (bottom,

middle). Our approach mistakenly assigns the edges on the roof to one orthogonal
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triplet, but this issue can be a consequence of either a poor estimation of the focal

length or an ineffective tuning of the facility costs for HFL.

4.7 Conclusions

We presented an automatic and global approach for the detection of VPs and mu-

tual orthogonal VDs. The core of the framework is the formulation of these multi-

model fitting problems as UFL and HFL instances, which are solved using a mes-

sage passing approach. The effectiveness of the framework is proved by challeng-

ing real scenarios containing multiple Manhattan-world configurations.
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Chapter 5

Piecewise Planar Reconstruction

using two views

This chapter describes a reconstruction pipeline that generates piecewise-planar

models of man-made environments from two calibrated views. The 3D space is

sampled by a set of virtual cut planes using SymStereo, implicitly defining possible

pixel correspondences. The likelihood of these possible correspondences is mea-

sured using logN (see Chapter 2), obtaining profile contours of the 3D scene that

become lines whenever the virtual cut planes intersect planar surfaces. The detec-

tion and estimation of these lines cuts is formulated as a global optimization prob-

lem over the symmetry matching cost, and pairs of reconstructed lines are used to

generate plane hypotheses that serve as input to PERL clustering [3]. Our PERL

formulation alternates between a discrete optimization step, that merges planar

surface hypotheses and discards detections with poor support, and a continuous

optimization step, that refines the plane poses. The pipeline outputs a semi-dense

PPR of the 3D scene. In addition, the input images can then be segmented into

piecewise-planar regions by using a standard MRF formulation for assigning pix-

els to plane detections. Experiments with both indoor and outdoor stereo pairs

show significant improvements over state-of-the-art methods with respect to accu-

racy and robustness.

5.1 Introduction

As discussed in previous chapters, stereo reconstruction is a classical problem

in computer and robot vision that deserved the attention of thousands of authors

[23, 29]. Despite of the many advances in the field, situations of poor texture, vari-
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able illumination, severe surface slant or occlusion are still challenging for most

stereo matching methods, making it difficult to find a tuning that provides good

results under a broad variety of acquisition circumstances [107]. Since man-made

environments are dominated by planar surfaces, several authors suggested to over-

come the above mentioned difficulties by using the planarity assumption as a prior

for the stereo reconstruction [64, 108, 7, 8, 9]. These approaches have the advan-

tage of providing piecewise-planar 3D models of the scene that are perceptually

pleasing and geometrically simple, and, thus, their rendering, storage and trans-

mission is computationally less complex. This chapter proposes a pipeline for

two-view Piecewise Planar Reconstruction (PPR) understood as the detection and

reconstruction of dominant planar surfaces in the scene1.

As many multi-model fitting problems (e.g. Chapter 4), PPR is in a large extent

a chicken-and-egg problem. If there is accurate 3D evidence about the scene, such

as points, lines, VDs, etc, then the problem of detecting, segmenting, and estimat-

ing the pose of dominant planes can be potentially solved using standard model

fitting techniques [109, 3]. On the other hand, if there is a prior knowledge about

the dominant planes in the scene, then the matching process can be constrained to

improve the accuracy of the final 3D reconstruction, e.g. the known plane orienta-

tions can be used to guide the stereo aggregation [51]. Existing methods for PPR

typically comprise three steps that are executed sequentially:

• 3D Reconstruction: the objective is to collect 3D evidence about the scene

from multiple views. This evidence can either be obtained from sparse stereo

that matches a sparse set of features across views, or from dense stereo (refer

to Chapter 2).

• Plane Hypotheses Generation: given the 3D data, the objective is to detect

and estimate the pose of planar surfaces using some sort of multi-model

fitting approach.

• Plane Labeling: the goal is to assign to each image pixel one of the plane

hypotheses generated in the previous step.

While most methods were originally designed to receive multiple views as in-

put [64, 110, 108, 7, 8, 9], we propose a pipeline that uses only two views and

makes no assumptions about the scene other than the fact of being dominated by

planar surfaces. The novelty is mainly in the steps of 3D Reconstruction and Plane

Hypothesis Generation, and the contributions are twofold.

First, we propose a new approach for the reconstruction of line cuts using Sym-

Stereo. As discusses previously, establishing dense stereo correspondence is com-

putationally expensive specially when dealing with high-resolution images. On the

other hand, sparse stereo applied to only two views tends to provide insufficient 3D

1We mean by PPR something that is different from approximating surfaces by small planes, as

typically done in several dense stereo methods (e.g. [51, 53])

73



data for establishing accurate plane hypotheses. Thus, we propose to carry a semi-
dense reconstruction of the scene by independently recovering depth along a set
of pre-defined virtual planes using SRF (refer to Chapter 2 and Chapter 3). Since
the virtual scan planes must intersect the plane surfaces into lines, we extract line
segments from the profile cuts and use these line cuts to generate plane hypotheses.

The second contribution is a global plane fitting formulation based on PEARL
[3]. Most methods for PPR treat stereo matching and plane detection in a sequen-
tial and independent manner [64, 110, 108, 7, 8, 9]. This is problematic because
the accuracy of the plane hypotheses is inevitably limited by the accuracy of the
initial 3D reconstruction that does not take into account the fact of the scene being
dominated by planar surfaces. We carry the 3D reconstruction and the plane fit-
ting in a simultaneous and integrated manner using the recent PEARL framework
proposed in [3]. The algorithm alternates between a global discrete optimization
step, that considers VD and crease edges to merge plane surface hypotheses and
discards spurious detections, and a continuous optimization step over the symme-
try energy, that refines the plane pose estimation taking into account surface slant.
The output of the proposed pipeline is a set of plane hypotheses and a semi-dense
PPR of the 3D scene where the reconstructed line cuts are labeled according to the
plane detections.

5.1.1 Planarity prior for SymStereo

(a) Left Image I (b) 3D view (c) Right Image I′

Figure 5.1: As discussed in Section 2, the objective of SRF is to estimate the profile cut
(magenta and blue), corresponding to the intersection of a virtual cut plane Π (yellow)
with the scene. In the case Π intersects a planar surface, then the profile cut is a 3D line
segment (blue).

Let’s assume a particular virtual cut plane that intersects a planar surface in
the scene (refer to Figure 5.1). The profile cut of intersection between these two
planes is a 3D line. The pipeline that is proposed in this chapter uses this prior for
performing PPR. The basic idea is to search for line cuts along a discrete set of
virtual cut planes, which are then used for posing plane hypotheses in the scene.
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5.2 Related Work

Several works in PPR start by obtaining a sparse 3D reconstruction of the scene

(e.g. point clouds, edge lines, etc), then establish plane hypotheses by applying

multi-model fitting to the reconstructed data, and finally use these hypotheses to

guide the dense stereo process and/or perform a piecewise planar segmentation

of the input images [64, 110, 108]. Werner and Zisserman use multiple cues and

assumptions to find dominant surface orientations, and then perform plane-sweep

reconstruction along the detected normal directions. Pollefeys et al [108] detect

planar surfaces in urban environments from 3D point features obtained from Struc-

ture from Motion (SfM), and use the estimated normals for guiding plane-sweep

stereo.

Furukawa et. al [7] propose to perform PPR assuming a Manhattan-world

model. They reconstruct 3D patches in textured image regions from multiple views

using [111], and use the normals of these patches to establish plane hypotheses.

These hypotheses are then used in a MRF formulation for pixel-wise plane la-

beling. In [8], Sinha et al. propose a probabilistic framework for assigning plane

hypotheses to pixels with the evidences of planar surfaces being provided by the es-

timation of VPs, and the reconstruction of sparse feature points and line segments.

Gallup et al [9] propose a stereo method capable of handling both planar and non-

planar objects contained in the scene. A robust procedure based on RANSAC is

used for fitting plane hypotheses to dense depth maps, followed by a MRF formu-

lation for plane labeling of the input images.

An alternative strategy is to over-segment the stereo images based on color in-

formation and fit a 3D plane to each non-overlapping region. The number of planes

to be considered is defined by the segmentation result, which acts as a smoothness

prior during the global optimization. This segmentation information is either used

as a hard minimization constraint [50, 112, 48] or as a soft constraint [113]. The

main weakness of this type of strategy is the assumption that planar surfaces in the

scene have different colors, which is often not the case in most man-made environ-

ments (e.g. walls, doors, windows, etc).

The drawback of the approaches described so far is the fact that depth estima-

tion and plane fitting are carried in a sequential and decoupled manner. The errors

in the extracted 3D evidence may affect the accuracy of the plane pose estimation,

and the inferred planar surfaces are not used for refining the initial depth estimates.

There are a few approaches [114, 115, 116] that perform PPR by carrying

stereo matching and 3D plane fitting iteratively. The strategy consists in alternating

between segmenting the input images into non-overlapping regions and estimating

the plane parameters for each region. However, and as stated by the authors of

[115], these types of algorithms can become stuck in a local minimum whenever

they face challenging surface structures e.g. surfaces with low and/or repetitive

texture.
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5.3 Background

This section briefly reviews two background concepts that are used throughout the

chapter, namely the energy-based multi-model fitting framework called PEARL

(Section 5.3.1), and a global pixel-wise plane labeling formulation (Section 5.3.2).

There is no major novelty, so that readers that are familiar with these concepts can

skip the section.

5.3.1 Energy-based multi-model fitting using PEARL

As briefly discussed in Chapter 4, Isack and Boykov argued in [3] that methods

that greedily search for models with most inliers while ignoring the overall classi-

fication of data are a flawed approach to multi-model fitting, and that formulating

the fitting as an optimal labeling problem with a global energy function is prefer-

able. For this purpose, they propose the PEARL algorithm consisting in three main

steps:

1. Propose an initial set of plausible models (labels) L0 from the observations

2. Expand the label set for estimating its spatial support (inlier classification)

3. Re-estimate the inlier models by minimizing some error function.

Given the initial model set L0, the multi-model fitting is cast as a global optimiza-

tion where each model in L0 is interpreted as a particular label f . Consider that

d ∈ D is a data point and that fd is a particular label in L0 assigned to d. The ob-

jective is to compute the labeling f = {fd|d ∈ D} such that the following energy

is minimized:

E(f)=
∑

d∈D

Dd(fd)

︸ ︷︷ ︸
data term

+λS

∑

d,e∈N

Vd,e(fd, fe)

︸ ︷︷ ︸
smoothness term

+λL · |Ff |︸ ︷︷ ︸
label term

(5.1)

where N is the neighborhood system considered for d, Dd(fd) is some error that

measures the likelihood of point d belonging to model fd, and Vd,e is the spatial

smoothness term that encourages piecewise smooth labeling by penalizing config-

urations f that assign to neighboring nodes d and e different labels. The label term

is used for describing the data points using as few unique models as possible, with

Ff being the subset of different models assigned to the nodes d by the labeling f

(see [3] for further details). In order to handle outlier data points in D, the outlier

label f∅ is added to L0. Any point d to which is assigned the label f∅ is considered

an outlier, and has a constant likelihood measure Dd(fd=f∅) = τ . The energy of

Equation 5.1 is efficiently minimized using α-expansion [3].

Finally, the third step of PEARL consists in re-estimating the model labels f in

L0 with non-empty set of inliers D(f) = {d ∈ D|fd = f}. Let mf be the model
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associated to the label f . Each model mf is refined by minimizing the error cost

over its parameters:

m∗
f = min

mf

∑

d∈D(f)

Dd(f).

The models with non-empty set in L0 are replaced with the refined models m∗
f , and

the labels with empty set are discarded. The new set of labels L1 is then used in

a new expand step, and we iterate between discrete labeling and plane refinement

until the α-expansion optimization does not decrease the energy of Equation 5.1.

5.3.2 MRF for Plane Labeling

Given a set of plane hypotheses contained in the scene, many PPR algorithms per-

form a pixel-wise plane labeling of the input images. We follow a standard MRF

formulation for comparing all the tested algorithms. The objective is to minimize

an energy involving data, smoothness and labeling terms (refer to Equation 5.1). In

this case, the nodes d ∈ D are the image pixels, and the labels f ∈ P are the plane

hypotheses. A 4×4 neighborhood N4 is assumed for neighboring pixels d and e,

and the data term is defined as

Dd(f) =

{
min(ρd(f), ρmax) if f ∈ P
γρmax if f = f∅

where ρd(f) is the photo-consistency between the pixels in the two views put

into correspondence by the plane associated to label f . For measuring the photo-

consistency, we use ZNCC (refer to Chapter 2). The photo-consistency metric is

given by ρd(f)=(1−ZNCC(f))/2, where ZNCC(f) is the cost obtained using

ZNCC for the plane hypothesis f (ρmax and γ are constant parameters).

The smoothness term is defined as:

Vd,e(fd, fe) = g ·






0 if fd = fe
M if (fd ∨ fe) = f∅
D′ otherwise

where

D′ = min(D,M) +m and

g =
1

∆I2 + 1
,

D is the 3D distance between neighboring points according to their plane fd and

77



fe, respectively, M and m are constant parameters, and

∆I = |I(d)− I(e)|.

is the image gradient.
The data and the smoothness terms are, with minor differences, similar to the

ones used in the graph-cut labeling of Gallup et al. [9]. We additionally add the
labeling term λL|Ff | for avoiding very close plane hypotheses in P to be assigned
in f . This has the effect of simplifying the 3D model using as few unique planes as
possible.

5.4 Reconstruction of lines along a single cut plane

Figure 5.2: Reconstruction of 3D line cuts from a stereo pair using SymStereo along a
virtual cut plane Π. The log10 cost is employed for obtaining the joint energy E, which
is used as input to a weighted Hough transform for extracting line cuts (black lines). The
most appropriate hypotheses (in this example only one line cut (blue) is detected) are then
selected using a global framework constituted by data, smoothness and label costs. Finally,
the line cuts are mapped back onto the right view using the inverse of H.

The reconstruction of lines from two or more views has in the vast majority
of existing algorithms one common denominator: the detection of line segments
in the input views that are matched in subsequent steps. In the case there are no
(salient) line segments in the input images, then no 3D line reconstructions can be
obtained.

This section describes an algorithm that reconstructs a set of 3D line cuts along
a single virtual cut plane Π using SRF. This is achieved by noting that the inter-
section of Π with a plane in the scene is a line (e.g. in Figure 5.2, the intersection
of Π with the floor plane is the blue line cut). The 3D lines corresponding to the
intersection of Π with multiple planes are projected onto the stereo views as line
segments, whose locations in most of the cases cannot be perceived only from the
input images alone (there are no visible edges). However, these lines can be reli-
ably detected and estimated from the joint symmetry and anti-symmetry energy E
that is obtained from Π. Remark that each line cut that is detected from a virtual
cut plane corresponds to a particular plane contained in the scene. However, the
corresponding parameters cannot be estimated from a single cut plane (we will see
in Section 5.5 how to detect and estimate planes based on the information of more
than one virtual cut plane).
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5.4.1 Line cut detection using Hough and PEARL

As shown in Figure 5.2, we use the SymStereo framework along a virtual cut plane

Π and employ the log10 symmetry metric for computing the joint energy E. Each

pixel in E provides the matching likelihood of a particular pair of pixels in the stereo

views, being an indirect measurement of the occupancy probability in 3D along Π.

The energy E is used as input to a weighted Hough transform for extracting a set

of line cut hypotheses L0 (a similiar approach was also used in Section 3.5). This

is accomplished by selecting the NH local maxima in the Hough voting space.

Next, we formulate the line cut detection as a global labeling problem in a

PEARL framework, in which the objective is to assign to each epipolar line (image

row) a line cut hypothesis in L0. Following the notation of Section 5.3.1, the data

points d of the graph are the epipolar lines, with the size of the set D being equal to

the number of image rows, and the goal is to assign a line segment label f to each

epipolar line d. The data term is defined as

Dd(f) =

{
min(1− E(d, xf ), τ) if f /= f∅
α∅τ otherwise

where E(r, c) is the joint energy value for row r and column c. The coordinate xf
corresponds to the intersection between the epipolar line d and the line segment lf
associated to label f . Remark that the truncation parameter τ is used for handling

poorly matching surfaces e.g. containing low and/or repetitive textures, while the

discard label f∅ indicates that no satisfactory line cut hypothesis can be assigned

to d. In this case, the virtual cut plane Π has high probability of not intersecting a

planar surface along the epipolar plane associated to d.

The smoothness term of neighboring nodes d and e is given by

Vde(fd, fe) =






0 if fd = fe
λ∅ if (fd ∨ fe) = f∅

1
∆I2+1 otherwise

where

∆I = |I(d, xfd)− I(e, xfe)|

is the image gray-scale gradient. No penalization is assigned to neighboring image

rows d and e receiving the same label, while in the case one node receives the label

f∅, then a non-zero cost λ∅ is added to f . The smoothness term V prefers label

transitions at locations of larger image gradient (lower smoothness cost), which

usually occurs at the boundaries of two different surfaces. We use a constant label

term λL in Equation 5.1 for favoring line cut assignments f with fewer labels.

Finally, and after computing an initial labeling solution f for nodes d, the line

cuts l are refined by minimizing their parameters over the energies E via Levenberg-
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Marquardt (LM) [106]

l∗f = min
lf

∑

d∈D(f)

(1− E(d, xf )) , (5.2)

where D(f) is a subset of image rows d to which the label f was assigned. Remark

that at each solver iteration, the point xf on d is recomputed according to the

current line cut hypothesis lf . The new set of line cuts l∗f are then used in a new

global line cut assignment (expand) step, and we iterate between discrete labeling

and line cut refinement until the energy of Equation 5.1 stops decreasing (which

usually occurs after 2− 3 iterations).

5.4.2 Experiments in line cut detection

Figure 5.3: Results produced by our line cut detection algorithm along 5 virtual cut planes.
We show for each example the left and right views with the detected line cuts overlaid;
different colors indicate different cut planes, while different shades identifying different
line cuts.

We performed experiments of our line cut detection approach2 on various in-

door scenes (see Figure 5.2-5.4) acquired using a Bumblebee stereo camera from

PointGrey, which has a baseline of 24 cm and image resolution of 1024 × 768
pixels.

In the first example of Figure 5.3, we detect 2 different line cuts for each vir-

tual cut plane, one corresponds to the intersection of the cut planes with the floor

2We used for all the experiments the same parameters: NH = 200, λS = 1, τ = 0.8, α∅ = 0.7,

λ∅=0.9 and λL=20 that were empirically selected.
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(a) α∅=0.7 and λL=20 (b) α∅=0.8 and λL=10

Figure 5.4: Results for two different settings of α∅ and λL. By varying these parameters,
we can control the algorithm to be more permissive with respect to what is considered a
line cut (b), while for lower values of α∅ and higher values of λL the algorithm only detects
line segments with high probability of belonging to planar surfaces (a).

and one is due to the intersection with the wall. Remark that the matching of the

line segments across the views is almost perfect and consistent for all virtual cut

planes, even tough the line cut detection was carried for each virtual cut plane

independently. In the example (b), the scene consists of multiple planar surfaces,

some containing quite complicated textures. In this case, the line cut estimation ap-

proach along a single virtual cut plane begins to have difficulties. In situations the

cut plane intersects the scene in low-textured regions, the symmetry based match-

ing using log10 does not provide a well defined ridge at the locations of the image

of the profile cut. Following this, the algorithm prefers to label those regions with

the f∅ label (e.g. blue cut plane), since it has low confidence about the location of

the image of the profile cut. Finally, the example (c) presents some failure cases

of this approach, namely slanted surfaces with low-texture. In this cases, the algo-

rithm tends to (i) assign more than one line cut label that corresponds to the same

planar surface (noisy energy E), (ii) does not detect the line cut at all, or (iii) com-

putes wrong matches. Note that (i) could be handled by increasing the label cost

λL, however this would imply that line cuts corresponding to close planes (e.g.

chair backs and wall in example (c)) are assigned the same label. We will show in

Section 5.5 that most of these difficulties are handled by our PPR algorithm that

jointly estimates plane hypotheses from multiple virtual cut planes simultaneously.

So far most of the examples contained only planar surfaces. We show in Fig-

ure 5.4 a scene containing a non-planar object above the floor plane. The control of

labeling just strict planes (example (a)) or approximate non-planar surfaces by an

appropriate set of planes (example (b)) is achieved using different settings of the

weighting factor α∅ and the label cost λL. Using low values of α∅ and high values

of λL implies that only line cuts belonging to planar surfaces are reconstructed,

while higher values of α∅ and low values of λL enable to approximate non-planar

surfaces by various plausible line cuts.
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5.5 PPR using SymStereo and PEARL
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Figure 5.5: Pipeline for PPR using a pair of calibrated images: (1) apply the line cut
detection algorithm described in Section 5.4 along M virtual cut planes for obtaining a
sparse set of 3D line cuts; then (2) use the global semi-dense PPR algorithm described in
Section 5.5 for computing planar surfaces and obtain a semi-dense PPR; use the line cuts
estimated in (1) for obtaining plane hypotheses; and (3) use the global pixel-wise plane
labeling (Section 5.3.2) for computing a dense PPR model from the plane hypotheses in
(2).

This section describes an algorithm that combines the SymStereo framework

(refer to Chapter 2) with the geometric multi-model fitting algorithm PEARL [3]

for semi-dense PPR (see Figure 5.5). The input to this algorithm are M joint

energies Ei that were computed using log10 from a set of M virtual cut planes Π

that belong to a vertical pencil intersecting the baseline in its midpoint. The output

are a discrete set of planar surfaces and a semi-dense 3D reconstruction, where

each reconstructed point belongs to a particular plane. The detected planes can

then be used as plane hypotheses in a global plane labeling strategy for computing
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a dense model (see Section 5.3.2).

5.5.1 Formulation of the global framework

Figure 5.6: The scene is sampled by a discrete set of virtual cut planes Πi. This can
be thought as an image created by a virtual camera that is located between the cameras
(cyclopean eye), where each epipolar plane Ψr projects onto one row and each Πi projects
onto one column of the image. Each pixel of the cyclopean eye is originated from the back-
projection ray di,r (red), corresponding to the intersection between Πi and Ψr.

Consider that the midpoint of the baseline is the center of projection of a virtual
camera, which will be called the cyclopean eye (see Figure 5.6). The image that is
perceived by the cyclopean eye has height equal to the number of epipolar planes
Ψr with r=1, ..., R (one epipolar plane per image row), and the width is given by
number of virtual cut planes Πi with i=1, ...,M (one cut plane for each column).
Each pixel of the cyclopean eye is originated by the back-projection ray di,r, which
corresponds to the line of intersection between Πi and Ψr. The objective is to
estimate the point on each di,r that most likely belongs to a planar surface. This
problem is cast as a labeling problem following a PEARL framework, as described
in Section 5.3.1. The nodes of the graph are the back-projection rays di,r of the
cyclopean eye, and to each di,r we want to assign a plane label fd. The set of
possible labels is L0 = {P0, f∅}, with f∅ meaning that no point on di,r belongs to a
planar surface. Note that we use d instead of di,r whenever the virtual and epipolar
plane specifications are not strictly necessary. We assume a N4 neighborhood for
di,r that is defined by the four back-projection rays di±1,r and di,r±1 (see Figure
5.6).

5.5.2 Initial plane hypotheses

As discussed in Section 5.4, each line cut is a possible location of intersection of a
virtual cut plane with a planar surface in the scene. In order to propose an initial
set of plane models P0 for PEARL, we could generate all possible planes that can
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be obtained from two line cuts belonging to different planes Π. However and

depending on the number of cut planes that are used, the set P0 can easily become

very large. We noticed that using only pairs of line cuts from neighboring cut

planes Πi±1,2 drastically decreases the size of P0 and is enough for initializing our

piecewise-planar labeling approach. Since it is unlikely that line cuts intersecting

different epipolar planes correspond to the same planar surface, we further reduce

P0 and only use pairs of line cuts that have a minimum of NE epipolar lines of

overlap (NE=10).

5.5.3 Data and smoothness term

The data term Ddi,r
for the back-projection ray di,r is defined as

Ddi,r
(f)=

{
min(1− Ei(r, xf ), τ) if f ∈P0

τ if f=f∅

where Ei is the joint energy associated with the virtual cut plane Πi, r is the row

corresponding to the epipolar plane Ψr and τ is a constant. The coordinate xf is

the column defined by the plane hypothesis f , corresponding to the intersection of

di,r with the plane indexed by f . Note that similarly to [9], the non-planar f∅ label

indicates that no satisfactory plane hypothesis can be assigned to di,r. In this case,

the back-projection ray di,r has high probability of not intersecting the scene in a

planar surface.

Inspired by the work of Sinha et al. [8], the smoothness term for neighboring

nodes d and e is given by

Vde(fd, fe) =






0 if fd = fe
λ1 if (d, e, fd, fe) ∈ S1
λ2 if (d, e, fd, fe) ∈ S2
λ3 if (d, e) ∈ S3
λ4 if (fd ∨ fd) = f∅
1 else

where 0 < λ1 < λ2 < λ3 < 1, and the content of the sets S1, S2 and S3 is

described next. Remark that no penalization is assigned to neighboring nodes re-

ceiving the same plane label, while in the case of one node obtaining the discard

label f∅, a non-zero cost λ4 is added to the plane configuration f .

Following a similar reasoning [8], plane transitions between neighboring nodes

d and e are more likely to occur in the presence of crease or occlusion edges. A

crease edge corresponds to the projection of the 3D line of intersection between

two different planes in the scene, while occlusion boundaries arise from spatially

separated objects in 3D whose image projections interfere with each other.
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(a) Crease Edges (b) Detected Line Segments

Figure 5.7: We show in (a) some crease edges obtained from intersections of two different
planes contained in P0, while in (b) the result of the clustering of concurrent lines is shown.
Each group of lines (different groups have different colors) provides a possible vanishing
point location. The white line segments did not received any vanishing point label.

Let the point pd,fd (pe,fe) be the projection onto I of the intersection between

d (e) and the plane associated to fd (fe). In order to encourage plane label transi-

tions at crease edges, we store in the set S1 the quadruples (d, e, fd, fe) in which

the points pd,fd and pe,fe are located on different sides of the crease edge defined

by fd and fe. Whenever a labeling configuration f contains assignments located in

S1, then it incurs a penalization λ1 (Figure 5.7(a) shows some crease edges that are

estimated from real imagery).

Occlusion edges are usually coincide with visible 2D line segments in the input

views and often are also aligned with the vanishing directions of scene planes (Fig-

ure 5.7(b)). In order to find possible occlusion edges, we detect 2D line segments

in the left view I using the Line Segment Detector [117]. Each line segment is a

possible location of an occlusion boundary. For clustering concurrent lines we use

the global vanishing point (VP) detection algorithm proposed in Chapter 4. The set

S2 contains the quadruples (d, e, fd, fe) where the image points pd,fd and pe,fe are

located on different sides of a line segment that was clustered to a particular VP,

whose direction is orthogonal either to the planes associated to fd or fe. Finally,

S3 contains the remaining pairs (d, e) whose projections are on different sides of

a line segment to which no VP was assigned. Remark that in contrast to [8], we do

not perform any line matching between the stereo views, substantially decreasing

the complexity of the algorithm.

5.5.4 Plane refinement

The third step of the PEARL algorithm (see Section 5.3.1) is to re-estimate the

plane model parameters using the inliers of the discrete labeling f . Let Ωf be

the plane associated to f to which has been assigned a non-empty set of inliers

D(f) = {d ∈ D|fd = f}. Each plane Ωf is refined by minimizing its plane
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parameters over the energies E via LM [106]:

Ω∗
f = min

Ωf

∑

di,r∈D(f)

(1− Ei(r, xΩ)) , (5.3)

where xΩ is the column defined by the intersection of di,r with Ω. The new set

of labels P1 =
{
Ω∗

f

}
is then used in a new expand step, and we iterate between

discrete labeling and plane refinement until the α-expansion optimization does not

decrease the energy of Equation 5.1 (which usually takes 2−3 iterations).

5.5.5 Plane refinement after PEARL

We have discussed in Section 2.4 that SymStereo can be enhanced in case there

is slant information available. The output of the global algorithm described previ-

ously, is the labeling f that assigns to each back-projection ray d a plane Ω. The

intersection of d with Ω defines a 3D point Q, and Ω also defines α1 that is propor-

tional to the 3D slant in the neighborhood of Q. Following this, and as described

in Section 2.4, the position Q can be refined by iteratively optimizing β.

Let Ω be the plane associated to label f to which has been assigned a non-

empty set of inliers D(f) =
{
di,r ∈ D|fdi,r

= f
}

, and consider that Qi,r is the

intersection between the ray di,r and Ω (refer to Figure 2.6). For each di,r, we

compute the ”ideal” β1 and obtain a new back-projection ray d1
i,r. The new ray

d1
i,r is located on the same epipolar plane, but on the virtual cut plane intersecting

the point O1 and the previously reconstructed point Qi,r. Given the new plane Ω1,

a new homography mapping (see Equation 2.5) can be used for inducing improved

symmetries, and from which the joint energy E
1
i,r is re-calculated. The new joint

energies E1i,r are used in a new refinement step using LM (Section 5.5.4). We iterate

between re-computing new back-projection rays dn
i,r and refining Ωn four times.

5.5.6 Results in semi-dense PPR

Figure 5.8 shows 10 different indoor and outdoor results obtained using our semi-

dense PPR algorithm. We show for all the stereo pairs some crease edges that

can be used as indicators of the accuracy of the plane estimation. Concerning

τ = 0.8, the first two scenes (rows) are only composed by planar surfaces that

are accurately reconstructed. We added to the scenes of rows 3 and 4 non-planar

objects, which are well approximated by one or more plane surfaces. Additionally,

the scene of row 4 contains, besides large planar and non-planar surfaces, a small

plane corresponding to the blue book, which is well estimated from only 4 virtual

cut planes (please see the crease edge between the book and the floor).

We correctly detect in the first example of the stairs data set 9 planar surfaces.
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Figure 5.8: Results produced by our semi-dense piecewise planar algorithm. From left
to right: the left and right views with the images of the profile cuts overlaid, different
colors indicate different planes; the left view with crease edges (black) that can be used
as indicators of the estimation accuracy; and two views of the textured 3D reconstruction
rendered from different viewpoints.

Whereas in the second example, the top steps are approximated by a single plane

(red). This occurs because the image resolution is not sufficient for SymStereo

to discriminate depth at such large distances. Additionally, we are able to detect

a plane on the right of the stairs that apparently corresponds to the white wall

(magenta). However and since the estimation is deceived by the handrail, the plane

model seems to be inaccurate. Finally, in the outdoor dataset, we show non-trivial
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3D scenarios containing high slant and very low texture, which seem to be correctly

handled by our approach.

So far, most of the back-projection rays d received a plane label even though

belonging to non-planar objects (see rows 3 and 4). The control of labeling just

strict planes can be achieved using the truncation parameter τ . We show on the

two right columns of Figure 5.8 results on the same datasets, however decreasing τ
from 0.8 to 0.6. In this case, the non-planar objects in rows 3 and 4, as well as the

red plane in the second stairs example are not reconstructed, because the algorithm

only outputs plane models of which has high confidence of being correct. However,

this has the drawback of discarding planes in regions of low texture or containing

specular reflections (e.g. rows 5 and 8).

5.5.7 Independent line cut reconstruction vs. semi-dense PPR

Figure 5.9: Comparison between independent line cut reconstruction along virtual planes
and the semi-dense PPR algorithm. For each example, we show the (independent) detection
results along 5 virtual cut planes (left), and the final labeling results of the semi-dense PPR
for 25 cut planes (right).

We show in Figure 5.9 a brief comparison of the line cut reconstruction al-

gorithm described in Section 5.4 with the semi-dense PPR approach described in

this section. In the case the virtual cut planes intersect planar surfaces with some

texture and far from object discontinuities, the independent reconstruction along

single virtual planes provides accurate results (example (a)). In scenarios contain-
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ing multiple planes and complicated textures (examples (b-d)), the independent

line cut reconstruction has some difficulties. These problems are solved using our

semi-dense PPR pipeline that estimates planar surfaces along different virtual cut

planes simultaneously and in a global manner.

5.6 Experiments in PPR

We proposed a new and original algorithm for detecting and estimating planar sur-

faces in the scene that combines the SymStereo framework and PEARL optimiza-

tion. For showing the effective advantages with respect to the existing approaches,

this section runs a set of experiments in PPR from a pair of stereo images, and

compares the performance of the proposed algorithm with respect to the state-of-

the-art.

The evaluation is carried on a new data-set comprising challenging indoor and

outdoor scenes (some examples are shown in Figures 5.10-5.12). The stereo pairs

were acquired using a Bumblebee stereo camera from PointGrey, with a baseline

of 24 cm and image resolution of 1024 × 768 pixels. The scenes contain mostly

planar surfaces, including a variety of complicated situations to traditional stereo

methods e.g. low and/or repetitive textures, and high surface slant.

5.6.1 Compared Algorithms

The output of our algorithm (SymS) is a discrete set of plane hypotheses PSymS

and a semi-dense 3D reconstruction. We compare these plane hypotheses with the

ones obtained using two different approaches.

The first applies dense stereo (DS) for PPR and was proposed by Gallup et

al. [9]. The authors start by obtaining a dense depth map with respect to the left

view I using local stereo. Then, plane hypotheses are generated using a sequential

RANSAC procedure over the disparity map (refer to [9] for details). Finally, a

plane linking step is performed for combining near planes and/or single planes that

are disjoint in the image. The output of this algorithm is the set PDS of plane

hypotheses and a dense PPR.

The second approach was proposed by Sinha et al. [8], and is based on sparse

stereo (SS). It detects and computes sparse correspondences, line segments and

VDs from the images. From these data, plane hypotheses are generated from spe-

cific histogram votings and RANSAC procedures. The output is the set PSS and a

sparse PPR composed by 3D points and 3D line segments.

5.6.2 Accuracy analysis and parameter tuning

The objective is to compare the performance of DS, SymS and SS for generating

plane hypotheses for the MRF plane labeling described in Section 5.3.2. Con-
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cerning the accuracy analysis, it is difficult to obtain the ground truth (GT) model

parameters in each stereo pair of the dataset, which would involve a error prone

and time consuming manual selection of point matches in the stereo views. We

decided to use a different indicator for measuring the accuracy.

For each stereo pair, we manually define the planar region Rk in the left view I

that is associated to a particular plane Ωk in the scene (see Figure 5.10). Given the

pixel-wise plane labeling f , computed using the plane hypotheses generated from

the algorithms described in Section 5.6.1, the accuracy of the estimation of Ωk is

evaluated using the following metric:

Pk =

∑

p∈Rk

ρp(fp)

#Rk
, (5.4)

where #Rk is the number of pixels in the region. Remark that the accuracy analy-

sis using Pk must be performed with caution. There is no guarantee that Pk < Pl

means the plane Ωk was better estimated than Ωl. The proposed metric depends

largely on the textures and illumination of the surfaces e.g. planar surfaces with

low-texture and specularities will have a large Pk even tough the corresponding

plane model is well estimated. On the contrary, we are in the opinion that the

metric Pk is adequate for comparing different estimations of the same plane Ωk.

Assume that we use two different algorithms for obtaining two different sets of

plane hypotheses, say PA1 and PA2, which are used as input to the global plane

labeling described in Section 5.3.2. After the graph-cut optimization, we have the

assignments fA1 from PA1 and fA2 from PA2 for each image pixel. Following

this, we can compute for each GT plane Ωk the photo-consistency metrics PA1
k

and PA2
k . In case PA1

k < PA2
k , then the first algorithm generated a plane hypothesis

that better fits the input images, which most probably means that ΩA1
k is more

accurate than ΩA2
k . We noticed in practice that this empirical comparison is a very

good accuracy indicator in real-world scenarios.

The parameters that are used in the different algorithms were manually tuned

using the GT labeling on a subset of stereo pairs of the dataset, whose results are

not shown in the experimental comparison. These values are kept constant for all

the remaining experiments. Concerning our SymS algorithm, we decided to use

M = 25 virtual cut planes for the best compromise between accuracy and runtime.

Concerning the MRF labeling (see Section 5.3.2), the parameters are constant and

the same for all three plane hypotheses generators, namely ρmax = 0.8, γ = 0.6,

m=1 and M=2.

5.6.3 Comparison results

The dense PPR results obtained using DS, SymS and SS as plane hypotheses gen-

erators for the pixel-wise plane labeling are shown in Figure 5.10.
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In the first two examples, the scene is composed by two and three planes, re-

spectively, which are mostly fronto-parallel to the cameras. In these cases, the three

algorithms work well and provide approximately similar results. SS has some prob-

lems distinguishing the vertical planes in the example (b), which is mainly due to

lack of features in the wall on the right. Both examples shown in the second row

contain, besides other planes, a highly slanted surface (blue in example (c) and

green in example (d)). Our algorithm is able to detect and accurately reconstruct

this surfaces, whereas DS and SS clearly have difficulties handling this amount of

slant. The examples (e) and (f) show scenes containing many planes at different

distances from the camera. SymS is able to detect all the planes and provides the

most accurate plane hypotheses, being less sensitive to the surface-camera distance

when compared to DS and SS.

The last row shows two examples containing scene with difficult textures and

illumination conditions. SS is not able to provide acceptable plane hypotheses

for the MRF labeling so that no plane assignment is obtained. DS is still able

to cope with the complicated texture of example (g), but completely fails in the

example (h), where the joint effect of high slant and repetitive texture are major

challenges for dense stereo matching. Our approach recovers all the planes, and

can even distinguish the close planes of example (g) corresponding to the floor and

the carpet.

Finally and for the sake of completeness, the run-times (without the final MRF

labeling) for each algorithm in the images shown in Figure 5.10 are: 1−2 min for

SymS (the runtime mostly depends on the number of line cuts that are estimated

(Section 5.4)), 2 min for DS, and approximately 3 min for SS. These are straight-

forward and unoptimized implementations in Matlab, except for α-expansion op-

timization, for which the public available code of [76, 77, 78, 118] in C++ is used.

5.6.4 Two view piecewise planar models

As discussed in [119], the depth error in stereo vision is related with the corre-

spondence error by a multiplication factor known as the geometric resolution that

depends on the baseline and on the focal length. We will assume that the maxi-

mum allowed relative depth error should be 2%. From our evaluation, this value is

reached for the case of our algorithm and in the images shown in Figure 5.10 for a

depth of around 12 m. This will be our depth reconstruction limit, so that we will

not reconstruct surfaces further away from this bound.

Figure 5.11 and Figure 5.12 show plane labeling and 3D reconstruction re-

sults in indoor and outdoor scenes, respectively. This is the type of environments

targeted by the PPR algorithms described in [110, 7, 8, 9]. While these methods

require multiple views, our approach is able to reach competitive results using only

a stereo pair. The labeling results are exclusively based on photo-consistency and

proximity, which explains the poorly defined region borders in some examples.

Such issue can be easily solved using a more sophisticated pixel-wise plane la-
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beling MRF, similar to the one used in Section 5.5 that incorporates crease and

occlusion edge information. We chose not to do so in order to better assess the

accuracy of our plane pose estimation.

5.7 Conclusion

This chapter presented an automatic piecewise planar reconstruction algorithm

from two views. Unlike other existing approaches, the stereo depth estimation

and the detection of planar surfaces are accomplished in a tight and coupled man-

ner by combining SymStereo with PEARL [3]. The effectiveness of the scheme

is proved by comparison with two different state-of-the-art approaches in several

challenging indoor and outdoor scenarios.

As a final comment, it can be claimed that the energy-based model fitting can

either be applied to dense stereo reconstruction or to a sparse point-cloud model.

The former would substantially increase the computational complexity without

bringing obvious benefits, while the latter would avoid the use of the smoothness

term for regularizing the PEARL energy minimization. Thus, the symmetry-based

semi-dense stereo provides a trade-off between the two, playing a key role in the

success of the overall approach.
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Figure 5.10: (top, left) I with GT labeling, different colors correspond to different planes;
(top, right) mean photo-consistency P in the GT region for each algorithm, each color
identifies a particular plane; and (bottom) pixel-wise plane assignment obtained using the
different algorithms as plane hypotheses generators. The black label refers to the discard
label f∅. We manually identified for the example (e) the planes that are mutually orthogonal
(e.g. blue and red) and parallel (e.g. green and red); we present the mean angles θ̄⊥ and θ̄‖
between the perpendicular and the parallel planes, respectively.
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(a) Stereo pair (b) Plane labeling (c) Textured 3D reconstruction

Figure 5.11: Indoor results produced by our PPR algorithm.
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(a) Stereo pair (b) Plane labeling

)

(c) Textured 3D reconstruction

Figure 5.12: Outdoor results produced by our PPR algorithm.
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Chapter 6

Stereo Matching using Multiple

Slant Hypotheses

This chapters extends the recent framework of Histogram Aggregation (HA) [4],

which enables to improve the matching accuracy while preserving a low computa-

tional complexity. The original algorithm uses a fronto-parallel support window

for cost aggregation, leading to inaccurate results in the presence of significant

surface slant. We address the problem by considering a pre-defined set of discrete

orientation hypotheses for the aggregation window. It is shown that a single orien-

tation hypothesis in the DSI is usually representative of a large interval of possible

3D slants, and that handling slant in the DSI has the advantage of avoiding visibil-

ity issues. Additionally, we propose a fast recognition scheme in the DSI volume for

selecting the most likely orientation hypothesis for aggregation. The experiments

prove the effectiveness of the approach.

6.1 Introduction

As was discussed in Chapter 2 and in Chapter 3, dense stereo matching consists

in assigning to each pixel in one view the corresponding pixel in the other view

[23]. This requires using a matching cost for comparing image pixel locations

and quantifying their likelihood of being a correspondence. This chapter focuses

exclusively in local methods, that aggregate the matching cost over a support region

in the DSI [42], as a way to enforce spatially coherence and improve the final depth

estimates.

It is well known that the aggregation window must be aligned with the surface

of the pixel being analyzed in order to maximize the matching performance[46,
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Figure 6.1: The objective is to reconstruct the points on the gray surface. The aggregation
windows are overlaid (blue, red and green). Traditional stereo aggregation assumes that
all the pixels in the support window have the same disparity. This works fine for fronto-
parallel (FP) surfaces (a), however this assumption is incorrect for slanted surfaces (b).
In this case, the support window should be aligned with the surface in gray (c). We pro-
pose an aggregation scheme that accommodates surface slant by considering a pre-defined
set of possible orientations for the support window. Slant hypotheses involving sub-pixel
disparities are approximated by discrete directions of aggregation in the DSI (d).

47, 48, 49, 50, 5, 51, 52, 53]. We revisit ahead several stereo methods that account

for the surface slant by either working in terms of 3D space or in terms of the

DSI, which is conceptually equivalent. Their objective is the estimation of the

orientation of the 3D plane that approximates the surface region that is projected

in the pixel or group of pixels under analysis. This usually involves the estimation

of sub-pixel matches for each hypothesized planar region. Thus, these algorithms

tend to be complex and time consuming.

This chapter presents a simple but effective approach for increasing the robust-

ness to surface slant during stereo cost aggregation. Our strategy consists in avoid-

ing the errors in pixel matching caused by surface slant without having to explicitly

infer the normal orientation of the original 3D surfaces in the scene. This com-

pletely avoids sub-pixel matching and interpolation issues, enabling to improve

the global stereo accuracy without substantially increasing the computational com-

plexity. We explore the DSI and propose the discretization of slanted aggregation

windows as it is done for disparity vs. 3D depth (Figure 6.1). It is demonstrated

that an initial small set of aggregation orientations improves the stereo aggregation

even for surfaces contained in the scene that are only approximated by those ori-

entations. In order to improve the efficiency of the proposed stereo aggregation,

we use a simple and fast recognition scheme for selecting the most appropriate

aggregation orientation α for each pixel-disparity pair (p, d). The Histogram Ag-

gregation (HA) technique [4] is used (refer to Section 6.3), which is conceptually

different from the standard cost aggregation in those cases where only one aggre-

gation orientation is considered for each pixel-disparity pair. In a certain sense,

we enhance the HA technique proposed in [4] with slant information, boosting the

accuracy at the expense of a small computational overhead. The experimental re-

sults in terms of integer pixel disparity accuracy are close to [53] (highly ranked in

Middlebury), but with some orders of magnitude less computation time.
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6.2 Related work

In recent years, three main research topics concerning cost aggregation were ad-

dressed:

1. handling depth discontinuities [79]

2. reducing the computational complexity [4]

3. handling surface slant [46, 47, 48, 49, 50, 51, 52, 53].

The first issue is solved by the adaptive weight strategy of Yoon and Kweon [79],

while the second was recently addressed in [4] by eliminating redundant compu-

tations. We focus on the 3D slant issue and, to keep computation tractable, on the

second by following similar sampling schemes as [4]. We will briefly review the

stereo methods that take the surface slant into account, and distinguish between

four types of approaches.

The first group uses fronto-parallel stereo for the initialization. In [49], the

authors use an iterative optimization for estimating the disparities and the partial

derivatives of the disparities simultaneously. In [51], Zhang et al presented an al-

ternative which consists in estimating a disparity plane orientation for each pixel

using a disparity map computed using fronto-parallel aggregation. In the second

step, a new adaptive cost aggregation is performed along the estimated plane ori-

entation. The limitation of these approaches is that the initial estimation is poor in

the presence of highly slanted surfaces.

The objective of the second group is to assign a 3D plane to each image pixel

from a pre-defined set of plane hypotheses [46, 47]. These approaches have several

drawbacks: (i) a good slant coverage always requires a large number of initial plane

hypotheses, (ii) there are impossible plane hypotheses (due to visibility issues) that

must be pre-calculated, and (iii) they are time consuming due to the exhaustive

plane search and pixel interpolation.

A different approximation is to fit 3D planes using image segmentation. Con-

ceptually, this is equivalent to the previous group, but with the segmentation defin-

ing the 3D plane space to be considered, and working as smoothness prior for the

global optimization. The segmentation-based stereo methods over-segment the in-

put images into homogeneous colored regions, and then perform a disparity-plane

fitting for each segment. The extracted disparity planes are then used in an energy

minimization framework either using the segmentation information as a hard con-

straint [50, 48] or as a soft constraint [52]. The disadvantage are that (i) it assumes

that planar surfaces have different colors, and (ii) it is computational complex.

More recently, Bleyer et al. [53] proposed an algorithm that estimates a 3D

plane at each pixel onto which the support region is projected. They start by as-

signing to each pixel a random plane, and then apply suitable spatial and view

propagations. It provides high sub-pixel accuracy, being the top-performer in the

Teddy pair. The drawback is its complexity due to the propagation process.
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Our new stereo aggregation strategy is more closely related to the second group,

however with two conceptual differences. The first is that we work in the DSI with-

out the ambition of correctly estimate the 3D slant. In practical terms, we avoid

interpolation issues, at the expense of no explicit sub-pixel matching accuracy. The

second concerns the quantization of the 3D plane space similarly to [46, 47], and

by doing it in the DSI, we are able to cover the slant space with less plane samples,

as well as to implicitly handle visibility/impossible configuration issues.

6.3 Local stereo using HA

This section formulates the local stereo framework to be used as a starting point for

the developments of the subsequent sections. As discussed in Chapter 2, the goal

of stereo matching is to assign to each pixel p in I a disparity d from a pre-defined

set of discrete values D = [0, ..., D−1]. This assignment implicitly associates p

with the pixel p′ = (p′1−d, p2) in I
′. As in [53], we choose as pixel matching cost

the so-called truncated color and gradient differences (TD) 1:

c(p, d) = (1−ε)max(τcol − ||Ip−I
′
p′ ||, 0) + εmax(τgrad − ||∆Ip−∆I

′
p′ ||, 0),

where ||Ip−I
′
p′ || corresponds to the L2-distance of the RGB colors of pixels p and

p′, ||∆Ip − ∆I
′
p′ || is the L2-distance of the gray-value gradients, the parameter

ε balances the influence of color and gradient, and τcol and τgrad serve to truncate

the cost in order to improve robustness near discontinuities.

The cost aggregation is defined as a joint histogram voting as suggested in [4]:

C(p, d) =
∑

q∈N (p)

ω(p,q)c(q, d),

with C being the aggregated DSI, N (p) denoting the pixel neighborhood of p

defined by the size B of the aggregation window, and ω(p,q) corresponding to the

adaptive support weighting function proposed in [79]. This function is defined as:

ω(p,q) = exp

(

−

√
(Ip − Iq)2

δcol
−

√
(p− q)2

δsp

)

,

with δcol and δsp being constant parameters.

The complexity of histogram-based cost aggregation can be substantially re-

duced by applying two sampling strategies [4]. The first consists in independently

1The min operator is replaced by the max operator for the sake of convenience
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selecting for each pixel p a small subset of disparity hypotheses that have better

support. This is accomplished by using a small square window for filtering the cost

c(p, d) along the disparity dimension, and then choosing the P% local maxima of

the obtained 1-D signal. The result is a subset D
p
P = {P% best disparities of p}

comprising the disparities to be considered in subsequent steps. The operation re-

duces the complexity of the stereo aggregation fromO(HWBD) to O(HWBDP ),
where HW is the number of image pixels, D is the size of disparity range, and

0<P ≤1.

The second strategy samples the image grid by a factor of S×S, which enables

to reduce the complexity of the stereo aggregation to O(HWBDP/S2). Taking

into account these sampling strategies, the aggregated cost C can be re-written as:

CP,S(p, d) =
∑

q∈N (p)

ω(p,q)c(q, d)oP (q, d)sS(q) (6.1)

where

oP (q, d) =

{
1 if d ∈ D

q
P

0 otherwise
and sS(q) =

{
1 if q%S = 0
0 otherwise

6.3.1 Why is disparity selection useful?

It is obvious that disparity selection in HA decreases the computational complexity,

since less voting steps in the histogram are required. The interesting fact presented

in the experimental results in [4] is that the accuracy does not degrade, and in

many cases even increases when less disparity hypotheses are used. The authors

of [4] justify this as unnecessary disparity candidates contaminate the aggregation

process. We reinforce this observation using Figure 6.2. The pixels in ambiguous

regions vote in the aggregation histogram in a chaotic manner. However, the main

point is that even in ambiguous image regions the correct disparity for p appears

more times as local maxima in the neighborhood N (p) than other disparities, so

that the disparity selection step leads to an improved disparity voting.

6.4 Aggregation with different window orientations α

This section derives the mapping between the 3D surface slant and the orientation

α of the aggregation window, shows that surface visibility is easily enforced when

handling the slant problem in the DSI, and proposes the discretization of the slanted

aggregation window without requiring interpolation.
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Figure 6.2: Disparity selection before HA decreases the errors in ambiguous regions and
near discontinuities. (a) Top: left image with the aggregation window (black) centered
in the pixel p under analysis (green). Bottom: right image with the matching candidates
(blue); the green and red points are respectively correct and false matches. (b) Aggregated
DSI results for pixel p. It is notorious that the disparity selection (bottom) avoid the ex-
istence of multiple maxima (top) that create ambiguity. (c) Adaptive aggregation for the
neighboring pixels of p [79]. Green corresponds to the correct disparity, while red corre-
sponds to a false match. If no disparity selection is used (top), the two cost aggregation
results will be similar because of the low texture of the roof in the case of the correct dis-
parity. The disparity selection (bottom) removes for the false match non-discriminative
contributions caused by the textured wall in background. (d) The correct disparity for p is
voted more times in Dq

P .

6.4.1 Mapping 3D surface slants into support window orientations α

As in Chapter 2, assume a rectified stereo setup with a relative camera translation

of

t =




b
0
0



 ,

and a generic scene point Q that lies in a surface with normal m. As discussed

in Section 2.4, this surface can be locally approximated by a plane that defines a

homography M mapping points q′ in the right view into points q on the left view,

and whose the disparity is given by

dq =
m1b

l
q1 +

m2b

l
q2 +

−m1bq1 −m2bq2 + ldq
l

. (6.2)

Consider now a generic image point p in the neighborhood N (q) (unlike the case

analyzed in Section 2.4, the neighboring points can lie on different epipolar lines)

that is the projection of the same plane. Applying the homography M comes that
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(a) Plane orientation vs. α1 (b) α1 = −1

Figure 6.3: Implications of varying α1. (a) Independently of the point P, the surface is
fronto-parallel for α1=0 (magenta), aligned with the back-projection ray of p′ for α1=1
(blue), and aligned with the back-projection ray of p for α1 =−∞ (dark green). (b) The
3D slant θ varies with the point location P. We show θ for α1=−1 for different locations
in 3D space, the color coding identifies the variation of θ.

the disparity dp of this neighboring point differs from dq by

∆ = dp − dq = α1(p1 − q1) + α2(p2 − q2) (6.3)

with

α1 =
m1b

l
and α2 =

m2b

l
. (6.4)

Equation 6.3 shows that the orientation of the aggregation window in the DSI must

be in accordance with the 3D surface slant. A standard window along a constant

disparity direction cannot account for the variation ∆ in the neighborhood of the

pixel under analysis. The ideal window must be slanted around a vertical axis

by an angle with tangent α1, and a horizontal axis by an angle with tangent α2.

Henceforth, we will parametrize the orientation of the aggregation window by

α = (α1,α2), with α = (0, 0) being the standard situation of aggregation along

a constant disparity.

6.4.2 Visibility limits for the orientation α

Most stereo methods that handle surface slant explicitly estimate a 3D plane for

each pixel onto which the neighborhood is projected (refer to Section 6.2). In

order to accomplish this, they analyze for each point P wheter the hypothesized

surface is visible in both cameras. We show in this section that this visibility is-

sue is implicitly solved for each pair (p, d) in the DSI using the parametrization α.

Since our objective is not to accurately estimate the surface slant for each pixel, but

only to obtain an appropriate approximation, we consider horizontal and vertical

surface slants separately. Following [47] and as shown in Table 6.1, by horizontal
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slant we mean the surfaces on which the disparity changes as we move along the

x-axis, which is related to the aggregation orientation α1 (Equation 6.4). Simi-

larly, the disparity on a vertical slanted surface varies as we move along the y-axis,

corresponding to the orientation α2.

We show in Figure 6.3(a) the horizontal slant of the plane going through the

3D point P when α1 takes different values. The neighboring pixels of p have the

same disparity whenever α1=0, which corresponds to a fronto-parallel surface in

3D. For the case of α1=1, the surface is aligned with the back-projection ray of p′.

In this case, all the neighboring pixels of p are matched with the same pixel p′ in

the right view. This is the limit for which the surface is visible in the right camera,

so that α1 > 1 makes no sense. The second limit for the aggregation orientation

corresponds to α1 =−∞, whose corresponding surface is aligned with the back-

projection ray of p, and represents the visibility limit for the surface slant in the

left camera. It is important to emphasize that independently of the matching pair

hypothesis (p,p′) being considered, α1=−∞ and α1=1 are always the visibility

limits for the left and right cameras, respectively.

Following the previous observations, the range of α1 such that the surface is

visible in both cameras is ]−∞, 1[ (note that, since a one-to-one assumption is

used, the visibility limits are not included in our analysis). Figure 6.3(b) shows the

plane orientations for α1=−1. As can be observed and from the previous discus-

sion, the interval α1 ∈ [−1, 1[ covers the majority of situations in real application

scenarios, so that we will use this slant range for our experiments. Following a

similar reasoning, we set the working range for the vertical slant as α2∈ [−1, 1].
For the sake of completeness, Table 6.1 shows a 3×3 neighborhood in the left

view with the corresponding variation in the right view for different values of α1

(the green center pixel represents the reference point p). As discussed previously,

α1 = 0 corresponds to the fronto-parallel case, so that all the neighboring pixels

have the same disparity. For positive values of α1, the matching region is con-

tracted, while for negative values the neighborhood is stretched in the right view.

6.4.3 Discretization of the aggregation window

The DSI is inherently a discrete 3D space so that considering continuous window

orientations requires the interpolation of the cost volume or of the input images

before the matching cost calculation. This provides depth estimations at a sub-

pixel accuracy level, however with the drawback of increased computational cost.

We avoid the interpolation issues by discretizing the slanted window in the DSI,

proposing a very simple approximation, where the incremental disparity between

successive pixels is given by

∆ = (int)(α · (p− q)T). (6.5)

103



Table 6.1: We show the spatial matching distribution for different values of α1 and α2,
the range of values for α1 and α2 which correspond to the same aggregation pattern pi in
a volume of size B, and the aggregation patterns that can be obtained for B=5. Note that
k=(B−1/2) and j=[1, ..., k−1].

α1,α2 Match distribution for α1 Match distribution for α2 Aggregation pattern B = 5

1 p0 : α1,α2=1

0 < α1,α2 < 1 pj : 1
k−(j−1) ≤ α1,α2 < 1

k−j

0 pk : − 1
k
< α1,α2 < 1

k

−1 < α1,α2 < 0 pj+k : − 1
k−(j−1) ≤ α1,α2 < − 1

k−j

−1 pB−1 : α1,α2 = −1

As described in Section 6.4.2, we assume the working ranges α1 ∈ [−1, 1[ and

α2 ∈ [−1, 1], and consider vertical and horizontal surface slants separately. Fol-

lowing this, it can be verified that using the support windows discretization pro-

posed in Equation 6.5, there are B−1 distinguishable horizontal and B distin-

guishable vertical aggregation patterns for a window of size B. We depicted in

Table 6.1 the range of values for α1 and α2 that represent the same aggregation

pattern pi, where i represents the index of a specific pattern. Finally, Table 6.1 also

shows the different aggregation patterns that can be obtained for an aggregation

window of size B=5.

6.5 HA with multiple slant hypotheses

This section describes a new scheme for HA that takes into account the surface

slant. This is achieved by considering a pre-defined set of Nα window orientations

in the DSI. In addition, we propose a simple recognition approach for selecting

the best aggregation direction for each pixel, and discuss the differences between

using standard and HAs in conjunction with orientation selection.

6.5.1 Cost aggregation in the (p, d,α) domain

In order to accommodate surface slant in the framework of HA, we reformulate

the function of Equation 6.1 to consider an additional dimension α=(α1,α2) that

accounts for the orientation of the support window:

Cr,P,S(p, d,α) =
∑

q∈N (p)

ω(p,q)c(p, d+∆d)hr,P (q, d+∆d,α)sS(q), (6.6)
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where ∆d is proportional to α (see Equation 6.5). The look-up table oP for the

disparity selection is now replaced by hr,P that enables selecting the aggregation

direction in addition to disparity selection. Please note that the histogram voting

is only performed if (d+∆d) ∈ D. Before proceeding, there are two important

aspects in the new cost aggregation function that must be emphasized. First, we

need to define in advance a configuration ANα for the orientations α that are con-

sidered for cost aggregation. The number Nα of possible aggregation directions is

bounded according to the discussion of Section 6.4.2, and the maximum number

of possible aggregation patterns depends on the size B of the aggregation win-

dow (Section 6.4.3). Second, an exhaustive evaluation of a certain configuration

ANα with Nα possible aggregation directions increase the overall complexity to

O(HWBDPNα/S2), which may become intractable even for a small Nα.

6.5.2 Sampling the space of the aggregation orientations α

We propose a simple and fast recognition approach for an efficient implementation

of the HA formulated in Equation 6.6. The objective is to select for each pixel

p and disparity d, the best aggregation orientation among the hypotheses in the

configuration ANα under consideration. The recognition is accomplished by cor-

relating the cost c(p, d) with the window of size R slanted according to α. It is

important to distinguish between the size B of the aggregation window and the size

R of the recognition window. This operation is carried whenever the parameter r
is set (Equation 6.6) and is defined by the following scoring function

ρ(p, d,α) =

∑

q∈NR(p)

c(q, d+α · (p− q)T)

∑

q∈NR(p)

(
d+α · (p− q)T

)
∈ D

, (6.7)

For each pixel and disparity pair (p, d), the orientation α with highest score defines

the set A
p,d
r ={best α for (p, d)}. In the case the parameter r is zero, then A

p,d
r =

ANα and all orientations are considered for the aggregation. The new look-up table

h is defined as:

hr,P (p, d,α) =

{
1 if α ∈ Ap,d

r ∧ d ∈ Dp
P .

0 otherwise

Remark that the selection of P% of the most likely disparities d for each pixel p

(Dp
P ) only makes sense in conjunction with orientation selection (r = 1). In this

case, the scoring function ρ is the new metric for choosing the best disparities. The

selection of a single window for cost aggregation restores the overall complexity to
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(a) r=0 (b) r=1 Standard (c) r=1 Histogram

Figure 6.4: Differences between standard and HA using 3 aggregation orientations (ma-
genta, blue and green). We show two examples for two different reference points p1 and
p2 (black). (b,c) Blue slant assigned to p1 and magenta to p2.

O(HWBDP/S2). There is obviously an overhead due to the recognition process

but, since R<<B is considered, this computational cost is very small.

6.5.3 Standard aggregation vs. HA

There is a difference between standard [79] and HA [4] in cases where the aggre-

gation orientation is pre-selected (r= 1). As shown in Figure 6.4, for r= 0 both

approaches obtain the same cost C(p, d,α), corresponding to the sum of all neigh-

boring costs along the Nα aggregation orientations α. However, if the recognition

parameter is set to r = 1, then for standard aggregation, C(p, d,α) is obtained

by aggregating the neighborhood of p along the assigned orientation α for (p, d).
In HA, each neighbor votes along the orientation to which it was assigned. This

means that the Nα bins C(p, d,α) of (p, d) are voted by the neighboring pixels for

which the aggregation direction α intersects (p, d).

6.6 Experimental Results

In this section, we study the performance of the proposed stereo aggregation using

different sets of aggregation orientations, and compare it against two state-of-the-

art methods. Following the standard evaluation [23], the disparity maps are scored

by counting the number of nonocc (pixels in non-occluded regions), all (all pixels),

and disc (visible pixels near occluded regions) pixels that differ in more than one

pixel from the ground truth. We set the matching cost parameters {ε=0.8, τcol=
9, τgrad = 3} and the adaptive weight parameters {B = 37, δcol = 16, δsp = 3}
constant. Occluded pixels are detected by left/right consistency check, and the dis-

parity values of background regions are propagated to the invalidated pixels using

a simple line-by-line approach. The experiments are performed on the standard

Middlebury dataset (see Figure 6.5), on the Wood1 stereo pair (bottom left of Fig-

ure 3.8), and on the Oxford Corridor stereo pair (bottom right of Figure 3.8).
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Table 6.2: We use 4 aggregation configurations (FP - Fronto-parallel, ver. - vertical, hor. -
horizontal).

!" #$%&'( #$%&'( #$)*'( #$%&'( #$)*'(

Table 6.3: Comparison of 4 configurations AN (Figure6.2). No spatial sampling is applied
(S=1). The under-script values in (P =1, r=1) correspond to the errors for conventional
aggregation (Section 6.5.3).

Stereo Pair Teddy Cones Wood1 Corridor
P 0.1 1 0.1 1 0.1 1 0.1 1
r 1 1 0 1 1 0 1 1 0 1 1 0

F
P A1 5.29 6.04 2.95 3.4 8.18 10.6 28 19

S
L

A
N

T A3 2.84 3.054.21 3.32 2.71 2.982.94 3.48 4.19 12.63.52 7.73 22.6 28.323.7 18.9
A7 4.93 8.416.03 3.88 2.93 3.744.02 4.09 6 18.73.60 7.54 26.7 40.524.8 20.4
A11 5.89 13.34.87 3.78 3.4 9.853.15 3.09 1.78 4.431.89 2.06 12.7 30.516.8 15.7

Concerning the possible orientations for aggregation, we only assume vertical

or horizontal slants separately. The Table 6.2 specifies the configurations ANα to

be considered, indicating the α=(α1,α2) values that define the orientations of the

Nα window hypotheses. These values were selected according to the discussion

of Section 6.4.2. The experimental results shown next indicate that in general our

small discrete set of orientations α are able to approximate different 3D slants in

the scene. We compare the results for the 4 configurations AN of Table 6.2 in an

attempt to assess the influence of the number of considered direction hypotheses

for aggregation. Please note that for A3 and A7 a window of R= 5 is sufficient

for the recognition step, while for A11 we use R=11 to discriminate between the

different aggregation orientations.

6.6.1 Comparison of different aggregation configurations

We show in Table 6.3 the results of the disparity labeling for nonocc pixels in 4
stereo pairs. As expected from [4], the selection of the best disparities improves

the disparity estimation in most cases.

6.6.1.1 Effect of considering various aggregation orientations (r=0)

Considering various aggregation orientations improves the accuracy in the major-

ity of the cases when compared to fronto-parallel aggregation. This does not hap-

pen for one case (A7) in the cones dataset, however this scene does not contain

any slanted planes, and more aggregation orientations tend to amplify the chaotic

voting referred previously. Concerning the selection of AN , considering plane hy-

potheses that are not in the scene degrade the results. A7 considers, in addition

to the hypotheses in A3, horizontal and vertical orientations that are not present

in any of the datasets, leading to systematically degradation of the estimations.
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A11 takes into account finer vertical and horizontal hypotheses that are not present

neither in A3 nor A7. This leads to a dramatic improvement in datasets where the

existing slants are well approximated, being the top-performer in three stereo pairs.

In summary, the selection AN must take into account the stereo conditions (likely

relevant slants), however considering various aggregation orientations is in most of

the cases better than only fronto-parallel aggregation.

It is important to refer that for the Corridor pair, we only manage to accurately

estimate depth using A11. This happens because the relationship between f and

b are different from the Middlebury stereo pairs (refer to Equation 6.4 and Fig-

ure 6.3), so that finer aggregation orientations are needed. This reinforces the fact

that the configuration of the stereo setup must be taken into account when selecting

the orientations for AN .

6.6.1.2 Effect of selecting one slant hypothesis (r=1)

There are two different effects that must be accounted: (i) the effectiveness of the

recognition scheme in selecting the most suitable orientation hypothesis α, and (ii)

the effect of the HA. It can be observed that the results tend to be significantly

worse than for (r=0, P =1). This is not because of the slant selection process, but

rather because of the fact that HA is not effective without disparity sampling. We

show in under-script the results when there is aggregation orientation selection, but

the aggregation is performed in the standard manner (see Section 6.5.3). The ac-

curacy degrades slightly but doubts concerning the effectiveness of the recognition

can be discarded. Finally, and as can be seen in column (r=0, P =0.1), the HA is

effective if we use both disparity sampling and slant selection.

There are two take home messages considering HA taking into account sur-

face slant. The first is that slant selection in HA works always well if the surface

slants contained in the scene are well approximated by the hypothesis considered

in AN . Otherwise, the decision process can assign different values α to points on

the same 3D surface that are equally well approximated by the discrete aggrega-

tion directions. This creates contradictory contributions in the histogram voting for

neighboring pixels, enhancing the ambiguity described in Figure 6.2. The second

observations is that the previous effect can be compensated by pursuing both slant

selection and disparity sampling. The disparity sampling discards the contributions

of neighbors of (x, d) for which the decision of slant can be equally fitted by more

than one hypothesis, so that their votes are diluted in the histogram voting. Note

that the results in Wood1 show that, by chance, one of our slant hypothesis is con-

sistent with the scene. This does not happen in the others, which proves that the

framework generalizes and the experimental values are not result of coincidence

between the orientation sets AN in the DSI and effective slants in the 3D space.
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Table 6.4: Evaluation in Middlebury (Consulted in 11/2012.). We set (P =0.1, r=1).

Algorithm Rank
Tsukuba Venus Teddy Cones Runtime

nonocc all disc nonocc all disc nonocc all disc nonocc all disc (Tsukuba)
PatchMatch[53] 12 2.0966 2.3352 9.3163 0.2122 0.3918 2.6231 2.991 8.168 9.622 2.475 7.89 7.117 ≈ 60s

S
=
1 HistAggr+TD 25 2.4472 2.6956 9.1762 0.2530 0.3416 3.2438 5.2916 10.722 1416 2.9524 8.5924 8.2425 16.9s

HistAggr+TD+Slant 17 2.3870 2.6256 9.3364 0.2632 0.3617 3.3241 2.841 8.199 8.511 2.7113 8.1616 7.5213 18s

S
=
3 HistAggr+TD 30 2.2770 2.5255 9.1462 0.2428 0.3113 2.9235 5.9019 11.631 15.422 3.1629 8.8130 8.7334 1.7s

HistAggr+TD+Slant 22 2.2568 2.5055 9.7768 0.2934 0.3717 3.3041 3.443 8.8213 9.774 2.9020 8.4020 7.9720 2s
HA+Census[4] 61 2.4772 2.7158 11.177 0.7462 0.9756 3.2839 8.3168 13.858 2186 3.8648 9.4745 10.453 0.34s

6.6.2 Evaluation in Middlebury

We compare the proposed aggregation with PatchMatch[53] as being one of the

most accurate local algorithms that take into account the surface slant, and with the

original HA approach [4], which has very low computational complexity.

Left View Ground Truth HistAggr+TD Error HistAggr+TD+Slant Error

Figure 6.5: Results in Middlebury (Tsukuba, Venus, Teddy and Cones) [23]. The results
correspond in Table 6.4 to P =0.1 and S=3.

The results are presented in Table 6.4 and the disparity maps are shown in

Figure 6.5. HA+TD corresponds to the fronto-parallel aggregation (A1), whereas

HA+TD+Slant takes into account 3 aggregation orientations (A3). HA+Census is

the original algorithm [4] (they used P =0.1 and S=3), the only difference with

respect to HA+TD is the matching cost: we use TD instead of Census2. The higher

computational time for S = 3 is due to the matching cost (Census is faster than

TD), as well as the higher level of code optimization (we used a straightforward C

implementation).

Our algorithm combines the advantages of both, the accuracy of PatchMatch

by considering surface slant hypotheses, and the speed of the HA technique. We

dramatically improve with respect to fronto-parallel HA+TD at the expense of a

computational overhead of 15−20%. We take the first position in the ranking for

the Teddy stereo pair, which is more relevant, since it is the only one containing

considerable slant. This is achieved with less than 1/3 of the runtime of Patch-

Match. The spatial sampling S = 3 is just slightly more inaccurate, but with a

2PatchMatch also uses TD, which is in theory better suited for dealing with slant.
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speedup of 30 times 3. The floor of the Teddy dataset in Figure 6.5 is accurately

reconstructed using a single aggregation pattern (α2=1), even if the ground truth

values vary between 0.7 ≤ α2 ≤ 1.3. This proves that the selection of a small

set of aggregation orientations is sufficient to improve cost aggregation to surface

slant. As finally remark, we propose to use HA+TD+Slant with S=3, being the

best compromise between accuracy and runtime (approach submitted in the Mid-

dlebury online evaluation and that was called HistAggr+TD+Slant).

6.7 Conclusions

This chapter presented a new HA framework that accounts for surface slant. The

strategy consisted in choosing the most suitable aggregation direction within a dis-

crete set of hypotheses. The approach is able to combine high matching accuracy

with small computational overhead when compared to [4]. In the line with what has

been discussed in [4] for the sampling strategies, we demonstrated that increasing

the number of slant hypotheses does not necessarily improve the depth map accu-

racy. Nevertheless, we manage to prove that a fixed set of hypotheses, even when

non coincident with the existing plane surfaces in the scene, improves the results.

Finally, we converge to the accuracy of PatchMatch [53] with much less computa-

tion time. The reader could argue that eventually the spatial sampling strategy can

also be applied to PatchMatch. We think that this observation is not obvious, since

PatchMatch is based on spatial propagation, which most likely worsens with the

spatial sampling.

3It takes about 6s for processing the Teddy pair.
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Chapter 7

Conclusions

This thesis presented the research in computer vision carried during my PhD. The

work makes the following contributions:

• A new cue for stereo vision - Chapter 2 presented the first work in the lit-

erature proposing to use symmetry instead of photo-similarity for assessing

the likelihood of two image locations being a match. This framework was

called SymStereo, and is based on the mirroring effect that arises whenever

one view is mapped into the other using the homography induced by a virtual

cut plane that intersects the baseline.

• New matching costs based on symmetry - Chapter 3 proposed three sym-

metry-based matching costs: SymBT, SymCen, and logN. The first two are

closely related to existing metrics based on photo-similarity, while the later

relies in wavelet transforms for detecting local signal symmetry. The new

matching costs were benchmarked against the state-of-the-art metrics for ac-

complishing dense disparity labeling in both short and wide-baseline images.

The results showed that the symmetry-based functions, SymBT and Sym-

Cen, consistently outperform their similarity-based counterparts, BT and

Census, suggesting that symmetry is superior to standard photo-consistency

as a stereo metric. The logN cost proved to be particularly effective in scenes

with slanted surfaces and difficult textures. The major weakness is its rela-

tive poor performance close to discontinuities and occlusion regions.

• Stereo-Rangefinding (SRF) - Chapter 2, Chapter 3 and Chapter 5 investi-

gated the use of passive stereo for estimating depth along a scan plane. The

technique, named Stereo-Rangefinding (SRF), provides profile cuts of the

scene similar to the ones that would be obtained by a LRF. We provided

the first benchmark of SRF, which showed that logN is the best performing

matching cost for this purpose. Moreover, we compared the depth estimates
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obtained using SRF with the readings provided by a 2D LRF. The experi-

mental results demonstrated that SRF can be leveraged to meet the robust-

ness and depth accuracy of laser range data.

• A global approach for detecting VPs and groups of mutually orthogo-

nal VDs - Chapter 4 presented an automatic and global approach for the

detection of VPs and mutual orthogonal VDs. The core of the framework

is the formulation of these multi-model fitting problems as Uncapacited Fa-

cility Location (UFL) and Hierarchical Facility Location (HFL) instances,

which are solved using a message passing approach. The effectiveness of

the framework is proved in real scenarios containing multiple Manhattan-

world configurations.

• A Piecewise Planar Reconstruction (PPR) pipeline - The pipeline de-

scribed in Chapter 5 combines the SymStereo framework and the PEARL

algorithm [3] for PPR. The experimental results obtained with this sys-

tem demonstrated that it is possible to obtain very accurate piecewise planar

models of indoor and outdoor scenes from only two calibrated images.

• A Histogram Aggregation (HA) framework that accounts for surface

slant - The strategy described in Chapter 6 consisted in choosing the most

suitable aggregation direction for HA within a pre-defined set of discrete

hypotheses. The approach is able to combine high matching accuracy with

small computational overhead when compared to existing approaches.
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Appendix A

Additional Results for Chapter 4

A.1 Results on YUD using detected edges

We show in Figure A.1 and Figure A.2 the output of our HFL algorithm (see Chap-

ter 4) on 16 examples of the YUD database using edges extracted trough Tardif’s

detector [2]. The colors red, green and blue correspond to the directions of the

Manhattan frame, while the other colors e.g. magenta, cyan, yellow, indicate non-

orthogonal VPs. The edges marked in black received the empty (no VP) label.

The left image shows the input edges (orange), while the right image shows the

detected Manhattan directions and the non-orthogonal VPs.

The images shown in Figure A.3 and Figure A.4 were captured using a Pana-

sonic DMC digital camera that was calibrated in advance. We run Tardif’s edge

detector [2] for obtaining the input edges for our UFL and HFL algorithms. The

output of our HFL algorithm is shown in Figure A.3 and Figure A.4. The col-

ors red, green and blue correspond to the directions of the mutually orthogonal

triplets, while the other colors e.g. magenta, cyan, yellow, indicate non-orthogonal

VPs. The edges marked in black received the empty (no VP) label.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

(g) Example 7 (h) Example 8

Figure A.1: We show 8 examples from YUD. The left images show the input edges (or-
ange), while the right images show the clustering results. The 3 directions of the Manhattan
frame are detected (red, green and blue).

114



(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

(g) Example 7 (h) Example 8

Figure A.2: We show 8 examples from YUD. The left images show the input edges (or-
ange), while the right images show the clustering results. We detect the VDs of the Man-
hattan frame (red, green and blue), VPs that are non-orthogonal to the Manhattan triplet
(yellow, magenta and cyan), and lines that are considered outliers (black, no VP is as-
signed). This is performed simultaneously by our algorithm.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

(g) Example 7 (h) Example 8

Figure A.3: We show 8 examples from our dataset. The left images show the input edges
(orange), while the right images show the clustering results. We detect the VDs of the
Manhattan frame (red, green and blue), VPs that are non-orthogonal to the Manhattan
triplet (yellow, magenta and cyan), and lines that are considered outliers (black, no VP is
assigned). This is performed simultaneously by our algorithm.
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(a) Input edges (b) Orthogonal triplet 1 (c) Orthogonal triplet 2

Figure A.4: We show 6 examples from our dataset. The left images show the input edges
(orange), while the right images show the clustering results. We detect the VDs of two
different mutually orthogonal triplets. The lines clustered to VDs belonging to these mutu-
ally orthogonal triplets are marked in red, green and blue, and lines labeled with the same
color in different triplets have the same VD. Lines assigned to non-orthogonal VPs are
labeled in yellow and magenta, while lines that are considered outliers are black (no VP
is assigned). We show two figures for the two different orthogonal triplets for the sake of
clarity, however the detection of the mutually orthogonal triplets and the non-orthogonal
VPs is performed simultaneously.
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