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Abstract 

Sliding properties of Mo-Se-C coatings with two different carbon content deposited by 

magnetron sputtering were investigated in different sliding environments (argon, nitrogen, dry 

and humid air). Both coatings had a structure that was identified as randomly oriented 

structures of MoSe2 embedded into amorphous carbon matrix. The worn surfaces, i.e. the 

wear tracks and the wear scars of the balls, were analyzed by optical microscopy, Raman 

spectroscopy and scanning electron microscopy. The material transferred to the ball steel 

surfaces was almost exclusively MoSe2, whereas the wear tracks on the coatings were more 

complex, with areas rich in MoSe2 and areas similar to that of as-deposited coatings. 
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The friction was lowest in argon (0.012 at a load of 10 N) and highest in humid air, but still 

remarkably low; as best 0.05 at 10 N load; however, the exceptionally low wear rate was 

almost identical. Thus, we focused our detailed analysis on these two examples to understand 

the mechanisms responsible for the difference between the friction coefficients. SEM, EDX, 

XPS, Raman and TEM with EELS and EDX were applied to investigate the composition and 

structure of localized spots of interest on the tested surfaces. In both cases, we observed well-

ordered MoSe2 tribofilms with negligible amount of oxides. Carbon was not present in the 

sliding interfaces, although large amount of carbon was found outside the contacts on both 

surfaces. Based on our investigations, we suggest the increase in friction of Mo-Se-C in 

humid air is primarily due to the increase in shear strength of the MoSe2 structure by the 

presence of water molecules in the sliding interface. 

 

Keywords: solid lubricants; MoSe2; friction; tribolayer; self-adaptive structure 

 

1 Introduction 

Solid lubricant coatings based on transition metal dichalcogenides (TMDs) constitute a group 

of promising candidates for applications where liquid lubrication is not wanted or possible. 

The excellent frictional properties of the layered form of TMDs are attributed to the weak 

interactions between adjacent molecular layers, resulting in very low shear strengths. 

Unfortunately, the ultra-low friction is limited to sliding in vacuum due to rapid oxidation 

and, particularly, detrimental effect of water vapor on friction [1]. TMDs are often used as 

thin films, and magnetron sputtering is the most versatile and used deposition process. The 

major drawbacks of pure TMD coatings are low adhesion to the substrate, porous structure 
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and low hardness. When TMDs are sliding in humid air, they exhibit relatively high friction 

(~0.2) combined with high wear. To reduce the sensitivity to humidity and to improve the 

mechanical properties, TMDs have been doped or alloyed with other elements. Significant 

improvements in the hardness, adhesion to the substrate or wear resistance have been reported 

[2,3,4]. However, the reduction of friction in humid air is still a challenge [5,6,7]. 

The majority of studies dealing with TMDs have been aimed at disulfides (MoS2 and WS2). 

An alternative route towards low friction in humid air is the development of coatings based on 

Se, e.g. MoSe2 and WSe2. These diselenides have shown higher temperature stability and 

lower sensitivity to humidity than the corresponding sulfur based materials [8,9,10,11], 

although the underlying reason is still not clear. Considering oxidation, Johnson described 

MoSe2 as having lower activation energy than both MoS2 and WS2, but that the oxidation of 

MoS2 was much more temperature sensitive than MoSe2 [8]. MoS2 started to oxidize at lower 

temperatures than MoSe2 and WS2, but at temperatures of ~450oC, however, diselenides and 

disulfides exhibited the same oxidation rate. In this study, the diselenides were 

substoichiometric in selenium while the disulfide coatings were much closer to ideal 

stoichiometry [11]. The effect of air humidity on oxidation of diselenides at room temperature 

is not known. 

Carbon has been the dominant, and the most successful, alloy element to achieve both good 

mechanical and tribological properties in humid air [12,13]. In a previous study, we 

demonstrated that Mo-Se-C coatings can provide very low friction in humid air due to easy 

arrangement of the coating nanostructure to the sliding process [14]. There are also results 

showing that carbon has a synergistic effect on the friction performance of MoS2 in humid air, 

with the main suggestion that it works as a diffusion barrier for further oxidation [15].  

Here we present the tribological properties of molybdenum diselenide coatings, co-sputtered 

with carbon, in unlubricated sliding contact against steel in four atmospheres (Ar, N2, dry air, 
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and humid air). Our aim is to shed light on the role of atmosphere on the sliding of Mo-Se-C, 

particularly the effect of air humidity on the friction and wear. Thus, special attention has 

been paid to the analysis of the worn surfaces.  

 

2. Experimental Details 

The two coatings tested were deposited by r.f. magnetron sputtering in argon atmosphere from 

a graphite target with pellets of pure MoSe2 uniformly distributed in the erosion zone, as 

shown in detail in our previous study [16]. A two-planar-cathode Edwards E306 machine with 

a 20 dm3 chamber was used for the deposition process. Prior to deposition the chamber was 

pumped down to 10-4 Pa. The working argon pressure was 0.75 Pa and the target power 

density was 8 Wcm-2. The coatings were deposited on M2 (AISI) steel substrates with a 

hardness of ∼9 GPa and on Si wafers; the target-to-substrate distance was approx. 10 cm. An 

approximately 300 nm thick titanium interlayer was first deposited to improve the adhesion of 

the coatings. Different carbon contents in the coatings were achieved by varying the number 

of MoSe2 pellets. The coating thickness was evaluated by cross-sectioned coated Si wafers 

observed in a scanning electron microscope (SEM).  X-ray diffraction (XRD) in glancing 

mode (Co Kα radiation) and transmission electron microscopy (TEM) were used to 

characterize the microstructure of the coatings. Chemical bonding was investigated using X-

ray photoelectron spectroscopy (XPS). The chemical composition was measured with electron 

probe microanalysis (EPMA). The coating hardness was measured using depth-sensing 

nanoindentation with the method developed by Oliver and Pharr [17]. Tribological tests were 

performed in a ball-on-disc tribometer, using 6 mm diameter 100Cr6 steel balls with a 

hardness of ∼7 GPa as counterparts. The setup included a closed hood allowing control of the 

atmosphere. The tests were performed in Ar, N2, dry air (relative humidity < 1%) and humid 

air (relative humidity 55-60%). When testing in Ar, N2 or dry air, the chamber was filled with 
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the gas about 30 minutes before the start of the test, and then continually flooded during the 

whole test. To avoid the inflow of air, the working chamber was slightly over-pressurized. 

The tests were performed under three loads (2, 5 and 10 N) in all four atmospheres; the 

maximum Hertzian initial contact pressure was 0.48, 0.65 and 0.83 GPa, respectively. The test 

duration was 10 000 cycles corresponding to a sliding distance of 157 m. The sliding speed 

was 0.1 m s-1. Each tribological test was repeated twice; average values of friction and wear 

rates are presented in the paper. 

All worn surfaces were investigated using light optical microscopy (LOM) and SEM 

equipped with Energy Dispersive X-Ray spectroscopy (EDX). The wear volumes were 

calculated from the cross section areas measured using white light interferometry in a WYKO 

NT1100 optical profilometer. Specific wear rates were calculated as worn volume per sliding 

distance and load. 

Based on the tribological results, the wear tracks formed on the MoSe-61C coating, and the 

corresponding counter surfaces, tested in Ar and humid air were selected for deeper analysis 

of the frictional mechanisms and, particularly, the influence of humidity. These worn surfaces 

were investigated using an SEM (Zeiss Leo 1550) equipped for energy dispersive X-ray 

spectroscopy (EDX) with an Oxford Silicon Drift Detector. XPS in a PHI Quantum 2000 with 

monochromatic Al Kα radiation was used to gain information about chemical bonds in the 

transfer films formed on the counter surfaces. All samples were mildly cleaned by sputter 

etching for 5 min with Ar+ ions before the first acquisition, then sputtered another 5 min 

followed by a second acquisition. Before a third acquisition, the sample was sputter etched for 

another 15 min, leading to a total sputtering time of 25 min. This was done to ensure that the 

thin layer of surface contamination due to the exposal to air after tests had been penetrated in 

at least one of the points. A low acceleration voltage (200 V) was selected to minimize the 

effect of preferential sputtering [18,19]. The spot size for acquisition was 200 µm2. Gausian-
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Lorentzian function was used to fit XPS peaks. Further, Raman spectroscopy was performed 

in a Renishaw micro-Raman system with 514 nm wavelength. A 5 µm diameter spot and 2 

mW laser power was used for all acquisitions. The total scan time for each spectrum was 60 s. 

TEM cross sections were prepared from selected areas using in-situ lift out in a FEI Strata 

D235 Focused Ion Beam (FIB) instrument, using 30 kV Ga ions. A protective layer of Pt 

mixed with C was first deposited with the electron beam to protect the surface from becoming 

damaged by the ion beam. To further minimize the beam damage, only 5 kV ion beam energy 

was used in the final steps of the sample preparation. For TEM imaging and acquisition of 

energy filtered elemental maps (EFTEM) a FEI Tecnai F30 ST equipped with a Gatan post 

column energy filter was used at 300 kV acceleration voltage. Scanning TEM imaging 

(STEM), STEM EDX and STEM Electron Energy Loss Spectroscopy Spectrum Imaging 

(EELS-SI), was then performed in a FEI Titan 80-300 Cubed equipped with a probe corrector 

and a Gatan HR post column spectrometer. For STEM-EELS-SI a monochromator was used 

and the microscope was run at 200 kV with a camera length of 19 mm. For STEM EDX, 300 

kV was used. 

 

3 Results 

3.1 Chemical composition and structure 

Chemical composition of the two deposited coatings, total thickness (i.e. including Ti 

interlayer) and hardness are shown in Table 1. The oxygen content was approx. 2 and 3 at.% 

for MoSe-61C and MoSe-47C, respectively. The oxygen originated from residual atmosphere 

in the deposition chamber and, particularly, from the porous MoSe2 pellets; a higher number 

of pellets thus led to a higher oxygen content. It should be pointed out that the chemical 

composition given in Table 1 excludes oxygen, i.e. sum of Se, Mo, and C is 100%.  

 



7 
 

Table 1: Composition and properties of the two investigated coatings 

Acronym Carbon content 

(at%) 

Se/Mo ratio Thickness 

(µm) 

Hardness 

(GPa) 

MoSe-61C 61 1.72 2.0±0.1 3.2±0.2 

MoSe-47C 47 1.66 2.8±0.1 2.1±0.2 

 

The structure and chemical bonding of these coatings were described in detail in our previous 

works [14,16]. Therefore, we will only briefly summarize the main finding here. Coating 

cross-sections observed using SEM and TEM showed a dense structure without larger defects 

or voids. Both coatings, in TEM, exhibited a structure with randomly oriented platelets 

(length 3-10 nm) of MoSe2 embedded into a carbon matrix, without long range ordering [14]. 

XPS analysis indicated only Mo-Se, Mo-O and C-C bonds and there was no evidence of 

molybdenum carbides in the coating. Raman spectroscopy supported the XPS and TEM 

results by showing carbon peaks and disordered MoSe2 [16]. We should stress here that the 

chemical coating composition and structure of the coatings were analyzed within three 

months after the deposition. The coatings were then stored in normal conditions (room 

temperature, humid air) for 5 years before the tribological test took place. We re-measured the 

chemical composition and carried out TEM analysis and Raman spectroscopy as well. There 

were no differences between the results obtained now and 5 years ago. The coatings are thus 

very stable and could be stored in humid air for long time. 

 

3.2 Sliding tests: friction and wear 

Figure 1 summarizes the friction coefficient and wear rate for the MoSe-61C coating; the 

friction coefficient is calculated as an average value from the entire test. The running-in was 

very short, the friction stabilized within the first 100 laps and the friction curves were smooth. 



8 
 

In general, the friction coefficient decreases with increasing load, a behavior often seen for 

this class of solid lubricants. The lowest friction coefficient (0.012) was measured in argon 

atmosphere at the highest load. However, the friction was very low even in humid air (0.05) 

for the same load. The significant difference between friction in dry and humid air indicates a 

detrimental influence of the humidity, whereas the effect of oxygen (compare friction in dry 

air and nitrogen) was minimal. The difference in friction when sliding in N2 and Ar 

atmospheres is noteworthy, since both gases are generally considered inert for this type of 

tests. 

 

 

Figure 1: Tribological results of the MoSe-61C coating sliding against steel balls at three 

loads in the four atmospheres. (a) Coefficient of friction at steady state. (b) Specific wear 

rate.  

 

The wear rate of the MoSe-61C coating was very low in all tested atmospheres. Surprisingly, 

the wear rate in humid air and argon significantly decreased with increasing load, whereas no 

such dependence was observed in nitrogen and dry air. The lowest wear rate was achieved in 

humid air at the highest load. Even considering absolute wear volumes rather than the load 

specific wear rates, the least worn volume was observed in humid air at the highest load. It is 

clear that the friction and the wear rates are not directly related. 
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The MoSe-47C coating showed a somewhat different behavior without a clear load 

dependence of the friction, see Fig. 2. The higher friction and wear rate resulting when testing 

in humid air at the highest load were related to partial failure of the coating in the center of the 

wear track. With this exception, the wear rate was generally similar to that of the MoSe-61C 

coating. It is well known that this class of material often show a tendency for formation of a 

transfer film on the counter surface, which has also been thoroughly investigated [20,21]. The 

transfer film is formed by the combination of direct adhesion of coating material on the ball 

surface during the contact and partial sintering of wear particles, which are collected and piled 

up in front of the ball. The contact area on all balls tested here was covered by a relatively 

thick well-adhering transfer film. 
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rate. 

 

3.3 Investigation of the worn surfaces – MoSe-47C coating 

Figure 3 shows optical images of the wear tracks produced in different atmospheres at the 

highest load. In dry air, at all loads and for both coatings, the wear tracks showed a striped or 

patchy appearance in the optical images. Similar patterns also appeared in humid air and 

nitrogen, but then only in smaller areas. As referred to above, the MoSe-47C coating was 

worn through at the highest load in the center of the wear track when run in humid air, which 
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led to higher friction. Also after the high load tests in dry air and nitrogen, microscopic areas 

of detached coating were observed. However, it seems that in the rest of the tests the coatings 

supported the load well. Delamination was not observed after the 2 and 5 N load tests, except 

in small areas in the center of the wear track in humid air in the 2 N load test. 

 

Figure 3: Optical microscope images of sections of the wear tracks formed in the four 

environments at 10 N load. Upper row: MoSe-61C, lower row: MoSe-47C. Note the slightly 

varying magnifications. 

 

The different contrasts in the wear track observed by optical microscopy, particularly in the 

case of sliding in dry air, were further investigated. Figure 4 shows a SEM micrograph of the 

wear track in the coating and the corresponding wear scar on the ball. Backscattered images 

of the wear track clearly showed that the stripes observed by optical microscopy correspond 

to different chemical compositions.  
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Figure 4: Backscattered compositional (Compo) and topographical (Topo) images of the wear 

track (upper) and the corresponding transfer film on the steel balls (lower) for the MoSe-47C 

tested in dry air at 10 N. Sliding direction of the ball is indicated by an arrow in all images. 

 

EDX showed that the brighter areas were richer in selenium than the surroundings, while 

containing less carbon and oxygen. Molybdenum was evenly distributed in the wear track. 

However, higher concentration of molybdenum and oxygen was found along the sides of the 

wear track, see Fig. 5. The shape and topography of the wear scar on the ball indicated 

minimal wear of the ball. A large amount of coating material was adhered on the ball surface 

and, unlike the wear track on the coating, the transferred material appeared homogeneous with 

a chemical composition similar to the bright areas described above (i.e. rich in selenium).  
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Figure 5: SEM micrograph (left) and EDX elemental maps of the wear track for the MoSe-

47C coating tested in dry air at 10 N load. The maps were acquired at 2 kV to increase 

surface sensitivity.  

 

Raman spectra of bright areas of the wear tracks showed only sharp peaks at the approximate 

wavenumbers 238 and 289 cm-1, which were addressed to A1
g and E1

2g modes of MoSe2 [22], 

see Fig. 6. Barely visible peaks positioned around 445 and 596 cm-1 together with the broad 

peak at 155 cm-1 are believed to be combination modes and second order Raman peaks for  

MoSe2 [22], and similar features have been observed for MoS2, which has the same electronic 

structure as MoSe2 [23]. The broadening of the peak at ~289 cm-1 could in some cases be 

related to the presence of MoO3 (approx. 285 cm-1); however, much stronger MoO3 modes at 

~666, 850 and 995 cm-1 were not observed [23]. In fact, SeO2 exhibit peaks at 290 and 594 

cm-1, which might overlap with MoSe2. However, our previous TEM investigation of similar 

coatings or the TEM analysis shown below do not indicate any existence of SeO2 [24]. It is 

believed that SeO2 (if formed) leaves the contact in gas phase due to its very low sublimation 

temperature and the conditions occurring in the nanoscale contact of the asperities (high 

pressure and increased temperatures due to frictional heating) [24]. Also, the EDX maps did 
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not show any overlap between O and Se in the wear track. We can thus conclude that the 

bright area consists almost exclusively of MoSe2. Furthermore, the sharp Raman peaks 

suggest that MoSe2 is highly ordered. The Raman spectra taken from darker areas are similar 

to that of the as-deposited coating (Fig. 6), i.e. it shows D- and G-bands for carbon positioned 

around 1360-1370 cm-1 and 1580-1585 cm-1, respectively, and broad and less pronounced 

peaks corresponding to MoSe2. The carbon peaks suggests that the carbon has a disordered 

graphitic structure [25]. If we consider the ratio between the carbon and MoSe2 peak areas as 

an indication of the chemical composition, then the darker areas in the wear track contained 

slightly more carbon than the as-deposited state. Finally, the material accumulated along the 

sides of the wear track consisted mostly of MoSe2 with small amounts of carbon and 

molybdenum oxide.  
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Figure 6: Raman spectra acquired at different parts of the wear track for the MoSe-47C 

coating tested in dry air at 10 N load. Peak positions for MoSe2, MoO3 and carbon are 

indicated. 

 

3.4 Investigation of the worn surfaces – MoSe-61C 

Optical images of the wear tracks and the ball surfaces from the tests with the MoSe-61C 

coating shown in Fig. 3 were similar to that of the MoSe-47C coating. However, we did not 

observe any delamination; the wear tracks were smoother and formation of bright areas 

described above less evident. In humid air, the friction was about 5 times higher than in Ar, 

which is still exceptionally low for an unlubricated contact in humid air. Moreover, the wear 

rate was at the same level or even slightly lower in humid air than in Ar. Thus, thorough 

analysis was performed for these two extremes to investigate the origin of the higher friction 

exhibited in humid air. 
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SEM/EDX analysis showed relatively thick and smooth layers containing mostly 

molybdenum and selenium. The highest content of carbon and oxygen was observed at the 

edges of the contact area and in the wear debris along its sides, see Fig. 7. Traces of iron at the 

rear of the transfer film indicate that the film is thinner there. The transfer films formed in Ar 

(not shown) and in humid air (Fig. 7) were very similar. 

 

Figure 7: SEM micrograph and EDX elemental maps of the transfer film on the steel ball run 

against MoSe-61C in humid air at 5 N load, acquired at 10 kV. The sliding direction of the 

counter surface is from bottom to top in the picture. The maps show only the distribution of 

each element in the contact and should not be interpreted quantitatively. 

 

XPS spectra of the films formed on the balls sliding against the MoSe-61C coating tested in 

humid air are shown in Fig. 8. If no other reference is given, Handbook of X-ray spectroscopy 

[26] was used for peak identification.  The Mo 3d5/2 peak positioned at a binding energy of 

228.2-228.4 eV in all three measurements matches well with MoSe2 (228.3 eV). There is a 

very small peak positioned at 230 eV, which was identified as a MoSexOy compound [27]. No 

peaks corresponding to MoO3 or MoO2 were detected (235.5-236 eV), i.e. they were not 

necessary to achieve good fitting to the Mo 3d5/2 peak. Therefore, the amount of molybdenum 
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oxides should be negligible. The O 1s spectrum was deconvoluted into two peaks: i) a 

dominant peak positioned at 530.3-530.4 eV, which corresponds either to MoO3 (530.4 eV) or 

Fe2O3 (530.2 eV), and ii) a small peak at ~532.1 eV again indicating the Mo-Se-O compound 

[27]. The dominant peak disappears by further etching, indicating it should mainly be present 

in the top surface region. Since hardly any contribution from MoO2 or MoO3 was observed in 

the Mo 3d5/2 spectrum, it is very probable that oxygen was bonded to iron. Overview spectra 

acquired with lower resolution (not shown here) displayed that Fe 2p3/2 had a slightly 

broadened peak at 710.3-710.4, which supports the presence of iron oxides [28]. Although 

SEM/EDX did not show iron in the transfer film, the indication of iron oxide in the XPS 

spectrum was not surprising. Probably the XPS signal originated not only from the transfer 

film, but also from the ball surface, since the analysis spot is wide and the precise alignment 

of the ball is very challenging. It should be noted that the oxygen signal was much weaker 

after longer surface etching, suggesting that the oxide was very superficial. 

 

Figure 8: XPS spectra from the transfer film formed on the steel ball run against the MoSe-

61C coating at 5 N load in humid air. The spectra are normalized. 
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The Se 3d5/2 spectrum changed significantly when the etching time was increased, see Fig.8. 

After 5 minutes etching, two peaks were identified. The first was positioned at a binding 

energy of 54.6-54.7 eV typical of MoSe2 (54.6 eV), and the second at ~56 eV. The second 

peak matched well with Fe2O3 (Fe 3p peak) [28]. This presence of iron oxide corroborates the 

detection of the Fe 2p peak in the overview spectrum (not shown). After 15 and particularly 

after 25 minutes of sputter etching, a new peak appeared around 52.5 eV. This was associated 

with the 3p peak of iron originating from the ball surface [28]. The C 1s peak at 284.4-284.6 

eV is typical for C-C bonds of amorphous carbon or graphite. After 25 minutes of sputtering, 

a small carbide contribution could be seen in the C 1s spectra; confirming that parts of the 

XPS signal originates from the ball surface outside the transfer film. The Fe 2p3/2 peak from 

the overview spectra (not shown) then was positioned at 707.2 eV, indicating mostly metallic 

iron. However, a small iron carbide contribution (~708.1 eV) is not unlikely, but would be 

difficult to deconvolute due to the poor resolution in the overview spectra. 

XPS spectra of the transfer film on steel ball run against MoSeC-61C coating in Ar are 

presented in Fig. 9. Mo 3d5/2 and Se 3d5/2 indicate the presence of MoSe2 and negligible 

amount of oxides. The same broadening of the Se 3d spectra appeared after 25 minutes of 

sputtering and the C 1s spectra show mainly C-C bonds, with only a small contribution of 

carbide. In fact, the transfer films produced in humid air and argon yielded almost identical 

XPS spectra.  
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Figure 9: XPS spectra from the transfer film formed on the steel ball run against the MoSe-

61C coating at 5 N load in Ar atmosphere. The spectra are normalized. 

 

Raman analysis of the transfer films produced on the balls in humid air showed that the 

intensity ratio between MoSe2 and C was highest in the center and decreased towards the 

edges of the wear scar. Also, the sharp MoSe2 peaks in the center typical of highly ordered 

structures were much broader at the edges of the wear scar, indicating a less organized 

structure. It was expected, since the formation of well-ordered MoSe2 structure is related to 

local contact pressure [14] and the pressure is the highest in the center of the wear track. The 

wear debris consisted mainly of disordered graphitic carbon and less-ordered MoSe2. In some 

spectra, small peaks close to the regions corresponding to MoO3 were observed. The center of 

the transfer film produced in argon showed almost exclusively MoSe2 peaks; carbon was 

clearly moved from the center of the contact to the sides, see Fig. 10. This finding 

corroborates our previous studies on similar self-lubricant systems [3,14]. The presence of 
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carbon peaks in the center of the wear track produced in humid air might indicate thinner 

MoSe2 tribolayer compared to that formed in argon. 

 

Figure 10: Raman spectra from the transfer films on the steel balls run against MoSe-61C in 

Ar and humid air at 10 N load. Spectra were acquired from the center of the contact and from 

the debris accumulated along the sides of the contact. 

 

Four TEM cross sections were prepared using FIB; one from the center of the wear track on 

the MoSe-61C coating and one from the center of the transfer film on the corresponding ball, 

from the 10 N load tests in humid air and in Ar. 

To assure that the TEM samples from the wear tracks included the zone of the highest 

pressure, the cross sections were cut perpendicular to the sliding direction. The TEM cross 

sections of the transfer films on the balls were cut parallel to the sliding direction. 

In the wear track formed in humid air, a clear structural change had occurred in the top 20 nm. 

Here, a structured tribofilm with basal planes aligned parallel to the sliding surface had 
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formed, see Fig. 11. The interplanar distances, 6.4-6.5 Å, correspond to MoSe2 [1]. Below this 

tribofilm, small, thin randomly oriented layers of MoSe2 were embedded in a carbon matrix, 

resembling the as-deposited coating. EFTEM elemental maps of the tribofilm verified that it 

was predominantly formed by MoSe2 and almost free from carbon, see Fig. 11.  

 

Figure 11: a) TEM cut perpendicular to the sliding direction from the wear track of the MoSe-

61C coating tested in humid air at 10 N load. A clear structural change involving formation 

and alignment of MoSe2 planes parallel to the sliding surface has taken place down to a depth 

of 20 nm. b) TEM of the same area and EFTEM maps of the film showing a depletion of 

carbon and an enrichment of Se in the structurally changed area. 

 

The transfer film on the ball was approximately 400 nm thick consisting mostly of crystalline 

MoSe2. The top part of the transfer film is shown in Fig. 12. Although the basal planes again 

were mostly oriented along the sliding direction, the degree of alignment was lower than on 

the coating side.  
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Figure 12: TEM image of the transfer film formed on the steel ball run against the MoSe-61C 

coating at 10 N load in humid air.  

 

In the STEM, the strong atomic number contrast revealed particles or agglomerates with sizes 

up to a few hundred nanometers. The darker contrast indicated that the mean atomic number 

is lower than that of the surrounding MoSe2. STEM EDX mapping confirmed that the transfer 

film mainly consists of Mo and Se with only small amounts of carbon, and proved that the 

particles/agglomerates contained exclusively oxygen and molybdenum, see Fig. 13. Iron was 
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not detected in the transfer film. STEM-EELS SI validated the STEM EDX-data; the fine 

structure of the oxygen K edge in the EELS spectra from the larger agglomerates matched 

with MoO3 reference spectra (not shown). 

 

 

Figure 13: STEM HAADF image and XEDS maps of the transfer film. The darker areas in the 

HAADF image only give signal from Mo and O. 

 

Also, the tribofilm formed in the wear track produced when sliding in Ar was topped by a 

very thin, well-ordered MoSe2 (again with the basal planes parallel to the sliding surface), see 

Fig. 14a. The corresponding film transferred to the steel ball showed a thickness similar to 

that formed in humid air (150-300 nm) and consisted almost exclusively of highly crystalline 

MoSe2 with the basal planes aligned parallel to the surface (Fig. 14b). 
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Figure 14: a) HR TEM of the wear track formed on the MoSe-61C coating tested at 10 N load 

in Ar. The FIB cut was prepared perpendicular to the sliding. b) HR TEM image of the 

corresponding transfer film on the steel ball; the FIB cut parallel to the sliding. 

 

 

4. Discussion 

 

4.1 Tribological and analytical results 

The friction of the investigated coatings was lower at higher loads, which is typical for TMDs 

(pure as well as doped or alloyed with other elements). The friction coefficient was similar in 

argon, nitrogen and dry air but significantly higher in humid air. Both coatings exhibited 

remarkably low wear rates (except for local adhesive failures of the MoSe-47C coating) 

corresponding to approximately one molecular layer per 10-20 passages of the ball (cycles). 

Moreover, the wear rate during the steady state sliding should be significantly lower, since the 

transfer of the coating material to the ball during the running-in process represents a 
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significant amount of the volume worn from the coating [14]. The wear tracks formed in dry 

air and, to some extent, in nitrogen and humid air exhibited two pronounced variations in the 

composition: (i) streaks consisting of almost pure MoSe2, smeared along the sliding direction, 

and (ii) the remaining area, with an appearance similar the as-deposited coating. Interestingly, 

the areas rich in MoSe2 were typically located higher in the wear track, while the lower parts 

have probably been in less contact, since the composition and structure, as identified with 

Raman, are similar to that of the as-deposited coating.  

 

4.2. Wear mechanisms 

Based on the compositional variation and structure found on the worn surfaces, we suggest 

that coating material is first removed from the coating, then adhered on the ball surface where 

the carbon is separated from the MoSe2 and transported towards the side of the wear scar 

(which is supported by the gradient in carbon shown in Fig. 7), and finally the MoSe2 

enriched material becomes transferred back to the coating surface. We did not observe any 

carbon at the sliding interface and it seems that carbon does not play any significant role in 

the sliding. It corroborates our previous studies on similar W-S-C and Mo-Se-C systems 

[5,14,29], where the carbon was not found on the top surface of the wear tracks. The very low 

friction coefficients in argon and nitrogen support our hypothesis, since hydrogen-free 

amorphous carbon films are known for high friction in these environments [30,31].  

 

4.3 Effect of humidity 

The oxidation of the TMD-based materials is often considered as the main reason for high 

friction in humid air [32,33].  Martin et al. [34] showed that pure MoS2 could be considered as 

a “superlubricant” in ultra-high vacuum conditions (the friction was below the resolution of 

the equipment). They observed that the friction became higher when the partial pressure of 
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oxygen in the vacuum chamber was increased. The effect on friction of oxygen atoms 

replacing sulfur in MoS2 crystals (i.e. MoS2-xOx) was studied by molecular dynamics in Ref. 

[35]. There the friction was the lowest for pure MoS2 and then increased with x. It reached a 

maximum at x = 0.25 and then decreased again. The authors suggested that the increase of the 

friction was due to a reduction of the interlayer Coulomb repulsion and a surface roughening 

at the atomic scale due to the replacement of sulfur atoms by oxygen. When the number of 

oxygen atoms was higher, the surface was smoothened again and, consequently, the friction 

decreased. This simulation supported older results presented by Fleischauer and Lince [36], 

who highlighted the difference between oxidation (i.e. formation of MoO3) and oxygen 

substitution (MoS2-xOx). The former was always detrimental, leading to high friction and 

accelerated wear, whereas the latter did not substantially degrade the tribological 

performance. They pointed out that the substitution was typical of as-deposited sputtered 

films (oxygen from the residual atmosphere) and oxidation was the process occurring during 

storage, particularly in humid air, or during the sliding process in oxygen-containing 

atmospheres. Our results (XPS, TEM, and Raman spectroscopy) showed a very low level of 

oxygen both in the tribofilm formed in the wear track and in the transfer film on the ball after 

the tests in humid air. In fact, there was almost no difference in the oxygen content between 

the tests in argon and in humid air. Moreover, Raman showed very low amounts of oxides, 

and XPS analyses suggested that the only oxygen present in the transfer film was in the form 

of MoSe2-xOx. Considering the analogy between MoS2 and MoSe2, we could expect that the 

friction should still be very low even though oxygen atoms were introduced in the MoSe2 

structure [35].  

However, the agglomerates found in the transfer film formed on the ball in humid air were 

proven by EELS to be MoO3, the most stable oxide for Mo. These agglomerates should not 

influence the friction to any larger extent since they were never found close to the sliding 
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interface. Considering wear, MoO3 particles are known to be capable of causing abrasive wear 

of the formed tribofilms [37,38]; however, the wear rate in this work was almost identical 

when sliding in argon and humid air. Since molybdenum oxide particles were not observed in 

the transfer film formed in argon atmosphere, it is therefore probable that these agglomerates 

were during the sliding in humid air either removed from the contact by the same mechanism 

as described above for carbon, or they remained embedded in the transfer film. Thus, high 

friction in humid air cannot be fully explained by oxidation of the MoSe2. The comparison of 

TEM cross-sections (Fig. 11 and Fig. 14) suggests that the well-aligned MoSe2 tribofilm was 

thicker in the wear track produced in humid air (approx. 20 nm) than in argon (approx. 5 nm, 

i.e. few molecular layers). However, these thicknesses observed in TEM are not necessarily 

representative for the entire sliding process. The sliding interface may very well shift between 

different possible easy shear planes. Such shifts may take place locally and perhaps be very 

frequent. They can be caused by the local roughness of the surfaces (the roughness is large in 

comparison to the tribofilm thickness) or other factors disturbing the shear stress distribution 

or the local shear strength of the film. Up or down shift of the sliding interface will of course 

be coupled to transfer of layers to the ball or the coating. We believe that the adhesive 

mechanism of this type frequently and locally alters the thickness of the tribofilm on the two 

sides of the contact. In our previous study we observed different thicknesses of the tribofilm 

in different spots in one wear track (Mo-Se-C coating with 51 at.% of carbon [29]). 

Regardless of its thickness, we conclude that the material composition at the sliding interface 

is identical, almost exclusive MoSe2, and that its crystallographic orientation is optimal to 

achieve the lowest friction [39]. Based upon the results discussed above we can propose that 

the detrimental effect of the water molecules is primarily due to their adsorption in the MoSe2 

sliding interface, where they temporarily increase the interfacial shear strength [38]. Higher 

load could then compress the structure further, making it more difficult for the water 
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molecules to enter between the layers, and as a result decrease the friction coefficient. The 

reason for higher wear in dry air and in N2 has not been investigated and therefore remains 

unsolved. Due to the excellent tribological performance in argon, humidity is not believed to 

be the important factor here. 

 

4.4 The role of carbon 

Why did the MoSe-61C coating, with higher carbon content, show lower friction coefficients 

than the MoSe-47C coating? For this family of coatings, carbon has proven to increase the 

hardness, and correspondingly the shear strength increases, which could be expected to 

increase the friction. The answer lies in that after the tribological contact, the much softer, 

pure MoSe2 totally dominates the sliding interface for both carbon contents. In this way, the 

more ideal friction situation is achieved for the harder coating. The higher hardness leads to a 

smaller contact area to shear, and interfacial shear strength is the same, since the interfacial 

layer is transformed to the same, very easily sheared MoSe2. This transformation is rather 

remarkable: it includes the preferential elimination of carbon from the structure, aggradation 

of the small MoSe2 structures into larger crystals, and finally an efficient orientation of these 

crystals into the ideal angle with the easy shear planes parallel to the sliding direction, i.e. 

basal plane-on-basal plane interfacial sliding. An interesting question is now how the carbon 

is so efficiently depleted? In the present case 47 and 61 at.% carbon, respectively, has been 

virtually eliminated. Does this mechanism operate on the atomic level by diffusion 

mechanisms, or on a larger scale? 

In humid air, the presence of graphite in MoS2 based coatings has been suggested to work as 

an oxygen getter. The carbon is more prone to oxidize, thereby it collects the oxygen in the 

structure and consequently reduces the negative effect on the MoS2 [15]. If an equivalent 

effect holds also for MoSe2, then carbon could be suggested to be removed in gaseous form 
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by oxidation. However, when sliding in argon, hardly any oxygen is present and still the 

carbon is efficiently removed from the contact. This indicates that removal in gaseous form is 

not a very likely mechanism.  

The fact that carbon rich layers and debris are found around the periphery of the wear scar on 

the ball and along the wear track on the coating indicates that there could be some mechanism 

based on “preferential removal” of carbon rich wear debris. The carbon rich debris is 

distributed much like it would have been by a snow plough, indicating that it is first pushed in 

front of the ball and then gradually moved to the sides until it eventually falls outside the 

plough, resting either on the coating side or on the ball. One possible mechanism behind this 

preferential removal would be if more carbon rich debris has a stronger tendency to be 

ploughed away rather than enter into the narrow gap between the ball and the flat. This 

tendency would be stronger for larger particles and less easily sheared particles (i.e. those 

more resistant to become squeezed between the surfaces). Carbon rich particles should be 

expected to be harder, and therefore less easily sheared. Since microscopic wear particles are 

continuously created, and then repeatedly “sorted” at each passage of the ball, the suggested 

mechanism could lead to a gradual removal of more carbon rich material, corresponding to a 

gradual enrichment of Mo and Se in the contact area. With less surrounding carbon the 

original microscopic MoSe2 platelets have a better possibility to sinter and form much more 

extensive planes, eventually leading to the well aligned structures revealed in the TEM.  

There is significant experimental evidence that such separation is typical for various 

nanostructured systems combining TMD and other phases. Scharf et al. has shown formation 

of exclusive MoS2 tribolayer in case of sliding of MoS2/Sb2O3/Au nanocomposite coating 

[40]; MoS2 was well-ordered with basal planes parallel to the surface after sliding in nitrogen 

and humid air.  Nyberg et al. has recently published a study on tribological behaviour of W-S-

C-Ti coatings, where WS2 tribolayer was formed during sliding in dry air [41]. The results of 
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Fominski et al. suggest that TMD tribolayer is formed in case of W-Se-C [42] and Mo-Se-Ni-

C [43] coatings. Our previous studies on TMD-C coatings [29] and complex analysis of 

amorphous W-S-C-Cr films [3] has indicated the formation of a TMD low-friction tribolayer 

as well. In fact, the first observation of well-aligned MoS2 layers in the contact was observed 

by Wahl et al. in their pioneering work on amorphous Mo-Pb-S system [44]. 

The exact mechanisms and driving forces for the separation and/or formation of TMD 

tribolayer is obviously not clear, and should be further investigated by dedicated experiments 

and simulations.  

 

Conclusions 

Two Mo-Se-C coatings deposited by magnetron sputtering (containing 47% and 61% carbon, 

respectively) were tribologically evaluated against steel balls in different dry and humid 

atmospheres. Very low friction coefficients were found in several cases. The low-friction 

behavior was attributed to the formation and structural alignment of pure MoSe2 layers in the 

sliding contact. Lower friction coefficients were achieved for the coating with higher C 

content. The wear rate was very low for both coatings, independently of the testing conditions 

and the carbon content. Although the friction in argon was 5 times lower than in humid air, 

the wear rate was almost identically low. Extensive analysis of worn surfaces did not indicate 

any correlation between the friction coefficient and the wear rate. During sliding, interfaces 

were depleted in carbon, and the relatively unordered structure became much more 

crystalline, resulting in only well-aligned MoSe2 present in the interface, with its easy shear 

basal planes oriented along the sliding direction (basal plane-on-basal plane interfacial 

sliding). Oxygen was not observed in the contact area, and it was suggested that the humidity 

only affects the structure by increasing the shear strength, not by oxidizing the MoSe2 to any 

significant extent. The results clearly demonstrate the promise of Mo-Se-C based coatings for 
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unlubricated tribological components used in ordinary humid air. The presently investigated 

coatings show a clear advantage over most coatings based on Mo and W sulfide, which give 

high friction and rapidly deteriorate in humid air.  
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Highlights 

 

• MoSeC coatings exhibited very low friction coefficient in different atmospheres. 
• The wear rate was almost identical in dry nitrogen and humid air. 
• MoSe2 tribolayer observed after testing both in argon and humid air. 
• The carbon is preferentially removed from the contact area. 
• The presence of water vapour does not increase the surface oxidation. 

 

 




