

University of Coimbra

Faculty of Sciences and Technology

Department of Informatics Engineering

Operating Middleware and Timing Guarantees

for Heterogeneous Sensor Networks

José Manuel da Silva Cecílio

Coimbra, 2013

iii

Department of Informatics Engineering

Operating Middleware and Timing Guarantees for

Heterogeneous Sensor Networks

by

José Manuel da Silva Cecílio

A dissertation submitted to the UNIVERSITY OF COIMBRA

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Informatics Engineering

Adviser:

Prof. Dr. Pedro Nuno San-Bento Furtado

Assistant Professor at University of Coimbra

Coimbra, 2013

Financial support by:

1- EU Seventh Framework Programme (FP7/2007-2013) under grant agreement n°

224282, Project GINSENG.

2 - Portuguese Foundation for Science and Technology (Fundação para a Ciência e a

Tecnologia – co-financiamento do Programa Operacional Potencial Humano/POPH e da

União Europeia) through the PhD grant SFRH / BD / 71008 / 2010.

Operating Middleware and Timing Guarantees for Heterogeneous Sensor Networks

Copyright © 2013 by José Cecílio.

ISBN 978-989-96001-7-1

v

Abstract

In many distributed contexts, the software infrastructure needs to incorporate

data coming from nodes that include computers, wireless computational devices and

wireless sensor networks (WSNs). The inclusion of pervasive devices in distributed

systems provides flexibility and cost savings when compared to entirely cabled

deployments. For example, in real industrial setups there will typically coexist wired

sensors, wireless sensor and actuator networks (WSAN) and wired backbone nodes,

forming a heterogeneous programmable distributed system.

Existing wireless embedded systems for distributed applications are

programmed separately from the rest of the network. In this thesis we propose a

modular approach to hide heterogeneity and offer a single common configuration and

processing component for all nodes of the heterogeneous system. The main contribution

consists on a middleware architecture that configures and processes data uniformly over

heterogeneous networks. A set of mechanisms are proposed, with a single uniform

component to work with heterogeneous distributed systems. This advances the current

state-of-the-art in middleware for distributed control systems, by providing a single

component that abstracts the underlying differences in all devices such as computers

and WSN nodes, using a data stream processing model.

Timing related issues must be brought forward when designing such a

middleware architecture for heterogeneous distributed control systems. In this line, the

thesis also investigates and proposes an approach for planning operations with timing

guarantees.

Timing guarantees in WSN sub-networks are enforced using real-time

algorithms and protocols. In what concerns network protocols, pre-planned synchronous

time-division algorithms are frequently used to enforce timing. But at the same time,

operations timing requirements must be met over the whole heterogeneous system,

regardless of what protocols and software is running in each part. We discuss how to

 vi

plan monitoring and closed-loop operations with restricted time boundaries in the

distributed heterogeneous system.

The mechanisms and approaches proposed in the thesis were successfully

applied in an embodiment of the concept, as middleware component in an industrial

refinery setting within EU project GINSENG, and all components were evaluated.

 vii

Resumo Alargado em Português

Em muitos contextos distribuídos, a infra-estrutura de software necessita

incorporar dados provenientes de nós que podem ser computadores ou sistemas

embebidos sem fios. A inclusão de dispositivos embebidos sem fios em sistemas

distribuídos oferece flexibilidade e economia de custos quando comparado com

implementações totalmente cabladas. Por exemplo, numa instalação industrial real

podem existir sensores com fios, sensores sem fios e computadores cablados, formando

um sistema programável heterogéneo distribuído.

As soluções actuais de desenvolvimento de sistemas distribuídos com sistemas

embebidos são concebidas em separado, onde é necessário programar cada parte com

código específico. No entanto, esta abordagem acarreta problemas no contexto de

aplicações interactivas (por exemplo, (re)configuração de controlo de malha fechada,

em qualquer parte da rede), em que a rede deve ser vista como um sistema heterogéneo

único distribuído, oferecendo uma maior uniformidade, simplicidade e flexibilidade.

Nesta tese é proposta uma abordagem modular para desenhar esses sistemas

distribuídos com dispositivos heterogéneos. Propõe-se um conjunto de mecanismos e

uma arquitectura de middleware capaz de lidar com as diferenças de hardware e

software provenientes das características dos nós. Ao mesmo tempo é requerido um

interface único de configuração para todos os nós (computadores ou sistemas

embebidos). Isso avança o estado-da-arte em abordagens de middleware para sistemas

distribuídos com dispositivos embebidos, porque oferece um único componente de

middleware que abstrai as diferenças subjacentes aos dispositivos e permite configura-

los da mesma forma, utilizando um modelo de fluxo de dados e processamento.

Outra questão que surge relativamente à concepção de um sistema distribuído

com dispositivos embebidos prende-se com o desempenho resultante de todo sistema.

Surge então a questão se é possível oferecer garantias de tempos de operação dentro de

toda a rede.

 viii

Nesta tese também é proposta uma abordagem para planeamento de garantias de

tempo sobre o sistema heterogéneo distribuído compreendendo todas as partes.

Os mecanismos e abordagens propostas nesta tese foram aplicados com sucesso

no conceito de componente de middleware no âmbito do projecto Europeu GINSENG

que tinha como cenário de aplicação parte da rede de sensores existente na refinaria da

Petrogal em Sines, Portugal.

Dado que a tese foi escrita em Inglês, na restante parte desta Secção faz-se um

resumo em Português do conteúdo da tese.

1. Introdução

No capítulo 1 introduzimos os conceitos da tese, incluindo a estratégia utilizada

para resolver questões de heterogeneidade resultantes da introdução de dispositivos

embebidos sem fios em sistemas distribuídos computacionais de monitorização e

controlo.

Existem duas soluções actuais para a implantação dos sistemas heterogéneos que

incluem redes de sensores sem fios e o resto do mundo. Uma delas envolve a

programação de todos os detalhes de processamento e comunicação à mão, dentro da

rede de sensores sem fios e fora dela. O outro é baseado em abordagens de middleware.

No entanto, as soluções de middleware existentes servem apenas uma parte do sistema

distribuído. Por exemplo, há abordagens para redes de sensores sem fios e há outras

soluções de middleware para sistemas distribuídos baseados em computadores, mas

nenhuma deles é capaz de configurar ambas as partes de forma única. Dependendo do

middleware, ou a rede de sensores sem fios ou a parte baseada em computador tem que

ser programada separadamente.

A proposta desta tese gira em torno de uma arquitectura de middleware que

configura e processa dados de maneira uniforme em sistemas heterogéneos distribuídos.

O sistema distribuído pode ser visto como uma rede de processamento uniforme onde

existe um componente único de nó, que pode ser instalado em qualquer nó, incluindo

nós fora da rede de sensores sem fios. Cada nó terá o mesmo interface de configuração

 ix

remota e as mesmas capacidades de processamento, sem qualquer programação

adicional.

Mais genericamente, num sistema heterogéneo, com diferentes tipos de

dispositivos sensores, estações de controlo e sub-redes, a abordagem oferece

homogeneidade fácil e imediata sobre toda a infra-estrutura heterogénea.

O problema desta tese pode ser descrito como:

Como oferecer interoperabilidade num sistema heterogéneo distribuído com

configuração igual e um modelo de processamento de dados igual em todos os nós

(computadores ou sistemas embebidos), onde as mesmas operações (por exemplo,

condições complexas de malha fechada ou alarme) podem ser executadas sem qualquer

programação personalizada?

O objectivo principal deste trabalho é então responder à pergunta acima

formulada.

Nenhuma das soluções actuais para sistemas distribuídos com redes de sensores

sem fios aborda a reconfiguração sobre todo o sistema. Além disso, o estado-da-arte em

reconfiguração de redes de sensores sem fios é focado em middleware para plataformas

específicas, bem como em questões de baixo nível de reconfiguração, e carece de um

modelo de reconfiguração a nível de recolha e processamento de dados.

Em cenários de aplicação como os sistemas distribuídos de controlo, utilizados

em aplicações industriais, os tempos de operação tornam-se muito importantes. Surge

então a questão, se é possível oferecer garantias temporais no sistema heterogéneo

distribuído. Uma maneira de oferecer garantias de tempo é planear e implantar redes de

sensores sem fios com protocolos de execução pré-planeados. Neste contexto, a

proposta de middleware deve prever e controlar o tempo de execução das operações.

Esta tese propõe então uma arquitectura de middleware para lidar com a

heterogeneidade e fornecer garantias de tempo em sistemas distribuídos com

dispositivos heterogéneos. As contribuições da tese resumem-se a:

 x

 Investigar metodologias de middleware e métodos para a construção de sistemas

com base em não-codificação para (re)configuração remota e operação em

ambientes heterogéneos.

 Investigar metodologias de planeamento para garantias de tempo em sistemas

heterogéneos distribuídos.

 Avaliar a adequação dos mecanismos propostos na forma de middleware e de

planeamento em suporte a aplicações industriais, utilizando a plataforma de

testes do projecto Europeu GINSENG como um caso de estudo.

2. Background e Estado da Arte em Middleware para Redes de Sensores

Sem Fios

Para abordar as questões da tese, precisamos investigar middleware e métodos

para a construção de sistemas heterogéneos distribuídos com base em não-codificação e

(re)configuração remota. O capítulo 2 aborda o estado-da-arte relacionado com

middlewares. Primeiro são descritas características típicas de sistemas embebidos

(software e hardware) que ajudam a entender o problema de heterogeneidade que pode

ocorrer quando criamos um sistema distribuído com redes de sensores sem fios.

Na secção 2.2 deste capítulo, revemos o trabalho mais importante que está

relacionado com o problema abordado nesta tese. São discutidas duas áreas principais:

reconfiguração remota e arquitecturas de middleware.

3. Background e Estado da Arte em Planeamento de Redes com Garantias

de Tempo

O capítulo 3 aborda o estado-da-arte relacionado com o planeamento de redes

sem fios com garantias de tempo. Numa primeira parte, servindo de background é

fornecida alguma informação sobre o controle de acesso ao meio (MAC), abordagens de

protocolo de comunicação e mecanismos de escalonamento utilizados em protocolos de

múltiplo acesso com divisão de tempo (protocolos TDMA).

Os mecanismos de planeamento utilizados para planear sistemas distribuídos de

controlo com garantias de tempo são analisados de seguida, na seção 3.3. A discussão é

 xi

focada em programação temporal (scheduling) e dimensionamento da rede, e em

modelos de latência para operações com garantias temporais.

4. Definição de Requisitos para Redes de Sensores Heterogéneas que

incluem Sensores Sem Fios

O capítulo 4 analisa os requisitos de cenários de aplicação para sistemas

baseados em não-codificação, com configuração remota e operação em ambientes

heterogéneos.

O capítulo analisa alguns cenários de aplicação e em seguida explora os

requisitos de middleware que podem ser extraídos a partir deste conjunto de cenários de

aplicação. Para a concepção do middleware proposto nesta tese, tiveram-se em

consideração os seguintes requisitos:

 Aquisição de dados e processamento

 Heterogeneidade

 Interoperabilidade

 Flexibilidade

 Configuração do sistema e Adaptabilidade

 Utilizadores

 Desempenho

Todos esses requisitos foram considerados na arquitectura geral proposta, o que

a torna capaz de suportar diferentes cenários de aplicação.

5. Mecanismos de Middleware para Redes de Sensores Heterogéneas que

incluem Sensores Sem Fios

No capítulo 5 descrevem-se os mecanismos do middleware que permitem

acolher os requisitos levantados no capítulo 4. Este capítulo começa por definir a

arquitectura geral do sistema distribuído com sistemas embebidos, e depois descreve as

metodologias e mecanismos utilizados para garantir a independência da plataforma

(hardware e software) e do protocolo de comunicação, bem como os mecanismos para

endereçamento e referenciação de cada nó no sistema heterogéneo distribuído. Para

 xii

além destes mecanismos, são descritos os mecanismos utilizados para o modelo de

dados e seu processamento.

6. Arquitectura dos Componentes de Nó e de Configuração Remota

O capítulo 6 propõe uma abordagem para arquitectura do componente nó

(MidSN-NC) e do componente de configuração remota (MidSN-RConfig).

O componente de nó (MidSN-NC) oferece a capacidade de processamento

(configurável) para sistemas heterogéneos distribuídos com sistemas embebidos com

restrições de capacidade, bem como para outros dispositivos computacionais. A

arquitectura proposta constrói uma camada intermediária de computação que irá servir

como uma abstracção escondendo o hardware, os sistemas operativos e os protocolos de

rede.

O MidSN-NC corre a nível da aplicação e é composto por duas partes principais:

1. Um kernel (NC-kernel) que é responsável pela troca de mensagens com

qualquer outro nó do sistema e pelo gerenciamento de agentes. Um agente é um código

específico desenvolvido pelos utilizadores e que serve para executar novas

funcionalidades no nó;

2. Uma pequena máquina operacional (NC-GinApp) que fornece:

o Gestão de configuração – capacidade de um nó se configurar com base

em comandos fornecidos por outros nós ou servidores;

o Gestão de dados e capacidades de processamento – capacidade de um nó

gerir dados vindos dos sensores ou de outros nós e processa-los para

tomar decisões ou para encaminha-los para outros nós;

o Aquisição e capacidades de actuação – capacidade de adquirir

periodicamente valores dos sensores e processar comandos de actuação;

Este componente do nó (MidSN-NC) deve ser desenvolvido apenas uma vez

para cada sistema operativo.

 xiii

Neste capítulo é também introduzido e descrito o componente de

(re)configuração remota (MidSN-RConfig).

O MidSN-RConfig é construído como um conjunto de módulos que permitem

lidar com configurações provenientes dos utilizadores através de chamadas de API e os

traduz em comandos. Os comandos são então enviados como mensagens a qualquer nó

de destino.

O MIDSN-RConfig é composto por quatro módulos principais e um catálogo:

o O interface de programação (API) – fornece funções para enviar

comandos de configuração para aplicações externas;

o O módulo de configuração – é responsável por tratar as chamadas da API

e configurar os nós na rede;

o O adaptador de rede – faz o interface entre o componente MidSN-

RConfig e a infra-estrutura de comunicação em rede;

o O módulo Plug&Play – configura novos nós para operar na rede;

o O catálogo – serve para guardar endereços, configurações e informações

sobre os nós.

7. Planeamento da Rede e Operações com garantias de Tempo

O capítulo 7 propõe uma abordagem para planeamento de garantias de tempo em

sistemas heterogéneos distribuídos compreendendo sistemas embebidos. É discutido

como planear operações de monitorização e controlo em malha fechada com limites de

tempo.

Neste capítulo é descrita uma organização típica do sistema de controlo

distribuído, são descritas operações e requisitos que podem ser definidos sobre esses

sistemas. É proposto também um modelo de latência utilizado para planear e estimar a

latência de operações. A latência global é modelada por partes e cada parte é descrita, o

que permite entender que latências estão envolvidas. Algumas dessas latências são

introduzidas pelas redes de sensores sem fios com recursos limitados, enquanto outras

são introduzidas por redes formadas por computadores e servidores.

 xiv

Depois de compreendidas as latências associadas a cada parte, é discutido um

algoritmo de planeamento da rede que tem em consideração requisitos de tempo

fornecidos pelos utilizadores. A abordagem é baseada no planeamento de intervalos de

tempo para cada nó, onde estes são capazes de enviar os seus dados para os nós de

destino. A parte da rede cablada, i.e., a rede formada por computadores e servidores,

também é modelada através de estatísticas temporais recolhidas através de

experimentação. A abordagem permite dimensionar a rede para atender os requisitos

temporais. Ela permite estimar a latência de monitorização e a latência de comandos

(configuração ou actuação).

Neste capítulo propõe-se igualmente uma abordagem para reduzir a latência de

comandos de configuração ou actuação. Esta abordagem consiste na determinação do

número de slots de transmissão de comandos necessários para garantir um determinado

requisito de tempo.

8. Definição de Limites Temporais e sua Verificação

No capítulo 8 propõe-se a definição e verificação dos limites de tempo

expectáveis para avaliar garantias de desempenho do sistema. Estes limites de tempo

podem ser definidos e utilizados em qualquer sistema distribuído para verificação do

seu desempenho.

Neste capítulo são definidas medidas e métricas que permitem a criação de um

relatório de desempenho do sistema distribuído, para ajudar os utilizadores a ajustarem

o funcionamento daquele. Estas medidas e métricas são aplicadas a cada mensagem de

forma a classificá-las, e são complementadas com as respectivas estatísticas. Cada

mensagem será classificada de acordo com cada limite pré-definido como “in-time”,

“out-of-time”, “waiting for” ou “loss”.

Por fim são descritos os mecanismos de verificação e um monitor que permitem

aos utilizadores avaliar o desempenho das diversas partes do sistema distribuído e

detectar qualquer anomalia existente no mesmo.

 xv

9. Avaliação Experimental do MidSN e seus Mecanismos

O capítulo 9 apresenta os resultados da avaliação experimental da abordagem

MidSN e seus mecanismos, propostos nesta tese. O objectivo é mostrar que a proposta

desta tese resulta num middleware capaz de ser executado em sistemas embebidos e em

computadores ao mesmo tempo que fornece garantias temporais. Para salientar a

capacidade de resolução do problema de heterogeneidade, mostra-se também a

avaliação da sua execução em diferentes plataformas de hardware. Neste capítulo são

avaliadas características tais como: memória, tempo de execução, consumo de energia e

reconfiguração.

10. Avaliação Experimental da Estratégia de Planeamento de Operações e

sua Monitorização

O capítulo 10 apresenta os resultados da avaliação experimental da abordagem

de planeamento e verificação de tempo de operação, de forma a fornecer garantias de

tempo. São reportados resultados sobre o algoritmo de planeamento descrito no capítulo

7, nos quais comprovamos experimentalmente que as estimativas temporais resultantes

do planeamento do sistema correspondem aos tempos verificados.

Por fim, é criado um ambiente de simulação onde vamos introduzir alguns

atrasos aleatórios nas mensagens para demonstrar como funcionam os mecanismos de

avaliação dos requisitos temporais pré-definidos e a usabilidade da ferramenta de

análise de desempenho.

11. Conclusões e Trabalho Futuro

O capítulo 11 apresenta um resumo das principais contribuições desta tese, e

aponta algumas questões interessantes, em aberto, que requerem investigação adicional.

 xvi

 xvii

Acknowledgement

To begin and foremost I want to thank my advisor professor Pedro. He has

taught me, both consciously and unconsciously, how good experimental research is

done. I appreciate all his contributions of time, ideas, and funding to make my Ph.D.

productive and stimulating experience. I am also thankful for the excellent example he

has provided as a successful researcher and professor.

My thanks additionally go to the many friends I have made during the

GINSENG project, who have provided me with inspiration and assistance throughout

my studies. Whilst each of my friends have made an impact in their own special way, I

would like to thank Ricardo and José do Ó for their companionship and helpful

contributions in the work done at the refinery.

Next I would like to thanks to my colleagues (João Pedro Costa and Pedro

Martins) for their patience during weekly meetings. I am grateful to my advisor who

kept us organized and was always ready to help.

I gratefully acknowledge the funding sources that made my Ph.D. work possible.

I was funded by the GINSENG project fellowship for my first year and was funded by

the Portuguese Foundation for Science and Technology (SFRH/ BD/71008/2010) in

subsequent years.

Lastly, I would like to thank my family for all their love and encouragement. For

my parents, who supported me in all my pursuits. And to my girlfriend Ana who makes

my life worth living. Her love and support has never faulted and I will be eternally in

her debt for the sacrifices and compromises she has made during my Ph.D. study.

Thank you all.

 xviii

xix

Publications

José Cecílio, Pedro Furtado, "Wireless Sensors in Industrial Time-Critical

Environments", a book of Computer Communications and Networks Series, Springer-

Verlag, London, 2013.

José Cecílio, Pedro Furtado, "Architecture for Uniform (Re)Configuration and

Processing over Embedded Sensor and Actuator Networks”, in the journal of IEEE

Transactions on Industrial Informatics, 2013.

Pedro Furtado, José Cecílio, "Configuration and Operation of Networked

Control Systems over Heterogeneous WSANs”, in the journal of ACM Transactions on

Embedded Computing Systems, 2013.

Tony O’Donovan, James Brown, Felix Busching, Alberto Cardoso, José Cecílio,

José do Ó, Pedro Furtado, Paulo Gil, Anja Jugel, Wolf-Bastian Pottner, Utz Roedig,

Jorge Sá Silva, Ricardo Silva, Cormarc J. Sreenan, Vasos Vassiliou, Thiemo Voigt,

Lars Wolf, Zinon Zinonos, “The GINSENG System for Wireless Monitoring and

Control: Design and Deployment Experiences”, in the journal of ACM Transactions on

Sensor Networks, 2013.

José Cecílio, Pedro Furtado, "MidSN – A middleware for Uniform

Configuration and Processing over Heterogeneous Sensor and Actuator Networks", in

proceedings of the 12th International Conference on Ad Hoc Networks and Wireless

(ADHOC-NOW 2013), Wrocław, Poland, July 8 – 10, 2013.

José Cecílio, Pedro Furtado, "Evaluating and Bounding Operations Performance

in Heterogeneous Sensor and Actuator Networks with Wireless Components", in

proceedings of the 12th International Conference on Ad Hoc Networks and Wireless

(ADHOC-NOW 2013), Wrocław, Poland, July 8 – 10, 2013.

José Cecílio, Pedro Furtado, "Providing Timely Actuation Guarantees with

heterogeneous SAN for Industrial Control Process", in proceedings of the 12th

International Conference on Control, Automation, Robotics and Vision (ICARCV

2012), Guangzhou, China, December 5 – 7, 2012.

 xx

José Cecílio, João Costa, Pedro Martins and Pedro Furtado, "A Modular

Architecture for Reconfigurable Heterogeneous Networks with Embedded Devices", in

proceedings of the 4th International Conference on Ad Hoc Networks, Paris, France,

October 16 – 17, 2012.

José Cecílio, Pedro Furtado, "Distributed Configuration and Processing for

Industrial Sensor Networks", in proceedings of the sixth international workshop on

Middleware Tools, Services and Run-time Support for Networked Embedded Systems

(MidSens’11), Lisbon, Portugal, 12-16 December 2011.

W-B. Pottner, L. Wolf, J. Cecílio, P. Furtado, R. Silva, J. Sa Silva, A. Santos, P.

Gil, A. Cardoso, Z. Zinonos, J. do Ó, B. McCarthy, J. Brown, U. Roedig, T.

O’Donovan, C. J. Sreenan, Z. He, T. Voigt, A. Kleiny, “WSN Evaluation in Industrial

Environments - First results and lessons learned”, in proceedings of 3rd International

Workshop on Performance Control in Wireless Sensor Networks (PWSN 2011),

Barcelona, Spain, 29 June 2011.

José Cecílio, Filipe Monteiro, Pedro Furtado, "Configuration and Data

Processing over a Heterogeneous Wireless Sensor Networks", in proceedings of 3rd

International Workshop on Performance Control in Wireless Sensor Networks (PWSN

2011), Barcelona, Spain, 29 June 2011.

José Cecílio, João Costa, Pedro Martins, Pedro Furtado, "A Framework to

(re)Configure a Heterogeneous Distributed Sensor Network for Closed-loop Control",

in proceedings of 3rd Workshop on Adaptive and Reconfigurable Embedded Systems

(APRES 2011), Chicago, United States, 11 April 2011.

Other Publications

José Cecílio, Pedro Furtado, "A State-Machine Model for Reliability Eliciting

over Wireless Sensor and Actuator Networks", in proceedings of the 3rd International

Conference on Ambient Systems, Networks and Technologies, Niagara Falls, Ontario,

Canada, August 27 – 29, 2012.

 xxi

José Cecílio, Pedro Martins, João Costa, Pedro Furtado, "State machine model-

based Middleware for Control and Processing in industrial Wireless Sensor and

Actuator Networks", in proceedings of 10th IEEE International Conference on

Industrial Informatics, Beijing, China, July 25 – 27, 2012.

José Cecílio, Pedro Martins, João Costa, Pedro Furtado, "A Configurable

Middleware for Processing in heterogeneous industrial Intelligent Sensors", in

proceedings of 16th IEEE International Conference on Intelligent Engineering Systems,

Lisbon, Portugal, June 13 – 15, 2012.

José Cecílio, Pedro Furtado, "Network Planning Tool with Traffic-Adaptive

Processing for Wireless Sensor Networks", in proceedings of International Conference

on Sensor Networks (Sensornets 2012), Rome, Italy, 24 - 26 February 2012.

José Cecílio, Pedro Furtado, "Reconfigurable middleware for heterogeneous

embedded devices", in proceedings of 12th International Middleware Conference

(Middleware’11), Lisbon, Portugal, 12-16 December 2011.

José Cecílio, João Costa, Pedro Martins, Pedro Furtado, "Device-Independent

Middleware for Industrial Wireless Sensor Networks", in proceedings of the 9th

International Symposium on Parallel and Distributed Processing with Applications

(ISPA 2011), Busan, Korea, 16-28 May 2011.

José Cecílio, João Costa, Pedro Martins, Pedro Furtado, "Sampling Rate and

Data Quality Issues: Experiments from Ginseng Industrial Deployment", in proceedings

of the International Workshop on Smart Grid and Home (SGH 2011), Busan, Korea, 16-

28 May 2011.

José Cecílio, João Costa, Pedro Martins, Pedro Furtado, "Interoperability for

Data Processing in Distributed Sensor Networks", in proceedings of International

Conference on Information Processing in Sensor Networks (IPSN), Chicago, United

States, 12-14 April 2011.

José Cecílio, João Costa, Pedro Martins, Pedro Furtado, "Configuration Interface

for Industrial Wireless Sensor Networks", in proceedings of International Workshop on

 xxii

Advanced Information Networking and Applications (WAINA-2011), Biopolis,

Singapore, 22-25 March 2011.

José Cecílio, João Costa, Pedro Martins, Pedro Furtado, "Providing Alarm

Delivery Guarantees in High-Rate Industrial Wireless Sensor Network Deployments",

in proceedings of International Conference on Pervasive and Embedded Systems

(PECCS 2011), Vilamoura, Portugal, 5-7 March 2011.

José Cecílio, João Costa, Pedro Martins, Pedro Furtado, "GinConf: A

configuration and execution interface for Wireless Sensor Network in industrial

context", in Proceedings of RealWSN 2010, Colombo, Sri-Lanka, 14-16 December

2010.

José Cecílio, João Costa, Pedro Furtado, “Survey on Data Routing in Wireless

Sensor Networks”, a full chapter of the book “Wireless Sensor Network Technologies

for Information Explosion Era" in Springer book series "Studies in Computational

Intelligence”, 2010.

 xxiii

Table of Contents

A b s t r a c t . v

R e s u m o A l a r g a d o e m P o r t u g u ê s . v i i

A c k n o w l e d g e m e n t . x v i i

P u b l i c a t i o n s . x i x

T a b l e o f C o n t e n t s . x x i i i

L i s t o f A c r o n y m s . x x v i i

L i s t o f T a b l e s . x x i x

L i s t o f F i g u r e s . x x x i

1 . I n t r o d u c t i o n . 1

1.1. Definitions .. 2

1.2. Problem Statement and Thesis Proposal .. 5

1.3. GINSENG Project ... 8

1.4. Thesis Objectives ... 11

1.5. Thesis Contributions... 12

1.6. Thesis Outline .. 13

2 . B a c k g r o u n d a n d S t a t e - o f - t h e - A r t i n M i d d l e w a r e

P l a t f o r m s f o r W S N . 1 5

2.1. Background ... 15

2.1.1. Hardware and software diversity .. 16

2.1.2. Wireless sensor operating systems ... 17

2.2. State-of-the-Art ... 19

2.2.1. Remote (re)configuration approaches ... 20

2.2.2. Middleware architectures .. 22

3 . B a c k g r o u n d a n d S t a t e - o f - t h e - A r t i n S c h e d u l i n g a n d

N e t w o r k P l a n n i n g . 3 5

3.1. Medium access control (MAC) .. 35

3.1.1. Contention-based MAC protocols .. 36

3.1.2. Schedule-based MAC protocols ... 37

3.2. Scheduling and Network planning .. 39

3.2.1. Scheduling and Network Planning in WSNs .. 40

3.2.2. Wireless industrial networks ... 42

3.2.3. Planning wireless sensor networks for industrial applications 43

3.2.4. Latency modelling and analysis .. 45

4 . M i d d l e w a r e R e q u i r e m e n t s f o r H e t e r o g e n e o u s S e n s o r

N e t w o r k s w i t h W S N n o d e s . 4 9

4.1. Application Scenarios ... 49

4.1.1. Industrial monitoring and control ... 51

4.1.2. Environmental monitoring .. 53

 xxiv

4.1.3. Precise agriculture monitoring and control ... 54

4.1.4. Smart buildings monitoring and control.. 55

4.1.5. Warehouse tracking ... 56

4.1.6. Transport logistics ... 57

4.1.7. Surveillance ... 58

4.1.8. Health care ... 60

4.2. Middleware Requirements ... 62

5 . M i d d l e w a r e M e c h a n i s m s f o r H e t e r o g e n e o u s N o d e s 6 5

5.1. Architecture ... 66

5.2. Platform and Communication Protocol Independency (Drivers) 69

5.3. The Catalog .. 73

5.4. Node Referencing and Heterogeneity .. 75

5.5. Publish/Subscribe External Interface.. 78

5.6. Data and Processing Model .. 80

5.7. Operations .. 83

5.8. User API ... 84

6 . N o d e a n d C o n f i g u r a t i o n M i d d l e w a r e C o m p o n e n t s 8 7

6.1. Node Component Architecture .. 88

6.2. NC-Kernel .. 90

6.2.1. Communication (I/O Adapter) .. 90

6.2.2. Agent manager (NC-Kernel-AM) ... 91

6.3. NC-GinApp .. 91

6.3.1. Acquisition & Actuation (NC-GinApp-AA) ... 91

6.3.2. Configuration management (NC-GinApp-CM) .. 92

6.3.3. Data Collector (NC-GinApp-DC) ... 94

6.3.4. Gin Processor (NC-GinApp-GP) .. 95

6.3.5. Extensibility of NC-GinApp ... 98

6.4. Remote Configuration Component (MidSN-RConfig) 98

6.5. Custom Code Agents ... 101

7 . N e t w o r k a n d O p e r a t i o n s P l a n n i n g . 1 0 5

7.1. Organization of Distributed Control Systems with Wireless Sensors 106

7.2. Operations and Requirements ... 108

7.3. Base Latency Model .. 109

7.3.1. Monitoring latency model ... 110

7.3.2. Command latency model ... 113

7.4. Adding Closed-loops to Latency Model .. 114

7.5. Adding Non Real-Time Components... 118

7.6. Prediction Model for Maximum Latency .. 121

7.7. Algorithm for Planning Time Guarantees .. 123

7.7.1. User inputs ... 123

7.7.2. Overview of the algorithm .. 126

 xxv

7.7.3. Determine the first network layout (step 1, 2 & 3) 129

7.7.4. Determine current epoch size (step 4) .. 130

7.7.5. Determine maximum WSN latencies (step 5) .. 130

7.7.6. Determine the number of downstream slots (step 6 & 7) 131

7.7.7. Number of clock synchronization slots (step 8 & 9) 135

7.7.8. Verify if latency requirements are met with the current epoch, network

layout and schedule (step 10 & 11) .. 136

7.7.9. Network partitioning (step 12) .. 136

7.7.10. Determine the maximum epoch size (step 13 & 14) 136

7.7.11. Inactivity period (step 15) ... 138

7.7.12. Network communication channel and sampling rate (step 16) 139

7.8. Lifetime Prediction ... 139

7.9. Slot Size Considerations ... 141

8 . P e r f o r m a n c e a n d D e b u g g i n g . 1 4 3

8.1. Measures .. 144

8.1.1. Latency .. 144

8.1.2. Delay of periodic events ... 145

8.2. Metrics ... 146

8.2.1. Monitoring latencies ... 146

8.2.2. Monitoring delays ... 147

8.2.3. Closed-loop latency for asynchronous or event-based closed-loops 147

8.2.4. Closed-loop latency for synchronous or periodic closed-loops 148

8.2.5. Closed-loop delays .. 148

8.3. Metric Information for Analysis ... 149

8.3.1. Bounds: waiting, in-time, out-of-time, lost ... 150

8.3.2. Messages and packet losses .. 151

8.3.3. Statistics: avg, stdev, max, min, percentile ... 152

8.4. The Debugging Module of MidSN ... 153

8.5. The Performance Monitor Module and UI .. 155

9 . E v a l u a t i o n o f M i d S N . 1 6 1

9.1. Evaluation of MidSN-NC for Multiple Platforms 162

9.1.1. Development and porting between platforms ... 163

9.1.2. Memory and performance ... 164

9.2. Operation Processing in Constrained Devices ... 167

9.2.1. Memory footprint .. 167

9.2.2. Performance and energy consumption: RAM versus Flash 170

9.2.3. Data processing versus lifetime .. 172

9.3. Networked Execution and Performance Evaluation 174

9.3.1. MidSN-RConfig user interface ... 174

9.3.2. Experimental setup ... 175

9.3.3. Command configuration and latency .. 176

 xxvi

9.3.4. Monitoring operation ... 177

9.3.5. Closed-loop over heterogeneous devices .. 179

1 0 . E v a l u a t i o n o f P l a n n i n g a n d M o n i t o r i n g A p p r o a c h e s . 1 8 3

10.1. Setup ... 184

10.2. Planning of Monitoring Operations: Evaluation...................................... 185

10.2.1. Verifying latencies using the formulas .. 186

10.2.2. Testbed run results .. 188

10.3. Considering Event Occurrence Instant ... 190

10.4. Planning with Network Splitting ... 191

10.5. Planning of Closed-loop Operation: Evaluation 192

10.6. Changing the Position of Downstream Slots ... 194

10.7. Adding Downstream Slots Equally Spaced in the Epoch 196

10.8. Multiple Close-loops .. 197

10.9. Energy and Lifetime Issues .. 200

10.10. Testing Bounds and the Performance Monitoring Tool 202

1 1 . C o n c l u s i o n s a n d F u t u r e W o r k . 2 0 7

A p p e n d i x A . C o m m u n i c a t i o n D r i v e r – C o d e E x a m p l e 2 1 1

A p p e n d i x B . T h e C a t a l o g S t r u c t u r e . 2 1 5

A p p e n d i x C . U s e r A P I . 2 1 9

C.1. Node .. 219

C.2. Operations and filters .. 220

C.3. Alarms ... 224

C.4. Actions .. 226

C.5. Actuations .. 227

C.6. Publish/Subscribe .. 227

C.7. Agents .. 228

A p p e n d i x D . C u s t o m C o d e A g e n t s – C o d e E x a m p l e 2 3 1

A p p e n d i x E . M e s s a g e F o r m a t s . 2 3 3

A p p e n d i x F . X M L M e s s a g e G e n e r a t e d b y t h e G a t e w a y –

E x a m p l e . 2 3 7

A p p e n d i x G . N e t w o r k C o n f i g u r a t i o n - E x a m p l e 2 3 9

A p p e n d i x H . N e t w o r k L a y o u t - E x a m p l e . 2 4 1

A p p e n d i x I . E v a l u a t i o n o f M i d S N – D e t a i l s 2 4 3

A p p e n d i x J . E v a l u a t i o n o f P l a n n i n g a n d M o n i t o r i n g

A p p r o a c h e s – D e t a i l s . 2 4 7

R e f e r e n c e s . c c l i

 xxvii

List of Acronyms

ACK Acknowledgment

ADCs Analog-to-Digital Converters

API Application Programming Interface

CoAP Constrained Application Protocol

CPLD Complex Programmable Logic

CPU Central Processing Unit

CSMA Carrier Sense Multiple Access

DACs Digital-to-Analog Converters

DCS Distributed Control System

ECA Event-Condition-Action

ELF Executable and Linkable Format

FDMA Frequency Division Multiple Access

FP7 The Seventh Framework Programme

FPGA Field Programmable Gate Array

GSM Global System for Mobile

HTTP HyperText Transfer Protocol

I/O Input/Output

ID Identification

IP Internet Protocol

IPv6 Internet Protocol version 6

LAN Local Area Network

LDR Light Dependent Resistor

LPL Low-Power Listening

MAC Medium Access Control

MCU Microcontroller Unit

OS Operating System

PC Personal computer

PID Proportional–Integral–Derivative controller

PLC Programmable Logic Controller

PLCs Programmable Logic Controllers

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

RFID Radio-frequency identification

RLE Run-length Encoding

 xxviii

ROM Read Only Memory

SCADA Supervisory Control and Data Acquisition

SOAP Simple Object Access Protocol

SPI Serial Peripheral Interface

SQL Structured Query Language

SYNC Synchronisation

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

uIP Micro IP

WPx Work package x

WSAN Wireless Sensor and Actuator Network

WSN Wireless Sensor Network

WSNs Wireless Sensor Networks

XML Extensible Markup Language

 xxix

List of Tables

Table 4.1 – System requirements of process control application scenarios 51

Table 4.2 – System requirements for equipment monitoring application scenario 52

Table 4.3 – System requirements of typical environmental application scenarios 54

Table 4.4 – System requirements of precise agriculture monitoring and control 55

Table 4.5 – System requirements of smart buildings monitoring application scenarios 56

Table 4.6 – System requirements of warehouse tracking application scenarios 57

Table 4.7 – System requirements of transport logistic application scenarios 58

Table 4.8 – System requirements of indoor surveillance application scenarios 59

Table 4.9 – System requirements of outdoor surveillance application scenarios 60

Table 4.10 – System requirements of health-care application scenarios 61

Table 4.11 – System requirements for MidSN architecture ... 64

Table 5.1 – Primitives of file system driver .. 70

Table 5.2 – Primitives of communication driver .. 70

Table 5.3 – Primitives of a timer driver .. 73

Table 6.1 – Sensor and actuator driver primitives .. 92

Table 6.2 – Data collector API ... 95

Table 7.1 – Non-real-time parts characterization [ms] ... 119

Table 7.2 – Non-real-time parts characterization – second setup [ms] 120

Table 9.1 – Program memory consumption .. 167

Table 9.2 – RAM memory consumption .. 169

Table 9.3 – Programming and RAM comparison between MidSN-NC and hand-coded

application ... 170

Table 9.4 – Time required creating a stream and writing a tuple 172

Table 10.1 – Non-real-time parts characterization [ms] ... 186

Table 10.2 – Maximum WSN sub-network latency per topology level (resulting from

looking the sub-network schedule) ... 187

Table 10.3 – End-to-end operation latency estimation per topology level 188

Table 10.4 – Closed-loop latency requirements ... 198

Table 10.5 – Number of downstream slots required to meet latency requirements 198

Table 10.6 – Latency parameters [ms] .. 198

Table 10.7 – Lifetime prediction .. 202

Table C.1 – Node primitives ... 220

Table C.2 – Operations and filters primitives ... 221

Table C.3 – Alarm primitives ... 225

Table C.4 – Action primitives ... 226

Table C.5 – Actuation primitives .. 227

Table C.6 – Publish/Subscribe primitives ... 227

Table C.7 – Agent primitives .. 229

Table E.1 – Message type ... 233

 xxx

Table E.2 – Node operation – Command types .. 234

Table E.3 – Supported metrics .. 235

Table I.1 – Programming memory footprint for all platforms [Bytes] - Figure 9.1 243

Table I.2 – RAM memory footprint for all platforms [Bytes] - Figure 9.2 243

Table I.3 – Time required per operation over a stream in memory [ms] - Figure 9.4 .. 244

Table I.4 – Consumed energy for data tuples manipulation [mJ] - Figure 9.8a) 244

Table I.5 – Consumed energy for data tuples manipulation [mJ] - Figure 9.8b) 244

Table I.6 – Command latency for the three platforms [ms] - Figure 9.12 244

Table I.7 – Data latency for the three platforms [ms] - Figure 9.14 245

Table I.8 – Data latency for TelosB per part [ms] - Figure 9.15 245

Table I.9 – Closed-loop latency over heterogeneous network [ms] - Figure 9.18 245

Table I.10 – Closed-loop latency over heterogeneous network per system parts [ms] -

Figure 9.19 .. 246

Table J.1 – Monitor latency per node - Figure 10.3 .. 247

Table J.2 – Monitor latency per level with forecast - Figure 10.4 248

Table J.3 – Monitor latency per network part - Figure 10.5 ... 248

Table J.4 – Event latency per node with forecast - Figure 10.6 248

Table J.5 – Closed-loop latency - Figure 10.9a) ... 248

Table J.6 – Closed-loop latency - Figure 10.9b) ... 249

Table J.7 – Closed-loop latency - Figure 10.11a) ... 249

Table J.8 – Closed-loop latency - Figure 10.11b) ... 249

Table J.9 – Asynchronous closed-loop latency for all configurations - Figure 10.15 .. 250

Table J.10 – Synchronous closed-loop latency for all configurations - Figure 10.16 ... 250

 xxxi

List of Figures

Figure 1.1 – Types of networks .. 2

Figure 1.2 – Sensor network components ... 3

Figure 1.3 – Components of a heterogeneous sensor networks .. 4

Figure 1.4 – Heterogeneous sensor network ... 5

Figure 1.5 – Distributed control system of GINSENG – Sines testbed 10

Figure 1.6 – Node deployment ... 11

Figure 5.1 – Network structure example of a distributed control systems with wired and

wireless nodes ... 66

Figure 5.2 – MidSN architecture .. 68

Figure 5.3 – MidSN-NC drivers ... 69

Figure 5.4 – Communication driver flow chart .. 72

Figure 5.5 – MidSN Gateway component .. 76

Figure 5.6 – Flowchart of MidSN Gateway component ... 77

Figure 5.7 – Flowchart of MidSN-Subscriber mechanism ... 79

Figure 5.8 – Flowchart of MidSN-Publish mechanism .. 80

Figure 5.9 – Stream structure .. 81

Figure 5.10 – Stream processing model .. 83

Figure 5.11 – Illustration of closed-loop control .. 84

Figure 6.1 – MidSN-NC architecture ... 88

Figure 6.2 – Timer events flowchart ... 96

Figure 6.3 – NC-GinApp-GP – computation flowchart ... 97

Figure 6.4 – MidSN-RConfig modules ... 99

Figure 6.5 – Interactions between an agent and MidSN-NC .. 102

Figure 7.1 – Distributed control systems with heterogeneous devices together 107

Figure 7.2 – TDMA - epoch definition ... 108

Figure 7.3 – Model for monitoring latency ... 110

Figure 7.4 – Event detection ... 111

Figure 7.5 – Time diagram (from event to detection by the sampling mechanism) 111

Figure 7.6 – Model for command latency ... 113

Figure 7.7 – Control decision at sink node ... 115

Figure 7.8 – Closed-loop latency (sink node) ... 116

Figure 7.9 – Closed-loop over whole distributed system ... 117

Figure 7.10 – Small network testing setup ... 118

Figure 7.11 – Larger distributed control system - testing setup 119

Figure 7.12 – SQL query .. 120

Figure 7.13 – Instant of command sending by the sink node 123

Figure 7.14 – Data forwarding rule – option 1 ... 124

Figure 7.15 – Data forwarding rule – option 2 ... 124

Figure 7.16 – Data forwarding rule – option 3 ... 125

 xxxii

Figure 7.17 – Downstream slots equally spaced in the epoch 126

Figure 7.18 – Downstream slots positioned to optimize asynchronous closed-loop

latency ... 126

Figure 7.19 – Planning algorithm .. 128

Figure 7.20 – Slot assignment algorithm – pseudo-code .. 129

Figure 7.21 – Worst case: schedule with one downstream slot 132

Figure 7.22 – Schedule with two downstream slots .. 132

Figure 7.23 – Schedule with four downstream slots ... 133

Figure 8.1 – Latency diagram ... 145

Figure 8.2 – Delay illustration ... 146

Figure 8.3 – Event state diagram ... 150

Figure 8.4 – Bounded event classification .. 151

Figure 8.5 – Message lost evaluation .. 152

Figure 8.6 – Message path - example .. 154

Figure 8.7 – PMM user interface .. 156

Figure 8.8 – PMM user interface – event logger ... 157

Figure 8.9 – PMM user interface – latency details ... 158

Figure 8.10 – PMM user interface – latency details ... 159

Figure 9.1 – Programming memory consumption for all platforms 164

Figure 9.2 – RAM memory consumption for all platforms .. 165

Figure 9.3 – Time required computing an average ... 166

Figure 9.4 – Time required per operation over a stream in memory 166

Figure 9.5 – Program memory distribution ... 168

Figure 9.6 – Operation execution times over RAM versus flash memory 171

Figure 9.7 – Time to read data from flash memory .. 171

Figure 9.8 – Consumed energy for data tuples manipulation 173

Figure 9.9 – Node lifetime .. 174

Figure 9.10 – GApp_Conf – configuration interface .. 175

Figure 9.11 – Experimental setup ... 176

Figure 9.12 – Command latency for the three platforms .. 177

Figure 9.13 – Configuration of a monitoring operation .. 177

Figure 9.14 – Data latency for the three platforms ... 178

Figure 9.15 – Data latency for TelosB per part ... 179

Figure 9.16 – Configuration of a closed-loop operation with decision logic in the control

station .. 180

Figure 9.17 – Closed-loop alternatives ... 180

Figure 9.18 – Closed-loop latency over heterogeneous network 181

Figure 9.19 – Closed-loop latency over heterogeneous network per system parts 182

Figure 10.1 – Setup ... 184

Figure 10.2 – TDMA schedule .. 186

Figure 10.3 – End-to-end monitoring latency per node .. 188

Figure 10.4 – Monitor latency per level with forecast .. 189

 xxxiii

Figure 10.5 – Monitor latency per network part ... 189

Figure 10.6 – Event detection latency per node (observed and forecast) 191

Figure 10.7 – TDMA schedule to meet the event latency .. 191

Figure 10.8 – Event detection latency (observed and forecast) 192

a) Supervision control logic inside embedded devices (sink node) 193

b) Supervision control logic in the control station .. 193

Figure 10.9 – Closed-loop latencies ... 193

Figure 10.10 – TDMA schedule ... 194

a) Supervision control logic inside embedded devices (sink node) 195

b) Supervision control logic inside the control station ... 195

Figure 10.11 – Closed-loop latencies ... 195

Figure 10.12 – Detail of slotTXforWaitt latency comparison .. 196

Figure 10.13 – Closed-loop latency versus number of downstream slots 197

Figure 10.14 – TDMA schedule that meets the strictest closed-loop latency 199

Figure 10.15 – Asynchronous closed-loop latency for all configurations 199

Figure 10.16 – Synchronous closed-loop latency for all configurations 200

Figure 10.17 – Radio duty-cycle ... 201

Figure 10.18 – Radio duty-cycle estimation ... 202

Figure 10.19 – Setup with “liar” node .. 203

Figure 10.20 – Message delay without “liar” node .. 203

Figure 10.21 – Message delay with “liar” node .. 204

Figure 10.22 – Message classification according to delay bound of 10 ms 205

Figure 10.23 – Message classification according to delay bounds per node 206

Figure A.1 – Implementation of the communication driver ... 212

Figure B.1 – MidSN-Catalog (structure) .. 217

Figure C.1 – Piece of code to create periodic operation and send data to the control

station .. 222

Figure C.2 – Piece of code to collect sensor reading in control station 223

Figure C.3 – Piece of code to change operation rate, stop and start the execution 223

Figure C.4 – Piece of code to create a filter .. 224

Figure C.5 – Piece of code to create an alarm .. 225

Figure C.6 – Piece of code to create an action .. 227

Figure C.7 – Piece of code to subscribe stream data .. 228

Figure C.8 – Piece of code to send an agent ... 230

Figure C.9 – Piece of code to send an agent ... 230

Figure E.1 – Format of message ... 234

Figure E.2 – Format of start message ... 235

Figure E.3 – Payload specification for operation configuration 235

Figure F.1 – Example of xml message generated by the gateway 238

Figure G.1 – Network configuration ... 239

Figure G.2 – Network configuration - plan-text format ... 240

Figure H.1 – TDMA schedule – plan-text format .. 242

 xxxiv

 1

1.gggg

Chapter 1

Introduction

Many industrial premises, such as a refinery, have hundreds or thousands of

sensors and actuators, which automate monitoring and control functionalities. About a

decade ago, industry suppliers have started deploying wireless sensor and actuation

solutions, which are easier to deploy and less costly than totally cabled ones. These

solutions are based on small embedded devices, with sensing and actuation

functionalities, as well as communication and computation capabilities. They

revolutionize critical applications by allowing sensing and actuation at significantly

lower cost.

Typically, multiple wireless sensor devices will be organized into some kind of

Wireless Sensor Network (WSN) spanning a whole sensing region. That distributed

system is different from a conventional distributed system built with computer nodes in

many aspects. Resource scarceness is the primary concern, which should be carefully

taken into account when designing software for those networks. Sensor nodes are often

equipped with a limited energy source and a processing unit with a small memory

capacity. Additionally, the network bandwidth is much lower than for wired

communications, and radio operations are very expensive compared to pure

computation in terms of battery consumption.

The enterprise software infrastructure in those industries needs to connect to the

Distributed Control System (DCS) (the monitoring and control network). The DCS

Chapter 1 Introduction

 2

includes many heterogeneous devices, such as Programmable Logic Controllers (PLCs),

computers and wireless embedded devices. The inclusion of WSN in industrial control

and monitoring applications contributes to the heterogeneity of the distributed system.

Heterogeneous sensor networks are also useful in other application contexts such

as: environmental monitoring, precise agriculture monitoring and control, warehouse

tracking, transport logistics, surveillance and health case.

1.1. Definitions

Before discussing the problem statement and proposal of this thesis, we

introduce some terms used to help the reader understand the thesis proposal. This thesis

revolves on sensor and actuator networks. These networks can be built with one single

platform (hardware and software) or can include different types of platforms. So, they

can be homogeneous or heterogeneous (Figure 1.1).

Figure 1.1 – Types of networks

In this thesis we will deal with heterogeneous sensor and actuator networks,

referred as heterogeneous sensor networks. The heterogeneous concept that we deal in

this thesis is related with operating systems, communication protocols and hardware

diversity.

These networks can be found in different application scenarios. They can be

found in distributed control systems (DCS), typically used in industrial monitoring and

Chapter 1 Introduction

 3

control systems to manage industrial processes, or in other application contexts. In any

of these application scenarios, the network may include different classes of hardware

and software. It may include embedded devices (constrained devices) or computer

nodes (Figure 1.2), making a heterogeneous network.

In addition, the nodes can be connected using cable infrastructures or wireless

links. When wireless links are assumed, we can have pervasive or mote devices. These

devices are resources constrained, with computation, communication and programming

capabilities.

Figure 1.2 – Sensor network components

The heterogeneous sensor network organization assumed in this thesis may

include cabled IP parts to computers and other devices, cabled sensors that provide

analogue signals, wireless sensors and communication links, and wireless sensor

networks composed by mote devices and specific communication and routing protocols.

Figure 1.3 shows various components that may be included in a heterogeneous sensor

network.

Chapter 1 Introduction

 4

Figure 1.3 – Components of a heterogeneous sensor networks

Lastly and to conclude this introductory section, we assume that pervasive

devices which operate a non-IP communication protocol (e.g. IEEE 812.15.4, ZigBee,

Rime), are organized in sub-networks (WSNs), and each WSN is headed by a gateway.

This gateway does the interface between non-IP protocols and IP protocols.

Computers, embedded or pervasive devices that support IP protocols may be

connected directly to the heterogeneous sensor network or may be organized in sub-

networks.

Figure 1.4 shows an example of a heterogeneous sensor network. In this

example we have two sub-networks composed by pervasive devices running, for

instance, the ZigBee communication protocol. They are connected to the distributed

system through a gateway. Each gateway interfaces the sub-network with the rest of the

distributed system that runs IP protocol.

Chapter 1 Introduction

 5

Figure 1.4 – Heterogeneous sensor network

1.2. Problem Statement and Thesis Proposal

There are two main current solutions for deploying the heterogeneous systems

that include WSN nodes and the rest of the world. One involves programming every

detail of processing and communication by hand, both within the WSN and outside of

it. The other one is based on middleware. However, existing middleware solutions cover

only part of the distributed system. For instance, there are several middleware

approaches for WSN operating systems and there are other middleware solutions for

computer-based distributed systems, but none is able to configure both parts in a unified

manner. Depending on the middleware, either the WSN or the computer-based part of

the distributed system has to be coded separately.

This thesis proposal revolves around a middleware architecture that allows a

unified configuration and processes data uniformly over heterogeneous networks,

composed by computers, constrained embedded devices and wireless sensor sub-

network nodes. A distributed system can be seen as a uniform configuration and

processing network by considering a single node component that can be installed in any

node, including nodes outside of the WSN. Each node will have at least a uniform

configuration interface (API), remote configuration and processing capabilities, without

any further programming or gluing together. As an immediate advantage of this

approach, a control station and indeed any node outside of the WSN will have at least

Chapter 1 Introduction

 6

the same configuration and processing capabilities and the same interface as the

remaining nodes, without any custom programming needs. More generically, the

approach aims to provide immediate homogeneity over heterogeneous deployments

with different types of sensor devices, control stations and sub-networks.

Several related issues have to be solved in order to achieve this goal. The

mechanisms proposed include: how to perform remote configuration, how to provide

flexibility and extensibility for the whole system, without extensive coding, and how

provide planning and monitoring operation timing guarantees.

The proposed middleware should provide easy remote configuration or

reconfiguration by engineers with no expertise in programming of distributed systems.

In industrial settings, monitor and closed-loop tasks are required to control physical

processes. Remote configuration mechanisms are needed to configure those tasks. For

instance, a control engineer (a person configuring operations) configuring a closed-loop

should be able to specify which nodes will participate in the decision, where the

decision is taken, which thresholds and actions must be taken and which node(s) will

perform the action. All these tasks should be done in the same way, regardless of the

underlying devices, so that even when devices are replaced by different ones, the same

configurations can be applied.

The monitoring data should also be traffic configurable, concerning which data

to process and the acquisition frequency. In-network computation may be included, to

process data as close to the source as possible and to avoid network congestion. The

middleware architecture has to provide flexibility and adaptability to a wide span of

applications.

Operation timings are very important for many DCS scenarios, such as those

used in industrial applications. This thesis also addresses how to provide timing

guarantees in the heterogeneous distributed system. One way to provide those

guarantees is to plan the WSN sub-networks with pre-planned time-division multiple

access (TDMA) protocols, estimate and control operations timings, and decide whether

to partition the sub-networks. Therefore, we propose an algorithm to plan and control

Chapter 1 Introduction

 7

operation timings. The algorithm takes as input the operation timings constraints and a

base topology for the WSN sensor nodes. It uses a latency model to estimate operation

timings, and if necessary partitions the WSN sub-network in the system until the

timings requirements are guaranteed.

The problem statement of this thesis is therefore:

How to provide interoperability between different nodes and provide a single

configuration and data processing model in that kind of distributed system that handles

different realizations, where the same operations (e.g. complex closed-loop or alarm

conditions) can be configured and run without any custom programming over different

hardware or on different components of the system (sensors, sink nodes or controlling

computers)? How to provide timing guarantees in such environments?

The main goal of this thesis is to answer the above questions from a distributed

system configuration and timing perspective.

The state-of-the-art in this area is divided into two main parts: WSN middleware

and internet middleware. None of the current solutions addresses uniform configuration

and operation over a whole heterogeneous distributed system including WSN and

cabled nodes. Moreover, the state-of-art in WSN configuration is focused on

middleware for specific platforms and low-level configuration issues. The state-of-art in

middeware outside of the WSN consists on middleware platforms that handle sensor

data sources and create uniform data formats to be consumed by clients. However those

middleware approaches do not allow configuring functionality within WSNs, since they

are only focused on wrapping data coming from sensor sources for sharing and

processing over the internet.

To address the thesis question, we need to investigate middleware and methods

for building systems based on no-coding remote (re)configuration and operation in

heterogeneous environments, and how to plan the middleware operations for timing

execution guarantees.

Chapter 1 Introduction

 8

1.3. GINSENG Project

This research thesis was done within the scope of European FP7 Specific

Targeted Research Project (Strep) GINSENG [1]. The FP7 European project

GINSENG, which ran from 2008 to 2012, investigated performance control in WSNs

for critical application scenarios. As part of the objective, GINSENG-developed

architectures should integrate into existing industry resource management systems,

while still providing performance guarantees. In order to achieve this goal, GINSENG

needed approaches to provide application-level operations with assured performance.

The project had the following work packages:

WP1 – Design and Algorithms for Performance Controlled Wireless Sensor

Networks: in this work package mechanisms and approaches were developed to monitor

performance in WSNs. Topology control and power control strategies were also studied

to save energy, prolong network lifetime, increase network capacity, maximize network

coverage, and enhance the overall performance of the network.

WP2 – Network elements and debugging tools for performance controlled

WSNs: a predictable and controllable sensor node medium access control protocol was

developed. In addition, a debugging tool was also developed. It allows verifying if

components are operating within the required performance bounds. In case the required

performance bounds cannot be met, it provides mechanisms to identify the error cause.

WP3 – Middleware and system integration: in WP3, the goal was to bridge the

gap between the field and the enterprise information systems, with end-to-end

performance assurances. This work package comprises approaches to map the WSN

properties on stream processing algorithms, management of the algorithms and the logic

in all components (backend, middleware and WSN).

Application-layer software to interact with the WSN through a declarative

application query interface was developed, where queries and commands can be issued.

WP4 – System demonstration and evaluation: WP4 showed the feasibility of the

methods developed in WP1, WP2 and WP3 within a realistic industrial application

Chapter 1 Introduction

 9

context. It consisted of software integration, testbed creation and evaluation of the

approaches and the integrated system.

Part of the work done in this thesis was supported by GINSENG project under

WP3. The main partners working directly in this work package were SAP-research and

ourselves (University of Coimbra). Among other functionality, the middleware

developed within the project implemented some of the findings and proposals presented

in this thesis, providing remote configuration capabilities and, at the same time,

operations timings monitoring. It runs in both embedded nodes within WSN and more

powerful computer nodes, and provides uniform configuration for the whole network,

and full integration of the WSN into the enterprise information system.

Within the GINSENG-developed Middleware, we developed the System

Configurator and the node application (GinApp) components, which implemented the

proposed mechanisms for uniform configuration and operation over the heterogeneous

system.

The node component (GinApp) is an application layer component used as

conceptual driver of the GINSENG system. It receives user configurations and

generates the digitised data that must be transmitted over the GINSENG deployment.

In order to provide timing execution guarantees with strict bounds over the

heterogeneous distributed system, planning mechanisms were studied to take into

account sense and send rates, maximum delay and number of nodes. GINSENG results

in a planned and careful deployment of the sensor nodes to achieve the desired

performance guarantees.

This project included an industrial testbed, where the different approaches were

tested in an integrated fashion. The software developed under WP1, WP2 and WP3 was

fully integrated and demonstrated within WP4.

Evaluation was very important for the GINSENG project to prove that the

envisioned solutions work in real industry settings and that application-specific

performance targets can be met. A testbed with two WSN was installed in the Sines oil

Chapter 1 Introduction

 10

refinery. The WSNs in the testbed were planned in terms of layout and schedules

(GINSENG focuses on totally planned networks, offering performance guarantees). The

testbed had 26 TelosB nodes organized hierarchically in two trees, two gateways and a

control station receiving the sensor data (Figure 1.5). The control station and gateway

computers were the cabled part of the DCS (Distributed Control System), and they were

placed in a portable office.

Figure 1.5 – Distributed control system of GINSENG – Sines testbed

Around the portable office, nodes were installed as shown in the example of

Figure 1.6. Each node was attached to a sensor in the refinery using the analogue to

digital converter of the TelosB nodes.

The WSN nodes ran the Contiki operating system with a TDMA network

protocol (GinMac [2]) to provide precise schedule-based communication. The TDMA

schedule had an epoch of 1 second where all nodes are available to send and receive

data. Nodes within a WSN were time-synchronized and awake for their predefined time

slot.

Chapter 1 Introduction

 11

The GINSENG testbed allowed extensive evaluation of all components, both

one-by-one and in a fully integrated experiment. Both WP1 and WP2 wireless sensor

network-related approaches and WP3 middleware solutions were tested and

demonstrated in that testbed, and resulted in a deliverable and a journal paper

submission by the project team. The middleware parts that implemented findings

presented in this thesis - the GinApp component that is the application-level code

running in every node, and the System Configurator that is the interface allowing

interaction and configuration of GinApp – were used, tested and demonstrated in the

testbed, including also the evaluation of closed-loop control alternatives.

Figure 1.6 – Node deployment

1.4. Thesis Objectives

As discussed before, this thesis is around a middleware architecture for handling

heterogeneity and providing timing guarantees in networked control systems with

heterogeneous devices. We summarize the thesis objectives as:

 To investigate middleware and methods for building systems based

on no-coding remote (re)configuration and operation in

heterogeneous environments. The approaches must be able to deal with

heterogeneity and with WSN sub-networks.

o Modular, API-based architecture;

o Flexible SQL-like operations management structure;

o API-based interface plus drivers for heterogeneity handling;

Chapter 1 Introduction

 12

o Small (GinApp) operating machine fitting both constrained and

more powerful devices;

o Dynamic extension-capable features for the configuration and

operation middleware;

 To investigate planning for timing guarantees of systems running the

configuration and operation middleware.

o Network dimensioning;

o Number of sub-networks and gateways needed to provide timing

requirements;

o Monitoring latency forecast and bounding;

o Actuation latency forecast;

 To evaluate suitability of middleware and planning in supporting

industrial applications, using the GINSENG testbed as a case study.

1.5. Thesis Contributions

The thesis contributions are essentially described in Chapters 5, 7, 8, 9 and 10.

In Chapter 5 we propose mechanisms to handle heterogeneity and distributed

operations. Mechanisms to handle different hardware, software and communication

protocols are discussed and proposed. We describe how node referencing and

homogenization of heterogeneous underlying systems (hardware and software) are

achieved and, the data and processing model that provides flexibility in configuration

and processing over the heterogeneous sensor network.

In order to provide timing guarantees, in Chapter 7 we propose mechanisms to

plan timing operation over heterogeneous distributed systems, and in Chapter 8 we

propose the definition and evaluation of bounds to analyse timing requirements. The

approach proposes schedules operations, predicts latencies and subdivides the wireless

sensor network until the predicted latencies meet operation end-to-end latency

requirements.

Chapter 1 Introduction

 13

Lastly, Chapters 9 and 10 evaluate an implementation of the proposed

mechanisms.

1.6. Thesis Outline

The remaining of this thesis is divided into ten chapters:

Chapter Two: Background and State-of-the-Art in Middleware Approaches for

WSN. This chapter provides some background concerning embedded systems.

Hardware and software characteristics and operating systems are introduced. The

second part of this chapter examines the related work concerning middleware

architectures and remote configuration approaches.

Chapter Three: Background and State-of-the-Art in Scheduling and Network

Planning. This chapter provides some background on communication protocols, focused

in the medium access control. Then, the related work concerning network planning and

scheduling approaches are reviewed.

Chapter Four: Middleware Requirements for Heterogeneous Sensor Networks

with WSN nodes. This chapter discusses the application scenario requirements for

building systems based on no-coding remote (re)configuration and operation in

heterogeneous environments. The chapter analyses application scenarios and explores

the middleware requirements that can be extracted from the application scenarios.

Chapter Five: Middleware Mechanisms for Heterogeneous Sensor Networks

with WSN nodes. An architecture capable of handing the requirements and application

scenarios raised in Chapter 4 should be a module-based, node-adaptable middleware. In

this chapter we propose the design of such a middleware and its mechanisms.

Chapter Six: Node and Configuration Components. This chapter proposes an

architecture approach for the node component of the architecture (MidSN-NC), which

provides uniform stream-based configuration and processing over heterogeneous

distributed systems with constrained embedded devices as well as other computing

devices. The chapter also describes how the MidSN architecture achieves the

Chapter 1 Introduction

 14

(re)configuration of nodes. The remote configuration component and a dynamic agent

uploading mechanism are presented.

Chapter Seven: Network and Operations Planning. This chapter proposes an

approach to plan for time guarantees over the middleware-ran heterogeneous distributed

system comprising all parts of a distributed system with WSN sub-networks. It shows

how to plan monitoring and closed-loop operations with restricted time boundaries in

the distributed heterogeneous system.

Chapter Eight: Performance and Debugging. This chapter proposes the

definition and surveillance of expectable time bounds, to assess system performance

compliance in any distributed system. Assuming that we have monitoring or closed-

loop operations with timing requirements, this allows a constantly monitoring of timing

conformity. We define measures and metrics for reporting the performance to users and

for helping users adjust their deployment factors. Those set of measures and metrics are

used in debugging, which is given by tools and mechanisms to explore and report

problems and system health.

Chapter Nine: Evaluation of MidSN. This chapter reports the evaluation results

of an experimental implementation of the MidSN approach and mechanisms proposed

in this thesis. It shows that MidSN middleware has a small footprint, is able to run over

different hardware and software platforms and to evaluate performance.

Chapter Ten: Evaluation of Planning and Monitoring Approaches. This chapter

reports the results of the experimental evaluation of the planning and debugging

approaches proposed in this thesis. The objective is to show that MidSN can run over

heterogeneous distributed systems with time guarantees.

Chapter Eleven: Conclusions and Future Work. This chapter presents a summary

of the key contributions of this thesis, and points out some open interesting research

issues that require further investigation.

 15

2.gggg

Chapter 2

Background and State-of-the-Art in

Middleware Platforms for WSN

This chapter discusses the state-of-the-art related to middleware. It first provides

some background information to help understanding the heterogeneity problem that

occurs when a heterogeneous sensor network with WSN sub-networks is built. In

Section 2.2, the most relevant works related to remote reconfiguration and middleware

architectures are reviewed.

2.1. Background

In this section, an overview of the characteristics of hardware and software

which may be used in distributed systems with WSN sub-networks is provided. A

heterogeneous sensor network includes a set of sensor acquisition and processing nodes,

where each may be a computer node or an embedded device. The network may include

wired and wireless technologies and sub-networks.

Firstly, in Section 2.1.1, hardware and software diversity are introduced. It is

shown that a modular approach is needed to cover node’s heterogeneity, allowing

increased flexibility and integration into enterprise systems. To complement the

software diversity, in Section 2.1.2, a brief review of wireless sensor operating software

is presented.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 16

2.1.1. Hardware and software diversity

Sensor, actuation and computation nodes are the fundamental components of an

industrial distributed control system. To enable WSN-based applications, nodes have to

provide the following basic functionality:

 signal conditioning and data acquisition for different sensors;

 storage of data (sample data and configurations);

 processing capabilities;

 analysis of the processed data for alert generation;

 actuation;

 scheduling and execution of the measurement tasks;

 management of node configuration (e.g., changing the sampling rate and

reprogramming of data processing algorithms);

 reception, transmission, and forwarding of data packets;

 scheduling and execution of communication and networking tasks.

A node can be an embedded device or a more powerful PLC, computer server or

workstation and it may need to provide any of the functionalities described above.

PLC or computer based platforms run mainly on Windows, Linux, or other

operating systems developed for computer hardware. These platforms are

predominantly equipped with standard LAN communication (IEEE 802.11). Because of

the high processing ability and high communication bandwidth, these platforms offer

the opportunity to use higher level programming languages (e.g. Java, C++), which

make it easier to develop and implement software components. Additionally, they

support networking protocols like Internet Protocol (IP), which simplifies the

integration into enterprise systems.

But although those platforms are very flexible in terms of configuration and

computing power, they are not adequate to deploy in each sensing and actuation

location, since they are too expensive, big and requiring external power. Embedded

devices are more suitable for those scenarios. Typically, they have limited resources,

small size and sometimes they are battery operated (e.g. some wireless devices).

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 17

Various wireless devices are available today for building WSNs (e.g. MICAz [3],

TelosB [4] motes, Waspmote [5], Econotag [6]), and new ones emerge regularly. This

diversity offers the possibility to choose a platform that best fits the needs of specific

applications.

Typically, processor, radio and memory capabilities of wireless devices are very

constrained, making them cheap. The microcontroller unit (MCU) is most frequently

programmed in C. This enables the development of a tight code that fits the limited

memory size. Application developers have full access to hardware, but at the same time

need to take care of resource constraints.

Unlike operating systems for standard computers, such as Windows or Linux,

WSN software platforms are highly tailored to the limited node hardware. These are not

full-blown operating systems, since they lack a powerful scheduler, memory

management, and elaborate file system support.

2.1.2. Wireless sensor operating systems

TinyOS [7] and Contiki [8] are the most widespread operating systems. Other

operating systems developed for WSNs include Mantis [9], SOS [10], SensorOS [11],

MagnetOS [12], Nano-RK [13] and ERIKA [14]. In the next sub-sections TinyOS [7],

Contiki [8], Nano-RK [13] and ERIKA [14] are briefly described.

2.1.2.1. TinyOS

TinyOS [7] is written in nesC [15], an extension to the C language, which

supports event-driven component-based programming. The basic concept of

component-based programming is to decompose the program into functionally self-

contained components. These components interact by exchanging messages through

interfaces. The components are event-driven. Events can originate from the

environment (a certain sensor reading exceeds a threshold) or from other components,

triggering a specific action. The main advantage of this component-based approach is

the reusability of components.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 18

The nesC language extension introduces several additional keywords to describe

a TinyOS component and its interfaces. NesC and TinyOS are both Open Source

projects supported by research community.

TinyOS is the native operating system of the Tmote, but it has been ported to

other WSN hardware platforms. TinyOS cannot, however, dynamically load a new

executable without a complete image replacement and reboot. Nonetheless, it is the de

facto standard tool for WSN programming.

2.1.2.2. Contiki

Contiki [8] is a memory-efficient open source operating system for networked

embedded devices. Contiki provides standard OS features like threads, timers, random

number generator, clock and a file system support. It includes an IPv6 stack with

support for TCP and UDP connections, as well as the Rime radio communication stack.

Contiki is supported by an event-driven Kernel with small footprint. The Contiki

kernel consists of a lightweight event scheduler that dispatches events to running

processes and periodically calls processes polling handlers. All program execution is

triggered either by events dispatched by the kernel or through the polling mechanism.

The kernel does not preempt an event handler once it has been scheduled. It supports

two kinds of events: asynchronous and synchronous.

2.1.2.3. Nano-RK

Nano-RK is a real-time operating system (RTOS) with multi-hop networking

support for use in wireless sensor networks. Nano-RK supports fixed-priority

preemptive multitasking for guaranteeing that task deadlines are met, along with

support for CPU and network bandwidth reservations. Tasks can specify their resource

demands and the operating system provides timely, guaranteed and controlled access to

CPU cycles and network packets in resource-constrained embedded sensor

environments.

Nano-RK includes a lightweight wireless networking stack for packet

forwarding, routing and TDMA-based network scheduling.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 19

2.1.2.4. ERIKA

ERIKA Enterprise RTOS is a multi-processor real-time operating system kernel,

implementing a collection of Application Programming Interfaces (APIs) similar to

those of OSEK/VDX standard for automotive embedded controllers. ERIKA features a

real-time scheduler and resource managers, allowing the full exploitation of the power

of new generation micro-controllers and multi-core platforms.

Tasks in ERIKA are scheduled according to fixed and dynamic priorities, and

share resources using the Immediate Priority Ceiling protocol. Interrupts always

preempt the running task to execute urgent operations required by peripherals.

ERIKA Enterprise includes a RT-Druid Eclipse-based development

environment, which allows writing, compiling, and analysing an application. RT-Druid

is composed by a set of plug-ins such as schedulability analysis plug-in, which

implements algorithms like scheduling acceptance tests, sensitivity analysis, task offset

calculation. It also includes a set of design tools for modelling, analysing, and

simulating the timing behaviour of embedded real-time systems.

Of these four operating systems for wireless sensor networks, TinyOS and

Contiki are the most familiar to the WSN programmer, offering high-level

programming languages and all components and capabilities needed to create a WSN.

2.2. State-of-the-Art

This section examines the most prominent work that is related to the problem of

configuring and operating over heterogeneous sensor networks, namely, remote

configuration and middleware approaches. The section examines two main areas:

remote configuration and middleware architectures for WSNs.

Section 2.2.1 examines remote configuration approaches. In the literature there

exist several works that address reconfiguration. Section 2.2.2 examines middleware

architectures, showing also that they are typically targeted at a single platform. For

instance, there are several middleware approaches for WSN operating systems, and

other ones for distributed computer-based systems, but those approaches are not

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 20

configuration and processing middleware running in all devices while providing the

same functionalities to all nodes irrespective of their type.

2.2.1. Remote (re)configuration approaches

Several research groups have explored the benefits of HW reconfiguration by

designing ad-hoc reconfigurable devices prepared to be adapted to a set of pre-recorded

applications [16], [17], [18], [19], [20], [21], [22]. Traditionally, reconfigurable devices

are based on Complex Programmable Logic (CPLD) or Field-programmable gate array

(FPGA) that have capabilities to adapt to hardware changes. But those do not offer the

application configuration flexibility that software approaches do.

Many articles proposed approaches to deal with the reconfiguration of wireless

sensor networks. There are several aspects that should be kept in mind when

(re)configuration mechanisms are studied. The first one involves the scarceness of

resources (memory aspects and processing power need to be taken into account). Nodes

in a WSN don’t have copious amounts of RAM such as a computer. The second one

involves heterogeneity, or the ability of the network to have multiple node hardware.

The easiest way of reconfiguring a sensor node is to reprogram the node with

updated firmware code (over-the-air programming). This is useful especially during the

debugging of a sensor network. However, in most cases, reprogramming is too

expensive in terms of resource consumption (e.g. memory, energy). Over-the-Air

programming and dynamic software updating over WSNs was surveyed in [23], [24].

Such mechanisms allow reconfiguring the nodes without physically removing them

from the deployment site, programming them and putting them back into the site. We

next review some recent works on the subject, and then we reach conclusions on the

comparison with our approach.

Typically, programs for wireless sensors are around a few tens of kilobytes (a

single image with OS and application code is built and sent to the node). This relatively

large amount of data has to be forwarded to nodes, occupying bandwidth during large

periods of time and draining energy supplies as well. At its destination, the updated

program must be written to (flash) memory, which requires large amounts of memory.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 21

Some recent works on dynamic uploading and over-the-air programming include

[25], [26], [27], [28], [29], [30], [31]. In [26], [28] and [30] the authors consider over-

the-air approaches based on rateless codes, which significantly improve over-the-air

programming by drastically reducing the need for packet rebroadcasting. The authors of

[26] propose a design and implementation based on two rateless protocols, rateless

Deluge and ACKless Deluge. They tested the approach and show that it saves

significantly communication over regular Deluge. The work in [28] proposes an

approach called SYNAPSE, which was designed to improve the efficiency of the error

recovery phase. The work described in [30] refers to a new design of a boot loader

which allows, at runtime, to switch between SYNAPSE++ and any of the disseminated

applications.

In [29] the authors propose a protocol called Freshet for optimizing the energy

required for code upload and speeding up the dissemination if multiple sources of code

are available. The energy optimization is achieved by equipping each node with limited

nonlocal topology information, which it uses to determine the time when it can go to

sleep since code is not being distributed in its vicinity.

The authors of [31] discuss the dissemination time. They proposed to reduce the

time and energy consumption through compression. Several compression algorithms are

studied and compared in the paper.

Over-the-air approaches related with Macro-programming and middleware are

proposed in [32], [33], [34]. These approaches typically use a middleware to reprogram

the network. Most consist of mobile agents which run over virtual machines. They

receive agents over-the-air, and can put them to run over the middleware. Typically, the

agent code is generated by specific frameworks. Specific communication protocols are

also developed to upload the code. Agent-based approaches are reviewed in more detail

in the next section on middleware.

Analysis: Over-the-air programming approaches offer code flexibility, but they have

relevant disadvantages when compared with our proposal. Typically, the dynamic

upload approaches are targeted at configuring a single WSN, while our approach

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 22

configures heterogeneous mixed WSN-non-WSN environments. Many of the reviewed

works are concentrated only on the technical uploading optimization issues, but the

system designer needs to develop the code for the nodes. Therefore, this requires

expertise in the programming languages of the platforms involved, plus developing the

code by hand for the portion outside of the WSN and the interconnections. It is also a

lengthy and buggy process (since the programmer will be coding multiple nodes in a

distributed system that needs to interact correctly). In comparison, our approach only

requires users to specify operation configuration commands with no further

programming, and the API is available for external applications to use directly.

Nonetheless, we also added the capability to upload user-programmed agents in our

proposed architecture.

Concerning performance and simplicity – there is a significant time overhead

associated with dynamically loading the code or code fragments, and there are usually

specific dynamic upload protocol requirements, while our approach is very fast. For

instance, in our testbed it is possible to (re)configure one or many nodes by sending

simple commands through three 10 ms downstream slots (one per tree level) that were

made available in the pre-planned schedule based TDMA; the fact that our approach fits

nicely into any runtime environment and requires no complex specific extra code

updating protocols and related structures is a positive point for simplicity.

2.2.2. Middleware architectures

A middleware layer can be used on top of the operating system to program and

execute over the system. The use of a middleware raises the level of abstraction with

which users develop applications.

In the literature, most middleware proposals fall under two main classes: those

that run only inside the wireless sensor network and under a specific tiny operating

system; and those that integrate and process sensor data but work only outside the

WSN. The later work on full-blown (non-embedded) computer devices, over IP

networks and over non-embedded operating systems.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 23

2.2.2.1. Middleware architectures inside the WSN

There are many proposals of middleware inside WSNs with different

architecture approaches such as database abstraction, mobile agents, virtual machines,

application driven and message-oriented middleware.

Database abstractions

Database approaches (TinyDB [35], Cougar [36], SINA [37] and DsWare [38])

treat the sensor network as a virtual database, queried through an SQL-like language.

They view the whole network as a virtual database system and provide an easy-to-use

interface that lets the user issue queries to the sensor network to extract the data of

interest.

TinyDB [35] presents a query processing system for WSNs that includes

acquisition techniques. It aims to provide a uniform way of accessing the data gathered

by the WSN while also minimizing energy consumption. Each sensor node contains a

tiny database that is queried using an SQL-like dialect named Tiny SQL. TinyDB

requires and runs only on TinyOS, being installed as a single hex code image for each

node.

SINA (System Information Networking Architecture) [37] models the network

as massively distributed objects. SINA is a cluster-based middleware, and its kernel is

based on a spread sheet database for querying and monitoring. Each cell represents a

sensor node attribute (in the form of a single value, such as power level and location, or

multiple values, such as temperature changes history). SINA incorporates two robust

mechanisms: hierarchical clustering allowing scalability and energy savings, and an

attribute-based naming scheme based on an associative broadcast to manage the spread

sheets.

DsWare (Data service Middleware) [38] provides flexibility by supporting group

– based decision, reliable data-centric storage, and implementing a mix of approaches to

improve real-time execution performance, reliability of aggregated results and reduce

network communication (overhead). DsWare provides applications with services

supported by its architecture modules such as data storage, data caching, group

management, event detection, data subscription, and scheduling. DsWare supplies

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 24

applications with a convenient interface so that they do not have to implement their own

application data-service. But in the other hand, DsWare does not provide solutions for

heterogeneity.

TinyLime [39] is another database approach, designed with different

programming paradigm. TinyLime is a database middleware built over TinyOS which is

based on LIME [40]. It follows an abstraction model based on shared tuple space and

extends LIME by adding features specialized for sensor networks which are not

supported by LIME. TinyLime is designed for environments in which clients only need

to query data from local sensors. It does not provide multihop propagation of data

through the sensor network, which limits the kind of applications for which it is suitable

Mobile agents

The mobile agent concept for sensor networks has been explored fairly

extensively [33], [41], [42], [43], [44], [45], [46], [47], [48], [49]. The key to this

approach is that applications are modular, and each module can be distributed through

the network (mobile code). Transmitting small modules consumes considerably less

energy than a whole application. These approaches increase usability and

reconfiguration capability. However, the nature of this programming approach means

that it only supports one platform (no support for heterogeneity), which makes it

unsuitable for devices with limited resources.

Agilla [33] is a middleware with stack-based architecture, which reduces the

code size. Agilla allows agents to move from one node to another using clone and move

instructions. Up to four agents are supported on a single sensor node. Agilla does not

have any policy monitoring agent activities. Also, its assembly-like and stack-based

programming model makes programs difficult to read and maintain. Agilla runs only on

top of TinyOS.

Impala [41] also proposes autonomic behaviour that increases fault tolerance and

network self-organization capabilities. The insight for Impala stems from the

observation that sensor networks are long running and autonomous. Impala was

specially designed as part of the project ZebraNet. It proposes an asynchronous, event-

based middleware layer that uses program modules (mobile agents) compiled into

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 25

binary instructions and then injected into the network. The approach ensures application

adaptation and can automatically discern needed parameter settings or software uses.

Programmers can plug in new protocols at any time and switch between protocols at

will.

SensorWare [42] defines and supports lightweight mobile control scripts that

allow an efficient use of computation, communication and sensing resources at the

sensor nodes. This is achieved by means of service abstractions that can change at

runtime by dynamically defining new services. Scripts are described as state machines

influenced by external events.

COMiS [43] is part of the TinyMaCLaS project. Applications are written in the

DCL (Distributed Compositional Language). Compiled component binaries are

deployed and installed (registered) at deployment nodes. On receiving an update, the

COMiS listener component checks that the version number is greater before installing

and re-linking the new component, which is then restarted.

In Scatterweb [45], software is divided into a firmware core and modifiable tasks

to provide an update environment. Tasks can register callbacks with the firmware to

handle sensor events or received packet types. Software updates are first copied into

EEPROM, and then written into flash. It allows checking the received code, and allows

synchronization of updates across the network. A host tool is also presented. It supports

over-the-air reprogramming via a USB/radio stick (ScatterFlasher) or via a www

gateway (Embedded Web Server).

RUNES [46] is a middleware solution which provides publish/subscribe support

developed for context-aware systems. It includes a language-independent component

model which is supported by a minimal runtime API. Runes is composed by

components and its interfaces that are customised for particular networked embedded

systems. Nevertheless, the design and implementation of individual software

components in RUNES are tasks meant for experts, which may not be easily carried out

by an end-user.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 26

MiSense [47] provides a well-defined content-based publish/subscribe service,

but also allows the application designer to adapt the service. The middleware is divided

in three layers: the communication layer, the common Services layer and the domain

layer. It provides services to different kinds of applications, such as data aggregation,

event detection, topology management, and routing. The programming interface

provides a set of functions that will allow the user to control and program the sensor

network as a whole network with different functional characteristics without worrying

about the detailed placement of computation and communication.

TeenyLIME [48] is a new middleware for sensor networks based on the tuple

space model made popular by Linda [50]. TeenyLIME operates by distributing the tuple

space among the devices, transiently sharing the tuple spaces contents as connectivity

allows, and introducing reactive operations that fire when data matching a template

appears in the tuple space.

TeenyLIME restricts transient sharing only to the tuple spaces of one-hop

neighbours. The control of the one-hop neighbourhood around a device, augmented

with the powerful and expressive primitives provided by TeenyLIME, is versatile

enough to enable a number of application-level uses.

EMMON [49] is a middleware architecture for large-scale, dense, real-time

embedded monitoring. It includes a hierarchical communication architecture together

with integrated middleware services, command and control software. EMMON was

designed to use standard commercially-available technologies, while maintaining as

much flexibility as possible to meet specific applications requirements.

Virtual machines

Similar to the mobile agent concept, where arbitrary code can be run, virtual

machine middleware is more general because it does not associate code updates with

specific structure. But virtual machine execution involves code interpretation, there is a

significant run-time overhead cost compared to native binary code.

Maté [32] and SwissQM [34] are virtual machines for sensor networks which

were implemented on top of TinyOS. Maté has a stack-based architecture with three

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 27

execution contexts – clock, send, and receive. Mate breaks down the program into small

self-replicating capsules consisting of 24 instructions. These capsules are self-

forwarding or self-propagating. Although Maté has a small, concise, resilient, and

simple programming model, its energy consumption is high for long running programs.

SwissQM [34] shows a small footprint and it is specializes in data acquisition

and data processing. It follows a multi-source to single-sink communication pattern that

is materialized by means of spanning-tree whose root is the sink. SwissQM provides

functionality that permits data aggregation, program dissemination and topology

management. Program fragments in the dissemination protocol are handled in a reliable

way by means of timeouts and message snooping.

Squawk [51] is a small Java virtual machine written mostly in Java that runs

without an operating system on a wireless sensor platform. Its architecture is based on

two components: a class file pre-processor (usually called the translator) and the

execution engine. The class file pre-processor translate standard class file into an

internal pre-linked file that is compact and allows efficient execution of byte-code.

Combining that file with the object serialization mechanism, the Squawk virtual

machine can save a set of loaded and translated classes. The result byte-code is sent

over a radio link to the devices in the network and, on arrival, it is de-serialized to be

interpreted by the execution engine.

Squawk provides an API that allows developers to write and deploy applications

for WSNs. It was developed for the Sun Small Programmable Object Technology

wireless devices (sunSPOTs).

Application driven and message-oriented middleware

When designing real-time systems, the time triggered approach is expensive in

the case where the expected rate of primitive event occurrence is low. An alternative is

to use an event triggered approach, where the execution is driven by the events.

Event-driven communication is an asynchronous paradigm that decouples

senders and receivers. Its clients are event publishers and event subscribers among

which one-to-many and many-to-many communication is supported by a message

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 28

transmission and notification service. To explore this concept, approaches such as Mires

[52], ATaG [53], TinySOA [54], USEME [55] and MiLAN [56] were proposed.

Mires [52] proposes an adaptation of a message-oriented middleware for

traditional fixed distributed systems. Mires provides an asynchronous communication

model that is suitable for WSN applications, which are event driven. Mires is built on

TinyOS using NesC. It adopts a component-based programming model using active

messages to implement its publish/subscribe-based communication infrastructure.

ATaG [53] proposes an architecture independent macro-programming model.

Applications are specified by means of a graph that is composed of abstract tasks and

data items. Abstract tasks model processing functions and data items represent the

information that can be exchanged between tasks. Abstract channels are used to connect

abstract tasks to data items to indicate whether the former are consumed or produced by

the latter. Once the abstract graph has been defined a translator generates a set of

templates from it. The behaviour of each abstract task in ATaG needs to be

implemented in a template.

TinySOA [54] presents a service oriented middleware. The main entity in

TinySOA is the service, which is considered as a computational component that has a

unique identifier and it is invoked asynchronously. Users can access the information via

services by querying base stations or directly querying individual nodes in the network.

TinySOA also allows users to specify a period in the queries to indicate that a query

needs to be periodically executed.

In USEME [55], each service is a composition of a number of ports, each of

which is a bi-directional interface comprising synchronous and asynchronous

communication channels. The application general behaviour is specified using the

USEME abstract language and is later automatically translated into a set of templates.

These templates need to be filled with platform-dependent code to specify the behaviour

of each operation defined in the previous step. Real-time communication constraints can

be associated with each command or event helping to ensure timely network operation.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 29

MiLAN (Middleware Linking Applications and Network) [56] is an adaptable

middleware that explores the concept of proactive adaptation in order to respond to the

needs in terms of QoS. MiLAN allows sensor network applications to specify their

quality needs, and adjusts the network characteristics to increase application lifetime

while still meeting those quality needs. It provides an abstraction layer that allows

network specific plug-ins to convert MiLAN commands to protocol-specific commands

that are passed through the usual network protocol stack.

Analysis: These middleware approaches are platform – and operating system – specific

(mainly TinyOS). Database approaches, such as TinyDB, treat the whole sensor

network as a large “virtual” database. Interactions with the sensors are done in the form

of system queries using SQL-like language. It is easy to use, but it does not support

heterogeneity. They only support TinyOS and a single TinyOS network. For instance, a

heterogeneous network with cabled embedded systems, sensors, computers and multiple

WSN sub-networks covering regions of the deployment site cannot be deployed and

configured with a single non-programming approach when using TinyDB.

These approaches require a fixed global network structure which is not suitable

for large networks with timing guarantees. For instance, create a global schedule for the

MAC layer may originate a high delay between samples which may not feasible for

some applications.

Approaches such as Agent-based and application driven also have serious

problems concerning heterogeneity. For instance, the agent-based approach provides

efficient mechanisms for network updates, in order to support dynamic applications.

However, the nature of its code does not allow hardware heterogeneity, which makes it

unsuitable for different devices with limited resources.

Lastly, virtual machine approaches provide a flexible programming paradigm.

They allow the development of distributed algorithms and hide the heterogeneity of the

run time environments and the hardware resources. However, the virtual machine

approaches add a considerable code size and performance overhead, and applications

need to be programmed in detail. It is not possible to simply configure operations.

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 30

Many of those approaches were developed for specific platforms. They do not

offer heterogeneity support and interoperability between heterogeneous parts (cabled

and wireless components was not dealt with).

Nonetheless, all of these middleware approaches lack the capacity for integrating

embedded devices into a generic heterogeneous sensor network. Consequently,

developing and deploying end-to-end applications for sensor networks in contexts of

industrial or other environments remain highly complex.

2.2.2.2. Internet-based integration of sensor data

Traditionally, sensor networks are not IP-based. Their integration into IP-based

WAN infrastructures requires the deployment of proxies at the edge of both networking

domains that transform between non-IP communication in the sensor network and IP

communication in the Internet. For this problem a generic approach to connect all the

devices has to be developed. On the higher application level, Web services could be

used to mesh and wire all different kinds of sensor information together, but on the

lower connection layer, all different devices must be connected to a homogenous access

layer. For this reason, several research projects have established to abstract from the

hardware to a generic interface.

The Global Sensor Network (GSN) [57] is a middleware that, despite higher

level functions, abstracts from the underlying, heterogeneous sensor technologies. GSN-

specific Wrappers are used to connect different types of sensor data sources. The

authors use the ”Virtual sensors” and Borealis concepts to abstract the sensors from the

physical implementations and provide a homogeneous view of sensor data. They build a

middleware to operate in computer nodes and gateways, which allows transforming data

to a homogeneous format and viewing the whole network as a homogeneous one.

Borealis [58] is a distributed data stream management system. Sensor networks

are interfaced with Borealis nodes by intermediary proxies. Each sensor network

provides an adapter in order to provide common information to the Borealis node.

IrisNet [59] proposes a two-tier architecture consisting of sensing agents (SA),

which collect and pre-process sensor data, and organizing agents (OA) which store

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 31

sensor data in a hierarchical, distributed XML database. This database is modeled after

the design of the Internet DNS, and supports XPath queries.

Hourglass [60] proposes, similarly to IrisNet, a service infrastructure to

interconnect sensors and applications via services. Based on publish/subscribe

mechanism, producers publish their services and consumers subscribe to interesting

services.

HiFi [61] is based on a hierarchical, location-based organization for sensor data

processing. Sensors form the leaves of the hierarchical tree and the intermediary nodes

are relatively powerful entities performing different operations such as filtering, data

cleaning, aggregation and join.

SStreaMWare [62] is a service-oriented middleware for heterogeneous sensor

data management. SStreaMWare is a wrapper that uses data schemas to represent data

of various types of sensors in a common generic way. Declarative queries can then be

formulated according to these schemas. SStreaMWare includes a proxy to hide

heterogeneity of sensor software and translate it in generic query services, which can be

discovered and used dynamically.

The authors of [63] propose an intelligent bridge for messages exchange

between heterogeneous Wireless Sensor Networks (WSNs). They define a general

messages exchange mechanism that uses XML as message style and SOAP as

transmission protocol.

EdgeServers [64] was designed to integrate sensor networks into enterprise

networks. EdgeServers filter and aggregate raw sensor data (using application specific

code) to reduce the amount of data forwarded to application servers. The system uses

publish/subscribe style communication and also includes specialized protocols for the

integration of sensor networks.

ESP framework [65] enables sensor systems to be queried without having to deal

with the low level implementation of specific access methods. It provides a mechanism

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 32

to describe and model sensor systems using ESPml, an XML-based language, by which

information regarding the sensor deployment can be specified.

Analysis: These middleware were developed to integrate sensor data into the Internet.

They are specific for computer nodes and do not allow configuring operation

functionality within sensor networks. Consequently, they are only focused on wrapping

data coming from sensor sources for sharing and processing over the internet.

MidSN is a distributed middleware which is able to run over different hardware

realizations. None of the reviewed works handles the remote operation configuration

and execution on a distributed system with heterogeneity that is addressed in this thesis.

Those works provide heterogeneity out-of-WSN. Communication and application-level

code needs to be hand-programmed for each WSN node.

2.2.2.3. IP-based homogeneous middleware

There have been several efforts to implement the Internet Protocol Stack on

small constrained devices. The 6LoWPAN [66] protocol ports the IPv4 and IPv6

protocols to small devices. This enables running services on the application layer

directly on sensor nodes. Web Service technology is often used [67], [68], [69], [70],

[71], [72], [73] to connect and access sensors and actuators through the Internet.

Two standards in this area have emerged, the REST-based approach and SOAP-

based Web services. Rest utilizes the common http methods (get, post) to transfer data

and SOAP uses messages to communicate between services. The structure of the

messages and the way to handle those is predefined in the web-service specification.

SOAP is less flexible than REST.

The work in [67] describes an implementation of a SOAP based service running

on the node. XML Parsing is required to get attributes from requests and to build the

response.

The authors of [68] propose a lightweight web server and the Rest engine that

runs directly on the sensor node. They used the uIPv4 and uIPv6 protocol to get IP

connectivity which exploits techniques from 6lowpan to compress header size. They

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 33

also compared the Rest implementation with SOAP based solutions, and concluded that

the overhead of SOAP based services is ten times higher than their REST approach.

sMAP [69] proposes a simple representation of measurement information and

actuation events based on modern REST web service techniques that allows for

arbitrary architectural composition of data sources, freeing application designers from

tight frameworks and enabling widespread exploration of the sensor application.

AutoWoT [71] proposes a toolkit which allows the user to create web services

provided by a specific device and to automatically expose them via a REST API.

AutoWoT offers a generic way of modeling Web resources and automatically builds

web server components which expose the functionality.

The authors of [72] show how different applications can be built on top of REST

WSNs. They describe the best-practices based on the REST principles that have already

contributed to the popular success, scalability, and modularity of the traditional Web.

The work in [73] illustrates a real world implementation of a REST WSN. The network

is deployed across various university buildings and it is designed for the development of

applications and services for the university community.

Recently, the CoRE Working Group has defined a REST based web transfer

protocol called Constrained Application Protocol (CoAP) [74]. CoAP includes the

HTTP functionalities which have been re-designed taking into account the low

processing power and energy consumption constraints of small embedded.

The work described in [75] presents a REST WSN based on CoAP. The authors

discuss the major differences between CoAP and HTTP and compare the two protocols

in terms of power consumption and overhead. Their results show that the power

consumption is lower when using CoAP compared to HTTP. The authors also propose

and develop an end-to-end IP based architecture integrating a CoAP over 6LowPAN

Contiki based WSN with an HTTP over IP based application.

The authors of [76] describe the implementation of the IETF Constrained

Application Protocol (CoAP) for ContikiOS, which enables interoperability at the

Chapter 2 Background and State-of-the-Art in Middleware Platforms for WSN

 34

application layer through REST Web services. They demonstrate the power-efficiency

of CoAP operation through radio power consumption.

Analysis: These works assume that sensor nodes are powerful enough to run a uIP

protocol. Depending of the hardware platform, nodes may not have enough resources to

support the overhead introduced by the IP protocol stack.

IPv6, REST and CoAP are important advances in WSN. They provide an

infrastructure, but without further software, operations and interactions between nodes

must still be hand-programmed.

On the other hand, MidSN is a generic software that is designed to allow users to

configure application operations over the whole heterogeneous sensor network without

any programming, and to be implementable on a wide range of nodes (embedded

devices, PLCs or computers). It allows the implementation of different operation

primitives to provide easy and simple (re)configuration. MidSN is based on drivers,

which allow abstracting the hardware infrastructure and communication protocols. It is

able to run over uIP stack, as well as over non-IP protocols. A correct driver must be

developed to handle a specific protocol. As such, MidSN can be developed on top of

REST or REST+CoAP.

In terms of application scenarios, MidSN aims to offer a solution to distributed

systems with WSN sub-networks. It offers support for dynamic applications with easy

configuration mechanisms to increase the usability by non-expert persons.

 35

3.gggg

Chapter 3

Background and State-of-the-Art in

Scheduling and Network Planning

This chapter discusses the state-of-the-art related to scheduling and network

planning. It first provides some background information concerning medium access

control (MAC), communication protocol approaches, and scheduling mechanisms used

by time-division multiple access protocols (TDMA protocols) (Sections 3.1 and 3.2).

Planning mechanisms used to plan distributed control systems with timing

guarantees are then examined in Section 3.3. The review is focused on network

scheduling and dimensioning, and latency models to dimension operations with timing

guarantees.

3.1. Medium access control (MAC)

One key issue in WSNs that influences whether the deployed system will be able

to provide timing guarantees is the MAC protocol and its configurations. The MAC

protocols for wireless sensor networks can be classified broadly into three categories:

Contention based, Schedule based or hybrid. The contention based protocols can easily

adjust to the topology changes as new nodes may join and others may die after

deployment. These protocols are based on Carrier Sense Multiple Access (CSMA)

mechanisms and have higher costs concerning message collisions, overhearing and idle

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 36

listening. In contrast the schedule based protocol can avoid interferences, collisions,

overhearing and idle listening, by scheduling transmit and listen periods, but has strict

time synchronization requirements.

Both alternatives follows the IEEE 802.15.4 [77] standard, which designates the

physical and the data link layer or the media access control layer of the OSI 7-layer

model for ultra low-power and low data rate wireless Personal Area Networks (PANs).

Many communications protocols where applications demand low power and doesn’t

require high speed use this standard in their PHY and MAC layer.

3.1.1. Contention-based MAC protocols

In contention-based MAC protocols, the receiver wakes up periodically for a

short time to sample the medium. When a sender has data, it transmits a series of short

preamble packets, each containing the ID of the target node, until it either receives an

acknowledgement (ACK) packet from the receiver or a maximum sleep time is

exceeded. Following the transmission of each preamble packet, the transmitter node

waits for a timeout. If the receiver is not the target, it returns to sleep immediately. If the

receiver is the target, it sends an ACK during the pause between the preamble packets.

Upon reception of the ACK, the sender transmits the data packet to the destination.

These protocols are implemented using units of time called backoff periods. The

expected number of times random backoff is repeated is a function of the probability of

sensing the channel busy, which depends on the channel traffic. Since these do not

provide a precise schedule to send data and use random backoff, they are not useful for

applications requiring strict timing guarantees. On the other hand, they can easily adjust

to topology changes, such as when new nodes join and others leave after deployment.

These protocols have higher costs for message collisions, overhearing and idle listening.

Some protocols frequently used in WSNs, such as S-MAC, B-MAC, WiseMAC

and X-MAC, are contention-based.

S-MAC [78] defines periodic frame structure divided into two parts, with nodes

being active in the first fraction of the frame and asleep for the remaining duration. The

length of each of the frame parts is fixed, according to the desired duty-cycle. Virtual

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 37

clustering permits that nodes adopt and propagate time schedules, but it leads to the

existence of multiple schedules, causing nodes at the border of more than one schedule

to wake-up more often.

B-MAC [79] and WiseMAC [80] are based on Low-Power Listening (LPL)

[79], that is, a very simple mechanism designed to minimize the energy spent in idle

listening. Nodes periodically poll the medium for activity during a very short time, just

enough to check if the medium is busy. If they find no activity, they return immediately

to the sleep state for the rest of the period until the next poll. Nodes with data to send

wake-up the radio transmitting a long preamble (with minimum length equal to an entire

poll period). This simple scheme can be quite energy-efficient in applications with

sporadic traffic. However, the preamble size (which is inversely proportional to the

desired duty-cycle) must be carefully chosen not to be too large, since above a certain

threshold it introduces extra energy consumption at the sender, receiver and overhearing

nodes, besides impairing throughput and increasing end-to-end latency.

X-MAC [81] is also based in Low-Power Listening but reduces the overhead of

receiving long preambles by using short and strobed preambles. This allows unintended

receivers to sleep after receiving only one short preamble and the intended receiver to

interrupt the long preamble by sending an ACK packet after receiving only one strobed

preamble. However, even in X-MAC, the overhead of transmitting the preamble still

increases with the wake-up interval, limiting the efficiency of the protocol at very low

duty cycles.

3.1.2. Schedule-based MAC protocols

Schedule-based MAC protocols, such as Time-division multiple access

(TDMA), have a time schedule, which eliminates collisions and removes the need for a

backoff. This increased predictability can better meet the requirements for timely data

delivery.

TDMA protocols, with a proper scheduling, allow nodes to get a deterministic

access to the medium and provide delay-bounded services. TDMA is also power

efficient, since it is inherently collision free and avoids unnecessary idle listening,

which are two major sources of energy consumption. The main task in TDMA

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 38

scheduling is to allocate time slots depending on the network topology and the node

packet generation rates. TDMA is especially useful in critical real-time settings, where

maximum delays must be provided.

TDMA protocols will schedule the activity of the network in a period in which

all nodes will be active. In the idle times between data gathering sessions, nodes can

turn off the radio interface and lie in a sleep state.

The disadvantages of TDMA protocols are related with a lack of flexibility to

modifications, such as adding more nodes, or data traffic changes over time. Another

issue is that nodes have to wait for their own sending slot.

There are various works addressing TDMA protocols. Several protocols have

been designed for quick broadcast/convergecast, others for generic communication

patterns. The greatest challenges are the time-slots, interference avoidance, low-

latencies, and energy-efficiency.

In RT-Link [82] protocol, time-slot assignment is accomplished in a centralized

way at the gateway node, based on the global topology in the form of neighbour lists

provided by the WSN nodes. It supports different kinds of slot assignment, depending

on whether the objective function is to maximize throughput or to minimize end-to-end

delay. Interference-free slot assignment is achieved by means of a 2-hop neighbourhood

heuristic, coupled with worst-case interference range assumptions.

WirelessHART [83] was designed to support industrial process and automation

applications. In addition, WirelessHART uses at its core a synchronous MAC protocol

called TSMP [84], which combines TDMA and Frequency Division Multiple Access

(FDMA). The TSMP uses the benefits from synchronization of nodes in a multi-hop

network, allowing scheduling of collision-free pair-wise and broadcast communication

to meet the traffic needs of all nodes while cycling through all available channels.

GinMAC [2] is a TDMA protocol that incorporates topology control

mechanisms to ensure timely data delivery and reliability control mechanisms to deal

with inherently fluctuating wireless links. The authors show that under high traffic load,

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 39

the protocol delivers 100% of data in time using a maximum node duty cycle as little as

2.48%. This proposed protocol is also an energy efficient solution for time-critical data

delivery with neglected losses.

PEDAMACS [85] is another TDMA scheme including topology control and

routing mechanisms. The sink centrally calculates a transmission schedule for each

node, taking interference patterns into account and, thus, an upper bound for the

message transfer delay can be determined. PEDAMACS is restricted by the requirement

of a high-power sink to reach all nodes in the field in a single hop. PEDAMACS is

analysed using simulations, but a real-world implementation and corresponding

measurements are not reported.

SS-TDMA [86] is a TDMA protocol designed for broadcast/convergecast in grid

WSNs. The slot allocation process tries to achieve cascading slot assignments. Each

node receives messages from the neighbours with their assigned slots. The receiving

node knows the direction of an incoming message, and adds a value to the neighbours

slot number, in order to determine its own slot number. A distributed algorithm is

required where each node is aware of its geometric position, limiting its applicability to

grid topologies or systems where a localization service is available.

NAMA [87] is another TDMA protocol that tries to eliminate collisions

dynamically: all nodes compute a common random function of the node identifier and

of the time-slot, and the node with the highest value is allowed to transmit in the slot.

NAMA is based on a 2-hop neighbourhood criterion (nodes at three hops of distance

can reuse slots) for its decisions, but presents an additional drawback of being

computationally intensive.

3.2. Scheduling and Network planning

When an operation middleware such as MidSN is applied to contexts with strict

timing requirements, in particular in industrial environments such as the one in

GINSENG, it is important to provide end-to-end timing guarantees.

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 40

In Chapter 7 we propose an approach to plan heterogeneous networks with WSN

sub-networks to guarantee operation timings. The approach schedules operations,

predicts latencies and subdivides wireless sensor networks until predicted latencies meet

operation latency requirements.

In the next sub-sections we review scheduling and network planning approaches

used to provide timing guarantees in WSNs. After that, we review some industrial

protocols used to design distributed control systems, and to conclude this section we

discuss works concerning latency modelling and analysis used in wireless sensor

networks and wired distributed control systems.

3.2.1. Scheduling and Network Planning in WSNs

Researchers have quantified the impact of latencies and delays associated with

various networks using different communication protocols. The distribution and

characteristics of network-induced latencies are mainly influenced by the medium

access control (MAC) protocol used. Schedule-based MAC protocols are well-suited to

provide timing guarantees in wireless sensor networks, since a slot period of time is

assigned to each node, minimizing interference and message collisions. In addition,

schedule-based medium access approaches provide good data throughput characteristics

[88].

There are a number of scheduling algorithms for WSN networks [89], [90], [91],

[92], [93]. In [94], [95] the authors review existing MAC protocols for WSNs that can

be used in mission-critical applications. The reviewed protocols are classified according

to data transport performance and suitability for those applications.

RAP [89] uses a velocity monotonic scheduling algorithm that takes into account

both time and distance constraints. It maximizes the number of packets meeting their

end-to-end deadlines, but reliability aspects are not addressed.

SPEED [90] maintains a desired delivery speed across the sensor network by a

combination of feedback control and non-deterministic geographic forwarding. It is

designed for soft real time applications and is not concerned with reliability issues.

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 41

The Burst approach [91] presents a static scheduling algorithm that achieves

both timely and reliable data delivery. This study assumes that a network topology is

available and a deployment can be planned. Burst achieves end-to-end guarantees of

data delivery in both the delay and reliability domains, and therefore it can support a

mission-critical application.

The work in [92] describes the optimization problem of finding the most energy-

preserving frame length in a TDMA system while still meeting worst-case delay

constraints. The authors present an analytical approach to compute that value in generic

sink-trees. They also present an implementation using the existing DISCO Network

Calculator framework [96].

Traffic regulation mechanisms are also explored as means to provide end-to-end

guarantees using queuing models. In [97], the combination of queuing models and

message scheduler turns into a traffic regulation mechanism that drops messages when

they lose their expectations to meet predefined end-to-end deadlines.

The authors of [93] propose an energy-efficient protocol for low-data-rate

WSNs. The authors use TDMA as the MAC layer protocol and schedule the sensor

nodes with consecutive time slots at different radio states while reducing the number of

state transitions. They also propose effective algorithms to construct data gathering trees

to optimize energy consumption and network throughput.

The work in [98] examines the performance of SenTCP, Directed Diffusion and

HTAP, with respect to their ability to maintain low delays, to support the required data

rates and to minimize packet losses under different topologies. The topologies used are

simple diffusion, constant placement, random placement and grid placement. It is

shown that the congestion control performance, and consequently the packet delay, in

sensor networks, can be improved significantly.

Analysis: In these works, the authors study approaches to define a right scheduling to

meet specific requirements, in particular, latency. They optimize the message path and

data traffic to achieve their goals. In this thesis we also propose an algorithm to plan the

network. A slot-based planning for wireless sensor sub-networks is assumed. The

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 42

algorithm defines an operations schedule, predicts latencies and divides the network

until latencies are according to the requirements. Instead of reducing data traffic or

optimizing the message path, in our approach we assume a static tree topology to

determine the first-cut scheduling. This assumption is applied within the context of pre-

planned performance-guaranteed networks, the subject of GINSENG project. When this

first-cut scheduling does not meet the latency requirements, the algorithm divides de

network and creates independent schedules for each resulting sub-network. This way it

will create partitions of the initial WSN which will meet latency requirements for all

constraints in all partitions.

3.2.2. Wireless industrial networks

Wireless process control has been a popular topic in the field of industrial

control [99], [100], [101]. Compared to traditional wired process control systems,

wireless has a potential to save costs and make installation easier. Also, wireless

technologies open up the potential for new automation applications.

There have been some studies on hybrid Fieldbus technology using IEEE 802.11

[102], [103], [104], [105].

In [102], [103] the authors adapt the concept of Fieldbus technology based on

Profibus to a hybrid setting (wired plus wireless). In [104], [105] the authors propose R-

fieldbus, a wireless Fieldbus protocol based on IEEE 802.11. According to [106],

wireless Fieldbus based on IEEE 802.11 has reliability limitations and incurs in high

installation and maintenance costs.

Several industrial organizations, such as HART [107], WINA (Wireless

Industrial Networking Alliance) [108], ISA (International Society of Automation) [109]

and ZigBee [110], have been pushing actively the application of wireless sensor

technologies in industrial automation. Nowadays, it is possible to find WirelessHART

[83], ISA-SP100 [111] and ZigBee [110] technologies and its protocols in those

industrial applications. All of them are based on the IEEE 802.15.4 physical layer. IEEE

802.15.4 [77] is a standard which specifies the physical layer and media access control

for low-rate wireless personal area networks (LR-WPANs).

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 43

WirelessHART [83] is an extension of wired HART, a transaction-oriented

communication protocol for process control applications. To meet the requirements for

control applications, WirelessHART uses TDMA technology to arbitrate and coordinate

communications between network devices. The TDMA data-link layer establishes links

and specifies the time slot and channel to be used for communication between devices.

WirelessHART has several mechanisms to promote network-wide time synchronization

and maintains time slots of 10 ms length. To enhance reliability, TDMA is combined

with channel hopping on a per-transaction (time slot) basis. In a dedicated time slot,

only a single device can be scheduled for transmission in each channel (i.e. no spatial

re-use is permitted).

ISA-SP100 [111] is a standard for wireless communication in industrial

environment. It was developed as a low-power, low-cost, low-data rate to provide

robust, reliable and secure wireless operation for non-critical monitoring, alerting,

supervisory control, open loop control, and closed loop control applications. It also

boasts of providing reliable data communications in harsh industrial conditions and can

tolerate latencies up to 100 milliseconds. It has strategized its plan to operate in wireless

crowded environments by cooperative operation in order to minimize interferences.

ZigBee [110] is a specification for a suite of high level communication protocols

using small, low-power digital radios based on an IEEE 802.15.4 standard. ZigBee

devices are often used in mesh network form to transmit data over longer distances,

passing data through intermediate devices to reach distant ones. It is targeted at

applications that require a low data rate, long battery lifetime, and secure networking.

The basic channel access mode is CSMA/CA. However ZigBee can send beacons on a

fixed timing schedule which optimize the transmission and provide low latency for real-

time requirements.

3.2.3. Planning wireless sensor networks for industrial
applications

Generally, wireless sensor devices can be placed as they would have been placed

with a wired installation. But several conditions must be considered and could result in

a relocation of the wireless sensor devices (or at least the antenna).

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 44

Typically, the gateway is placed first, since this is the core element of a network.

There are three basic options for placing a gateway:

 Where it is easiest to integrate with the distributed control system or

plant network;

 Central to the planned network. Placing the gateway in the centre of the

network provides the best position for most of the devices to have a

direct communication link with the gateway;

 Central to the process unit. This placement provides the most flexibility

for future expansion of the initially-planned network to other areas

within the process unit.

It is desirable to have at least 25 % of the wireless devices with a direct

communication path to the gateway [112]. This ensures an ample number of data

communication paths for the devices farther away.

Similar to network-based fieldbus planning approach, to provide high-degree of

timing guarantees, an operation schedule (cycle time) must be developed to avoid

unwanted delays and latencies, which influences the overall system responsiveness. To

develop the correct schedule, a static topology must be assumed, and the network must

be sized according to timing requirements.

Analysis: Most of the previously described standards and protocols are used for

deploying planned distributed control system networks in industrial sites. Fieldbus

based-protocols can be applied to both wired and wireless networks, and both

wirelessHart and ZigBee, running 802.15.4, were developed for wireless sensor

networks.

We investigate performance control and timing guarantees in distributed control

systems, where wireless sensor sub-networks with specific TDMA network protocol

stacks connect configurable and computational-capable sensors wirelessly to a wired

infrastructure. In that context, our approach for planning and operation time guarantees

defines a network schedule and partitions wireless sensor networks to provide those

guarantees. This has some correspondence to the Fieldbus planning in the sense that

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 45

Fieldbus defines segments and bus cycle time. In the case of Fieldbus, the maximum

number of devices per segment is limited. It is assumed that the developer analyses

requirements and decides the segments, the devices that will be in the segments and the

bus cycle time to provide adequate data rates. In that approach, planning for operation

timing guarantees is not explicit. By contrast, we explore a latency model and explicit

operation times planning based on timing constraints, the latency model and a schedule

construction. We do these assuming TDMA WSN sub-networks, as implied by the

context of project GINSENG. This allows explicit planning of operation timing

guarantees. As part of future work, we expect this approach to be adapted to Fieldbus-

based architectures as well.

3.2.4. Latency modelling and analysis

In industrial contexts, real-time distributed control systems are typically

implemented by a set of computational devices (sensors, actuators, controllers and

control stations) that run one or several tasks and communicate data across a

communication network. The successful design and implementation of real-time

distributed control applications requires an appropriate integration of different parts.

Applying real-time protocols and planning methodologies, latencies and delays

can be assessed (determined or, at least, bounded). For example, with respect to fieldbus

communication, a formal analysis and suitable methodologies have been presented in

[113], with the aim of guaranteeing before run-time that real-time distributed control

systems can be successfully implemented with standard fieldbus communication

networks.

There exist other approaches to monitor latencies and delays in distributed

control systems based on wired component. The authors of [114] and [115] show two

studies on modelling and analysing latency and delay stability of network control

systems. They evaluate fieldbus protocols and propose mechanism to mitigate latency

and delays. In [116] an approach for model end-to-end time delay dynamics for the

internet using system identification tools is proposed. The work in [117] presents an

analytical performance evaluation of the switched Ethernet with multiple levels from

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 46

timing diagram analysis, and experimental evaluation from an experimental testbed with

a networked control system.

These works assume a wired network. However, a distributed control system

may include wireless and wired parts. Latencies and delay modelling in wireless

networks has been studied in previous works [118], [119], [120]. However, those works

do not concern wireless sensor networks.

There are also some works addressing latency and delays for WSNs [121],

[122], [123], [124]. These works have considered the extension of the Network Calculus

methodology [125] to WSNs. Network Calculus is a theory for designing and analysing

deterministic queuing systems, which provides a mathematical framework based on

min-plus and max-plus algebras for delay bound analysis in packet-switched networks.

In [121], the authors have defined a general analytical framework, which extends

Network Calculus to be used in dimensioning WSNs, taking into account the relation

between node power consumption, node buffer requirements and the transfer delay. The

main contribution is the provision of general expressions modelling the arrival curves of

the input and output flows at a given parent sensor node in the network, as a function of

the arrival curves of its children. These expressions are obtained by direct application of

Network Calculus theorems. Then, the authors have defined an iterative procedure to

compute the internal flow inputs and outputs in the WSN, node by node, starting from

the lowest leaf nodes until arriving to the sink. Using Network Calculus theorems, the

authors have extended the general expressions of delay bounds experienced by the

aggregated flows at each hop and have deduced the end-to-end delay bound as the sum

of all per-hop delays on the path. In [122], the same authors use their methodology for

the worst-case dimensioning of WSNs under uncertain topologies. The same model of

input and output flows defined by [121] has been used.

In [123], the authors have analysed the performance of general-purpose sink-tree

networks using network calculus and derived tighter end-to-end delay bounds.

In [124], the authors apply and extend the Sensor Network Calculus

methodology to the worst-case dimensioning of cluster-tree topologies, which are

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 47

particularly appealing for WSNs with stringent timing requirements. They provide a

fine model of the worst-case cluster-tree topology characterized by its depth, the

maximum number of child routers and the maximum number of child nodes for each

parent router. Using Network Calculus, the authors propose “plug-and-play”

expressions for the end-to-end delay bounds, buffering and bandwidth requirements as a

function of the WSN cluster-tree characteristics and traffic specifications.

End-to-end delay bounds for real-time flows in WSNs have been studied in

[126]. The authors propose closed-form recurrent expressions for computing the worst-

case end-to-end delays, buffering and bandwidth requirements across any source-

destination path in the cluster-tree assuming error free channel. They propose and

describe a system model, an analytical methodology and software tool that permits the

worst-case dimensioning and analysis of cluster-tree WSNs. With their model and tool,

it is possible to dimension buffer sizes to avoid overflows and to minimize each

cluster’s duty cycle (maximizing nodes lifetime), while still satisfying messages

deadlines.

Analysis: The previous works concerned latency guarantees of messages over a path. In

contrast, we consider timing guarantees of high-level monitor and control operations

and over whole distributed control systems. Instead of considering only a wireless

sensor network, our proposals address the problem of the worst-case dimensioning of

operations in distributed systems with wireless sensor sub-networks, where we schedule

operations, predict latencies and, if necessary, partition the wireless sensor sub-network

in order to meet operation latency requirements. We also define a model with simple

equations that expresses the end-to-end latencies for each node and operation in the

network, as well as end-to-end bounds as function of all parts of the path between two

nodes in the heterogeneous distributed system.

Chapter 3 Background and State-of-the-Art in Scheduling and Network Planning

 48

 49

4.gggg

Chapter 4

Middleware Requirements for

Heterogeneous Sensor Networks with

WSN nodes

This chapter discusses application scenarios’ requirements. The chapter starts by

analysing some application scenarios. In this process, we first discuss the requirements

of a set of target applications. To limit the number of applications that we must

consider, we focus on a set of application scenarios that we believe are representative of

a large fraction of the potential usage scenarios.

Next, Section 4.2 explores the middleware requirements that can be extracted

from this set of application scenarios. These requirements were considered when

designing the architecture of MidSN, which makes it able to support various application

scenarios.

4.1. Application Scenarios

There are a lot of applications where sensor networks may be used. These

applications range from military surveillance, in which a large number of sensor nodes

are used, to health care applications, in which a very limited number of sensor nodes are

Chapter 4 Middleware Requirements

 50

used. Naturally, these applications have an impact on the specifications of the hardware

and software for sensor nodes.

Some researchers have tried to identify possible application scenarios of wireless

sensor networks [127], [128], [129], [130], [131]. In this chapter we review a list of

possible application scenarios, to identify their requirements and to propose the

middleware mechanisms.

We organized the description of scenarios as follows: scenario description is a

brief introduction to the scenario. It gives a reader the basic concept about the scenario

without going into the details. The description includes also an enumeration of the

requirements which characterize the scenario. The following requirements will be

analysed:

 Network lifetime – How long do the sensors function reliably;

 Scalability – The scale that a network is capable to grow to without

failing to meet users’ requirements. We see network size as a part of this

requirement as well;

 Time Synchronization – The time precision to which a network has to be

synchronized;

 Localization – If the location information is required, and if so, what is

the required accuracy/uncertainty;

 Security – The degree of security that a network requires;

 Addressing – The addressing scheme that a network uses;

 Fault tolerance – Level of faults that a system can endure;

 Heterogeneity – If the network may be heterogeneous;

 Traffic characteristics – Most prominent behaviour of data traffic;

 Real-time/End-to-end delay – How critically does delay influence a

system;

 Packet loss – Can the system deal with lost packets?

 Traffic diversity – Number of concurrent traffic flows with different

characteristics.

Chapter 4 Middleware Requirements

 51

4.1.1. Industrial monitoring and control

The value of wireless networks is becoming obvious to organizations that need

real-time access to information about the environment of their plants, processes, and

equipment, to prevent disruption [132], [133], [134]. Wireless solutions can offer lower

system, infrastructure, and operating costs as well as improvement of product quality.

Process control: In the field of process control, nodes collect and deliver real-

time data to the control operator and are able to detect in situ variations in the processes.

Nodes may include different sensors and actuators to monitor and control a physical

process. They must be able to adjust, for instance, the speed used by a motor, according

to the required output. Wireless distributed networks that link different sensors make

machine-to-machine communication possible and have the potential to increase the

process efficiency in factories. Table 4.1 summarizes the system requirements for

environmental application scenarios [135], [136].

Table 4.1 – System requirements of process control application scenarios

Requirements Level

Network lifetime 1 year

Scalability Tens

Time Synchronization Second

Localization Required (meter)

Security Low

Addressing address- centric

Fault tolerance Middle

Heterogeneity Yes

Traffic characteristics Periodic, Queried, Event-based

End-to-end delay 1-3 Second

Packet loss Occasional (<5%)

Traffic diversity Medium

Chapter 4 Middleware Requirements

 52

Health of Equipment monitoring: Equipment management and control is one

application scenario used in industrial environments. Sensor nodes are continually

monitoring to evaluate the “health of machines” as well as their usage. Sensors

installed on different machines measure physical properties such as temperature,

pressure, humidity or vibrations. The sensor nodes are able to communicate between

each other and send data to the network where the data is processed. When critical

values are found, the system immediately sends alarms, making predictive maintenance

possible.

Table 4.2 summarizes the system requirements for environmental application

scenarios [135], [136].

Table 4.2 – System requirements for equipment monitoring application scenario

Requirements Level

Network lifetime Forever

Scalability Planned deployment

Time Synchronization No synchronization

Localization N/A

Security Not required

Addressing Address centric

Fault tolerance Middle

Heterogeneity Yes

Traffic characteristics Queried, Event-based

End-to-end delay 1-3 Second

Packet loss Occasional (<5%)

Traffic diversity Low

In industrial application contexts, the network is managed by factory employers

(no programming expertise), and requires monitoring or closed-loop configurations to

control physical processes. Those configurations may change over time with specific

Chapter 4 Middleware Requirements

 53

process conditions. Failure of a control loop may cause unscheduled plant shutdown or

even severe accidents in process-controlled plants. Users should be able to configure the

network operations (monitor and control) easily.

4.1.2. Environmental monitoring

WSNs are deployed in particular environments including cities, forests,

mountains and glaciers in order to gather environmental parameters during long periods

[137], [138], [139], [140], [141]. Temperature, humidity or light sensor readings allow

analysing environmental phenomena, such as the influence of climate change on rock

fall in permafrost areas.

Sensor networks have evolved from passive logging systems that require manual

downloading, into intelligent sensor networks. These networks are comprised of nodes

and communication systems that actively transmit their data to a server where the data

can be integrated with other environmental data sets.

The main goal of environmental monitoring is to supervise, and study several

environment activities. For instance, a weather station provides information about

rainfall, wind speed and direction, air temperature, barometric pressure, relative

humidity, and solar radiation. These measurements can be useful to forecast the weather

and to detect or predict harsh natural phenomena.

The main requirements for environment monitoring application scenarios are

“detection”, “alarm” and information gathering and analysis. Long operation time is

also an important requirement. Large amounts of data may need to be logged in the field

because transmitting them over the network may take too much time and bandwidth,

cost too much power, or is simply impossible because the network is isolated from the

other parts. Nodes should be able to collect and store sensor data during a time interval

and summarize it to be sent after a certain period.

Sensor may also be used for logging environmental data. As the system must be

available during months or years, the data sent to the control station should be

configured and must be delivered with very slow rates (e.g. 1 time per day) to save

Chapter 4 Middleware Requirements

 54

energy. The data must be processed in the node and can represent, for instance, a

summary of the whole day or week.

Table 4.3 summarizes the system requirements for environmental application

scenarios [128][49].

Table 4.3 – System requirements of typical environmental application scenarios

Requirements Level

Network lifetime 2 years

Scalability Thousands

Time Synchronization Second

Localization Required (meter)

Security Low

Addressing Location based

Fault tolerance Middle

Heterogeneity Yes

Traffic characteristics Periodic, Queried, Event-based

End-to-end delay / jitter Seconds

Packet loss Occasional (<5%)

Traffic diversity Low

4.1.3. Precise agriculture monitoring and control

Sensor networks are deployed in particular habitats to monitor and control. They

may be used to monitor and control agriculture activities. In agriculture activities,

sensor nodes play a critical role in measuring and monitoring the health of the soil and

water quality at various culture stages [141]. In these kinds of applications nodes

require a medium lifetime (they must be available during the culture period). Typically,

they deliver data to a base station at slow rates (e.g. 4 times per day – morning, noon,

afternoon, night). Similar to environmental monitoring applications, the delivered data

can represent readings, statistical information, or aggregated values.

Chapter 4 Middleware Requirements

 55

Wireless sensors are further used for irrigation systems. Nodes assume, for

example, the tasks of irrigation control and irrigation scheduling using sensed data

together with weather sensed data. Finally, sensors are used to assist in precision

fertilisation. Based on sensor data, the base station calculates the quantity and spread

pattern for a fertilizer.

Table 4.4 summarizes the system requirements for precise agriculture

monitoring and control [128].

Table 4.4 – System requirements of precise agriculture monitoring and control

Requirements Level

Network lifetime 3 ~ 5 months

Scalability Thousands

Time Synchronization Minute

Localization Required (meter)

Security Low

Addressing Location based

Fault tolerance Middle

Heterogeneity Yes

Traffic characteristics Periodic, Queried, Event-based

End-to-end delay / jitter Seconds

Packet loss Occasional (<5%)

Traffic diversity Low

4.1.4. Smart buildings monitoring and control

Smart buildings rely on a set of technologies that enhance energy-efficiency and

user comfort as well as the monitoring and safety of the buildings. These kinds of

applications are used to monitor, for instance, heating, lighting and ventilation.

Chapter 4 Middleware Requirements

 56

In smart buildings applications, sensor nodes are connected via specialised

networks (wired – e.g. x11 or wireless), which allow them to be controlled remotely,

e.g. switching off computers, monitors or lights when rooms and offices are not

occupied [142].

Sensor nodes may deliver data to decision support systems with various rates

(the rate must be configured to a specific sensor or monitor functionality). Nodes should

also be able to raise alarms when a critical value is achieved. Those critical values

should also be configurable and may change over the time.

Table 4.5 summarizes the system requirements for smart buildings monitoring

and control application scenarios [142],[128].

Table 4.5 – System requirements of smart buildings monitoring application scenarios

Requirements Level

Network lifetime 3 ~ 6 months

Real-time/End-to-end delay Seconds or tens of seconds

Scalability Hundreds or thousands

Synchronization Milliseconds

Security High

Addressing Data centric

Heterogeneity Yes (sensors and actuators)

Traffic characteristics Periodic, Queried, Event-based

Traffic diversity Medium

4.1.5. Warehouse tracking

Inventory control is a major problem for big companies. Management of assets

(pieces of equipment, machinery, different types of stock or products) can be a

predicament. Warehouse tracking in a company with large storage capacity will permit

control over the products stored before their delivery to the end costumer. With the help

of Wireless Sensor ID tags each container has an electronic re-configurable identifier

able to transmit the product code, date of production, date of storage or other valuable

Chapter 4 Middleware Requirements

 57

data with the remote server. If each item is fixed with a tag, an inventory could be

automatically updated if anything is removed or added.

The wireless sensor ID solution makes use of sensor devices with localization

features. Low data rate is foreseen, link distance is relatively small and the warehouse is

similar to a semi-open indoor environment, with localization accuracy in the range of 30

cm with high tracking capabilities. No critical requirements in terms of latency are

considered. But energy consumption is an important feature, because the system will

not be feasible if the tags are not equipped with a lasting battery.

Table 4.6 summarizes the system requirements for warehouse tracking

application scenarios [128].

Table 4.6 – System requirements of warehouse tracking application scenarios

Requirements Level

Network lifetime 6 ~ 12 months

Real-time/End-to-end delay Seconds or tens of seconds

Scalability Tens of thousands

Localization Required (centimetre)

Synchronization Second

Security Low

Addressing Data centric

Heterogeneity Yes (sensors and RFID tags)

Traffic characteristics Queried

Traffic diversity Low

4.1.6. Transport logistics

Consider a shipment of bananas as it travels from the farm in Madeira, Portugal

to a supermarket distribution centre in Lisbon. The bananas are packed in boxes stacked

onto pallets, each equipped with a tracking device. From the farm, these pallets travel in

trucks to a loading dock at the harbour, where they are loaded into shipping containers

that carry them all the way to the supermarket chain’s distribution centre.

Chapter 4 Middleware Requirements

 58

The logistic companies use the wireless sensors to monitor the conditions of the

goods, expected arrival or delay times and more automatic shipping configuration. The

transport logistic scenarios involve sensor network and RFID components in the

transport vehicle and the transport centre. While the sensor network of the transport

vehicle is connected by mobile radio networks or wireless local area networks at the

transport centres, the sensor networks of the transport centres are connected by wired

lines. Typically, this application scenario requires mobile data connections. To limit the

data transmitted over mobile radio networks and the costs associated with that, a remote

configuration of limits for events for event driven data transmission is required.

Table 4.7 shows the system requirements for transport logistic application

scenarios [143].

Table 4.7 – System requirements of transport logistic application scenarios

Requirements Level

Network lifetime N/A

Real-time/End-to-end delay Milliseconds or seconds

Scalability Tens or hundred

Localization Not required

Synchronization Milliseconds

Security High

Addressing Data centric

Heterogeneity Yes (different classes of nodes)

Traffic characteristics Periodic, Queried, Event-based

Traffic diversity Medium

4.1.7. Surveillance

WSNs have also been used for military and civil surveillance. Surveillance is

taken as the process of monitoring the behaviour of people, objects, or processes within

systems, for security or social control. WSN technology is very well suited for

surveillance systems, mainly because wireless sensor networks do not require any wired

infrastructure.

Chapter 4 Middleware Requirements

 59

However, surveillance needs to be categorized in order to take into account the

different requirements of the different cases, namely indoor and outdoor surveillance.

Indoor Surveillance: Indoor surveillance has two possible application

scenarios: surveillance systems placed in a private environment such as houses, or in

public buildings such as hospitals, museums, and airports. The nodes may have different

energy capacities, processing capabilities, positions, and radio coverage. Wireless

networks have many advantages over their wired counterparts that need to be taken into

consideration as well. They are easily deployed, have ubiquitous connection, are low in

maintenance, and are unobtrusive.

Sensors, such as thermal sensors or volumetric sensors allow estimating alarm

conditions and examine the occupation in fixed areas of the building, where it is

installed. Nevertheless, video surveillance systems are necessary to identify the alarm

source detected by the sensors. Table 4.8 shows the system requirements for indoor

surveillance application scenarios [144].

Table 4.8 – System requirements of indoor surveillance application scenarios

Requirements Level

Network lifetime N/A

Real-time/End-to-end delay Milliseconds or seconds

Scalability Tens or hundred

Localization Not required

Synchronization Milliseconds

Security High

Addressing Data centric

Heterogeneity Yes (different classes of nodes)

Traffic characteristics Periodic, Queried, Event-based

Traffic diversity Medium

Outdoor Surveillance: Outdoor surveillance is also highly important for

perimeter security, such as keeping prisoners inside the premises or keeping intruders

Chapter 4 Middleware Requirements

 60

out of a certain area [145]. When using invisible surveillance, it is fundamental that

intruders are not able to detect its presence and then sabotage the detection system. For

this reason, several technologies have been developed to yield a cost-effective solution

for particular proprietors.

Outdoor surveillance applications are not exactly the same as monitoring or

control applications. In those applications, data is transferred to the decision support

system at regular intervals. However, in outdoor surveillance applications,

communication is mostly event-driven. For instance, the communication is done only

when intrusion activity patterns are received in the perimeter antenna, the system

activates an alarm. Table 4.9 summarizes the system requirements for outdoor

surveillance application scenarios [135].

Table 4.9 – System requirements of outdoor surveillance application scenarios

Requirements Level

Network lifetime 3 ~ 6 Months

Real-time/End-to-end delay Milliseconds or seconds

Scalability Hundreds or Thousands

Localization Required

Synchronization Milliseconds

Security High

Addressing Location-based

Heterogeneity No

Traffic characteristics Queried, Event-based

Traffic diversity Low

4.1.8. Health care

WSN technology could potentially impact a number of health-care applications,

such as medical treatment, pre- and post-hospital patient monitoring [146], people

rescue [147], [148], [149], and early disease warning systems [150].

Chapter 4 Middleware Requirements

 61

The health care application scenario is a very special scenario, since nodes store

the data until some instant in time. All sensors are connected to one node which is an

embedded device. The node is placed on the body (human or animal body). Store and

processing capabilities are the most important aspect in this scenario, because the node

must collect and process data until a decision support system requests it. For instance, if

a patient goes to the hospital and uses body sensors him to monitor the heartbeat during

a day [147], the node must be able to store the data it collects during a day and unload

the data only when the patient returns to the hospital.

Another application scenario [148] referring node processing and actuation is

when a diabetic patient is monitored for insulin injection. In this example, the node

collects and processes data (within itself) to control the quantity of insulin that must be

injected on the patient.

Table 4.10 shows the system requirements for health care application scenarios

[128], [151], [152], [153].

Table 4.10 – System requirements of health-care application scenarios

Requirements Level

Network lifetime 700 hours

Real-time/End-to-end

delay

It changes as vital parameter type and analysis of vital data.

But not more than seconds

Scalability Tens of nodes.

Localization Not required

Synchronization N/A

Security High

Addressing Requires data centric

Heterogeneity Yes (sensors, sink nodes/PDAs)

Traffic characteristics Queried, Event-based

Traffic diversity Low

Chapter 4 Middleware Requirements

 62

The application scenario for medical care can be extended further to incorporate

other health monitoring applications like athletic performance monitoring, for example,

tracking one’s pulse and respiration rate via wearable sensors and sending the

information to a personal computer for later analysis. Yet another extension is at-home

health monitoring, for example, personal weight management [149]. The patient’s

weight may be wirelessly sent to a personal computer for analysis and storage.

4.2. Middleware Requirements

Several middleware requirements can be extracted from the previous scenarios.

The design of the MidSN pays attention to functional and non-functional requirements.

In this section we extract the main requirements from the previous application scenarios

and discuss how MidSN deals with it. We consider data processing, configuration and

user operations as functional requirements, while interoperability, adaptability and

performance are considered as non-functional requirements.

Data acquisition and processing: Data acquisition is central to distributed

system management architecture. Data have to be acquired and stored in the first place.

Then, it needs to be processed (e.g., format adaptation, filtering), transferred, further

processed or merged and delivered to users. Instead of having to program and deploy

different parts and interconnections between them, any nodes, be it computers or sensor

nodes, should be configured and operating the same way. Each node should be able to

acquire, store, process and transmit data to other nodes. This turns a heterogeneous

platform into a homogeneous operation layer.

Heterogeneity: MidSN should be modular and based on drivers and interfaces,

which allow it to run over different hardware and software platforms. It must be

developed only once for each operating-system.

When developing MidSN for a not-yet-supported operating system, the first

thing to do is to develop a set of drivers that offer a common architecture defined API,

translating the corresponding calls to operating system calls. The common API is then

used by a uniform node-component.

Chapter 4 Middleware Requirements

 63

Interoperability: MidSN should make different software platforms interoperate

transparently. All nodes have to be provided with standard interfaces to access the data

(different nodes have to be abstracted and accessed in the same way using a common

API).

The API allows any developer to connect and manage the distributed system as

well as to create inputs/outputs for enterprise systems. Given adequate API and data

access capabilities, appropriate user interfaces can be developed.

Flexibility: The wide range of use scenarios being considered means that

MidSN must be flexible and adaptive. Each application scenario will demand a slightly

different mix of operations, lifetime, sample rates, response times and in-network

processing. A wireless sensor network architecture must be flexible enough to

accommodate a wide range of application behaviours.

System configuration and Adaptability: Alarm thresholds and actuations need

to be configured for measurements performed by nodes. In various application contexts

it is necessary to configure monitoring parameters. Sometimes, it is also necessary to

store data locally.

MidSN has to deliver adaptive and configurable services, e.g., services have to

adapt to engineering needs without requiring developers to write further code to handle

such needs. This avoids programming bugs and reduces the time needed to reconfigure

the network.

Users: Different classes of users, with different knowledge, have to be

considered. MidSN must be simple to be managed by experts or non-experts. All of

them should be able to configure system parameters and access node’s data.

Performance: Response time has to be bounded and there must be the

possibility to reconfigure due to timing requirements, in order to allow the use of the

architecture in industrial scenarios (factories/refineries) with real-time constraints.

Table 4.11 shows, systematically, the system requirements used to develop

MidSN architecture.

Chapter 4 Middleware Requirements

 64

Table 4.11 – System requirements for MidSN architecture

Requirements Level

Network lifetime 1 year

Scalability Tens or Hundreds

Time Synchronization Second

Localization Required (meter)

Security Low

Addressing address- centric

Fault tolerance Middle

Heterogeneity Yes

Traffic characteristics Periodic, Queried, Event-based

End-to-end delay 1-3 Second

Packet loss Occasional (<5%)

Traffic diversity Medium

 65

5.gggg

Chapter 5

Middleware Mechanisms for

Heterogeneous Nodes

An architecture capable of handing the requirements and application scenarios

raised in Chapter 4 should be a module-based node-adaptable middleware. In this

chapter, we propose the relevant mechanisms to design such a middleware.

The mechanisms should support both a wide-range of operations and application

scenarios, and include a data management engine that is autonomous in each device and

independent of node type.

The most important mechanisms proposed to handle heterogeneity and

distributed operations are described in Sections 5.2, 5.4, 5.6 and 5.8. Section 5.2

describes the platform and communication protocol independency. In order to run the

middleware over different hardware, software and communication protocols, it needs to

be supported by drivers. In this section we describe each driver and its implementation.

Section 5.4 describes how node referencing and heterogeneity are achieved with

the proposed architecture. The architecture defines a gateway component that translates

between communication protocols (e.g. IP to/from Rime, IP to/from ZigBee).

Section 5.6 describes the data and processing model that offers flexibility in

configuration and processing over the heterogeneous sensor network.

Chapter 5 Middleware Mechanisms

 66

Lastly, Section 5.8 describes the user API. This API allows users to interact and

configure nodes remotely for operation in a distributed system.

The objective is to propose mechanisms to design a middleware that provides

uniform stream-based configuration and processing over heterogeneous

distributed systems with constrained embedded devices as well as other computing

devices.

5.1. Architecture

The architecture assumes networked distributed monitoring and possibly also

actuation contexts. Nodes can be completely heterogeneous, consisting of different

classes of devices. For instance, it may include resource-constrained sensor nodes, such

as embedded devices, and more powerful nodes, such as computers or servers, as shown

in Figure 5.1. In this model, computers are not just data sinks but may fully participate

in the distributed computation environment.

Figure 5.1 – Network structure example of a distributed control systems with wired and wireless

nodes

The system in Figure 5.1 has three different WSN (sub) networks and wired

sensors/actuators. The MidSN architecture allows external applications and users to see

Chapter 5 Middleware Mechanisms

 67

and use the system as a single, coherent distributed sensor, actuator and computing

system.

Considering the network model shown in Figure 5.1, MidSN defines a node

component (MidSN-NC) that must be included in all nodes of the sensor network,

including any computer and any type of computation-capable node.

The architecture works on top of a network communication infrastructure that is

used to exchange data messages between nodes, send configuration commands to nodes

(MidSN-NC) and send acknowledgements from them.

Node interactions are based on a small set of primitives: user configuration

requests are routed to the appropriate node(s) in the form of command messages that

will configure node functionality; messages (which specify a type) are also used to send

alarms, actuation values and notifications from and to nodes; streams are used to collect

sensed data, to compute and filter that data and to exchange resulting data between

nodes. Figure 5.2 shows the MidSN architecture. The architecture can be divided into

two main components: node and remote configuration and data subscription

components. The node component is composed by the operating system, the MidSN-NC

and the necessary drivers to interconnect it to the operating system, and a debugging

module. The other component consists on remote configuration and data subscription

modules, as well as a Catalog to store network information (e.g. configuration and

status). The remote configuration and data subscription modules can be deployed in a

single machine or in a distributed fashion (e.g. using three different machines, one for

the Catalog, another for the remote configuration module and a third machine for the

publish/subscribe module). This second component also includes a Performance

Monitor module.

The debugging module present in the node component collects information from

operation execution in MidSN-NC, then formats and forwards information to the

Performance Monitor module. The Performance Monitor gathers the status information

coming from nodes, stores it in a database and processes it according to the metrics

Chapter 5 Middleware Mechanisms

 68

defined in Chapter 8. In Chapter 8 we describe in detail how the Debugging module and

Performance Monitor module work.

Figure 5.2 – MidSN architecture

Figure 5.2 shows also the interactions (flows) between different components of a

distributed system. Flow (1), labelled “Sensor Data” represents sensor data flows. These

can be to/from any two MidSN nodes. The flow (2), labelled “Config Command and

Ack”, represents commands that are sent through the network layer by the MidSN

remote configuration component (MidSN-RConfig) to configure nodes, and the

acknowledgement reply. This component allows to (re)configure any node in the

network. User configurations will translate into command packets that are sent to nodes,

generating configuration command flows. When a command is received by a node, an

acknowledgement is generated and sent to MidSN-RConfig.

Outside applications and configuration user interfaces access the MidSN-

RConfig component through an API provided by that component. The external

applications submit calls to the API, which provides configuration-related calls. It also

provides data subscription services, whereby external applications subscribe to streams

to receive the data coming from somewhere in the networked system. For instance,

when a client application wants to receive a sensor data stream, it is necessary to

subscribe the data stream. This subscription is done through MidSN-RConfig API calls

Chapter 5 Middleware Mechanisms

 69

and a publish/subscribe module (MidSN-P/S) is available in computer nodes to provide

the data to the outside applications. In Figure 5.2, API calls are represented by flow (3),

labelled as “API Config calls” and data resulting from data streams subscription is

represented by flow (4). The publish/subscribe module (MidSN-P/S) is described in

Section 5.5.

We assume an extensible architecture, where there are a basic set of

configuration commands and operations, but it is possible to add other types of

commands and operations to fit the context requirements, by adding functionality to

modules in the system.

5.2. Platform and Communication Protocol Independency
(Drivers)

MidSN architecture proposes a node component (MidSN-NC). This node

component was designed to be “platform and communication protocol” – independent

in terms of design and formats, which allows the system to run over heterogeneous

distributed platforms, with constrained embedded devices as well as other computing

devices. It must be developed only once for each operating-system. Since every node of

systems will use the same API and formats, and the approach also assumes gateway

translation between different communication protocols, they will have total

interoperability, with simple deployment of the nodes. In order for MidSN-NC to run

over different hardware and communication protocols, it needs drivers to manage files,

handle different communication protocols and sensors, as well as drivers to handle timer

events and memory requirements (Figure 5.3). When developing MidSN-NC for a not-

yet-supported operating system, the programmer needs to develop a set of drivers that

offer a common architecture defined API, translating the corresponding calls to

operating system calls.

Figure 5.3 – MidSN-NC drivers

Chapter 5 Middleware Mechanisms

 70

The File system driver manages data log files in the node. It allows the creation

and deletion of log files from the node, as well as adding and reading data from them.

Table 5.1 shows the primitives of a driver for handling file system operation.

All of these functions use a file name identifier to identify a file (FILE_NAME).

The read and write functionalities use fseek parameters to indicate the start portion of

read or write operations.

Table 5.1 – Primitives of file system driver

Functionality Primitive

Create file boolean create_file(FILE_NAME);

Open file boolean open_file(FILE_NAME);

Close file void close_file(FILE_NAME);

Read data from file CHARPT read(FILE_NAME, fseek, length);

Write data to a file boolean write (FILE_NAME, fseek, CHARPT buff);

The Communication driver is essential to abstract from the communication

protocol primitives. It must offer functions to open and close a peer-to-peer connection

and send and receive messages (configuration commands and data messages from other

nodes). Each connection is an end-to-end connection where send and receive

data/command functionalities are available.

Table 5.2 shows the required primitives to develop a communication driver.

Table 5.2 – Primitives of communication driver

Functionality Primitive

Open connection boolean open_connection(ADDRESS, PORT);

Close connection void close_connection(ADDRESS);

Send message int send_to(ADDRESS, CHARPT packet, int length);

Receive message CHARPT midsn_get_received_packet();

Chapter 5 Middleware Mechanisms

 71

MidSN-NC, at start up, starts a daemon, which listens for new connection

requests sent from other nodes. When a node detects an incoming connection request, it

starts up a separate thread to handle node requests and to answer to them. Each thread

terminates its execution when the close_connection function is called.

The receive function must return a data message. Depending of the

programming idiom implementation, the data buffer used by the send function and data

message returned by the receive function represent a char pointer if C idiom is used or

an object if object-oriented languages such as Java or C# are used.

The driver should be able to notify the MidSN-NC that a new message arrives

when the operation system receives the new message. This notification is done using a

new_message_arrives event.

Figure 5.4 shows a flow chart of the mechanism used to implement the reception

of messages (command configurations or data messages) and how to indicate to the

MidSN that a new message arrives. This is part of the communications driver that must

be developed once for each operating system, as part of the MidSN-NC component.

As shown in the figure, the communication driver must be able to continuously

listen to the connection, in order to receive messages. Upon reception, the driver must

copy the data buffer to internal memory and notify the MidSN-NC that a new message

is available.

After MidSN-NC receives the notification, the I/O adapter (a module of MidSN-

NC described before) uses the function midsn_get_received_packet() offered by the

driver to receive the message and further analyse it.

Appendix A shows two implementations of the communication driver. The first

one was developed for ContikiOS, using Contiki-C and the other one for Linux, using

java.

Chapter 5 Middleware Mechanisms

 72

Figure 5.4 – Communication driver flow chart

The Acquisition driver must be present in nodes doing sensing. It performs all

sensor actions required to gather data from sensors. It must offer the following methods:

 Setup – must be able to initialize sensors. It must return a boolean to

check if the initialize step was successfully done or not.

 Read Sensor – allows reading a value from a sensor. The reading is

represented by an integer value that must be returned.

The Actuation driver must be present in nodes doing actuations. It performs all

actuator actions required to control the environment. It must offer the following

methods:

 Setup – must be able to initialize actuators. It must return a boolean to

check if the setup step was successfully done or not.

 Write a digital value to the actuator – allows setting the output value of a

DAC presented in the actuator.

The Timers driver allows scheduling timer events. The driver must offer

functionalities to set, reset and stop a timer, as well as one function to check if a timer

has expired. Table 5.3 shows the required primitives.

Chapter 5 Middleware Mechanisms

 73

Table 5.3 – Primitives of a timer driver

Functionality Primitive

Set and start a timer void set_so_timer(TIMER_NAME, TIMER_PERIOD);

Stop a timer void stop_so_timer(TIMER_NAME);

Reset a timer void reset_so_timer(TIMER_NAME);

Check if a timer is expired boolean so_timer_expired(TIMER_NAME);

All of these functions use a timer identifier to identify a timer (TIMER_NAME).

The set timer function also uses a timer period to indicate the period of the timer. This

period is indicated in milliseconds.

Lastly, the Memory Allocation driver is used to interface the MidSN-NC

memory functionalities with the operating system memory resources. This driver is

composed by two functions: alloc and dealloc. The alloc function reserves a specific

size of memory to be used by MidSN-NC. The dealloc function releases the

unnecessary memory that is no longer needed.

These drivers must be developed according to the hardware and/or

communication protocols and linked to the MidSN-NC code for installation of software

in a node.

5.3. The Catalog

MidSN maintains a Catalog of nodes, with address (global IP address and

proprietary communication address), current node configuration and node status for

each node. It is also responsible for keeping a history of submitted configurations and

network configuration. Appendix B shows the structure of the Catalog. It is XML-

based.

Each MidSN node is identified in the Catalog by the tags <node>. It includes a

node identifier (id), a global network IP, a reference to the communication protocol, an

address for a specific communication protocol, and a port used to communicate, as well

as the configurations of the node.

Chapter 5 Middleware Mechanisms

 74

Each address (IP and non-IP address) is assigned by the user and should take

into account the network and sub-network where the node is deployed. After concluding

the address assignment process to a node, the Catalog is updated. The Catalog is stored

on a catalog-holder control station, and nodes must be configured, before deployment,

with the address of that control station.

The example of Catalog shown in Appendix B shows how the information about

a network is stored. For instance, considering the node 1.1, represented in the Catalog,

we can see which controllers were loaded to the node and which are running. Each user-

programmed controller is referenced by the tag <controller> and has a name and a status

indication (<running>).

In the same node, we can also verify which streams are configured and its

properties. In the Catalog, each stream is referenced by <stream>. It includes parameters

such as name, rate, window, output destination, information about its status (if it is

running or not), measures and metrics that compose each data tuple of the stream.

Besides controllers and streams information, the node includes also information

about configured alarms and actions. Each alarm includes all information of a stream

but add and operator and one second measure to create a conditional output. It is

identified by the tag <alarm>.

Each action includes all information of both stream and alarm and add an

actuation that must be executed when the conditional output occurs.

Lastly, each node includes information about its address and status. The

addressing information is described in the next section under the node referencing

description. The status includes information about battery level, if the node is battery

operated, messages sent, received, forwarded and lost.

In order to enable applications to discover what is available for use, each node

includes information about which sensors and actuators are connected to the node.

Chapter 5 Middleware Mechanisms

 75

5.4. Node Referencing and Heterogeneity

In a heterogeneous network, any node (wireless or wired) acts as a data and

command source and destination within the network, and must be able to address other

nodes for those functionalities. Communication and remote access rely on a uniform

distributed addressing and communication layer. However, many platforms with WSN

and control stations are heterogeneous, with embedded devices featuring operating

systems such as TinyOS and specific communication protocols. In order to handle

communication protocol heterogeneity, MidSN defines a gateway component. This

provides support for communication with non-IP embedded devices.

The Catalog identifies IPs that must be routed through the gateway, and the

gateway is an IP node itself which implements specific communication with a non-IP

sub-network of a specific type.

Each gateway implements two interfaces: one used to establish communication

through IP networks and the other one used to establish communication with embedded

communication protocols such as Rime or uIP. The IP interface is referred by the

iIP_address and iIP_port used in the Catalog (Appendix B).

The embedded communication protocol interface is referred by the

iWSN_protocol, iWSN_address, iWSN_port and iWSN_channel properties shown in

Appendix B.

Figure 5.5 is an illustration of the gateway mechanism of MidSN. The MidSN

gateway translates between two network protocols – in the figure one gateway translates

between Rime for Contiki and IP for the internet. The other gateway translates between

uIP and IP.

Chapter 5 Middleware Mechanisms

 76

Figure 5.5 – MidSN Gateway component

Each gateway has a Translator module, which is an application level protocol

translator. It receives the message at application level, looks up the destination address

in the Catalog for translation, and resubmits the message using the communication

function on the other side. Figure 5.6 shows how the addressing mechanism works with

an example concerning a control station sending a command to a node.

The Catalog identifies nodes connected to a gateway through a specific tag

(<Gateway>). If a node has IP support and can be directly addressed, the control station

sends commands directly to the node. Otherwise, commands are sent through a

gateway, which does the translation of addresses, if needed, and forwards the command

to the target node.

The data messages sent by nodes connected to a gateway are sent to the gateway,

which does the translation between protocols and addresses to forward it to the target

node. Messages sent between any two nodes with the same communication protocol and

in the same network are sent directly.

Chapter 5 Middleware Mechanisms

 77

Figure 5.6 – Flowchart of MidSN Gateway component

The example of Catalog shown in Appendix B includes one gateway and three

nodes. Two of them are connected to the gateway while the third is an IP node that is

connected directly to the heterogeneous sensor network. The gateway is identified by

the id net1 and has the address 10.3.3.82. This gateway has two interfaces, one used by

the IP side of the network, and other one used by the WSN sub-network. In this

example, analysing the iWSN_protocol tag, we conclude that this gateway translates

messages from IP protocols to Rime protocol and vice-versa.

As shown in the figure, from the WSN sub-network perspective, this gateway

has the address 0x0000 and uses channel 20 to communicate with the nodes connected

to it.

Each node is identified by a unique id (e.g. 1.1 and 1.2) within a sub-network

connected to the gateway, but also has a global IP address (e.g. 10.3.3.101, 10.3.3.102

for the same two nodes).

Chapter 5 Middleware Mechanisms

 78

Depending of the communication protocol, the Catalog may include information

concerning communication channel. This field is specific for WSN sub-networks.

5.5. Publish/Subscribe External Interface

The MidSN architecture includes publish/subscribe mechanisms to publish data

stream content to external applications. Subscribers are users who request receiving data

from a stream of interest to them. In this publish/subscribe context, external consumers

are referred as subscribers, while the MidSN publishing mechanism is referred as

publisher.

Users can subscribe to the data stream through the MidSN-RConfig component.

Each subscription is represented by a “subscribe” API call, which includes the

subscriber address, port, a connection timeout, and the stream source. Once receiving

the call, the MidSN-RConfig configures the MidSN P/S module (Figure 5.2), which will

allocate a unique id to the subscriber. At the same time, a profile with address and port

will be created for the subscriber. The MidSN P/S module will use this information to

establish/maintain the connection to the subscriber. The stream data will be published to

the subscriber as soon as possible.

The publish/subscribe mechanisms can be divided into two parts: a

subscribe/unsubscribe and a publisher. Figure 5.7 shows the flowchart of the

subscribe/unsubscribe mechanism while Figure 5.8 shows the flowchart of the

publishing mechanism.

Chapter 5 Middleware Mechanisms

 79

Figure 5.7 – Flowchart of MidSN-Subscriber mechanism

The subscribe/unsubscribe consists on a mechanism that listens to requests.

When a request arrives, it is analysed to identify the request type (subscribe or

unsubscribe). If the request corresponds to a subscription, the subscribe/unsubscribe

mechanism allocates a unique id to the request, creates a memory structure where id,

address, port, timeout and subscription data stream ids are stored, and lastly, updates the

subscriber list. This list is shared with the publisher and contains all active

subscriptions.

The publisher is continuously listening for data streams and checking if any

timeout associated with connections to subscribers has expired.

When a data stream is received, the publisher looks up for subscribers and

selects one by one. Next, the connection with the subscriber is checked. If there is a

connection, data is sent. Otherwise, the publisher opens a connection to the subscriber.

When the list of subscribers is empty, the publisher returns to the listening state.

Chapter 5 Middleware Mechanisms

 80

Figure 5.8 – Flowchart of MidSN-Publish mechanism

5.6. Data and Processing Model

The data and processing model of MidSN aims at offering flexibility in

configuration and processing over the heterogeneous sensor networks.

MidSN implements a query processor. Based on queries formulated by users,

MidSN parses and transforms them into logical configuration commands. These

commands consist of high-level representations of the operations that need to be

executed to obtain answers to the query. There are three types of queries:

 Queries that configure nodes to produce tuples (readings and data

statistic results) continuously or once;

 Queries that configure nodes to receive tuples;

 Queries that configure inner operators to receive and produce tuples (e.g.

Alarms and closed-loops).

Chapter 5 Middleware Mechanisms

 81

A query must configure at least one source (a node producing the data), one or

several operators to be executed in the source node, and clients, which are the nodes that

receive the data. Each client must register to a publish/subscribe mechanism to receive

tuples from the source node. Using this approach, each node can have a number of

subscribers that get result tuples from one query.

Based on queries, MidSN uses a stream model to manage configurations and

data. A stream is the query metadata and the data being produced (Figure 5.9).

Figure 5.9 – Stream structure

The MidSN metadata structure includes the following parameters:

 Id – a unique identifier.

 Processing period – is the time interval between executions. It can

assume any value in milliseconds that are converted to internal time units

of node (e.g.: MIPs for computer nodes or ticks for TelosB nodes).

 Window size – represents the number of samples that are considered

when in-network processing techniques are applied (e.g. average,

maximum, minimum, percentile).

 Number of measures, number of clauses and number of actions –

indicates how many measures, condition clauses and actions are included

in message.

 Measures – specifies each value that must be included in the result

stream. This field assumes a single measure or a set of measures,

depending on the number of measures indicated in the above field. Each

measure is composed by two fields: data source and metric. The data

source indicates which stream or sensor should be the source of the data

for the stream (e.g. temperature, humidity, light, ADC0, and so on) and

metrics indicate in-network data processing (e.g. the value itself (no in-

network processing), an average, a sum, a standard deviation, and so on).

Chapter 5 Middleware Mechanisms

 82

 Clauses (where Clauses) – represents a condition that should be checked

for restricting the tuple that are included in the output or those that

trigger an action. This field is composed by one or more expressions

connected by AND or OR, where each expression has five fields (data

source, metric, operator, data source, metric). The operator can assume

one of the following values: >, <, =, >=, <=.

This format allows users to define expressions such as (avg (temperature)

> 25).

 Actions – represents the action or actions that must be executed if all

conditions are true. This field assumes one or a combination of the

following actions:

o Send – send the result stream to other node or nodes in the

network; the field is composed by a send identifier

(SEND_RESULT) and one or more node destinations.

o Actuate – write a value to an actuator; the field is composed by an

actuator identifier and a value that must be written to the

hardware.

o Execute – Executes a specific operation. For instance, start or

stop a stream.

Concerning data, each stream may contain data from sensor acquisitions, data

coming from other nodes for a specific stream and data resulting from in-network

processing.

The data is stored in circular arrays of values with configurable sizes. Each

position has values as configured in the metadata. These may come from sensors, node

parameters or other streams. The use of a circular array means that old readings, after

the remaining window size has been filled, are overwritten by new readings.

Chapter 5 Middleware Mechanisms

 83

5.7. Operations

Operations implement periodic data processing over data using the stream

processing model. It is controlled through timer events. When the time comes for an

event, the processor manages the operations applied to the stream (data insert, alarm

detection, transformation), eventually the insertion of data in the stream or composition

of output streams, and triggers actions if some conditions are met.

When a timer event arrives, the processor processes whatever are the event

specifics and reschedules the timer for the next period. There may be several

simultaneous timer events in a node.

Figure 5.10 illustrates an operation using streams with an example. In that

figure, nodes were configured to collect, transform and deliver data into a control

station for a visualization application. A signal sample is collected periodically by each

of three sensors, placed into a stream and routed into a relaying node. The relaying node

computes some statistics (e.g. avg or max) over the three values and forwards the

resulting value to the control station.

Figure 5.10 – Stream processing model

The control station keeps a stream with the last values that were received, and

publish it. A client application subscribes to the data and plots it to allow visualization

of the values. It would be possible to configure differently any of the nodes in this

illustrative example. For instance, sensor nodes could each compute some statistics over

10 samples and forward those to the control station directly, which would show the

stream values or compute some other statistics.

Chapter 5 Middleware Mechanisms

 84

Using other configuration and processing capabilities, MidSN also supports

closed-loop control. Figure 5.11 illustrates how closed-loop control is achieved using

the same data processing model. In Figure 5.11a) sensors send values into a node that

computes an actuation value and forwards an actuation value into an actuator node.

Figure 5.11b) shows three alternative actuation scenarios, which are configured with

simple commands issued by the MidSN-RConfig component. The scenarios include

actuation through the control station, computer nodes, WSN-sink nodes or in a single

WSN sensor and actuator node.

(a) Closing the loop

(b) Illustrating three Closed-Loop scenarios

Figure 5.11 – Illustration of closed-loop control

5.8. User API

MidSN includes an API which provides a set of functionalities used to interact

and configure nodes remotely for operation in a distributed network. It allows external

applications to submit configuration commands and to subscribe to data (streams)

coming from nodes.

Chapter 5 Middleware Mechanisms

 85

The API can be developed using, for instance, Web Services, REST or HTTP to

easily interface with external client applications.

We list next a set of capabilities that are useful in various application contexts,

but other configuration and operation functionalities can be added depending on the

specific target context for the system or the amount of functionality that is desired.

The set of functionalities that we consider is:

 Node

o Activate / deactivate nodes;

o Activate / deactivate sensors and actuators connected to each

node;

o Request node status;

o Reset a node;

 Operations and Filters

o Create periodic operations (gather sensed value data with a

sampling rate);

o Drop periodic operations from nodes;

o Start and stop operation;

o Change operation periodicity (change the sampling rate);

o Create data filter (where conditions);

o Drop filter;

 Alarms

o Create an alarm;

o Delete an alarm;

o Start and Stop alarm verification;

 Actions

o Create action with periodicity;

o Drop action;

 Actuation

o Send and apply actuation value;

 Publish/Subscribe

Chapter 5 Middleware Mechanisms

 86

o Subscribe data

o Unsubscribe data

 Agents

o Send a custom agent code to nodes;

o Load an agent;

o Start and stop an agent;

o Drop an agent;

These functionalities are categorized in seven categories: node, operations and

filters, alarms, actions, actuations, publish/subscribe and agents. In Appendix C we

describe each category and its calls.

This API is extensible and can include features to fit different application

contexts. It is possible to define more powerful APIs and consequently larger MidSN

components in more computational powerful nodes (e.g. computers), but this important

subset of functionalities should be present in every node.

 87

6.gggg

Chapter 6

Node and Configuration Middleware

Components

In this chapter we detail the node (MidSN-NC) and remote configuration

(MidSN-RConfig) components, which implement the mechanisms proposed in the

previous chapter.

MidSN-NC is the node component that provides uniform stream-based

configuration, processing and communication for nodes with different characteristics in

the heterogeneous sensor. The MidSN-NC architecture builds an intermediate

computing layer, which serves as an abstraction hiding different hardware and operating

system implementations. It is detailed in Section 6.1, 6.2 and 6.3 and it was designed to

meet all requirements described in Chapter 4 and implements the mechanisms described

in Chapter 5.

The remote configuration component (MidSN-RConfig) is the MidSN

component which allows applications and users to configure any node remotely, by

submitting simple API commands. It sends configuration commands to nodes with

combination of measures, conditions and actuations, which are used to enable easy

remote configuration of system parts during the system lifetime. In Section 6.4 we

describe MidSN-RConfig in detail. The message structure used to exchange commands

and data between nodes is described in Appendix E.

Chapter 6 Node and Configuration Middleware Components

 88

MidSN architecture assumes that it is also possible to load custom code (agents)

for handling more specific operations (e.g. a closed-loop controller). In Section 6.5 we

describe that capability.

6.1. Node Component Architecture

The MidSN node component (MidSN-NC) is a stream-based operating machine

that manages data and operations inside the node. It must be developed only once for

each operating-system and offers functionality to allow any node to be configured

remotely for the same operations.

MidSN-NC can be developed for hardware with minimum set of requirements.

The minimum requirements to run it are: a programmable micro-controller; a

communication stack for data exchange (wired or wireless); enough ROM memory to

hold the MidSN-NC software component. The amount of RAM needed is configurable,

since it depends on the number of operation-related structures that are allowed. Sensing

nodes must include ADCs to connect to sensors and actuators with DACs to interface

with external analog hardware. Figure 6.1 shows the MidSN-NC architecture.

Figure 6.1 – MidSN-NC architecture

Chapter 6 Node and Configuration Middleware Components

 89

The MidSN-NC runs at application level and is composed of two main parts:

1. A kernel (NC-kernel) that is responsible for exchanging messages with any other

node in the system and for managing agents. An agent is a code to execute specific

functionality that is sent to the node;

2. A small operating machine (NC-GinApp) that provides:

a. Configuration management (NC-GinApp-CM), whereby nodes will be

able to configure themselves based on commands provided by other nodes or

servers. With this component, nodes can be configured to, for instance, raise

alarms, issue actuations or compute measures such as averages or maximum

values, as well as sending data stream to other nodes;

b. Data collector and processor capabilities (NC-GinApp-DC and NC-

GinApp-GP), whereby the node will be able to look and compute on data it

collects from either sensors or other nodes, to take decisions and to route

data;

c. Acquisition and actuation capabilities (NC-GinApp-AA), whereby sensor

nodes will be able to periodically acquire sensing values or issue actuation

commands (e.g. WSN motes connected to wired analogue sensors through

DACs and ADCs).

Figure 6.1 also shows the flows/interactions between components. Incoming

messages are delivered by the I/O adapter to the Agent Manager module (flow (1)). This

module will analyse the message and send it to the target agent. Each message must

contain a target agent identifier field, which identifies the target agent.

If GinApp is the target agent (flow (2), then the NC-GinApp-CM module is

called. This module will analyse the message and choose two possible operations:

1) If the message is a configuration command, it will configure some

functionality of the node (flow (3));

2) If the message is a data message, it will send the data to the destination

module (NC-GinApp-DC, NC-GinApp-GP or both) (flow (3)).

Chapter 6 Node and Configuration Middleware Components

 90

Flow (4) represents sensed data going to the NC-GinApp-DC module, while

flow (7) represents actuation commands (actuator and value) going to the NC-GinApp-

AA module. Actuation commands can be issued by the NC-GinApp-CM module

directly or can be the result of the processing. For instance, if a closed-loop control is

configured, after the NC-GinApp-GP processes data coming from either the NC-

GinApp-DC or from other node(s), it can send an actuation to the NC-GinApp-AA

module.

Flow (5) represents data streams going/coming to/from the NC-GinApp-GP

module. These interactions can be to get data from sensors streams to be used on

processing or to store stream results on the NC-GinApp-DC module.

Flow (6) represents data that is to be sent to other nodes (e.g. a stream

periodically sends data from the node to another node).

The MidSN-NC component is flexible in the sense that it allows adding small

agents to execute specific tasks. Custom coded agents can also use GinApp

functionality. Flow (8) represents the interaction that can be done between any agent

and GinApp. These interactions are done by directly calling a GinApp API.

6.2. NC-Kernel

Driven by the quest to enable flexibility and extensibility with a clear

abstraction, MidSN-NC includes a kernel which manages communication between

nodes. It also establishes communication with agents inside a node. This part of the

node component is composed by two modules, communication module and agent

manager.

6.2.1. Communication (I/O Adapter)

This module is responsible for managing all network traffic that flows in and out

of the node. The module is able to publish data streams to other nodes or outside clients.

Through command messages to the NC-GinApp-CM module, the node can be

configured to send one or more data streams periodically (or alarms) to other nodes and

to outside applications.

Chapter 6 Node and Configuration Middleware Components

 91

Any outside application that subscribes to streams (and/or alarms) receives the

data in a port that was specified by it in the subscription call.

6.2.2. Agent manager (NC-Kernel-AM)

For all incoming packets, they are validated and parsed to assert their

functionality or agent destination (agent_dest). The Agent Manager module (NC-

Kernel-AM) stores information about each agent and forward messages for the correct

target agent.

NC-Kernel-AM also includes functionalities to receive agents over-the-air from

users, store them in flash memory or drop them from the node. Upon receiving an agent,

it is stored on persistent memory (e.g. flash memory). NC-Kernel-AM offers support to

load and unload agents to or from main memory, as well as functionalities to start and

stop it. The start function can be called with parameters that may be used during the

execution of the agent.

6.3. NC-GinApp

GinApp is a small stream operating machine that manages data and operations

inside nodes. GinApp implements a modular approach for acquisition, actuation and

data processing. GinApp also provides remote configuration or reconfiguration

functionalities, to fit a wide range of application scenarios.

6.3.1. Acquisition & Actuation (NC-GinApp-AA)

This module must be present in nodes doing sensing and/or actuation. It

performs all sensor actions required to gather data from sensors and all actuation actions

necessary to actuate over the hardware. Commands are issued to configure the modules,

for instance to activate or deactivate sensors or actuators. The NC-GinApp-AA module

is based on drivers that do the interface between MidSN-NC and hardware. To add a

new sensor or actuator, a programmer needs to develop a specific driver and link it to

the MidSN-NC for installation in nodes. Depending on whether it is a sensor or an

actuator, the programmer of a new sensor or actuator must add the specific sensor or

actuator management code to the methods described in Table 6.1.

Chapter 6 Node and Configuration Middleware Components

 92

Table 6.1 – Sensor and actuator driver primitives

Type Functionality Primitive

Sensor

Initialize Sensor boolean res = init(SENSOR_NAME,

 <list of parameters>);

Read Sensor int value = readSensor(

 SENSOR_NAME);

Actuator

Initialize Actuator boolean res = init(

 ACTUATOR _NAME,

 <list of parameters>);

Write to hardware boolean res = writeToHW(

 ACTUATOR_NAME,

 int VALUE);

6.3.2. Configuration management (NC-GinApp-CM)

The NC-GinApp-CM module, depicted in Figure 6.1, processes commands that

configure and modify processing, acquisition and communication properties, and also

manages data coming from other nodes. Command messages coming from Agent

Manager Module are parsed to assert which actions should be taken and to execute

them. Examples of actions include creating a stream, deleting a stream, starting or stop a

sensor or an actuator.

A parser identifies the type of the message, which may be either a configuration

command or a data message.

Data message – If the message is a data message (a data stream), then the data is

forwarded to the Data Collector module for storage and operation.

Configuration command – If the message is a configuration command, then the

node is configured to operate accordingly. There are two major configuration command

types:

a) Node Operation: commands that configure hardware functionalities, such as

activating a sensor or an actuator, and actuation commands. Actuation

commands are commands that order a node to write a value to an actuator.

They can be used for either commanding some hardware device directly or

for supervisor nodes to command actuation remotely or locally (e.g. in

closed-loop control).

Chapter 6 Node and Configuration Middleware Components

 93

b) Configuration of periodical operations – Streams, Alarms and Conditional

Actuation: commands that configure individual data streams, alarms and

condition-based actions to operate. The command includes a name for the

periodical operation. When such a command arrives at a node, the

configuration of the corresponding structure is updated or a new one is

created if it does not exist yet.

Configuration of periodical operations sets up operation structures, that is,

structures that keep information for timer events to know what to do when they are

triggered. Those structures keep the following information:

 Structure type – whether the structure is a data stream, an alarm or a

conditional periodic actuation;

 Data destination – address of destination nodes for the data that is output

periodically by the stream;

 Sensor acquisitions and periodicity – when specified, this field indicates

which sensor(s) is (are) to be acquired in order to fill the stream, and with

what periodicity. As a consequence, the module also configures a timer event

related to the acquisition;

 Send expressions (operations and actuations) – specifies the values the

stream should retrieve, the operations over these values and sending them to

other nodes requesting the data. We also call this selection a “select”, since it

identifies which data is selected, operated and sent. As a consequence, the

module also schedules a timer event related to the periodicity for operating

and sending the stream data to other nodes;

 Filter – a condition that restrict (filters) the stream data. So that only the

tuples conforming to the condition will be further operated upon. We also call

a condition a “where”, since it corresponds to a where clause in an SQL

statement;

 Stream window size – configures the stream data window size over which to

operate, such as computing an average or a maximum over a window of size

10;

Chapter 6 Node and Configuration Middleware Components

 94

 Alarm condition (where) and periodicity – configures the threshold and

condition for an alarm, and the corresponding condition evaluation periodicity.

The condition is tested periodically and an alarm message is sent to specified

nodes when an alarm is raised;

 Actuation based on a condition (where) – configures an actuation based on a

condition. The command specifies a periodicity, a threshold, a condition for

the actuation, and also an actuation value. The condition is tested periodically

and an actuation done if the condition is true. This command also schedules a

timer event for the periodical conditional actuation;

Closed-Loop Control operations are also possible in our architecture. It is

configured by commanding periodical operation in a set of nodes: sensor nodes are

configured to acquire data, supervision nodes are configured to receive that data (a

stream), feeding it to a controller, and the controller sends actuation commands to nodes

that, upon receiving the command, will perform the corresponding actuation. Closed-

loops based on simple thresholds can implement the controller as a simple filter

condition over the stream. More complex user-coded controllers can also be loaded.

6.3.3. Data Collector (NC-GinApp-DC)

The NC-GinApp-DC module manages data readings collected by sensors or

received from other nodes and stores them in memory. The memory available for each

data reading type is limited by a window size parameter specified during creation of the

stream. The module uses a circular window, which means that old readings, after the

remaining window size has been filled, are overwritten by new readings (the data is

expected to have been consumed already when it is overwritten). This module can also

store the stream in persistent storage in embedded devices with such capabilities.

NC-GinApp-DC offers an API that provides functionalities to create and drop

sensor streams, save data into streams and read data from sensor streams. Table 6.2

shows the primitives developed to manage data in the NC-GinApp-DC module.

The creation of streams in NC-GinApp-DC module is done by calling the create

stream method. This method requires four parameters:

Chapter 6 Node and Configuration Middleware Components

 95

 Stream ID, used as a unique identifier;

 Windows size, used to limit the amount of memory used by each array in

the stream;

 Place to store, used to indicate if the stream is stored in main memory or

in flash memory, as a file.

To read data from streams, NC-GinApp-DC offers the readDataFromStream

method. This method requires the stream identifier and the number of samples that must

be returned. The returned data correspond to N last samples stored into the stream. Each

sample is stored using the writeToStream method. Lastly, there is a drop method that

allows deleting the stream structure from memory.

Table 6.2 – Data collector API

Functionality Primitive
Create Stream boolean result = createStream(

 int streamID,

 int windowSize,

 Boolean placeToStore,

);

Drop Stream boolean result = dropStream(int streamID);

Read data from stream list <int value> = readDataFromStream(

 int streamID,

 int Nsamples

);

Store data into stream boolean result = writeToStream(

 int streamID,

 <List VALUES>

);

6.3.4. Gin Processor (NC-GinApp-GP)

The NC-GinApp-GP module is triggered by a timer or network event and uses

stream structure fields to determine how to process configurations.

The stream structure fields are used for:

 Selecting which data and which operations to use (computations over data,

such as an average of the three last readings);

Chapter 6 Node and Configuration Middleware Components

 96

 Specifying which conditions should be tested against the data (conditional

processing).

NC-GinApp-GP uses sensor data readings, data coming from other nodes or

both to compose the stream output to send to other nodes.

Internally, NC-GinApp-GP manages the data processing mechanisms and

periodic functionalities. It implements a time scheduler, where periodic events can be

registered. The periodicity of each event depends on the user configurations.

When a timer event is triggered, it is processed as depicted in Figure 6.2.

Figure 6.2 – Timer events flowchart

There are three main types of timer events, corresponding to the flows in Figure

6.2:

 Acquisition: triggers acquisition of sensor signals; For instance, when an

acquisition event arrives, the NC-GinApp-AA module is instructed to

sample the physical sensors and to send the value to the NC-GinApp-DC

module to store it in the corresponding stream.

 Computation: computes from data that is in the NC-GinApp-DC

module. For instance, to compute averages or maximum values, to filter

data, to raise alarms, to merge data from streams. The computation

operations require a selection of a stream to be processed.

 Send: sends data (streams or alarms) to other nodes or external

applications. Typically, after computation of a stream, a sending event is

Chapter 6 Node and Configuration Middleware Components

 97

generated to send the result to another node. However the sending event

can be decoupled from the computation event. So, when a sending event

occurs, the node selects the corresponding stream and sends it to the

destination node.

The NC-GinApp-GP has capabilities to do in-network processing. These

capabilities are called when the computation event manifests itself. NC-GinApp-GP

allows aggregating over any data (e.g. computing averages, sums, max, min, count) or

just sending values without further processing.

Figure 6.3 shows the computation flowchart used by the NC-GinApp-GP. When

a computation event arrives, the processor starts by the selection of a measure

configured in the stream metadata. For each measure, the processor looks up the last n

values according to the window size defined in the metadata, and applies where

conditions (filters) to evaluate if values are considered to compute or to include in the

output stream.

Figure 6.3 – NC-GinApp-GP – computation flowchart

Chapter 6 Node and Configuration Middleware Components

 98

Since NC-GinApp-GP can apply in-network computations, after verifying the

filter condition and if aggregations are defined in the stream metadata, the processor

stores the evaluated values in a temporary array that is used to compute the result, upon

verifying all n values.

After evaluating a measure and getting the result, the processor adds the result to

the stream output and re-runs again with another measure.

The number of measures used in each stream depends of its configuration. Upon

evaluating all measures, the stream output is ready to be sent to the target node. In this

case, the processor generates a sending event that will dispatch the stream output to the

I/O adapter (Figure 6.1).

6.3.5. Extensibility of NC-GinApp

GinApp was designed to be an extensible architecture, where there are a basic

set of configuration commands and operations, but it is possible to add other types of

commands and operations to fit the context requirements. Users can extend GinApp by

adding functionality to modules in the system. These functionalities are hand-

programmed parts that are added to the base MidSN-NC code.

The API of MidSN is also extensible and can include features to fit different

application contexts and functionalities added by users. For instance, assuming a new

controller added by a user, the corresponding API call is needed to remotely configure

the controller.

6.4. Remote Configuration Component (MidSN-RConfig)

The remote configuration component (MidSN-RConfig), depicted in Figure 6.4,

is the MidSN component which allows applications and users to configure any node

remotely, by submitting simple API commands. It allows configuration in any

heterogeneous sensor network without requiring any programming.

MidSN-RConfig is constructed as a set of modules that deals with configuration

commands, which are submitted via API calls, and translates them into commands. The

Chapter 6 Node and Configuration Middleware Components

 99

commands are then sent as messages to any destination node. Nodes reply with an

acknowledgment as soon as they apply the command.

Figure 6.4 – MidSN-RConfig modules

MidSN-RConfig is composed by four main modules and the Catalog: an API, a

configuration module, a network adapter and a plug&play module, plus a Catalog to

hold all information concerning nodes and configurations.

The API provides functions for external applications to submit configuration

commands and to subscribe to data (streams) coming from nodes. The API can be

developed using, for instance, Web Services, REST or HTTP to easily interface with

external client applications.

The Configuration Module is responsible for handling the configuration API

calls and for configuring the heterogeneous sensor network. It is composed by a set of

functions that deal with stream configurations, network status, node commands, stream

subscriptions and closed-loop control.

Stream configuration: allows creating, removing or changing streams in any

node or group of nodes in the network.

Sensor network status: collects configurations and node status information (e.g.

battery, packet losses, whether a node is alive, what is running in a node).

Node commands: allows sending commands to nodes.

Chapter 6 Node and Configuration Middleware Components

 100

Data streams subscription: allows client applications to subscribe to data

streams.

Closed-loop control: this functionality allows engineers to configure closed-loop

control in the heterogeneous sensor network with WSN sub-networks. It configures:

 Any node with MidSN-NC to collect data from sensors;

 Any node in the system to collect data from other nodes and to apply a

condition or controller, resulting in an actuation value;

 Any node in the system to receive actuation values and to actuate.

The Network Adapter (NA) is an interface between the MidSN-RConfig

component and the network communication infrastructure, which allows

communication with nodes (computers or embedded devices). This module implements

and abstracts network protocols needed to be able to communicate with all nodes in the

network.

The Plug&Play module (P&P) is a component that adds new nodes to the

network. To join, a new node will need to install MidSN-NC and set a valid address.

There are four alternatives for installation and address creation:

1) Manual MidSN-NC Installation: users can download the MidSN-NC release

for the specific platform and operating system, install it and run it.

2) Plug & Play MidSN-NC installation for embedded devices with serial

interface: the P&P module has a daemon that is listening on the serial ports

to detect when a new embedded node is connected to serial port. When that

occurs, the P&P asks the user about the hardware platform and software

drivers, and installs the appropriate version of MidSN-NC into the node.

3) Addressing for non-IP embedded devices: in this case, after concluding

installation of MidSN-NC into the node, P&P asks the user which gateway

heads the sub-network where the node will be placed. Nodes that do not

support IP protocol must be connected to a gateway.

Chapter 6 Node and Configuration Middleware Components

 101

4) Discovery-based address configuration: P&P also includes a daemon to

listen to new IP connections. When this occurs, the module updates the

Catalog to add the new IP.

Lastly, the Catalog stores addresses (global IP address and proprietary

communication protocol address), configurations and node status. This module was

described in detail in Section 5.3.

Figure 6.4 also shows the main flows between modules. An API call request is

received by the API module, which sends it to the Config. Module. That module creates

the corresponding command message, updates the Catalog with the new configuration

and sends the configuration message to the network adapter. The network adapter will

send the command to the target nodes. When a node receives a command, an

acknowledgement is generated and it is returned to the API submitter to indicate that a

command was received by the node. A second acknowledgement is generated and

returned to the user when a command is done.

6.5. Custom Code Agents

Custom code refers to loading new code for specific functionality, for instance, a

closed-loop controller applying a specific algorithm.

As reviewed in Chapter 2, there are many approaches in the literature that load

full binary images into sensor nodes. Our architecture also allows users to add any

customized code, but instead of replacing the whole node software image when a new

functionality is needed, MidSN provides agent-based upgrades. These upgrades consist

on a run-time loader and linker for new agents (functionalities). MidSN uses the

Executable and Linkable Format (ELF) [154] files to specify code objects used for

dynamic linking.

 ELF is a standard format for object files and executable that is used in most

modern Unix-like systems. An ELF object file includes both program code and data and

additional information such as a symbol table, the names of all external unresolved

symbols, and relocation tables. The relocation tables are used to locate the program

Chapter 6 Node and Configuration Middleware Components

 102

code and data at other places in memory than those for which the object code was

assembled originally. Additionally, ELF files can hold debugging information such as

the line numbers corresponding to specific machine code instructions, and file names of

the source files used when producing the ELF object.

MidSN explores the ELF objects to run agents that can be developed for specific

needs. Each of these agents is developed by users and can interact with the small

operating machine (NC-GinApp) included in MidSN-NC. Those interactions are done

through configuration and operation commands (API) which allow configuring data

operations and managing data in NC-GinApp.

For example, users can develop a specific closed-loop algorithm where the data

input may be provided by NC-GinApp (data streams coming from other nodes or sensor

streams with sensor readings). The output of this algorithm can issue an actuation

command through NC-GinApp. Figure 6.5 represent a diagram of this example.

Figure 6.5 shows the command and data flows. Flow (1) represents API calls to

configure MidSN-NC. In this example, that flow occurs to configure the data sent to the

agent and to actuate over an actuator. Flow (2) represents the data streams that are sent

by NC-GinApp to the agent.

Figure 6.5 – Interactions between an agent and MidSN-NC

The agent upload is similar to full image upload, but instead of rebooting a node

when the upload is completed, MidSN continues execution and users can issue specific

commands to load an agent from external flash to main memory and to start and stop its

execution. These commands are offered by the API of remote configuration component.

Chapter 6 Node and Configuration Middleware Components

 103

So, the full binary images approach has the following restrictions when

compared to our proposal:

 The whole application code must be developed from scratch, where there are no

predefined processing capabilities;

 All communication related with data and commands must be developed by hand;

Using the MidSN approach, the processing and communication capabilities are

already available for use (NC-GinApp). The user/programmer only needs to call

streams and command-level API interfaces to configure and use those capabilities. The

uploading cost will also be reduced because the code image size is smaller (the OS and

communication stack is already in the node).

Lastly, the MidSN custom code approach consists of a built-in agent-based

paradigm with stream and command related API usage capabilities. This allows, for

example, installing multiple agents in nodes and starting and stopping them selectively.

As described before, MidSN-NC includes functionalities to start, stop, load and unload

agents, as well as capabilities to store and drop agents from the node.

In Appendix D, we show the custom code for an agent that computes a closed-

loop algorithm using the data collector module (NC-GinApp-DC) and the NC-GinApp-

AA module.

Chapter 6 Node and Configuration Middleware Components

 104

 105

7.gggg

Chapter 7

Network and Operations Planning

Some applications (e.g. industrial monitoring and control applications) require

strict end-to-end operation timing guarantees. This chapter proposes an approach to plan

for time guarantees over the middleware-ran heterogeneous distributed system. It

discusses how to plan monitoring and closed-loop tasks with restricted time boundaries

in the distributed heterogeneous system, assuming that the system has WSN sub-

networks and that monitoring or control loop operations involve wireless sensor nodes.

When including wireless sensor networks in time critical applications, such as

process control, they will be integrated in larger heterogeneous sensor and actuation

networks composed by cabled networks, wireless sensor nodes, Programmable Logic

Controllers (PLCs), computers and control stations. In that context, it is necessary to

ensure that monitoring and control loop actuations happen within required time bounds.

Timing guarantees in WSN sub-networks are enforced using real-time

algorithms, protocols and operating systems. In what concerns network protocols, pre-

planned synchronous time-division algorithms are frequently used to enforce timing.

But at the same time, operations timing requirements must be met over the whole

heterogeneous system, regardless of what protocols and software is running in each

part. The approach proposed in this chapter plans the network to guarantee operation

timings. It schedules operations, predicts latencies and subdivides the wireless sensor

network until the predicted latencies meet operation latency requirements.

Chapter 7 Network and Operations Planning

 106

Section 7.1 presents a typical distributed control system organization and

Section 7.2 describes operations and requirements that can be defined over those

systems.

Section 7.3 discusses the base latency model used to plan and estimate operation

latency. Each part of latency is described, which allows us to understand which

latencies are involved and why they are involved. Some of those latencies are due to

resource constrained networks and other ones are due to wired and backbone networks.

In Section 7.4 we describe how to integrate closed-loop operations in the base model

and in Section 7.5 we describe how to characterize the latencies associated with non-

real-time components.

Section 7.6 discusses the prediction model for maximum latency used to plan

and estimate operation latency and Section 7.7 discusses the algorithm to plan networks

with timing requirements. The approach is based in slot-based planning for the

schedule-based parts of the system, plus operation time statistics for non-real-time parts.

The approach dimensions the network to meet timing requirements. It allows predicting

monitoring latency, latency of commands and latency of closed-loop operations. It also

proposes an approach to reduce the latency of commands.

Timing issues determine the network size and layout. This layout determines a

certain amount of energy consumption. Section 7.8 discusses energy consumption and

lifetime prediction.

At the end of the chapter (Section 7.9) we discuss some considerations of slot

size. In the planning algorithm we assume that the slot size is already defined by the

communication protocol, but if a user wants to define a new size, we describe which

timings should be considered to determine the correct size.

7.1. Organization of Distributed Control Systems with
Wireless Sensors

A heterogeneous distributed control system is typically made of various sub-

systems. Figure 7.1 shows an example with heterogeneous devices.

Chapter 7 Network and Operations Planning

 107

Figure 7.1 – Distributed control systems with heterogeneous devices together

It includes resource-constrained sensor nodes and more powerful nodes such as

PLCs or computer nodes. We are assuming a distributed control system that includes

wireless sensor nodes organized into wireless sensor sub-networks.

A TDMA protocol can be applied within each wireless sensor network to deliver

a high degree of time predictability, while the rest of the distributed control system can

be based on IP, FieldBus, ProfiBus, deviceNet over Controller Area Network (CAN) or

other sub-networks.

TDMA protocols create a schedule or time frame for all the network activity:

each node is assigned at least one slot in a time frame. The time frame is considered to

be the number of slots required to get a packet from each source to the sink node. It is

also called the epoch size (E). The schedule defined by the protocol allows latency to be

predicted with some degree of accuracy.

Typically, nodes will send one message in their slot per epoch, which requires

them to wait until the next epoch to send another message. If a very large WSN network

was considered, the time to visit all nodes would be high and operation latency would

be too high. To avoid this problem, network sizing is necessary, resulting in multiple

smaller network partitions.

Chapter 7 Network and Operations Planning

 108

The TDMA protocol deployed in the wireless sensor sub-networks offers some

degree of timing guarantees, while the timing characteristics of the remaining parts of

the system must be characterized by statistical analysis based on long term observations.

Figure 7.2 shows an example of a TDMA epoch. In this example, the epoch has

1 second of length. It includes upstream slots, downstream slots, time synchronization

and processing slots.

Figure 7.2 – TDMA - epoch definition

7.2. Operations and Requirements

High level operations, such as configuration, actuation, monitoring and closed-

loop control, can be defined over those heterogeneous distributed control systems:

 Configuration – sending commands to a node to configure it;

 Actuation – sending commands to a node to actuate over a DAC

connected to some physical process;

 Monitoring – sense and send data measures to a control station, where

they will be processed/delivered to users. The monitoring operation can

be periodic or event-based. If the operation executes with a specific

period, it is periodic, but if the operation executes only when an external

event occurs, it is event-based. Periodic monitoring is based on a

configured sampling rate;

 The closed-loop control operation corresponds to sensing and sending

data measures to supervision control logic, processing them, determining

an actuation command to send to an actuator, sending the actuation

command and actuating. Similar to monitoring, supervision control logic

can react based on events (asynchronous control) or with a pre-defined

periodicity (synchronous control). These are defined as:

Chapter 7 Network and Operations Planning

 109

o Asynchronous or event-triggered – Asynchronous control can

be defined as: “upon reception of a data message, the supervision

control logic computes a command and sends it to an actuator”.

The control computations are based on events. For instance, we

can configure a node to send data messages only if a certain

threshold condition was met.

o Synchronous or time-triggered – Synchronous control can be

defined as a periodic control, where the periodicity of

computations is defined by users. The supervision control logic

runs in specific instants (period). Typically, this type of controller

involves multiple samples for the computation of the actuation

commands, and multiple nodes may participate in sensing or

actuation.

Each of those operations can be associated with timing requirements. For

instance, users can specify the maximum latency for monitoring messages to be

delivered to a control station. Since the message must travel through several parts of the

distributed system, the latency should be predicted to conclude if the desired maximum

monitoring latency bound is achieved or not. In general, each operation can be

associated with timing requirements, and the system must be able to meet those

requirements.

7.3. Base Latency Model

Some latency parts can be identified in a heterogeneous distributed control

system with WSN sub-networks, where WSN sub-networks have a TDMA protocol.

Since nodes are configurable and the distributed control system may include

actuators, the latency model can be decomposed in two parts: monitoring latency model

(upstream) and commanding latency model (downstream).

Section 7.3.1 discusses monitoring latency. This latency corresponds to the

latency that is measured from the sensing node to the control station. Section 7.3.2

discusses the command latency model. This latency model is used to access the latency

Chapter 7 Network and Operations Planning

 110

of sending a configuration command or the latency associated with an actuation

command resulting from a closed-loop operation.

7.3.1. Monitoring latency model

The monitoring latency can be divided into several parts (Figure 7.3):

 the time elapsed between when an event happens and its detection by the

node (
Eventt);

 the latency to acquire a sensor/event value (Aqt);

 the time needed to reach the transmission slot (this time can be neglected

if we synchronize acquisition with the upstream slot for the sensor node)

(SlotTXWaitt);

 WSN latency (
UPWSNt);

 sink and gateway latencies, which is the time needed to write messages

coming from the WSN to the gateway (Serialt and Gatewayt);

 the local area network latency, which represents the latency needed to

forward messages coming from the gateway to PLCs, computers or

control stations (LANt);

 the latency associated with processing in the control station (gocest sinPr).

Figure 7.3 – Model for monitoring latency

Consider a reading going from a WSN node all the way to a control station.

There is a latency associated with sensor sample (Aqt), a latency associated with the

elapsed time between sensor sample a data transmission instant (SlotTXWaitt) and a latency

associated with the WSN path (
UPWSNt), which corresponds to the time taken to transmit

Chapter 7 Network and Operations Planning

 111

a message from a source node to the sink node. Assuming the epoch defined in Figure

7.2, this time can be deduced from looking at the epoch.

If the instant when an external event manifests itself is considered, there is also a

latency associated with the time elapsed between when the event first happened and its

detection by the sensor node. As the event may occur in any instant (it is not

synchronized with the sensor sampling and transmission slot),
Eventt represents the

amount of time between when an event manifests itself and when it is detected by the

sampling mechanism. For instance, we are sampling temperature every second, and the

event is a temperature above 90ºC. As shown in Figure 7.4, if the event manifests itself

for instant e onwards, and the next sampling instant is in instant a, then the wait time is

Eventt .

Figure 7.4 – Event detection

Assuming a schedule-based protocol for a WSN sub-network,
Eventt can assume

a value between zero and one epoch minus acquisition latency (Aqt). As shown in

Figure 7.5a), if the event manifests itself immediately after the sampling instant, that

event needs to wait one epoch minus acquisition latency to be detected. On the other

hand (Figure 7.5b)), if the event manifests itself immediately before the sampling

instant,
Eventt is minimum and can be neglected.

a) Maximum time b) Minimum time

Figure 7.5 – Time diagram (from event to detection by the sampling mechanism)

Chapter 7 Network and Operations Planning

 112

Similar to
Eventt , SlotTXWaitt varies from 0 and one epoch. It is minimum when

sensor acquisition occurs immediately before transmission (acquisition and sending are

synchronized), and maximum when sensor acquisition occurs after transmission slot

(acquisition and sending are not synchronized).

In the gateway, there are two time intervals that can be considered (Serialt and

Gatewayt). The first one (Serialt) corresponds to the time needed by the sink node to write a

message and gather it at the gateway side (e.g. if a serial interface is used, Serialt is the

time needed to write a message to the serial port, plus the time needed to read it by the

gateway). The second component (Gatewayt) corresponds to the time needed for the

gateway to get the message, do any processing that may have been specified over each

message (e.g. translating the timestamps), and send it to a control station.

The third part (LANt) corresponds to LAN transmission time, communication and

message handling software. Typically, this time is small because fast networks are used

(FieldBus, Ethernet GigaBit) and have a significant bandwidth available. To simplify

our model, we use Middlewaret to refer to Gatewayt + LANt .

Lastly, there is the time needed to perform the data analysis at control stations or

other computer nodes (gocest sinPr).

The total amount of monitoring latency can be determined as following:

gocesMiddlewareSerialWSNLatency ttttMonitoring
AqE sinPr (1)

Where
AqEWSNt represents the amount of latency introduced by the WSN sub-

network. It is given by:

UPAqE WSNSlotTXWaitAqEventWSN ttttt  (2)

Chapter 7 Network and Operations Planning

 113

7.3.2. Command latency model

In the down path, used by configuration or actuation commands, there are also

latency parts that can be identified. Figure 7.6 shows those parts.

Consider a command sent from a control station to a node. Similar to upstream

data transmission, there is LAN transmission latency (LANt). In the gateway, there are

three time intervals that can be considered (Gatewayt , Serialt and slotTXSinkforWaitt). Gatewayt

and

Serialt are similar to upstream data latency. Gatewayt corresponds to the time needed for the

gateway to receive the command, do any processing, and send it to the serial port. Serialt

corresponds to the time needed by the sink node to read the command from the serial

interface.

Figure 7.6 – Model for command latency

Upon receiving the command by the sink node, it needs to wait slotTXSinkforWaitt to

reach the transmission slot to send the command to the target node. This latency part

represents the amount of time that a command is kept in the sink node until it gets a

downstream slot. Due to WSN time synchronization, this time can be reduced by

choosing the correct position of the downstream slot.

Lastly, there are latencies associated with the WSN path (
DownWSNt) and node

processing command (gocesCMDt sinPr).
DownWSNt corresponds to the time taken to transmit a

command from the sink node to the target node, while gocesCMDt sinPr corresponds to the

time taken to process the command inside the target node.

The total amount of command latency can be defined as following:

Chapter 7 Network and Operations Planning

 114

gocesCMDWSNSerialMiddlewareLatency ttttCommand
CMD sinPr (3)

Where
CMDWSNt represents the amount of latency introduced by the sink node to

send the command (slotTXSinkforWaitt) plus the time needed to transmit the command to the

target node (
DownWSNt).

DownCMD WSNslotforSinkTXWaitWSN ttt  (4)

7.4. Adding Closed-loops to Latency Model

Most performance-critical applications can be found in the domain of industrial

monitoring and control. In these scenarios, control loops are important and can involve

any node and any part of the distributed system.

Given computational, energy and performance considerations, closed-loop paths

may be entirely within a single WSN sub-network or require intervention of control

station (e.g. for applying more computational complex supervision controller), or it may

span more than one WSN sub-networks, with supervision control logic residing in one

of the distributed PLC outside the WSNs (middleware servers).

The closed-loop latency is the time taken from the sensing node to the actuator

node, passing through supervision control logic. It will be the time taken since the

sample is gathered in the sensing node to the instant when the action is performed in the

actuator node.

The position of supervision control logic may depend on timing restrictions and

data needed to compute decisions. For instance, if minimal latency is required and a

single sub-network is considered, the supervision control logic must be deployed in the

sink node. But the limited resources of the sink node (e.g. memory, computation

capabilities) mean that supervision control algorithms that require heavy computational

and/or memory capabilities need to be implemented in more powerful control stations.

Figure 7.7 shows a scenario example of closed-loop system where the

supervision control logic is implemented in the sink node.

Chapter 7 Network and Operations Planning

 115

At the sink node, when a data message from sensing nodes participating in the

decision arrives (asynchronous control), or at defined time periods (synchronous

control), the condition and thresholds are analysed, and the actuator is triggered if one

of the defined conditions is matched.

Figure 7.7 – Control decision at sink node

The closed-loop latency for asynchronous control can be estimated by:

gocesCMDWSNgocesWSNLatency ttttCL
CMDAqEAsync sinPrsinPr  (5)

Where
 AqEWSNt is determined according eq. 2, while

CMDWSNt is determined

according eq. 4. The gocesCMDt sinPr
represents the time needed to process a command in

the node, and gocest sinPr represents the amount of time needed by the sink to decide an

actuation command. This value should be obtained experimental and it is indicated by

the user.

Figure 7.8 shows a diagram of
AsyncLatencyCL

for asynchronous control.

Chapter 7 Network and Operations Planning

 116

Figure 7.8 – Closed-loop latency (sink node)

Concerning synchronous control, the closed-loop latency for sink decisions can

be estimated by:

gocesCMDWSNgocesSyncLatency tttCL
CMD sinPrsinPr  (6)

In this case we assume that data values are available at the supervision control

logic when it runs. So, the
SyncLatencyCL doesn’t include the upstream data latency. Only

gocest sinPr ,
 CMDWSNt

and

 gocesCMDt sinPr
are considered to compute the

SyncLatencyCL latency.

If we want to evaluate the time taken from when an event happens (e.g.

temperature above 90ºC) and when an actuation value incorporates that value, the

latency
endtoEndLatencyCL


 is given by eq. 5.

The other alternative for closed-loop control with more powerful resources is to

deploy the supervision control logic in one of the distributed PLC, or computers outside

the WSN. This alternative is also shown in Figure 7.9. In this case it is possible to read

data from one or more WSNs, to compute a decision based in more complex algorithms,

and to actuate over the distributed system. The closed-loop algorithm will receive data

coming from sensors and will produce actuation commands for the actuator(s).

Chapter 7 Network and Operations Planning

 117

Figure 7.9 – Closed-loop over whole distributed system

In this case the control loop may traverse multiple, most probably non-real-time

hardware and software systems, nevertheless the control loop will still need to be under

expected time bounds.

One important issue in these closed-loop strategies is the position of the

downstream slots. The position of downstream slots must be carefully planned to satisfy

the closed-loop timings. For instance, to reduce the closed-loop actuation time, the

downstream slots must be scheduled after the upstream slots of the sensing nodes.

The closed-loop latency for asynchronous control supervised through a control

station can be estimated as following:

gocesCMD

WSNSerialMiddleware

goces

MiddlewareSerialWSNLatency

t

ttt

t

tttCL

CMD

AqEAsync

sinPr

sinPr









 (7)

The synchronous case latency is similarly obtained by extending eq. 6.

Chapter 7 Network and Operations Planning

 118

7.5. Adding Non Real-Time Components

We assume non-real-time cabled components, such as gateways, PLCs and

computers running operating systems such as Windows, Unix or Linux, and

communicating using TCP/IP. Those components are responsible for part of the end-to-

end latencies. Those latencies must be characterized by system testing. This is done by

running the system with exhaustive measurements under different loads/conditions,

while collecting and computing latency statistics.

Next we show two setups (Figure 7.10 and Figure 7.11 corresponding to a small

and a larger network respectively) that can be used to characterize latencies in those

parts. The first example consists of a small network (Figure 7.10). It includes thirteen

TelosB mote and two computers connected through a wired Ethernet. A TelosB is

attached to a computer (Gateway) via serial interface. It receives data messages from

other nodes and writes them in the serial interface. Each node generates a data message

per second. The gateway computer has a dispatcher which forwards each message to the

processing computer. Finally, the processing computer computes two different

alternative operations to characterize the processing time: a simple threshold and a more

complex algorithm to compute the PID gains and the actuation commands.

Figure 7.10 – Small network testing setup

Table 7.1 shows the latency characterization for this setup. All times are given in

milliseconds.

The most important measure in Table 7.1 is the maximum value. This value

allows bounding the latency. In this example, latency would be bounded by

Chapter 7 Network and Operations Planning

 119

(7.79+3.14+0.86) milliseconds in the case of threshold analysis operation and

(7.79+3.14+86.22) milliseconds for the PID controller.

Table 7.1 – Non-real-time parts characterization [ms]

 gocest sinPr

Serialt Middlewaret
Threshold

analysis

PID

computation

Average 2.64 1.12 0.61 73.61

Standard Deviation 0.40 0.29 0.14 5.14

Maximum 7.79 3.14 0.86 86.22

Minimum 1.85 0.67 0.36 53.62

The second example (Figure 7.11) consists of a distributed control system with

3000 sensors. The setup includes 3000 sensors, 6 gateway computers and a control

station. All computers are connected through a wired network. Each WSN sub-network

is composed by 50 nodes and each gateway computer has 10 gateway processes

running. Each node generates a data message per second.

Figure 7.11 – Larger distributed control system - testing setup

Each gateway process also includes a dispatcher which forwards each message

to the control station. Similar to GINSENG testbed, each message sent by the gateway

is an xml message with the format shown in Appendix F.

Finally, the control station computes four different operations to characterize the

processing time:

 Option 1: A simple threshold analysis is used to determine if the value is

above a threshold. If it is above, a user interface is updated with the value

Chapter 7 Network and Operations Planning

 120

and alarm information. The values were generated randomly, so that 50%

were above the threshold. At the same time, the control station collects

processing time and characterizes it.

 Option 2: An average of last 50 samples per nodes is computed to

compare the result with the threshold value. Similar to the previous case,

if value was greater than the threshold, an alarm is generated.

 Option 3: Insert into a database. Each message that arrives at the control

station is stored in a database without further processing.

 Option 4: Insert into a database and request the database to compute the

average of last received messages per node. Each message that arrives at

the control station is stored in a database. After that, the control station

submits an SQL query (Figure 7.12) to the database to compute the

average temperature of messages received in the last 60 seconds.

SELECT avg(temp), TS

FROM sensorData

WHERE TS

BETWEEN (now-60000) AND now

Figure 7.12 – SQL query

Table 7.2 shows the non-real-time parts characterization for this setup. All times

are given in milliseconds.

Table 7.2 – Non-real-time parts characterization – second setup [ms]

 gocest sinPr

Middlewaret Option 1 Option 2 Option 3 Option 4

Average 3.50 2.56 3.43 7.67 12.39

Standard Deviation 0.87 0.51 0.48 1.52 1.21

Maximum 5.25 5.33 5.75 8.31 18.06

Minimum 1.75 0.23 0.27 7.04 10.80

In this example, and assuming the same serial latency as in Table 7.1, latency of

message stored in the database would be bounded by (7.79+5.25+8.31) milliseconds.

Chapter 7 Network and Operations Planning

 121

7.6. Prediction Model for Maximum Latency

Equations 1 and 3 predict monitoring and commanding latencies. However,

maximum values for each latency should be used because we are considering strict end-

to-end operation timing guarantees. In this section we discuss how to predict maximum

operation latencies and how to obtain the maximum value for each part of the latency.

The maximum monitoring latency can be determined as following:

         gocesMiddlewareSerialWSNLatency ttttMonitoring
AqE sinPrmaxmaxmaxmaxmax  (8)

As described in the previous section, the non-real-time parts (Serialt , Middlewaret and

gocest sinPr) must be characterized experimentally. The maximum values of these latency

parts result from the computation of statistics for the time measures collected during

experimental period.

The maximum value of
AqEWSNt can be predicted by analysing the maximum

values of it parts (eq. 9).

         
UPAqE WSNSlotTXWaitAqEventWSN ttttt maxmaxmaxmaxmax  (9)

The values of
Eventt and SlotTXWaitt were described in the sub-section 7.3.1. They

can vary from 0 to one epoch size, where the maximum value for each is an epoch size.

So,
AqEWSNt can assume one of the following four alternatives:

      
UPAqE WSNAqWSN ttt maxmaxmax  - when the acquisition instant is

synchronized with the sending instant and we do not consider the event

start instant.

        
UPAqE WSNSlotTXWaitAqWSN tttt maxmaxmaxmax  - when the

acquisition instant is not synchronized with the sending instant and we do

not consider the event start instant.

Chapter 7 Network and Operations Planning

 122

        
UPAqE WSNAqEventWSN tttt maxmaxmaxmax  - when the acquisition

instant is synchronized with the sending instant and we are considering

the event start instant.

          
UPAqE WSNSlotTXWaitAqEventWSN ttttt maxmaxmaxmaxmax  - when

the acquisition instant is not synchronized with the sending instant and

we are considering the event start instant.

Similar to non-real-time parts, Aqt must be characterized by experimental

evaluation. It depends on the node platform and which sensor is sampled. The

maximum value results from the collection of time measures during the experiment.

Lastly,  
UPWSNtmax depends on the node position in the WSN topology. This

value is always constant ( 
UPUP WSNWSN tt max), since we are assuming a static WSN

topology.

The prediction of command latency should also be based on maximum values of

each part (eq. 10).

   

   
 gocesCMD

WSNSerial

MiddlewareLatency

t

tt

tCommand

CMD

sinPrmax

maxmax

maxmax







 (10)

Middlewaret , Serialt and gocesCMDt sinPr are obtained experimentally, while  
CMDWSNtmax

is determined by eq. 11.

     
DownCMD WSNslotforSinkTXWaitWSN ttt maxmaxmax  (11)

Where  slotTXSinkforWaittmax can be an epoch size. For instance, we are sending an

actuation command to a WSN node. As shown in Figure 7.13, if the command arrives

immediately after the sending instant, and the next sending instant is in instant s, then

the wait time is
 slotTXSinkforWaitt . If only one downstream slot was provided per epoch,

  sizeepocht slotTXSinkforWait max .

Chapter 7 Network and Operations Planning

 123

Figure 7.13 – Instant of command sending by the sink node

7.7. Algorithm for Planning Time Guarantees

The planning algorithm that we propose next allows users to dimension the

network and conclude whether desired latency bounds are met. Figure 7.19 shows a

diagram of the planning approach proposed in this and the next sections.

7.7.1. User inputs

The proposed approach allows users to dimension the network based on two

alternatives. One alterative assumes the user provides a complete TDMA schedule and

operation timing requirements. The algorithm checks if latencies are met and modifies

the schedule (may even determine the need to divide the network) to meet the latency

bounds.

The other alternative allows the user to specify only the minimum possible

amount of requirements, and the algorithm creates the whole schedule taking into

consideration all constraints.

 Network layout – the first network layout is completely defined by the

user. It takes into account the physical position of the nodes, their

relation (which nodes are leaf nodes and their parents) and a schedule to

define how data and commands flow in the network.

Appendix H shows a text-based example of how this could be specified

(this example was taken from the GINSENG testbed case).

 Network configuration and data forwarding rule – the network

configuration is indicated by the user and takes into account the physical

position of the nodes (which nodes are leaf nodes and their parents) and

data forwarding rule indicates how the schedule must be defined to

forward data messages from sensing nodes to the sink node. The node

Chapter 7 Network and Operations Planning

 124

slot positioning is directly dependable of the network configuration, but

should be optimized to reduce latencies or the number of radio wake ups.

The data forwarding rule can assume one of the following options:

o Each node sends data to its parent. Each parent receives data from

a children and forwards immediately to its parents.

Figure 7.14 – Data forwarding rule – option 1

o Each node sends data to its parent. Each parent collects data from

all children and only forwards up after receiving from all

children.

Figure 7.15 – Data forwarding rule – option 2

o Each node sends data to its parent. Each parent collects data from

all children, aggregates data messages from all children, and only

forwards a merged message to its parents.

Chapter 7 Network and Operations Planning

 125

Figure 7.16 – Data forwarding rule – option 3

Appendix G shows one text-based example of how this alternative could

be specified.

The algorithm assumes that users provide the information needed to use one of

the above alternatives. It is also necessary for users to indicate some other parameters:


SyncClockt - this is the clock synchronization interval, i.e. the time between

clock synchronizations, which are necessary to keep the WSN node

clocks synchronized, avoiding clock drifts between them.

  gocesCMDt sinPrmax - this is a small time needed to parse and process a

command in any WSN node. The user must specify a maximum bound

for this time.

   
gocesiCLt

sinPr
max - for each closed-loop operation, the user should specify

the maximum required time taken to process, which corresponds to the

computation time needed at the decision maker node to take a decision,

for commanding the required actuation.

The values of

 Serialtmax ,  Middlewaretmax ,   
gocesiCLt

sinPr
max and

 gocesCMDt sinPrmax , defined in Section 7.3, should be given by the user. They are

previously obtained by distributed control system testing. A desired sampling rate

should also be indicated.

Lastly, the algorithm needs to be configured concerning downstream slots

positioning rule. The proposed algorithm supports two alternatives to position those:

Chapter 7 Network and Operations Planning

 126

 Equally spaced in the epoch – the downstream slots are positioned

equally spaced in the epoch. Assuming that, due to latency requirements,

two downstream slots are added by the algorithm, Figure 7.17 shows

how these slots are positioned according to this alternative.

Figure 7.17 – Downstream slots equally spaced in the epoch

 After a specific slot in the epoch – it allows to optimize the processing

and command latency, by positioning these slots after a specific slot. For

instance, assuming a closed-loop asynchronous operation in the sink

node, where the actuation command is decided based on sensed data

coming from a sensor node, the processing and downstream slots should

be positioned after the upstream slots that complete the path from the

sensor node to the sink node. This allows the sink node to process and

command an actuator immediately after receiving sensed data without

having to wait more time for a downstream slot. This reduces the

command latency and, consequently, the closed-loop latency. Figure 7.18

shows an illustration of this alternative.

Figure 7.18 – Downstream slots positioned to optimize asynchronous closed-loop latency

7.7.2. Overview of the algorithm

If the user choose to provide a network configuration plus forwarding rule as an

input (see example in Appendix G), the algorithm starts by defining the upstream part of

the TDMA schedule for all nodes, according to the forwarding rules (steps 1, 2 & 3).

Chapter 7 Network and Operations Planning

 127

This results in a first TDMA schedule sketch, which has all upstream slots, but still

needs to be completed.

Instead of this alternative, the user may have provided the network layout as an

input (see example in Appendix H). In that case, the network layout given is already a

TDMA schedule and the algorithm checks and analysis it to guarantee latencies.

After the first TDMA schedule and the current epoch size are determined, the

algorithm analyses latency requirements and determines how many downstream slots

are needed (step 5 & 6). The necessary number of slots is added to the TDMA schedule

according to the processing and downstream slots positioning requirements (step 7 & 3).

The current epoch size is determined again. Next, based on
SyncClockt , the algorithm

determines how many slots are needed for time synchronization and adds them to the

schedule (step 8 & 9). The new epoch size is determined, and if the user specified

equally spaced downstream slots, the number of downstream slots is verified to check if

they are enough for the current epoch size. If they are not enough, more downstream

slots are added and a new schedule is recomputed.

Based on latency requirements, the algorithm verifies if those are met (step 10

and 11). If latency requirements are not met, it means that it is not possible to meet the

timing requirements with the current size of the network, therefore the network is

partitioned (step 12) and the algorithm re-starts with each partition. After a network or

network partition meets the requirements, the maximum epoch size is determined (step

13) to verify if an inactivity period can be added to the schedule. This inactivity period

can be added to maximize the node lifetime (step 15).

After adding the inactivity period, it is necessary to rerun the algorithm from

step 3 onwards to verify latencies again.

After re-running all the steps and if all of them are ok, the desirable lifetime is

attainable. If the lifetime is not achieved, the network must be divided again (step 12),

and the algorithm re-runs for each resulting network.

Chapter 7 Network and Operations Planning

 128

To conclude the algorithm, a communication channel must be defined for each

sub-network, and a sampling rate is assigned (step 16).

Figure 7.19 – Planning algorithm

Chapter 7 Network and Operations Planning

 129

The user indicated desired sampling rate is checked against the schedule to

verify if it needs to be increased (e.g. the user specified 1 sample per second, but it is

necessary to have 2 samples per second in order to meet latencies). The algorithm

determines a schedule based on latency and other requirements. In order to meet

latencies with that schedule, there must be at least one acquisition per epoch, therefore

this setup is guaranteeing that there is at least on sample per epoch.

7.7.3. Determine the first network layout (step 1, 2 & 3)

Given a network configuration and data forwarding rule, the first schedule is

created. This first schedule only includes slots for sending data from sensing nodes to

the sink node. Figure 7.20 shows the pseudo-code of the algorithm used to create the

schedule based on network configuration and data forwarding rule.

if data forwarding rule == option 1 then

 for each node in the network configuration without slot for its data

transmission

 allocate a slot to it;

 look up for the path to the sink node;

 for each parent in the path to the sink node:

 allocate a slot to it;

else if data forwarding rule == option 2 or option 3 then

 C = set of child nodes for node i;

 slotAssignment(C(sink));

end if

slotAssignment (C){

 for each node i in C

 if there are child nodes connected to it then

 slotAssignment (C (i));

 else

 allocate slot to node i

 if data forwarding rule == option 2 then

 allocate a slot for each child connected to node i

}

Figure 7.20 – Slot assignment algorithm – pseudo-code

The algorithm starts by identify which data forwarding rule is used. If option 1,

described in Section 7.7.1, is used, the algorithm will select node by node from the

network configuration, determine the path to the sink and allocate forwarding slots for

the node and for each node between its position and the sink node.

If option 2 or 3 is used, the algorithm runs in a recursive way to allocate slots

from the leaf nodes to the sink node. If option 2 is used, the algorithm allocates a slot

Chapter 7 Network and Operations Planning

 130

per node plus one slot for each child node connected to it. In case of option 3, slots to

forward data from the child nodes are not added. In this case we assume that all data

coming from child nodes can be merged with node data in a single message.

The slot assignment algorithm can also use one or more than one slot if re-

transmission is desired to increase reliability.

7.7.4. Determine current epoch size (step 4)

The current epoch size is the number of slots in the current schedule. This

schedule could be indicated by the user as an input or can result from applying the

algorithm.

This step is recomputed several times during the algorithm flows because the

current schedule is changing along the flow. For instance, if the user introduces a

network configuration and data forwarding rule, the algorithm creates whole schedule.

In steps 1, 2 and 3, the algorithm creates a first schedule and determines the current

epoch size. Based on this current epoch size, the algorithm determines how downstream

slots are needed according to latency requirements and user inputs. After that, these

downstream slots are added to the schedule, resulting in a different epoch size. So, the

step 4 is called again to determine the current epoch size.

7.7.5. Determine maximum WSN latencies (step 5)

Once the schedule is defined (and consequently the epoch size), the algorithm

will predict the WSN part of latency.

Assuming a maximum latency for monitoring messages (LatencyMaxMon) and

based on eq. 8, we determine the maximum admissible latency for the WSN sub-

network (eq. 12).

        gocesMiddlewareSerialLatencyMaxWSN tttMont
AqE sinPrmaxmaxmaxmax  (12)

Instead of a single maximum monitoring latency LatencyMaxMon , the algorithm

allows the user to specify pairs [)(inode ,)(iMon LatencyMax]. In this case eq. 8 must be

Chapter 7 Network and Operations Planning

 131

applied for each node, resulting in a maximum admissible latency per WSN node (eq.

13).

           gocesMiddlewareSerialLatencyMaxWSN tttiMonit
AqE sinPrmaxmaxmaxmax  (13)

Similar to the monitoring latency, users can define maximum latencies to deliver

a command to a WSN node. Assuming that LatencyMaxCMD is specified as maximum

command latency, based on eq. 10,  
CMDWSNtmax can be determined as:

        gocesCMDSerialMiddlewareLatencyMaxWSN tttCMDt
CMD sinPrmaxmaxmaxmax  (14)

If pairs of [)(inode ,)(iCMD LatencyMax] are given, the algorithm applies eq. 14 per

each pair, resulting in a set of maximum command latencies. Based on that set of

latencies, the algorithm chooses the strictest latency, and dimensions the network to

meet that latency (steps 6 and 7).

7.7.6. Determine the number of downstream slots (step 6 & 7)

In equation 14 we determine  
CMDWSNtmax . Through the discussion given in

Section 7.6 and eq. 11 we can see that it is directly dependent of the number of the

downstream slots per epoch.

Each epoch must accommodate slots for transmitting configuration and actuation

commands. The minimum number of downstream slots (DNS) that must exist can be

calculated as follows:

sHSDN  (15)

Where H represents the number of levels and s represents the number of slots

per level (one by default, plus one or more for enhanced reliability, to accommodate

retransmissions). This is the case where the whole epoch has one downstream slot

available for the sink node to forward a message downwards.

The worst case latency for this case is larger than an epoch size, as shown and

discussed in eq. 10 and eq. 11. Since epoch sizes may be reasonable large (e.g. 1

Chapter 7 Network and Operations Planning

 132

second), this may result in an undesirable command latency, in particular it may not

meet latency requirements.

The number of downstream slots can be increased to meet user command

latency requirements. Figure 7.21 shows an example of a worst case wait time for a

command arriving at the sink and waiting for its downstream slot.

Figure 7.21 – Worst case: schedule with one downstream slot

As show in Figure 7.21, if one downstream slot is provided per epoch, the

command must wait, in the worst case, a full epoch to be transmitted. Additionally, in

average a command will have to wait half the epoch size.

In order to shorten the  LatencyCommandmax , there are two major alternatives:

reducing the epoch length (we assume this is unwanted, since it was already determined

to reflect a network with a certain number of nodes, energy and latency requirements);

adding extra downstream slots.

Next we discuss the addition of more downstream slots to reduce slotTXforWaitt of

eq. 11. Those can be placed equally-spaced in the epoch to minimize the maximum

expected slotTXforWaitt , given that number of downstream slots. As an example, Figure

7.22 shows an epoch with two downstream slots. In this case, when a command arrives

at the sink, it must wait a maximum time of
2

Epoch

.

Figure 7.22 – Schedule with two downstream slots

Chapter 7 Network and Operations Planning

 133

In the next example (Figure 7.23), the epoch includes four downstream slots

which allows the maximum wait time to be reduced to
4

Epoch
.

Figure 7.23 – Schedule with four downstream slots

More generically, adding n downstream slots results in  slotTXforWaittmax of

n

Epoch
.

In order to guarantee a LatencyMaxCMD the number of downstream slots should be

dimensioned. Replacing  slotTXforWaittmax in eq. 11 we obtain:

   
DownCMD WSNWSN t

n

Epoch
t maxmax  (16)

Where we can extract the number of slots (n) (eq. 17).

   














DownCMD WSNWSN tt

Epoch
n

maxmax
 (17)

Replacing  
CMDWSNtmax from eq. 11 in eq. 17, we obtain the number of

downstream slots in function of LatencyMaxCMD (eq. 18).

      
 









































DownWSN

gocesCMDSerialMiddleware

LatencyMax
t

ttt

CMD

Epoch
n

max
maxmaxmax sinPr

 (18)

Chapter 7 Network and Operations Planning

 134

It is also necessary to dimension the downstream slots to meet closed-loop

operation latency requirements. If a synchronous closed-loop operation is defined,

LatencyMaxCL corresponds to LatencyMaxCMD latency, because, in this case we consider only

the latency from the closed-loop supervisor to the actuator. Therefore, the number of

downstream slots is determined by eq. 18.

If an asynchronous closed-loop operation is considered, LatencyMaxCL includes

monitoring and command parts (eq. 19).

         
       gocesCMDWSNSerialMiddleware

gocesMiddlewareSerialWSNLatency

tttt

ttttCL

CMD

AqEAsync

sinPr

sinPr

maxmaxmaxmax

maxmaxmaxmaxmax




 (19)

Replacing eq. 15 in eq. 18 and applying mathematic operations, we obtain the

number of downstream slots to meet asynchronous closed-loop latencies (eq. 20).

 
       
     

  












































































Down

AqE

Async

WSN

gocesCMDSerialMiddleware

gocesMiddlewareSerialWSN

Latency

t

ttt

tttt

CL

Epoch
n

max

maxmaxmax

maxmaxmaxmax

max

sinPr

sinPr

(20)

If we assume that the serial and middleware latencies for upstream and

downstream are equal, eq. 20 may be simplified and results in eq. 21.

Chapter 7 Network and Operations Planning

 135

 

 
 

 

 
 

 







































































































Down

AqE

Async WSN

gocesCMD

goces

Middleware

Serial

WSN

Latency t

t

t

t

t

t

CL

Epoch
n

max

max

max

max2

max2

max

max

sinPr

sinPr

(21)

After determining the number of downstream slots needed to meet command

latency or closed-loop latency requirements, the algorithm adds them to the schedule

and re-computes the current epoch size (step 4).

7.7.7. Number of clock synchronization slots (step 8 & 9)

In this model, we are assuming a TDMA protocol, which requires slots for clock

synchronization (
SyncSlotsN).

SyncSlotsN is determined based on the Epoch and the

parameter clock interval (
SyncClockt), which is indicated by the user. It is determined as

follows:
















Sync

Sync

Clock

Slots
t

Epoch
N (22)

After determining
SyncSlotsN the algorithm adds them to the schedule and re-

computes the current epoch size (step 4).

Chapter 7 Network and Operations Planning

 136

7.7.8. Verify if latency requirements are met with the current
epoch, network layout and schedule (step 10 & 11)

Based on equations 2 and 4, the algorithm determines the latency required to

transmit a data message from a WSN leaf node to the sink node (
AqEWSNt) and the latency

to send a command from the sink node to the WSN leaf node (
CMDWSNt).

After determining these two latencies, the algorithm compares the values with

the latency determined through eq. 16 and 17, which results from the user requirements,

and concludes if all latencies are met.

If any of the latencies are not met, the algorithm needs to partition the network

to find a schedule and an epoch size for each new sub-network that meets the

requirements (step 12).

7.7.9. Network partitioning (step 12)

When the algorithm detects that a network must be divided to meet user

requirements, step 12 is called.

Assuming that a user gives a network configuration and a parent forwarding

rule, the algorithm divides the initial network configuration in 2 parts. This division is

done automatically, if the initial network configuration has the same configuration for

all branches. Otherwise, the user is requested to split the network and restart the

algorithm with the new configuration.

On the other hand, if a network layout is given, the algorithm divides the

network and the schedule into two parts. The downstream, processing and clock sync

slots are copied for both parts.

7.7.10. Determine the maximum epoch size (step 13 & 14)

The maximum epoch size is defined as the epoch size which is able to guarantee

desired latencies and conforms to the sampling rate. This can be determined as:

    
LatencySizeRateSize EpochSamplingEpoch max,minmax  (23)

Chapter 7 Network and Operations Planning

 137

Where  
LatencySizeEpochmax is determined according to the following

configurations:

 If acquisition instant is not synchronized with sending instant and we do

not consider the event start instant,  
AqEWSNtmax corresponds to the sum

of the time waiting for the transmission slot plus the time taken for the

data to travel from source node to the sink node. In this case,

 
LatencySizeEpochmax is defined by:

        
UPAqE WSNAqWSNLatencySize tttEpoch maxmaxmaxmax  (24)

 If acquisition instant is synchronized with sending instant and we are

considering the event occurrence instant,  
AqEWSNtmax corresponds to the

time for event detection and its transmission from source node to the sink

node. In this case,  
LatencySizeEpochmax assumes the same value of the

previous case, as defined by eq. 24.

 If acquisition instant is not synchronized with sending instant and we are

considering the event occurrence instant,  
AqEWSNtmax corresponds to the

time for event detection, plus the time waiting for the transmission

instant, plus the travel time from source node to sink node. In this case,

 
LatencySizeEpochmax is defined as:

 
      

2

maxmaxmax
max

UPAqE WSNAqWSN

LatencySize

ttt
Epoch


 (25)

In these equations, the maximum WSN latency ( 
UPWSNtmax), which was

defined in Section 7.3, corresponds to the time taken to transmit a message from a leaf

node to the sink node using the current network layout. It depends on the maximum

number of levels included in the monitoring operation. Aqt corresponds to the

acquisition latency, as discussed in Section 7.3.

Chapter 7 Network and Operations Planning

 138

If the  
LatencySizeEpochmax is smaller them the current epoch size (from step 4),

them either cut the inactivity period of the current schedule (step 14), or otherwise

divide the network (step 12) because it is not possible to meet latency requirements or

sampling rate with the current size of network. The sampling rate parameter for each

new sub-network will be defined as the user-defined sampling rate.

7.7.11. Inactivity period (step 15)

The nodes of the WSNs may or may not be battery operated. If they are battery

operated, the user may have defined lifetime requirements, or he may have specified

that he wants to maximize lifetime. In order to meet lifetime requirements, it may be

necessary to add an inactivity period to the epoch, during which nodes have low

consumption, because they turn their radio off.

Latency and sampling rate specifications may restrain the inactivity period that

would be necessary to guarantee the desired lifetime. In that case the algorithm can

divide the network into two sub-networks and re-run over each, trying to accommodate

both the latency and lifetime requirements.

The inactivity period can be determined as follows:

     LifetimeInactivityEpochInactivityInactivity PeriodSizePeriodPeriod ,maxmin (26)

Where the inactivity period due to the epoch size (

  SizePeriod EpochInactivity max) is determined by eq. 27.

     SizeSizeSizePeriod EpochEpochEpochInactivity maxmax (27)

The inactivity period required by lifetime requirements is defined in Section 7.9.

After determining this PeriodInactivity quantity, it is added to the schedule, and the

algorithm restarts again to verify if all constraints are achieved. This is required because

the addition of the inactivity period may have consequences concerning command

latencies and the synchronization slots that need to be recalculated.

Chapter 7 Network and Operations Planning

 139

7.7.12. Network communication channel and sampling rate
(step 16)

Since the initial network may need to be divided into several smaller networks,

different communication channels should be defined for each resulting sub-network to

avoid communication interferences between different sub-networks.

Lastly, the sampling rate is defined as the epoch size or a sub-sampling

alternative if the user wishes:

Sizerate EpochSampling  (28)

If users want to have sub-sampling (multiple samples per sampling period), the

sampling rate would be:

n

Epoch
Sampling Size

rate  (29)

Where n represents the number of samples per period. Multiple samples per

period allow, for instance, to apply smoothing operations in order to remove noise.

7.8. Lifetime Prediction

Energy consumption is important in networked embedded systems for a number

of reasons. For battery-powered nodes, energy consumption determines their lifetime.

The radio transceiver is typically the most power-consuming component. In a

TDMA protocol, all network nodes are synchronized to a common clock. Nodes wake

up on dedicated time slots at which they are ready to either receive or transmit data.

The node energy consumption can be estimated as [155], [156]:

   BatoffCycleDutyCycleDutyon VTIRadioRadioIE  1 (30)

Where the radio duty cycle is measured as:

Chapter 7 Network and Operations Planning

 140

Epoch

t
Radio

TransmitListenActive

Dutycyle

)(
 (31)

The currents onI and offI represent the amount of consumed current in the each

state of the radio (on and off). BatV is the power supply voltage to power up the node

and T represents the amount of time where E is measured.

So, the node lifetime (TotalT) can be extracted from eq. 30, where E represents

the total charged battery capacity.

   Lifetime

BatoffCycleDutyCycleDutyon

Total Node
VIRadioRadioI

E
T 




1
 (32)

Consequently, network lifetime is defined as the lifetime of the node which

discharges its own battery first.

In the previous section we discussed how to plan a network to meet latency and

lifetime requirements. To optimize the TDMA schedule and to provide desirable

lifetime, an inactivity period must be added to the schedule. Through eq. 26, we define

this inactivity period as:

    LifetimeInactivityEpochInactivityInactivity PeriodSizePeriodPeriod ,min

Therefore, the  LifetimeInactivity Period can be calculated through eq. 32,

replacing the
DutycyleRadio defined in eq. 31 and solving it.

 

 
Size

BatTotaloff

onBatoffTotaltransmitListenActive

Period

EpochC
EVTI

IVITt

LifetimeInactivity

_
)(























 (33)

Where SizeEpochC _ represents the current epoch size resulting from step 4 of

the algorithm.

Chapter 7 Network and Operations Planning

 141

7.9. Slot Size Considerations

The slot size should be as small as possible to reduce the epoch size and

consequently the end-to-end latency. To determine the slot time, the following times

must be taken into account:

 Time to transfer a message from the MAC layers data FIFO buffer to

buffer of radio transceiver (tts);

 Time to transmit a message (txm);

 Time a receiver needs to process the message and initiate the

transmission of an acknowledgment message (tpm);

 Time to transmit an acknowledgment (txa);

 Time to transfer and process the acknowledgment from the radio

transceiver and to perform the associated actions for received/missed

acknowledgment (tpa).

Also, a small guardian time is required at the beginning and end of each slot to

compensate for clock drifts between nodes (tg). Thus, the minimum size of a

transmission slot is given as:

gpaxapmxmtsst ttttttT  (34)

In our testbed the slot size was 10 ms, which allows starting the communication,

sending a data packet with 128 Bytes of maximum size and receiving the

acknowledgment.

Chapter 7 Network and Operations Planning

 142

 143

8.gggg

Chapter 8

Performance and Debugging

Operations performance monitoring is important in contexts with timing

constrains. For instance, in the previous chapter, we propose an algorithm to plan for

timing guarantees in distributed control systems with heterogeneous components. In this

chapter we define measures and metrics for surveillance of expectable time bounds and

an approach for performance monitoring bounds on these metrics.

This surveillance can be used in any distributed system to verify performance

compliance. Assuming that we have monitoring or closed-loop tasks with timing

requirements, this allows users to constantly monitor timing conformity.

In the context of networked control systems with heterogeneous components and

non-real-time parts, where latencies were planned, this allows the system to monitor and

determine the conformity with timing requirements.

We define measures and metrics which create an important basis for reporting

the performance to users and for helping them to adjust deployment factors. Those sets

of measures and metrics are also used for debugging, using tools and mechanisms to

explore and report problems. We also propose an approach to monitor the operation

timings.

The time bounds and guarantees must be based on well-defined measures and

metrics. In Sections 8.1 and 8.2 we discuss these measures and metrics. Section 8.3

Chapter 8 Performance and Debugging

 144

discusses metric information for analysis. We will discuss time bounds setting and time

bounds metrics, and how message loss information is collected.

The measures can be taken per message or statistically per time periods. We

describe how both alternatives are used in the approach. Measures can also be

classified. Each message is classified according to each time bound as in-time, out-of-

time, waiting-for or lost-message.

Section 8.4 describes the addition of debugging modules to the MidSN

architecture and Sections 8.5 and 8.6 describe debugging node component and operation

performance monitor component. It is described how the performance information is

collected and processed. An example of operation performance monitor UI is presented,

which allows users to evaluate the performance.

8.1. Measures

Operation timing issues in terms of monitor and closed-loops control can be

controlled with the help of two measures, which we denote as Latency and Delay of

Periodic Events.

8.1.1. Latency

Latency consists of the time required to travel between a source and a

destination. Sources and destinations may be any site in the distributed system. For

instance, the latency can be measured from a WSN leaf node to a sink node, or from a

WSN sensing node to a computer, control station or backend application. It may

account for the sum of all components, including queuing and the propagation times,

and it is additive – the latency between two points is the sum of the latencies in the path

going through all intermediate points that may be considered between the two points.

Figure 8.1a) shows an example of how latency is measured when a leaf node transmits

its data to a sink node in a 3-3 tree topology.

A represents the instant when message transmission starts. The transmission

takes several milliseconds and the message is received by an intermediate node at

instant B. The intermediate node saves the message in a queue until it gets its slot

Chapter 8 Performance and Debugging

 145

transmission time. When the slot is acquired (instant C) the message is transmitted to

the next upper level and reaches the sink node at instant D. In the example 6a) the

latency is given by the sum of all latency parts ((B – A) gives the latency from leaf node

to the intermediate node; (C – B) gives the queue latency and (D – C) gives the latency

from intermediate node to sink node).

Figure 8.1 – Latency diagram

Figure 8.1b) shows the latency from the same node considered in Figure 8.1a),

but in this case the destination point is a control station. It includes the previous latency

and adds the latency from the sink node to the control station. Latency from sink node

to the control station is given by the sink node to gateway latency (E – D), plus gateway

processing time (F – E), plus LAN transmission (G – F), plus control station processing

time (H – G).

8.1.2. Delay of periodic events

Given a specific periodic event, such as monitoring or closed-loop control, the

delay will be the extra time taken to receive a message with respect to the predefined

periodic reception instant. Figure 8.2 shows how the delay is measured.

The instant 1E represents the instant of the last occurrence of a specific periodic

event. It is expected to receive that event with a specific cadence (period).
ExpE

represents the instant of expected reception of the event. But the event may arrive

delayed (instant E). So, the delay is the time elapsed between
ExpE and E instants.

A B C D

Latency

t

t
A B C D

Latency

E F G H

a) Latency at Sink Node

b) Latency at Control Station

Chapter 8 Performance and Debugging

 146

Each period time interval is measured from the last reception instant to the next

reception instant.

Figure 8.2 – Delay illustration

8.2. Metrics

Given the above time measures, we define metrics for sensing and control. The

metrics allow us to quantify timing behaviour of monitoring and closed-loops.

8.2.1. Monitoring latencies

Monitoring latency is the time taken to deliver a value from sensing node to the

control station, for display or alarm computation. If a value determines an alarm, it will

be the time taken since the value (event) happens to the instant when the alarm is seen

in the control station console. Since the value must traverse many nodes and parts of the

system, this latency can be decomposed into latencies for each part of the path. It is

useful to collect the various parts of the latency – Acquisition latency (sensor sample

latency plus latency associated with waiting for data transmission instant), WSN latency

(time for transmission between leaf node and sink node), latency for sink-gateway (the

time taken for the message to go from the sink to the gateway, plus gateway processing

time), latency for middleware transmission (e.g transmission between gateway and

Control Station), Control Station processing latency and end-to-end latency (leaf node

to Control Station). The following latency metrics are therefore all considered:

 Acquisition latency;

 WSN latency;

 WSN to Gateway interface latency;

 Middleware latency;

t

1E ExpE E 1ExpE

Period Period

Delay

Chapter 8 Performance and Debugging

 147

 Control Station processing latency;

 End-to-end latency;

8.2.2. Monitoring delays

 The delay measure was already defined as the amount of extra time from the

moment when a periodic operation was expected to receive some data to the instant

when it actually received. When users create a monitoring task, they must specify a

sensing rate. The control station expects to receive the data at that rate, but delays may

happen in the way to the control station, therefore delays are recorded.

8.2.3. Closed-loop latency for asynchronous or event-based
closed-loops

In this case, the closed-loop latency is the time taken from sensing node to

actuator node, passing through the supervision control logic. It will be the time taken

since the value (event) happens at a sensing node to the instant when the action is

performed at the actuator node. Since the value must cross several parts of the system,

this latency can be decomposed into latencies for each part of the path: upstream part

(from sensing node to the control station) and downstream part (from control station to

the actuator). The first part (upstream) is equivalent to monitoring latency and can be

sub-divided in the same sub-parts. The second part (downstream) corresponds to the

path used by a command to reach an actuator. The following latency metrics should be

considered to determine the closed-loop latency:

 Acquisition latency;

 WSN upstream latency;

 WSN to Gateway interface latency;

 Middleware latency;

 Control Station processing latency;

 Middleware latency;

 Gateway to WSN interface latency;

 WSN downstream latency;

 Actuator processing latency;

 End-to-end latency;

Chapter 8 Performance and Debugging

 148

8.2.4. Closed-loop latency for synchronous or periodic closed-
loops

Synchronous or periodic closed-loops can be associated with two latencies:

Monitoring latency and Actuation latency. The Monitoring latency can be defined as the

time taken from sensing node to the supervision control logic (monitoring latency). The

Actuation latency corresponds to the time taken to reach an actuator. We also define an

end-to-end latency as the time from the instant when a specific value is sensed and the

moment when an actuation is done which incorporates a decision based on that value.

The following latency metrics should be considered to determine the closed-loop

latency for synchronous or periodic closed-loops:

 Acquisition latency;

 WSN upstream latency;

 WSN to Gateway interface latency;

 Middleware latency;

 Wait for the actuation instant latency;

 Control Station processing latency;

 Middleware latency;

 Gateway to WSN interface latency;

 WSN downstream latency;

 Actuator processing latency;

 End-to-end latency;

8.2.5. Closed-loop delays

In synchronous closed-loop operations, actuation is expected within a specific

period. However, operation delays may occur in the control station and/or command

transmission. The closed-loop delay is the excess time.

In asynchronous closed-loops, there can be monitoring delays. This means that a

sample expected every x time units may be delayed.

Chapter 8 Performance and Debugging

 149

In summary: The proposed measures and metrics include:

 Delays:

o Monitoring delay;

o Synchronous closed-loop actuation delay;

 Latencies:

o Monitoring latencies:

 All - End-to-end latency;

 Acquisition latency;

 WSN latency;

 WSN to Gateway interface latency;

 Middleware latency;

 Control Station processing latency;

o Closed-loop latencies:

 All - CL End-to-end latency;

 Acquisition latency;

 WSN upstream latency;

 WSN to Gateway interface latency;

 Middleware latency;

 Wait for the actuation instant latency; (synchronous)

 Control Station processing latency;

 Middleware latency;

 Gateway to WSN interface latency;

 WSN downstream latency;

 Actuator processing latency;

8.3. Metric Information for Analysis

For each of the previous metrics, we can have per-message values, per-time

interval statistics, as well as per-time interval bounds statistics. In this section we define

bounds and describe how each message is classified according to each bound. Then we

describe how to count message and packets losses.

Chapter 8 Performance and Debugging

 150

8.3.1. Bounds: waiting, in-time, out-of-time, lost

Bounds over latency and delay measures allow users to configure bounds

violation alarms and to keep information on how often the bounds are broken. A bound

may be defined as a threshold over some measure. It specifies an acceptable limit for

that measure. We classify the events with respect to that bound as:

Waiting – the process is waiting to receive the event, its final status with respect

to the bound is yet undefined;

In-time – the event arrived, and the time measure is within the specified bound;

Out-of-time – the event arrived, and the time measure is out of the bound;

Lost – the event didn’t arrive, and the timeout has expired.

Figure 8.3 shows a state diagram with message classification. Each event is

classified as “waiting” until reception, or lost, if timeout was exceeded. When an event

is received within a specific bound, it is classified as “In-time”. If an event was received

but the bound was exceeded, it is classified as “out-of-time”. Lastly, if an event is

expected but is not received and the timeout has elapsed, it is classified as “lost”.

Figure 8.3 – Event state diagram

Figure 8.4 shows an example of bound specification and corresponding event

classification (in-time and out-of-time). Figure 8.4a) shows an event (E) that arrives at

destination with some delay but within a specified bound. In this case, the event is

classified as in-time. Figure 8.4b) shows an example where an event is classified as out-

of-time. In this case the delay is greater that the specified bound.

Chapter 8 Performance and Debugging

 151

Figure 8.4 – Bounded event classification

It should be possible to specify delay bounds, latency bounds or both.

8.3.2. Messages and packet losses

Besides operation performance monitoring, the number or ratio of lost messages

or packets are also important measures, revealing problems that may be due to several

factors, including interference and disconnection, but also messages being dropped

somewhere in the system when some transmission buffer or queue fills up for lack of

servicing capacity. For instance, in the context of a pre-planned network with TDMA, a

sink node has to service the data coming from one node in a single slot of time. This

includes receiving the data, sending it to the gateway through some serial interface and

processing downstream command messages coming from the gateway. At some point it

may overload and drop messages.

The simplest and most common approach to count end-to-end message losses is

based on sequence numbers and a timeout (configurable).

Given a timeout, defined as the time that elapsed since a message with a specific

sequence number arrived, if the time expires and some lower sequence number is

t
1E ExpE E 1ExpE

Period

Delay

Specified Bound

Period

a) In-time

t
1E ExpE E 1ExpE

Period

Delay

Specified Bound

Period

b) Out-of-time

Chapter 8 Performance and Debugging

 152

missing, that corresponding message is considered lost. Figure 8.5 shows an example of

a timeline to evaluate if a message is lost or not.

Figure 8.5 – Message lost evaluation

In the above figure we can see that Message 3 (3M) doesn´t arrive at the control

station. The
3ExpM shows the instant when 3M should be received. 3M is considered

lost when the timeout is exceeded.

In closed-loop control scenarios, actuation command losses are accounted for by

means of timeout in acknowledgment message. Each actuation command has an

acknowledgement message associated with it. A command is marked as lost when the

acknowledgement is not received by the command issuer in a certain timeout after the

command message was sent.

Network protocol-level count of packet losses can also be used to analyse losses.

8.3.3. Statistics: avg, stdev, max, min, percentile

Statistic information can be computed for each part of the system (e.g. WSN

part, gateway interface, gateway processing) and it will be important to diagnose timing

problems and where they come from. The following types of statistical information are

included:

Maximum, this is useful to detect the worst case time measure, one that should

not be over a limit.

Percentile (e.g. P99, P95, P90): it is useful to characterize the measure under

evaluation, while removing outlier events (e.g. large delays existing less than 0.01% of

the cases).

t

1M

lostisM3

2M

3ExpM

4M 5M 6M 7M 8M 9M

Timeout

Chapter 8 Performance and Debugging

 153

In systems with strict timing requirements, maximum and percentile measures

are the most important.

Averages and Standard Deviation, which is another the common metric used

to evaluate the stability of time measures.

Minimum: It is a less important metric in our context, but provides the best case

time measure.

These are important metric data items for reporting the performance to users and

for helping users adjust their deployment factors. Another important aspect is that this

statistic information (in short avg, stdev, max, percentile, min) can be taken for different

periods of time, for each node or part of the system, and it is important to keep those

with different granularities, so that it becomes possible to arrive at the trouble spots.

Finally, it is useful to correlate those with operating system and networks performance

information, to detect the culprit of the problems.

8.4. The Debugging Module of MidSN

In the previous sections we discussed measures and metrics useful to evaluate

operation performance. In this section we will discuss the debugging module present in

the MidSN architecture.

The Debugging module (DM) stores all information concerning node operation

(e.g. execution times, battery level) and messages (e.g. messages received, messages

transmitted, transmission fails, transmission latencies). This information is stored inside

the node. It can be stored either in main memory, flash memory or other storage device.

DM is an optional module that can be activated or deactivated. It generates a

debugging report, either by request or periodically, with a configurable period.

DM has two modes of operation:

 Network debugging – the DM runs in all nodes and keeps the header information

of messages (source ID, destination ID, Msg Type, Ctrl Type and Sequence

Chapter 8 Performance and Debugging

 154

Number (Message format – Figure E.1)), where it adds timestamps

corresponding to arrive and departure instants. It also keeps information about

MidSN-NC execution. After, this information is sent periodically or by request

to the Performance Monitor (described in the next section), which is able to

calculate metrics. This operation mode may be deactivated in constrained

devices, because it consumes resources such as memory and processing time.

 High-level operation debugging – instead of collecting, storing and sending all

information to the Performance Monitor, the DM can be configured to only add

specific timestamps to messages along the path to the control station.

Assuming a monitoring operation in a distributed control system with WSN sub-

networks, where data messages are sent through a gateway, the DM can be configured

to add timestamps in the source node, sink node, gateway and control station. Figure 8.6

illustrates nodes, gateways and a control station in that context.

Figure 8.6 – Message path - example

The approach assumes that WSN nodes are clock synchronized. However, they

may not be synchronized with the rest of the distributed control system. Gateways,

computers and control stations are also assumed clock synchronized (e.g. the NTP

protocol can be used).

In Figure 8.6, the DM starts by adding a generation timestamp (source

timestamp) in the sensor node (Ts1). When this message is received by the sink node, it

adds a new timestamp (Ts2) and indicates to the gateway that a message is available to

be written in the serial interface. Upon receiving this indication, the gateway keeps a

timestamp that will be added to the message (Ts3), and the serial transmission starts.

After concluding the serial transmission, the gateway takes note of the current

timestamp (Ts4) and adds Ts3 and Ts4 to the message.

Chapter 8 Performance and Debugging

 155

Upon concluding this process and after applying any necessary processing to the

message, the gateway adds another timestamp (Ts5) and transmits it to the control

station. When the message is received by the control station, it adds a timestamp (Ts6),

processes the message and adds a new timestamp (TS7), which indicates the instant of

message processing at the control station was concluded. After that, at the control

station, the Performance Monitor module (described in the next section) receives the

message and, based on the timestamps that come in the message, it is able to calculate

metrics.

If there is only one computer node and the control station, there will only be Ts1,

Ts6 and Ts7.

8.5. The Performance Monitor Module and UI

In this section we describe the Performance Monitor module (PMM), which

debugs operations performance in the heterogeneous distributed system. The PMM

stores events (data messages, debug messages), latencies and delays into a database. It

collects all events when they arrive, computes metric values, classifies events with

respect to bounds, and stores the information in the database. Bounds should be

configured for the relevant metrics.

Assuming the example shown in Figure 8.6, PMM collects the timestamps and

processes them it to determine partial and end-to-end latencies.

The following partial latencies are calculated:

 WSN upstream latency (Ts2 – Ts1)

 WSN to Gateway interface latency (Ts4 – Ts3)

 Middleware latency (Ts6 – Ts5)

 Control station latency (Ts7 – Ts6)

 End-to-end ((Ts2 – Ts1) + (Ts4 – Ts3) + (Ts6 – Ts5) + (Ts7 – Ts6))

After concluding all computations, PMM stores the following information in the

database: Source node id, Destination node id, Type of message, MsgSeqId,

Chapter 8 Performance and Debugging

 156

[Timestamps], partial latencies, end-to-end latency. This information is stored for each

message, when the second operation mode of debugging is running. When the first

operation mode of the debugging component is running, a full report with link-by-link

information and end-to-end information is also stored.

The PMM user interface shows operations performance data, and alerts users

when there is a problem detected by metric exceeds bounds. Statistical information is

also shown and is updated for each event that arrives or for each timeout that occurs.

Figure 8.7 shows a screenshot of PMM. We can see how many events (data

messages) arrived in-time, out-of-time (with respect to defined bounds), and the

corresponding statistical information. This interface also shows a pie chart to give an

overall view of the performance.

Figure 8.7 – PMM user interface

Figure 8.8 shows the event logger of PMM. This logger shows the details on

failed events. A list of failures is shown and the user can select one of each and see all

details, including the latency in each part of the distributed control system.

When a problem is reported by the PMM, the user can explore the event

properties (e.g. delayed messages, high latencies) and find where the problem occurs. If

Chapter 8 Performance and Debugging

 157

a problem is found and the debugging report is not available at the PMM, nodes are

requested to send their debugging report. If a node is dead, the debugging report is not

retrieved and the problem source may be due to the dead node. Otherwise, if all reports

are retrieved, the PMM is able to detect the message path and check where it was

discarded or where it took longer than expected.

Figure 8.8 – PMM user interface – event logger

PMM allows users to select one message and see all details, including the

latency in each part of the distributed control system. Figure 8.9 shows the details of a

message.

In the interface of Figure 8.9, users can see the latency per parts, as well as the

end-to-end latency. This interface also includes information about the forecasted values

and bounds. Each bound is specified by the user and can be specified for all parts or

only for specific parts. In the example of Figure 8.9, only an end-to-end bound is

defined.

Lastly, this interface also includes information about message classification.

This information is filled only when the end-to-end latency bound is defined.

Chapter 8 Performance and Debugging

 158

Figure 8.9 – PMM user interface – latency details

Since DM can be configured to keep information about all messages and

MidSN-NC operations, reporting those to the PM, PM is able to compute metrics and

show report information. Figure 8.10 shows an example of a message travelling from

node 1 to node 10. This also allows users to inspect details when they detect a problem

by looking at the logger of the Performance Monitor (PM).

In this example we can see the arriving and departure timestamps, fails and

retransmissions per node. Based on the timestamps collected along the path, PMM

computes link latencies for each link, buffering latencies, and the end-to-end latencies.

Each link latency is determined through the computation of the difference between

arriving and departure timestamps of receiving node and sending node, respectively.

The buffering latency is determined based on the arriving and departure times of each

node. This time represents how long the message is kept in a node. Lastly, the end-to-

end latency is the sum of all parts of the latencies.

Chapter 8 Performance and Debugging

 159

Figure 8.10 – PMM user interface – latency details

Chapter 8 Performance and Debugging

 160

 161

9.gggg

Chapter 9

Evaluation of MidSN

In this chapter, we present the results of experimental evaluation of MidSN and

the mechanisms that were proposed in the thesis. The objectives are to evaluate metrics

related to:

 Deploying and using MidSN-NC for different platforms;

 Comparison of performance, code and memory requirements over

different platforms;

 Operating in a constrained device, i.e. whether the code fits into a

constrained device and comparison of RAM versus flash operations in

terms of time and energy, since constrained devices typically have low

amounts of RAM;

 Battery lifetime issues;

 Latencies in a networked control testbed.

The results show that MidSN is a middleware with a small footprint and

supports the operations defined in the architecture. We also show the system running on

different platforms, where latencies are assessed over more than one platform.

Section 9.1 reports results concerning evaluation of MidSN-NC for multiple

platforms. It concerns memory footprint (code size and RAM) and execution times. Due

to many WSN device limitations, in Section 9.2 we analyse some issues raised by those

Chapter 9 Evaluation of MidSN

 162

limitations. Section 9.3 reports results concerning latencies and execution times

extracted from a network built with several different classes of nodes.

Results are shown as charts, however for further completeness Appendix I

details those values in tables formats.

9.1. Evaluation of MidSN-NC for Multiple Platforms

As MidSN-NC can be deployed on WSN devices or more powerful nodes, such

as computers, in this section we will evaluate the MidSN-NC when implemented in

computer, Raspberry PI, TelosB and Arduino platforms. Those platforms had the

following characteristics:

 Computer – platform based on an Intel Pentium D CPU, running at 3.4

GHz. It has 2 GB of RAM and an Ethernet 10/100 BaseT connector.

 Raspberry PI – platform based on an ARM1176JZFS with 512MB of

RAM memory and an Ethernet 10/100 BaseT connector. A SD card is

used to load the Operating System and to store application data.

 TelosB – platform based on a MSP430 16-bit CPU with an on-board 8

MHz oscillator. It includes a CC2420 radio chip, 48 kB of program flash

and 10 kB of RAM.

 Arduino (Mega) – platform based on an ATmega2560 with a 16 MHz

oscillator. It has 256 KB of program flash where 8 KB are used by boot

loader, and 8 kB of RAM. A Wifly module is used to connect it to a Wi-

Fi network.

Both computer and Raspberry PI platforms run a Linux operating system with

java support. The computer runs Ubuntu 10.2 with JDK 7, while the Raspberry runs the

debian6 for Raspberry PI operating system.

The MidSN-NC implementation for computer and Raspberry PI platforms is

written in Java. The embedded java virtual machine (Java SE Embedded 7) is used to

run MidSN-NC in Raspberry PI platform. The TelosB implementation is written in

Chapter 9 Evaluation of MidSN

 163

Contiki-C language and is supported by the Contiki operating system, while the

Arduino version is written in C++ language using the Arduino IDE version 1.0.

9.1.1. Development and porting between platforms

The first version of MidSN-NC was developed in Contiki-C for the TelosB

platform using the Contiki operating system. This derives from the GINSENG project,

where the TelosB platform was the choice to be applied in the refinery.

As MidSN-NC architecture is divided in several modules, we created a structure

of folders and files that represented each module and its functionalities. Each folder had

the name of the corresponding module.

All functionalities were isolated from the operating system and hardware by

using drivers which abstract MidSN-NC implementation. Each driver was developed

according to the specification of Chapter 5.

Concerning RAM memory, we needed to take in consideration the amount of

memory used by temporary variables and arrays. We needed to use pointers to data and

configuration structures to avoid duplication of variables and to prevent memory

overflow. A timer structure was created and limited to 5 scheduled events, and the

number of parallel threads was reduced to avoid memory leaks due to insufficient

memory and synchronization problems.

Since computer and Raspberry PI platforms are less constrained devices, their

implementation is less stringent. MidSN-NC implementation for these platforms was

quite simple. Once the Contiki-C version was developed, we only needed to follow the

code structure and write it in java. However, the Raspberry PI implementation

introduced some minor modifications over the computer java version. Due to the java

embedded virtual machine, its implementation needs to take into account available

libraries.

Lastly, the Arduino implementation was the hardest. Similar to Java version, we

followed the Contiki-C code structure but in the Arduino implementation we needed to

develop many functions, especially at driver level, since the Arduino doesn’t include a

Chapter 9 Evaluation of MidSN

 164

full operating system and the IDE doesn’t include libraries as Java does. For instance,

some functionalities of MidSN-NC are based on scheduling timer events. In the

Arduino implementation we needed to develop all structures to create the scheduling,

checking elapsed time and generating events to indicate to the MidSN-NC when an

event arrives.

From these implementations and porting we concluded that the reference

architecture of MidSN is quite helpful, since it specifies which modules to implement

and how should work. Porting to new platforms is also simple.

9.1.2. Memory and performance

In this sub-section we will detail the amount of memory needed to implement

MidSN-NC in described platforms, and will confront it with the memory available in

the device.

Figure 9.1 shows the amount of memory needed by each component of MidSN-

NC in the different platforms.

Figure 9.1 – Programming memory consumption for all platforms

From Figure 9.1 we can conclude that MidSN-NC implementation was

significantly small to fit all devices that were tested. Implementations for either

computer or Raspberry nodes need less than 60 KB (without operating systems). These

consume more space than implementations for other platforms because they are java-

based, but both computers and Raspberry PI resources do not pose any constraints on

such code sizes. The Arduino implementation is smaller than the other ones, because it

Chapter 9 Evaluation of MidSN

 165

is written in C++ and it is not loaded with a full Operating System. From the figure we

can also conclude that the processor component (NC-GinApp-GP) is the one that needs

more code memory in all platforms.

Another important issue for some embedded devices with constrained resources

is the quantity of RAM memory needed to run each implementation. Figure 9.2 shows

the amount of memory needed by each component and in total for each platform.

From Figure 9.2 we conclude that the Contiki-C version is the implementation

that needs less RAM. However, this is not accounting for the RAM used by the Contiki

Operating System. In general, the amount of RAM needed is small and fits nicely into

each platform. For instance, 2.6 kBytes of RAM memory are used in the Contiki-C

implementation, 5.6 kBytes in the Arduino, 13.2 kBytes in the Raspberry PI node and

13.7 kBytes in a computer node. Similar to programming code, the NC-GinApp-GP is

the component that needs more RAM memory. Prior to Arduino Mega we tried to fit the

design into Arduino Uno, but MidSN-NC did not fit into its 2 kBytes data memory.

Figure 9.2 – RAM memory consumption for all platforms

Figure 9.3 shows the time to compute an average in each platform. Due to

scarceness of resources in TelosB and Arduino platforms, the number of tuples used to

do the computation is limited to 50. Both computer and Raspberry PI platforms were

evaluated with 1000 tuples as maximum.

Chapter 9 Evaluation of MidSN

 166

Figure 9.3 – Time required computing an average

From Figure 9.3 we conclude that TelosB is the slowest platform. It has the

slowest oscillator that runs at 8 MHz, while Arduino, Raspberry PI and the computer

operate at 16 MHz, 700 MHz and 2.5 GHz, respectively. The Raspberry PI and

computer platforms also have more RAM and computational capabilities, which

contributes to reduce the execution time.

Lastly, Figure 9.4 shows the operation execution time for a window with 50

tuples. The select AGGREG represents any operation with any number of aggregation

functions over measures, where the aggregation can be any of (average, maximum,

minimum, count, sum, and variance). The same time is taken to compute any such

metric independently of which aggregation functions are specified because in all cases

aggregations are computed incrementally as the values are being scanned.

Figure 9.4 – Time required per operation over a stream in memory

Chapter 9 Evaluation of MidSN

 167

The execution times are similar (high) to TelosB and Arduino platforms, while

the Raspberry PI and computer platforms are much faster. Again, this is due to internal

oscillators and resources available to do the computation.

The computation of percentiles requires more time that other statistical measures

because the data tuples must be ordered. These computations were implemented with

the insertion sort algorithm in our prototype. The computation of percentiles consumes

about 27 ms in TelosB, 18 ms in Arduino, 4.5 ms in Raspberry and 1ms in a computer.

9.2. Operation Processing in Constrained Devices

Typically, many WSN devices have limited memory and computation

capabilities. In this section we analyse some of the issues raised by those constraints,

taking a TelosB plus Contiki platform as the case study.

9.2.1. Memory footprint

In this sub-section we will detail the amount of memory needed when MidSN-

NC is deployed in the TelosB, and will confront it with the memory available in the

device. Table 9.1 shows the amount of memory needed by each component of MidSN-

NC when it is ported to that platform using Contiki-OS.

Table 9.1 – Program memory consumption

Component ROM Memory [Bytes]
I/O Adapter 1136-1260
 Rime Driver 768
 IP Driver 890
NC-Kernel-AM 1344
NC-GinApp-CM 880
NC-GinApp-DC 2270
 Main Memory 1639
 Flash Memory 631
NC-GinApp-GP 5104
 Events 1546
 Computation 3558
NC-GinApp-AA 544
Contiki-OS 20009
Total 31287

The Contiki implementation of MidSN-NC consumes 31.3 KB of program

memory, where about 11KB is occupied by MidSN-NC and the rest is operation system.

Chapter 9 Evaluation of MidSN

 168

Our implementation is based on several modules. Figure 9.5 shows the program

memory distribution used by MidSN-NC.

Figure 9.5 – Program memory distribution

As seen in Table 9.1 and Figure 9.5, most of the code memory (66%) is

occupied by the operating system. Concerning MidSN, 17% is occupied by the

processor module. This module has capabilities to manage periodic events and perform

computation over streams.

The data collector module (NC-GinApp-DC) used to manage all data coming

from sensor or from other nodes, occupies 8% of the total code memory. This module

includes capabilities to manage data in main memory and in external memory (flash

memory).

The NC-Kernel-AM module, which offers support to receive agents over-the-air

(submitted by users), store them in flash memory or drop them from the node, occupies

4% of code memory.

The NC-GinApp-CM module occupies 2% of memory. The memory occupied

by this module is proportional to the API functionalities offered by the MidSN. This

value results from the implementation of the functionalities described in Chapter 5 (the

amount of memory can increase if more functionalities are added).

Chapter 9 Evaluation of MidSN

 169

Lastly, there is the acquisition module (NC-GinApp-AA), which consumes 2%

of the memory. This module includes the necessary drivers to collect sensor data.

Another important issue in constrained devices such as TelosB motes is RAM

memory consumption. This platform has 10kB of memory that must be shared by the

operating system and the MidSN-NC middleware.

Table 9.2 shows the amount of RAM memory needed by each component of

MidSN-NC when it is ported to TelosB using Contiki-OS. From Table 9.2 we conclude

that our middleware needs 2.6 kB, which fits the memory requirements of the patform.

The TelosB platform has 10 kB of RAM memory, but about 6.5 kB is consumed by the

Contiki operating system, which means that only about 900 Bytes are available to create

streams and store data tuples inside them.

Table 9.2 – RAM memory consumption

Component RAM Memory [Bytes]
I/O Adapter 366-486
 Rime Driver 240
 IP Driver 360
NC-Kernel-AM 631
NC-GinApp-CM 62
NC-GinApp-DC 636
 Main Memory 454
 Flash Memory 182
NC-GinApp-GP 664
 Events 156
 Computation 508
NC-GinApp-AA 38

One question that can arise when we analyse these values is “if develop code

from scratch for an application, how much memory will it need, and how does that

compare with MidSn-NC alternative?”

Table 9.3 shows that, effectively, the memory used by a specific application is

less, but with MidSN-NC we have flexibility to configure or modify the operation on-

the-fly without any programming needs. Furthermore, MidSN-NC needs only 2.6kB of

RAM, which is enough for most WSN node platforms.

Chapter 9 Evaluation of MidSN

 170

Table 9.3 – Programming and RAM comparison between MidSN-NC and hand-coded application

Operation ROM

[Bytes]

RAM

[Bytes]
MidSN-NC 11278 2397
Hand-coded 1448 467
Hand-coded with average computation
(10 samples) 2224 647
Hand-coded with average computation
(100 samples) 2224 827

9.2.2. Performance and energy consumption: RAM versus
Flash

In this sub-section, we compare execution of a Micro-benchmark using RAM

versus flash memories. Since TelosB has a quite small RAM memory capacity and

much larger datasets can be stored and operated from the flash, it is important to

compare the performance of operations over RAM-ready streams and flash-ready

streams.

The Micro-benchmark tested scan and aggregation of 1 tuple, 10 tuples, 50

tuples, 100 tuples or 1000 tuples. It was run for one hour for each case and the results

are average execution times. Figure 9.6 shows the results. All times are measured in a

scale of milliseconds.

Since TelosB only has 10 kB of RAM memory and only 900 Bytes are available

to create streams and store data, 50 tuples was the maximum number of tuples stored

and processed in main memory. In this case, the execution time for select an average

varies from 1ms for one tuple to 14ms for 50 tuples.

Figure 9.6 also shows results concerning benchmark execution when data is

stored into flash memory. Here, the selection of an average varies from 5ms, for 1 tuple,

to 1600 ms for 1000 tuples.

From Figure 9.6 we can conclude that operation times over flash memory are

about four times slower when compared with RAM memory. However, computations

over flash memory may include more data, which may not be possible in RAM

memory.

Chapter 9 Evaluation of MidSN

 171

Figure 9.6 – Operation execution times over RAM versus flash memory

To further analyse the execution times of elementary operations in flash

memory, we show in Figure 9.7 the maximum, average and minimum times necessary

to read data tuples from flash memory in a TelosB mote.

Figure 9.7 – Time to read data from flash memory

Other operations which can access to the flash memory are the “create a stream”

and “write a tuple into a stream” operations. Depending on the configuration, MidSN-

NC can create a stream in main memory or in the flash. To analyse the overhead of

“create a stream” and “write a tuple”, Table 9.4 shows the execution times for each of

those operations.

These results show that operations over main memory are much faster.

Operations such as write and read in flash memory, in average, take twice the time for

main memory.

Chapter 9 Evaluation of MidSN

 172

Table 9.4 – Time required creating a stream and writing a tuple

Operation Maximum [ms] Average [ms] Minimum [ms]
Create Stream
 Main Memory 3 2.366 2
 Flash Memory 119 15.522 11
Write a Tuple
 Main Memory 2 1.11 1
 Flash Memory 72 3.793 2
Read a Tuple
 Main Memory 2 1.05 1
 Flash Memory 35 1.972 1

9.2.3. Data processing versus lifetime

Communication is costly in sensor networks. The radio transceiver has

comparatively high power consumption. To reduce the energy consumption of the radio,

a radio duty cycling mechanism must be used. With duty cycling, the radio is turned off

as much as possible, while being on often enough for the node to be able to participate

in network communication. By contrast, flash memory chips can stay in low-power

sleep mode as long as no I/O occurs, and do therefore not need to be duty cycled.

To quantify the trade-off in energy consumption between storage and

communication, we measure the energy consumption of transmitting and receiving a

packet, as well as reading and writing to flash on a TelosB. The results shown in this

sub-section were obtained using the Contiki’s Powertrace tool [157].

The Powertrace tool allows measuring the average power spent by the system in

different power states, including flash reading and writing.

Figure 9.8a) shows the energy consumed to read and write a data tuple into a

stream in flash memory, while Figure 9.8b) shows the energy consumption for a leaf

node and an intermediate node when the same number of tuples are processed and sent

to a sink node (2 hops).

Chapter 9 Evaluation of MidSN

 173

a) Energy needed to read and write tuples

from/to flash memory

b) Energy needed to transmit data tuples

Figure 9.8 – Consumed energy for data tuples manipulation

Assuming a scenario where data is collected every second and statistical

information is only needed per minute, data samples can be collected during one

minute, stored in memory, processed in the node after the collection period, and only

the computation results are sent to the user. Alternatively, we can send each data sample

to the control station immediately after collecting. From Figure 9.8b), if this last

alternative is used, the node will dispend about 30.6 mJ to send the information (60

samples). Considering the first alternative (Figure 9.8a)), the node will dispend about

0.3 mJ to store 60 samples into flash, 0.2 mJ to read them back and 0.8 mJ to process

and send the result to the user. In total, the node will only drain 1.3 mJ per minute.

Assuming that a node has two batteries, each with 1.5 V and 800 mAh, the total

available energy can be calculated as:

Joules 8640 =

3600*0.8*3 =

3600AhV = [Joules]Energy Battery 

Consequently, the node lifetime can be estimated. Figure 9.9 shows the node

lifetime estimation for the two alternatives described above.

As we can see, if one sample is collected and transmitted every second, the node

will operate only during 163.6 days. However, if the flash memory and computation

capabilities of the node are used, the node can operate during about 8230 days.

Chapter 9 Evaluation of MidSN

 174

Figure 9.9 – Node lifetime

9.3. Networked Execution and Performance Evaluation

In this section we discuss the use of the MidSN capabilities. The discussion,

demonstration and results in this section are intended to show that MidSN is able to

function as a middleware over heterogeneous distributed systems that include WSN

sub-networks, computer nodes and a control station. This abstraction allows to

configure/reconfigure and process over a heterogeneous distributed network without

any programming, only configuring.

We first introduce the MidSN-RConfig user interface that we used for

configuring the system, and then we have the following sub-sections: Section 9.3.2

describes the setup; in Section 9.3.3 we show runtime results concerning command

latency. Sections 9.3.4 and 9.3.5 show results concerning configuration and

performance evaluation of monitoring and closed-loop operations.

9.3.1. MidSN-RConfig user interface

As part of the evaluation, we created a client application that allows us to

configure and display information of all nodes in the network. Here, we describe the

implementation of GApp_Conf, an interactive application built on top of MidSN-

RConfig. This application can be used to configure or reconfigure operations and to

view status information. Figure 9.10 shows an extract of the configuration interface of

GApp_Conf.

Chapter 9 Evaluation of MidSN

 175

Figure 9.10 – GApp_Conf – configuration interface

The application is capable of controlling several features of the network, such as

creating closed-loops or alarms, performing actions, enabling/disabling sensors, setting

thresholds and including/excluding nodes in the network. It allows users to, for

example, define a set of rules to trigger certain actions based on a specified event.

9.3.2. Experimental setup

To demonstrate MidSN-NC running over an heterogeneous distributed control

system, we built a testbed with 10 TelosB nodes, one Arduino node, one Raspberry PI

node and one sink computer that acts as a gateway to the TelosB-based sub-network.

The setup also includes a control station that receives the sensor samples, alarm

messages and allows configuring operations, such as monitoring and/or closed-loop

over whole network.

The sink computer and the Raspberry node are connected with an Ethernet cable

through a GigaBit router network adapter. This router also offers a Wi-Fi interface

which is used to connect Arduino to the network. The MidSN-RConfig is running in the

control station, which allows us to configure the whole network. Figure 9.11 shows our

setup.

Chapter 9 Evaluation of MidSN

 176

Figure 9.11 – Experimental setup

For this experiment the TelosB WSN nodes run Contiki-MAC [158] over

Contiki. One of these nodes is used to interconnect the sink computer to the WSN

network. Nodes are organized in a star, communicating in a single hop fashion with the

sink node. All TelosB nodes were configured with the Plug&Play mechanism described

in Chapter 5 and their initial configuration and addresses are stored in the Catalog.

9.3.3. Command configuration and latency

After deploying our setup, we start the MidSN-NC evaluation by sending a set

of commands to nodes and measuring delivery latency for each platform. The

experiment consists of sending a command every 10 seconds to each node during one

hour. The command used in this experiment was MIDSN.Node.ping(AllNodes);.

Figure 9.12 shows the average and maximums of latency for the three platforms

(TelosB, Arduino and Raspberry).

From Figure 9.12 we conclude that Arduino was very slow when compared with

the TelosB and Raspberry PI platforms. As we mentioned before, the Arduino has a

WiFly module attached to it which communicates with our cabled network. This WiFly

module uses a specific library and the SPI interface of the Arduino. Moreover, the

WiFly library implements a SPI-to-UART bridge, which makes transmission slower.

Chapter 9 Evaluation of MidSN

 177

a) Average latency with stdev b) Maximum latency

Figure 9.12 – Command latency for the three platforms

9.3.4. Monitoring operation

We configured nodes to generate and send one data tuple per second to the

control station. Each tuple includes temperature and light measures. We use the internal

board sensors in the TelosB platform to read temperature and light. A LM 75

temperature sensor and one LDR were used to read those values in the Arduino

platform, while random values were generated in the Raspberry node to simulate the

sensed values.

The distributed control system is configured to create a monitoring operation

using the following method calls:

// create stream operation for reading from sensor

(a) MIDSN.Operation.create(AllNodes ,

 “lightStream”,

 1s,

 1s,

 1,

 {(TEMPERATURE, VALUE),(LIGHT, VALUE)},

 {ControlStation }

);

// save stream at control station

(b) MIDSN.Operation.create(ControlStation ,

 “lightStreamCS”,

 -1,

 -1,

 10000,

 {(“lightStream” , VALUES)},

 -1

);

Figure 9.13 – Configuration of a monitoring operation

Chapter 9 Evaluation of MidSN

 178

The above code programmed all nodes to generate one data item at every 1

second with the temperature and light values and send it to the ControlStation. It also

creates a stream at the control station to receive data tuples from the stream

“lightStream” and store them inside the stream “lightStreamCS”.

Figure 9.14 shows the average and standard deviation for data latency.

Figure 9.14 – Data latency for the three platforms

The Arduino and Raspberry platforms are connected to our network through IP

connections. These two platforms support UDP and TCP connections. In this

experiment we opted to use the TCP connection. There are two options to use the TCP

connection: open the connection, send data and close it after transmission (establishes a

new connection all the times); or open the connection only once and keep it opened

(connection opened, data transmission only). The first alternative is used for slow data

rates, where socket timeout may occur and the connection is closed. The other

alternative is more suitable for frequent data transmission, such as high data rates. The

results concerned to these two alternatives are shown in Figure 9.14.

The results concerning the TelosB platform can be decomposed into several

parts: the latency of WSN (latency from sensing node to sink node), gateway latency

(time needed to transfer data messages from the sink node to the gateway computer),

and the time from the gateway to the control station. Figure 9.15 shows the average and

maximum values of latency per each part and the total for the TelosB platform.

Chapter 9 Evaluation of MidSN

 179

a) Average latency b) Maximum latency

Figure 9.15 – Data latency for TelosB per part

In Figure 9.14 we can see that a sample sent by one TelosB takes, in average,

15.8 ms to be delivered at the control station. In Figure 9.15 we can analyse how the

latency is distributed by the network parts in the path to the control station. In average, a

sample takes 12 ms to be delivered at the sink; 2 ms to be written be the sink and

received by the gateway and 1.3 ms to be transmitted and received by the control

station.

Figure 9.15b) shows the maximum latencies that occur in each part during our

experiment.

9.3.5. Closed-loop over heterogeneous devices

The stream-based configuration offered by MidSN also provides functionalities

to configure closed-loop control over a heterogeneous network. The closed-loop

decision can be taken on data source nodes (sensors), on any node in the network, as

well as in the control station. The fact that whole parts of the system contain the same

configuration and processing component and are directly referenced by an address

variable allows uniform configuration in spite of being very different platforms.

We can configure the network to create a closed-loop control operation using the

following method calls:

// create stream operation for reading from sensor

(a) MIDSN.Operation.create(Zone1Sensors,

 “lightMessagesfromZone1Sensors”,

 5s,

 5s,

 1,

 {(LIGHT, VALUE)},

Chapter 9 Evaluation of MidSN

 180

 {ControlStation }

);

// save stream at control station

(b) MIDSN.Operation.create(ControlStation ,

 “lightMessagesfromZone1SensorsCS”,

 -1,

 -1,

 10000,

 {(lightMessagesfromZone1Sensors, VALUES)},

 -1

);

// Evaluate data stream

MIDSN.Action.create(ControlStation,

 “turnOnLight”,

 “lightMessagesfromZone1SensorsCS”,

 CONDITION ((LIGHT, VALUE), <, (VALUE, 105)),

 ACTUATION (LIGHT_ACTUATOR, ON, 1.1)

);

Figure 9.16 – Configuration of a closed-loop operation with decision logic in the control station

In the above example we program the nodes from zone 1 to generate one data

item at every 5 seconds with the light value and configure the control station to receive

data from the stream lightMessagesfromZone1Sensors that has the light values

sensed by the nodes from zone 1. The control station is also configured to analyse the

data tuples and verify if light values are less than 105. When the condition is matched,

an actuation command with the instruction of ON is generated and sent to the actuator

LIGHT_ACTUATOR connected to node 1.1.

To exercise the heterogeneous remote configuration capabilities, we define three

different alternatives where the actuator is connected. The first alternative consists on

connecting the actuator to one TelosB node. The second alternative consists on

attaching the actuator to the Arduino node, while in the third alternative the actuator is

attached to the Raspberry node. Figure 9.17 shows a sketch of these three alternatives.

a) TelosB  TelosB b) TelosB  Arduino c) TelosB  Raspberry

Figure 9.17 – Closed-loop alternatives

Chapter 9 Evaluation of MidSN

 181

Figure 9.18 shows the results concerning average and maximum closed-loop

latencies for the three different alternatives shown in Figure 9.17. The latency is

measured as the time taken from sensing node to actuation command at the target node,

passing through the supervision control logic residing at the control station.

To collect the results of Figure 9.18 we ran the experiment for one hour. The

results show that, when we sense and actuate over the TelosB platform, the closed-loop

takes about 50 ms and is always less than 100 ms. If the sensing is done in the TelosB

and the actuation is done by the Arduino, the closed-loop takes on average 250 ms,

about 5 times mores. However, if the actuation is done over the Raspberry PI node, the

closed-loop time is about half of the TelosB.

Figure 9.18 – Closed-loop latency over heterogeneous network

These results can be decomposed into several parts: acquisition, transmission of

data values from sensing node to the control station, processing time, command sending

time to send the actuation command to the actuator, and the command processing time

at the target node. This decomposition identifies which parts consume more time.

Figure 9.19 shows the average and maximum values of latency per part.

Chapter 9 Evaluation of MidSN

 182

c) Average latency per part d) Maximum latency per part

Figure 9.19 – Closed-loop latency over heterogeneous network per system parts

From Figure 9.19 we can conclude that the big latency in the second alternative

(sensing on TelosB and actuation over Arduino) is due to the time needed to deliver a

command to the Arduino node.

 183

10.gggg

Chapter 10

Evaluation of Planning and Monitoring

Approaches

In this chapter, we present the results of experimental evaluation of the planning

and monitoring approaches that were proposed in Chapters 7 and 8. We will consider a

heterogeneous network where WSN sub-networks coexist with cabled-networks. In the

following sections we will describe our setup (Section 10.1). Based on this setup we

will present results comparing observed latencies with the values estimated by the

system planning tool. Section 10.2 reports results concerning monitoring operation over

the setup. Since operation timings may be relative to event occurrence, Section 10.3

reports results when considering event occurrence instant. In Section 10.4 we show how

the algorithm splits the network to meet strict monitoring latency requirements. Section

10.5 shows results concerning the planning algorithm applied to closed-loop operation,

Section 10.6 shows results concerning the position of downstream slots used to send

actuation commands to nodes, and Section 10.7 experiments with the number of

downstream slots. In Section 10.8 we show results concerning multiple actuators with

different timing requirements.

In our approach, to reduce the actuation latency, we add more downstream slots.

The number of downstream slots has significant impact in network lifetime. Section

10.9 reports results concerning lifetime versus the number of downstream slots used to

meet timing requirements.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 184

Lastly, Section 10.9 reports results concerning bounds and debugging tool. We

create a simulation environment where we introduce some random delays in the

messages, to demonstrate how the debugging tool works and its usability.

For completeness, the charts in this chapter are complemented by appendix J,

where we detail the values in table format.

10.1. Setup

The testbed comprises a control station, a cabled network, one gateway and a

WSN sub-network. Figure 10.1 shows a sketch of the setup in our lab.

The WSN sub-network includes 12 TelosB nodes organized hierarchically in a

1-1-2 tree and one sink node (composed by one TelosB node and one computer that acts

as gateway of the sub-network). The setup also includes a control station that receives

the sensor samples, monitors operations performance using bounds, and collects data for

testing the debugging approach.

Figure 10.1 – Setup

The control station is a computer with an Intel Pentium D, running at 3.4 GHz. It

has 2 GB of RAM and an Ethernet connection. The gateway connecting the WSN sub-

network to the cabled network is another computer with similar characteristics.

All computer nodes (gateway and control station) are connected through

Ethernet cables and GigaBit network adapters. The WSN sub-network is connected to

Chapter 10 Evaluation of Planning and Monitoring Approaches

 185

the gateway using the serial interface provided by TelosB nodes. That interface is

configured to operate at 460800 baud/second.

All computers run Linux OS and have specific components developed using java

to do specific tasks. For instance, the gateway computer has a gateway software

component to read data from the serial interface and send it to the control station, and to

receive messages destined for the WSN and deliver them through the serial interface.

The control station has the MidSN-RConfig component to implement remote

configuration and to perform functionality such as closed-loop control.

The WSN sensor nodes run Contiki OS and generate one message per time unit

with a specified sensing rate. Each message includes data measures such as temperature

and light. GinMAC [2] is used at the mac layer by the WSN nodes.

10.2. Planning of Monitoring Operations: Evaluation

The approach proposed in Chapter 7 dimensions the network to meet monitoring

latencies required by applications and users.

Consider that a user provides as user inputs, as defined in Section 7.7.1 of

Chapter 7:

 The network configuration represented in Figure 10.1 (in the format

exemplified in appendix G);

 Indication of option 2 of data forwarding rule (each parent collects data

from all children and only forwards after receiving from all child nodes)

 Monitoring operation (periodic sensor sampling without event

consideration) to run 120 days, at least, over the distributed control

system, with a minimum sampling rate of 1 second and a maximum

desirable monitoring latency of 200 ms.

Based on network configuration, data forwarding rule, latencies and lifetime

requirements, the algorithm creates a schedule for the network. We followed the steps

of the algorithm, creating the schedule of Figure 10.2. This schedule has an epoch with

Chapter 10 Evaluation of Planning and Monitoring Approaches

 186

1 second of length and an inactivity period of 330 ms, determined by eq. 26. It includes

sufficient slots for each node to transmit its data upwards, where one retransmission slot

is added to each transmission slot to enhance reliability. The schedule also includes

transmission slots for sending configuration or actuation commands, slots for time

synchronization and slots for node processing.

Figure 10.2 – TDMA schedule

In the next sub-sections we will verify latency requirements for this resulting

schedule using the latency formulas described in Chapter 7, and we will report results

from the experimental testbed to compare with the values forecasted.

10.2.1. Verifying latencies using the formulas

Based on user requirements and applying eq. 8 of Chapter 7, we obtain:

       gocesMiddlewareSerialWSN tttt
AqE sinPrmaxmaxmaxmax200 

The amount of latency due to non-real-time parts (Serialt , Middlewaret , gocest sinPr) is

characterized by network testing. To characterize those parts from our setup, the setup

ran during 1 hour and we collected time statistics. Table 10.1 shows the characterization

of latencies of non-real-time parts for this setup. All times are given in milliseconds.

Table 10.1 – Non-real-time parts characterization [ms]

Serialt Middlewaret gocest sinPr

Average 2.64 1.12 0.51

Standard Deviation 0.40 0.29 0.12

Maximum 7.79 3.14 0.85

Minimum 1.85 0.67 0.32

Replacing the non-real-time latencies in eq. 8, we obtained:

Node 1 2 3 4 5 6 7 8 9 10 11 12 13
Node 2 2 3 4 5
Node 3 3 4 5
Node 4 4
Node 5 5
Node 6 6 7 8 9
Node 7 7 8 9
Node 8 8
Node 9 9
Node 10 10 11 12 13
Node 11 11 12 13
Node 12 12
Node 13 13

ts

X TX Data Retransmit data RX Data RX retramission data TX Command TX retransmission command Clock synchronization Sink processing Sleeping

Epoch

…

Chapter 10 Evaluation of Planning and Monitoring Approaches

 187

   ][22.18885.014.379.7200max mst
AqEWSN 

Based on eq. 9, assuming that acquisition and sending instants are synchronized

(0SlotTXWaitt), that event occurrence instant is not considered (0Eventt), according to

the prediction model for maximum latencies

     
UPAqE WSNAqWSN ttt maxmaxmax 

where  
Aqtmax is determined by node testing. We assume it to be 20 ms.

The amount of latency due to WSN sub-network is predictable by the analysis of

the schedule. In the schedule (Figure 10.2), each node placed in level 1 (near the sink

node) takes between 10 and 20 ms to deliver a message to the sink node (slot time plus

retransmission slot time). Nodes of the second level take between 90 and 100 ms, while

nodes of the third level take between 150 and 160 ms. This can be deduced from

looking at the schedule of Figure 10.2.The 10 ms tolerance is due to the retransmission

slot in the last link of the path to the sink node. Table 10.2 summarizes the WSN

latencies for the schedule represented in Figure 10.2.

Since the setup is organized as a tree hierarchy with three levels,
AqEWSNt will

assume three different values. Depending on the node position,
AqEWSNt can be 40 ms (20

ms for acquisition ( 
Aqtmax) plus 20 ms for  

UPWSNtmax , according to Table 10.2), 120

ms (20 ms for  
Aqtmax plus 100 ms for  

UPWSNtmax - Table 10.2) or 180 ms (20 ms for

 
Aqtmax plus 160 ms for  

UPWSNtmax - Table 10.2) (eq. 9). Since all of those values are

less than  ][22.188max mst
AqEWSN  we conclude that latency requirements are met with

the network layout provided by the user.

Table 10.2 – Maximum WSN sub-network latency per topology level (resulting from looking the

sub-network schedule)

Level Maximum Latency [ms]

1 20

2 100

3 160

Chapter 10 Evaluation of Planning and Monitoring Approaches

 188

Applying eq. 1 of Chapter 7 with the values of Table 10.1, the monitoring

latency for nodes at level 1 can be predicted as:

85.014.379.740 LatencyMonitoring

The same equation is applied to the other levels, resulting in the times shown in

Table 10.3. All nodes at the same level have the same forecast.

Table 10.3 – End-to-end operation latency estimation per topology level

Level Latency [ms]

1 51.78

2 131.78

3 191.78

10.2.2. Testbed run results

To assess the latency model, we tested the network layout resulting from the

algorithm (Figure 10.2) and compared the latency results with the expected latencies

calculated in the previous sub-section, which were given by applying the latency

formulas of Chapter 7. Figure 10.3 shows statistical information of latency per node,

gathered from an experiment that ran for 3 days.

Figure 10.3 – End-to-end monitoring latency per node

Chapter 10 Evaluation of Planning and Monitoring Approaches

 189

From Figure 10.3 we can see that nodes at the same level have similar latencies.

Figure 10.4 shows statistical information of latency (per level), as well as the values

corresponding to the prediction given by the planning formulas (Table 10.3).

From Figure 10.4 we can conclude that the planning approach predicts well for

this setup. The observed maximum value gathered during the test is always below the

prediction. It is near, but below the planned maximum.

Figure 10.4 – Monitor latency per level with forecast

The latencies shown in Figure 10.4 can be decomposed into the following

latencies: WSN latency, serial interface latency and the middleware latency. Figure 10.5

shows those latencies for a node in the third level.

Figure 10.5 – Monitor latency per network part

Chapter 10 Evaluation of Planning and Monitoring Approaches

 190

The WSN latency is, in average, 170.06 ms, but it can grow up to 180 ms. This

maximum value agrees with the prediction (forecasted values). Concerning other parts

such as serial and middleware latencies, the obtained maximum values show a little

difference to the predicted values, but all of them are below the prediction.

10.3. Considering Event Occurrence Instant

Events may occur in any instant. In order to provide timing guarantees,

considering the instant the event occurs, it is necessary to account for an upper bound

on the extra time from the event instant to the acquisition instant.

Based on the network configuration (Figure 10.1) and the schedule (Figure 10.2)

presented in the previous sections, and assuming 1200 ms as maximum desirable

monitoring latency, eq. 8 determines the maximum monitoring latency for the WSN

sub-network ( 
AqEWSNtmax).

   85.014.379.71200max 
AqEWSNt

Serialt , Middlewaret , gocest sinPr were already shown in Table 10.1.

Since the epoch size defined by the schedule shown in Figure 10.2 has 1 second

(1000 ms),
AqEWSNt for the first level of the tree is given by eq. 2 and results in:

][1040200201000 mst
AqEWSN 

The values used for this calculation concerning
UPWSNt are from Table 10.2.

Applying the same equation to the other levels, we obtain 1120 ms and 1180 ms for

levels 2 and 3, respectively.

In order to test latencies considering event occurrence instance, we inject an

external event at a random instant in each epoch. This experiment ran for 2 hours.

Figure 10.6 shows the observed average and maximum values of latency, as well as the

values forecasted by the formula given in eq. 1, for comparison.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 191

Figure 10.6 – Event detection latency per node (observed and forecast)

From Figure 10.6 we can see that an event takes, in average, half of the epoch to

be identified in the control station. The observed maximum values are similar to the

forecasted maximum latencies, as expected.

10.4. Planning with Network Splitting

The approach proposed dimensions the WSN network to meet latency

requirements. For instance, considering the same setup of the previous experiment, if a

user specifies 500 ms as maximum latency, event occurrence should be reported within

that timing constraint. Since the forecast of maximum latency was much larger (1200

ms), the network should be re-sized to define an epoch which meets the latency

requirement.

Applying the planning algorithm, the initial network is divided into three sub-

networks where each includes one branch only, resulting on the schedule shown in

Figure 10.7.

Figure 10.7 – TDMA schedule to meet the event latency

Node 1 2 3 4 5
Node 2 2 3 4 5
Node 3 3 4 5
Node 4 4
Node 5 5
Node 6
Node 7
Node 8
Node 9
Node 10
Node 11
Node 12
Node 13

10 ms

X TX Data Retransmit data RX Data RX retramission data

TX Command TX retransmission command Clock synchronization

Sink processing Sleeping

320 ms

Chapter 10 Evaluation of Planning and Monitoring Approaches

 192

To evaluate the resulting sub-network and schedule, we built a testbed and ran it

during 2 hours. Figure 10.8 shows the statistical and forecasted values of latency.

Figure 10.8 – Event detection latency (observed and forecast)

From Figure 10.8 we can see that the new layout guarantees the timing

constraints and the forecast values agree with our testbed (maximum latency bounded

by 500 ms).

10.5. Planning of Closed-loop Operation: Evaluation

Closed-loop operations can be configured to be processed inside the WSN sub-

network (through the sink node) or outside the WSN sub-network (through a control

station). Asynchronous closed-loops through the sink node involve sensor nodes

sending sensed values to the sink node, the sink node evaluating a threshold and sending

an actuation command to an actuator node.

Asynchronous closed-loop control outside the WSN network (through a control

station) involves a sensor node sending its sensed value to the control station though the

sink node, the control station computes a decision based in closed-loop control

algorithms, and sending an actuation command back to the sink, which will forward it

to an actuator node.

To exercise closed-loop operations and latency predictions, the setup described

in Section 10.1 was configured for node 4 to be a sensor node and node 13 an actuator.

The setup ran for 3 hours, and we collect the statistic information shown in Figure 10.9.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 193

Figure 10.9 shows the observed closed-loop latency and the closed-loop latency

forecasted by the formulas of Chapter 7. We considered both closed-loops within a

WSN sub-network, and closed-loops outside the WSN sub-network (through a control

station). The results are for the schedule represented in Figure 10.2.

a) Supervision control logic inside embedded devices (sink node)

b) Supervision control logic in the control station

Figure 10.9 – Closed-loop latencies

Figure 10.9 shows the maximum and average observed values and the forecast

values obtained though eq. 5 and 7. The value “forecast [max] if catches downstream

slot” represents the forecast considering that commands reach the sink before the

downstream slot arrives. The “forecast [max]” represents the other possibility, which

Chapter 10 Evaluation of Planning and Monitoring Approaches

 194

occurs when the command reaches the sink node after the schedule reaches the

downstream slots, and that command must wait one more epoch to be transmitted to the

target node.

From Figure 10.9 we conclude that the observed maximum latencies were

always within the bounds defined by the forecasted maximum latencies. In Figure

10.9b) we can also conclude that the observed maximum latencies were always below

the “forecast [max] if catches downstream slot” bound. This means that the time taken

for the sensed data message to go from the sink to the control station, to compute the

threshold condition and to send the actuation command back to the sink node was

sufficiently small to catch the downstream slot in the same epoch.

10.6. Changing the Position of Downstream Slots

From previous latency results (Figure 10.9) we conclude that a large fraction of

the total latency is due to the slotTXforWaitt . To reduce slotTXforWaitt , we can configure the

planning algorithm to position the downstream slots after a specific slot in the epoch as

described in Section 7.7.1 of Chapter 7. For instance, if the position of downstream slots

is changed to just after the upstream slots for the branch where the sensing node is

included (branch 1) (Figure 10.10), slotTXforWaitt is reduced.

Figure 10.10 – TDMA schedule

The schedule represented in Figure 10.10 has the downstream slots placed just

after the upstream slots for branch 1.

Using the same setup for the previous example but with this new schedule, we

ran the experiment again during 3 hours and collected statistics, Figure 10.11 shows the

observed results, compared with forecasted values determined by eq. 5 and 7. Figure

Node 1 2 3 4 5 6 7 8 9 10 11 12 13
Node 2 2 3 4 5
Node 3 3 4 5
Node 4 4
Node 5 5
Node 6 6 7 8 9
Node 7 7 8 9
Node 8 8
Node 9 9
Node 10 10 11 12 13
Node 11 11 12 13
Node 12 12
Node 13 13

10 ms

X TX Data Retransmit data RX Data RX retramission data TX Command TX retransmission command Clock synchronization Sink processing Sleeping

1 second

…

Chapter 10 Evaluation of Planning and Monitoring Approaches

 195

10.12 is a detail concerning slotTXforWaitt for experiments reported in Figure 10.9 and

Figure 10.11.

a) Supervision control logic inside embedded devices (sink node)

b) Supervision control logic inside the control station

Figure 10.11 – Closed-loop latencies

From Figure 10.9 and Figure 10.11 (the comparison detail is also in Figure

10.12) we conclude that the value of slotTXforWaitt was reduced significantly when the

downstream slot position was moved. This modification also reduced the “forecast

[max] if catches downstream slot”, although the “forecast [max]” remains the same,

since it considers always a full epoch.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 196

a) Supervision control logic inside

embedded devices (sink node)

b) Supervision control logic inside the

control station

Figure 10.12 – Detail of slotTXforWaitt latency comparison

The downstream slots were moved 380 ms backwards in the schedule of Figure

10.10, when compared with the schedule of Figure 10.2. From Figure 9.12 we can see

that the difference between slotTXforWaitt in the two cases is about the same value, as

expected.

10.7. Adding Downstream Slots Equally Spaced in the
Epoch

In Section 7.7.1 of Chapter 7, we have proposed that command latencies can be

decreased by adding equally spaced downstream slots. To guarantee latency reduction,

the number of downstream slots can be increased.

Figure 10.13 shows the influence of the number of downstream slots in the end-

to-end closed-loop latency. In this experiment the network shown in Figure 10.1 and the

schedule of Figure 10.2 were used. The closed-loop decision was configured to run in

the control station and the network was configured to send one sample per second. Six

40 minutes experiments were ran corresponding to different number of downstream

slots (1, 2 or 4) and the two closed-loop alternatives (asynchronous and synchronous).

Figure 10.13a) shows results concerning asynchronous closed-loop control,

while Figure 10.13b) corresponds to synchronous closed-loop control.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 197

a) Asynchronous b) Synchronous

Figure 10.13 – Closed-loop latency versus number of downstream slots

From Figure 10.13a) we can see that asynchronous closed-loops are able to catch

the downstream slot in the same epoch where the sensing happened. This is seen by

comparing the observed [max] with “forecast [max] if catches downstream slot”. From

Figure 10.13b) we can conclude that if one downstream slot is used per epoch, the

command waits a maximum of one epoch (1000 ms) to be transmitted to the target

node. In average, a command is delivered in 1/2 of the epoch time plus travel time. In

both Figure 10.13b) and Figure 10.13a), if more slots are used, slotTXforWaitt is

successively reduced to half for each added slot.

10.8. Multiple Close-loops

In this section we consider the case of multiple closed-loops with decision logic

in the control station, with different timing requirements. In this case, the number of

equally spaced downstream slots should be dimensioned to meet the most restrictive

timing requirement. For instance, consider the setup of Figure 10.1 and that we have

four actuators placed in nodes 5, 7, 10 and 13, which must be controlled according to

the sensor data collected by sensors 4, 2, 6 and 12, respectively, with the time

requirements shown in Table 10.4.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 198

Table 10.4 – Closed-loop latency requirements

Case Sensor Actuator Closed-loop latency [ms]

1 4 5 500

2 2 7 250

3 6 10 150

4 12 13 500

From Table 10.4, we can see that the strictest closed-loop time is 150 ms.

Applying eq. 21 of Chapter 7, we obtain the number of downstream slots (Table 10.5)

needed to meet each latency of Table 10.4. Table 10.6 shows the values of each

parameter used in eq. 21 to determine how many slots are needed for each case.

Table 10.5 – Number of downstream slots required to meet latency requirements

Case Sensor Actuator Number of downstream slots

1 4 5 5

2 2 7 7

3 6 10 10

4 12 13 5

Table 10.6 – Latency parameters [ms]

Parameter Case 1:

[4, 5, 500]

Case 2:

[2, 7, 250]

Case 3:

[6, 10, 175]

Case 4:

[12, 13, 500]

 
AqEWSNtmax 180 40 40 180

 Serialtmax 7.79 7.79 7.79 7.79

 Middlewaretmax 3.14 3.14 3.14 3.14

 
gocest sinPrmax 0.86 0.86 0.86 0.86

 
gocesCMDt sinPrmax 0.91 0.91 0.91 0.91

 
DownWSNtmax 30 20 10 30

From Table 10.5 we conclude that 10 downstream slots are needed to meet the

closed-loop time constraint for all configurations of Table 10.4. Figure 10.14 shows the

obtained schedule that meets all closed-loop times. This schedule results from the

Chapter 10 Evaluation of Planning and Monitoring Approaches

 199

planning algorithm, when we configure it to place the downstream slots equally spaced

in the epoch.

Figure 10.14 – TDMA schedule that meets the strictest closed-loop latency

Figure 10.15 shows the closed-loop latencies that were observed, the forecasted

values and the maximum admissive latency indicated by the user for the closed-loops

(user requirement).

Figure 10.15 – Asynchronous closed-loop latency for all configurations

Figure 10.15 shows that all forecast [max] bounds were met in the experiment.

The total latencies vary from case 1 to case 4 because the sensors and actuators are in

different positions of the network layout. In cases such as case 1 and case 4 more than

one downstream slot were passed by before the actuation command was determined and

ready to go down.

From Figure 10.15 we can also conclude that required timings were always met

if actuation commands catch the first downstream slot ahead after receiving the sensed

data by the sink node. Actuator 10 has the strictest latency requirement (150 ms) but, as

we can see in the figure, that restriction is met. However, the figure also shows that if

Node 1 2 3 4 5 6 7 8 9 10 11 12 13
Node 2 2 3 4 5
Node 3 3 4 5
Node 4 4
Node 5 5
Node 6 6 7 8 9
Node 7 7 8 9
Node 8 8
Node 9 9
Node 10 10 11 12 13
Node 11 11 12 13
Node 12 12
Node 13 13

10 ms

X TX Data Retransmit data RX Data RX retramission data TX Command TX retransmission command Clock synchronization Sink processing Sleeping

1 second

Chapter 10 Evaluation of Planning and Monitoring Approaches

 200

actuation commands did not catch the first downstream slot ahead, and the second

downstream slot would be caught instead, the latency requirement for case 3 would not

be met. The command would take about 180 ms to be delivered to the actuator at node

10, while the requirement was 150 ms.

Figure 10.16 shows the results concerning latency for synchronous closed-loop

control.

Figure 10.16 – Synchronous closed-loop latency for all configurations

From Figure 10.16 we can conclude that all commands are delivered within 132

ms, as expected from applying the forecast formulas of the algorithm. This means that

the strictest constraint (150 ms of case 3) is met, while other configurations show a

large tolerance. In this experiment all closed-loops took more or less the same times

because synchronous closed-loop latencies concerns control station to actuator latencies

only (eq. 6 of Chapter 7).

10.9. Energy and Lifetime Issues

When we add more downstream slots, the node will wake up more times in the

epoch, which will decrease its lifetime. Figure 10.17 shows the radio duty-cycle of

nodes when one downstream slot is used (schedule of Figure 10.2). Figure 10.17a)

shows the duty-cycle per node and Figure 10.17b) shows per network level.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 201

From Figure 10.17 we can see that nodes of the first level are awake about 22%

of the epoch while nodes of the third level are awake only 4% of the epoch. If we

increase the number of downstream slots, all nodes will awake more time per epoch,

which will decrease the lifetime.

a) Duty-cycle per node b) Duty-cycle per network level

Figure 10.17 – Radio duty-cycle

Assuming that nodes have two batteries, each with 1.5V and 800mAh, the total

available energy can be calculated as:

Joules 8640 =

3600*0.8*3 =

3600AhV = [Joules]Energy Battery 

Considering that a node consumes a constant current of 0.9 mA when the radio

is on and 0.1 mA when the radio is off, the node lifetime can be estimated by applying

eq. 32 described in the Chapter 7. For example, considering the schedule represented in

Figure 10.2 and a node placed at the third level of the tree, its lifetime is given by:

  

days 225,2252

cycles 19459459

3101.006.0106.0109.0

8640
33








TotalT

Table 10.7 shows the lifetime prediction for each level of the tree.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 202

Table 10.7 – Lifetime prediction

Level Node Lifetime [days]

1 120,7729

2 136,6120

3 225,2252

Figure 10.18 shows how the lifetime decreases with the number of downstream

slots. If one downstream slot was used, the nodes of the first level can operate during

about 120 days. Nodes of the second level will be available during 136 days, while

nodes of the third level can operate during 225 days. These values will decrease

according to the number of downstream slots. For instance, if we add 10 downstream

slots, we will reduce the configuration or actuation command latency, but the lifetime of

the node will decrease drastically. In this situation, a node of the first level will only be

available for 59 days.

Figure 10.18 – Radio duty-cycle estimation

10.10. Testing Bounds and the Performance Monitoring
Tool

The proposed approach for performance and debugging allows defining bounds

to classify each message. The bounds can be applied to latencies, delays or both.

To exercise the use of bounds and debugging (Chapter 8), we created a monitor

operation and introduced a “liar” node which injects 10 ms of delay in the first of every

Chapter 10 Evaluation of Planning and Monitoring Approaches

 203

two consecutive messages that travel through it. Using the setup shown in Figure 10.1,

copied to Figure 10.19, we will replace node 3 by the “liar” node.

Figure 10.19 – Setup with “liar” node

Moreover, to simulate some losses in the network, we changed the node 4

configuration to consecutively send one message and discard the next message. This

allows us to simulate 50% of message losses.

Figure 10.20 and Figure 10.21 show the results concerning message delays.

Figure 10.20 reports values concerning delay without the “liar” node, while Figure

10.21 reports delays after replacement of node 3 by the “liar” node.

Figure 10.20 – Message delay without “liar” node

From Figure 10.20 we can conclude that consecutive messages arrive at the

control station, in average, within 0.5 to 2 ms. This value can grow up to a maximum of

8 ms.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 204

Figure 10.21 – Message delay with “liar” node

After introducing our “liar” node and running the monitoring operation for 24

hours, we obtained the chart of Figure 10.21. This figure shows that the delay of nodes

4 and 5 increased. These nodes send their messages to the control station passing

through the “liar” node, which is node 3. In this case, we can see that the delay of two

consecutive messages increased, in average, to 12 ms, and up to a maximum of 20 ms.

Using the PM described in Chapter 8, we can also define bounds for the message

delay. Assuming that each message should arrive at the control station within a

maximum delay of 10 ms, we can define a delay bound and analyse the results.

Figure 10.22 shows the percentage of messages classified into each category (in-

time, out-of-time, lost), according to a delay bound of 10 ms and lost timeout of 1s (the

timeout when a message is considered lost).

From Figure 10.22 we conclude that 88.6% of the messages are delivered within

the bound, but 6.8% are delivered out of bounds and 4.5% are lost. These numbers are

as expected:

 Messages lost – there are 12 nodes sending data messages, node 4 fails

one in every two messages. That results in
2*12

1
 losses, which agrees

with the result of 4.5% losses that was obtained.

 Messages out of bound – there are 12 nodes sending data messages, node

4 sends only half of its messages and half of them arrive delayed.

Concerning node 5, half of its messages arrive delayed. That results in

Chapter 10 Evaluation of Planning and Monitoring Approaches

 205

2*12

1

3*12

1
 messages out of bound, which agrees with the result of

6.8% out of bound that was obtained.

 Messages in time – 88.6% of messages are delivered in time, that results

from the total number of expected received messages minus the number

of losses and out of bound 

















2*12

1

3*12

1

2*12

1
1 .

Figure 10.22 – Message classification according to delay bound of 10 ms

As we described in Chapter 8, the user can also explore event properties (in this

case, delays) and find where the problem occurred. For instance, the user interface

includes per node evaluation such as the one in Figure 10.23, which shows which

node(s) is failing.

Chapter 10 Evaluation of Planning and Monitoring Approaches

 206

Figure 10.23 – Message classification according to delay bounds per node

From Figure 10.23 we can conclude that node 4 is responsible for the losses

represented in Figure 10.22. It is losing 50% of the messages, as expected.

Figure 10.23 also shows that the delay bound is not met by nodes 4 and 5. In this

case, further debugging allows the user to identify the path of each message and to

check where it took longer than expected.

For instance, if we explore the path and delay parts of node 5, we can conclude

that messages sent by that node are waiting, in average, 10 ms in the transmission queue

of node 3 (our “liar” node), which is greater than the expected average delay value of

2 ms for node 3 sending messages to the control station seen in Figure 10.20.

 207

11.gggg

Chapter 11

Conclusions and Future Work

This thesis proposed a middleware architecture (MidSN) to handle operation

over heterogeneous distributed systems with embedded devices, and to provide timing

guarantees in those contexts. It proposed mechanisms to achieve node referencing and

homogenization of heterogeneous underlying systems (hardware and software). A data

and processing model, and operations were also proposed, which provide flexibility in

configuration and processing over the heterogeneous sensor network.

State-of-the-art in middleware and remote configuration techniques used in

wireless sensor network platforms was reviewed, and we discussed their applicability in

heterogeneous sensor networks with WSN sub-networks.

A middleware architecture and operations model for uniform configuration and

operation were proposed. The model views the whole system as a distributed system

and any computing device as a node (inside or outside of the WSN, regardless of

hardware or operating system) with the same remote configuration capabilities and

operation interfaces.

We have described the architecture and details of the approach. In the

experimental evaluation, an implementation of the middleware was developed for four

different hardware and software platforms. These implementations have shown the

advantage of having defined the architecture and that its embodiments are able to run

Chapter 11 Conclusions and Future Work

 208

over resource constrained-devices or over more powerful devices such as Raspberry PI

or computers.

We also built a testbed and defined a set of tests that show that the

implementation of the architecture is able to configure both sensor nodes and control

stations easily and using exactly the same calls. From our test runs we extracted logs

and displayed results concerning memory, execution time, processing capabilities and

correct configuration of all devices.

Another contribution of this thesis is a network and operations planning

algorithm and tool designed to meet timing requirements over the middleware

architecture. In order to make heterogeneous distributed systems more reliable in

practical contexts with constraints such as timing requirements, there is a need for

approaches to help a user correctly plan the network and its operations (e.g. monitor,

control). We proposed and evaluated an approach to plan the network, monitor and

debug the performance. The approach schedules operations, predicts latencies and

subdivides the wireless sensor network until the predicted latencies meet operation end-

to-end latency requirements.

The approach also provides mechanisms to classify messages concerning their

bounds and provides feedback about how many messages arrived at the control station

in-time or out-of-time. Our experimental results show that it correctly forecasts

execution latencies in several situations.

Since integration is easy in the middleware architecture and no programming is

required from users, the cost of inclusion of new platforms is reduced, which allows

creating heterogeneous distributed systems more quickly and by any user.

Because of the amplitude and the issues raised by heterogeneity, we expect that

this work can be used as a starting point for future research in extending this proposal

and its findings.

The thesis is not a closed proposal and raises interesting issues that require

further investigation. Since MidSN is based on drivers, it can incorporate different

Chapter 11 Conclusions and Future Work

 209

alternatives as underlying platforms. We already developed the node component of the

middleware for Java Virtual Machines, in particular for computers (e.g. PCs) and

Raspberry PI. It is interesting to investigate the development of micro Java Virtual

Machines for other tiny devices, in which case MidSN would be deployable directly

without further development for those devices. Other IP-based communication-related

protocols that can be applied to tiny devices, such as 6LowPan [66], CoAP [74], HTTP,

REST and Web-services, are also useful for future research regarding MidSN. They

provide a network heterogeneity hiding layer over which MidSN is able to offer

configuration and operations of the whole heterogeneous distributed system, without

any programming.

The issue of how to deal with configuration and operation in distributed systems

with thousands of nodes and how to plan and provide timing guarantees in such large

scale systems should also be investigated.

The trade-off between application specificity and middleware generality is

another research challenge. It is important to integrate application knowledge into the

services provided by the middleware, because it makes the middleware ready for more

applications.

Besides these challenges, there are challenges related to adapting the MidSN

structure to tiny devices, since MidSN needs a certain amount of resources that may not

be available in some devices. Conversely, MidSN can evolve into a full-featured stream

processing engine when it runs in platforms with high computation capabilities.

The operation times planning approach proposed in this thesis can be used

regardless of specific operating systems and network protocols of the heterogeneous

system. Research issues in that context include how these findings can be applied to

industrial standards and protocols such as Fieldbus, Hart and wirelessHart. Additionally,

it is interesting to investigate and evaluate the approach while replacing the non-real-

time components by real-time components, such as RT Kernel or java real time.

Chapter 11 Conclusions and Future Work

 210

Another interesting issue is how operations planning and timing guarantees

would be conceived for token-based distributed control system architectures and

protocols such as Fieldbus.

Generally, the planning approach and latency models described in this thesis can

be used as starting points for further future research in timing guarantees for

heterogeneous distributed systems.

 211

12.gggg

Appendix A

Communication Driver – Code Example

In this Appendix, we show the implementation of the communication driver for

ContikiOS, using Contiki-C and for Linux, using java.

In Figure A.1a) we show the implementation for Contiki-OS. This

implementation includes four methods:

packet_recv – allows receiving new data packets and notify the MidSN-NC that

a new packet is available to be consumed. A new_message_arrives flag is analysed by

the method to check if the last received message was consumed or not. If a new

message arrives and the last received message was not consumed

(new_message_arrives different of zero), the driver discards it.

open_connection – allows starting a new peer-to-peer connection between two

nodes. As described in the driver specifications, this method receives as arguments an

address and a port to the target node.

send_to – is the method that allows sending messages (data or commands) to

other nodes. It receives an address and a buffer with data/command. A low-level packet

is built to be sent as soon as possible by the communication protocol.

Appendix A Communication Driver – Code Example

 212

static void packet_recv(struct abc_conn *c)

{

 if (new_message_arrives == 0) {

 msg_len =

packetbuf_copyto(&packet);

 new_message_arrives = 1;

 } else

 printf("MidSN-NC: Packet

Dropped\n");

 process_poll(&midsn_ioAdapter);

}

static const struct abc_callbacks abc_call

= {packet_recv};

static struct abc_conn abc;

void open_connection(char * address, u16_t

port) {

 abc_open(&abc, 128, &abc_call);

}

void send_to(char * address, struct

midsn_packet * packet) {

 uint16_t * addr = (uint16_t *)

address;

 packetbuf_clear();

 packetbuf_copyfrom((u8_t *) packet,

(packet->size + MIDSN_PKT_HEADER_SIZE));

packetbuf_set_addr(PACKETBUF_ADDR_RECEIVER,

addr);

 if (abc_send(&abc))

 printf(" %u bytes sent\n",packet-

>size + MIDSN_PKT_HEADER_SIZE);

 else

 printf("Msg sending fail!\n");

}

struct midsn_packet *

midsn_get_received_packet() {

 new_message_arrives = 0;

 return &packet;

}

private byte[] packet = new byte[256];

public int new_message_arrives = 0;

public void open_connection(String ip, int

serverPort) {

 try {

 s = new Socket(ip, serverPort);

 createInputOutputStrems();

 } catch (IOException e) {

 System.out.println("Socket:" +

e.getMessage());

 }

}

public void close_connection() {

 if (s != null) {

 try {

 s.close();

 }catch (IOException e) {/*close failed*/}

 }

}

public void send_to(string address, byte[]

msg, int size) {

 try {

 output.writeInt(size);

 output.write(msg);

 } catch (IOException ex) {

 System.out.println("DRIVER (send_to):"

+ ex.getMessage());

 }

}

public void run(){

 while (true) {

 if (new_message_arrives == 0){

 int nb;

 try {

 nb = input.readInt();

 byte[] packet = new byte[nb];

 for (int i = 0; i < nb; i++) {

 packet[i] = input.readByte();

 }

 new_message_arrives = 1;

 notify(); //midsn_ioAdapter is the

observer that is notified

 } catch (IOException ex) {

 System.out.println("DRIVER (run):"

+ ex.getMessage());

 }

 }

 }

}

public byte[] midsn_get_received_packet() {

 new_message_arrives = 1;

 return packet;

}

a) Using Contiki-OS b) Using Java for Linux

Figure A.1 – Implementation of the communication driver

Appendix A Communication Driver – Code Example

 213

midsn_get_received_packet – is the method that gives the received message to

the io_Adapter of MidSN_NC. When the message is pulled by the MidSN-NC, this

method sets the new_message_arrives flag to zero, which means that there isn’t a new

message to be consumed by the MidSN_NC.

Similar to the Contiki-OS implementation, Figure A.1b) shows the

communication driver implementation using Java, an object-oriented language. In this

implementation we use a TCP socket. The functionality of each method is equivalent to

the previous description, where the run method represents the packet_recv method

described above.

Appendix A Communication Driver – Code Example

 214

 215

13.gggg

Appendix B

The Catalog Structure

In this Appendix, we show the structure of the MidSN Catalog (Figure B.1). It is

XML-based Catalog. This Catalog is used to keep information about nodes concerning

addresses (global IP address and proprietary communication address), current node

configuration and node status. It is also responsible for keeping a history of submitted

configurations and network configuration.

<MidSN_Catalog>

 <Gateway>

 <id> net1 </id>

 <ip_Address> 10.3.3.82 </ip_Address>

 <iIP_address> 10.3.3.82 </iIP_address>

 <iIP_port> 5000 </iIP_port>

 <iWSN_protocol> Rime </iWSN_protocol>

 <iWSN_address> 0x0000 </iWSN_address>

 <iWSN_port> 5000 </iWSN_port>

 <iWSN_channel> 20 </iWSN_channel>

 <node>

 <id> 1.1 </id>

 <ip_Address> 10.3.3.101 </ip_Address>

 <comm_protocol> Rime </comm_protocol>

 <protocol_address> 0x0001 </protocol_address>

 <protocol_port> 5000 </protocol_port>

 <protocol_channel> 20 </protocol_channel>

 <controllers>

 <controller>

 <name> PID controlled </name>

 <running> no <running>

 </controller>

 <controller>

 <name> PD controlled </name>

 <running> yes <running>

 </controller>

 </controllers>

 <streams>

 <stream>

 <name> monitorStream </name>

 <rate> 3s </rate>

 <window> 1 </window>

 <sendTo> 10.3.3.82 </sendTo>

Appendix B The Catalog Structure

 216

 <deactivated> no </deactivated>

 <measures>

 <measure>

 <measure_name> Level </measure_name>

 <measure_metric> value </measure_metric>

 </measure>

 <measure>

 <measure_name> Pressure </measure_name>

 <measure_metric> value </measure_metric>

 </measure>

 </measures>

 </stream>

 </streams>

 <alarms>

 <alarm>

 <name> pressureAlarm </name>

 <rate> 1s </rate>

 <window> 1 </window>

 <sendTo> 10.3.3.82 </sendTo>

 <deactivated> yes </deactivated>

 <measure>

 <measure_name> Pressure </measure_name>

 <measure_metric> value </measure_metric>

 </measure>

 <operator> > </operator>

 <measure>

 <measure_name> Value </measure_name>

 <measure_metric> 2 </measure_metric>

 </measure>

 </alarm>

 </alarms>

 <actions>

 <action>

 <name> pressureAlarm </name>

 <rate> 1s </rate>

 <window> 1 </window>

 <sendTo> -1 </sendTo>

 <deactivated> no </deactivated>

 <measure>

 <measure_name> Pressure </measure_name>

 <measure_metric> value </measure_metric>

 </measure>

 <operator> > </operator>

 <measure>

 <measure_name> Value </measure_name>

 <measure_metric> 3 </measure_metric>

 </measure>

 <actuation>

 <actuator> DAC0 </actuator>

 <value> 100 </value>

 </actuation>

 </action>

 </actions>

 <status>

 <battery> 2.9 </battery>

 <msg>

 <sent> 20 </sent>

 <received> 2 </received>

 <forwarded> 2 </forwarded>

 <lost> 2 </lost>

 </msg>

 <sensors>

 <sensor> Level </sensor>

 <sensor> Pressure </sensor>

 </sensors>

 <actuators>

 <actuator> DAC0 </actuator>

 <actuator> DAC1 </actuator>

 </actuators>

 </status>

 </node>

 <node>

Appendix B The Catalog Structure

 217

 <id> 1.2 </id>

 <ip_Address> 10.3.3.102 </ip_Address>

 <comm_protocol> Rime </comm_protocol>

 <protocol_address> 0x0002 </protocol_address>

 (...)

 </node>

 (...)

 </Gateway>

 <node>

 <id> pc1 </id>

 <ip_Address> 10.3.3.87 </ip_Address>

 <comm_protocol> IP </comm_protocol>

 <protocol_address> 10.3.3.87 </protocol_address>

 <protocol_port> 5000 </protocol_port>

 (...)

 </node>

 (...)

</MidSN_Catalog>

Figure B.1 – MidSN-Catalog (structure)

Appendix B The Catalog Structure

 218

 219

14.gggg

Appendix C

User API

In this Appendix, we describe the user API included by the MidSN architecture.

As discussed before, this API is extensible and can include features to fit different

application contexts.

The functionalities of the MidSN API described here are divided into seven

categories. Next, we describe each category and its calls.

C.1. Node

The MidSN API has a set of functionalities that allows controlling the nodes. It

includes primitives to activate/deactivate nodes, i.e. all executions inside a node are

suspended if the deactivate node call is issued to the node.

Besides activate/deactivate nodes, there are also primitives to activate/deactivate

sensors, request node status, reset a node and ping a node.

Activate/deactivate sensors allows controlling which sensors are able to sample.

This allows, for instance, to save energy by switching on and off the sensors.

The request node status primitive allows collecting information about nodes (e.g.

battery, messages losses, and latencies), while the reset function resets a node and starts

MidSN-NC with default configurations.

Appendix C User API

 220

The ping command is used to verify that a node is live and that it can

communicate with another.

Table C.1 shows the default node primitives included in MidSN API. All of

these primitives use a list of nodes ([NODE]) as argument to identify the nodes where

the operation is applied. This list of nodes can include WSN nodes and/or PCs.

Table C.1 – Node primitives

Function Primitive

Activate / deactivate

nodes

MIDSN.Node.run([NODE,],

 TRUE or FALSE);

Activate / deactivate

sensors and actuators

connected to each node

MIDSN.Node.Sensors.run (([NODE,],

 [SENSOR,],

 TRUE or FALSE);

Request node status MIDSN.Node.status([NODE,]);

Reset a node MIDSN.Node.reset([NODE,]);

Ping a node MIDSN.Node.ping([NODE,]);

C.2. Operations and filters

Operations and filters functionalities allow creating operations and filters to be

processed in nodes. This category of API functionalities includes primitives to create

operations (periodical or one time operations), activate/deactivate their execution,

change the execution periodicity or delete them from nodes.

Each operation corresponds to data collection, processing and sending tasks

according to the operation configurations. It allows, for instance, collecting sensor

readings, computing an average and sending the output result to other node.

The activate/deactivate operation execution primitives are used to suspend the

execution of a stream. For instance, we can use these primitives to suspend execution of

an operation during maintenance and resume execution afterwards.

The change execution periodicity primitive allows changing the rate of an

operation. It is useful to allow changing only the rate instead of changing all operation

configurations.

Appendix C User API

 221

This category of API functionalities also includes primitives to create smoothing

filters over measures, which are associated to operations. Assuming an industrial

environment where noise is an important issue and appears coupled to the measures,

this filter allows, for instance, to reduce the influence of noise by always averaging over

a set of sensed values.

Table C.2 shows the MidSN API Primitives concerning operations and filters.

Table C.2 – Operations and filters primitives

Function Primitive

Create Operation MIDSN.Operation.create([NODE,],

 OP_NAME,

 ACQUISITION_RATE,

 SEND_RATE,

 WINDOW_SIZE,

 <List> MEASURE (source, metric),

 <List> CLIENT (address, port)

);

Delete operation from

node

MIDSN.Operation.drop(([NODE,],

 OP_NAME

);

Start and stop operation

execution

MIDSN.Operation.run(OP_NAME,

 TRUE or FALSE

);

Change operation

periodicity

MIDSN.Operation.setPeriodicity(OP_NAME,

 NEW_RATE

);

Create data filter

(where)

MIDSN.Filter.create([NODE,],

 FILTER_NAME,

 OP_NAME,

 CONDITION (MEASURE, operator, MEASURE)

);

Drop data filter MIDSN.Filter.drop([NODE,],

 FILTER_NAME

);

Appendix C User API

 222

Depending on the functionality, some arguments are needed to manage

operations and filters. For instance, the Create Operations call creates a stream that is

processed and sent to another node or control station. This primitive needs arguments

such as a unique identifier, an acquisition rate, an execution rate, a list of measures that

must be included into the stream, and a list of client (other nodes) that will receive the

stream output.

Each operation can be executed periodically (with a period defined through the

SEND_RATE field) or one time (SEND_RATE = 0). It is also possible to create operations

that only collect data and store it in the node (SEND_RATE = -1). In this case, data

received by a node is stored inside it without any processing.

 Moreover, operations have a window size parameter associated to them. This

value is used to limit data values used to process computations, and/or to limit the

number of tuple stored in the corresponding stream.

The stream output will be constructed based on the configured measures. Each

measure has a measure name (e.g. temperature, humidity, light) and a metric (e.g.

average, maximum, minimum, percentile). Figure C.1 shows the calls to configuration

web-service API methods that were issued by the configuration software to start a

sensor collection operation in nodes 1.1, 1.2, 1.3 with 3 seconds of acquisition and

sending rates.

// create stream operation for reading from sensor

(a) MIDSN.Operation.create([1.1, 1.2, 1.3] ,

 “pressureStream”,

 3s,

 3s,

 1,

 {(PRESSURE, VALUE)},

 {ControlStation, PS}

);

Figure C.1 – Piece of code to create periodic operation and send data to the control station

Appendix C User API

 223

Besides configuring nodes to send data readings, it is needed to configure the

control station to collect it. Figure C.2 shows how to configure the control station to

collect the sensor readings. This configuration is done automatically by the RConfig

component when the configuration of Figure C. is called. However its configurations

can be changed by the user.

// save stream at control station

(b) MIDSN.Operation.create(ControlStation ,

 “pressureStreamCS”,

 -1,

 -1,

 10000,

 {(“pressureStream”, VALUES)},

 -1

);

Figure C.2 – Piece of code to collect sensor reading in control station

In the example of Figure C.2 we create an operation with the identifier

“pressureStreamCS” that will receive values from the stream “pressureStream” and

store them until reaching the maximum number of samples, in this case 10000 samples.

The fields ACQUISITION_RATE, SEND_RATE, and CLIENT are filled with -1 to indicate

that it is not a periodic operation with acquisition or sending parts and the values are not

sent to other nodes.

During the lifetime of the network, we can change its configuration. In the next

example we will use the API to change the rate from 3 to 5 seconds, and 1 minute after

that we stop the operation. The following code extracts are used to perform this.

//Modify the operation rate to every five seconds:

MIDSN.Operation.setPeriodicity(“pressureStream”, 5s);

//Stop operation execution (then restart):

MIDSN.Operation.run(“pressureStream”, FALSE);

(MidSN.Operation.run(“pressureStream”, TRUE);)

Figure C.3 – Piece of code to change operation rate, stop and start the execution

Appendix C User API

 224

In some applications, especially in industrial applications, the readings gathered

from physical sensors may need to be filtered. For instance, to reduce the influence of

noise, it is possible to apply averaging over some values which is a smoothing filter

over the measures. Figure C.4 shows another example of how to create a filter over the

pressure values. In this example, we removed all values that were above 6 bars.

//Modify the operation rate to every five seconds:

MIDSN.Filter.create([1.1, 1.2, 1.3],

 “Pressure_NoNoise”,

 “pressureStream”,

 CONDITION ((PRESSURE, VALUE), <, (VALUE, 6))

);

Figure C.4 – Piece of code to create a filter

C.3. Alarms

In some applications, alarms are needed to inform a user of an imminent or

occurring emergency. MidSN alarm API functionalities presented here were created to

establish a configuration interface for those applications, where functionalities to create,

drop, start and stop alarms were included. Those alarms are based on conditions that are

submitted by users.

Alarms are used to specify an operation that is sent each time a specific

condition occurs in node(s). The condition is defined by a set of parameters such as, an

identifier, a condition and a list of clients that will receive the alarm values.

The alarm configuration includes a condition that needs to be true to send data to

the clients (other nodes). Each condition is defined by two measures and one operator,

where the operator can assume one of the following symbols: <=, <, =, >, >=. It allows,

for instance, creating conditions similar to avg(temperature) > 30 ºC.

Table C.3 shows the API Primitives concerning alarms.

Appendix C User API

 225

Table C.3 – Alarm primitives

Function Primitive

Create Alarm MIDSN.Alarm.create ([NODE,],

 ALARM_NAME,

 OP_NAME,

 CONDITION (MEASURE, operator, MEASURE),

 <List> CLIENT (address, port)

);

Delete Alarm from

node

MIDSN.Alarm.drop(ALARM_NAME);

Start and Stop Alarm

verification

MIDSN.Alarm.run(ALARM_NAME,

 TRUE or FALSE

);

In the next example (Figure C.5) we configure an alarm in the control station

when pressure sensor data is above a certain threshold (3 bars). We also create another

alarm on a sensor node 1.1 for the same effect, but with a different threshold (2 bars).

//Raise alarm on the control station every time pressure goes

above a value of 3 bars:

MIDSN.Alarm.create(controlSation,

 “ServerPressureAlarm”,

 “pressureStream”,

 CONDITION ((PRESSURE, VALUE), >, (VALUE, 3)),

 -1

);

//An alarm is also to be raised on the sensor node every time

pressure goes above a value of 2 bars:

MIDSN.Alarm.create(1.1,

 “pressureAlarm”,

 “pressureStream”,

 CONDITION ((PRESSURE, VALUE), >, (VALUE, 2)),

 {ControlStation}

);

Figure C.5 – Piece of code to create an alarm

Appendix C User API

 226

C.4. Actions

MidSN also provides functionalities to create and manage actions. Actions are

used to actuate in nodes when a specific condition occurs. Each action is associated to

an operation and includes a condition and an actuation. The condition is defined the

same way as creating an alarm.

The actuation is defined though the indication of an actuator, the value that the

node must write to the actuator and the node address where the actuator is connected. If

the actuation is done in the same node, this field is filled with -1. Table C.4 shows the

syntax of these functionalities.

Table C.4 – Action primitives

Function Primitive

Create Action MIDSN.Action.create([NODE,],

 ACTION_NAME,

 OP_NAME,

 CONDITION (MEASURE, operator, threshold),

 ACTUATION (

 ACTUATOR_NAME,

 value,

 TARGET_NODE

)

);

Drop Action MIDSN.Action.drop(ACTION_NAME);

Actions can be configured to prevent accidents. Assuming that pressure above 5

bars can explode a pipe (for example), we can specify an action inside a node to switch

on a valve when pressure goes above 5 bars. Each action is executed every time that the

corresponding operation is executed. Figure C.6 shows how to configure an action to

handle those specifications.

This example consists on evaluating (inside node 1.1) the condition over each

pressure value of the stream “pressureStream”, and actuating over the PIPE_VALVE

(connected to the same node) if the condition is true.

Appendix C User API

 227

MIDSN.Action.create(1.1,

 “pressureAction”,

 “pressureStream”,

 CONDITION ((PRESSURE, VALUE), >, (VALUE, 5)),

 ACTUATION (PIPE_VALVE, OPEN, -1)

);

Figure C.6 – Piece of code to create an action

C.5. Actuations

MidSN allow users to submit actuation commands directly to each node. Table

C.5 shows the primitive used to submit actuation commands directly to nodes. This

primitive receives as arguments, a list of nodes where the actuation will be performed

and the actuation parameters. Each actuation is defined by the actuator identifier and the

value that we want to apply to the actuator.

Table C.5 – Actuation primitives

Function Primitive

Send and apply

actuation value

MIDSN.Actuate([NODE,],

 ACTUATION (ACTUATOR_NAME, <parameters>)

);

C.6. Publish/Subscribe

To interface MidSN with external applications, the proposed architecture

includes a publish/subscribe mechanism. Table C.6 shows the API primitives that allow

subscribing and unsubscribing stream data.

Table C.6 – Publish/Subscribe primitives

Function Primitive

Subscribe Data MIDSN.PS.subscribe(SUBSCRIBER_ADDRESS,

 SUBSCRIBER_RECEPTION_PORT,

 OP_NAME,

 CONNECTION_TIMEOUT

);

Unsubscribe data MIDSN.PS.subscribe(SUBSCRIBER_ADDRESS,

 OP_NAME

);

Appendix C User API

 228

The subscribe stream data function allows to subscribe stream data. To do a

subscription, external applications need to call this function with the network address, a

port where data will be received, the stream data name and the timeout used to close

connection between the publisher (MidSN) and the external application that wants to

receive stream data. This function must be called for each stream data subscription.

Figure C.7 shows an example of using the subscription functionality.

MIDSN.PS.subscribe(10.3.1.132,

 5000,

 “pressureStream”,

 60000 //ms

);

Figure C.7 – Piece of code to subscribe stream data

The example consists on a subscription to the “pressureStream” configured in

Figure C.. Upon receiving stream data, the publisher will send it to the address and port

specified in the call, 10.3.1.132 and 5000, respectively. Lastly, the timeout value

(60000) is used to close the connection with the client. For instance, if the connection of

the nodes 1.1, 1.2, 1.3 is lost, the stream “pressureStream” will never arrive at the

publish/subscribe. After this timeout, the publisher will close the connection to the

external application, because it is not needed. Meanwhile, a new connection is opened if

the stream “pressureStream” arrives at the publish/subscribe.

C.7. Agents

MidSN also provides functionalities to receive agents over-the-air from users. It

offers functions to dynamically send agents to nodes, load an agent from flash memory

and prepare it to run with default values, start/stop agents, drop an agent or change

parameters used by the agent. Table C.7 shows the primitives developed to manage

agents in nodes.

Appendix C User API

 229

Table C.7 – Agent primitives

Functionality Primitive
Send an Agent MidSN.Agent.create ([NODE,],

 AGENT_ID,

 AGENT_CODE_PATH

);

Drop Agent MidSN.Agent.drop ([NODE,],

 AGENT_ID

);

Load Agent MidSN.Agent.load([NODE,],

 AGENT_ID

);

Unload Agent MidSN.Agent.unload([NODE,],

 AGENT_ID

);

Start and Stop Agents MidSN.Agent.start([NODE,],

 AGENT_ID,

 <INIT_VALUES>,

 TRUE or FALSE

);

Send Parameters to
Agents

MidSN.Agent.setParameters([NODE,],

 AGENT_ID,

 <List> VALUES

);

Users who want to add functionalities dynamically to a node should use this set

of primitives. It allows, for instance, sending an agent to a node. To do this, users need

to develop the agent code, compile it and call the “MidSN.Agent.create” method. This

method will receive as argument the target node(s), an agent id to identify the agent and

the path to the binary image code. Figure C.8 shows an example of using this

functionality.

Appendix C User API

 230

MidSN.Agent.create (Node1.1,

 “PID_controller”,

 C:\\controllers\pid.ihex

);

Figure C.8 – Piece of code to send an agent

After the binary image is loaded by nodes, the user needs to call the load and

stats functions to execute the agent in the node. Figure C.9 shows how to do this.

Since we are assuming that our controller doesn’t need initial parameters, we use

-1 in the <INIT_VALUES> field.

// load the agent

MidSN.Agent.load (Node1.1,

 “PID_controller”

);

// start it execution

MidSN.Agent.run (Node1.1,

 “PID_controller”,

 -1,

 TRUE

);

Figure C.9 – Piece of code to send an agent

 231

D.gggg

Appendix D

Custom Code Agents – Code Example

In this Appendix, we show the code for an agent who computes a closed-loop

algorithm using the data collector module (NC-GinApp-DC) to read data from a stream

and to actuate over the environment through the NC-GinApp-AA module.

In this example we develop an agent to configure a stream to run inside the small

operating machine of the MidSN-NC, read data from the stream to our agent

periodically, and compute a PID value. After the computation, the agent calls the

MidSN-NC to write the actuation value to the DAC0 actuator.

PROCESS_THREAD(test_blink, ev, data)

{

 static struct etimer t;

 PROCESS_BEGIN();

 uint16_t period = CLOCK_SECOND;

 etimer_set(&t, period);

 structure SQL sql;

 sql.select[0] = SENSOR_TEMPERATURE;

 sql.select[1] = END;

 sql.from[0] = SENSOR_TEMP;

 sql.from[1] = END;

 uint16_t nSamples = 1;

 uint16_t result = MidSN.createStream(1, period, sql,

nSamples, false);

 if (result == 0){

 leds_on(LEDS_ GREEN); //run

 while(1) {

 PROCESS_WAIT_UNTIL(etimer_expired(&t));

 etimer_reset(&t);

Appendix D Custom Code Agents – Code Example

 232

 uint16_t data[nSamples] = MidSN.readDataFromStream(1,

nSamples);

 uint16_t Kp = 0.60 * data[0];

 uint16_t Ki = (2 * Kp) / Pu;

 uint16_t Kd = (Kp * Pu) / 8;

 uint16_t PID = Kp + Ki + Kd;

 MidSN.writeToActuator(DAC0, PID);

 }

 } else leds_on(LEDS_RED); //Error

 PROCESS_END();

}

Figure D.1 – Example of Contiki program that determines an actuation using MidSN-NC

capabilities

 233

E.gggg

Appendix E

Message Formats

In this Appendix, we detail the message structure used to exchange commands

and data between nodes.

The MidSN network and I/O adapters provide communication primitives for

inter node interactions. It implements two types of messages: command messages and

data messages. These two types are identified by a flag “Msg Type“ that is included in

each message. Table E.1 shows the necessary types with a small description of each

one.

Table E.1 – Message type

Types of messages Description
MSG_CMD Used to send a command to the node.

MSG_ACK Used to send a confirmation that a message was

received by the node.

MSG_CMDDONE Indicates that a command was performed.

MSG_DATA Indicates that payload data contains the data of a

stream.

The message structure of MidSN is show in Figure E.1. Each message includes

two unique IDs to identify the node source and the node destination, one field to

indicate the message type, a control type to introduce the information of a command

Appendix E Message Formats

 234

(for MSG_CMD type), a sequence number, the length of payload and a set of parameters

(payload).

Figure E.1 – Format of message

The message type field indicates the type of message. For instance, if message

type is filled with MSG_DATA, the payload of message corresponds to a stream data. In

this case, the control type field is neglected. However, when a message corresponds to a

command (MSG_CMD), the control type field is used to specify the command that is sent

in the message. Depending on the command, the payload field is filled with all

parameters needed to configure a node correctly.

Command types can be divided into two main categories: node operation and

configuration of periodical operations.

Node operation: The node operation type is related with node’s operation and

supports commands such as start, stop, reboot, ping, register new API functionalities,

upload or drop agents, load agents from flash memory and to register new sensor or

actuator. Table E.2 shows the command types related with node operation, including a

small description of each one.

Table E.2 – Node operation – Command types

Command types Description
MSG_REBOOT Restart whole software in the node.

MSG_STATUS Get Status from node

MSG_REG_API_METHOD Register new API method in the node

MSG_UP_AGENT Upload new agent to the node

MSG_LOAD_AGENT Load an agent from flash memory to main memory

for execution.

MSG_DROP_AGENT Remove an agent from the node

MSG_START_AGENT Initialize an agent in the node

MSG_STOP_AGENT Stops the execution of an agent in the node

MSG_REG_SENSOR Upload a driver to a new sensor and initialize it

Appendix E Message Formats

 235

MSG_REG_ACTUATOR Upload a driver to a new actuator and initialize it

The node operation commands can be divided into two categories: basic

commands (e.g. reboot, status) and advanced ones (the remaining methods shown in

Table E.2). For instance, if we want to send a reboot command to a node, we only need

to fill the header of the message. Figure E.2 shows how to create this subset of

messages.

Figure E.2 – Format of start message

The advanced commands assume a payload specification that must be filled

according to the command. For instance, if we want to send a start, stop or drop agent

command to a node, we need to fill the payload with the agent identification

(agent_ID). However, if we want to register a new API method or upload new agents to

the node, we need to send the byte code in the payload.

Periodical operations: This type of command allows users to configure data

streams, alarms and condition-based actions to operate in the node. These commands

require that the payload be filled with operation configuration parameters. Figure E.3

shows how to fill the payload to configure an existing or a new periodical operation.

Figure E.3 – Payload specification for operation configuration

The payload includes all parameters needed to define a stream (see Section 5.6).

The stream configuration may include the definition of an in-network processing

technique. Table E.3 shows which metrics are now supported by our prototype:

Table E.3 – Supported metrics

Metric Description
FIELD_P0 to FFIELD_P99 Indicates a percentile (0-99)

FIELD_VALUE Current sensor value

FIELD_MAX Maximum over window

Appendix E Message Formats

 236

FIELD_MIN Minimum over window

FIELD_AVG Average over window

FIELD_COUNT Count over window

FIELD_SUM Sum over window

FIELD_VARIANCE Variance over window

FIELD_MERGE Merge and send over window

FIELD_RLE Compute RLE compression over window

FIELD_LAST Last sensor value over window

FIELD_FIRST First sensor value over window

 237

F.gggg

Appendix F

XML Message Generated by the

Gateway – Example

In this Appendix, we show an example of XML message (Figure F.1) generated

and sent by the gateway. That message includes the sensor values (temperature,

humidity, light), timestamps (generation time, dispatcher in, dispatcher out),

performance, debugging and command information (fields related to debugging and

command information are filled by the sending node to be analysed by the control

station).

<wsnMessage messageMode="102" sourceID="0005" messageSeqNo="69">

 <parameter name="genTime">1327449360300</parameter>

 <parameter name="dispIn">1327449360400</parameter>

 <parameter name="dispOut">1327449360401</parameter>

 <parameter name="delivery_time">90</parameter>

 <parameter name="hops">2</parameter>

 <parameter name="ginmac_seqno">76</parameter>

 <parameter name="slotNumber">125577445</parameter>

 <parameter name="format">17</parameter>

 <parameter name="hwid">102</parameter>

 <parameter name="tx_count">35148</parameter>

 <parameter name="light_photosynthetic">135</parameter>

 <parameter name="light_solar">68</parameter>

 <parameter name="temp">0</parameter>

 <parameter name="humidity">0</parameter>

 <parameter name="adc0">1509</parameter>

Appendix F XML Message – Example

 238

 <parameter name="adc1">2209</parameter>

 <parameter name="battery">2635</parameter>

 <parameter name="battery_indicator">0</parameter>

 <parameter name="type_of_last_recieved_cmd">0</parameter>

 <parameter name="nseq_last_received_cmd">0</parameter>

 <parameter name="time_to_deliver_last_cmd">0</parameter>

 <parameter name="elapsed_time_between_last_two_cmds">0</parameter>

 <parameter name="endToEndPktLossRate">0.6726</parameter>

 <parameter name="endToEndPktResendRate">0.0000</parameter>

 <parameter name="totalPacketCount">139121</parameter>

 <parameter name="totalLostPacketCount">942</parameter>

 <parameter name="totalRetransmittedPacketCount">0</parameter>

 <parameter name="serialLatency">3.742904</parameter>

</wsnMessage>

Figure F.1 – Example of xml message generated by the gateway

 239

G.gggg

Appendix G

Network Configuration - Example

In this Appendix, we show an example of how to define a network

configuration.

Considering the network configuration represented in Figure G.1, the user needs

to convert it to a plan-text format to introduce it in the planning algorithm. Figure G.2

shows the corresponding plan-text format.

Figure G.1 – Network configuration

The plan-text format is defined by two structures: tree structure, which includes

information about node connectivity. For each leaf node, it includes which nodes are

part of the path between the leaf node and sink node; and a treeAddr structure. This

structure maps the node id to a specific node address. This address depends on the

network communication protocol. In this example we are using the Rime addressing

scheme.

Appendix G Network Configuration - Example

 240

const STATICTOP Tree [MAX_LEAF_NODES] = {

 {3, 2, 1},

 {4, 2, 1},

 {5, 2, 1},

 {7, 6, 1},

 {8, 6, 1},

 {9, 6, 1},

 {11, 10, 1},

 {12, 10, 1},

 {13, 10, 1}

};

const STATICTADDR treeAddr[MAX_NODES] = {

 {1, 0x0000},

 {2, 0x0002},

 {3, 0x0003},

 {4, 0x0004},

 {5, 0x0005},

 {6, 0x0006},

 {7, 0x0007},

 {8, 0x0008},

 {9, 0x0009},

 {10,0x000A},

 {11,0x000B},

 {12,0x000C},

 {13,0x000D}

};

Figure G.2 – Network configuration - plan-text format

 241

H.gggg

Appendix H

Network Layout - Example

In this Appendix, we show an example of how to define a network layout to be

recognized by the planning algorithm.

The network layout used is based on the GINSENG and GinMAC definitions. It

includes all information of about the network configuration (see Appendix G) and a

TDMA schedule. This schedule is defined by the user. It must be introduced in the

algorithm in a plan-text fashion as shown in Figure H.1.

const SLOT_ADDRS epoch[SLOTS_PER_EPOCH] = {

 //Upstream B1

 {0x0003,0x0002},

{0x0003,0x0002},

 {0x0004,0x0002},

{0x0004,0x0002},

 {0x0005,0x0002},

{0x0005,0x0002},

 {0x0002,0x0000},

{0x0002,0x0000},

 {0x0002,0x0000},

{0x0002,0x0000},

 {0x0002,0x0000},

{0x0002,0x0000},

 {0x0002,0x0000},

{0x0002,0x0000},

 //Upstream B2

 {0x0007,0x0006},

{0x0007,0x0006},

 {0x0008,0x0006},

{0x0008,0x0006},

 {0x0009,0x0006},

{0x0009,0x0006},

 {0x0006,0x0000},

Appendix H Network Layout - Example

 242

{0x0006,0x0000},

 {0x0006,0x0000},

{0x0006,0x0000},

 {0x0006,0x0000},

{0x0006,0x0000},

 {0x0006,0x0000},

{0x0006,0x0000},

 //Upstream B3

 {0x000B,0x000A},

{0x000B,0x000A},

 {0x000C,0x000A},

{0x000C,0x000A},

 {0x000D,0x000A},

{0x000D,0x000A},

{0x000A,0x0000},

{0x000A,0x0000},

 {0x000A,0x0000},

{0x000A,0x0000},

 {0x000A,0x0000},

{0x000A,0x0000},

 {0x000A,0x0000},

{0x000A,0x0000},

 //Processing slots (= SLOTS_PROC)

 {0x0, 0x0},

 {0x0, 0x0},

 //TS (Time synchronization)

 {0x0000,0xffff},

 {0x0001,0xffff},

 {0x0002,0xffff},

 {0x0003,0xffff},

 //Downstream slots

 {0x0000,0xffff},

 {0x0002,0xffff},

 {0x0006,0xffff},

 {0x000A,0xffff}

};

Figure H.1 – TDMA schedule – plan-text format

 243

I.gggg

Appendix I

Evaluation of MidSN – Details

In this Appendix, we detail in form of tables the values shown in charts of

Chapter 9. Each table includes in the caption the number of the corresponding Figure

that the values are related to.

Table I.1 – Programming memory footprint for all platforms [Bytes] - Figure 9.1

Component TelosB

(Contiki-C)

Arduino

(C++)

Raspberry PI

(Java)

Computer

(Java)

I/O Adapter 1260 2524 8703 8803

NC-Kernel-AM 1344 312 6400 6500

NC-GinApp-CM 880 1180 5000 6000

NC-GinApp-DC 2270 8732 12100 12100

NC-GinApp-GP 5104 11104 20700 20890

NC-GinApp-AA 544 834 3600 0

Contiki-OS 20009

Table I.2 – RAM memory footprint for all platforms [Bytes] - Figure 9.2

Component TelosB

(Contiki-C)

Arduino

(C++)

Raspberry PI

(Java)

Computer

(Java)

I/O Adapter 486 882 616 616

NC-Kernel-AM 631 20 963 963

NC-GinApp-CM 62 118 592 792

NC-GinApp-DC 636 1932 1078 1278

NC-GinApp-GP 664 2548 9644 10044

NC-GinApp-AA 38 52 120 0

Total 2517 5552 13013 13693

Appendix I Evaluation of MidSN - Datails

 244

Table I.3 – Time required per operation over a stream in memory [ms] - Figure 9.4

Operation TelosB

(Contiki-C)

Arduino

(C++)

Raspberry PI

(Java)

Computer

(Java)

Select AGGREG()

Avg 14.00 9.35 2.28 0.76

Stdev 0.35 1.20 0.17 0.04

Max 15.00 12.00 2.90 0.86

Select Percentile()

Avg 28.00 18.70 4.56 1.52

Stdev 0.21 1.43 0.50 0.27

Max 29.00 21.00 5.10 1.80

Table I.4 – Consumed energy for data tuples manipulation [mJ] - Figure 9.8a)

Operation 1 Tuple 10 Tuples 50 Tuples 100 Tuples 1000 Tuples

Write

Avg 0.1427 0.1604 0.2868 0.4970 3.7128

Stdev 0.1179 0.2108 0.4690 0.5722 1.0989

Max 0.7733 0.9598 1.7174 2.6668 5.0633

Read

Avg 0.1070 0.1203 0.2151 0.3727 2.7846

Stdev 0.0884 0.1064 0.1018 0.6792 1.0678

Max 0.5800 0.4699 1.1038 2.7501 4.5475

Table I.5 – Consumed energy for data tuples manipulation [mJ] - Figure 9.8b)

Node 1 Tuple 10 Tuples 50 Tuples 100 Tuples 1000 Tuples

Leaf 0.611 6.111 30.556 61.111 611.111

Relay 0.889 8.892 44.462 88.923 889.234

Table I.6 – Command latency for the three platforms [ms] - Figure 9.12

Command latency TelosB Arduino Raspberry PI

Avg 21.81 206.38 3.57

Stdev 3.51 97.82 2.15

Max 32.19 910.49 11.65

Min 13.56 52.01 1.92

Appendix I Evaluation of MidSN - Datails

 245

Table I.7 – Data latency for the three platforms [ms] - Figure 9.14

Data latency TelosB Arduino Raspberry PI

Establishes

connection all times

Avg 15.8 486.7 10.4

Stdev 1.5 87.8 2.7

Max 18.0 630.8 13.2

Min 11.7 52.0 6.9

Connection opened,

data transmission

only

Avg 15.8 196.4 3.6

Stdev 1.5 117.8 2.2

Max 18.0 370.5 5.1

Min 11.7 51.0 2.8

Table I.8 – Data latency for TelosB per part [ms] - Figure 9.15

Data Latency Time in

WSN

Time in

Gateway

Time from gateway

to control station

Total

Avg 12.05 2.20 1.70 15.95

Stdev 0.73 0.72 0.34 1.54

Max 14.23 3.86 2.20 20.99

Min 9.70 2.80 1.00 13.69

Table I.9 – Closed-loop latency over heterogeneous network [ms] - Figure 9.18

Latency TelosB ->

TelosB

TelosB ->

Arduino

TelosB ->

Raspberry PI

Avg 62.05 246.65 43.14

Stdev 6.60 101.38 5.22

Max 84.03 870.14 53.99

Min 49.86 136.95 30.13

Appendix I Evaluation of MidSN - Datails

 246

Table I.10 – Closed-loop latency over heterogeneous network per system parts [ms] - Figure 9.19

Configuration Acquisition Data

sending

time

Processing

time

Cmd

Sending

time

Cmd

processing

time

TelosB

->

TelosB

Avg 22.00 15.95 1.36 21.81 0.92

stdev 0.00 1.54 0.47 3.51 0.08

Max 22.00 20.99 2.00 32.19 1.20

Min 22.00 13.69 0.80 13.56 0.86

TelosB

->

Arduino

Avg 22.00 15.95 1.36 206.38 0.95

stdev 0.00 1.54 0.47 97.82 0.55

Max 22.00 20.99 2.00 830.14 2.00

Min 22.00 13.69 0.80 52.01 0.87

TelosB

->

Raspberry

PI

Avg 22.00 15.95 1.36 3.57 0.25

stdev 0.00 1.54 0.47 2.15 0.06

Max 22.00 20.99 2.00 11.65 0.69

Min 22.00 13.69 0.80 1.92 0.07

 247

J.gggg

Appendix J

Evaluation of Planning and Monitoring

Approaches – Details

In this Appendix, we detail in form of tables the values shown in charts of

Chapter 10. Each table includes in the caption the number of Figure that the values are

related to.

Table J.1 – Monitor latency per node - Figure 10.3

Node Observed [Avg] Stdev Observed [Max] Observed [P99]

2 33.68 0.55 44.70 36.05

3 113.69 0.52 124.04 115.96

4 173.90 0.45 178.30 176.06

5 173.99 0.90 188.07 176.65

6 33.52 0.48 43.86 35.49

7 114.07 0.55 124.10 116.52

8 173.96 0.63 184.58 176.40

9 173.63 0.55 185.73 175.95

10 33.68 0.52 47.28 35.94

11 113.63 0.50 124.16 115.91

12 173.58 0.69 187.07 175.83

13 173.91 0.60 184.58 176.20

Appendix J Evaluation of Planning and Monitoring Approaches - Details

 248

Table J.2 – Monitor latency per level with forecast - Figure 10.4

level Observed [Avg] Stdev Observed [Max] Minimum Forecast [max]

Level 1 33.68 0.55 44.70 12.95 51.78

Level 2 113.69 0.52 124.04 92.91 131.78

Level 3 173.99 0.90 188.07 153.01 191.78

Table J.3 – Monitor latency per network part - Figure 10.5

Network

part

Observed

[Avg]

Stdev Observed

[Max]

Minimum Forecast

[max]

WSN 170.06 0.78 180.00 170.00 180.00

Serial 2.60 0.36 7.34 1.98 7.79

Middleware 1.33 0.28 3.33 0.67 3.99

Total 173.99 0.90 188.07 173.01 191.78

Table J.4 – Event latency per node with forecast - Figure 10.6

Node Observed [Avg] Stdev Observed [Max] Observed [P99]

2 33.68 0.55 44.70 36.05

3 113.69 0.52 124.04 115.96

4 173.90 0.45 178.30 176.06

5 173.99 0.90 188.07 176.65

6 33.52 0.48 43.86 35.49

7 114.07 0.55 124.10 116.52

8 173.96 0.63 184.58 176.40

9 173.63 0.55 185.73 175.95

10 33.68 0.52 47.28 35.94

11 113.63 0.50 124.16 115.91

12 173.58 0.69 187.07 175.83

13 173.91 0.60 184.58 176.20

Table J.5 – Closed-loop latency - Figure 10.9a)

Network part Observed

[Avg]

Stdev Observed

[Max]

Forecast

[max]

WSN Up (node 4) 170.03 0.56 180.00 180.00

Sink Computation 0.61 0.14 0.86 1.00

Wait for TX slot 380.00 0.00 380.00 390.00

WSN Down (node 13) 50.00 0.20 60.00 60.00

Total 600.65 0.61 620.86 631.00

Appendix J Evaluation of Planning and Monitoring Approaches - Details

 249

Table J.6 – Closed-loop latency - Figure 10.9b)

Network part Observed

(Avg)

Stdev Observed

(Max)

Forecast [max]

if catches

downstream slot

Forecast

[max]

WSN Up (node 4) 170.03 0.56 180.00 180.00 180.00

Serial Up 2.60 0.36 7.34 7.79 7.79

Middleware Up 0.94 0.19 2.86 3.99 3.99

Middleware

Computation
0.61 0.14 0.86 1.00 1.00

Middleware Down 1.33 0.28 3.99 3.99 3.99

Serial Down 2.60 0.36 7.34 7.79 7.79

Wait for TX slot 379.97 0.56 380.00 380.00 1000.00

WSN Down

(node 13)
50.00 0.20 60.00 60.00 60.00

Total 608.09 0.83 642.38 644.56 1264.56

Table J.7 – Closed-loop latency - Figure 10.11a)

Network part Observed

[Avg]

Stdev Observed

[Max]

Forecast

[max]

WSN Up (node 4) 170.13 0.57 180.00 180.00

Sink Computation 0.59 0.12 0.86 1.00

Wait for TX slot 11.42 0.04 13.00 20.00

WSN Down (node 13) 50.00 0.20 60.00 60.00

Total 232.14 0.61 253.86 261.00

Table J.8 – Closed-loop latency - Figure 10.11b)

Network part Observed

(Avg)

Stdev Observed

(Max)

Forecast [max] if

catches

downstream slot

Forecast

[max]

WSN Up (node 4) 170.01 0.58 180.00 180.00 180.00

Serial Up 2.62 0.31 7.24 7.79 7.79

Middleware Up 0.92 0.22 2.92 3.99 3.99

Middleware

Computation
0.61 0.15 0.79 1.00 1.00

Middleware

Down
1.31 0.29 3.79 3.99 3.99

Serial Down 2.56 0.34 7.44 7.79 7.79

Wait for TX slot 11.42 0.87 13.00 20.00 1000.00

WSN Down

(node 13)
50.00 0.10 60.00 60.00 60.00

Total 239.45 0.83 275.18 284.56 1264.56

Appendix J Evaluation of Planning and Monitoring Approaches - Details

 250

Table J.9 – Asynchronous closed-loop latency for all configurations - Figure 10.15

 Case 1 Case 2 Case 3 Case 4

Observed (Avg) 270.20 60.60 70.40 270.50

Stdev 0.31 0.15 0.22 0.34

Observed (Max) 280.00 60.00 80.00 280.00

Forecast [max] if castches the next

downstream slot

280.00 60.00 80.00 280.00

Firecast [max] if castches the second

next downstream slot

380.00 160.00 180.00 380.00

User requirement 500.00 250.00 150.00 500.00

Table J.10 – Synchronous closed-loop latency for all configurations - Figure 10.16

 Case 1 Case 2 Case 3 Case 4

Observed (Avg) 55.0 57.6 52.3 54.3

Stdev 28.8 29.4 28.6 29.4

Observed (Max) 114.8 128.7 106.8 113.0

Forecast [max] 131.8 131.8 131.8 131.8

User requirement 500.0 250.0 150.0 500.0

 ccli

References

[1] Ginseng Members, “GINSENG - Home.” [Online]. Available: http://www.ict-ginseng.eu/.

[Accessed: 05-Mar-2013].

[2] P. Suriyachai, J. Brown, and U. Roedig, “Time-Critical Data Delivery in Wireless Sensor

Networks,” in Distributed Computing in Sensor Systems, 2010, vol. 6131, pp. 216–229.

[3] Crossbow, M ICAz Datasheet. 2007.

[4] Crossbow, TelosB Datasheet. 2004, pp. 1–28.

[5] Libelium, Waspmote Datasheet. 2010.

[6] F. Semiconductor, Econotag Datasheet. 2011.

[7] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and

D. Culler, “Tinyos: An operating system for sensor networks,” in Ambient Intelligence, 2005, vol.

II, no. August, pp. 115–148.

[8] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating system for

tiny networked sensors,” in 29th Annual IEEE International Conference on Local Computer

Networks, 2004, pp. 455–462.

[9] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson,

and R. Han, “MANTIS OS: An Embedded Multithreaded Operating System for Wireless Micro

Sensor Platforms,” in Mobile Networks and Applications, 2005, vol. 10, no. 4, pp. 563–579.

[10] C. C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “SOS: A dynamic operating system

for sensor networks,” in Third International Conference on Mobile Systems Applications And

Services (Mobisys), 2005, pp. 163–176.

[11] M. Kuorilehto and T. Alho, “SensorOS : A New Operating System for Time Critical,” in Interface,

2007, pp. 431–442.

[12] R. Barr, J. Bicket, D. Dantas, B. Du, T. W. Kim, B. Zhou, and E. G. Sirer, “On the need for

system-level support for ad hoc and sensor networks,” in ACM SIGOPS Operating Systems, 2002,

vol. 36, no. 2, pp. 1–5.

[13] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: an energy-aware resource-centric RTOS for

sensor networks,” in 26th IEEE International RealTime Systems Symposium RTSS05, 2005, vol. 0,

pp. 256–265.

[14] “ERIKA Enterprise |.” [Online]. Available: http://erika.tuxfamily.org/drupal/. [Accessed: 23-Aug-

2013].

[15] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC language: A

holistic approach to networked embedded systems,” in ACM SIGPLAN, 2003, vol. 38, no. 5, pp.

1–11.

[16] E. Monmasson and M. N. Cirstea, “FPGA Design Methodology for Industrial Control

Systemsamp;#x2014;A Review,” in IEEE Transactions on Industrial Electronics, 2007, vol. 54,

no. 4, pp. 1824–1842.

[17] H. Hinkelmann, P. Zipf, and M. Glesner, “Design Concepts for a Dynamically

ReconfigurableWireless Sensor Node,” in First NASAESA Conference on Adaptive Hardware and

Systems AHS06, 2006, pp. 436–441.

[18] C. H. Zhiyong, L. Y. Pan, Z. Zeng, and M. Q. H. Meng, “A novel FPGA-based wireless vision

sensor node,” in Automation and Logistics 2009 ICAL09 IEEE International Conference on, 2009,

no. August, pp. 841–846.

[19] Y. Sun, L. Li, and H. Luo, “Design of FPGA-based Multimedia Node for WSN,” in Simulation,

2011.

[20] P. Muralidhar and C. B. R. Rao, “Reconfigurable wireless sensor network node based on Nios

core,” in 2008 Fourth International Conference on Wireless Communication and Sensor

Networks, 2008, pp. 67–72.

 cclii

[21] G. Chalivendra, R. Srinivasan, and N. S. Murthy, “FPGA Based Re-Configurable Wireless Sensor

etwork Protocol,” in Electronic Design, 2008, pp. 1–4.

[22] J.-G. Tong, Z.-X. Zhang, Q.-L. Sun, and Z.-Q. Chen, “Design of Wireless Sensor Network Node

with Hyperchaos Encryption Based on FPGA,” in 2009 International Workshop on ChaosFractals

Theories and Applications, 2009, pp. 190–194.

[23] S. Brown and C. J. Sreenan, “Updating software in wireless sensor networks: A survey,” in Dept

of Computer Science National Univ of Ireland Maynooth Tech Rep, 2006.

[24] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava, “Sensor network software update management:

a survey,” in International Journal of Network Management, 2005, vol. 15, no. 4, pp. 283–294.

[25] A. Liu, P. Ning, and C. Wang, “Lightweight Remote Image Management for Secure Code

Dissemination in Wireless Sensor Networks,” in IEEE INFOCOM 2009 The 28th Conference on

Computer Communications, 2009, pp. 1242–1250.

[26] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless Deluge: Over-the-Air Programming

of Wireless Sensor Networks Using Random Linear Codes,” in 2008 International Conference on

Information Processing in Sensor Networks ipsn 2008, 2008, vol. 00, pp. 457–466.

[27] C. H. Lim, “Secure Code Dissemination and Remote Image Management Using Short-Lived

Signatures in WSNs,” in IEEE Communications Letters, 2011, vol. 15, no. 4, pp. 362–364.

[28] M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, and M. Zorzi, “SYNAPSE++: Code

Dissemination in Wireless Sensor Networks Using Fountain Codes,” in IEEE Transactions on

Mobile Computing, 2010, vol. 9, no. 12, pp. 1749–1765.

[29] M. D. Krasniewski, R. K. Panta, S. Bagchi, C.-L. Yang, and W. J. Chappell, “Energy-efficient on-

demand reprogramming of large-scale sensor networks,” in ACM Transactions on Sensor

Networks TOSN, 2008, vol. 4, no. 1, pp. 1–38.

[30] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. F. Harris III, and M. Zorzi, “SYNAPSE: A

Network Reprogramming Protocol for Wireless Sensor Networks Using Fountain Codes,” in 2008

5th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc

Communications and Networks, 2008, no. June 2009, pp. 188–196.

[31] N. Tsiftes, A. Dunkels, and T. Voigt, “Efficient Sensor Network Reprogramming through

Compression of Executable Modules,” in 2008 5th Annual IEEE Communications Society

Conference on Sensor Mesh and Ad Hoc Communications and Networks, 2008, pp. 359–367.

[32] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,” in ASPLOSX

Proceedings of the 10th international conference on Architectural support for programming

languages and operating systems, 2002, vol. 36, no. 5, pp. 85–95.

[33] C. L. Fok, G. C. Roman, and C. Lu, “Rapid Development and Flexible Deployment of Adaptive

Wireless Sensor Network Applications,” in 25th IEEE International Conference on Distributed

Computing Systems ICDCS05, 2005, pp. 653–662.

[34] R. Müller, G. Alonso, and D. Kossmann, “SwissQM: Next Generation Data Processing in Sensor

Networks,” in Proceedings of the 3rd Biennial Conference on Innovative Data Systems Research

CIDR07, 2007, pp. 1–9.

[35] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: an acquisitional query

processing system for sensor networks,” in ACM Transactions on Database Systems, 2005, vol.

30, no. 1, pp. 122–173.

[36] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in sensor networks,”

in ACM SIGMOD Record, 2002, vol. 31, no. 3, p. 9.

[37] C. C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor information networking architecture and

applications,” in Ieee Personal Communications, 2001, vol. 8, no. 4, pp. 52–59.

[38] X. Yu, K. Niyogi, and S. Mehrotra, “Adaptive middleware for distributed sensor environments,” in

IEEE Distributed, 2003.

 ccliii

[39] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy, and G. Picco, “Mobile data collection in

sensor networks: The TinyLime middleware,” in Pervasive and Mobile Computing, 2005, vol. 1,

no. 4, pp. 446–469.

[40] A. L. Murphy, G. P. Picco, and G. C. Roman, “LIME: a middleware for physical and logical

mobility,” Proceedings 21st International Conference on Distributed Computing Systems, vol. 21,

no. Apr 2001, pp. 524–533, 2001.

[41] T. Liu and M. Martonosi, “Impala: a middleware system for managing autonomic, parallel sensor

systems,” in System, 2003, vol. 38, no. 10, pp. 107–118.

[42] Boulis, Han, Shea, and Srivastava, “SensorWare: Programming sensor networks beyond code

update and querying,” in Pervasive and Mobile Computing, 2007, vol. 3, no. 4, pp. 386–412.

[43] D. Janakiram, R. Venkateswarlu, and S. Nitin, “COMiS : Component Oriented Middleware for

Sensor Networks,” in proceedings of 14th IEEE Workshop on Local Area and Metropolitan

Networks LANMAN, 2005.

[44] L. Szumel, J. Lebrun, J. D. Owens, and O. S. Ave, “TOWARDS A MOBILE AGENT

FRAMEWORK FOR SENSOR NETWORKS,” in Computer Engineering, 2005, pp. 79–88.

[45] J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt, “ScatterWeb - Low Power Sensor Nodes

and Energy Aware Routing,” in System Sciences 2005 HICSS 05 Proceedings of the 38th Annual

Hawaii International Conference on, 2005, vol. 00, no. C, pp. 1–9.

[46] F. Oldewurtel, J. Riihijarvi, K. Rerkrai, and P. Mahonen, “The RUNES Architecture for

Reconfigurable Embedded and Sensor Networks,” in 2009 Third International Conference on

Sensor Technologies and Applications, 2009, pp. 109–116.

[47] K. K. Khedo and R. K. Subramanian, “A Service-Oriented Component-Based Middleware

Architecture for Wireless Sensor Networks,” in Journal of Computer Science, 2009, vol. 9, no. 3,

pp. 174–182.

[48] P. Costa, L. Mottola, A. L. Murphy, and G. Pietro Picco, “TeenyLIME: transiently shared tuple

space middleware for wireless sensor networks,” in Proceedings of the international workshop on

Middleware for sensor networks, 2006, pp. 43–48.

[49] S. Tennina, M. Bouroche, P. Braga, R. Gomes, M. Alves, F. Mirza, V. Ciriello, G. Carrozza, P.

Oliveira, and V. Cahill, “EMMON: A WSN System Architecture for Large Scale and Dense Real-

Time Embedded Monitoring,” in 2011 IFIP 9th International Conference on Embedded and

Ubiquitous Computing, 2011, pp. 150–157.

[50] D. Gelernter, “Generative communication in Linda,” ACM Transactions on Programming

Languages and Systems, vol. 7, no. 1, pp. 80–112, 1985.

[51] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, “Java on the bare metal of wireless

sensor devices: the squawk Java virtual machine,” in Memory, 2006, pp. 78–88.

[52] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and J. Kelner, “Mires: a

publish/subscribe middleware for sensor networks,” in Personal and Ubiquitous Computing, 2005,

vol. 10, no. 1, pp. 37–44.

[53] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract task graph: A methodology for

architecture-independent programming of networked sensor systems,” in Proceedings of the 2005

workshop on Endtoend senseandrespond systems applications and services, 2005, no. Eesr 05, pp.

19–24.

[54] A. Rezgui and M. Eltoweissy, “Service-oriented sensor–actuator networks: Promises, challenges,

and the road ahead,” in Computer Communications, 2007, vol. 30, no. 13, pp. 2627–2648.

[55] E. Cañete, J. Chen, M. Díaz, L. Llopis, and B. Rubio, “A Service-Oriented Middleware for

Wireless Sensor and Actor Networks,” in 2009 Sixth International Conference on Information

Technology New Generations, 2009, vol. 25, no. 6, pp. 575–580.

[56] A. Murphy and W. Heinzelman, “Milan: Middleware Linking Applications and Networks,” in

Heart, 2002, pp. 1–16.

 ccliv

[57] K. Aberer, M. Hauswirth, and A. Salehi, “The Global Sensor Networks middleware for efficient

and flexible deployment and interconnection of sensor networks,” in Network, 2006, no. 5005.

[58] D. J. Abadi, Y. Ahmad, M. Balazinska, J. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E.

Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, “The Design of the Borealis Stream Processing

Engine,” in Time, 2005, pp. 277–289.

[59] P. B. Gibbons, B. Karp, S. Nath, and S. Seshan, “IrisNet: An architecture for a worldwide sensor

web,” in Ieee Pervasive Computing, 2003, vol. 2, no. 4, pp. 22–33.

[60] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and M. Welsh, “Hourglass: An

Infrastructure for Connecting Sensor Networks and Applications,” in Harvard Technical Report

TR2, 2004, vol. 1, no. TR-21–04.

[61] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper, A.

Edakkunni, and W. Hong, “Design considerations for high fan-in systems: The HiFi approach,” in

CIDR 2005 Proceedings of Second Biennial Conference on Innovative Data Systems Research,

2005, vol. pages, pp. 290–304.

[62] L. Gurgen, C. Roncancio, C. Labbé, A. Bottaro, and V. Olive, “SStreaMWare: a service oriented

middleware for heterogeneous sensor data management,” in Management, 2008, pp. 121–130.

[63] S. Ahn, “Building a bridge for heterogeneous sensor networks,” in and Ubiquitous Systems, 2006

and the, 2006, pp. 121–126.

[64] S. Rooney, D. Bauer, and P. Scotton, “Techniques for integrating sensors into the enterprise

network,” in IEEE Transactions on Network and Service Management, 2006, vol. 3, no. 1, pp. 43–

52.

[65] T. Kobialka, R. Buyya, C. Leckie, and R. Kotagiri, “A Sensor Web Middleware with Stateful

Services for Heterogeneous Sensor Networks,” in 2007 3rd International Conference on

Intelligent Sensors Sensor Networks and Information, 2007, pp. 491–496.

[66] G. Mulligan, “The 6LoWPAN architecture,” in Proceedings of the 4th workshop on Embedded

networked sensors, 2007, pp. 78–82.

[67] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web services: design and

implementation of interoperable and evolvable sensor networks,” in Computer, 2008, no. Figure 1,

pp. 253–266.

[68] D. Yazar and A. Dunkels, “Efficient application integration in IP-based sensor networks,” in

Proceedings of the First ACM Workshop on Embedded Sensing Systems for EnergyEfficiency in

Buildings BuildSys 09, 2009, p. 43.

[69] S. Dawson-haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler, “sMAP: a simple measurement

and actuation profile for physical information,” in Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems, 2010, pp. 197–210.

[70] M. Kovatsch, M. Weiss, and D. Guinard, “Embedding Internet Technology for Home

Automation,” in Proceedings of the 2010 IEEE Conference on Emerging Technologies and

Factory Automation ETFA, 2010, vol. 33, no. 3, pp. 463–72.

[71] S. Mayer, D. Guinard, and V. Trifa, “Facilitating the Integration and Interaction of Real-World

Services for the Web of Things,” in Intelligence, 2010.

[72] D. Guinard, V. Trifa, and E. Wilde, “A Resource Oriented Architecture for the Web of Things,” in

Evolution, 2010, pp. 1–8.

[73] A. P. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby, and M. Zorzi, “Architecture and protocols

for the Internet of Things: A case study,” in 2010 8th IEEE International Conference on Pervasive

Computing and Communications Workshops PERCOM Workshops, 2010, pp. 678–683.

[74] Z. Shelby, C. Bormann, and B. Frank, “Constrained Application Protocol (CoAP),” in An online

version is available at httpwww ietf orgiddraftietfcorecoap01 txt 0807 2010, 2011, vol. 07, no.

draft-ietf-core-coap-07.txt, pp. 1–81.

[75] W. Colitti and K. Steenhaut, “Integrating Wireless Sensor Networks with the Web,” in Lossy

Networks (IP+ SN 2011, 2011, pp. 2–6.

 cclv

[76] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power CoAP for Contiki,” in 2011 IEEE

Eighth International Conference on Mobile AdHoc and Sensor Systems, 2011, pp. 855–860.

[77] I. Aliance, “IEEE Std 802.15.4-2006,” in IEEE Std 8021542006 Revision of IEEE Std

8021542003, 2006, pp. 0_1–305.

[78] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor

networks,” in ProceedingsTwentyFirst Annual Joint Conference of the IEEE Computer and

Communications Societies, 2002, vol. 3, no. c, pp. 1567–1576.

[79] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor

networks,” in SenSys ’04 Proceedings of the 2nd international conference on Embedded

networked sensor systems, 2004, vol. 1, pp. 95–107.

[80] A. El-Hoiydi and J. D. Decotignie, “WiseMAC: an ultra low power MAC protocol for the

downlink of infrastructure wireless sensor networks,” in Proceedings ISCC 2004 Ninth

International Symposium on Computers And Communications IEEE Cat No04TH8769, 2004, vol.

1, no. 28 June-1 July 2004, pp. 244–251.

[81] M. Buettner, G. V Yee, E. Anderson, and R. Han, “X-MAC: a short preamble MAC protocol for

duty-cycled wireless sensor networks,” in Proceedings of the 4th international conference on

Embedded networked sensor systems, 2006, vol. 76, no. May, pp. 307–320.

[82] A. Rowe, R. Mangharam, and R. Rajkumar, “RT-Link: A Time-Synchronized Link Protocol for

Energy- Constrained Multi-hop Wireless Networks,” in Sensor and Ad Hoc Communications and

Networks, 2006. SECON ’06. 2006 3rd Annual IEEE Communications Society on, 2006, vol. 2,

no. C, pp. 402–411.

[83] Hart Communication Foundation, “WirelessHART Technical Data Sheet,” in ReVision, 2007, p. 5.

[84] K. S. J. Pister and L. Doherty, “TSMP: Time synchronized mesh protocol,” in Networks, 2008,

vol. 635, no. Dsn, pp. 391–398.

[85] S. C. Ergen and P. Varaiya, “PEDAMACS: power efficient and delay aware medium access

protocol for sensor networks,” in IEEE Transactions on Mobile Computing, 2006, vol. 5, no. 7, pp.

920–930.

[86] S. S. Kulkarni and M. U. Arumugam, “SS-TDMA: A self-stabilizing MAC for sensor networks,”

in Sensor network operations, 2006, pp. 1–32.

[87] L. Bao and J. J. Garcia-Luna-Aceves, “A New Approach to Channel Access Scheduling for Ad

Hoc Networks,” in MobiCom ’01 Proceedings of the 7th annual international conference on

Mobile computing and networking, 2001, pp. 210–221.

[88] Y. E. Sagduy and A. ; Ephremides, “T HE P ROBLEM OF M EDIUM A CCESS C ONTROL IN

W IRELESS S ENSOR N ETWORKS,” in IEEE Wireless Communication Magazine, 2004, vol.

11(6), no. December, pp. 44–53.

[89] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He, “RAP: a real-time

communication architecture for large-scale wireless sensor networks,” in Proceedings Eighth

IEEE RealTime and Embedded Technology and Applications Symposium, 2002, vol. 00, no. c, pp.

55–66.

[90] J. A. Stankovic and T. Abdelzaher, “SPEED: a stateless protocol for real-time communication in

sensor networks,” in 23rd International Conference on Distributed Computing Systems 2003

Proceedings, 2003, vol. 212, no. 4494, pp. 46–55.

[91] S. Munir, S. Lin, E. Hoque, S. M. S. Nirjon, J. A. Stankovic, and K. Whitehouse, “Addressing

burstiness for reliable communication and latency bound generation in wireless sensor networks,”

in Proceedings of the 9th ACMIEEE International Conference on Information Processing in

Sensor Networks IPSN 10, 2010, no. May, p. 303.

[92] N. Gollan and J. Schmitt, “Energy-Efficient TDMA Design Under Real-Time Constraints in

Wireless Sensor Networks,” in In 15th IEEE/ACM International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’07). IEEE,

2007.

 cclvi

[93] Y. Wu, X.-Y. Li, Y. Liu, and W. Lou, “Energy-Efficient Wake-Up Scheduling for Data Collection

and Aggregation,” in IEEE Transactions on Parallel and Distributed Systems, 2010, vol. 21, no. 2,

pp. 275–287.

[94] P. Suriyachai, U. Roedig, and A. Scott, “A Survey of MAC Protocols for Mission-Critical

Applications in Wireless Sensor Networks,” in IEEE Communications Surveys Tutorials, 2011,

no. 99, pp. 1–25.

[95] K. Kredoii and P. Mohapatra, “Medium access control in wireless sensor networks,” in Computer

Networks, 2007, vol. 51, no. 4, pp. 961–994.

[96] N. Gollan, F. A. Zdarsky, I. Martinovic, and J. B. Schmitt, “The DISCO Network Calculator,” in

14th GIITG Conference on Measurement Modeling and Evaluation of Computer and

Communication Systems MMB 2008, 2008.

[97] K. Karenos and V. Kalogeraki, “Real-Time Traffic Management in Sensor Networks,” in 2006

27th IEEE International RealTime Systems Symposium RTSS06, 2006, vol. 0, pp. 422–434.

[98] V. Vassiliou and C. Sergiou, “Performance Study of Node Placement for Congestion Control in

Wireless Sensor Networks,” in Workshop of International Conference on New Technologies,

Mobility and Security, 2009, pp. 3–10.

[99] J. Song, A. Mok, and D. Chen, “Improving pid control with unreliable communications,” in ISA

EXPO Technical Report, 2006, no. October 2006, pp. 17–19.

[100] L. Zheng, “Industrial wireless sensor networks and standardizations: The trend of wireless sensor

networks for process autometion,” in SICE Annual Conference 2010 Proceedings of, 2010, pp.

1187–1190.

[101] V. Lakkundi and J. Beran, “Wireless Sensor Network Prototype in Virtual Automation Networks,”

in The First IEEE International Workshop on Generation C Wireless Networks, 2008.

[102] A. Willig, “An architecture for wireless extension of PROFIBUS,” in IECON03 29th Annual

Conference of the IEEE Industrial Electronics Society IEEE Cat No03CH37468, 2003, vol. 3.

[103] S. Lee, K. C. Lee, M. H. Lee, and F. Harashima, “Integration of mobile vehicles for automated

material handling using Profibus and IEEE 802.11 networks,” in IEEE Transactions on Industrial

Electronics, 2002, vol. 49, no. 3.

[104] L. Rauchhaupt, “System and device architecture of a radio based fieldbus-the RFieldbus system,”

in 4th IEEE International Workshop on Factory Communication Systems, 2002.

[105] J. Haehniche and L. Rauchhaupt, “Radio communication in automation systems: the R-fieldbus

approach,” in 2000 IEEE International Workshop on Factory Communication Systems

Proceedings Cat No00TH8531, 2000, pp. 319–326.

[106] D. Choi and D. Kim, “Wireless fieldbus for networked control systems using LR-WPAN,” in

Journal of Control Automation and Systems, 2008, vol. 6.

[107] “HART Communication Protocol and Foundation - Home Page.” [Online]. Available:

http://www.hartcomm.org/. [Accessed: 27-Aug-2013].

[108] “Wireless Industrial Networking Alliance.” [Online]. Available: http://www.wina.org/. [Accessed:

27-Aug-2013].

[109] “ISA100, Wireless Systems for Automation | ISA.” [Online]. Available:

http://www.isa.org//MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891. [Accessed: 27-

Aug-2013].

[110] ZIGBEE, “ZigBee Alliance > Home.” [Online]. Available: http://www.zigbee.org/. [Accessed: 22-

Feb-2013].

[111] T. Hasegawa, H. Hayashi, T. Kitai, and H. Sasajima, Industrial wireless standardization Scope

and implementation of ISA SP100 standard. IEEE, 2011, pp. 2059–2064.

[112] P. Automation, “TECHNICAL WHITE PAPER PLANNING AND DEPLOYING,” in Technical

Report of Process Automation 2011, 2011.

 cclvii

[113] H. Gao, X. Meng, and T. Chen, “Stabilization of Networked Control Systems With a New Delay

Characterization,” in IEEE Transactions on Automatic Control, 2008, vol. 53, no. 9, pp. 2142–

2148.

[114] K. Sato, H. Nakada, and Y. Sato, “Variable rate speech coding and network delay analysis for

universal transport network,” in IEEE INFOCOM 88Seventh Annual Joint Conference of the IEEE

Computer and Communcations Societies Networks Evolution or Revolution, 1988.

[115] J. Wu, F.-Q. Deng, and J.-G. Gao, “Modeling and stability of long random delay networked

control systems,” in 2005 International Conference on Machine Learning and Cybernetics, 2005,

vol. 2, no. August, pp. 947–952 Vol. 2.

[116] E. Kamrani and M. H. Mehraban, “Modeling Internet Delay Dynamics Using System

Identification,” in 2006 IEEE International Conference on Industrial Technology, 2006, no. c, pp.

716–721.

[117] K. C. Lee, S. Lee, and M. H. Lee, “Worst Case Communication Delay of Real-Time Industrial

Switched Ethernet With Multiple Levels,” in IEEE Transactions on Industrial Electronics, 2006,

vol. 53, no. 5, pp. 1669–1676.

[118] E. Uhlemann and T. Nolte, “Scheduling relay nodes for reliable wireless real-time

communications,” in 2009 IEEE Conference on Emerging Technologies Factory Automation,

2009, pp. 1–3.

[119] N. Yigitbasi and F. Buzluca, “A control plane for prioritized real-time communications in wireless

token ring networks,” in 2008 23rd International Symposium on Computer and Information

Sciences, 2008.

[120] I. H. Hou and P. Kumar, “Real-time communication over unreliable wireless links: a theory and its

applications,” in Ieee Wireless Communications, 2012, vol. 19, no. 1, pp. 48–59.

[121] J. Schmitt, F. Zdarsky, and U. Roedig, “Sensor Network Calculus with Multiple Sinks,” in

Proceedings of IFIP NETWORKING 2006 Workshop on Performance Control in Wireless Sensor

Networks, 2006, pp. 6–13.

[122] U. Roedig, N. Gollan, and J. Schmitt, “Validating the Sensor Network Calculus by Simulations,”

in Network, 2007.

[123] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “Tight end-to-end per-flow delay bounds in

FIFO multiplexing sink-tree networks,” in Performance Evaluation, 2006, vol. 63, no. 9–10, pp.

956–987.

[124] A. Koubaa, M. Alves, and E. Tovar, “Modeling and Worst-Case Dimensioning of Cluster-Tree

Wireless Sensor Networks,” in 2006 27th IEEE International RealTime Systems Symposium

RTSS06, 2006, no. October, pp. 412–421.

[125] D. Q. Systems, “NETWORK CALCULUS A Theory of Deterministic Queuing Systems for the

Internet,” in Online, 2004, vol. 2050, pp. xix – 274.

[126] P. Jurcik, R. Severino, A. Koubaa, M. Alves, and E. Tovar, “Real-Time Communications Over

Cluster-Tree Sensor Networks with Mobile Sink Behaviour,” in 2008 14th IEEE International

Conference on Embedded and RealTime Computing Systems and Applications, 2008, pp. 401–412.

[127] N. Xu, “A Survey of Sensor Network Applications,” in Energy, 2002, vol. 40, no. 8, pp. 1–9.

[128] R. Neves, S. Della Luna, D. Marandin, A. Timm-, and V. Gil, “Report on WSN applications, their

requirements, application-specific WSN issues and evaluation metrics,” in European IST NoE

CRUISE deliverable, 2006.

[129] V. Cantoni, L. Lombardi, and P. Lombardi, “Future scenarios of parallel computing: Distributed

sensor networks,” in Journal of Visual Languages Computing, 2007, vol. 18, no. 5, pp. 484–491.

[130] R. Mac Ruairí, M. T. Keane, and G. Coleman, “A Wireless Sensor Network Application

Requirements Taxonomy,” in 2008 Second International Conference on Sensor Technologies and

Applications sensorcomm 2008, 2008, no. 25–31 Aug. 2008, pp. 209–216.

 cclviii

[131] A.-B. García-Hernando, J.-F. Martínez-Ortega, J.-M. López-Navarro, A. Prayati, and A. P. and L.

R.-L. Juan-Manuel López-Navarro, Problem Solving for Wireless Sensor Networks. London:

Springer London, 2008, pp. 177–209.

[132] B. R. Conant, “Wireless sensor networks : Driving the New Industrial Revolution,” in Industrial

Embedded Systems, 2006, pp. 8–11.

[133] M. Antoniou, M. C. Boon, P. N. Green, P. R. Green, and T. A. York, “Wireless sensor networks

for industrial processes,” in 2009 IEEE Sensors Applications Symposium, 2009, vol. 19, no. 6, pp.

13–18.

[134] M. Shanmugaraj, R. Prabakaran, and V. R. S. Dhulipala, “Industrial utilization of wireless sensor

networks,” in 2011 International Conference on Emerging Trends in Electrical and Computer

Technology, 2011, pp. 887–891.

[135] C. J. Sreenan, J. S. Silva, L. Wolf, R. Eiras, T. Voigt, U. Roedig, V. Vassiliou, and G.

Hackenbroich, “Performance control in wireless sensor networks: the ginseng project - [Global

communications news letter],” in IEEE Communications Magazine, 2009, vol. 47, no. 8, pp. 1–4.

[136] A. Klein, D. Agrawal, Z. Jerzak, P. Furtado, J. Cecílio, A. Cardoso, L. Silva, and J. do Ó,

“Ginseng Report: Application scenario requirements and architecture specification,” in European

GINSENG deliverable, 2009, pp. 1–61.

[137] P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K. Hart, “Glacial Environment

Monitoring using Sensor Networks,” in RealWSN, 2005, pp. 10–14.

[138] K. Yifan and J. Peng, “Development of Data Video Base Station in Water Environment

Monitoring Oriented Wireless Sensor Networks,” in 2008 International Conference on Embedded

Software and Systems Symposia, 2008, pp. 281–286.

[139] W. Zhengzhong, L. Zilin, L. Jun, and H. Xiaowei, “Wireless Sensor Networks for Living

Environment Monitoring,” in Medical Engineering & Physics, 2009, vol. 3, no. 11, pp. 22–25.

[140] P. J. Croft, F. Qi, P. Morreale, and A. Trzopek, “URBAN NET: URBAN ENVIRONMENT

MONITORING AND MODELING WITH A WIRELESS SENSOR NETWORK,” in Observing

and Assimilation Systems for the, 2010.

[141] Y. Zhu, J. Song, and F. Dong, “Applications of wireless sensor network in the agriculture

environment monitoring,” in Procedia Engineering, 2011, vol. 16, pp. 608–614.

[142] F. Zhao and L. J. Guibas, Wireless Sensor Networks: An Information Processing Approach.

Morgan Kaufmann, 2004, p. 376.

[143] V. Q. Son, B. L. Wenning, A. Timm-Giel, and C. Gorg, “A model of Wireless Sensor Networks

using context-awareness in logistic applications,” in Intelligent Transport Systems

TelecommunicationsITST2009 9th International Conference on, 2009.

[144] J. Kenyeres, S. Sajban, P. Farkas, and M. Rakus, Indoor experiment with WSN application. IEEE,

2010, pp. 863–866.

[145] B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong barrier coverage of wireless sensor

networks,” in Proceedings of the 9th ACM international symposium on Mobile ad hoc networking

and computing MobiHoc 08, 2008, vol. 35, no. 8, pp. 411–420.

[146] B. P. L. Lo, S. Thiemjarus, R. King, and G.-Z. Yang, “BODY SENSOR NETWORK – A

WIRELESS SENSOR PLATFORM FOR PERVASIVE HEALTHCARE MONITORING,” in

Architectural Design, 2005, vol. 13, no. 2–3, pp. 77–80.

[147] M. Blount, V. M. Batra, A. N. Capella, M. R. Ebling, W. F. Jerome, S. M. Martin, M. Nidd, M. R.

Niemi, and S. P. Wright, “Remote health-care monitoring using Personal Care Connect,” in IBM

Systems Journal, 2007, vol. 46, no. 1, pp. 95–113.

[148] F. Zhou, H. Yang, J. M. R. Álamo, J. S. Wong, and C. K. Chang, “Mobile Personal Health Care

System for Patients with Diabetes,” in Aging Friendly Technology for Health and Independence,

2010, vol. 6159, pp. 94–101.

 cclix

[149] I. M. Lopes, B. M. Silva, J. J. P. C. Rodrigues, J. Lloret, and M. L. Proenca, “A mobile health

monitoring solution for weight control,” in 2011 International Conference on Wireless

Communications and Signal Processing WCSP, 2011, pp. 1–5.

[150] T. Gao, D. Greenspan, M. Welsh, R. Juang, and A. Alm, “Vital signs monitoring and patient

tracking over a wireless network.,” in Conference Proceedings of the International Conference of

IEEE Engineering in Medicine and Biology Society, 2005, vol. 1, no. September, pp. 102–105.

[151] E. Hughes, M. Masilela, P. Eddings, A. Raflq, C. Boanca, and R. Merrell, “VMote: A Wearable

Wireless Health Monitoring System,” in eHealth Networking Application and Services 2007 9th

International Conference on, 2007, pp. 330–331.

[152] S. A. Taylor and H. Sharif, “Wearable Patient Monitoring Application (ECG) using Wireless

Sensor Networks,” in 2006 International Conference of the IEEE Engineering in Medicine and

Biology Society, 2006, vol. 1, pp. 5977–5980.

[153] M. Al Ameen and K. Kwak, “Social Issues in Wireless Sensor Networks with Healthcare

Perspective,” in Security, 2011, vol. 8, no. 1, pp. 52–58.

[154] T. I. S. C. May, “Tool Interface Standard (TIS) Executable and Linking Format (ELF)

Specification,” in Proceedings of the 12th ACM conference on Electronic commerce EC 11, 1995,

no. May, p. 29.

[155] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wireless research,” in

IPSN 2005 Fourth International Symposium on Information Processing in Sensor Networks 2005,

2005, vol. 00, no. C, pp. 364–369.

[156] H. A. Nguyen, A. Forster, D. Puccinelli, and S. Giordano, “Sensor node lifetime: An experimental

study,” in 2011 IEEE International Conference on Pervasive Computing and Communications

Workshops PERCOM Workshops, 2011, pp. 202–207.

[157] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace : Network-level Power Profiling for

Low-power Wireless Networks Low-power Wireless,” in SICS Technical Report T2011:05, 2011.

[158] A. Dunkels, “The contikimac radio duty cycling protocol,” in SICS Technical Report T2011:13,

2011.

 cclx

 cclxi

 cclxii

