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ABSTRACT 

Organisms that face osmotic stress have long been known to accumulate small organic 

molecules that do not perturb cell function, even when at high concentrations. Such molecules 

are typically called ‘compatible’ solutes and permit cells to adjust the turgor pressure required 

for metabolism and survival of organisms. Compatible solutes are fundamental molecules, 

accumulated or synthesized by cells, in the response several stress conditions and are viewed 

as general stress protectants. 

Rubrobacter xylanophilus is known to accumulate a rare combination of compatible solutes, 

being trehalose and mannosylglycerate the major solutes and constitutively accumulated. 

The present work describes the biochemical characterization of three enzymes involved in the 

synthesis of trehalose, the major accumulated compatible solute, in this thermophilic 

radiation-resistant actinobacterium. Although Rubrobacter xylanophilus possesses a total of 

four trehalose biosynthetic pathways, we functionally characterize two systems which we 

have shown to be active in cell extracts, under the conditions tested, namely trehalose-6-

phosphate synthase/trehalose-6-phosphate phosphatase (Tps/Tpp) and the 

glycosyltransferring synthase (TreT). 

Two of the described enzymes are involved in the most common pathway, the Tps/Tpp 

pathway, which has been reported in organisms of the three domains of life. This pathway 

involves two enzymatic steps; Tps catalyzes the transfer of glucose from GDP-glucose to 

glucose-6-phosphate (Glc6P), forming trehalose-6-phosphate (T6P) and GDP, while Tpp 

dephosphorylates T6P to trehalose and inorganic phosphate. Both enzymes showed high 

substrate specificity: Tps, for the combination of GDP-glucose and Glc6P, and Tpp for T6P. The 

thirdly characterized enzyme, designated TreT, coexists with Tps/Tpp pathway in R. 

xylanophilus and promotes the formation of trehalose from several nucleoside diphosphate 

(NDP)-glucoses and glucose. The favorite donor substrate was reported to be ADP-glucose, but 

only glucose served as an acceptor molecule. The proposed main function of the TreT enzyme 

in R. xylanophilus is to preferentially catalyze trehalose formation, although it is also able to 

reverse catalysis, hydrolyzing trehalose, but with much less efficiency. 
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The biosynthetic pathway for the other compatible solute mostly accumulated in this 

bacterium, mannosylglycerate, has been recently described by Empadinhas and co-workers 

(2011). 

To withstand osmotic stress, plants accumulate and synthesize compatible solutes, which help 

to maintain the structure of enzymes, membranes and other cellular compounds. 

Mannosylglycerate and glucosylglycerate were not accumulated by the plant Selaginella 

moellendorffii, under the examined conditions, even though the genes coding for their 

synthesis and hydrolysis were identified in the plant’s genome. The biosynthesis and 

hydrolysis of mannosyglycerate and glucosylglycerate in S. moellendorffii are described in this 

work. The S. moellendorffii mannosylglycerate synthase (MgS) catalyzes the synthesis of 

glycerate derivatives, mannosylglycerate and glucosylglycerate, when GDP-mannose or GDP-

glucose were glucosyl donor substrates, respectively. Glycoside hydrolase, designated as 

mannosylglycerate hydrolase (MgH), is highly specific for the hydrolysis of both 

mannosylglycerate and glucosylglycerate. 

This thesis unravels the identity of genes and enzymes involved in the synthesis and hydrolysis 

of the compatible solutes trehalose, mannosylglycerate and glucosylglycerate, in two 

phylogenetically unrelated organisms and furthers our understanding on how these important 

compounds are synthesized and hydrolyzed. The thesis results pave the way for future studies 

on the function and regulation of these molecules in the physiology of these organisms. 
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RESUMO 

A adaptação a ambientes com salinidade elevada pressupõe, para muitos organismos, a 

acumulação de pequenas moléculas orgânicas, que não interferem com o metabolismo 

celular, mesmo quando a sua concentração é elevada. 

Estas moléculas, designadas solutos “compatíveis”, permitem que as células ajustem a sua 

pressão de turgescência, condição necessária ao metabolismo e à sobrevivência dos 

organismos. Os solutos compatíveis são moléculas fundamentais captadas do exterior ou 

sintetizadas pelas células em resposta a condições ambientais agressivas, sendo consideradas 

moléculas protectoras. 

A bactéria Rubrobacter xylanophilus é conhecida por acumular uma rara combinação de 

solutos compatíveis, sendo a trealose e o manosilglicerato os principais (acumulados 

constitutivamente). 

O presente trabalho descreve a caracterização bioquímica de três enzimas envolvidas na 

síntese do soluto compatível trealose nesta actinobactéria termofílica e extremamente 

resistente a radiações. Embora a bactéria Rubrobacter xylanophilus possua quatro vias de 

síntese para a trealose, apenas duas foram caracterizadas, por se ter demonstrado estarem 

funcionalmente activas em extratos celulares, nas condições testadas: a via trealose-6-fosfato 

sintetase/trealose-6-fosfato fosfatase (Tps/Tpp) e a via da enzima sintetase que transfere um 

grupo glucosil (TreT). 

Duas das enzimas caracterizadas estão envolvidas na via Tps/Tpp, sendo esta a via mais 

comum, uma vez que existe em organismos dos três Domínios da Vida. A via Tps/Tpp inclui 

duas reacções enzimáticas catalisadas pelas enzimas Tps e Tpp. A enzima Tps catalisa a 

transferência de glucose de GDP-glucose para glucose-6-fosfato (Glc6P), formando trealose-6-

fosfato (T6P) e GDP, enquanto a enzima Tpp desfosforila T6P, formando trealose e fosfato 

inorgânico. Ambas as enzimas mostraram ter uma elevada especificidade em relação aos 

substratos: a enzima Tps, relativamente à combinação GDP-glucose e Glc6P, e a enzima Tpp, 

relativamente à T6P. A terceira enzima caracterizada designa-se por TreT. Esta enzima co-

existe com as enzimas da via Tps/Tpp na bactéria R. xylanophilus e promove a formação de 
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trealose a partir de vários nucleosídeos difosfato (NDP)-glucose (dador) e glucose (receptor). O 

substrato preferido, dador do grupo glucosil, foi descrito ser ADP-glucose; contudo, a glucose 

foi a única molécula receptora. A função da enzima TreT em R. xylanophilus é, 

preferencialmente, catalisar a formação de trealose, embora também seja capaz de a 

degradar, mas com uma eficiência muito menor. 

A via biossintética para o soluto compatível manosilglicerato, também acumulado por esta 

bactéria, foi recentemente descrita por Empadinhas e colaboradores (2011). 

Para lidar com o stress osmótico, as plantas também acumulam solutos compatíveis que 

ajudam a manter a estrutura das membranas celulares, das enzimas e de outros compostos. 

Os solutos manosilglicerato e glucosilglicerato não são acumulados por Selaginella 

moellendorffii, nas condições estudadas, embora os genes que codificam as enzimas para a 

sua síntese e hidrólise tenham sido identificados no genoma desta planta. As vias para a 

síntese e hidrólise de manosilglicerato e glucosilglicerato em S. moellendorffii são descritas 

neste trabalho. A sintetase de manosilglicerato (MgS) da planta S. moellendorffii catalisa a 

síntese dos derivados de glicerato, manosilglicerato e glucosilglicerato, quando a GDP-manose 

ou a GDP-glucose são substratos dadores do grupo glucosil, respectivamente. A hidrolase, 

designada por manosilglicerato hidrolase (MgH), é altamente específica para a hidrólise dos 

dois compostos manosilglicerato e glucosilglicerato. 

Esta tese permitiu identificar os genes e caracterizar as respectivas enzimas recombinantes 

envolvidas na síntese e na hidrólise dos solutos compatíveis trealose, manosilglicerato e 

glucosilglicerato em dois organismos filogeneticamente não relacionados, possibilitando, 

assim, a compreensão de como estes compostos são sintetizados e hidrolisados. Os resultados 

deste trabalho permitem abrir caminho a futuros estudos sobre a regulação e a função das 

referidas moléculas na fisiologia destes organismos, com possíveis implicações importantes 

tanto a nível da investigação fundamental como da investigação biotecnológica. 
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THESIS OUTLINE 

One of the strategies to deal with osmotic stress, adopted by both prokaryotes and 

eukaryotes, is the accumulation of low-molecular-weight compounds, generally designated as 

compatible solutes. These diverse molecules can be taken from the environment or 

synthesized de novo. 

In the last few years, knowledge on the metabolic pathways, especially for the synthesis of 

compatible solutes, has increased considerably. The study of compatible solutes catabolic 

pathways is also of vital importance, but very little information is available about the 

degradation of these molecules and the environmental and molecular regulatory conditions 

involved in this process. 

The present work is an approach to the metabolic pathways for the synthesis and hydrolysis of 

three compatible solutes - trehalose, mannosylglycerate and glucosylglycerate - in the 

prokaryote, Rubrobacter xylanophilus, and in the eukaryote, Selaginella moellendorffii. 

Chapter 1 is a brief description of compatible solutes, namely trehalose, mannosylglycerate 

and glucosylglycerate. Their distribution and biosynthetic pathways are introduced, including 

an analysis of the different genetic organizations of the genes coding for 

trehalose/mannosylglycerate/glucosylglycerate enzymes. In this chapter, the pathway 

multiplicity is also addressed. This chapter proceeds with a review about glycoside hydrolases, 

which serves as a basis for the discussion on a mannosylglycerate hydrolase characterized in 

chapter 3. A general description of the organisms used in this study is also presented in this 

chapter. 

Chapter 2 describes two of the pathways for trehalose synthesis in the thermophilic bacterium 

Rubrobacter xylanophilus. In this chapter, in addition to the biochemical characterization of 

the most widespread trehalose biosynthetic pathway involving trehalose-6-phosphate 

synthase/phosphatase, the recently discovered single-step pathway, which involves a 

glycosyltransferring synthase, is also elucidated. 

Chapter 3 describes the characterization of two different proteins, a glycosyltransferase and a 

glycoside hydrolase, encoded by the mgS and mgH genes, detected in the recently available 
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genome sequence of the lycophyte Selaginella moellendorffii. As in chapter 2, both genes 

were cloned and over-expressed in Escherichia coli and the resulting recombinant enzymes 

were characterized. Moreover, biochemical properties and kinetic parameters were examined 

in detail. Interestingly, these enzymes are implicated in the synthesis and hydrolysis of the 

same sugar-glycerate molecules, mannosylglycerate and glucosylglycerate. 

Chapter 4 provides an overall discussion and integration of the results presented in this thesis. 



 

XI 

ABBREVIATIONS 

 
 
3-PGA  3-phosphoglycerate 
aa amino acid 
ADP adenosine diphosphate 
ADP-glu adenosine diphosphate-glucose 
Arg arginine  (R) 
Asn asparagine (N) 
Asp aspartic acid (D) 
BTP 2-[bis(hydroxyethyl)amino]-2-(hydroxymethyl)-propane-1,3-diol 
CAPS  N-cyclohexyl-3-aminopropanesulfonic acid 
CDP-glu cytidine diphosphate-glucose 
DIP di-myo-inositol-phosphate 
FPLC fast protein liquid chromatography 
Glc1P glucose-1-phosphate 
Glc6P glucose-6-phosphate 
GDP-glu guanosine diphosphate-glucose 
GG glucosylglycerate 
GGG glucosylglucosylglycerate 
GPG  glucosyl-3-phosphoglycerate 
GpgP glucosyl-3-phosphoglycerate phosphatase 
GpgS glucosyl-3-phosphoglycerate synthase 
GT glycosyltransferase 
GT-B glycosyltransferase – B fold 
HAD haloalcanoic acid dehalogenase 
His histidine (H) 
IPTG isopropyl-β-D-thiogalactopyranoside 
MES morpholineethanesulfonic acid 
MG mannosylglycerate 
MGG mannosylglucosylglycerate 
MGP mannosyl-3-phosphoglycerate 
MgS mannosylglycerate synthase 
MpgP mannosyl-3-phosphoglycerate phosphatase 
MpgS mannosyl-3-phosphoglycerate synthase 
NDP-glu nucleoside diphosphate-glucose 
NMR nuclear magnetic resonance 
PCR polymerase chain reaction 
SDS-PAGE sodium dodecyl sulphate-polyalcrylamide gel electrophoresis 
Ser serine (S) 
T6P trehalose-6-phosphate 
TDP-glu thymidine diphosphate-glucose 
Thr threonine (T) 



 

XII 

TLC thin layer chromatography 
Tpp trehalose-6-phosphate phosphatase 
Tps trehalose-6-phosphate synthase 
TreP trehalose phosphorylase 
TreS trehalose synthase 
TreT trehalose glycosyltransferring synthase 
TreY maltooligosyltrehalose synthase 
TreZ maltooligosyltrehalose trehalohydrolase 
Tyr tyrosine (Y) 
UDP-glu uridine diphosphate-glucose 
 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 
Introduction 

 

 

 

 

 

 

 

 



 

 



Introduction 

3 

CONTENTS 

 

 

1. WATER AVAILABILITY ............................................................................................................. 5 

2. COMPATIBLE SOLUTES ........................................................................................................... 7 

2.1. Trehalose ..................................................................................................................... 10 

2.2. Mannosylglycerate ...................................................................................................... 11 

2.3. Glucosylglycerate ......................................................................................................... 12 

3. BIOSYNTHESIS OF TREHALOSE, MANNOSYLGLYCERATE AND GLUCOSYLGLYCERATE .......... 13 

3.1. Biosynthetic pathways for trehalose ........................................................................... 13 

3.1.1. Tps/Tpp pathway .............................................................................................. 14 

3.1.2. TreS pathway .................................................................................................... 15 

3.1.3. TreY/ TreZ pathway .......................................................................................... 16 

3.1.4. TreT pathway .................................................................................................... 16 

3.1.5. TreP pathway .................................................................................................... 17 

3.2. Genomic organization of trehalose synthesizing genes .............................................. 17 

3.3. Trehalose hydrolysis or turnover ................................................................................. 20 

3.4. Biosynthetic pathways for mannosylglycerate ............................................................ 21 

3.4.1. Mannosylglycerate biosynthesis in bacteria and archaea ................................ 21 

3.4.2. Mannosylglycerate genes in eukaryotes .......................................................... 23 

3.5. Genomic organization of mannosylglycerate synthesizing genes ............................... 24 

3.6. Biosynthetic pathways for glucosylglycerate ............................................................... 26 

3.7. Genomic organization of glucosylglycerate synthesizing genes .................................. 27 

4. PATHWAY MULTIPLICITY ...................................................................................................... 30 

5. GLYCOSIDE HYDROLASES ..................................................................................................... 32 

6. ORGANISMS USED IN THIS STUDY ........................................................................................ 33 

6.1. The Genus Rubrobacter ............................................................................................... 33 

6.1.1. The compatible solutes of Rubrobacter xylanophilus ...................................... 34 

6.2. The Genus Selaginella .................................................................................................. 34 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

5 

1. WATER AVAILABILITY 

Water is crucial to life. Thermodynamically, the water accessible to cells is defined as water 

activity (aw). Many organisms thrive in environments with low concentration of solutes, 

consequently high aw, and most of them do not tolerate even slight decreases in this 

parameter. Others can grow in environments with extremely low aw, such as concentrated salt 

or sugar solutions (Brown, 1976; da Costa et al., 1998; Empadinhas and da Costa, 2006). 

Environments rich in solutes (for example, high-sugar foods) are dominated by xerophilic 

organisms, such as filamentous fungi and yeasts, some of which are able to grow at the lowest  

aw value recorded so far: aw 0.61. Habitats with a high concentration of salts, where water 

availability is also limited, are almost exclusively inhabited by prokaryotic microorganisms, 

particularly haloarchaea, capable of growing in saturated NaCl (aw 0.75) (Grant, 2004). Salt 

marshes, bays, and estuaries are unique ecosystems characterized by frequent fluctuations in 

salinity. These fluctuations are also relevant in soils where drought, rain and freezing often 

change the osmolality within the environment (Miller and Wood, 1996). As a result of osmotic 

gradient, water permeates across the cytoplasmic membrane of the cells and could lead to 

their rupture. The levels of water stress tolerated by each organism vary significantly, and 

those with effective mechanisms of adaptation and able to adapt to osmotic challenges can 

survive under these environmental conditions (da Costa et al., 1998). 

Organisms exposed to a low aw environment must possess mechanisms to avoid water loss by 

osmosis. At least a minimum of turgor pressure has to be maintained to allow cell survival and 

growth. The immediate physiological and genetic alterations that take place in the cell, as the 

level of environmental water changes, is frequently called osmoadaptation (Galinski and 

Truper, 1994; da Costa et al., 1998; Yancey, 2005). 

Two main mechanisms, reflecting different evolutionary strategies, have been developed by 

microorganisms for osmotic adjustment. 

One strategy, known as the ‘salt-in-cytoplasm’ strategy, involves the intracellular accumulation 

of slightly higher amounts of KCl to counterbalance osmotic stress imposed by extracellular 

NaCl. This ability is restricted to halophilic prokaryotes (Kushner, 1978), mainly haloarchaea 
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and anaerobic bacteria of the order Haloanaerobiales. The red-pigmented and extremely 

halophilic bacterium Salinibacter ruber, isolated from salterns, is the only known 

representative of the aerobic bacteria that shares the strategy of KCl accumulation to cope 

with extreme salinities. It accumulates very high concentrations of Cl
- 
and K

+
/Na

+
, while other 

solutes were found only in minor concentrations (Anton et al., 2002; Oren et al., 2002). 

The other strategy used by eukaryotes and most bacteria and archaea involves the synthesis 

or accumulation of organic molecules, designated as ‘compatible solutes’ (osmolytes), which 

have the aim of counterbalancing osmotic potential (Brown, 1976; da Costa et al., 1998; 

Welsh, 2000; Oren et al., 2002; Kunte, 2006). This last strategy does not require extensive 

structural adaptations and enables a rapid adaptation of the environmental osmotic changes 

(da Costa et al., 1998; Empadinhas and da Costa, 2008a). 

For plants, water deficit of soil, salinity, high and low temperature and nutrient imbalances are 

considered the main factors that limit their survival, growth and productivity (Bao et al., 2009; 

Lee and Hwang, 2009). As in prokaryotes, two types of osmolytes, organic solutes (amino 

acids, glycine betaine, polyols, sugars, and other low molecular weight metabolites) and 

inorganic ions (Na
+
, K

+
, Ca

2+
 and Cl

–
) play a key role in osmotic adjustment (Jakobsen et al., 

2007; Chen and Jiang, 2010). 

Other photosynthetic organisms, mainly algae, can also experience osmotic stress and show 

similar responses. The basic mechanism of salt tolerance for algae has been found to be 

similar to that of vascular plants (Chapin, 1991). For example, the same compatible solutes 

(proline, glycerol and betaine) are accumulated by a unicellular green alga Dunaliella salina 

(order Chlorophyta) and vascular plants, under osmotic stress (Zhang et al., 2002). 

In the last years, genetic transformation techniques allowed the introduction of new pathways 

for the biosynthesis of various compatible solutes into plants, resulting in the production of 

transgenic plants with improved tolerance to stress. Considerable progress has been made in 

engineering the biosynthesis of compatible solutes in a variety of species, including some 

agriculturally important crops (McNeil et al., 1999). 
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2. COMPATIBLE SOLUTES 

Organic osmolytes are usually called compatible solutes based on the assumption that these 

solutes do not interact with macromolecules of cells in unfavorable ways; thus, they can be 

safely up- and downregulated with small impact on cellular functions (Brown and Simpson, 

1972; Yancey et al., 1982). On the other hand, inorganic ions, at high concentrations, normally 

attach to and destabilize proteins and nucleic acids (with the exception of haloarchaea and 

halobacteria).  

The accumulation of compatible solutes, either by uptake from the medium or de novo 

synthesis, is a common response of microorganisms to osmotic stress, to counterbalance the 

external decrease in water availability and consequent decrease in internal turgor pressure.  

The role of compatible solutes goes beyond osmotic adjustment alone, to the protection of 

the cells and cells components from a variety of different stress conditions like heat, freezing, 

desiccation, dehydration and oxygen radicals (Santos and da Costa, 2002; Elbein et al., 2003; 

Yancey, 2005). 

Compatible solutes are accumulated to high, often molar, concentrations in the cytoplasm and 

therefore represent substantial intracellular stocks of carbon and/or nitrogen, serving as 

intracellular reserves of nutrients and energy (Welsh, 2000).  

There is a large variety of organic osmolytes, found in all domains of life. Some are widely 

distributed in nature, while others seem to be exclusive of specific groups of organisms. 

Interestingly, many organisms use a complex mixture of these compounds, for osmotic 

adaptation. Compatible solutes are generally polar and neutral (either zwitterionic or lacking 

charges) compounds. The most common compatible solutes of microorganisms include amino 

acids (glutamate, glycine, proline) and amino acid derivatives, sugars (trehalose, sucrose), 

sugar derivatives, and polyols (glycerol, inositol, mannitol, arabitol, sorbitol), betaines and 

ectoines. 

Ectoine and hydroxyectoine are examples of compatible solutes found only in mesophilic 

bacteria (Santos and da Costa, 2002; Roberts, 2005). Sucrose is rarely synthesized by bacteria, 

with the exception of cyanobacteria, where it is synthesized in response to osmotic stress; 
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however, this sugar is the main osmoprotector in plants (Lunn, 2002; Lunn and MacRae, 2003). 

Polyols are commonly found in halotolerant/halophilic fungi, yeasts, algae and plants, being 

rare in prokaryotes (da Costa et al., 1998). Few exceptions are known, including the bacteria 

Zymomonas mobilis and Pseudomonas putida, which accumulate sorbitol and mannitol, 

respectively (Loos et al., 1994; Kets et al., 1996). Among polyols, glucosylglycerol is a 

compatible solute primarily accumulated in cyanobacteria, like Synechocystis sp., in response 

to salt stress (Mikkat et al., 1996; Roberts, 2005). 

Negatively charged organic solutes like di-myo-inositol-phosphate (DIP), diglycerol phosphate 

(DGP), mannosylglycerate (MG), and its rare derivative mannosylglyceramide (MGA), have 

been identified in hyper/thermophilic bacteria and archaea and are almost exclusively 

restricted to them (Santos and da Costa, 2002; Santos et al., 2007). 

Di-myo-inositol-phosphate was the principal intracellular solute, accumulated in response to 

heat-stress, in Thermococcus litoralis, Pyrococcus furiosus and Pyrococcus horikoshii (Martins 

and Santos, 1995; Empadinhas et al., 2001). In Archaeoglobus fulgidus DIP was accumulated in 

response to salinity and, more recently, this negatively charged solute was detected in the 

thermophilic bacterium Rubrobacter xylanophilus, where its concentration increased with 

rising growth temperature (Gonçalves et al., 2003; Empadinhas et al., 2007). Borges and co-

workes (2010) verified that during the adaptation to thermal stress of a DIP-negative mutant 

of Thermococcus kodakarensis, DIP was replaced by aspartate. It seems that both negatively 

charged solutes (DIP and aspartate) may serve as K
+
 counterions and may act as protectors of 

proteins against thermal denaturation (Neves et al., 2005). 

The compatible solute DGP is a singular solute only found in some strains of the genus 

Archaeoglobus, being accumulated in response to osmotic and thermal stresses (Lamosa et al., 

2000; Gonçalves et al., 2003; Santos et al., 2007). Lamosa and co-workers (2003) confirmed 

the protection granted by this molecule on Desulfovibrio gigas rubredoxin against heat 

denaturation in vitro. 

The rare derivative of MG, mannosylglyceramide (MGA), has been found only in the 

thermophilic bacterium Rhodothermus marinus, where it was preferentially accumulated in 

response to salt stress. This bacterium also accumulates MG, not only due to NaCl 
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concentration, but also as a response to supra-optimal temperatures (Silva et al., 1999; 

Empadinhas and da Costa, 2006). 

Mannosylglucosylglycerate (MGG) is a rare solute identified in two thermophilic species of the 

order Thermotogales. In Petrotoga miotherma, MGG appears to participate in the adaptation 

of the organisms to sub-optimal growth salinities only, since its concentrations decreased 

during growth at supra-optimal salinities and temperatures, when proline and -glutamate 

became the dominant compatible solutes (Jorge et al., 2007). Curiously, in Petrotoga mobilis, 

MGG was detected at supra-optimal salinities and growth temperatures (Fernandes et al., 

2010). 

Glucosylglucosylglycerate (GGG) was detected in Mycobacterium smegmatis where it was 

suspected to be one of the intermediates in the synthesis of the methylglucose 

lipopolysaccharide (MGLP) (Kamisango et al., 1987). This MGLP, isolated from several Nocardia 

and Mycobacterium species, appears to modulate fatty acid synthesis and act as their carrier 

to the cell wall assembly. However, physiological evidence for this assumption remains to be 

experimentally confirmed (Mendes, 2011). More recently, Santos and co-workers (2007) 

found GGG in the phylogenetically unrelated bacterium Persephonella marina, which also 

accumulates GG. Both molecules, GG and its rare derivative GGG, are accumulated under 

osmotic stress (Santos et al., 2007). 

Recently, Yancey and co-workers (2002) found unusual osmolytes in deep-sea animals, such as 

trimethylamine N-oxide (TMAO) and scyllo-inositol. Free amino acids, polyols and betaine 

were also detected. Some of these compounds are probably involved in counterbalancing 

inhibitory effects of high hydrostatic pressure. Sulfur-based osmolytes, such as hypotaurine 

and thiotaurine, were found in vent and seep animals and seem more likely to protect cells as 

antioxidants (Yancey et al., 2002). Another sulfur-based osmolyte, sulfotrehalose, was found 

to be the major organic solute accumulated by the halophilic archaea, Natronococcus sp. and 

several Natronobacterium species, for osmotic balance (Desmarais et al., 1997). 
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Figure 1.1. Struture of trehalose. 

 

2.1. Trehalose 

Trehalose is a chemically inert natural sugar, formed by two glucose molecules bound via an 

α,α-1,1-glycosidic linkage (Fig. 1.1).  

It is widely distributed, being encountered in eukaryotic 

(yeast, fungi, nematodes, insects, shrimps and plants) and 

prokaryotic organisms of the domains Bacteria and Archaea 

(Elbein et al., 2003). 

Different functions of trehalose may be associated with 

different organisms, but it is also possible to observe that 

trehalose has more than one function in the same 

organism. 

Trehalose can protect proteins and cellular membranes from a variety of extreme 

environmental conditions, including desiccation, dehydration, heat or cold (Crowe et al., 1998; 

Benaroudj et al., 2001; Elbein et al., 2003; Jain and Roy, 2009). 

In plants, trehalose may control the growth and inflorescence blanching, and in yeasts, 

trehalose can function as a signaling or regulatory molecule (Elbein et al., 2003; Rolland et al., 

2006; Satoh-Nagasawa et al., 2006; Ramon et al., 2007); trehalose is also known to play an 

important role in plant-microorganism interactions, being present in endomycorrhizae and 

ectomycorrhizae and in legume nodules (Iturriaga et al., 2009). 

In insects and fungi, trehalose serves as a source of energy or carbon, during flight (insects) or 

during germination of spores (fungi) (Elbein et al., 2003). 

In prokaryotes, trehalose is thought to serve as a source of carbon, being a structural 

component, or as a compatible solute in halophiles and cyanobacteria (Arguelles, 2000). 

Particularly, in mycobacteria, corynebacteria and nocardia, trehalose is an integral component 

of various glycolipids that are important cell wall structures (Daffe and Draper, 1998; Ryll et 

al., 2001; Elbein et al., 2003). 
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Trehalose is a molecule with several important applications in different fields, such as food, 

pharmaceutical and cosmetic industry. It is widely used as an alternative to sugar in industrial 

uses (sweetener, food stabilizer and as food additive). Trehalose protects against free radicals 

and UV radiation and its anti-aging effects makes this disaccharide a promising compound for 

cosmetics and for the pharmaceutical industry (Iturriaga et al., 2009). 

In medicine, trehalose is involved, for example, in the prevention of osteoporosis, it 

contributes to alleviate polyglutamine and polyalanine diseases, such as Huntington’s disease, 

and it also inhibits the aggregation of the peptide β-amyloid and reduces its cytotoxicity, in 

Alzheimer’s disease (Nishizaki et al., 2000; Tanaka et al., 2004; Liu and Ames, 2005). Trehalose 

protects fibroblasts and corneal epithelial cells in culture from death by desiccation (Eroglu et 

al., 2000; Guo et al., 2000; Matsuo, 2001). Furthermore, it has been shown that trehalose has 

many biotechnological applications. This disaccharide can be used as a stabilizer of 

thermolabile enzymes such as DNA polymerase, DNA ligase and restriction enzymes (Colaço et 

al., 1992; Kaushik and Bhat, 2003). It improves microarray experiments and is also involved in 

the stabilization of biomaterials (Mascellani et al., 2007; Teramoto et al., 2008). 

 

2.2. Mannosylglycerate 

Mannosylglycerate (MG) is a carboxylate molecule, constituted by a mannose moiety linked to 

the C2 of the glycerate (Fig. 1.2). 

This compound is widely distributed in 

hyper/thermophilic bacteria and archaea, being 

detected, for example, in the thermophilic 

bacteria Rhodothermus marinus, Thermus 

thermophilus and Rubrobacter xylanophilus, in 

the hyperthermophilic archaea of the genera 

Pyrococcus, Thermococcus, Palaeococcus, 

Aeropyrum, and in some strains of the genus 

Archaeoglobus (Martins and Santos, 1995; 
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Figure 1.2. Struture of mannosylglycerate. 

 

 



Chapter 1  

12 

Figure 1.3. Struture of glucosylglycerate. 
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Nunes et al., 1995; Lamosa et al., 1998; Santos and da Costa, 2002; Neves et al., 2005; 

Empadinhas et al., 2007). 

Low levels of this compound have been primarily encountered in the marine red alga 

Polysiphonia fastigiata. To date it has also been found in several species of the orders 

Ceramiales, Gelidiales and Gigartinales (Bouveng et al., 1955; Karsten et al., 2007). 

MG has an important role in the osmoadaptation and possibly in thermal protection of several 

hyper/thermophilic bacteria and archaea. The level of MG increases primarily in response to 

osmotic stress, although in Rhodothermus marinus it also increases at supra-optimal growth 

temperatures, being implicated in the response to thermal stress (Borges et al., 2004). The 

hyperthermophilic archaeon Palaeococcus ferrophilus showed a behavior resembling that 

observed in Rhodothermus marinus, since the accumulation of MG was detected under both 

salt and thermal stress conditions (Borges et al., 2004; Neves et al., 2005). 

In Rubrobacter xylanophilus, the accumulation of MG seems to be constitutive, since osmotic 

stress, thermal stress and the composition of the environment had no effect on MG levels 

(Empadinhas et al., 2007). The occurrence of MG has not yet been shown in mesophilic 

organisms, except in the case of red algae, where its role remains unknown (Santos and da 

Costa, 2002; Empadinhas and da Costa, 2008a, 2008b). 

 

2.3. Glucosylglycerate 

Glucosylglycerate (GG) is, like MG, a carboxylate solute, where mannose is replaced by glucose 

(Fig.1.3). 

To date, the accumulation of GG has been restricted 

to several species of mesophilic archaea and 

bacteria. This compound was initially identified in the 

marine cyanobacterium Agmenellum quadruplicatum 

strain PCC7002, grown under nitrogen-limiting 

conditions. It has recently been shown that GG acts 
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as a compatible solute, since this sugar-glycerate molecule is accumulated by the -

proteobacterium Erwinia chrysanthemi grown under nitrogen starvation combined with 

osmotic stress (Kollman et al., 1979; Goude et al., 2004). 

The thermophilic bacterium Persephonella marina also accumulates GG as a compatible solute 

since its concentration increases under salt stress (Costa et al., 2007). Recently, it has been 

demonstrated that GG accumulates in Streptomyces caelestis and this bacterium is also able to 

excrete it into the growth medium (Pospisil et al., 2007). In Mycobacterium sp., GG was found 

to be incorporated into the reducing end of a methylglucose lipopolysaccharide (MGLP) 

(Kamisango et al., 1987). This MGLP seems to be unique to some members of the order 

Actinomycetales (Hunter et al., 1979). GG was also identified in the polar head of a glycolipid 

in Nocardia otitidiscaviarum (Pommier and Michel, 1981; Tuffal et al., 1998). This organism, 

which also synthesizes a MGLP, is phylogenetically related to mycobacteria (Pommier and 

Michel, 1986). However, the physiological role of the GG-containing glycolipid remains elusive. 

 

3. BIOSYNTHESIS OF TREHALOSE, MANNOSYLGLYCERATE AND 
GLUCOSYLGLYCERATE 

3.1. Biosynthetic pathways for trehalose 

To date, five different biosynthetic pathways for trehalose have been described: the Tps/Tpp, 

the TreS, the TreY/TreZ, the TreT and the TreP pathway (Avonce et al., 2006) (Fig. 1.4). 
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Figure 1.4. Pathways for trehalose biosynthesis present in a) archaea, bacteria, fungi, plants and 
arthropods; b) bacteria; c) archaea and bacteria; d) archaea and bacteria; e) bacteria and fungi. 
Abbreviations: Tps, trehalose-6-phosphate synthase; Tpp, trehalose-6-phosphate phosphatase; NDP, 
nucleoside diphosphate; Pi, free phosphate; TreS, trehalose synthase; TreY, maltooligosyltrehalose 
synthase; TreZ, maltooligosyltrehalose trehalohydrolase; TreT, glycosyltransferring synthase; TreP, 
trehalose phosphorylase. 

 

 

3.1.1. Tps/Tpp pathway 

The first pathway for trehalose synthesis, discovered 53 years ago (Cabib and Leloir, 1958), is 

the best known and most widely distributed (archaea, eubacteria, fungi, invertebrates, insects, 

and plants). It involves a trehalose-6-phosphate synthase (Tps) and a trehalose-6-phosphate 

phosphatase (Tpp). The Tps catalyzes the transfer of glucose from NDP-glucose to glucose-6-

phosphate forming trehalose-6-phosphate (T6P) and NDP, while the Tpp dephosphorylates 

T6P, forming trehalose and inorganic phosphate. In Escherichia coli, Tps and Tpp enzymes are 
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encoded by otsA and otsB genes (osmoregulatory trehalose synthesis); their deletion 

originated osmotically sensitive mutants (Giaever et al., 1988). The Tps/Tpp pathway is one of 

the pathways present in every prokaryotic strain known to date that possess multiple 

trehalose biosynthetic pathways (Freeman et al., 2010). This pathway is the sole pathway in 

Escherichia coli, Salmonella enterica and in plants (Fernandez et al., 2010). In the yeast 

Saccharomyces cerevisiae, trehalose is synthesized by an enzyme complex that is composed of 

four subunits: TPS1, TPS2, TSL1 and TPS3. The TPS1/TPS2 enzyme complex carries the catalytic 

activity for trehalose synthesis (encodes Tps and Tpp enzymes), while TSL1 and TPS3 may act 

in the regulation or structural stabilization of the TPS1/TPS2 complex (Reinders et al., 1997). 

The existence of a multienzyme complex is not yet understood, but it may be related with a 

regulatory function on trehalose metabolism and/or on the interaction between trehalose 

metabolism, glycolysis and fermentation (Bell et al., 1998; Noubhani et al., 2000). 

 

3.1.2. TreS pathway 

The second biosynthetic pathway involves a trehalose synthase (TreS), encoded by the treS 

gene, which catalyses the intramolecular rearrangement of maltose, converting the α(1-4)- 

linkage into a α(1-1)- linkage of trehalose (Elbein et al., 2003). This enzyme was first reported 

in Pimelobacter sp. (Nishimoto et al., 1996) and has since been identified in several bacteria, 

namely, Corynebacterium glutamicum, Mycobacterium smegmatis, Pseudomonas stutzeri, 

Propionibacterium freudenreichii, Arthrobacter aurescens and in thermophilic archaea and 

bacteria (Tsusaki et al., 1997; Koh et al., 2003; Wolf et al., 2003; Pan et al., 2004; Lee et al., 

2005; Chen et al., 2006; Cardoso et al., 2007; Wu et al., 2009). Recently, the TreS from 

Mycobacterium smegmatis has been found to convert glycogen into trehalose, via maltose 

(Pan et al., 2008). The TreS enzyme also catalyzes the reverse reaction, i.e., trehalose to 

maltose, indicating that TreS could also be responsible for trehalose degradation, instead of 

trehalose synthesis (Koh et al., 2003; Wolf et al., 2003; Cardoso et al., 2007). 

 



Chapter 1  

16 

3.1.3. TreY/ TreZ pathway  

The third pathway for trehalose synthesis (TreY/TreZ) involves the conversion of 

maltooligosaccharides and starch into trehalose. This pathway has been elucidated in the 

hyperthermophilic crenarchaeon Sulfolobus acidocaldarius (Nakada et al., 1996) and in the 

bacteria Arthrobacter sp., Rhizobium sp., Brevibacterium helvolum, Mycobacterium 

tuberculosis and, more recently, in Corynebacterium glutamicum and Deinococcus radiodurans 

(Maruta et al., 1996a, 1996b; De Smet et al., 2000; Kim et al., 2000; Wolf et al., 2003; Timmins 

et al., 2005). These organisms synthesize trehalose in two enzymatic steps catalyzed by a 

maltooligosyltrehalose synthase (TreY), encoded by the treY gene, and a 

maltooligosyltrehalose trehalohydrolase (TreZ), encoded by the treZ gene. The first enzyme, 

TreY, rearranges the glucose moiety at the reducing end of a maltooligosaccharide or a 

glycogen chain by converting the α(1-4)- to an α(1-1)- linkage. After this step, the TreZ 

hydrolyzes the products of the TreY-catalyzed reaction (maltooligosyltrehalose) to produce 

free trehalose. 

 

3.1.4. TreT pathway 

A recently discovered biosynthetic pathway for trehalose was found in the hyperthermophilic 

archaea Thermococcus litoralis, Pyrococcus horikoshii, and Thermoproteus tenax (Qu et al., 

2004; Ryu et al., 2005; Kouril et al., 2008). Unlike the widely distributed Tps/Tpp pathway, the 

newly identified enzyme, trehalose glycosyltransferring synthase, designated as TreT, 

synthesizes trehalose from NDP-glucose and glucose, rather than from glucose-6-phosphate. 

This enzyme transfers the glucose moiety from NDP-glucose and joins it at position 1 of 

another glucose molecule to form trehalose, in one single-step. However, this enzyme can also 

catalyze the reverse reaction. In T. litoralis, the TreT enzyme is able to form ADP-glucose plus 

glucose from trehalose and ADP and in P. horikoshii trehalose is partially hydrolyzed (Qu et al., 

2004; Ryu et al., 2005). Interestingly, the T. tenax TreT was showed to be unidirectional and 

active only in the reaction of trehalose synthesis. This enzyme did not catalyze trehalose 

degradation, being different from the other reversible TreTs (Kouril et al., 2008). The recently 
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determined crystal structure of TreT from P. horikoshii, revealed that the conservation of 

essential residues and the high overall structural similarity of the N-terminal domain to that of 

Tps imply that the catalytic reaction of TreT, for trehalose synthesis, would follow an 

analogous mechanism to that of Tps (Woo et al., 2010). 

 

3.1.5. TreP pathway 

Some authors also consider a fifth pathway for trehalose synthesis, which is restricted to fungi 

and a few bacteria, involving a trehalose phosphorylase (TreP) (Wannet et al., 1998; Han et al., 

2003; Ren et al., 2005; Schwarz et al., 2007). In this pathway, trehalose is formed in the 

presence of glucose-1-phosphate (Glc1P) and glucose. This enzyme can also catalyze the 

reversible hydrolysis of trehalose, in the presence of inorganic phosphate; transferring a 

glucose molecule to a phosphate generates glucose-1-phosphate and releases the other 

glucose residue. There is uncertainty about the participation of TreP enzymes in the synthesis 

or degradation of trehalose, since the biosynthetic reactions have only been observed in vitro 

(Avonce et al., 2006). 

 

3.2. Genomic organization of trehalose synthesizing genes  

There are several distinct genetic organizations related to trehalose synthesizing genes. With 

respect to tps and tpp genes, involved in the Tps/Tpp pathway, three different genomic 

organizations were found in prokaryotes: the tps and tpp genes are contiguous in an operon-

like-structure; tps and tpp genes are distantly located in the genome; these two genes are 

fused and form a bifunctional enzyme (Fig. 1.5).  

The first type of genetic organization was found in Escherichia coli, where tps and tpp 

constitute an operon in which tpp is proximal to the promoter, and tps is distal. The 3' end of 

the tpp coding region overlaps the 5' end of the tps coding region by 23 nucleotides (Kaasen et 

al., 1992; Kaasen et al., 1994). A similar genetic organization, where both genes are co-

transcribed and thus, form an operon, is found in the archaeon Thermoplasma acidophilum 
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and in several strains of Thermus thermophilus (Alarico et al., 2005). However, the tps gene in 

these organisms is proximal to the promoter, instead of tpp. In T. thermophilus RQ-1 three 

genes coding for two different trehalose biosynthetic pathways were found, namely tps, tpp 

and treS. These genes are organized in a cluster, with tpp immediately downstream tps and 

treS downstream tpp (Fig. 1.5). Although these genes are structurally linked, it was impossible 

to conclude that they were organized in an operon, since no obvious promoter could be 

identified, and transcriptional analysis was not performed (Silva et al., 2003). 

Thermus thermophilus RQ-1

Escherichia coli
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Figure 1.5. Organization of genes leading to the synthesis of trehalose in different organisms: a) bacteria 
and b) archaea. Genes, putative genes and their orientation are represented by arrows. 
 

The second type of organization was found, for example, in Mycobacterium tuberculosis (De 

Smet et al., 2000) and in the archaeon Methanothermobacter thermautotrophicus. In the 

latter, tpp and tps genes have two other genes in between them: one coding for a mannose-1-
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phosphate guanylyl transferase and the other for a phosphomannose mutase, both putatively 

implicated in the synthesis of mannosylglycerate (Martins et al., 1999) (Fig. 1.5). 

The third genetic organization was described in the archaeon Pyrobaculum aerophilum and in 

Thermoproteus tenax. The reconstruction of the trehalose metabolism of T. tenax revealed the 

presence of the Tps/Tpp pathway (Siebers et al., 2004), although only one gene (tpsp) was 

identified. This gene codes for a trehalose-6-phosphate synthase/phosphatase (TPSP), a fusion 

protein with a Tps domain in the N-terminal and a Tpp domain in the C-terminal (Zaparty, 

2007). A similar two-domain structure had already been described for TPSP from plants, 

Arabidopsis thaliana and Selaginella lepidophylla (Blazquez et al., 1998; Zentella et al., 1999), 

and for the yeast Saccharomyces cerevisiae (Kaasen et al., 1994). 

Several mesophilic bacteria, belonging to the genera Arthrobacter, Brevibacterium or 

Micrococcus, as well as thermophilic archaea (members of the Sulfolobales order), synthesize 

trehalose from starch via the TreY/TreZ pathway (Kobayashi et al., 1996; Di Lernia et al., 1998; 

Gueguen et al., 2001). In these organisms, the treY and treZ genes are contiguous and under 

the same promoter. In the thermophilic archaeon Sulfolobus acidocaldarius and in the 

bacterium Mycobacterium tuberculosis, another gene, treX (coding for a glycogen debranching 

enzyme), is incorporated in the operon structure involving treY and treZ genes (Maruta et al., 

1996c; De Smet et al., 2000) (Fig. 1.5). 

Three different situations relative to the treT genetic context were found in bacteria and 

archaea: organisms with a conserved organization of treT and orfY (a gene of unknown 

function) genes, organisms with a treT gene in a cluster comprising genes coding for a putative 

ABC transporter proteins and organisms which harbor the treT gene and genes coding for 

enzymes involved in alternative trehalose pathways (Kouril et al., 2008) (Fig. 1.5). 

The possible existence of a unidirectional TreT pathway in many Crenarchaeota, such as in 

members of the orders Thermoproteales and Sulfolobales, in the euryarchaeon Methanosaeta 

thermophila and, unexpectedly, in a few proteobacteria (Syntrophus aciditrophicus, 

Syntrophobacter fumaroxidans, Pelobacter carbinolicus), is supported by the conserved 

clustering of the treT homologs genes and the gene coding for OrfY (Kouril et al., 2008) (Fig. 



Chapter 1  

20 

1.5). The organisms of this group also have genes involved in other trehalose pathways in their 

genomes, like Tps/Tpp or TreY/TreZ (Kouril et al., 2008) (Fig. 1.5). 

In contrast to the unidirectional catalysis of Thermoproteus tenax TreT enzyme, the previously 

studied reversible TreTs of the euryarchaeota Thermococcus litoralis and Pyrococcus horikoshii 

are part of a gene cluster harboring maltose/trehalose ABC transporter genes (Qu et al., 2004; 

Ryu et al., 2005) (Fig. 1.5). 

In the crenarchaeotes Staphylothermus marinus and Thermofilum pendens and in some 

members of the order Thermotogales, the same genetic organization was observed, i.e., the 

TreT homolog is part of a predicted ABC transporter, suggesting reversible TreT activity in 

these archaea and bacteria. No genes encoding enzymes involved in alternative pathways for 

trehalose metabolism were identified in these organisms (Kouril et al., 2008) (Fig. 1.5).  

In respect to the treT gene, another genetic organization was found in the euryarchaeon 

Methanoculleus marisnigri, where three paralogous sequences were identified, and none of 

these treT homolog genes show clustering with genes coding for OrfY or ABC transporter 

proteins (Kouril et al., 2008). 

 

 

3.3. Trehalose hydrolysis or turnover 

An enzyme that hydrolyses trehalose was first observed in Aspergillus niger (Bourquelot, 1893) 

and then in Saccharomyces cerevesiae, by Fischer, in 1895. Since then, the enzyme trehalase 

(,-trehalose-1-C-glucohydrolase) has been reported in several other organisms, including 

plants and animals (Elbein, 1974). 

Several pathways for the hydrolysis of this disaccharide have been described in Bacteria and 

Eukarya domains, but the most common pathway includes trehalases. This enzyme (TreH) 

breaks down trehalose into two glucoses. This process has been found in all organisms that 

synthesize trehalose (Richards et al., 2002), even when distinct forms of trehalase coexist, for 

example in yeasts (Jules et al., 2008). 
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Interestingly, trehalose has never been found in mammals, even though trehalase has been 

found in significant amounts in the small intestine of several mammalian species (Richards et 

al., 2002). The eukaryotic green alga Euglena gracilis has an enzyme which catalyses the 

reversible phosphorolysis of trehalose to glucose-1-phosphate and glucose, via the trehalose 

phosphorylase (TreP) (Maréchal and Belocopitow, 1972). In Arabidopsis thaliana, trehalase is 

encoded by a single gene, while a large diversity of Tps and Tpp genes exist in the plant’s 

genome (Leyman et al., 2001; Muller et al., 2001; Lunn, 2007; Paul et al., 2008). 

In Escherichia coli, apart from the cytoplasmic trehalase (TreF), which was shown to be highly 

homologous to the periplasmic trehalase (TreA), an additional pathway for trehalose 

hydrolysis was detected, where T6P is converted into glucose and glucose-6-phosphate, by a 

phosphotrehalase (TreC) (Boos et al., 1987; Gutierrez et al., 1989; Rimmele and Boos, 1994; 

Horlacher et al., 1996). On the other hand, limited biochemical information is available 

concerning pathways for trehalose degradation in Archaea, with the exception of the TreTs 

from Thermococcus litoralis and Pyrococcus horikoshii (Qu et al., 2004; Ryu et al., 2005). 

 

3.4. Biosynthetic pathways for mannosylglycerate 

3.4.1. Mannosylglycerate biosynthesis in bacteria and archaea 

Two biosynthetic pathways for the synthesis of mannosylglycerate have been elucidated. In 

the single-step pathway, a mannosylglycerate synthase (MgS), encoded by the mgS gene, 

catalizes the transfer of the mannosyl moiety of GDP-mannose to D-glycerate, yielding 

mannosylglycerate (Fig. 1.6). This pathway has only been described in the thermophilic 

bacterium Rhodothermus marinus (Martins et al., 1999). The characterization of the new and 

unique MgS enzyme led to the formation of the glycosyltransferase family 78 (GT78) 

(www.cazy.org). More recently, the three-dimensional structure of this enzyme was 

determined (Flint et al., 2005). 

In the two-step pathway, MG is synthesized via two sequential reactions, which are catalyzed 

by a mannosyl-3-phosphoglycerate synthase (MpgS), encoded by the mpgS gene, and a 

http://www.cazy.org/
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mannosyl-3-phosphoglycerate phosphatase (MpgP), encoded by the mpgP gene. In the first 

reaction, the mannosyl moiety of GDP-mannose is transferred to D-3-phosphoglycerate (3-

PGA) to form a phosphorylated intermediate, mannosyl-3-phosphoglycerate (MPG), which is 

then hydrolyzed to mannosylglycerate, in the second reaction.  

mpgS mpgP

GDP-mannose +  D-3-PGA MG       

GDP-mannose +  D-Glycerate MG
mgS

GDP

PiGDP

mgsD

Pi

Mannosylglycerate

GDP-mannose +  D-3-PGA         MPG MG

 

Figure 1.6. Pathways for mannosylglycerate biosynthesis. Abbreviations: mgS, mannosylglycerate 
synthase gene; GDP, guanosine diphosphate; D-3-PGA, D-3-phosphoglycerate; mpgS, mannosyl-3-
phosphoglycerate synthase gene; mpgP, mannosyl-3-phosphoglycerate phosphatase gene; MPG, 
mannosyl-3-phosphoglycerate; Pi, free phosphate; mgsD, bifunctional mannosylglycerate synthase gene. 

 

This two-step pathway was first detected in R. marinus by Martins and co-workers (1999) and 

later characterized by Borges and co-workers (2004). The use of two different acceptor 

molecules (D-glycerate and 3-PGA) combined with the differences in salt dependency (the 

reaction catalysed by MgS was salt-independent; while NaCl or KCl salts were required for full 

activity of the MpgS/MpgP system), led Martins and co-workers (1999) to suspect that two 

different pathways for MG synthesis were present in R. marinus. This thermophilic bacterium 

is, so far, the only known organism with two pathways for the synthesis of MG.  

The two-step pathway for MG synthesis has been found in organisms known to accumulate 

MG, such as Rhodothermus marinus, most Thermus thermophilus strains, Palaeococcus 

ferrophilus, Thermococcus litoralis, Aeropyrum pernix and Staphylothermus marinus 

(Empadinhas et al., 2001; Quaiser et al., 2002; Empadinhas et al., 2003; Neves et al., 2005). 

Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG (Empadinhas 

et al., 2007). The metabolic pathway for the synthesis of this molecule in this bacterium was 

recently studied by Empadinhas and co-workers (2011) and involves a highly divergent 

mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to 
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known mannosylphosphoglycerate synthases. This unique MpgS has an unparalleled dual 

MpgS and glucosyl-3-phosphoglycerate synthase (GpgS) activity, since it is capable of 

synthesizing mannosyl-3-phosphoglycerate (MPG) or glucosyl-3-phosphoglycerate (GPG), the 

precursors of MG and GG. The determination of MpgS crystal structure showed that the 

binding-site of this enzyme is modified to specifically select GDP-containing ligands, while the 

sugar-binding region is suited for accommodation of both glucose and mannose (Empadinhas 

et al., 2011). The biochemical and kinetic properties and the crystallization studies of this 

enzyme led Empadinhas and co-workers (2011) to include it in the GT81 family of 

glycosyltransferases, which also includes GpgSs from mycobacteria  (Empadinhas et al., 2008; 

Empadinhas and da Costa, 2010). 

The synthesis of MG or GG, by the R. xylanophilus MpgS enzyme, was observed in cells 

extracts, where unknown phosphatases desphosphorylated the intermediates MPG and GPG 

(Empadinhas et al., 2011). 

Another pathway for the synthesis of MG was found in the mesophilic bacterium 

Dehalococcoides ethenogenes. This gene comprises an MpgS and an MpgP in a single 

polypeptide. The expression of this gene (designated as mgsD), both in Escherichia coli and in 

the yeast Saccharomyces cerevisiae, showed that the recombinant enzyme, a bifunctional 

mannosylglycerate synthase (MgsD), synthesized MG in vitro and in vivo, arguing in favor of a 

similar function in the native organism (Empadinhas et al., 2004). In Dehalococcoides 

ethenogenes MG seems to function as a true compatible solute in response to osmotic stress 

(Empadinhas and da Costa, 2010). 

 

3.4.2. Mannosylglycerate genes in eukaryotes 

The presence of two amino acid sequences identified in the red alga Griffithsia japonica 

(GenPep accession numbers AAM93991 and AAP80838), with high homology with the MgS 

protein of Rhodothermus marinus, suggests that the MG single-step pathway could also be 

present in organisms from the domain Eukarya (Borges et al., 2004). 
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Recently, a gene coding for the MgS enzyme was found in the red alga Caloglossa leprieurii 

(Santos et al., 2007) and an Expressed Sequence Tag (EST) was also identified in the red alga 

Gracilaria changii (Teo et al., 2007) The acquisition of MG biosynthethic genes by organisms 

belonging to the order Rhodophyta possibly reflects endosymbiosis of a prokaryote carrying an 

mgS or mpgS gene (Martin et al., 2003). 

Fungal genomes of Magnaporthe grisea, Neurospora crassa and Chaetomium globosum 

revealed mpgS-like gene sequences (Empadinhas, 2004; Empadinhas and da Costa, 2008b). 

The mpgS gene from Magnaporthe grisea was cloned and expressed in Saccharomyces 

cerevisiae and the MG accumulation by the transformed yeast was observed, which proved 

that the MpgS enzyme was functional (Empadinhas, 2004). Interestingly, the phosphatase 

gene usually associated with the mpgS, was not present in these fungi and the role of the 

phosphorylated compound MPG is, so far, unknown. 

So far, MgS homologues have not been detected in the numerous prokaryotic genomes 

available. Interestingly, the genomes of two plants, the moss Physcomitrella patens and of the 

spikemoss Selaginella moellendorffii include full-length MgS homologues (Empadinhas and da 

Costa, 2010). It is probable that these organisms accumulate MG and that MG genetic tools 

could be inherited from algae from the order Rhodophyta (Stiller and Hall, 1997). Some red 

algae are known to accumulate MG and this accumulation also possibly occurs in mosses or 

plants, but its biological role, remains an enigma as well as the evolutionary scenario of this 

molecule in the domain Eukarya. 

 

3.5. Genomic organization of mannosylglycerate synthesizing genes 

The synthesis of MG proceeds via two different pathways in Rhodothermus marinus, while in 

Thermus thermophilus MG synthesis totally relies on the two-step pathway (Martins et al., 

1999; Empadinhas et al., 2003; Borges et al., 2004) (Fig. 1.7). In these thermophilic organisms, 

mpgS and mpgP genes are consecutive and under the same promoter. Remarkably, T. 

thermophilus strain CC-16 is an exception among other T. thermophilus strains and it can be 

considered a “naturally occurring variant” for the synthesis of MG, since mpgS and mpgP (or 
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mgS) genes are absent in its genome. However, strain CC-16 possesses genes involved in two 

pathways for the synthesis of trehalose (tps, tpp and treS genes), which allows it to grow in a 

medium containing up to 1.0% NaCl (Alarico et al., 2005). The same type of organization is 

found for the homologous genes of the crenarcheote Aeropyrum pernix, although in 

Staphylothermus marinus, other hyperthermophilic crenarchaeote, the mpgS and mpgP are 

consecutive, but in opposite directions, under the control of individual promoters 

(Empadinhas et al., 2003). 

Pyrococcus sp. mpgS mpgP m1p-gt/pmi pmm

Uncultured archaea

“Dehalococcoides ethenogenes” mgsD

Magnaporthe grisea
mpgS

mpgS mpgPThermus thermophilus

Rhodothermus marinus

Aeropyrum pernix

Rhodothermus marinus mgS

Neurospora crassa mpgS

Rubrobacter xylanophilus mpgSRxyl_2311Rxyl_2310

Griffithsia japonica

Caloglossa leprieurii
mgS

a

b

d

c

Physcomitrella patens

Selaginella moellendorffii
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Staphylothermus marinus mpgPmpgS

mpgS

 

Figure 1.7. Organization of genes leading to the synthesis of MG in different organisms: a) bacteria; b) 
archaea; c) fungi; d) algae and e) plants. Pink, red and orange arrows represent genes committed to MG 
synthesis and their directions. Light grey arrows represent genes coding for enzymes involved in the 
production of MG precursors and grey arrows represent putative genes for a hydrolase (Rxyl_2310) and a 
5′-nucleotidase (Rxyl_2311). The dashed arrows represent putative genes. Abbreviations: mgS, 
mannosylglycerate synthase gene; mpgS, mannosyl-3-phosphoglycerate synthase gene; mpgP, 
mannosyl-3-phosphoglycerate phosphatase gene; m1p-gt/pmi, bifunctional mannose 1-phosphate 
guanylyltransferase/phosphomannose isomerase gene; pmm, phosphomannose mutase gene; mgsD, 
bifunctional mannosylglycerate synthase gene. 

 

In Pyrococcus sp. and in species of the order Thermococcales, mpgS and mpgP genes are 

sequentially arranged in the genome and organized in an operon-like structure that also 
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comprises two genes coding for enzymes involved in the synthesis of the precursor for MG 

enzyme, GDP-mannose (Empadinhas et al., 2001; Neves et al., 2005). 

In the bacterium Dehalococcoide ethenogenes, mpgS and mpgP genes are fused and code for a 

bifunctional enzyme (Empadinhas et al., 2004) (Fig. 1.7). This fused gene was not found in the 

closely related organism Dehalogenimonas lykanthroporepellens (Moe et al., 2009). This fusion 

event between genes encoding enzymes that catalyze consecutive steps in a specific pathway 

is not unprecedented. Cyanobacteria also possess a unique gene for sucrose-phosphate 

synthase and sucrose-phosphate phosphatase (SPS/SPP) enzymes, implicated in sucrose 

synthesis (Lunn, 2002; Lunn and MacRae, 2003). 

In mesophilic eukaryotes such as fungi Magnaporthe grisea and Neurospora crassa, a single 

mpgS-like gene was also identified (Empadinhas and da Costa, 2008b). In M. grisea, the mpgS-

like sequence corresponds to the first of ten exons, encoding a 1718 amino acid protein, while 

in N. crassa it was a sole intronless gene. A typical phosphatase gene is absent near the 

putative mpgS gene (Fig. 1.7). 

In the single-step pathway for MG synthesis in Rhodothermus marinus, the gene coding for the 

mannosylglycerate synthase (Rmar_1220) was isolated in the genome, not close to the other 

MG genes, mpgS and mpgp (Martins et al., 1999; Borges et al., 2004) (Fig. 1.7). 

A single mgS-like gene was also found in the red algae Griffithsia japonica and Caloglossa 

leprieurii (Karsten et al., 2003; Santos et al., 2007). Recently, inspection of public genomic 

databases resulted in the identification of mgS-like genes in the plants Physcomitrella patens 

and Selaginella moellendorffii, suggesting the presence of the single-step pathway for MG 

synthesis in these early land plants (Empadinhas and da Costa, 2008b, 2010) (Fig. 1.7). 

 
 

3.6. Biosynthetic pathways for glucosylglycerate 

Two pathways for the synthesis of GG have been identified, as reported for MG. The first 

biosynthetic pathway (two-step reactions) was elucidated in the psychrotolerant archeon 

Methanococcoides burtonii, where the accumulation of GG remains to be demonstrated 
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(Costa et al., 2006) and in the thermophilic bacterium Persephonella marina (Costa et al., 

2007). In this pathway the synthesis of GG involves two enzymes, a glucosyl-3-

phosphoglycerate synthase (GpgS) and a glucosyl-3-phosphoglycerate phosphatase (GpgP), 

and a phosphorylated intermediate. The first enzyme, encoded by the gpgS gene, converts 

NDP-glucose and D-3-phosphoglycerate (3-PGA) into glucosyl-3-phosphoglycerate (GPG) and 

the second enzyme, encoded by the gpgP gene, desphosphorylates the intermediate, yielding 

free GG (Fig. 1.8). 

An additional pathway for GG synthesis was later found in Persephonella marina (Fernandes et 

al., 2007). In this pathway, NDP-glucose is condensed with D-glycerate to directly produce GG 

in a single glucosyl-transfer reaction, without the formation of the intermediate compound 

GPG. This reaction is catalyzed by a glucosylglycerate synthase (GgS), encoded by the ggS gene 

(Fig. 1.8). The thermophilic bacterium Persephonella marina is, so far, the only known 

organism to have two alternative pathways for the synthesis of GG, which probably allows a 

more flexible regulation of the GG pools by different stimuli.  

 

NDP-glucose +  D-3-PGA GPG GG

gpgS gpgP

NDP-glucose +  D-Glycerate GG

ggS

NDP

PiNDP

Glucosylglycerate   

 

 

Figure 1.8. Pathways for glucosylglycerate biosynthesis. Abbreviations: gpgS, glucosyl-3-
phosphoglycerate synthase gene; gpgP, glucosyl-3-phosphoglycerate phosphatase gene; GPG, glucosyl-
3-phosphoglycerate; NDP, nucleoside diphosphate; Pi, free phosphate; ggS, glucosylglycerate synthase. 
 

 

3.7. Genomic organization of glucosylglycerate synthesizing genes 

The genes included in the two known pathways for GG synthesis, described above, are three: 

gpgS, gpgP and ggS. Different genetic organizations of glucosylglycerate synthesizing genes 

were identified in bacteria and archaea, which included isolated gpgS (without gpgP), 
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consecutive gpgS and gpgP (operon-like structure) and opposing gpgS and gpgP, either 

contiguous or separated (Fig. 1.9). 
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Figure 1.9. Organization of genes leading to the synthesis of GG in different organisms: a) bacteria; and b) 
archaea. Orange, green and red arrows represent genes committed to GG synthesis and their directions. 
Abbreviations: gpgS, gene coding for a glucosyl-3-phosphoglycerate synthase; gpgP, gene coding for a 
glucosyl-3-phosphoglycerate phosphatase; ggS, gene coding for a glucosylglycerate synthase; GH, gene 
coding for a putative glucosyl hydrolase; GPP, gene coding for a putative atypical UDP-glucose 
pyrophosphorylase; sucP, gene coding for a putative sucrose phosphorylase; pstSCAB operon, genes 
coding for a phosphatase uptake system, phoR, gene coding for a putative PhoR histidine kinase; gK, 
gene coding for a putative glycerate kinase/dehydrogenase, MgtA, gene coding for a cation-transporting 
ATPase; malE, gene coding for a putative trehalose/maltose binding protein, malF, gene coding for a 
putative trehalose/maltose transport protein; mggB, gene coding for a mannosylglucosyl-3-
phosphoglycerate phosphatase; mggS, gene coding for a mannosylglucosylglycerate synthase; mggA, 
gene coding for a mannosylglucosyl-3-phosphoglycerate synthase. 

 

In the actinobacteria Mycobacterium tuberculosis and Corynebacterium glutamicum, in some 

halobacteria like Natronomonas pharaonis and Halobacterium salinarum, and in the 

planctomycete Rhodopirellula baltica, isolated gpgS genes have been detected (Fig. 1.9). This 

single gpgS-like gene is the simplest structure detected both in bacteria and archaea and can 
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be considered the most primitive organization. Since free GG and GGG have been detected in 

small amounts in Mycobacterium smegmatis (Kamisango et al., 1987) and considered to be 

the putative precursors for methylglucose lipopolysaccharide, it was proposed by Empadinhas 

and co-workers (2008) that the GPG formed by GpgS could be hydrolyzed into GG by one or 

more hydrolases or phosphatases. 

Contiguous, but divergent oriented gpgS and gpgP genes were found only in the cold-adapted 

methanogenic archaeon Methanococcoides burtonii. These two genes are under the control of 

two unidirectional divergent promoters, located between them (Costa et al., 2006) (Fig. 1.9). 

Some cyanobacteria possess divergently oriented gpgS and gpgP genes, separated by a 

putative sucrose phosphorylase gene (Empadinhas and da Costa, 2010) (Fig. 1.9). In organisms 

from the phylum Proteobacteria, such as Erwinia carotovora, Colwellia psychrerythraea, 

Mariprofundus ferrooxydans and Deferribacter desulfuricans, gpgS and gpgP genes are 

contiguous and have the same orientation (Fig. 1.9). 

 In “Candidatus Kuenenia stuttgartiensis” gpgS and gpgP genes are also contiguous and with 

the same orientation, although belonging to a more complex operon-like genetic organization, 

which includes three other genes, coding for a trehalose/maltose transport system and for a 

putative glycosyltransferase (Fig. 1.9). In the deltaproteobacterium Syntrophus aciditrophicus, 

the gpgS/gpgP genetic structure involves a putative glycosyltransferase gene and a putative 

glycerate kinase/dehydrogenase gene between them (Fernandes et al., 2007) (Fig. 1.9). 

In the thermophilic bacterium Persephonella marina, the glucosylglycerate operon–like 

structure contains genes involved in two different pathways for GG synthesis, gpgS, gpgP and 

ggS (Costa et al., 2007; Fernandes et al., 2007). A putative glycerate kinase/dehydrogenase 

gene and a putative histidine kinase regulator gene (phoR - phosphate regulon sensor gene) 

are also present in this polycistronic operon-like structure (Fig. 1.9). The latter gene is 

probably implicated in the regulation of the operon for a high-affinity phosphate (Pi)-specific 

transport system. The ggS gene was initially identified as a putative glycosyltransferase, which 

turned out to catalyze the direct conversion of ADP-glucose and D-glycerate into GG 

(Fernandes et al., 2007). Glycosylglycerate synthase (GgS) homologues were identified in the 

genomes of some members of the order Thermotogales, of organisms of the class 



Chapter 1  

30 

Deltaproteobacteria and in hyperthermophilic archaea.  

The genome of the Petrotoga mobilis contains two genes coding for an “actinobacterial-type” 

GpgS and an unknown glycosyltransferase. This latter gene proved to be a GgS implicated in 

the single-step pathway for GG synthesis (Fernandes et al., 2010). The GG formed in this 

organism is the intermediate in a pathway leading to mannosylglucosylglycerate (MGG), a 

new solute that was first detected in the slightly halophilic and thermophilic bacterium 

Petrotoga miotherma and that is restricted to Petrotoga mobilis and Rhodopirellula baltica 

(Jorge et al., 2007; Fernandes et al., 2010) (Costa et al., unpublished results). In this organism, 

the gpgS gene, normally involved in the synthesis of GPG, seems to be involved in the 

synthesis of the GG-related solute MGG. The GPG, formed by the combination of UDP-glucose 

and 3-PGA, is then combined with GDP-mannose into mannosylglucosyl-3-phosphoglycerate 

(MGPG), which is dephosphorylated to MGG (Fernandes et al., 2010). 

The ggS gene of Petrotoga mobilis is not positioned in an operon-like structure and is not 

close to the gpgS gene, like in Persephonella marina, in Syntrophus aciditrophicus or in 

“Candidatus Kuenenia stuttgartiensis” (Fig. 1.9). 

 

4. PATHWAY MULTIPLICITY 

The implications of pathway multiplicity for the biosynthesis of compatible solutes are not 

completely understood, but irrefutably reflect one or several important physiological roles for 

those solutes (De Smet et al., 2000). 

The existence of two or more pathways for synthesis of a specific compatible solute in the 

same organism was first described in 1998, by Helling, who characterized the presence of two 

parallel pathways for the synthesis of glutamate in Escherichia coli. The main determinants of 

pathway choice in glutamate synthesis were substrate availability and/or modulation of 

enzyme activity (Helling, 1998). 

Pathway multiplicity was also found for trehalose in several bacteria, such as Mycobacterium 

tuberculosis, Thermus thermophilus RQ-1, Rhodobacter sphaeroides, while in other organisms 
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trehalose biosynthesis relies on a single pathway, most commonly Tps/Tpp (De Smet et al., 

2000; Silva et al., 2003; Makihara et al., 2005). 

The abundance and multilayered trehalose metabolism also in organisms belonging to the 

Archaea domain, point to an essential function of this molecule in physiology. However, so far 

virtually nothing is known about the regulation and the involvement of the pathways in 

specific cellular (stress) responses (Kouril et al., 2008). 

Two pathways for MG and GG synthesis were found and characterized in thermophilic bacteria 

Rhodothermus marinus and in Persephonella marina, respectively (Martins et al., 1999; Borges 

et al., 2004; Costa et al., 2007; Fernandes et al., 2007). R. marinus, as described above, has 

two alternative pathways for MG synthesis that could be implicated in different metabolic 

functions, synthesis or catabolism of MG. However, hydrolysis of MG was not observed when 

the characterization of the MgS enzyme was studied (Martins et al., 1999). 

Pathway multiplicity reflects a higher flexibility in the regulation of compatible solute pools 

upon different environmental stimuli. The existence of two pathways for MG synthesis in R. 

marinus is differently regulated, at the level of expression, to play specific roles in the 

adaptation to different types of stress conditions. The level of expression of MgS was 

selectively enhanced by thermal stress, whereas MpgS was up-regulated in response to salt 

stress (Borges et al., 2004; Empadinhas and da Costa, 2008b). 

The presence of two alternative pathways for GG in Persephonella marina could also mean 

that there is greater flexibility in the regulation of GG synthesis in response to stress (Costa et 

al., 2007; Fernandes et al., 2007). Furthermore, the presence in P. marina of an operon coding 

for a phosphate uptake system, upstream the genes for GG synthesis gpgP, ggS and gpgS, 

leads to the hypothesis that GgS synthesizes GG when the levels of phosphate are low, since 

there is no need to synthesize a phosphorylated intermediate in this single–step pathway 

(Costa et al., 2007). 
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5. GLYCOSIDE HYDROLASES 

Glycoside hydrolases (GH) are an extensive group of enzymes which hydrolyze the glycosidic 

bond between carbohydrates (two or more), or between a carbohydrate and a non-

carbohydrate moiety.  

The large diversity of carbohydrate structures is accompanied by an equal diversity of enzymes 

responsible for their hydrolysis (Warren, 1996; Bourne and Henrissat, 2001; Henrissat and 

Coutinho, 2001). 

Several systems of classification exist for glycoside hydrolases, including those based on 

substrates or product specificities and stereochemical mechanisms. The simplest classification, 

expressed in EC numbers, is based on enzyme activity; in other words, it is based on the 

substrate used and the products formed. Sometimes, it is also based on the type of linkage 

forming the glycosidic bonds or the molecular mechanism of hydrolysis. This system is a 

straightforward means to classify glycoside hydrolases. However, the intrinsic problem of that 

classification is that it does not accommodate enzymes which act on several substrates, such 

as, for example, highly complex polysaccharides. This classification also fails to reflect the 

variety of 3D-structural features of these enzymes. 

A few years ago, Henrissat (1991) proposed a classification of glycoside hydrolases in families, 

based on their amino acid sequence (http://afmb.cnrs-mrs.fr/CAZY/index.html). 

Over the years, the number of families of glycoside hydrolases has constantly grown. These 

families can be further classified in “clans” of related families (GH-A to GH-M) in which the 

catalytic domain fold, the catalytic residues and the catalytic mechanism are conserved. 

Glycoside hydrolases are particularly important in cell metabolism as they are either directly 

involved in the assimilation of glycoside compounds or play regulatory functions in controlling 

their levels in cells (Cantarel et al., 2009). 
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Figure 1.10Rubrobacter xylanophilus. 

 

6. ORGANISMS USED IN THIS STUDY 

6.1. The Genus Rubrobacter  

The first organisms of the genus Rubrobacter were isolated by Yoshinaka and co-workers in 

1973 from water samples collected from hot springs, previously irradiated with gamma-

radiation. These organisms are resistant to high levels of gamma-radiation, being more 

resistant than organisms of the genus Deinococcus (Asgarani et al., 2000). These are Gram + 

microorganisms and slightly thermophilic, with an optimum temperature for growth of about 

47°C (Yoshinaka et al., 1973). 

Initially these bacteria were included in the genus Arthrobacter. However, sequence analysis 

of 16S rRNA gene led to the clarification of their phylogenetic position, being included in a 

new genus, Rubrobacter, and designated as Rubrobacter radiotolerans (Suzuki et al., 1988). 

Some years later, a new species of the genus 

Rubrobacter - Rubrobacter xylanophilus was 

isolated (Carreto et al., 1996) (Fig. 1.10). This 

organism was isolated from a hot runoff of a carpet 

factory, in the United Kingdom, and has an 

optimum growth temperature of 60°C.  

Until 1999, only one strain of each species of R. 

radiotolerans and R. xylanophilus was known. 

Later, several isolates from both species were 

recovered, after gamma-irradiation of water samples from a hot spring in São Pedro do Sul 

(Central Portugal) (Ferreira et al., 1999). More recently, another species of this genus, 

Rubrobacter taiwanensis, has been isolated from water (not irradiated) collected in hot 

springs in Taiwan (Chen et al., 2004). 

The three species of the genus Rubrobacter that represent the most ancient lineage of the 

phylum Actinobacteria are slightly halotolerant and have an optimal growth temperature 

range from 45°C to 60°C. All of these organisms are among the most resistant to gamma-

radiation; however, the mechanisms involved in this process are still unknown (Chen et al., 
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2004). Extreme radiation resistance is an inherent characteristic of the three species of the 

genus Rubrobacter, since it is also a feature of bacteria isolated from environments not subject 

to radiation. Chen and co-workers (2004) have suggested that the ability to resist to radiation 

damage could be acquired by an evolutionary process resulting from adaptation to 

environmental stress conditions, such as deserts or other arid environments (Mattimore and 

Battista, 1996). In fact, DNA sequences close to Rubrobacter spp. have been isolated from 

deserts, and new strains, representing novel species, have also been isolated from 

biodeteriorated monuments (Holmes et al., 2000; Rainey et al., 2005; Laiz et al., 2009). 

 

6.1.1. The compatible solutes of Rubrobacter xylanophilus 

The bacterium R. xylanophilus accumulates a wide variety of organic solutes, including 

trehalose, mannosylglycerate, di-myo-inositol-phosphate (DIP), glycine-betaine, glutamate and 

a new phosphodiester compound, identified as di-N-acetyl-glucosamine phosphate, to cope 

with different stress conditions. Two major intracellular organic solutes, trehalose and MG, are 

accumulated in this poly-extremophile in all growth conditions examined (Empadinhas et al., 

2007). 

Moreover, lower levels of the phosphodiester solutes DIP and di-N-acetyl-glucosamine 

phosphate were also detected in R. xylanophilus (Empadinhas et al., 2007). DIP was 

considered to be an archetypal compatible solute of hyperthermophilic organisms, never 

having been detected in organisms with optimal growth temperatures below 80°C (Santos et 

al., 2007). Di-N-acetyl-glucosamine phosphate, unlike all the polyol-derived phosphodiester 

solutes known to date, comprised a phosphate group linking two sugar moieties, in this case 

glucosamine. The adaptive success of R. xylanophilus to different environments may be 

related to the accumulation of this variety of compatible solutes. 

6.2. The Genus Selaginella 

Lycophytes are an ancient lineage of vascular plants that arose about 400 million years ago, 

during the Carboniferous period (Kenrick and Crane, 1997). Similarly to ferns, but not 

flowering plants, all lycophytes produce spores, not seeds (Banks, 2009). These plants do not 
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Figure 1.11. Selaginella moellendorffii. 

 

have true leaves (microphylls instead) and lateral roots. The only three extant orders of 

lycophytes include the Lycopodiales, the Selaginellales (the spikemosses) and the Isoetales. 

The Selaginellaceae family is comprised of a single genus, Selaginella, and approximately 700 

species. Although Selaginella species occupy a wide range of habitats, from wet tropical 

forests to desert and alpine regions, most species occur in tropical and warm temperate 

climates.  

Lycophytes are considered a key node of plant evolution, since they occupy an important 

phylogenetic position. These plants are included in a intermediate clade between nonvascular 

plants (the algae and bryophytes) and all other vascular plants, and this phylogenetic position 

will serve as a reference for bridging large-scale genome comparisons and also for research 

into comparative plant biochemistry and development (Weng et al., 2005). At present, only 

one genus is recognized in the Selaginellaceae family, but this genus contains approximately 

700 species that include temperate, tropical, frost-

tolerant arctic, and drought-tolerant desert species. 

One of the species of this genus is the spikemoss 

Selaginella moellendorffii (Fig. 1.11). It is a small 

diploid plant that has the smallest genome size 

reported for a land plant species (~100 Mbp) (Wang 

et al., 2005), about two-thirds that of Arabidopsis 

thaliana genome. The compact genome of this land 

plant will be a useful tool for annotating other 

genomes, and discovering new metabolic 

pathways, as well as proteins and their functions. Its genome, recently sequenced (August 

2010) by the Department of Energy Joint Genome Institute (http://genome.jgi-

psf.org/Selmo1/Selmo1.home.html), is a welcomed resource for researchers interested in 

testing theories of plant evolution, particularly those relating to the evolution of fundamental 

traits of vascular plants. Furthermore, S. moellendorffii genome sequence will help to define 

an ancient core of genes that are common to all vascular plants. 
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However, the most well known species of this genus is Selaginella lepidophylla, the 

‘resurrection’ plant or rose of Jericho, a plant capable of surviving long periods of dehydration. 

Like S. lepidophylla, S. tamariscina, can also remain alive in a dry state and then restart 

growing when water becomes available again (Liu et al., 2008). On the other hand, Selaginella 

moellendorffii does not display the anhydrobiotic capacity of S. lepidophylla (Iturriaga et al., 

2006). 

One of the strategies to protect cellular integrity in a desiccated state is the accumulation of 

soluble sugars. Trehalose is present in very low levels in most plants except in desiccation-

tolerant plants, where this disaccharide is the key molecule to protect them against osmotic 

stress and especially drought (Avonce et al., 2005; 2006). In Selaginella lepidophylla, an 

interchange between sucrose and trehalose accumulation occurs during dehydration. In the 

hydrated condition, trehalose was the major soluble sugar detected, while sucrose and 

glucose were minor solutes. On the other hand, in desiccated S. lepidophylla, a decrease in the 

trehalose content is accompanied by a three-fold increase of sucrose (Adams et al., 1990). In S. 

tamariscina, a high level of disaccharides, mainly trehalose, is steadily maintained in both 

hydrated and desiccated states, but in seeds and vascular ‘resurrection’ plants the 

composition of sugar is adjusted during dehydration, as previously described for S. 

lepidophylla (Liu et al., 2008). 
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ABSTRACT 

Trehalose is the primary organic solute in Rubrobacter xylanophilus under all conditions 

tested, including those for optimal growth. We detected genes of four different pathways for 

trehalose synthesis in the genome of this organism, namely, the trehalose-6-phosphate 

synthase (Tps)/trehalose-6-phosphate phosphatase (Tpp), TreS, TreY/TreZ, and TreT pathways. 

Moreover, R. xylanophilus is the only known member of the phylum Actinobacteria to harbor 

TreT. The Tps sequence is typically bacterial, but the Tpp sequence is closely related to 

eukaryotic counterparts. Both the Tps/Tpp and the TreT pathways were active in vivo, while 

the TreS and the TreY/TreZ pathways were not active under the growth conditions tested and 

appear not to contribute to the levels of trehalose observed. The genes from the active 

pathways were functionally expressed in Escherichia coli, and Tps was found to be highly 

specific for GDP-glucose, a rare feature among these enzymes. The trehalose-6-phosphate 

formed was specifically dephosphorylated to trehalose by Tpp. The recombinant TreT 

synthesized trehalose from different nucleoside diphosphate-glucose donors and glucose, but 

the activity in R. xylanophilus cell extracts was specific for ADP-glucose. The TreT could also 

catalyze trehalose hydrolysis in the presence of ADP, but with a very high Km. Here, we 

functionally characterize two systems for the synthesis of trehalose in R. xylanophilus, a 

representative of an ancient lineage of the actinobacteria, and discuss a possible scenario for 

the exceptional occurrence of treT in this extremophilic bacterium. 
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INTRODUCTION 

The disaccharide trehalose serves several roles in archaea, bacteria, yeast, fungi, plants, and 

invertebrates. However, trehalose is best known for its role as a universal protector molecule, 

protecting cells and biomolecules from stress imposed by low water activity, heat, oxidation, 

desiccation, and freezing (Elbein et al., 2003). Five different pathways for the synthesis of 

trehalose have been examined (Avonce et al., 2006; Paul et al., 2008), the most common of 

which involves a trehalose-6-phosphate synthase (Tps) that converts nucleoside diphosphate 

(NDP)-glucose and glucose-6-phosphate (Glc6P) into trehalose-6-phosphate (T6P) that is then 

dephosphorylated to trehalose by a trehalose-6-phosphate phosphatase (Tpp) (Silva et al., 

2005). Other pathways for trehalose biosynthesis involve trehalose synthase (TreS) and the 

maltooligosyltrehalose synthase/ hydrolase (TreY/TreZ) system, which catalyze the conversion 

of maltose and maltooligosaccharides into trehalose, respectively (Nakada et al., 1995). 

Additionally, the TreS from Mycobacterium smegmatis can also convert glycogen into 

trehalose via maltose (Pan et al., 2008). A trehalose phosphorylase (TreP) can also catalyze 

trehalose synthesis in the presence of Glc1P and glucose in fungi and a few bacteria (Avonce et 

al., 2006). A less common and recently discovered pathway involves a trehalose glycosyl 

transferring synthase (TreT) that converts NDP-glucose and glucose into trehalose. This 

enzyme has been examined only in the hyperthermophilic archaea Thermococcus litoralis, 

Pyrococcus horikoshii, and Thermoproteus tenax (Qu et al., 2004; Ryu et al., 2005; Kouril et al., 

2008). Many organisms have one or two, or less frequently three, pathways for trehalose 

synthesis (De Smet et al., 2000; Wolf et al., 2003). Mycobacteria and corynebacteria, for 

example, can accumulate trehalose or incorporate it into mycolic acids of the cell wall and 

generally possess three pathways for the synthesis of trehalose (Wolf et al., 2003). In many 

organisms osmoregulated trehalose synthesis appears to involve Tps and Tpp; however, the 

accumulation of trehalose during osmotic adjustment in Corynebacterium glutamicum, which 

also possess TreS, is linked to the TreY/TreZ pathway (Wolf et al., 2003). Propionibacterium 

freudenreichii, on the other hand, depends on the Tps/Tpp pathway for the synthesis of 

trehalose in response to osmotic, oxidative, and acid stresses, while TreS is involved in 

trehalose degradation (Cardoso et al., 2007). Rubrobacter xylanophilus is a thermophilic, 

halotolerant, and extremely radiation- and desiccation-resistant bacterium that constitutively 
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accumulates trehalose as the major organic solute under optimal growth conditions and under 

salt and thermal stresses (Empadinhas et al., 2007). In this work, we examined the synthesis of 

trehalose by Tps/Tpp and TreT, two active pathways for the synthesis of this disaccharide in R. 

xylanophilus cell extracts, and characterized the properties of the corresponding recombinant 

enzymes. 

 

MATERIALS AND METHODS 

Strains, culture conditions, and DNA isolation 

Rubrobacter xylanophilus PRD-1
T
 (DSM 9941) was our laboratory strain. Cells were grown in 

Thermus medium without or with 2.5% NaCl at 60 or 67°C in a medium containing 1.0 g/liter 

tryptone and 1.0 g/liter yeast extract (Empadinhas et al., 2007). The cultures were also grown 

in a medium containing 2.0 g/liter maltose as a single carbon source, 1 g/liter NH4Cl, and 0.25 

g/liter yeast extract. Chromosomal DNA was isolated as previously described (Rodrigues et al., 

2007). All chemicals were obtained from Sigma. 

 

Enzyme assays for detection of trehalose synthesis in cell extracts 

R. xylanophilus cells were recovered by centrifugation; extracts were obtained using a French 

pressure cell and dialyzed (20 mM Tris-HCl, pH 7.5). To provide evidence of the activities of the 

TreP, Tps/Tpp, TreT, TreS, and TreY/TreZ pathways in the cell extracts, the assays were 

performed as previously described, with slight modifications (Wannet et al., 1998; De Smet et 

al., 2000; Qu et al., 2004; Cardoso et al., 2007). The mixtures contained 15 µg of protein of 

R. xylanophilus extract (1 µg/µl) and the appropriate substrates in a final volume of 50 µl. The 

reactions were performed at 60°C for 30 min in 25 mM bis-Tris propane buffer at pH 7.0 with 4 

mM MgCl2 and then stopped on ice. Reaction products were visualized by thin-layer 

chromatography (TLC) on Silica Gel 60 plates (Merck) with a solvent system composed of 

chloroform/methanol/acetic acid/water (30:50:8:4, v/v/v/v) (Fernandes et al., 2007). 
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TreP activity was examined with α- or β-Glc1P and glucose added to the cell extracts, and the 

reverse reaction was examined by the addition of trehalose and inorganic phosphate. For 

determination of the activity of Tps, the substrates were ADP-, GDP-, UDP-, or TDP-glucose 

and Glc6P. The T6P formed was dephosphorylated with 2 µg of the recombinant Tpp from 

Thermus thermophilus RQ-1 for trehalose detection on TLC (Silva et al., 2005). Tpp activity was 

examined after incubation of extracts with T6P, the TreT activity was examined by the addition 

of NDP-glucose donors and glucose, and the TreS activity was examined with maltose or 

trehalose. For the examination of the TreY/TreZ pathway, the substrates maltotriose, 

maltoheptaose, starch, glycogen, and amylopectin were added. Sugars and sugar derivatives 

were added at a concentration of 10 mM and polysaccharides at 1% (wt/vol). 

 

Detection of genes for trehalose synthesis in the R. xylanophilus genome and 
sequence analyses 

BLAST searches were performed with the Tps (EC 2.4.1.15/EC 2.4.1.36), Tpp (EC 3.1.3.12), 

trehalose (maltose-converting) synthase (TreS) (EC 5.4.99.16), maltooligosyltrehalose synthase 

(TreY) (EC 5.4.99.15), maltooligosyltrehalose trehalohydrolase (TreZ) (EC 3.2.1.141), trehalose 

glycosyltransferring synthase (TreT), and trehalose phosphorylase (TreP) (EC 2.4.1.64/EC 

2.4.1.231) sequences. 

We analyzed the sequences of seven genes, including treT, for the levels of AGA/AGG (AGR) 

codons for arginine (Arg) (http://www.sysbio.muohio.edu/CodonO), which are used frequently 

in hyperthermophiles but rarely in mesophiles. We also determined the G+C ratio in each of 

these genes and compared it to that in the overall genome sequences to deduce the origins of 

these genes in the genome by possible lateral gene transfer events (Lawrence and Ochman, 

1997; Eisen, 2000; Lobry and Necsulea, 2006). Genes tps, tpp, and treT were selected because 

they represent the two active pathways for the synthesis of trehalose in R. xylanophilus 

growing under the conditions described. We also selected gene glnA, encoding type I 

glutamine synthetase (EC 6.3.1.2, Rxyl_1125), because it is a housekeeping gene that has been 

proposed to be a good molecular clock (Kumada et al., 1993), and the conserved ubiquitous 

gene fusA for elongation factor EF-G (EC 3.6.5.3, Rxyl_2158), which is an informational gene 

thus less likely to be laterally transferred (Hashimoto and Hasegawa, 1996; Jain et al., 1999). 
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We also selected the ino1 gene, for inositol-3-phosphate synthase (EC 5.5.1.4, Rxyl_1213), and 

the dippS gene (GenBank accession number EF523341, Rxyl_1212), both of which are involved 

in the synthesis of di-myo-inositol-phosphate (DIP), a compatible solute detected so far in 

hyperthermophilic prokaryotes and in R. xylanophilus, and thus likely to have been acquired 

from a hyperthermophile (Empadinhas et al., 2007; Rodrigues et al., 2007). For comparison, 

and because the G+C compositions of genomes might influence the synonymous codon usage 

(Lynn et al., 2002), we analyzed the above-mentioned genes in organisms that possess treT 

and have different G+C genomic compositions (http://archaea.ucsc.edu/), different optimal 

growth temperatures, and different phylogenetic positions. We selected three 

hyperthermophiles: the euryarchaeon Pyrococcus horikoshii (41.9% G+C in the genome) 

because it also has the genes for DIP synthesis; the crenarchaeon Pyrobaculum calidifontis 

(57.2% G+C), which possesses tps/tpp; and the bacterium Thermotoga maritima (46.2% G+C), 

which contains the genes for DIP synthesis. We also analyzed the genes from mesophiles: the 

deltaproteobacterium Myxococcus xanthus (68.9% G+C), which, in addition to treT, also 

contains the tps/tpp genes; the methanogen Methanoculleus marisnigri (62.1% G+C), which 

contains three copies of treT and the tps/tpp pair; and the synthrophic deltaproteobacterium 

Syntrophus aciditrophicus, which contains the tps/tpp pair but has a moderate G+C content in 

the genome (51.5%). 

 

Gene amplification and cloning 

For sequence confirmation, and based on the draft genome sequence (www.jgi.doe.gov), 

several primers were designed to hybridize to the sequences immediately upstream and 

downstream from the putative tps, tpp, treT, ino1, fusA, and glnA genes. PCRs were carried 

out with the GC -RICH PCR system (Invitrogen). Products were cloned into pGEM-T Easy vector 

(Promega) with Escherichia coli DH5α as the host and sequenced (AGOWA GmbH, Berlin, 

Germany). For heterologous gene expression, the tps, tpp, and treT genes were amplified with 

the forward primers TPSNco, TPPNcoF, and TreTNde and reverse primers TPSXba, RubTPP2, 

and TreTBam, respectively (Table 2.1). 
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Table 2.1. Primers sequences used in this study. 

 

Primer 

 

Target sequence Sequence (5’-3’)a 

 

Direction Restriction 

enzyme 

TPSNco tps (Rxyl_2972) GACCATGGCGCAAAACGGCGG Forward NcoI 

TPSXba  GCGTCTAGACTAGGAGAAGGCCTTGCGGCG Reverse XbaI 

TPPNcoF tpp (Rxyl_2971) AGCGCCATGGAAACGGATAGGCCTTCG Forward NcoI 

RubTPP2  GCGTCTAGACTAGCGGGCCAGCTCCCG CAG Reverse XbaI 

TreTNde treT (Rxyl_2973) GAATACGTCATATGATGCTGCAGCGGGTGAAC Forward NdeI 

TreTBam  AATGGATCCTTACACGCCGAGAAGTTTAG Reverse BamHI 

InoF ino1 (Rxyl_1213) ATGGGCGAAAGGCGGCAGAG Forward - 

InoR  TCAGCGGAGGGAGGAGGGG Reverse - 

EFGF fusA (Rxyl_2158) ATGGCAGTACAGGTAGCGAAG Forward - 

EFGR  CTACCTCTCGGCTATCTTCTC Reverse - 

GSIF glnA (Rxyl_1125) ATGAGCGAGATCACGCGCG Forward - 

GSIR  TTAGAGGACCGGCAGGTAGC Reverse - 

 1 
 

a The restriction enzyme recognition sequences are underlined; the start and stop codons are in bold. 

 

 Genes tps and tpp were cloned into the expression vector pET30b, leading to production of 

His-tagged recombinant proteins. However, treT was cloned into the expression vector 

pET11a, yielding a protein without a His tag. E. coli BL21(DE3) was used as the host (Novagen). 

 

Gene expression and purification of recombinant enzymes 

Cells carrying pET30b-tps, pET30b-tpp, or pET11a-treT were grown to an optical density at 610 

nm of 1.0 at 37°C in LB medium (2 liters) containing kanamycin (30 µg/ml) or ampicillin (100 

µg/ml) for selection, and IPTG (isopropyl-β-D-thiogalactopyranoside) (1 mM) was added to 

induce gene expression. Cells carrying (His)6-Tps and (His)6-Tpp were allowed to grow for  6 h, 

harvested, and suspended in 20 mM sodium phosphate buffer with 0.5 M NaCl and 10 mM 

MgCl2, DNase I (4 µg/ml), and a protease inhibitor cocktail (Roche). Cells carrying the 

recombinant TreT were allowed to grow for a further 10 h at 30°C, suspended in 20 mM Tris-
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HCl at pH 7.6, and disrupted in a French pressure cell, and debris was removed by 

centrifugation. The extracts were heated for 10 min at 60°C, cooled, and centrifuged to 

remove host precipitated proteins. Supernatants with Tps and Tpp were supplemented with 

20 mM imidazole and loaded onto a nickel HisTrap column equilibrated with 20 mM sodium 

phosphate buffer with 0.5 M NaCl and 20 mM imidazole at pH 7.4. His-tagged proteins were 

eluted at 5 ml/min with the same buffer containing 500 mM imidazole in a three-step gradient 

(30, 50, and 80%). His tags were removed by enterokinase digestion according to the supplier’s 

instructions (Novagen). TreT was partially purified with two sequential Q-Sepharose fast-flow 

columns (Hi-Load 16/10) equilibrated with 20 mM Tris-HCl, pH 7.6. Elution was carried out 

with linear NaCl gradients (0.0 to 1.0 M). Active fractions were dialyzed, concentrated, and 

loaded onto a Superdex 200 column equilibrated with 50 mM Tris-HCl and 200 mM NaCl, pH 

7.6. Fractions with active recombinant Tps, Tpp, or TreT were pooled, concentrated and 

dialyzed, and the purity and the molecular masses were estimated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and by gel filtration chromatography, as previously 

described (Fernandes et al., 2007). The protein content of all samples was determined as 

previously described (Silva et al., 2005). 

 

Enzyme assays during purification of recombinant enzymes 

The activities of Tps, Tpp, and TreT were examined with the assays for detection of trehalose 

synthesis in cell extracts. Tps activity was detected with GDP-glucose and Glc6P followed by 20 

min of incubation with 2 U of alkaline phosphatase (Roche) at 37°C to release trehalose, which 

was visualized by TLC. Tpp activity was examined with T6P, and TreT activity was determined 

with ADP-glucose and glucose as previously described (Qu et al., 2004; Silva et al., 2005). 

 

Tps characterization 

The recombinant Tps activity was measured by the specific dephosphorylation of the T6P 

formed with the recombinant Tpp (2 µg) from T. thermophilus RQ-1 (Silva et al., 2005). 

Reaction mixtures (100 µl) containing 0.4 µg Tps and 10 mM of each substrate were stopped 
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by the addition of 40 µl of 20% trichloroacetic acid, incubated on ice, centrifuged, and 

neutralized with 1 M NaOH, and the volume was adjusted to 200 µl with H2O. A 50-µl aliquot 

was incubated with the T. thermophilus Tpp for 5 min at 70°C, the reaction was stopped on 

ice-ethanol, and the phosphate released was measured (Ames, 1966). The substrate specificity 

was examined with different sugar donors and acceptors (Silva et al., 2005), the temperature 

profile was determined between 30 and 90°C, the thermal stabilities at 60 and 70°C were 

assessed in 25 mM bis-Tris-propane buffer at pH 7.0 and residual activity determined at 40°C, 

the pH dependence was determined between pH 4.0 and 9.0 (Silva et al., 2005; Fernandes et 

al., 2007), the effect of divalent cations was tested, and the Vmax and Km were determined with 

various substrate concentrations and calculated from the Michaelis-Menten equation (Silva et 

al., 2005). 

 

Tpp characterization 

The Tpp activity was measured by quantification of the phosphate released from T6P (Ames, 

1966). Reaction mixtures (50 µl) contained 50 ng of pure recombinant Tpp and 10 mM T6P. 

Substrate specificity was determined using several phosphorylated compounds (Silva et al., 

2005). Other parameters studied were those described above for Tps. The temperature profile 

was determined between 10 and 80°C. Thermal stability was evaluated in 25 mM Tris-HCl 

buffer (pH 7.5) containing 2 mM MgCl2 and residual activity measured at 40°C. The pH 

dependence was determined between pH 5.0 and 10.5. 

 

TreT characterization 

The trehalose-forming activity of the recombinant TreT was examined by the quantification of 

NDP released from the condensation of NDP-glucose and glucose into trehalose. Reactions 

were initiated by the addition of TreT and stopped at different times by cooling on ice-ethanol, 

and the amount of NDP was determined (Fernandes et al., 2007). The substrate specificity was 

examined with different sugar donors and acceptors, the temperature profile was determined 

between 20 and 80°C, the thermal stability was determined as described above, the pH 
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dependence was examined between pH 4.0 and 10.5, reactions in the presence of divalent 

cations or with EDTA (5 mM) were performed to examine cation dependence, and Vmax and Km 

were determined as previously described (Qu et al., 2004). The reverse activity of TreT 

(trehalose hydrolysis in the presence of ADP) was measured with the glucose oxidase assay kit 

(Sigma). The substrates α,α-, α,β-, and β,β-trehalose alone or in the presence of ADP or ATP 

were also tested. The Vmax and Km values were determined with various concentrations of 

trehalose and ADP. 

 

Nucleotide sequence accession numbers 

A 4,020-bp sequence containing the treT, tps, and tpp genes from R. xylanophilus and 

additional 1,368-, 2,148-, and 1,332-bp sequences for the inositol-3-phosphate synthase 

(ino1), the elongation factor G (fusA), and the type I glutamine synthetase (glnA) genes from 

the same organism have been deposited in GenBank under accession numbers EU881704, 

EU881705, EU881706, and EU881707, respectively. 

 

RESULTS 

Detection of trehalose synthesis in cell extracts 

From an array of experiments on cell extracts using several glucose donors and acceptors, the 

combination of GDP-glucose and Glc6P resulted in the synthesis of T6P via the Tps/Tpp 

pathway, which was partially dephosphorylated by a native Tpp activity (Fig. 2.1). Full 

dephosphorylation of the T6P formed was achieved only after the addition of a recombinant 

Tpp from T. thermophilus RQ-1 (not shown). The synthesis of trehalose also occurred with 

ADP-glucose and glucose via the TreT pathway (Fig. 2.1). We did not detect either TreS activity 

from maltose or the reverse reaction (not shown). We were also unable to detect trehalose 

synthesis from maltooligosaccharides or from α-1,4-linked polysaccharides via the TreY/TreZ 

pathway or trehalose phosphorylase (TreP) activity from Glc1P and glucose (Fig. 2.1). 
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Glucose

Trehalose

 

 
Figure 2.1. TLC analysis of reaction products obtained with R. xylanophilus cell extracts. Lane 1, TreP 
activity with Glc1P and glucose; lanes 2 to 5, Tps activity with Glc6P and ADP-glucose, GDP-glucose, UDP-
glucose, or TDP-glucose, respectively (reactions dephosphorylated with the Tpp from T. thermophilus RQ-
1); lanes 6 and 7, Tpp activity with T6P and Glc6P; lanes 8 to 11, TreT activity with glucose and ADP-
glucose, GDP-glucose, UDP-glucose, or TDP-glucose, respectively; lane 12, cell extracts incubated with 
glucose; lane 13, TreS activity with maltose; lanes 14 to 18, TreY/TreZ activity with maltotriose, 
maltoheptaose, starch, glycogen, and amylopectin, respectively; lane 19, glucose and trehalose 
standards. 

 

 

Identification of genes and genetic organization 

BLAST searches led to the detection of genes of four putative pathways for the synthesis of 

trehalose in the R .xylanophilus genome, namely, the Tps/Tpp (Rxyl_2972/Rxyl_2971), TreT 

(Rxyl_2973), TreS (Rxyl_0315), and TreY/TreZ (Rxyl_0319/Rxyl_0318) pathways. Primer design 

for amplification of the region containing the treT, tps, and tpp genes was based on the draft 

genome sequence. However, our own sequences confirmed that the genome contains several 

errors in these genes (6 to 14% at the nucleotide level). A second putative treT gene 

(Rxyl_3082) encoding a protein with high amino acid identity (52%) to the product of the treT 

gene examined in this study (Rxyl_2973) was detected in the genome, but we could not 

amplify it, after several attempts, with multiple primers designed from the surrounding genes. 

Due to the errors detected in the draft genome sequence, we are not certain that this is an 
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authentic gene. To corroborate this view, the draft genome sequence also contains two copies 

of a putative ino1 gene encoding inositol-3-phosphate synthase (Rxyl_0688 and Rxyl_1213) 

that share 100% identity (except in the nucleotides corresponding to the C-terminal 8 amino 

acids) but different genetic surroundings. In this case, we could amplify only one copy 

(Rxyl_1213) with primers based on the flanking genes and found that as much as 19% of the 

nucleotide sequence of this gene in the genome was incorrect. The treT and tps genes are 

sequentially arranged, with an intergenic region of 32 nucleotides (Fig. 2.2). A unique 

promoter sequence was detected upstream from treT. The tpp gene is in the opposite 

direction and under the control of a different promoter, which appears to be located upstream 

of the putative adjacent peptidase (ORF1) (Fig. 2.2). The TreS and TreY/TreZ pathways appear 

to be part of an operon-like structure with a single promoter and containing genes (Rxyl_0314 

to Rxyl_0319) possibly involved in the synthesis/degradation of 

glycogen/maltooligosaccharides (not shown). A typical gene for TreP was not detected in the 

genome. 
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Protein and nucleotide sequence analyses 

Expression of the R. xylanophilus tps, tpp and treT genes in E. coli resulted in the high level 

production of recombinant His-tagged protein Tps and Tpp (Fig. 2.3). The tps gene has 1,452 

bp coding for a polypeptide of 483 amino acids with a deduced molecular mass of 53.9 kDa 

(Fig 2.3 A), which was shown to be a dimer. 
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Figure 2.3. SDS-PAGE of the fractions obtained during the purification of the recombinant enzymes. A) 
Purification of recombinant Tps(His)6: Lane 1- protein molecular weight markers (kDa); Lane 2 and 3- 
fraction eluted from the nickel HisTrap column; B) Purification of recombinant Tpp(His)6: Lane 1- protein 
molecular weight markers (kDa); Lane 2- crude extract of cells, after denaturation (10 min at 60ºC); Lane 
3- sample that did not bind to the nickel HisTrap column; Lane 4- fraction eluted from the nickel column; 
C) Purification of recombinant TreT: Lane 1- protein molecular weight markers (kDa); Lane 2- fraction 
eluted from the Superdex 200 column. 

 

 

The Tps sequence has a high level of amino acid identity (>40%) with many bacterial Tps 

proteins, the archaeal Tps from Methanothermobacter thermautotrophicus (43%), and several 

sequences from fungi (30 to 35% amino acid identity) (Fig. 2.4). 
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Figure 2.4. Unrooted phylogenetic tree based on available amino acid sequences of Tps homologues. The 
MEGA4 program was used for sequence alignments and to generate the phylogenetic trees (Tamura et 
al., 2007). The bootstrap values and accession numbers for proteins are indicated. For R. xylanophilus 
sequences, GenBank accession numbers are indicated. Bar, 0.1 changes/site. 

 

The tpp gene has 795 bp and codes for a polypeptide of 264 amino acids with 29.4 kDa (Fig. 

2.3 B), which behaved as a monomer. The Tpp sequence had no close homologues, with its 

closest relatives being from the green nonsulfur bacterium Herpetosiphon aurantiacus (37%), 

the archaeon M. thermautotrophicus (37%), and several eukaryotic organisms, namely, insects 

of the genera Drosophila, Culex and Anopheles (36%). The Tpp proteins from the related 

actinobacteria of the genera Streptomyces and Mycobacterium share even lower overall 

amino acid identity (31 to 35%) with the enzyme from R. xylanophilus (Fig. 2.5). 
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Figure 2.5. Unrooted phylogenetic tree based on available amino acid sequences of Tpp homologues. 
The MEGA4 program was used for sequence alignments and to generate the phylogenetic trees (Tamura 
et al., 2007). The bootstrap values and accession numbers for proteins are indicated. For R. xylanophilus 
sequences, GenBank accession numbers are indicated. Bar, 0.1 changes/site. 

 

The treT gene contains 1,251 bp coding for a 416-amino-acid polypeptide of 46.7 kDa (Fig. 

2.3 C) that also behaved as a dimer. BLAST results indicate that TreT had a few archaeal 

homologues, mostly crenarchaeotes, but very few bacterial homologues. The phylogenetic 

tree shows that archaeal and bacterial TreT sequences do not form clearly distinct clusters 

(Fig. 2.6). 
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Figure 2.6. Unrooted phylogenetic tree based on available amino acid sequences of TreT homologues. 
The MEGA4 program was used for sequence alignments and to generate the phylogenetic trees 
(Tamura et al., 2007). The bootstrap values and accession numbers for proteins are indicated. For R. 
xylanophilus sequences, GenBank accession numbers are indicated. Bar, 0.1 changes/site. 

 

 

The levels of AGA and AGG (AGR) codons (preferred by hyperthermophiles and rare in 

mesophiles) in the R. xylanophilus genes tps, treT, glnA, fusA, and dippS are low (3.4 to 16%), 

although the frequency of the AGR codon in tpp is slightly higher (25%) (Fig. 2.7). On the other 

hand, the AGR codon level in the ino1 gene (56.7%) is much higher, approaching those in the 

hyperthermophilic homologues. Moreover, five of the seven R. xylanophilus genes analyzed in 

this work, have a high G+C content (65.8 to 70.4%), similar to the experimentally determined 

67.0% G+C in the R. xylanophilus chromosome (Carreto et al., 1996). However, the G+C 

content of the ino1 gene is only 61.1%, which, along with its atypical AGR codon content, 

suggests a foreign origin (Fig. 2.7). The G+C content in the dippS gene is also higher (73.2%) 

than the average R. xylanophilus genomic G+C content. 
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Figure 2.7. Analysis of G+C content and of Arg codons AGG and AGA (AGR) in the tps, tpp, treT, glnA, 
fusA, ino1 and dippS genes in organisms harboring treT genes. tps, Tps gene; tpp, Tpp gene; treT, 
trehalose glycosyltransferring synthase gene; ino1, inositol-3-phosphate synthase gene; glnA, glutamine 
synthetase (type I) gene; fusA, elongation factor G gene; dippS, di-inositol-phosphate-phosphate 
synthase gene. M. marisnigri has two copies of glnA and three copies of treT (>42% amino acid identity). 
The tps and tpp genes from P. calidifontis and from M. xanthus are fused. S. aciditrophicus has fused 

tps/tpp, isolated tps and tpp, and three copies of fusA. M. xanthus has three copies of fusA. When 
multiple copies of the same gene are present in a genome, the average G+C content and AGR ratios are 
represented, as well as the corresponding standard deviations. Codon usage was determined with the 
CodonO software at http://www.sysbio.muohio.edu/CodonO. Vertical black lines indicate the overall 
genomic G+C level in each of the organisms examined (http://archaea.ucsc.edu/). 
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Properties of Tps and Tpp 

Tps showed high substrate specificity for the combination of GDP-glucose and Glc6P. The 

enzyme was active at between 30 and 90°C, with maximum activity at around 60°C (Fig. 2.8 A). 
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Figure 2.8. Temperature and pH dependence on the activity of the recombinant Tps (A, B) and Tpp (C,D) 

of R. xylanophilus. 

Within the pH range examined, the activity of the enzyme Tps at 60°C was maximal at pH 7.0 

(Fig. 2.8 B). Tps was active without cations, but maximum activation was obtained with 2 mM 

of Mg
2+

. The specific activity of Tps without cations was 36% of maximal activity. The 

recombinant enzyme Tps exhibited Michaelis-Menten kinetics and Km values of 0.7  0.1 mM 

for GDP-glucose and 2.9  1.2 mM for Glc6P. The Vmax was 22  6 µmol/min·mg protein (Fig. 

2.9 A, B). 



Trehalose biosynthesis in Rubrobacter xylanophilus 

57 

A

C

B

 

Figure 2.9. Rate dependence of recombinant enzymes: Tps, on GDP-glucose (A) and Glucose-6P 
concentrations (B); Tpp, on T6P (C). 

The enzyme Tps had half-lives of 1.7  0.2 h at 60°C and 0.7  0.1 h at 70°C (Fig. 2.10 A). 
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Figure 2.10. Thermostability of recombinant enzymes Tps(A) and Tpp (B) of R. xylanophilus, at 60ºC () 
and 70ºC (). 
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Among the phosphorylated compounds tested, the recombinant Tpp was specific for T6P. Tpp 

had maximal activity at 60°C (Fig. 2.8 C), and no activity was detected at 80°C. The optimum 

pH for activity was around 7.5 (Fig. 2.8 D). The recombinant Tpp was dependent on divalent 

cations for activity, and 2 mM Mg
2+

 or Co
2+

 was required for maximal activity. Other cations 

tested, namely, Ni
2+

, Ca
2+

, and Fe
3+

, did not stimulate enzyme activity. Tpp exhibited typical 

Michaelis-Menten kinetics, a Km value for T6P of 6.1  1.5 mM, and a Vmax of 225  18 

µmol/min·mg protein (Fig. 2.9 C). The half-lives for thermal inactivation were 3.2  0.9 h at 

60°C and 1.0  0.1 h at 70°C (Fig. 2.10 B). 

 

Properties of TreT 

Of the sugar donors examined, ADP-glucose (100.0%), GDP-glucose (48.2%), and UDP-glucose 

(32.7%) served as substrates for the recombinant TreT, but only glucose served as an acceptor. 

However, the TreT activity in cell extracts appeared to be specific for ADP-glucose and glucose 

(Fig. 2.1). Maximum activity was reached at 60°C, but the enzyme was active at between 20 

and 80°C (Fig. 2.11 A). 

0

20

40

60

80

100

120

0 20 40 60 80 100

R
e
la

ti
v
e

a
c
ti

v
it

y
(%

)

Temperature (ºC)

A

0

20

40

60

80

100

120

4 5 6 7 8 9 10 11

R
e
la

ti
v
e
 a

c
ti

v
it

y
 (

%
)

pH

B

 

Figure 2.11. Temperature and pH dependence on the activity of the recombinant TreT (A, B) of R. 

xylanophilus. 

 

Within the pH range examined, the activity of the enzyme remained nearly constant between 

pH 8.0 and 10.0 (Fig. 2.11 B). TreT was not dependent on divalent cations, but the activity was 

slightly enhanced by 2 mM Fe
3+

, Mn
2+

, Ca
2+

, or Li
+
 and by 20 mM Mg

2+
, Ca

2+
, or Li

+
. Curiously, 
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no activity was detected after the addition of 20 mM of Fe
3+

 and Mn
2+

. Other cations tested, 

namely, Zn
2+

 and Ni
2+

, gradually inhibited TreT activity at the concentrations tested (2 to 20 

mM). TreT exhibited Michaelis-Menten kinetics: the Km values for ADP-glucose and glucose 

were 0.8  0.1 and 1.3  0.2 mM, respectively, and the Vmax was 37  3 µmol/ min mg protein 

(Fig. 2.12 A, B). TreT could also catalyze the hydrolysis of trehalose, but 150 mM trehalose was 

required for a measurable reaction rate (5.0  3.1 µmol/min mg). The high Km values for 

trehalose (82  18 mM) and for ADP (6.8  0.8 mM) indicate that the formation of trehalose 

was highly favored (Fig. 2.12 C, D). 

A

C

B

D

 

Figure 2.12. Rate dependence of recombinant enzyme TreT, on Glucose (A) and ADP-glucose (B); and on 
Trehalose (C) and ADP (D) concentrations (graphics C and D – TreT reverse reaction). Values for Km  and 
Vmax were extrapolated from the figures shown above. 

The half-lives for inactivation at 60°C and at 70°C were 309  89 and 4.1  0.3 h, respectively 

(Fig. 2.13). 
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Figure 2.13. Thermostability of recombinant enzymes TreT of R. xylanophilus, at 60ºC () and 70ºC (). 

The following Table 2.2 summarizes the biochemical properties and kinetic parameters for the 

substrates of the three characterized enzymes involved in the synthesis and hydrolysis (for the 

case of TreT) of trehalose. 

Table 2.2. Biochemical properties of the recombinant enzymes Tps, Tpp and TreT and kinetic parameters 
for the substrates involved in the synthesis of trehalose. 

Property
a
 Tps Tpp TreT 

Optimum temperature (ºC) 60 60 60 

Optimum pH 7.0 7.5 8.0–10.0 

Half-life (h) at:    

60ºC 1.7±0.2 3.2±0.9 309±89 

70ºC 0.7±0.1 1.0±0.1 4.1±0.3 

Km (mM) for:    

GDP-glucose 0.7±0.1   

Glucose-6P 2.9±1.2   

Trehalose-6P  6.1±1.5  

ADP-glucose   0.8±0.1 

Glucose   1.3±0.2 

Trehalose   82±18
b
 

ADP   6.8±0.8
b
 

Vmax (mol/min.mg protein) 22±6 225±18 37±3 

   5.0±3.1
b
 

Mg
2+

 (mM) dependence
c
    

0  36±2 0 68±3 

2  100 100 71±2 

20  93±4 53±7 100 

 1 
 

a Data are the mean values of at least three independent experiments; b Reverse reaction; 
c  Expressed as percentage of maximum activity. 
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DISCUSSION 

Prokaryotes have the highest diversity of pathways for trehalose biosynthesis, and all five 

known pathways can be found in the bacterial domain. While some of these organisms can 

have two or even three pathways for trehalose synthesis, most bacteria as well as plants and 

animals have only the Tps/Tpp pathway (Wolf et al., 2003; Woodruff et al., 2004; Avonce et 

al., 2006). The TreS pathway is found almost exclusively in bacteria, and the TreT pathway is 

present mainly in hyperthermophilic bacteria and archaea (De Smet et al., 2000; Qu et al., 

2004; Ryu et al., 2005; Kouril et al., 2008). Occasionally, more than one copy of those genes 

exists in the same organism: Ralstonia solanacearum, for example, has two tps genes; 

Thermoanaerobacter tengcongensis has two treP genes; and Methanoculleus marisnigri has 

three copies of treT. The genes of four pathways for trehalose synthesis were detected in the 

genome of R. xylanophilus: the Tps/Tpp and the TreT pathways, which we have shown to be 

functional in cell extracts, as well as the TreS and the TreY/TreZ pathways, which were not 

active under the conditions tested. This pathway multiplicity is unique among the organisms 

examined, strongly suggesting an essential role for this disaccharide in R. xylanophilus (Elbein 

et al., 2003; Woodruff et al., 2004). The sequential organization of treT and tps with an 

opposing tpp gene is also unique. Since our studies indicate that both TreT and Tps are active, 

this apparent redundancy could reflect maximization of substrate availability to ensure 

trehalose production. It also suggests that the expression of tpp is independently regulated, 

and our data indicate that the T6P formed is not fully dephosphorylated in R. xylanophilus cell 

extracts, leading to the hypothesis of an alternative role for the phosphorylated compound. In 

fact, T6P has been found to play important signaling roles in the regulation of sugar 

metabolism in Saccharomyces cerevisiae, by inhibiting hexokinase, and in Arabidopsis thaliana, 

where it activates ADP-glucose pyrophosphorylase (Paul et al., 2008). T6P is also a precursor of 

complex structures found in actinobacteria, such as mycolic acids, although R. xylanophilus 

lacks these trehalose-containing structures (Carreto et al., 1996; Takayama et al., 2005). 

The organization of the TreS and TreY/TreZ genes in a different and unique operon-like 

structure containing other genes for glycogen metabolism and the lack of activity in cell 

extracts from cultures grown on tryptone and yeast extract led us to hypothesize that these 
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genes may be expressed only when maltose or maltooligosaccharides are used as carbon 

sources, as is the case with the TreS from Corynebacterium glutamicum (Wolf et al., 2003). 

However, we did not detect TreS activity when the organism was grown on maltose. It is also 

possible that these pathways may be activated by other environmental stimuli such as 

desiccation, which induces Tps/Tpp and TreS in Bradyrhizobium japonicum (Cytryn et al., 

2007). 

The Tps from Rubrobacter xylanophilus preferred GDP-glucose as a glycosyl donor, unlike the 

majority of Tps proteins characterized so far, which utilize all natural glucose diphosphate 

nucleosides as donors for T6P synthesis or are specific for UDP-glucose (Giaever et al., 1988; 

Elbein et al., 2003; Silva et al., 2005). Two classes of Tps proteins, reflecting their substrate 

preference, have been proposed, namely, the UDP-forming (EC 2.4.1.15) and the GDP-forming 

(EC 2.4.1.36) enzymes. The R. xylanophilus enzyme is of the second and rarer type. This Tps 

has maximum activity at 60°C, which slowly decreases to undetectable levels at around 90°C. 

While this is not common for the majority of enzymes, the glucosylglycerate synthase from 

Persephonella marina and the Tpp from Thermus thermophilus have similar profiles, as their 

activities gradually decrease at above the optimum temperature (Silva et al., 2005; Fernandes 

et al., 2007). It is possible that at higher temperatures they acquire more stable 

conformational changes (like the alpha-glucosidase from Thermotoga maritima, for example) 

which allow lower but stable activity for longer periods of time at temperatures above the 

optimum (Raasch et al., 2000). 

The Tpp from R. xylanophilus has high sequence similarity to eukaryal orthologues, mostly 

from insects, followed by some actinobacterial sequences. Similarly, some cyclases from 

Mycobacterium tuberculosis and the citrate synthase from Geobacter sulfurreducens are more 

similar to eukaryotic than to bacterial cyclases, and it has been suggested that the bacteria 

acquired these genes from eukaryotes (Ponting et al., 1999; Bond et al., 2005). Although we 

did not trace the origin of the tpp gene in R. xylanophilus, the high sequence identity with the 

insect homologues suggests gene transfers between these two domains. The Tpp from R. 

xylanophilus is, like the majority of Tpp proteins, highly specific for T6P (Elbein et al., 2003). In 

fact, the dephosphorylation of compounds other than T6P is extremely rare, and only the 

enzymes from the insect Phormia regina and from T. thermophilus have also been shown to 
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use Glc6P at lower rates (Friedman and Alexander, 1971; Silva et al., 2005). The TreT from R. 

xylanophilus catalyzes a reaction similar to that of the homofunctional enzymes from 

Thermococcus litoralis and Pyrococcus horikoshii, including the hydrolysis of trehalose with 

ADP as a cosubstrate (resembling the former), but it does not have the trehalase activity of the 

latter (Qu et al., 2004; Ryu et al., 2005). Interestingly, the TreT from Thermoproteus tenax 

could catalyze only the formation and not the hydrolysis of trehalose (Kouril et al., 2008). The 

recombinant TreT from R. xylanophilus used ADP-glucose as well as other NDP-glucose donors, 

like the euryarchaeal enzymes but not the crenarchaeal TreT, which preferred UDP-glucose. 

However, the TreT activity in R. xylanophilus extracts appeared to be specific for ADP-glucose. 

Likewise, the Tps activity in Propionibacterium freudenreichii extracts is specific for ADP-

glucose, unlike the recombinant enzyme, which used other NDP-glucose donors in addition to 

ADP-glucose (Cardoso et al., 2007). This may be due to an interaction with an unknown 

regulatory protein present in cell extracts or to slight differences in folding between the native 

and recombinant proteins. 

The presence of treT in the R. xylanophilus genome was surprising, since among all the 

actinobacterial genomes sequenced (>50), only that of this organism possesses a treT gene. 

With the exception of hyperthermophilic bacteria and a few deltaproteobacteria, treT is not 

found in most bacterial genomes. This gene is also present in a few euryarchaeal genomes but 

is frequent in those from hyperthermophilic crenarchaeotes (Qu et al., 2004; Ryu et al., 2005; 

Kouril et al., 2008). Such a scattered distribution suggests that treT has been involved in lateral 

gene transfer events and that R. xylanophilus may have acquired it from hyperthermophiles 

(Eisen, 2000; Ragan, 2001). However, the R. xylanophilus treT AGR codon usage, the G+C 

composition, and the phylogenetic analysis failed to confirm this origin (Lobry and Necsulea, 

2006). For example, and corroborating previous studies, our sequence analysis also supports 

the acquisition of the R. xylanophilus ino1 gene from a hyperthermophile (Eisen, 2000; Nesbo 

et al., 2001). However, the key gene (dippS) for the synthesis of the “hyperthermophilic” 

solute DIP in R. xylanophilus lacks a hyperthermophilic-type AGR codon usage. Although the 

distribution of dippS and treT suggests a hyperthermophilic origin for both, we could not 

detect the lateral transfer because hints of such an event seem to have been erased by 

amelioration to the recipient’s genome (Lawrence and Ochman, 1997; Eisen, 2000; Lake et al., 
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2007). On the other hand, the phylogenetic clustering of the R. xylanophilus TreT sequence 

with the TreT from Myxococcus xanthus and the apparent clustering with other 

deltaproteobacterial (syntroph) TreT sequences and with those from methanogens suggest an 

archaeal origin for the bacterial TreT proteins, possibly from methanogens that coexist with 

bacteria in some environments (Jackson et al., 1999). This hypothetical methanogenic origin is 

further strengthened by the detection in the R. xylanophilus genome of the key gene for the 

synthesis of cyclic bisphosphoglycerate, an organic solute found only in methanogens 

(Matussek et al., 1998). This gene is extremely rare, being found only in a few Thermococcales 

and methanogens and in R. xylanophilus, where it lacks the hyperthermophilic AGR-type 

codon usage (unpublished results). Altogether, these results seem to suggest a very ancient 

origin for treT. The ubiquity of intracellular trehalose and the unprecedented detection of four 

putative pathways for its synthesis in R. xylanophilus, a desiccation- and extremely gamma-

radiation-resistant organism, encourage further research into the roles of this disaccharide in 

the metabolism and extreme phenotype of this ancient lineage of the actinobacteria. 
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ABSTRACT 

The compatible solute mannosylglycerate (MG) accumulates in some hyper/thermophilic 

bacteria and archaea coping mainly with salt stress while the related solute glucosylglycerate 

(GG) has been shown to play an important role in microbial adaptation to salt stress under 

nitrogen limitations. A rare mannosylglycerate synthase (MgS) gene detected in the genome of 

Selaginella moellendorffii was expressed in E. coli and the recombinant enzyme purified and 

characterized. A remarkable and unprecedented feature of this rare MgS was the ability to 

efficiently synthesize MG and GG alike, with maximal activity at 50°C, pH 8.0 and with Mg
2+

 as 

reaction enhancer. We have also identified a novel glycoside hydrolase gene in this plant’s 

genome, which was functionally confirmed to be highly specific for the hydrolysis of MG and 

GG and named MG hydrolase (MgH), due to its homology with hyper/thermophilic bacterial 

MgHs. The recombinant enzyme was maximally active at 40ºC and at pH 6.0-6.5. The activity 

was independent of cations, but Mn
2+

 was a strong stimulator. Regardless of these efficient 

enzymatic resources we could not detect MG or GG in S. moellendorffii or in the extracts of 

five additional Selaginella species. Herein, we describe the properties of the first eukaryotic 

enzymes for the synthesis and hydrolysis of the compatible solutes MG and GG. 
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INTRODUCTION 

The compatible solute mannosylglycerate (MG) accumulates in some hyper/thermophilic 

bacteria and archaea during adaptation to salt stress (Santos and da Costa, 2002; Neves et al., 

2005; Empadinhas et al., 2007). This compatible solute was initially encountered in marine red 

algae, but its physiological role in these organisms has not been clearly elucidated (Karsten et 

al., 2003). Glucosylglycerate (GG) is a MG-related solute originally identified in actinobacterial 

polysaccharides and glycolipids and more recently as a free molecule in marine cyanobacteria 

and proteobacteria, where it plays a crucial role during adaptation to salt stress in nitrogen 

poor environments (Saier and Ballou, 1968; Pommier and Michel, 1981; Goude et al., 2004; 

Klahn et al., 2010). 

The thermophilic bacterium Rhodothermus marinus can synthesize MG from GDP-mannose 

and D-glycerate using a rare mannosylglycerate synthase (MgS) or through the more common 

pathway involving a phosphorylated intermediate synthesized and dephosphorylated by a 

mannosyl-3-phosphoglycerate synthase (MpgS) and a mannosyl-3-phosphoglycerate 

phosphatase (MpgP) (Martins et al., 1999; Borges et al., 2004). Likewise, Persephonella marina 

can also synthesize GG via two similar alternative pathways involving a glucosylglycerate 

synthase (GgS) and glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-

phosphoglycerate phosphatase (GpgP) (Costa et al., 2007; Fernandes et al., 2007). The unique 

MgS was, until recently, restricted to Rhodothermus marinus but the detection of mgS 

sequences in the red algae Griffithsia japonica, Caloglossa leprieurii and Gracilaria changii 

indicates that MG is synthesized via the single-step pathway (Martins et al., 1999; Neves et al., 

2005; Santos et al., 2007; Teo et al., 2007). Although MG or GG have never been reported in 

plants, the genomes of the moss Physcomitrella patens and of the spikemoss Selaginella 

moellendorffii also revealed full-length mgS homologues (Empadinhas and da Costa, 2010). 

The plant Selaginella moellendorffii (Division Lycophyta) is a member of an ancient lineage of 

vascular plants that diverged from the seed plant lineage (Division Spermatophyta) soon after 

plants colonized terrestrial environments (Kenrick, 2003; Banks, 2009). Trehalose is present in 

very low levels in most plants except for the desiccation-tolerant plants known as 

‘resurrection’ plants, namely Selaginella lepidophylla and Selaginella tamariscina, where 
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trehalose (or sucrose) is the key molecule against osmotic stress and especially drought 

(Adams et al., 1990; Iturriaga et al., 2006; Liu et al., 2008). 

The recent identification and characterization of hydrolases specific for MG and GG in the 

bacteria Thermus thermophilus and Rubrobacter radiotolerans allowed us also to detect 

orthologs in S. moellendorffii genome (Alarico et al., unpublished). Since there is very limited 

information about MG and GG catabolism, these eukaryotic mgH homologs represent, in 

addition to the mgS gene, powerful tools for comparative genomics, biochemical and 

physiological studies in the context of plants adaptation to stress conditions, namely drought 

(Weng et al., 2005). To examine the significance of mgS and mgH detection in S. moellendorffii 

and of the putative MG/GG biosynthesis and hydrolysis in this land plant, we analyzed the 

organic solute pools in different species of Selaginella and characterized the first eukaryotic 

enzymes for the synthesis and catabolism of MG and GG. 

 

MATERIALS AND METHODS 

Identification, sequence analysis, cloning and functional expression of mgS and mgH 
genes from Selaginella moellendorffii, strains and growth conditions 

To identify the mannosylglycerate synthase gene (mgS) from Selaginella moellendorffii, the 

Rhodothermus marinus MgS sequence (GenPept accession number YP_003289793) was used 

as probe for BLAST searches at the National Center for Biotechnology Information (NCBI, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) database. BLAST analysis with the Thermus 

thermophilus HB27 (YP_004589) mannosylglycerate hydrolase (MgH) sequence (Alarico et al., 

unpublished) allowed us to identify two copies of the mgH gene in Selaginella moellendorffii 

genome. 

To circumvent possible codon usage and context disparities between S. moellendorffii genes 

and the host for gene expression, both the mgS and mgH gene sequences from S. 

moellendorffii were optimized for E. coli expression and synthesized (GenScript Corp.). The 

mgS gene was cloned between the NcoI and HindIII sites and the mgH gene was cloned 

between the EcoRI and HindIII sites of the expression vector pET30a (Novagen) to allow the 
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translation of vector-encoded N-terminal His-tagged proteins. The constructs were sequenced 

to confirm the identity of the insert (Macrogen Europe, Netherlands) and transformed into E. 

coli BL21 (DE3). 

The recombinant E. coli were grown to mid-exponential phase of growth (OD610nm=0.8-1.0) in 

LB medium (pH 7.0) with kanamycin (30 μg/ml) at 30°C, in a shaker (180 rpm) with continuous 

aeration. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added at a final concentration of 1.0 

mM (mgS) or 0.5 mM (mgH) to induce gene expression, the temperature was lowered to 25°C 

and cells carrying (His)6-MgS and (His)6-MgH were allowed to grow for additional 18 h. Cells 

were harvested by centrifugation (9000 × g, 10 min, 4°C) and suspended in 20 mM Bis-tris 

propane buffer (BTP) at pH 7.5 with 10 mM MgCl2, DNase I (10 μg/ml), and a protease 

inhibitor cocktail (Roche). E. coli cells were disrupted in a French-press cell followed by 

centrifugation (15000  g, 30 min, 4°C) to remove debris. The supernatants were filtered 

through a 0.22 µm-pore-size filter (Schleider & Schuell) and used for protein purification by 

fast protein liquid chromatography (FPLC). 

 

Chemicals 

Mannosylglycerate (MG), mannosylglyceramide (MGA) and glucosylglycerol were obtained 

from Bitop (Germany). Glucosylglycerate (GG) was chemically synthesized as described below. 

MGG was synthesized as previously described (Fernandes et al., 2010). GGG was kindly 

supplied by Helena Santos (ITQB, Oeiras). All other chemicals were obtained from Sigma-

Aldrich. The chemical synthesis of glucosylglycerate was performed as previously described by 

Lourenço and co-workers (2009). 

 

Preparation of cell-free extracts and enzyme assays for detection of MG and GG 
synthesis and hydrolysis 

The activity of the recombinant MgS in extracts was detected in reaction mixtures (50 μl) 

containing 25 μl of cell-free extract, 5 mM (each) of GDP-mannose/GDP-glucose and D-

glycerate, and 5 mM MgCl2 in 25 mM BTP (pH 7.5), after incubation for 20 min, at 25°C. The 
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synthesis of MG or GG was monitored by thin-layer chromatography (TLC) with a solvent 

system composed of chloroform/methanol/acetic acid/water (30:50:8:4, v/v). MG and GG 

were visualized by spraying with α-naphthol-sulfuric acid solution followed by charring at 

120ºC (Silva et al., 2003). MG, GG, mannose, glucose, GDP-mannose, GDP-glucose and 

guanosine were used as standards. E. coli cell-free extracts carrying an empty vector were 

used as negative controls. 

The reaction mixture (50 μl) used to detect the activity of the recombinant MG hydrolase 

(MgH) in extracts and during purification contained 25 μl of sample, 5 mM MG or 5 mM GG in 

25 mM morpholineethanesulfonic acid buffer (MES) at (pH 6.0). The mixture was incubated at 

30°C for 30 min and cooled on ethanol-ice. Reaction products were loaded onto TLC plates and 

visualized as described above. 

 

Purification of recombinant MgS and MgH from S. moellendorffii 

E. coli cells carrying the recombinant MgS or MgH from S. moellendorffii were suspended in 20 

mM sodium phosphate buffer, with 0.5 M NaCl and 20 mM imidazole (at pH 8.0 for MgS and 

pH 7.4 for MgH). The extract carrying the (His)6-MgS was loaded onto a Ni-Sepharose high-

performance column equilibrated with 20 mM sodium phosphate buffer with 0.5 M NaCl and 

20 mM imidazole (pH 8.0). Elution was carried out with the same buffer containing 500 mM 

imidazole. The active fractions were loaded onto a Q-Sepharose column equilibrated with 20 

mM BTP (pH 8.0) and elution was carried out with a linear NaCl gradient (0 to 0.5 M). The 

active fractions were pooled, concentrated by centrifugation in 30 kDa cutoff centricons 

(Amicon) and equilibrated with 20 mM BTP at pH 8.0. The (His)6-MgH was purified to 

homogeneity in a single step with a Ni-Sepharose column. The active fractions were dialyzed 

against 50 mM BTP with 50 mM NaCl (pH 7.0). Protein content of all samples was evaluated by 

the Bradford assay (Bradford, 1976) and the purity was determined by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). 
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Characterization of the recombinant MgS 

The substrate specificity of the MgS was determined using GDP-, ADP- and UDP-mannose, 

GDP-, ADP-, UDP- and  TDP-glucose, UDP-galactose, GDP-fucose, sucrose, glucose, D-frutose, 

L-fucose, D-mannose, glucose-1-phosphate, glucose-6-phosphate, mannose-1-phosphate, 

mannose-6-phosphate and frutose-6-phosphate as possible glucosyl donors; D-, L-, DL-

glycerate, 3-phosphoglycerate (3-PGA), DL-lactic acid, glycolic acid, glycerol, D-frutose, 

glucose, - and β-glucose-1-phosphate, glucose-6-phosphate, mannose, mannose-1-

phosphate and mannose-6-phosphate were tested as possible acceptors. The reaction 

mixtures (50 μl) containing pure MgS (1.4 μg), 5 mM of each substrate, and 5 mM MgCl2 in 25 

mM BTP at pH 8.0, were incubated at 25°C for 20 min. The products were visualized by TLC, as 

described above. The reverse reaction was also performed using the substrates MG or GG with 

GDP (all at a final concentration of 5 mM) in 25 mM BTP (pH 8.0) with 5 mM MgCl2 and 2.6 μg 

of pure MgS, and incubated at 50ºC, for 20 min. The synthesis of GDP-mannose or GDP-

glucose, respectively, and glycerate was monitored by TLC with the solvent system acetic 

acid/ethyl acetate/water/ammonia 25% (6:6:2:1, v/v). 

The MG/GG-forming activity was measured by the quantification of nucleoside diphosphate 

(GDP) released from the condensation of GDP-mannose or GDP-glucose and D-glycerate into 

MG or GG. Reactions were initiated by the addition of MgS and stopped at different times by 

cooling on ethanol-ice. The MgS was inactivated by the addition of 3 μl of 1N HCl, neutralized 

by 5 μl of Tris-HCl 500 mM (pH=9.3) and the reaction volume adjusted to 60 µl with H2O. 

Controls were performed to account for possible substrates/products degradation following 

acid treatment. The amount of GDP released was determined at 340 nm as previously 

described (Fernandes et al., 2007; Nobre et al., 2008). 

The temperature profile was determined between 10 and 80ºC with GDP-mannose and GDP-

glucose, in 25 mM BTP at pH 8.0, with 5 mM MgCl2; the effect of pH was determined at 50°C 

between pH 5.0 and 11.0 in MES (pH 5.0 to 6.5),  BTP (pH 6.5 to 9.5) and N-cyclohexyl-3-

aminopropanesulfonic acid (CAPS) (pH 10.0 to 11.0) buffers. Cation dependence was examined 

at 50°C in the presence of chloride salt of Mg
2+

, Ca
2+

, Ni
2+

, Sr
2+

, Co
2+

, Mn
2+

 or Zn
2+

 (5 mM) and 

without cations or with EDTA (2 and 10 mM). The effect of NaCl (10, 50, 100 and 200 mM) and 
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KCl (50, 100, 250 and 500 mM) was also analyzed. The kinetic parameters Km and Vmax 

(determined from Lineweaver-Burk plots) for GDP-mannose, GDP-glucose and D-glycerate 

were examined at 25ºC and 50ºC, as described above. Reactions contained increasing 

concentrations of the appropriate substrate (0.1-20 mM) and 5 mM of the fixed substrate and 

were performed in 25 mM BTP at pH 8.0 with 5 mM MgCl2 and 1.4 μg of MgS. All experiments 

were performed in triplicate. 

 

Characterization of the recombinant MgH 

Compounds tested as possible substrates were the disaccharides (α,α-, α,β-, and β,β-

trehalose, sucrose, nigerose, turanose, maltose, cellobiose, leucrose, palatinose, gentiobiose, 

melibiose, α-1,2- and α-1,6-mannobiose), the trisaccharides (maltotriose, isomaltotriose, 

raffinose, panose), other maltoligosaccharides (maltotetraose, maltoheptaose), MG, 

mannosylglyceramide (MGA), GG, mannosylglucosylglycerate (MGG), 

glucosylglucosylglycerate (GGG) and glucosylglycerol. The reverse reaction (MG or GG 

synthesis) was tested with GDP-glucose, GDP-mannose, D-mannose, mannose-1P and -6P as 

possible donors and with D-glycerate, DL-glycerate and 3-PGA as possible acceptors. The 

reaction mixtures (50 μl) containing pure MgH (2.6 μg), 2.5 mM of each substrate in 25 mM 

MES buffer (pH 6.0), with or without MnCl2 (10 mM), were incubated at 40ºC for 30 min. 

Products were visualized by TLC as described above with chloroform/methanol/acetic 

acid/water (15:25:4:2, v/v/v/v). Glucosylglycerol hydrolysis was examined with the Glucose 

Oxidase (GO) assay kit (Sigma) as described below. 

Recombinant MgH activity was measured from the mannose released from MG, quantified at 

340 nm from the amount of NADPH formed, with the K-MANGL 01/05 assay kit (Megazyme). 

The glucose released from GG was determined at 540 nm from the amount of oxidized o-

Dianisidine formed with the Glucose Oxidase (GO) assay kit, according to the manufacturers’ 

instructions. Standard reaction conditions (50 μl) contained 5 mM of MG or GG in 25 mM MES 

(pH 6.0) and 1.0 μg of pure recombinant MgH. The enzyme was inactivated in a boiling water 

bath (2 min) with appropriate controls and cooled on ethanol-ice. 
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The temperature profile with MG was determined between 20 and 60ºC in 25 mM MES at pH 

6.0 and the effect of pH was determined at 40°C between pH 5.0 and 8.0 with citrate/Na2HPO4 

(pH 5.0), MES (pH 5.5-6.5) and BTP (pH 7.0-8.0) buffers. Cation dependence and the effect of 

NaCl and KCl were examined at 40°C as described for the MgS. The Km and Vmax values were 

determined at 25ºC and 40ºC with various concentrations of GG and MG (1-75 mM) after 

incubation of mixtures for different periods (0-8 min) in 25 mM MES at pH 6.0, as described 

above. The molecular masses of the recombinant MgS and MgH were estimated at room 

temperature on a Superdex 200 as previously described (Nobre et al., 2008). All experiments 

were performed in triplicate. 

 

Plant material, extraction and quantification of Selaginella spp. intracellular organic 
solutes by NMR 

Five different species of Selaginella, namely S. braunii, S. moellendorfii, S. sanguinolenta, S. 

stauntoniana and S. uncinata were obtained from Plant Delights Nursery, Inc., USA, in 

hydrated state. The plant material obtained from the suppliers was processed after eight 

weeks storage under hydrated conditions, the dry weight of the samples was determined and 

the extraction of solutes was performed twice with boiling 80% ethanol. The extracts were 

freeze-dried and resuspended in 
2
H2O for 

1
H-nuclear magnetic resonance (NMR) analysis, as 

previously described (Empadinhas et al., 2007). A second extraction of the compatible solutes 

from the Selaginella species was performed. The plants used were the same as before, but had 

been stored without watering, for two months, at room temperature. 

Dried Selaginella lepidophylla was obtained from a supplier. The desiccated leaves were 

sampled by peeling off the external branches (completely brown). After hydration of the 

whole plant in water for around 16 hours, green leaves/branches were removed from the 

inner part of the plant and extracted.  

For the extraction of organic solutes from all Selaginella spp., leaves were ground to a fine 

powder in liquid nitrogen with a mortar and pestle and the extraction was then executed, as 

described above. 
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RESULTS 

Solutes accumulation on the Selaginella species 

All Selaginella plants, in hydrated and dehydrated state, accumulated primarily trehalose and 

sucrose (Table 3.1). The results show that there is considerable variation in the accumulation 

of compatible solutes among the Selaginella species examined and that, in most cases, the 

fresh leaves have higher levels of compatible solutes than the dry leaves. Moreover, the levels 

of sucrose are generally lower than those of trehalose in the six Selaginella species (Table 3.1). 

Mannosylglycerate and glucosylglycerate were not detected, by 
1
H-NMR analysis, in any of the 

plants, under any of the conditions tested (Table 3.1). 

 

 

Table 3.1. Accumulation of organic solutes by Selaginella spp., quantified by 
1
H-NMR. 

Plant species 
Trehalose 

(mg/g plant) 
Sucrose 

(mg/g plant) 
Glucose 

(mg/g plant) 
GB 

(mg/g plant) 

S. moellendorffii 24.8  2.5 37.1  25.0 5.2 trace 

S. moellendorffii*  9.4 5.6 0.9 0.1 

S. uncinata 38.2  9.7 23.3  5.0 10.0 0.7 

S. uncinata* 35.8 32.2 1.0 - 

S. stauntoniana 7.0 8.9 6.7 0.4  0.2 

S. stauntoniana* 1.5 2.6 0.7 0.4 

S. braunii 56.6  10.1 12.2  1.1 2.7 trace 

S. braunii* 83.5 25.7 - - 

S. sanguinolenta 2.8 31.8 1.9 trace 

S. sanguinolenta* 1.4 4.6 0.6 0.2 

S. lepidophylla  
(hydrated) 

18.3  0.6 6.6  0.1 9.0  0.3 0.5  0.0 

S. lepidophylla 
(dried) 

1.6  0.1 0.6  0.1 trace trace 

Abberviations: GB, Glycine Betaine. * After 2 months of dehydratation. 
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Identification of the gene coding for MgS and for MgH 

BLAST searches with the MgS from Rhodothermus marinus allowed the detection of a 

sequence with 56% amino acid identity in the genome of S. moellendorffii (http://genome.jgi-

psf.org/Selmo1/Selmo1.home.html). The MgS had 70% amino acid identity with a protein 

from Physcomitrella patens (XP_001764114) and 49% and 55% with two sequences from 

Griffithsia japonica (AAM93991 and AAP80838), respectively (Table 3.2). 

 

Table 3.2. Amino acid sequence identities between MgS proteins (Selaginella moellendorffii, 
Rhodothermus marinus DSM 4252, Griffithsia japonica) and a putative glycosyltransferase 
(Physcomitrella patens). 

Organisms 
Accession 
number 

Length 
(aa) 

aa identity 
(%) 

Plants    

 Selaginella moellendorffii XP_002978745 422 100 

 Physcomitrella patens XP_001764114 429 70 

Bacteria    

 Rhodothermus marinus  YP_003290498 397 56 

Red alga    

 
Griffithsia japonica 

AAM93991 214 49 

 AAP80838 119 55 

 

Although the genome of the marine algae Gracilaria changii is not available, an expressed 

sequence tag (EST) coding for a putative MgS (DV967051) was identified (Teo et al., 2007). The 

MgS gene (mgS) was annotated as a putative glycosyltransferase belonging to the GT78 family 

on the carbohydrate-active enzyme database (CAZy, www.cazy.org) (Henrissat and Coutinho, 

2001) with 1269 bp coding for a polypeptide of 422 amino acids with a calculated mass of 47.9 

kDa, although the protein was shown to behave as a tetramer in solution, with a mass of 

about 217.2  23.0 kDa. 

BLAST searches with the MgH sequence from Thermus thermophilus HB27 (YP_004589) 

(Alarico et al., unpublished) led to the identification of two homologues (XP_002961898 and 

XP_002990235) in the genome of Selaginella moellendorffii with only 4 different amino acids 
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and 52% identity. The MgH had 60% amino acid identity with proteins from Physcomitrella 

patens subsp. patens (XP_001772747) and 54% and 51% identity with proteins from the 

bacterium Meiothermus silvanus (YP_003684093) and Marinithermus hydrothermalis 

(YP_004368038), respectively. Lower sequence identity (46%, 44% and 42%) was detected 

with proteins from the bacteria Truepera radiovictrix (YP_003704625) and Rhodothermus 

marinus (YP_003291046, YP_003289793), respectively (Table 3.3). 

 

Table 3.3. Amino acid sequence identities between MgH proteins of Selaginella moellendorffii and 
homologues from different organisms. 

Organism 
Accession 
number 

Length 
(aa) 

aa identity 
(%) 

Plants    

 
Selaginella moellendorffii 

XP_002961898 488 100 

 XP_002990235 488 99 

 

Physcomitrella patens 

XP_001772747 477 60 

 XP_001785177 468 52 

 XP_001761811 529 68 

Bacteria    

 Meiothermus silvanus YP_003684093 423 54 

 Marinithermus hydrothermalis YP_004368038 428 51 

 Thermus thermophilus HB27 YP_004589 415 52 

 Truepera radiovictrix YP_003704625 429 46 

 
Rhodothermus marinus 

YP_003291046 444 44 

 YP_003289793 452 42 

 

The putative MgH gene (XP_002961898) had 1467 bp encoding a polypeptide of 488 amino 

acids with a calculated mass of 54.53 kDa, and belonged to the group of unclassified putative 

glycoside hydrolases in the corresponding database (www.cazy.org). Gel filtration experiments 

indicated that the recombinant MgH behaved as a monomeric protein with a molecular mass 

of 55.3 ± 1.6 kDa. 

BLAST searches with known MpgSs (Cazy family GT55), GpgSs (GT81) and MpgPs/GpgPs (EC 
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3.1.3.70) for the two-step synthesis for MG or GG failed to detect any homologs in S. 

moellendorfii genome. 

 

Cloning, functional expression and purification of the recombinant MgS and MgH 

The native mgS and mgH gene sequences from the plant Selaginella moellendorffii are 

intronless, which facilitated their expression in E. coli. Activity assays carried out with E. coli 

cell extracts harboring the MgS gene led to the synthesis of MG and GG and extracts harboring 

MgH could hydrolyze both solutes while the control extracts from E. coli with empty vectors 

did not (results not shown). The purification of recombinant His-tagged proteins yielded pure 

proteins as judged by SDS-PAGE (Fig. 3.1). Both enzymes lacked detectable activity for the 

reverse reactions. 
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Figure 3.1. SDS-PAGE showing the recombinant mannosylglycerate synthase and hydrolase from S. 
moellendorffii. Lane 1(A and B) – Protein molecular weight markers (kDa); Lane 2 (A) Purified 
recombinant MgS(His)6 and Lane 2 (B) Purified recombinant MgH(His)6. 

 

MgS properties 

Among the substrates tested, the recombinant MgS synthesized MG and GG with high 

specificity from GDP-mannose/GDP-glucose and D-glycerate. 
1
H-NMR spectra of the MgS 

reaction at 50ºC showed that the conversion of GDP-mannose/GDP-glucose and D-glycerate 

into MG/GG was complete while at 25ºC the substrates were not fully converted (Fig. 3.2). 
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Figure 3.2. 
1
H-NMR spectra of the MgS reaction at 50ºC and 25ºC. Reaction mixture contained 5 mM of 

each substrate GDP-mannose (I)/GDP-glucose (II) and D-glycerate, 5 mM MgCl2 in 25 mM BTP (pH 8.0) 
and 2.7 μg of recombinant MgS. Reactions were incubated for 20 min, at 50ºC (A) and at 25°C (B). 
Standards (C): mannosylglycerate (I) and glucosylglycerate (II). 
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The MgS enzyme was active between 10 and 80°C, with maximum activity around 50ºC (Fig. 

3.3 A, Table 3.4). 
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Figure 3.3. Temperature and pH dependence of recombinant MgS (A and B) and MgH (C and D) activity. 

A) MgS activity was determined at temperatures between 10 and 80°C, with GDP-mannose () and GDP-
glucose (▲) as glucosyl donors; B) pH dependence was determined at pHs between 5.0 and 11.0 in the 

following buffers: MES for pH 5.0 to 6.5 (), BTP for pH 6.5 to 9.5 (■) and CAPS for pH 10.0 to 11.0 (▲). C) 

MgH activity was determined at temperatures between 20 and 60°C, with MG as substrate (); D) pH 
dependence was determined at pHs between 5.0 and 7.0 in the following buffers: Citrato/Na2HPO4 for 

pH 5.0 (), MES for pH 5.5 to 6.5 () and BTP for pH 7.0 to 8.0 (). The data are the means of three 
independent experiments. Error bars indicate SD. 
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Table 3.4. Biochemical properties of the MgS and MgH of Selaginella moellendorffii. 

Property (Unit)  MgS MgH 

No. of amino acid residues  422 488 

Calculated molecular mass (kDa)  47.9 54.5 

Oligomerization  Tetramer Monomer 

Optimum temperature (ºC)  50 40 

Optimum pH  8.0 6.0-6.5 

Mg
2+ 

/ Mn
2+

 0 mM  15.9 ± 1.3
b
 76.3 ± 0.7

c
 

dependence
a
 5 mM  100

b
 82.6 ± 2.7

c
 

 10 mM  95.8 ± 4.9
 b

 100
c
 

aExpressed as percentage of the maximum activity of the MgS (with GDP-mannose and D-glycerate) and of MgH (with 

MG); Mg2+ dependence for MgS and Mn2+ dependence for MgH. bAssays carried out at 50°C; cAssays carried out at 

40ºC. 

Among the sugar donors examined only GDP-glucose and GDP-mannose could be donors, both 

at 25ºC and 50ºC, with a slight preference for the former while D-glycerate was the only 

acceptor. Within the pH range examined the activity was maximal at pH 8.0, at 50°C (Fig. 3.2 B, 

Table 3.4). MgS was active without cations, but maximum activation was obtained with 5 mM 

of Mg
2+

 (Table 3.5). 

Table 3.5. Effect of Mg
2+

 and Mn
2+

 concentrations on the activity of recombinant MgS and MgH from 
Selaginella moellendorffii. 

 MgS MgH 

(mM) Mg
2+

 dependence
a
 Mn

2+
 dependence

b
 

0.0 15.9 ± 1.3 76.3 ± 0.7 

0.5 45.2 ± 4.1 - 

1.0 78.5 ± 3.0 - 

2.5 - 76.4 ± 6.1 

5.0 100.0 82.6 ± 2.7 

10.0 95.8 ± 4.9 100.0 

20.0 - 59.6 ± 7.5 

50.0 87.4 ± 3.1 - 

a Expressed as percentage of maximum activity of the MgS with GDP-mannose and D-
glycerate; b Expressed as percentage of maximum activity of the MgH with MG. 



Chapter 3 

82 

Other cations (5 mM) inhibited MgS in the following order: Sr
2+

<Ni
2+

<Co
2+

<Ca
2+

<Mn
2+

<Zn
2+

. 

The presence of higher concentrations of NaCl and KCl also gradually inhibited MgS activity 

(results not shown). MgS was very stable on ice (> 2 months) and upon freeze/thawing, 

although the freeze/thawing cycles promoted enzyme precipitation. The MgS exhibited 

Michaelis-Menten kinetics and the Km and Vmax values for the substrates at 25ºC and at 50ºC 

are indicated in Table 3.6.  

Table 3.6. Kinetic parameters for the substrates involved in the synthesis of MG and GG of recombinant 
MgS, determined at 25°C and 50ºC. 

Fixed substrate 

(5 mM) 

Varied 

 substrate 

Vmax
 

(µmol/min.mg 
protein) 

Km
 

(mM) 

Vmax/Km  

ratio 

25ºC     

D-glycerate GDP-mannose 2.6  0.1 

 

0.6  0.1 

 

4.3  1.0 

GDP-mannose D-glycerate 2.6  0.1 

 

1.2  0.3 

 

2.2  0.3 

D-glycerate GDP-glucose 2.0  0.1 

 

0.2  0.1 

 

10.0  1.0 

GDP-glucose D-glycerate 2.2  0.1 

 

1.6  0.4 

 

1.4  0.3 

50ºC     

D-glycerate GDP-mannose   9.5  0.4 

 

2.4  0.4 

 

4.0  1.0 

GDP-mannose D-glycerate 10.9  0.9 

 

4.4  0.7 

 

2.5 1.3 

 
D-glycerate GDP-glucose   8.0  0.3 

 

1.0  0.2 

 

8.0  1.5 

 
GDP-glucose D-glycerate 11.0  1.1 

 

3.4  1.0 

 

3.2  1.1 

 

To determine the kinetics parameters, GDP-mannose, GDP-glucose and D-glycerate were used 

up to 15-20 mM. The ability to efficiently synthesize both MG and GG was alike. Both at 25 and 

50ºC the Km values for GDP-glucose were slightly lower than those for GDP-mannose, 

reflecting a higher catalytic efficiency (Vmax/Km ratio) towards the synthesis of GG (Table 3.6). 

At 25ºC the Km for glycerate (with GDP-mannose) was slightly lower than with GDP-glucose 

and the catalytic efficiency towards glycerate (with GDP-mannose) was higher (Table 3.6). At 

50ºC, the Km for glycerate (with GDP-mannose) was slightly higher than that with GDP-glucose, 

indicating that MgS affinity towards glycerate with GDP-mannose was slightly lower (Table 

3.6). 
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MgH properties 

The MgH sequences had conserved domains found in the trehalase family (Pfam01204), but 

the activity towards trehalose isomers (α,α, α,β, and β,β) and for other oligosaccharides tested 

could not be detected (results not shown). The enzyme catalyzed the hydrolysis of MG and of 

GG, yielding mannose and glucose, respectively, and glycerate. The enzyme was active 

between 20 and 60°C, with maximum activity at around 40ºC (Fig. 3.3 C, Table 3.4). Within the 

pH range examined the activity of the enzyme was maximal at pH 6.0-6.5 (Fig. 3.3 D, Table 

3.4). MgH was active without cations and the activity was not affected by the addition of EDTA 

(5 or 10 mM). Maximum activation was obtained with 10 mM of Mn
2+

 (Table 3.5). Other 

divalent cations could also activate the enzyme in the following order of efficiency: 

Mn
2+

>Mg
2+

>Ca
2+

 (5 mM) and Mn
2+

>Ca
2+

>Mg
2+

 (10 mM); the enzyme activity was inhibited by 

Co
2+

, Sr
2+

, Ni
2+

 and Zn
2+

 and by NaCl or KCl (results not shown). MgH was very stable on ice (>2 

months) and upon freeze/thawing. The recombinant enzyme exhibited Michaelis-Menten 

kinetics at 40ºC and 25º and the Km and Vmax values for MG and GG are indicated in Table 3.7. 

Both at 40ºC and 25ºC, the enzyme had higher activity with MG than with GG, but the affinity 

towards GG was slightly higher. The catalytic efficiencies towards MG or GG at 25ºC were 

comparable, while at 40ºC, the catalytic efficiency towards MG was nearly three times higher 

(Table 3.7). 

 

Table 3.7. Kinetic parameters for the substrates involved in the hydrolysis of MG and GG of 
recombinant MgH, determined at 25°C and 40ºC. 

Varied substrate 
Vmax 

(µmol/min.mg protein) 
Km 

(mM) 
Vmax/Km 

ratio 

25ºC    

MG 13.6 ± 0.9 21.4 ± 4.0 0.6 ± 2.3 

GG 2.3 ± 0.1 2.9 ± 0.5 0.8 ± 0.2 

40ºC    

MG 40.5 ± 1.2
 

11.8 ± 1.1
 

3.4 ± 1.1 

GG 7.3 ± 0.3 5.9 ± 0.8
 

1.2 ± 0.4 
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DISCUSSION 

The detection of a mannosylglycerate synthase (MgS) gene in the Selaginella moellendorffii 

genome and the lack of studies on mannosylglycerate (MG) biosynthesis and accumulation in 

eukaryotes led us to study the enzymes involved in the synthesis of this solute in this plant. 

Common compatible solutes in plants include amino acids and derivatives (e.g. α-glutamate, 

proline, citrulline, ectoine and glycine betaine), polyols (glycerol, mannitol, inositol and pinitol) 

and mono-, di- and oligosaccharides (fructose, sucrose, trehalose and fructan), all of which 

highly water soluble (da Costa et al., 1998; Roberts, 2000; Yancey, 2005; Chen and Jiang, 

2010). The primary function of compatible solutes is to maintain cell turgor and, in the case of 

plants, to facilitate the uptake of water from soil. These compounds were also proposed to 

protect and stabilize membranes and/or proteins from stresses such as drought, high 

temperature and salinity, and can also act as free-radical scavengers (Chen and Murata, 2002; 

Wang et al., 2003). 

Water is a key element to maintain phospholipids in a fluid phase into biological membranes 

and for the folding of many proteins. The loss of water, therefore, compromises cellular 

organization subjected to dehydration. Most anhydrobiotic organisms manage to survive 

periods of severe desiccation and preserve native cellular structures in the almost totally 

absence of water, presumably due to the accumulation of trehalose, which is sometimes 

called the carbohydrate of dormancy (Potts, 1994; da Costa et al., 1998; Iturriaga et al., 2009; 

Erkut et al., 2011). 

The ancient vascular plants Selaginella lepidophylla and Selaginella tamariscina can also 

survive anhydrobiosis by accumulating trehalose or sucrose. An interchange between these 

solutes occurs during dehydration in S. lepidophylla, but not in S. tamariscina, where trehalose 

is always the dominant solute (Adams et al., 1990; Liu et al., 2008). The species of Selaginella 

studied in this work also accumulate trehalose and sucrose as principal organic solutes upon 

dehydration, along with lesser levels of glucose and traces of glycine betaine, but MG or GG 

were not detected under the conditions tested. 

The accumulation and biosynthesis of MG or GG in microorganisms has been studied in detail 
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and, whereas MG is more frequently found in hyper/thermophilic bacteria and archaea, GG 

has been frequently encountered in mesophilic bacteria and archaea and rarely in 

thermophiles, with the exception of Persephonella marina (Empadinhas and da Costa, 2010). 

Mannosylglycerate synthase (MgS) is an extremely rare enzyme found only in the thermophilic 

bacterium Rhodothermus marinus. The glycosyltransferase family GT78 was created to 

accommodate this “retaining” enzyme, which now also includes the MgS from S. 

moellendorffii (Martins et al., 1999; Fernandes et al., 2010). Unlike the MgS from R. marinus, 

which had a marked preference for GDP-mannose, the enzyme from S. moellendorffii used 

GDP-mannose and GDP-glucose to synthesize MG and GG with comparable efficiencies in vitro 

(Fig. 3.4) (Martins et al., 1999; Flint et al., 2005). 
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Figure 3.4. Proposed pathway for the synthesis and hydrolysis of MG and GG in the plant Selaginella 
moellendorffii. MgS, mannosylglycerate synthase; MgH, mannosylglycerate hydrolase; GDP, guanosine 
diphosphate. MgS catalyzes the direct glycosyl transfer of GDP-mannose and D-glycerate into MG and 
GDP-glucose and D-glycerate into MG. MgH catalyzes the hydrolysis of MG and GG into GDP-mannose 
and D-glycerate or GDP-glucose and D-glycerate, respectively. 

 

This unprecedented substrate flexibility is shared by mannosyl-3-phosphoglycerate synthase 

(MpgS) from the thermophlic bacterium Rubrobacter xylanophilus, which can synthesize the 
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phosphorylated precursors for MG and GG in vitro while none of the known MpgSs or related 

GpgSs can synthesize both products (Empadinhas et al., 2011). 

The presence of a functional MgS in S. moellendorffii was not corroborated by the 

accumulation of any of its possible low molecular weight products. Petrotoga mobilis has an 

active glucosylglycerate synthase (GgS) capable of producing GG but this solute has never 

been freely detected in the organism. Indeed, GG was the intermediate in a pathway leading 

to the synthesis of mannosylglucosylglycerate (MGG), which was accumulated during salt or 

thermal stress (Fernandes et al., 2010). Since MG- or GG-derived solutes have also not been 

detected in these plants, MgS may hypothetically, synthesize MG or GG as precursors for 

larger macromolecules as those found in actinobacteria, or accumulated under growth 

conditions not examined in this study. 

The GgSs from Persephonella marina and Petrotoga mobilis could only synthesize GG from 

glucose donors and glycerate, although the nucleotide specificity was more flexible (Fernandes 

et al., 2007; Fernandes et al., 2010). Unlike the MgS from R. marinus and the GgSs from Prs. 

marina and Ptg. mobilis, which were strictly dependent on divalent cations and unaffected by 

NaCl or KCl, the plant MgS was independent of cations and was inhibited by NaCl or KCl. 

Interestingly, the affinities of the S. moellendorffii MgS for GDP-mannose and D-glycerate were 

significantly lower than those of the R. marinus MgS for the same substrates. This suggests a 

higher relative abundance of both precursors in the plant cells or that they are recruited by 

different pathways in R. marinus. In fact, the R. marinus MpgS uses GDP-mannose in an 

alternative pathway for MG (Borges et al., 2004).  

The plant MgH was, like the MG hydrolases from Thermus thermophilus and Rubrobacter 

radiotolerans, able to efficiently hydrolyze MG and GG (Fig. 3.4) (Alarico et al., unpublished). 

This substrate ambiguity was also observed for a GDP-mannose mannosyl hydrolase from E. 

coli, which catalyzed the hydrolysis of GDP-mannose or GDP-glucose into mannose or glucose, 

respectively, and GDP (Legler et al., 2000). Unlike the bacterial MgHs that had a narrow pH 

range for activity with maximum at pH 4.0-4.5, the S. moellendorffii MgH was maximally active 

at pH 6.0-6.5. Although the catalytic efficiencies of the thermophilic MgHs towards MG or GG 

were comparable, the catalytic efficiency of the S. moellendorffii MgH was three-fold higher 
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towards MG than with GG at 40ºC. However, at physiological temperatures (25ºC), the 

efficiency is higher with GG (Alarico et al., unpublished). Further studies on the adaptation of 

S. moellendorffii to stress are required to explain this apparent paradox.  

The distribution of the MgS gene in only a few groups of phylogenetically unrelated organisms 

(Rhodothermus marinus, Griffithsia japonica, Caloglossa leprieurii, Gracilaria changii, 

Physcomitrella patens and Selaginella moellendorffii) may indicate phenomena of lateral gene 

transfer (LGT) and endosymbiosis of a prokaryote carrying MgS (Eisen, 2000). The conservation 

of mgS from thermophilic bacteria to eukaryotes indicates selective advantage for the 

acquisition of MG biosynthetic genes by eukaryotes (Martin et al., 2003). Moreover, the 

optimal activity at high temperature (50ºC) and the preservation of about 50% of maximal 

activity at 70ºC also suggests a thermophilic origin for the plant MgS. However, due to the 

rarity of mgS homologs the evolution of this enzyme remains untraceable.  

The presence of mgH genes in S. moellendorffii genome was also surprising since, with the 

exception of P. patens, they were absent from other eukaryotic lineages with sequenced 

genomes. This gene, unlike the mgS, was found in several bacterial lineages, some of which 

are known to synthesize MG or GG, and this distribution among bacteria indicates that the 

plant mgH may also have been acquired by LGT (Alarico et al., unpublished). Interestingly, the 

alphaproteobacteria Rhizobium leguminosarum and Agrobacterium radiobacter, known to 

establish intimate relations with plants, possess mgH homologs (YP_002973553 and 

YP_002542329, respectively) that could have transferred to plants (Knief et al., 2011). 

In this work, we provide a comprehensive study of the biochemical and kinetic properties of 

two enzymes involved in the metabolism of the organic solutes MG and GG in an unexpected 

host, the plant Selaginella moellendorffii. 
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1. TREHALOSE 

 

Trehalose is a ubiquitous disaccharide widely distributed in a large range of organisms and 

characterized most especially in insect, plant, and microbial cells. The peculiar properties of 

trehalose, known as an efficient osmolyte, have been known for many years. As described in 

the introduction of this thesis, trehalose is synthesized as a stress-responsive factor when cells 

are exposed to environmental stresses such as desiccation, heat, cold, oxidation to retain 

cellular integrity. 

Trehalose biosynthetic pathways are distributed in all domains of life. From the five known 

pathways to synthesize trehalose, the Tps/Tpp is the most conserved one, since it exists in 

organisms of the three domains of life. 

In Eukarya, the synthesis of the non-reducing disaccharide trehalose seems to rely only on the 

two-step pathway Tps/Tpp (Avonce et al., 2006). This pathway, which involves a 

phosphorylated intermediate, is common to those of other compatible solutes such as 

sucrose, glucosylglycerol, galactosylglycerol and mannosylglycerate (Thomson, 1983; Curatti et 
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al., 1998; Empadinhas et al., 2001; Hagemann et al., 2001; Empadinhas et al., 2003). In 

contrast to Eukarya domain, Bacteria and Archaea use additional and alternative pathways for 

trehalose synthesis. Interestingly, vertebrates have lost the capacity to synthesize trehalose; 

nevertheless can hydrolyze it to glucose, with trehalase. 

Previously work by Empadinhas and co-workers (2007) on compatible solute accumulation in 

Rubrobacter xylanophilus and the report that trehalose, along with mannosylglycerate, were 

the major solutes accumulated, stimulated subsequent work in an attempt to look for the 

genes, metabolic pathways and enzymes involved in the synthesis of these principal organic 

solutes. The work presented in chapter 2 is about a unique combination of genetic systems for 

trehalose synthesis in R. xylanophilus. 

 

2. TREHALOSE AND MANNOSYLGLYCERATE GENES IN Rubrobacter xylanophilus 

 

In the genome of Rubrobacter xylanophilus, genes for four different trehalose pathways were 

detected, three of which were characterized with the corresponding recombinant enzymes, 

Tps, Tpp and TreT. Unlike the TreY/TreZ and the TreS pathways, the Tps/Tpp and TreT were 

active in cells extracts, under the conditions tested (chapter 1).  

It has been previously shown that this thermophilic bacterium accumulates trehalose and 

mannosylglycerate constitutively which may have a synergistic effect on the adaptation of this 

organism to several stress conditions (Empadinhas et al., 2007). 

Some different genetic organizations for trehalose and mannosylglycerate genes have been 

found in bacteria and archaea. Curiously, in R. xylanophilus, the genes involved in the most 

common trehalose pathway are not organized in an operon-like structure, under the same 

promoter (chapter 2). A unique promoter sequence was detected upstream from treT gene 

and possibly the tpp promoter might be located upstream of the putative adjacent peptidase 

gene (ORF1) (Fig.4.1). 
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mpgSRxyl_2311Rxyl_2310

treTtpstppORF1

b

a

 

 

Figure 4.1. Organization of genes leading to the synthesis of trehalose (a) and mannosylglycerate (b) in 
Rubrobacter xylanophilus. Abbreviations: ORF1, putative peptidase gene; tpp, trehalose-6-phosphate 
phosphatase gene; tps, trehalose-6-phosphate synthase gene; treT, glycosyltransferring synthase gene; 
Rxyl_2310, putative hydrolase gene (HAD superfamily); Rxyl_2311, putative 5′-nucleotidase gene (EC 
3.1.3.5); mpgS, mannosyl-3-phosphoglycerate synthase gene (chapter 2) (Empadinhas et al., 2011). 

 
The significance of operon structures for efficient regulation by co-transcription of functionally 

related proteins indicates that they are expected to be conserved in the course of evolution 

(Xie et al., 2003). However, Itoh and co-workers (1999) have suggested that operon structures 

are evolutionary unstable, which might explain the heterogeneity found for trehalose genetic 

organizations. In R. xylanophilus the tps and tpp genes are sequentially arranged in the 

genome, although in opposite directions. The regulation of these genes was suggested to be 

independent, due the existence of two different and face-to-face promoters (chapter 2). This 

type of genetic organization probably allows a high degree of freedom of gene regulation, that 

could also occur in the case of divergent genes that are under the same promoter, since a 

putative regulatory protein may interact with the operator, between the divergent genes, to 

either activate/repress transcription in both or only one direction (Beck and Warren, 1988). 

Interestingly, in several organisms, including R. xylanophilus, the TreT gene is clustered with 

genes involved in alternative pathways for trehalose synthesis. Some archaeal species of the 

genus Pyrobaculum harbor contiguous TreT and Tps/Tpp genes and species of the genus 

Sulfolobus have TreT genes in their genome close to TreY/TreZ genes. In the genome of some 

Delta-proteobacteria, like Synthrophobacter fumaroxidans, Pelobacter carbinolicus and 

Synthrophus aciditrophicus, trehalose genes for Tps/Tpp or TreY/TreZ pathways are also 

present and near the TreT gene (Kouril et al., 2008). 

The reversible TreTs of the Euryarchaeota T. litoralis and P. horikoshii are part of a gene cluster 

harboring the maltose/trehalose ABC transporter genes and this fact has supported the 

hypothesis that TreT was involved in trehalose degradation (Horlacher et al., 1998). The 
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available genome sequence near the TreT gene from R. xylanophilus failed to reveal any genes 

coding for ABC transporter proteins, however we have found that TreT could also catalyze 

trehalose hydrolysis, but with a very high Km and low rate (chapter 2). 

In R. xylanophilus genome the treS (Rxyl_0315) and treY/treZ (Rxyl_0319/Rxyl_0318) genes 

appear to be part of a different and unique operon-like structure, with a single promoter, 

which contain genes for glycogen metabolism. Attempts to amplify treS, treY and treZ genes of 

R. xylanophilus were performed, but unfortunately we were not successful, due to the 

numerous errors detected in the draft genome sequence. These genes, glycogen-branching 

(glgB) (Rxyl_0316) gene and glycogen debranching glgX (Rxyl_0317) gene, are located 

immediately downstream the treS and could be involved in the synthesis/degradation of 

glycogen/maltooligosaccharides (chapter 2) (Mendes et al., 2010). 

The absence of activity of the TreS, TreY and TreZ enzymes in cell extracts from R. xylanophilus 

cultures, grown on tryptone and yeast extract, (chapter 2) led us to hypothesize that the 

respective genes could only be active when maltose or maltooligosaccharides were used as 

carbon sources. However, this was not verified when the organism was grown on maltose. 

This theory was supported by TreS of Corynebacterium glutamicum that was shown to be 

functionally active in vivo only when maltose was used as the carbon source (Wolf et al., 

2003). 

The alternative trehalose pathways TreS and TreY/TreZ might be activated by other 

environmental stimuli, as for example in the nitrogen-fixing symbiotic bacterium 

Bradyrhizobium japonicums where desiccation activates TreS and Tps/Tpp pathways (Cytryn et 

al., 2007). In Propionibacterium freudenreichii the Tps/Tpp pathway is active in response to 

osmotic, oxidative, and acid stresses (Cardoso et al., 2007). It may be also possible that the 

lack of activity observed in relation to TreS pathway could be due to its participation in 

trehalose catabolism, instead of its synthesis, as was proposed in Propionibacterium 

freudenreichii (Cardoso et al., 2007). 

Recently, Mendes and co-workers (2010) described the R. xylanophilus treS as a bifunctional 

gene (fused trehalose synthase/maltokinase gene). The treS from R. xylanophilus showed 61% 

and 29% of homology with the individual treS and mak genes from Mycobacterium bovis, 
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respectively (Mendes et al., 2010). Future work is needed to confirm the real function(s) of the 

enzyme encoded by treS gene in Rubrobacter xylanophilus. 

Different genomic organizations have also been reported for the genes involved in MG 

biosynthetic pathways: isolated genes, a structure with consecutive mpgS/mpgP or 

bifunctional mpgS/mpgP and a four-gene-operon-like organization (Empadinhas et al., 2001; 

2003; 2004). In Rubrobacter xylanophilus, the synthesis of MG in cells extracts was tracked 

from GDP-mannose and 3-phosphoglycerate, the substrates for the pathway involving a MpgS 

and a MpgP. The recombinant enzyme was characterized as a mannosyl-3-phosphoglycerate 

synthase (MpgS), with properties comparable to those of known MpgSs, but with a highly 

divergent sequence (Empadinhas et al., 2011). MpgS has an unprecedented characteristic of 

synthesizing MPG and GPG in vitro, the precursors of MG and GG, respectively. Its crystal 

structure revealed a binding-site tailored to specifically select for GDP-containing ligands and a 

sugar-binding region suited for accommodating both glucose and mannose molecules 

(Empadinhas et al., 2011). 

MpgP gene was not detected near the MpgS gene in the genome of R. xylanophilus and the 

enzyme for the hydrolysis of the phosphorylated MG (MPG) and GG (GPG) remains 

unidentified. 

Contiguous to the mpgS gene, but under a different promoter, two genes organized in an 

operon-like structure, were detected a putative hydrolase gene (HAD superfamily) and a 

putative 5′-nucleotidase gene (EC 3.1.3.5) (Fig. 4.1) (Empadinhas et al., 2011), although the 

characterization of the respective enzymes is needed to confirm their possible implication on 

MPG/GPG dephosphorylation, in vivo. 

 

 

3. TreT - GLYCOSYLTRANSFERRING SYNTHASE FROM Rubrobacter xylanophilus 

 
R. xylanophilus is the only known member of the phylum Actinobacteria to harbor a TreT. The 

presence of treT gene in the R. xylanophilus genome was unexpected, since this gene was 

mainly found in hyperthermophilic archaea, in some hyperthermophilic bacteria and in a few 

deltaproteobacteria (Fig. 4.2).  
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The biochemically characterized TreT from Rubrobacter xylanophilus shared significant levels 

of amino acid identity with the four trehalose-glycosyltransferring synthases characterized to 

date: 47%, 45% and 48% amino acids identity with archaeal TreTs from Thermococcus litoralis, 

Pyrococcus horikoshii and Thermoproteus tenax, respectively, and 45% with bacterial TreT 

from Thermotoga maritima (Fig. 4.3). 

In Pyrococcus horikoshii TreT, the conservation of essential residues and the high structural 

similarity of the N-terminal domain to that of trehalose-6-phosphate synthase (Tps), suggests 

that the catalytic reaction of TreT would follow a parallel mechanism to that of Tps (Woo et 

al., 2010). Comparison of the amino acid sequences of the five functionally characterized TreTs 

showed high levels of sequence conservation and the presence of some highly conserved 

motifs (Fig. 4.3).  

The analysis of TreT crystal structure from P. horikoshii, showed a histidine cluster constituted 

by five residues (His45, His133, His182, His155 and His403), in the active site of the enzyme, 

which formed a cavity. These residues with arginine 153 (R153) and tyrosine 407 (Y407) are 

connected by a hydrogen-bond network bridged by putative water atoms at the center (Woo 

et al., 2010). 

Based on sequence homology to other glycosyltransferases the TreT from Rubrobacter 

xylanophilus (chapter 2) is expected to be included into the GT4 family, with a GT-B structural 

fold topology, like the TreT of Pyrococcus horikishii (Woo et al., 2010), but further studies are 

needed to confirm this classification. So far, among trehalose-synthesizing enzymes, structural 

information is available only for Tps from E. coli, shown to belong to the glycosyltransferase-B 

fold family (Gibson et al., 2002). 
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T.tenax         ----MIER----------YVEFIGEHELNAIFKYAERLRDLSILHINSTAAGGGVAEILH 46 

R.xylanophilus  ----MLQRVNPGHKALADYRSIIHRELYEELQELAGRLRGARVLHVNATSFGGGVAEILY 56 

P.horikoshii    MKMYEVKEFSSGKRKLEDYKSIIGEEEVSKIQEKAEKLKGRSFVHVNSTSFGGGVAEILH 60 

T.litoralis     --MYEVTKFGGEGKRLEDYREIIGDEALEAIKAKAENLKDKSFVHVNSTSFGGGVAEILH 58 

T.maritima      --MDVVLRE----RSIEEYRTIIGN-EVDEIKKLAEPLKGKKVLHVNATAYGGGVAEILH 53 

                     : .          *  :*     . :   *  *:.  .:*:*:*: ********: 

 

T.tenax         RLIPLMRELGLNVEWKVIRGNEEFFRVTKSFHNALQT-GAGSIPREYFEIYDRWQEINAG 105 

R.xylanophilus  TLVPLALDAGLEVEWAIMFGAEPFFNVTKRFHNALQG-ADYELTIEDRAIYEEYNRRTAR 115 

P.horikoshii    SLVPLLRSIGIEARWFVIEGPTEFFNVTKTFHNALQGNESLKLTEEMKELYLNVNRENSK 120 

T.litoralis     NLVPLMRDVGIDARWFVIEGTNEFFNVTKSFHNALQGNKELRLTEEMKKLYLEINKKNAE 118 

T.maritima      NLVPLMRSVGLDARWRVIEAPDEFFNVTKKFHNTLQG-ADIEISEEEWNLYEEVCRKNAE 112 

                 *:**  . *::..* :: .   **.*** ***:**      :. *   :* .  . .:  

 

T.tenax         EIP---LDYDVVFIHDPQPAGLIRYK---RRG-VWIWRCHIDISNPHPEVWAFLKRYISA 158 

R.xylanophilus  ALAESGEEWDIVFIHDPQPALVREFSGGLREGTRWIWRCHIDTSTPNRQVLDYLWPYIAD 175 

P.horikoshii    FIDLSSF--DYVLVHDPQPAALIEFY--EKK-SPWLWRCHIDLSSPNREFWEFLRRFVEK 175 

T.litoralis     DIDLTQF--DYVLIHDPQPAPLIEFY--EKR-QPWIWRCHIDLSDPNLEFWKFLRQFVEK 173 

T.maritima      LIQDE----ELFVIHDSQPAAVRKFV--DLNDRKWIWRCHIDLSTPNMKVWQKFSQYLEG 166 

                 :       : ..:**.*** : .:     .   *:****** * *: :.   :  ::   

 

T.tenax         YDGVIVSIPEFARDDLDVPQIS-IPPSIDPLSPKNVPLPRATVDRIVRKYGVDPERPIVL 217 

R.xylanophilus  YDAQVYTMREYTPPGVELPGLTLIPPAIDPLSPKNMALSRDDASYIVSQFGVDTGRPFLL 235 

P.horikoshii    YDRYIFHLPEYVQPELDRNKAVIMPPSIDPLSEKNVELKQTEILRILERFDVDPEKPIIT 235 

T.litoralis     YDRYIFHMEEYVQEDLNQEKVVIMPPSIDPLSEKNMELSESEILKTLERFDVDPERPIIT 233 

T.maritima      YNRLVFHLEEYFPQGWK-ERSIAFPPSIDPLSEKNRDLDEDTIRKTLERLEIDPERPLIT 225 

                *:  :  : *:     .      :**:***** **  * .      : :  :*. :*::  

 

T.tenax         QVSRFDRAKDPVGVIEAYKLARRHV-DVQLVYLGSPASDDPEGEEVYREALRAAGDDKDI 276 

R.xylanophilus  QVSRFDPWKDPLGVIDVYRMVREEVPEVQLVLVGSMAHDDPEGWDYWYKTVNYAGGDPDI 295 

P.horikoshii    QVSRFDPWKGIFDVIEIYRKVKEKIPGVQLLLVGVMAHDDPEGWIYFEKTLRKIGEDYDV 295 

T.litoralis     QVARFDPWKGVFDVIDVYRKVKEKIPEVQLLLVGVMAHDDPEGWIYFEKTLRKIGEDYDI 293 

T.maritima      VVARFDPWKDLFSAIDVYRLVKKEIPEVQLAVVSAMAADDPEGWFFFEKVLRYAGTDEDI 285 

                 *:***  *. ...*: *: .:..:  ***  :.  * *****   : :.:.  * * *: 

 

T.tenax         HLLMLPPNS-HIEVNAFQRAAAVVLQKSIREGFGLTVSEALWKRRPVIGGNTGGIRIQVI 335 

R.xylanophilus  FLFSNLTNVGAIEVNAFQSLADVVIQKSIREGFGLVVSEALWKARPVVASRVGGIPMQIT 355 

P.horikoshii    KVLTNLIGVHAREVNAFQRASDVILQMSIREGFGLTVTEAMWKGKPVIGRAVGGIKFQIV 355 

T.litoralis     KVLTNLTGVHAREVNAFQRASDVILQMSIREGFGLTVTEAMWKEKPVVGRAVGGIKLQIV 353 

T.maritima      KFCTNLKGVGNKEVNAIQRATTVALHTATREGFGLVISEALYKRVPVVARPVGGVKIQVK 345 

                 .     .    ****:*  : * :: : ******.::**::*  **:.  .**: :*:  

 

T.tenax         HGVTGFLVDSPKAAAHYIVYLLKNKRLRREMGAAGREHVRRNFLITQQLRRYLMTILYLT 395 

R.xylanophilus  SGG-GILIDTIPEAAAACAKLLSDPDFAREMGRRGKEHVRANFLTPRLLRDELRLFAKLL 414 

P.horikoshii    DGETGFLVRDANEAVEKVLYLLKHPEVSKEMGAKAKERVRKNFIITKHMERYLDILNSLG 415 

T.litoralis     DGKTGFLVKDVNDAIEKTLYLLEHKDVAQEMGKNAKERIKENFIITKHLERYLDLLNSF- 412 

T.maritima      HGENGYLAWEREDLAGYVVKLIKDEELRRKMGEKGRQTVVENFIITVHLKNYLKLFLDLL 405 

                 *  * *             *:..  . ::**  .:: :  **: .  :.  *  :  :  

 

T.tenax         GRHSAP   401 

R.xylanophilus  GV----   416 

P.horikoshii    G-----   416 

T.litoralis     ------   412 

T.maritima      R-----   406  

Figure 4.3. Sequence alignment among the five characterized TreTs. The accession numbers for these 
sequences are as follows: TreT from Thermococcus litoralis (AAG45391), TreT from Pyrococcus horikoshii 
(BAA30133), TreT from Thermoproteus tenax (CAF18522), TreT from Thermotoga maritima (NP_228202) 
and TreT from Rubrobacter xylanophilus (ACJ76775) (Qu et al., 2004; Ryu et al., 2005; Kouril et al., 2008; 
Ryu et al., 2010) (chapter 2). The Clustal X program was used for sequence alignment (Thompson et al., 
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1997). Identical amino acids are indicated by ‘*’ and conserved residues are indicated by ‘:’ and ‘.’; gaps 
were introduced by Clustal program to optimize the alignment are indicated by ‘-’. In P. horikoshii TreT, 
the red boxes, indicate the residues that form a histidine cluster and the green box, indicate the residue 
(arginine 239 – R239), which binds to the phosphate moiety of the donor sugar nucleotide. The black 
arrows indicate the residues (aspartic acid 134 – D134 and histidine 155 – His155), which are essential 
residues of glycosyltransferase-B structural fold family (Lairson et al., 2008; Woo et al., 2010). 

 

 

As mentioned in chapter 2, among the five characterized TreTs, only the TreT from 

Thermoproteus tenax is unidirectional, catalyzing only the formation of trehalose. On the 

other hand, TreTs from Thermococcus litoralis, Pyrococcus horikoshii Rubrobacter xylanophilus 

and Thermotoga maritima also catalyze the reversible reaction, being able to hydrolyze 

trehalose. The preferred function in trehalose degradation was first suggested by the TreT 

from Thermococcus litoralis, due to the organization of the encoding gene (treT) in a cluster 

comprising genes for the trehalose/maltose ABC transporter and due to the induction of TreT 

by maltose and trehalose in the growth medium (Xavier et al., 1996; Qu et al., 2004). The 

genetic context of the treT gene in a cluster harboring ABC transporter related genes was also 

described for P. horikoshii and T. maritima, where TreT catalysed the reversible reaction, i.e., 

the hydrolyses trehalose (Ryu et al., 2005; Ryu et al., 2010). 

In respect to substrate specificities, the recombinant TreT from R. xylanophilus used ADP-

glucose as well as other NDP-glucose donors, like the archaeal characterized enzymes and the 

bacterial TreT from T. maritima, but not the TreT from T. tenax, which used UDP-glucose with 

more efficiency (chapter 2) (Qu et al., 2004; Ryu et al., 2005; Kouril et al., 2008; Ryu et al., 

2010; Ryu et al., 2011). 

TreT from the thermophilic bacterium Thermotoga maritima is able to employ other 

monosaccharides, such as mannose and fructose, as acceptors to produce disaccharide 

analogues of trehalos (Ryu et al., 2010). This type of acceptor specificity has been similarly 

reported in TreT from P. horikoshii, which employed a galactose as an acceptor in the glucosyl 

transfer reaction with an NDP-glucose donor (Kim et al., 2007). Both enzymes showed to use 

glucose as an acceptor substrate with higher preference then other monosaccharides. TreTs 

from R. xylanophilus, T. litoralis and T. tenax used only glucose as acceptor to synthesize 

trehalose (chapter 2) (Qu et al., 2004; Kouril et al., 2008). 
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In the reverse reaction catalyzed by TreT, i.e., for NDP-glucose synthesis, ADP was most 

preferred among NDPs used in all of the characterized TreT enzymes, with the exception of 

the TreT from T. tenax, which does not catalyze the reversible reaction. 

Organisms from genera Aquifex and Thermotoga represents the deepest and shortest 

phylogenetic branches within the Bacteria domain (Stetter, 1996). So far, the presence of treT 

genes occurs in a restrict group of organisms including, as described before, hyperthermophilic 

archaea and bacteria, and a few deltaproteobacteria The recent characterization of the TreT 

enzyme from hyperthermophilic bacterium Thermotoga maritima reinforces the theory of 

lateral gene transference between archaea and bacteria (Nelson et al., 1999; Worning et al., 

2000; Ryu et al., 2010). In chapter 2, the exceptional occurrence of treT in R. xylanophilus was 

analyzed and was confirmed a very ancient origin for treT gene. Nevertheless, additional 

studies will have to be performed to corroborate with the hypothesis of the acquisition of this 

gene by lateral gene transference. 

The participation of R. xylanophilus TreT on trehalose catabolism is an interesting alternative 

function, since it could reduce or increase the levels of trehalose and glucose, respectively, in 

the cell; however, trehalose formation is the favored enzymatic reaction catalyzed by this 

enzyme (chapter 2). 

In R. xylanophilus, the co-existence of various pathways for trehalose metabolism points to an 

essential role of this molecule and raises questions about it physiological function and 

additionally about the regulation of alternative metabolic pathways. 

Perhaps the trehalose accumulation under different stresses limits substrate availability 

selectively. 

 

4. TREHALOSE AND MANNOSYLGLYCERATE, THEIR CORRELATION WITH 
DESICCATION TOLERANCE 
 

Some phylogenetically unrelated organisms designated anhydrobiotic organisms (like, for 

example, nematodes, yeast, plants), can survive a desiccated state and for that purpose 

accumulate very high amounts of trehalose (as much as 20% of their dry weight) (Potts, 1994; 

Crowe et al., 1997; Crowe, 2002). These organisms, some of which can tolerate almost total 

water losses, are able to support strong vacuum, high doses of ionizing and UV radiation, and 
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extreme temperatures without damage (such as mechanical and oxidative damage) (Crowe et 

al., 1992). 

Rubrobacter xylanophilus, an extremely gamma-radiation resistant bacterium, accumulates 

mainly trehalose and MG, under several growth conditions, as described previously. In nature, 

however, little is known about the factors that are involved in the regulation of trehalose and 

MG accumulation in this organism.  

The extreme radiation resistance of R. xylanophilus is believed to be an unexpected 

consequence of the organism’s adaptation to the more common physiological stress, 

desiccation (causing similar damage to DNA), since natural environments with extreme 

radiation levels do not exist in the biosphere (chapter 1) (Mattimore and Battista, 1996). 

Some unrelated MG-accumulating organisms like Pyrococcus furiosus and P. abyssi, and the 

closely related species Thermococcus gammatolerans are also slightly radiation resistant 

(Gerard et al., 2001; Jolivet et al., 2003), which could lead us to speculate that radiation 

resistance is a result of an evolutionary process. There is no evidence, however, to link this 

notable ability to the accumulation of MG. 

Nevertheless, desiccation resistance has been correlated, for example, with the accumulation 

of trehalose and sucrose by other organisms, predominantly plants (Potts, 1994). As was 

described in chapter 1, this disaccharide has many functions. Particularly, in plants, it plays an 

essential role in various stages of development, for example in the formation of the embryo 

and in flowering. Trehalose also appears to be involved in the regulation of carbon metabolism 

and photosynthesis and, recently, it has been discovered that this sugar plays a central role in 

plant-microorganism interactions (Elbein et al., 2003; Iturriaga et al., 2009). In response to 

desiccation stress, Bradyrhizobium japonicum trehalose genes, coding for Tps, Tpp and Tres, 

were significantly expressed and an elevated intracellular concentration of trehalose was 

verified (Cytryn et al., 2007).  

Some of these organisms
 
tolerate desiccation due to an ability

 
to protect vital components of 

their cellular machinery from
 
damage, while others like Deinococcus spp., which are extremely 

resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation, have the an amazing 

ability to repair the damage quickly upon rehydration (Battista et al., 1999; Shirkey et al., 

2003; Makarova et al., 2007). Recent results of the comparative analysis have clarified and 
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substantially revised downward the number of uncharacterized genes that might be involved 

in DNA repair and contribute to desiccation and radiation resistance of Deinococcus species 

(Makarova et al., 2007). 

The responses to desiccation of the cyanobacterium Nostoc commune and of D. radiodurans 

are different despite their similar resistance to gamma-radiation (Battista et al., 1999; Potts, 

1999). N. commune has the ability to induce covalent modifications on the DNA molecule to 

protect it from degradation or oxidative damage
 

and upon rehydration, these DNA 

modifications are removed and cells recover (Shirkey et al., 2003). 

The lack of studies on the mechanisms involved in R. xylanophilus radiation (or desiccation) 

resistance and on the regulation process of MG accumulation makes it difficult to explain the 

role of this molecule in this organism. On the contrary, the role of trehalose in anhydrobiotic 

organisms has been the subject of several studies (Iturriaga et al., 2000; Hoekstra et al., 2001; 

Lopez et al., 2008). 

Plants, throughout their life cycle, have to cope with multiple stresses that modify normal 

plant physiology, plant growth and development. Stresses are generally grouped in abiotic or 

biotic, the first being caused by physical or chemical environmental factors, such as cold, heat, 

salinity, drought, wind, oxidation or radiation, and the second caused by biological agents, 

such as bacteria, fungi, insects or herbivores (Mahajan and Tuteja, 2005). 

The genus Selaginella contains some of the most drought tolerant plants known, including 

’resurrection plants’ such as S. lepidophylla and S. tamariscina, which can survive complete 

desiccation. Desiccation tolerance of S. lepidophylla has been attributed to the accumulation 

of high levels of trehalose. In other species of the genus Selaginella like S. moellendorffii, there 

is no evidence about the mechanisms that contribute to drought tolerance; however,  one 

gene involved in the mannosylglycerate synthesis (mgS) was recently found in this species and 

could be implicated in desiccation tolerance (chapter 3). However, the accumulation of MG 

has not yet been correlated with drought tolerance in plants and, above all, there is no 

evidences about the accumulation of this molecule in vascular plants (chapter 3). 

The moss Physcomitrella patens has been shown to tolerate abiotic stresses, including salinity, 

cold and severe desiccation (Wang et al., 2009). Genetic analysis confirmed the existence of 

mgS-like sequence in P. patens (chapters 1 and 3), but no homogue sequences have been 
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identified in vascular plant species, including Arabidopsis thaliana and Oryza sativa (rice). It is 

possible that P. patens may accumulate MG as a trend acquired from red algae, where MG has 

been detected (Bouveng et al., 1955). As described above for R. xylanophilus, the resistance to 

desiccation has not yet been associated with MG accumulation, so the possible accumulation 

of MG and its role in the bryophyte remains to be explained. 

To our knowledge, there is no report about the presence of MpgSs in plants or algae, even 

though their presence in archaea, bacteria and several fungi has been confirmed. 

 

5. MgS - MANNOSYLGLYCERATE SYNTHASE FROM Selaginella moellendorffii 

 

The mannosylglycerate synthase (MgS) from thermophilic bacterium Rhodothermus marinus 

(Martins et al., 1999) is a unique glycosyltransferase for which the new GT78 family was 

formed (CAZy - Carbohydrate-Active enzymes classification). Recently, the crystal structure of 

this enzyme was solved and a proposal to explain its unique mechanism of catalysis, 

considered to be at the border between the known inverting and retaining mechanisms, was 

put forward (Flint et al., 2005). Interestingly, prokaryotic MgS shows broad substrate 

specificity with regard to sugar donor and also, to some extent, to the acceptor: GDP-mannose 

and D-glycerate are the preferred substrates, but GDP-glucose, GDP-fucose, UDP- mannose, 

and UDP-glucose can also be used as sugar donors, and D-lactate and glycolate, as the 3-

carbon acceptors. In addition, the substrate specificity was undoubtedly dependent on 

temperature (Flint et al., 2005). 

Until now, this was the only enzyme that catalyzed MG synthesis in a single-step. In chapter 3, 

the characterization of the first eukaryotic recombinant MgS was elucidated. The mgS gene, 

coding for MgS, was found in the recently available genome of the land plant Selaginella 

moellendorffii. 

Due to the substrate and product specificity, stereochemical mechanisms and the high amino 

acid homology with the MgS from Rhodothermus marinus, it seems acceptable to include this 

new eukaryotic MgS in the same glycosyltransferase family, GT78, although more studies 

should be performed, including the determination of three-dimensional structure by X-ray 

crystallography (MgS crystal structure from S. moellendorffii is in progress). 
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Eukaryotic MgS has the particularity of catalyzing efficiently the synthesis of both MG and GG, 

from GDP-mannose or GDP-glucose plus D-glycerate, in vitro, and this differential synthesis of 

MG or GG is not temperature dependent. The replacement of the sugar acceptor D-glycerate 

for 3-phosphoglycerate failed and the MG or GG synthesis was not observed via a 

phoshorylated intermediate (MPG or GPG), in vitro (chapter 3). In some cases, the presence of 

two alternative pathways for the synthesis of the same compatible solute also occurs (MG in 

R. marinus, GG in Persephonella marina, trehalose in Mycobacterium sp.) (De Smet et al., 

2000; Borges et al., 2004; Costa et al., 2007; Fernandes et al., 2007), however in the lycophyte 

S. moellendorffii this was no an alternative MG pathway. 

 

5.1. Biochemical characterization of MgSs 

 

As described above, to date, there are only two functionally characterized MgSs, one from the 

thermophilic bacterium Rhodothermus marinus (Martins et al., 1999) and, with this work, a 

new eukaryotic enzyme from the plant Selaginella moellendorffii. These two enzymes showed 

some distinct biochemical and kinetic properties summarized in Table 4.1 and analyzed in 

chapter 3. The most remarkable characteristic from the plant MgS, as addressed above, was 

the use of either GDP-mannose or GDP-glucose with comparable efficiency, for the synthesis 

of MG or GG products. This unprecedented dual MgS/GgS activity in vitro could be, to some 

extent, comparable to the MpgS from Rubrobacter xylanophilus, which synthesizes, in vitro, 

both MG and GG precursors (chapter 3) (Empadinhas et al., 2011). This in vitro MgS/GgS 

activity, does not correlate with the accumulation of MG and GG, in vivo; S. moellendorffii 

possess the genetic resources but, unfortunately, the accumulation of these two related 

solutes in this plant and in other mesophiles awaits demonstration. On the other hand, red 

algae have mgS-like sequences and accumulate MG, althought no enzyme was funcionally 

caracterized, to date. 
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Table 4.1. Comparison of biochemical and kinetic properties of the MgSs of Selaginella moellendorffii and 
Rhodothermus marinus. 

 
Selaginella 

moellendorffii 
Rhodothermus 

marinus 

Property (Unit) MgS MgS
a
 

No. of amino acid residues 422 397 

Calculated molecular mass (kDa)                                       47.9 46.1 

Optimum temperature (ºC) 50 85-90 

Optimum pH 8.0 6.5 

Km (mM)    

GDP-man (+D-glyc) 2.4  0.4
b 0.6  0.1

c
 

 
0.2

d
 

D-glyc (+GDP-man) 4.4  0.7
b 1.2  0.3

c
 

 
0.9

d
 

GDP-glu (+D-glyc) 1.0  0.2
b 0.2  0.1

c
 

 
 

D-glyc (+GDP-glu) 3.4  1.0
b 1.6  0.4

c
 

 
 

Vmax (µmol/min.mg protein)    

GDP-man (+D-glyc) 9.5  0.4
b 2.6  0.1

c
 

 
120

d
 

D-glyc (+GDP-man) 10.9  0.9
b 2.6  0.1

c
 

 
 

GDP-glu (+D-glyc) 8.0  0.3
b 2.0  0.1

c
 

 
 

D-glyc (+GDP-glu) 11.0  1.1
b 2.2  0.1

c
 

 
 

Mg
2+

 dependence (mM)
e
   

0 15.9 ± 1.3
b
 0

d
 

5 100
b
 ND 

50 ND 100
d
 

 

a Adapted from Martins et al., 1999, b Assays carried out at 50°C, c Assays carried out at 25°C, d Assays carried out at 

90°C, e Expressed as percentage of the maximum activity of the MgS, with GDP-mannose and D-glycerate. 

Abbreviations: GDP-man, GDP-mannose; GDP-glu, GDP-glucose; D-glyc, D-glycerate; ND, not determined. 

 

 

From a range of substrates tested for plant MgS (chapter 3), this glycosyltransferase was only 

specific for GDP-mannose/-glucose and D-glycerate (Table 4.1). A restricted group of 

glycosyltransferases also exhibit narrow substrate specificities; that is the case of Tps from R. 

xylanophilus, which was showed to be highly specific for GDP-glucose and glucose-6-

phosphate (chapter 2). At 65ºC prokaryotic MgS showed broad substrate specificity, as 
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described above (Flint et al., 2005). This broad substrate specificity at 65ºC may reflect an 

absolute requirement of MG and GG, at the optimum growth temperature. 

With regards to the optimum temperature for activity, a large number of enzymes from 

mesophiles to hyperthermophiles are stable and active at temperatures considerably 

exceeding the upper growth limit of the producing organism (Zavodszky et al., 1998; Sterner 

and Liebl, 2001). For R. marinus MgS, the temperature for maximal activity is around 85-90ºC, 

and for the plant MgS it is around 50ºC, 2-fold higher than physiological temperature of the 

plant. 

The activity of eukaryotic MgS, although not dependent on the presence of Mg
2+

, is enhanced 

by this cation. On the other hand, R. marinus MgS was strictly dependent on Mg
2+ 

(Table 4.1). 

Many GT-B structural fold enzymes use metal ions, and TreTs from Thermococcus litoralis and 

Thermoproteus tenax showed Mg
2+-

dependent activity (Qu et al., 2004; Kouril et al., 2008). 

Comparison of the amino acid sequences of the functionally characterized MgSs and the 

putative homologue sequence from the moss Physcomitrella patens revealed high levels of 

sequence conservation and the presence of some highly conserved motifs (Fig. 4.4). A 

conserved D-X-D motif (or Asp-X-Asp, where X is any amino acid), highly conserved in the GT 

family and implicated in divalent metal-ion binding, which coordinates with the donor 

substrate (NDP-sugar molecule) (Wiggins and Munro, 1998; Charnock and Davies, 1999; 

Nielsen et al., 2011), is present in the three sequences analyzed (Fig. 4.4, highlighted by a black 

box). This finding was not unexpected since the two functionally characterized MgSs are GDP-

sugar using glycosyltransferases. In the case of the eukaryotic MgS, this enzyme is able to use 

efficiently GDP-mannose and GDP-glucose, in a temperature-independent manner, unlike the 

MgS from Rhodothermus marinus (chapter 3) (Flint et al., 2005). 

A conserved N-X-S/T (or Asn-X-Ser/Thr, where X is any amino acid other than proline) motif, 

showed to be common in glycosyltransferase sequences, was also detected (Fig. 4.4, 

highlighted by a gray box) (Tabish et al., 2011). This consensus sequence of amino acids is 

associated to the site where the attachment of the carbohydrate, across a N-linked 

glycosylation occurs. The machinery involved in the N-linked glycosylation system of 

prokaryotic and eukaryotic organisms display significant similarities (Altschul et al., 1990; 
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Weerapana and Imperiali, 2006) and this was supported by the presence of the N-X-S/T motif 

in MgSs, from a plant, S. moellendorffii, and a bacterium, Rhodothermus marinus. 

 

S.moellendorffii    MSLVCFPFKEEDVAVVVRNVECAAAHPRVSTVLCVGYSKGETWCAIEAKRPSIESSTGKR 

P.patens            MSLVCFPFKEEDVAVVVGNIECAASHPRVAAILCVGYSQGETWHAIEAAKPRIERATGKE 

R.marinus           MSLVVFPFKHEHPEVLLHNVRVAAAHPRVHEVLCIGYERDQTYEAVERAAPEISRATGTP 

                    **** ****.*.  *:: *:. **:****  :**:**.:.:*: *:*   * *. :**.  

 

S.moellendorffii    IILLQQKRIGVSLRSGKGDGMNTALAYFLDHTELKRIHFYDSDIVSFSADWITKAERQAD 

P.patens            IFLVLQRRIGVSLRGGKGDGMNTALAFFLEKDVYPRLHFYDADIVSFSGEWISKAEKQAD 

R.marinus           VSVRLQERLGT-LRPGKGDGMNTALRYFLEETQWERIHFYDADITSFGPDWITKAEEAAD 

                    : :  *.*:*. ** ********** :**:.    *:****:**.**. :**:***. ** 

 

S.moellendorffii    LDFDVVRHYFPRSSTDAMITWFVTKIGFCLLWPKTVLPFIEQPLGGELLLTRKAAEALYT 

P.patens            LDYDIVRHYFPRSSTDAMITWLVTKLGFAMLWPNSTLPFIEQPLGGELLLTKKAAEVLYG 

R.marinus           FGYGLVRHYFPRASTDAMITWMITRTGFALLWPHTELSWIEQPLGGELLMRREVAAMLYE 

                    :.:.:*******:********::*: **.:***:: *.:**********: ::.*  **  

 

S.moellendorffii    DHRVRGQSDWGIDTLYTFIMVQKGLHLAEVYIPEGKVHALYSGLRDLRTMLVECFSAMQS 

P.patens            DHRVRSQSDWGIDTLYTFVTAQAGLRLAEVYISEGKVHALYGGLRDLRTMLVECFSAVQS 

R.marinus           DERVRRRSDWGIDTLYTFVTVQQGVSIYECYIPEGKAHRLYGGLDDLRTMLVECFAAIQS 

                    *.*** :***********: .* *: : * **.***.* **.** **********:*:** 

 

S.moellendorffii    LKDEAVPLN-EGTHRMEYTRPVPELVKQKVGYDVEKTLKLLRSNWTQGQRDLLQKHFDPA 

P.patens            LRKEILPSEDGAVHCIEPAKAVPDLIKQKVGYDIEKTLKLLKSNWTPRQQELLHQHFDSA 

R.marinus           LQHEVVG--QPAIHRQEHPHRVPVHIAERVGYDVEATLHRLMQHWTPRQVELLELFTTPV 

                    *:.* :     . *  * .: **  : ::****:* **: * .:**  * :**. .  .. 

 

S.moellendorffii    LAKGLLNASEWPTWGFADEEAWVAAYRTLLVHFEKGDEDWEELLFKIWVSRVLNHTMRHS 

P.patens            LVKGLLNSAEWPCWSFADEDAWTSAYLKFLDHFEKGDSDWEELLFKVWVARVLNHTFKNV 

R.marinus           REG-LRTCQRRPAFNFMDEMAWAATYHVLLEHFQPGDPDWEELLFKLWTTRVLNYTMTVA 

                        * .. . * :.* ** **.::*  :* **: ** ********:*.:****:*:    

 

S.moellendorffii    LRGYDAALDALRSLIWETQHQSAMLSKS-AAANHHIVSGHSASEALPRTAGQLREKRMDA 

P.patens            MRGYDSALGALRDLVWDTRHQFAVKLKANSVPNHAIVSGHSAAEGLVTRAQSGRKKPKFE 

R.marinus           LRGYDYAQQYLYRMLGRYRYQAALENGR----------GHPVPPRAALSTA--------- 

                    :**** *   *  ::   ::* *:              **...      :           

 

S.moellendorffii    ACAV-----   422 aa 

P.patens            VENLCTVQQ   429 aa 

R.marinus           ---------   397 aa  

Structure symbols: 

… G - involved in binding GDP … A - involved in binding acceptor 

… D - involved in binding divalent cation … M - involved in binding sugar 

Figure 4.4. Sequence alignment among the two functionally characterized MgSs, from Selaginella 
moellendorffii and Rhodothermus marinus, and the putative MgS from Physcomitrella patens (acession 
numbers: XP_002978745, YP_003290498, XP_001764114) (Martins et al., 1999) (chapter 3). The Clustal X 
program was used for sequence alignment (Thompson et al., 1997). Conserved residues, strong and weak 
conservative substitutions are indicated by ‘*’, ‘:’ and ‘.’, respectively. Gaps introduced by Clustal 
program to optimize the alignment are indicated by ‘-’. Structure symbols (Flint et al., 2005) (Scheller et 
al., 2010). Conserved DXD and N-X-S/T motifs, common to several glycosyltransferases, are highlighted 
by a black box and a gray box, respectively. 
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6. MgH - MANNOSYLGLYCERATE HYDROLASE FROM Selaginella moellendorffii 

 

Over the last few years, some information has emerged from studies on the accumulation and 

biosynthesis of the two related compatible solutes, MG and GG, mainly in prokaryotes. At 

least two pathways have been identified for each solute in several bacteria and archaea and 

the corresponding genes and enzymes, as well as their properties, have been comprehensively 

described. 

Interestingly, very little information of these compatible solutes in the Eukaryota is available 

(Empadinhas and da Costa, 2008b). The study of their catabolic pathways is also of extreme 

importance and virtually nothing is known about MG or GG catabolism nor the environmental 

regulatory conditions involved, in the three domains of life, Archaea, Eubacteria and 

Eukaryota. 

In chaptes 3, besides the characterization of the mannosylglycerate synthase, the first 

eukaryotic enzymes involved in the catabolism of MG and GG have been biochemically 

studied. Curiously, the gene coding for this enzyme, the mannosylglycerate hydrolase (MgH), 

was detected in the genome of the lycophyte S. moellendorffii, which does not accumulate MG 

or GG, under the conditions examined (chapter 3). Oddly, in Arabidopsis thaliana there are 

eleven tps and ten tpp genes and paradoxically trehalose is almost undetectable in this plant 

(Leyman et al., 2001; Vogel et al., 2001). 

BLAST searches at the NCBI database with MgH from S. moellendorffii yielded sequences with 

conserved domains (CD) found in the bacterial rhamnosidase superfamily (CD accession 

number cl01801) (Marchler-Bauer et al., 2011)(Fig. 4.5). 

 

MgH
S. moellendorffii

Super families
Multi-domains  

 

Figure 4.5. Schematic representation of the mannosylglycerate hydrolase (MgH) sequence from S. 
moellendorffii showing its putative conserved domains (CD). 
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In respect to the amino acid sequence of S. moellendorffii MgH, this hydrolytic enzyme has not 

been included into any of the existing glycoside hydrolase families and was listed as non-

classified sequence in the corresponding database, despite showing conserved motifs found in 

members of glycoside hydrolase family 63 (mannosyl oligosaccharide glucosidase, EC 

3.2.1.106) and of family 37 (trehalase, EC 3.2.1.28), in the Sanger database 

(http://pfam.sanger.ac.uk/family/). The same is true for the other two bacterial MgHs (Alarico 

et al., unpublished). 

 

6.1. Biochemical characterization of MgHs 

 

Table 4.2 summarizes some biochemical and kinetic properties of the MgHs characterized so 

far, from the plant S. moellendorffii and from the two thermophilic bacteria R. radiotolerans 

RSPS-4 and T. thermophilus HB27. 

The more significant feature of all three MgH was their ability to use MG and GG alike, as 

mentioned in chapter 3. The presence of cations was not required for activity of any of the 

MgHs, although 10 mM of Mn
2+

 had a strong effect on the stimulation of the plant MgH 

activity. 

One interesting feature of the recombinant MgHs was their limited pH range for activity 

around pH 6.0, 4.0 and 4.5 (Table 4.2). Several intracellular enzymes involved in MG (or GG) 

synthesis demonstrate maximal activity around neutral pH, although they are also active at 

lower pH. The MpgP from the archaeon Pyrococcus horikoshii exhibits maximal activity in a pH 

range of 5.2 to 6.4, but it is still active at pH 3.7 (Empadinhas et al., 2001). Moreover, the GpgS 

and Ggs from Petrotoga mobilis are still active at pH 5 and 4.5, respectively, although their 

maximal activity occurs at pH 7.0 (Fernandes et al., 2010). The thermostable trehalase from R. 

marinus has maximal activity at pH 6.5, but retains about 50% of its activity at pH 4.5 (Jorge et 

al., 2007). Since extracellular pH determines, to some extent, the intracellular pH (Rao et al., 

2001), it is possible that an environmental acid stress may lower the intracellular pH to 

activate MgH expression/activity with concomitant hydrolysis of endogenous MG/GG 

(probably synthesized by MgS). However, this remains to be experimentally confirmed. 

 

http://pfam.sanger.ac.uk/family/
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Table 4.2. Comparison of biochemical and kinetic properties of the MgHs of Selaginella moellendorffii, 
Rubrobacter radiotolerans RSPS-4 and Thermus thermophilus HB27. 

 
 

Selaginella  
moellendorffii 

Rubrobacter 
radiotolerans 

Thermus 
thermophilus 

Property (Unit) MgH RradMGH
a
 TthMGH

a
 

No. of amino acid residues 488 442 415 

Calculated molecular mass (kDa)                       54.5 50.4 48.1 

Optimum temperature (ºC) 40 55 70 

Optimum pH 6.0 4.0 4.5 

Km (mM)     

MG 11.8 ± 1.1
b 

21.4 ± 4.0
c
 6.4 ± 0.9

d
 2.6 ± 0.2

e
 

GG 5.9 ± 0.8
b 

2.9 ± 0.5
c
 4.2 ± 0.4

d
 3.7 ± 0.6

e
 

Vmax (µmol/min.mg
 
protein)     

MG 40.5 ± 1.2
b 

13.6 ± 0.9
c
 65.2 ± 4.3

d
 30.5 ± 0.8

e
 

GG 7.3 ± 0.3
b
 2.3 ± 0.1

c
 53.6 ± 2.3

d
 36.3 ± 2.2

e
 

Mn
2+

 dependence (mM)
f
  

  

0 76.3 ± 0.7
b
 

g g
 

10 100
b
 

Half-life (h) at:    

55ºC ND 15.4 ± 0.5 ND 

60ºC ND 6.8 ± 0.2 ND 

70ºC ND 0.2 ± 0.0 16.1 ± 0.4 

80ºC ND ND 2.5 ± 0.2 

90ºC ND ND 0.2 ± 0.0 

 
a Adapted from Alarico et al., unpublished, b Assays carried out at 40°C, c Assays carried out at 25°C, d Assays carried out 

at 50°C, e Assays carried out at 70°C, f Expressed as percentage of the maximum activity of MgH with MG, g Cations 

were not required for activity. Abbreviations: MG, mannosylglycerate; GG, glucosylglycerate; ND, not determined. 

 

 

The MgHs enzymes represent a new functional family for the specific hydrolysis of MG and 

GG. Comparison of the amino acid sequences of the functionally characterized MgHs revealed 

high levels of sequence conservation and the presence of some highly conserved motifs (Fig. 

4.6). More studies, especially on the analysis of X-ray crystallography data, will help to 
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understand better which residues are involved in the recognition of MG or GG by these 

hydrolases. The determination of the crystal structure of the eukaryotic MgH is in progress. 

 

S.moell       MAGPVRCLPPVVEATSIPHAPPVISKEVSEIVNNMLSVAIPAAAAASAQDQRFASQFRCG 60 

T.therm       ------------------------------------------------------------ 

R.radio       ----------------------------------------------------MKEDEPAG 8 

 

S.moell       PEFTTMKAQALEACRKILAENDQGGYTIPAKGLYPYQWNWDSALVSLGLAEMEEERAWEE 120 

T.therm       -----MKA------VEVLQRNSRGAFTVPAHGLYPYQWLWDSAFIALGWTQVDWERAWQE 49 

R.radio       PKVEDLIAQA----KMVLDFNWTGEYTRPGPRLYPHQWSWDSALIALGYARYAPDRAMRE 64 

                   : *        :*  *  * :* *.  ***:** ****:::** :.   :** .* 

 

S.moell       LDRLMS-AQWEDGMVPHIVFHKPSSTYFPGPEIWGSPDKPR-----NTTGITQPPVAAIS 174 

T.therm       LLCLFDYGQGPDGMLPHIVFHEQSRDYFPGPDVWGREARAQP----ATSGITQPPVVATV 105 

R.radio       LSHLFD-AQWKNGLLPQIVFNPDFAAYFPDASFWHADESPDAPTHLRTSGIVQPPVHATA 123 

              *  *:. .*  :*::*:***:     ***....*     .       *:**.**** *   

 

S.moell       VRRLLEEAKDKALALAMARKLFPKLLAWHRWFYRARDPEGTGLVATIHPWETGMDNSPAW 234 

T.therm       VRYLYEKDPDRDRARSRARYLFPKLLAYHRWLYHARDPYRTGLVVIVHPWESGMDNSPAW 165 

R.radio       VLALLRNAAEAPGVRSFCEKAFSRLVSWHDYLYRERDPGGENLVYIRHPWESGMDNSPMW 183 

              *  * .:  :   . : ..  *.:*:::* ::*: ***   .**   ****:****** * 

 

S.moell       DEALARVPID--DIPPYVRRDLGHVDAKMRPQKAEYDRYLTLLYRFRALDYDEAKLYYET 292 

T.therm       DKPLSRVPVE--NLPPYERRDVKHVNPEERPRKEDYDRYLSLLYLFRRLEYDPRGIYRQS 223 

R.radio       DAILESMFLYPSDIPSYKRADTHFVSSEDRPESAAYDRFAYLVKLFAERNYDEARIREDC 243 

              *  *  : :   ::*.* * *  .*..: **..  ***:  *:  *   :**   :  :  

 

S.moell       PFRVTDLCTNCILHKANEDLLWLAGATGACTDESEIRGWTARANVAFDTLFDVEAGLYRC 352 

T.therm       PFKVVDVGFNAILQRANRDLYALAVLLQE--DPYEIEEWIVRGEVGLEALWDREAGFYFS 281 

R.radio       PFLVQDVLFNSLLCRAERDLAELARTLGEEPSAFEARARKT-AEAINDKLWDGERGTYLG 302 

              ** * *:  *.:* :*:.**  **       .  * .   . .:.  : *:* * * *   

 

S.moell       KDQLTGQFLPAATSAGFLPLFAGVASGEKASAVARTLGR----WLDDVAYGIPSCDPRDP 408 

T.therm       WDLVAGEPIAVKTSAGFLPLFAGTPHQGRASLLAQEAER----WGEKARYLLPSVDPTSP 337 

R.radio       FDLVSGAHIKVLAAPNFVALYGEVPDRKRARAMLARLSSPSFSLTEGTGVPVTSYDRLGF 362 

               * ::*  : . ::..*:.*:. ..   :*  :            : .   :.* *  .  

 

S.moell       QFEALRYWRGPVWLIVNWMVSEGLKRYGYGELAQRVERDSYELVKNGGIFEYYCPLTGMG 468 

T.therm       FFEPGRYWRGPVWINVNWMVAEGFRDYGFAALAARLKADALALMEREGFREYYDPLTGQG 397 

R.radio       GFSSVRYWRGPVWVNIDWFLMHGLRRYGYEDEADRLREAIVRLCREEGFYEYFDPTTGMG 422 

               *.. ********: ::*:: .*:: **:   * *:.     * .. *: **: * ** * 

 

S.moell       AGGGCFSWTAAMCLAWLFKT 488 

T.therm       RGGEGFSWSAALALFWTR-- 415 

R.radio       HGSDLFSWTAALLLDVVLEG 442 

               *.  ***:**: *         

Figure 4.6. Sequence alignment among the three characterized MgHs. The accession numbers for these 
sequences are as follows: MgH from Selaginella moellendorffii (S.moell), XP_002990235, MgH from 
Thermus thermophilus (T.therm), YP_004589 and MgH from Rubrobacter radiotolerans (R.radio), 
JN704789 (chapter 3) (Alarico et al., unpublished). The Clustal X program was used for sequence 
alignment (Thompson et al., 1997). Conserved residues, strong and weak conservative substitutions are 
indicated by ‘*’, ‘:’ and ‘.’, respectively. Gaps were introduced by Clustal program to optimize the 
alignment are indicated by ‘-’. 
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7. FUTURE PERSPECTIVES 

This work has provided some important contributions towards the biosynthetic and hydrolytic 

pathways of trehalose and mannosylglycerate/glucosylglycerate in two distinct organisms. 

Trehalose and mannosylglycerate are indeed required for maintenance of cellular integrity in 

optimal growth conditions or even in response to external stress, in the extremely radiation-

resistant bacterium Rubrobacter xylanophilus.  

The disruption of trehalose/mannosylglycerate metabolisms could provide novel information 

concerning the specific role of each trehalose/mannosylglycerate synthesizing enzyme and to 

ascertain their importance in bacterial growth and survival. With this objective in mind, it will 

be of interest to exploit recent requirements in techniques for mutagenesis of actinobacteria 

(Luzhetskyy et al., 2002; Siegl et al., 2010) to construct strains with disruptions in trehalose 

and mannosylglycerate genes. While it might be anticipated that mutations will be 

compensated in part by complementary pathways, especially trehalose pathways, described in 

the present study, mutants might display unusual phenotypes under particular growth 

conditions which could provide insights into the basic function of trehalose/mannosylglycerate 

in R. xylanophilus physiology. For example, Mycobacterium smegmatis mutants defective in 

the three trehalose pathways are unable to grow unless trehalose is supplemented to the 

growth medium (Woodruff et al., 2004). However, each pathway seems to have a specific role 

and hierarchy in closely related actinobacterial species (Tzvetkov et al., 2003; Wolf et al., 2003; 

Woodruff et al., 2004; Murphy et al., 2005). The study the physicochemical factors that 

regulate the synthesis and also the degradation of trehalose, 

mannosylglycerate/glucosylglycerate in different organisms, from prokaryotic to eukaryotic, 

by the examination of the relevance of compatible solute pools in the survival to specific stress 

conditions, will be another point of interest. With this aim, the identification of the regulatory 

genes and the evaluation of the connection between biosynthesis and hydrolysis of 

compatible solutes at transcriptional, post-transcriptional or post translational levels will be 

addressed in the near future. 
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