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Abstract 

Background and aims: The endocannabinoid system affects energy balance and 

glucose metabolism through the central control of feeding behaviour. The reward 

area, nucleus accumbens (NAc) is implicated in postprandial satiety and termination of 

food-seeking behaviour. Hence, in this study we aimed at understanding whether 

insulin affects accumbal activity (measured indirectly by monitoring changes in glucose 

uptake in accumbal slices of the rat). Furthermore, we tested if the cannabinoid 

receptor type-1 (CB1R) influences insulin’s observed actions. Moreover, glucocorticoid 

excess can lead to insulin resistance, diabetes or Alzheimer’s disease, and recent 

findings of ours and others suggest that glucocorticoids can trigger endocannabinoid 

release. Thus, we also investigated the action of the glucocorticoid dexamethasone 

(DEX) on the insulin-mediated glucose uptake in the nucleus accumbens and whether 

the effect was dependent on local CB1R signaling.  

After the CB1R, a second, so-called type-2 cannabinoid receptor (CB2R) has been 

cloned, and its possible cerebral roles are also gaining support. Brain glucose 

hypometabolism is a preclinical symptom of Alzheimer’s disease and CB2Rs are 

upregulated in AD patients and in animal models of AD. Thus, we also aimed at 

mapping the possible involvement of CB2Rs in hippocampal glucoregulation. 

Methods: We performed these experiments in accumbal slices of Wistar rats and in 

hippocampal slices of wild-type rodents or AD-induced rodent models. A recently 

optimized in vitro technique was used to study glucose uptake in acute brain slices. 

This technique allows the measurement of the accumulation of a non-metabolizable 

radioactive glucose analog, 3H-2-deoxyglucose in bathed brain slices. In addition, we 

used a fluorescent glucose uptake assay, permitting the real-time measurement of the 

uptake of the fluorescent glucose analog 2-NBDG in superfused mouse hippocampal 

slices.  

Results and discussion: Insulin (300 nM) triggered the uptake of glucose in the 

accumbal slices suggesting that insulin is capable of activating this reward area. CB1R 

activation either by an exogenous agonist or by the inhibition of endocannabinoid 

degradations impaired insulin’s action. DEX also prevented insulin from stimulating 

glucose uptake. Furthermore, insulin’s action in the presence of DEX was rescued by 
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either the blockade of 2-AG synthesis with tetrahydrolipstatin or by the blockade of 

CB1R with O-2050. These altogether suggest that dexamethasone causes accumbal 

insulin resistance employing the stimulation of 2-AG synthesis, resulting in CB1R 

activation. Insulin probably mediates some of the postprandial satiety responses, thus 

the impairment of insulin actions can lead to an overfeeding behavior. In sum, CB1R 

blockers would be beneficial to control food intake to prevent many cases of obesity 

and the consequent diabetes. 

We also found that the activation of CB2Rs increased hippocampal glucose uptake in 

both wild-type (WT) and human amyloid-precursor protein expressing transgenic mice 

(TgAPP) mice. Interestingly, the inhibition of COX-2, a metabolizing enzyme for 

anandamide, increased glucose uptake only in the WT mice, which is explained by that 

our collaborators found low anandamide levels in the hippocampi of TgApp mice when 

compared to the WT mice. Altogether, this indicates that anandamide through the 

activation of the CB2R is capable of stimulating hippocampal glucose uptake. This 

should prompt additional studies to test if CB2R agonists can be beneficial in AD via the 

stimulation of glucose uptake.  

Altogether, our results highlight that selective targeting cannabinoid receptors or 

enzymes of endocannabinoid synthesis/metabolism can be a precious strategy to 

control diseases related with impaired brain metabolism.  

Keywords: endocannabinoid system, cerebral glucose uptake, insulin, diabetes, 

Alzheimer’s disease, nucleus accumbens, hippocampus 
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Resumo 

Introdução e objetivos: O sistema endocanabinóide afecta o balanço energético e o 

metabolismo da glicose através do controlo central do comportamento alimentar. Na 

área da recompensa, o núcleo accumbens (NAc) está implicado na saciedade pós-

prandial e na finalização do comportamento doentio de procura alimentar. Assim, 

neste estudo tivemos como objetivo estudar os efeitos da insulina na actividade do 

NAc (medição indirecta pela monitorização das alterações da captação de glicose em 

fatias frescas de NAc provenientes de ratos Wistar). Adicionalmente, testámos se o 

receptor canabinóide tipo 1 (RCB1) influencia as acções previamente observadas da 

insulina. O excesso de glucocorticóides pode originar insulino-resistência, diabetes ou 

doença de Alzheimer (DA). Tendo também em conta estudos recentes, nossos 

inclusive, que sugerem que os glucocorticóides desencadeiam a libertação de 

endocanabinóides, também investigámos a acção de um glucocorticóide, a 

dexametasona (DEX), na capação de glicose mediada pela insulina no NAc e se esta 

acção era dependente da sinalização local do receptor CB1.  

Posteriormente ao receptor CB1, foi clonado um segundo receptor chamado de 

receptor canabinóide tipo 2 (RCB2), tendo a sua função no cérebro vindo a ser 

explorada. O hipometabolismo da glicose no cérebro é um sintoma pré-clínico da DA e 

o receptor CB2 está presente em níveis superiores tanto em pacientes como em 

modelos animais com DA. Deste modo, também investigámos o possível envolvimento 

dos receptores CB2 na glicoregulação do hipocampo.    

Métodos: As experiências foram efectuadas em fatias de NAc frescas de ratos Wistar e 

em fatias frescas de hipocampo provenientes de roedores normais ou com a indução 

de DA. Utilizámos uma técnica in vitro recentemente optimizada para estudar a 

captação de glicose em fatias cerebrais frescas. Esta técnica permite a medição da 

acumulação de um análogo de glicose radioactivo não metabolizável, a 3H-2-

deoxyglucose, em incubação com fatias cerebrais. Adicionalmente, usámos um ensaio 

de captação de glicose fluorescente, permitindo a medição em tempo real da captação 

do análogo de glicose fluorescente (2-NBDG) em fatias de hipocampo num sistema de 

perfusão.  
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Resultados e discussão: A insulina (300 nM) induziu a captação da glicose nas fatias de 

NAc, sugerindo a capacidade da insulina de ativar a área da recompensa. A ativação do 

receptor CB1 por agonistas exógenos ou pela inibição da degradação de 

endocanabinóides prejudica a acção da insulina. A DEX também preveniu a 

estimulação da captação de glicose pela insulina. Verificámos também que a acção da 

insulina na presença de DEX foi recuperada não só pelo bloqueio da síntese de 2-AG 

com tetrahidrolipstatina, mas também pelo bloqueio do receptor CB1 com O-2050. 

Este resultados sugerem que a DEX causa insulino-resistência no NAc e estimula a 

síntese de 2-AG, resultando na activação do receptor CB1. Possivelmente, a insulina 

estará a mediar algumas das respostas de saciedade pós-prandial, sendo consequência 

da sua acção deficitária um comportamento alimentar exacerbado. Em suma, o 

bloqueio do RCB1  poderá ser benéfico no controlo da ingestão de comida e por 

consequência casos de obesidade e diabetes.  

Descobrimos também que a activação dos RCB2 aumentou a captação de glicose no 

hipocampo tanto em murganhos normais como transgénicos (TgAPP) que expressam o 

precursor amilóide humano. Surpreendentemente, a inibição da enzima COX-2 que 

metaboliza a anandamida, aumentou a captação de glicose apenas nos ratos normais. 

A explicação surge por estudos que demonstraram que os murganhos possuem 

menores níveis de anandamida no hipocampo, quando comparados com ratos 

normais. Em conjunto, estes resultados indicam que a anandamida através da 

activação do RCB2 é capaz de estimular a captação de glicose no hipocampo. Isto deve 

potenciar estudos futuros adicionais que testem se agonistas do RCB2 são benéficos na 

DA, através da estimulação da captação de glicose. 

Em conjunto, os nossos resultados elucidam que a manipulação selectiva dos 

receptores dos endocanabinóide ou de enzimas envolvidas na sua 

síntese/metabolismo podem ser uma estratégia para controlar doenças relacionadas 

com um metabolismo cerebral alterado.  

Palavras-chave: Sistema endocanabinóide, captação cerebral de glicose, insulina, 

diabetes, doença de Alzheimer, núcleo accumbens e hipocampo.
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Chapter 1. Introduction 

1.1. Historical introduction to the endocannabinoid system (ECS) 

The plant Cannabis sativa, also known as marijuana or hemp has been used for at 

least 5000 years for recreational, religious, spiritual and medicinal purposes (Nagy et 

al. 2008).  

The major psychoactive lipophilic constituent of the cannabis plant is 

Δ9-tetrahydrocannabinol (Δ9-THC) which was identified in the 60's (Gaoni & 

Mechoulam 1964), shortly after the isolation of cannabidiol (CBD) (Mechoulam & Shvo, 

1963), which is one of the more than 66 biologically active components of cannabis. 

Many of the physiopharmacological actions of cannabis are thanked to these two 

molecules (De Petrocellis & Di Marzo 2009). 

Since the late 80's, investigations regarding the mechanism of action of Δ9-THC led 

to the discovery of a new, broad signalling system, the so-called endocannabinoid 

system (ECS).  

The first THC-specific receptor, named cannabinoid receptor type-1 (CB1R) was 

identified by Devane et al. (1988) and cloned by Matsuda et al. (1990) followed by the 

characterization of a second receptor, termed as cannabinoid receptor type-2 (CB2R) 

(Munro et al. 1993). This latter receptor was identified by homology cloning of the 

CB1R and it turned out to have 68% homology in the transmembrane domain amino 

acid sequence and 44% overall sequence identity to the CB1R (Munro et al. 1993).   

These discoveries opened the way to the identification of the endogenous 

cannabinoid ligands; among them the most characterized endocannabinoids are 

anandamide (arachidonoylethanolamide or AEA) (Devane et al. 1992) and 2-

arachidonoylglycerol (2-AG) (Sugiura et al. 1995).  

 

1.2. The ECS and its physiological role 

1.2.1. The endocannabinoids (eCBs) 

The two “major” eCBs, anandamide and 2-AG, are long-chain polyunsaturated fatty 

acids (PUFAs) and are both arachidonic acid (AA) derived lipids, although anandamide 

is a member of the fatty acid amide (FAA) family, whereas 2-AG is a member of the 
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monoacylglycerol (MAG) family (Kogan & Mechoulam 2006). They are synthesized 

from cell membrane phospholipids. N-arachidonoyl-phosphatidylethanolamine (NAPE) 

and diacylglycerols (DAGs) together with AA, are the major biosynthetic precursors of 

anandamide and 2-AG, respectively (Muccioli 2010). NAPE is produced from the 

transfer of AA from the sn-1 position of phospholipids to the nitrogen atom of 

phosphatidylethanolamine (Cadas et al. 1997), and it is directly converted into 

anandamide by the catalysing enzyme N-acylphosphatidyl-ethanolamine-specific 

phospholipase D (NAPE-PLD) (Okamoto et al. 2004).  

In contrast, 2-AG is formed from the sequential hydrolysis of sn-2-arachidonic acid 

(AA)-containing DAG membrane phospholipids by first phospholipase Cβ (PLCβ) and 

subsequently, mostly by DAG lipase α (DAGLα), and in about 10-20% of the cases, by β 

(DAGLβ) (Di Marzo 2009; Best and Regehr, 2010).  

On the other hand, AEA and 2-AG are degraded through hydrolysis. AEA is primarily 

hydrolysable by the fatty acid amide hydrolase (FAAH) which results in arachidonic acid 

and ethanolamine, while 2-AG is degraded by the monoacylglycerol lipase (MAGL) 

resulting in arachidonic acid and glycerol (Muccioli 2010). 

Moreover, ECs may undergo oxidative metabolism mediated by prostaglandin-

endoperoxide synthase 2 (cyclooxygenase 2; PTGS2; COX-2). This leads to the 

formation of several biologically active prostaglandin-ethanolamides from AEA and 

prostaglandin-glycerol esters from 2-AG (Kozak et al. 2004; Di Marzo 2009). 

Upon stimulation such as [Ca2+]i rise and receptor-triggered Gq/11 activation alone or 

in combination, eCBs are “on-demand” synthesized within the cell membranes and are 

immediately released (De Petrocellis et al. 2004). Due to their high lipophilicity, they 

are not stored in the interior of synaptic vesicles as other classical neurotransmitters. 

Following their release, eCBs target the same cannabinoid receptors (CB1R and CB2R) 

as Δ9-THC. In the brain, eCBs release occurs mostly post-synaptically and to a smaller 

extent in glial cells. Post-synaptically released endocannabinoids reach the synaptic 

cleft to act in a retrograde form at CB1Rs to inhibit both excitatory and inhibitory 

neurotransmitter release (Figure 1) (Best & Regehr, 2010; Castillo et al. 2012).   
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Figure 1. The red circle hightlight the endocannabinoids synthesis/metabolism and their retrograde 

action in the presynaptic receptors. Additional details are described in the text. 

Arachidonoylethanolamide or anandamide (AEA), arachidonoylglycerol (2-AG), cyclooxygenase 2 (COX-

2), phosphoinositol (PI), diacylglycerol (DAG), diacylglycerol lipase (DAGL), fatty acid amide hydrolase 

(FAAH), N-acyltransferase (NAT), phospholipase D (PLD), N-arachidonoyl-phosphatidylethanolamine 

(NAPE), putative endocannabinoid membrane transporter (EMT), monoacylglycerol lipase (MAGL), 

cannabinoid receptor type 1 (CB1R) TRPV1 vanilloid receptor (TPRV1R), voltage-gated Ca
2+

 channels 

(VCC) (Adapted from Gerdeman 2008). 

 

1.2.2. Cannabinoid receptors 

The most known cannabinoid receptors are the CB1Rs and the CB2Rs, members of 

the G protein-coupled receptor family (GPCR). Both are primarily coupled to Gi/Go and 

their activation leads to inhibition of adenylyl cyclase and voltage-gated calcium 

channels as well as the activation of potassium channels, mitogen-activated protein 

kinase (MAPK), and phosphoinositide-3 kinase (PI3K)/Akt signalling pathways (Callén et 

al. 2012). 

The CB1Rs are one of the most abundant GPCRs in the brain, present in 

corticolimbic areas, hippocampus, basal ganglia, cerebellum, and brain-stem (Irving et 

al. 2000). They are predominantly present at nerve terminals, exhibiting the highest 

concentrations in γ-aminobutyric acid (GABA) and glutamatergic neurons (Katona 
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1999, 2006). Amongst the major neurophysiological effects of CB1Rs one can point out 

their important roles in the regulation of network establishment (Harkany et al. 2008) 

and the modulation of synaptic communication (Freund et al. 2003; Castillo et al. 

2012). Besides being mainly neuronal, CB1Rs can be also found at a lower density in 

astrocytes and microglia (Duarte et al. 2012; Ramírez et al. 2005). In addition to their 

classical roles in regulating mood and emotion, they are major players in the 

modulation of learning and memory (Han et al. 2012; Zanettini et al. 2011). 

Furthermore, CB1Rs have also a crucial role in metabolism and thus, they are also 

localized in peripheral nerves and several peripheral organs related to metabolic 

homeostasis including adipose tissue, liver, pancreas and skeletal muscle (Mackie 

2008; Matias et al. 2008; Silvestri & Di Marzo 2013).  

On the other hand, CB2Rs are mainly found within cells of the immune system, such 

as macrophages and mast cells, therefore serving as therapeutic targets to control 

inflammation, pain and immune responses (Maione et al. 2013; Rom & Persidsky 

2013). They are also highly expressed in other peripheral tissues, including the spleen, 

pancreas and in lower density they are also present in the brain, skeletal muscle, liver, 

intestine and testis, as well as in the adipose tissue (Pertwee 2005; Mackie 2008; 

André & Gonthier 2010).  

Besides the already mentioned functions of CB1R and CB2R, they also control 

cellular functions, such as cell architecture, proliferation, motility, adhesion and 

apoptosis. Recently, it was found that the two receptors form heteromers in 

transfected neuronal cells, rat brain pineal gland, nucleus accumbens (NAc) and globus 

pallidus, which helped to elucidate the mechanism by which CB2R can negatively 

modulate CB1R function (Callén et al. 2012).  

Further studies discovered additional sites of action for eCBs and also for synthetic 

cannabinoid compounds, which support the idea that additional cannabinoid receptors 

may exist (Köfalvi, 2008). They were named G protein-coupled receptor 55 (GPR55)  

and G protein-coupled receptor 119 (GPR119) (André & Gonthier 2010). In addition, 

ion channels are also a possible site of action to eCBs, like in case of transient receptor 

potential Na+/Ca2+ channel subfamily vanilloid type-1 receptor (TRPV1R) which is 

activated by anandamide, and also several types of potassium channels, α7 nicotinic 

receptors and serotonin receptors, among others (Köfalvi, 2008). 
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1.2.3. Cannabinoid receptors pharmacology  

Many ligands are designed based on the structure of Δ9-THC, which itself is a partial 

agonists for both the CB1R and the CB2R (Bayewitch et al. 1996). Such Δ9-THC-like 

ligands are O-2050, a selective, silent (neutral) CB1R antagonist and JWH133, a CB2R-

selective agonist. Examples for alternative, aminoalkylindol molecules are WIN55212-

2, which is a non-selective full agonist at the CB1R and the CB2R, and AM630, which is a 

CB2R-selective inverse agonist/antagonist. Arachidonyl-2'-chloroethylamide (ACEA) 

belongs to the thirds larger group, i.e. it is a non-metabolizable anandamide analogue, 

and a CB1R and TRPV1R hybrid agonist. Finally, the fourth large group comprises the 

diarylpyrazole molecules such as the CB1R inverse agonist/ GPR55 agonist, antiobesity 

medicine, rimonabant, or the CB2R-selective agonists Gp1a (Pertwee 1993, 2005, 

2010).  

 

1.3. The pathophysiological roles of the ECS 

The ECS is a widespread lipidergic signaling system involved in several physiological 

functions (Vettor et al. 2008; Tibiriça 2010). Hence, the eCBs play pivotal roles in 

pathophysiological processes such as obesity, metabolic dysfunctions, stress, anxiety, 

depression and drug addiction (Urigüen et al. 2004; Gonzalez 2007; Montoya & Vocci 

2008; Bhattacharyya & Sendt 2012; Lipina et al. 2012; García-Gutiérrez et al. 2013). 

Moreover, this system is also implicated in schizophrenia since cannabis consumption 

has been related to the appearance of psychotic symptoms and schizophrenia (Köfalvi 

& Fritzsche, 2008; Marco et al. 2011). Thus, cannabinoid receptors are also potential 

targets to the development of novel treatments for various brain disorders (Izzo et al. 

2009; Pertwee 2012). 

 

1.3.1. Metabolic control of ECS 

It has been long known that marihuana consumption stimulates appetite (Hollister 

1971), decreases body temperature (Borgen et al. 1973) and among others, increases 

the consumption of highly palatable food, sometimes resulting in significant weight 

gain (Abel 1975; Berry & Mechoulam 2002). Hence, this complex and pleiotropic 

endogenous signalling system is a major regulator (both central an peripheral) of 
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appetite, food intake, energy metabolism and homestasis (Kirkham et al. 2002; Di 

Marzo & Matias 2005; Matias et al. 2008). 

This was proposed based on in vivo experiments where rats were injected 

intraperitoneally with CB1R and CB2R agonists. While CB1R activation retarded the 

clearance of plasma glucose after the oral administration of glucose, CB2R agonists 

exerted the opposite effect. These actions were prevented by the administration of 

inactive doses of the antagonists of the respective receptors, which, at higher doses, 

accelerate or retard the clearance of plasma glucose, respectively (Bermudez-Silva et 

al. 2007). 

Moreover, in our lab, recent reports demonstrated that the activation of CB1Rs 

inhibit cerebral glucose metabolism in neurons and astrocytes (Duarte et al. 2012), 

while the genetic ablation rather than the acute pharmacological blockade of CB1Rs 

decreases the basal rate of hippocampal glucose uptake in mice (Lemos et al. 2012).  

Cannabinoid receptor activation affects energy balance and metabolism through 

the central control of feeding behaviour and by affecting peripheral metabolism 

(Després 2007; Matias et al., 2008). Therefore, this fact confers to the ECS a 

fundamental role in modulating the development of abdominal obesity and associated 

metabolic abnormalities, which increase the risk of cardiovascular diseases and type 2 

diabetes (Engeli et al. 2005; Cote et al. 2007; Lipina et al. 2012). Moreover, it was 

demonstrated that - depending on the nutritional status - the levels of eCBs oscillate in 

the limbic forebrain and hypothalamus and inversely proportional to the fed state 

(Kirkham et al. 2002).   

 

1.4. Cerebral glucose metabolism 

Besides the ability of the brain to consume different types of energy substrates, 

cerebral energy metabolism depends mostly on the availability of glucose provided 

from the blood flow which is crucial to sustain neuronal activity and function, both in 

basal and activated states (McCall 2004). Glucose is also an important signal that 

controls the secretion of hormones by various endocrine cells and activates neurons in 

the peripheral and CNS (Marty et al. 2007). Brain uses glucose as its major source, 

being 20-50% of whole body glucose used under resting condition (Fehm et al. 2006; 
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Matias et al. 2008). This is the most sensitive organ to failure in oxygen and glucose 

(Abdul-ghani et al. 2007; Matias et al. 2008). Glucose is transported through the 

endothelial cells of the blood-brain barrier (BBB) and it is used by the brain, mainly in 

its oxidizable form. Glucose is converted to pyruvate, metabolized in the tricarboxylic 

acid (TCA) cycle and finally is subjected to oxidation to carbon dioxide and water for 

full provision of ATP and its high-energy equivalents (McCall 2004). Additionally, 

glucose can also undergo a non-oxidative metabolism that converts glucose into 

lactate, which may play a significant role in rapid responses to synaptic activity (Suzuki 

& Naya 2011). Besides, there is also the storage of glucose as glycogen in astrocytes, 

representing a considerable resource of glucose energy with high relevance for the 

hypoglycemia state (McCall 2004). 

 Therefore, it is expected that a failure in glucose supply or metabolism results in 

brain dysfunction or even in a permanent damage (Santos et al. 1999; McCall 2004). A 

prolonged or profound hypoglycemia may affect neurotransmitter metabolism, 

cerebral blood flow, the BBB and microvascular function, which can lead to coma, 

seizures and a potentially permanent brain damage (Marty et al. 2007; Matias et al. 

2008). Hyperglycemia can also be involved with brain dysfunction (McCall 2004).  

 

1.5. Insulin  

Insulin is crucial for the regulation of glucose and lipid metabolism in liver, adipose 

tissue and muscle, being in charge of the regulation of storage and uptake of digestion 

products. Besides, this protein is also important in other tissues including brain, 

pancreas, and vascular endothelium (Siddle 2012). Insulin is synthesized by pancreatic 

β-cells (van der Heide et al. 2006; Leroith 2002). Although glucose is the key regulator, 

also fatty acids and amino acids can influence insulin secretion in these cells (Leroith 

2002). 

Insulin and specific insulin receptors (IRs) are found widely distributed in many 

peripheral tissues and in CNS networks, related in particular to energy homeostasis 

(Gerozissis 2004). In the brain, IRs are expressed in the highest concentrations in 

olfactory bulb, hypothalamus, cerebral cortex, cerebellum, hippocampus (Havrankova 

& Roth, 1978) and also in the pituitary intermediate lobe (Unger & Betz 1998). 
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The IR is a membrane-bound tyrosine kinase receptor which are tetramers 

composed of two extracellular α-subunits and two transmembrane β-subunits (Taha & 

Klip 1999; White 2003). In the CNS, they differ from their peripheral counterparts by 

having lower molecular weights of both α- and β-subunits (White 2003). 

Extracellular insulin binds to its receptor inducing the autophosphorylation of 

tyrosine residues of the β-subunit followed by tyrosine phosphorylation of the insulin 

receptor substrates (IRS) responsible to activate downstream pathways like the 

phosphatidylinositol-3-kinase (PI3K/Akt) and MAPK/ERK pathways (Taha & Klip 1999; 

White 2003; van der Heide et al. 2006). The PI3K/Akt pathway leads to Akt activation, 

which induces glucose transporter translocation to the plasma membrane increasing 

glucose uptake (Benomar et al. 2006).   

In spite of the differences between the characteristics of IRs in neurons and the 

periphery, mechanisms that regulate the effects of insulin in the brain show similarities 

with peripheral insulin action (Gerozissis 2004). The PI3K–PKB/Akt signalling pathway 

proved to be an important component involved in insulin-induced neuroprotection 

(van der Heide et al. 2006) and several lines of evidence  suggest an important role of 

PKB/Akt in regulating the effects of PI3K in neuronal survival (Rodgers & Theibert 

2002).  

The regulation of food intake through insulin signalling does not occur only through 

peripheral processes but also has central components (Gerozissis 2004). The circulating 

brain insulin is mainly derived from peripheral insulin (pancreatic origin) since it 

crosses the BBB, depending on its levels in plasma, by a saturable mechanism. This 

transport provides a mechanism by which peripheral insulin can act within the CNS as 

a regulatory peptide (Banks 2004; Plum et al. 2006) and thus being involved, for 

example, in the feedback loop between brain peptides and food intake (Gerozissis 

2004). Insulin's actions are influenced and dependent on the effect of other hormones 

and peptides such as leptin, corticosteroids, neuropeptide Y (NPY) and galanin which 

are also implicated in energy homeostasis (Gerozissis 2004; Matias et al. 2008). 

Moreover, insulin also regulates mechanisms that include learning, memory, neuronal 

survival and reproductive endocrinology (Gerozissis 2004). Hence, an impairment of 

insulin availability/signalling, such a failure in PI3K–PKB/Akt pathway, both in 
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peripheral tissues or in the brain, can lead to serious metabolic or endocrine 

pathologies, such as diabetes, obesity and mental or reproductive disorders (Gerozissis 

et al. 2001; Gerozissis 2004; White 2003). 

Similarly to insulin, insulin-like growth factor (IGF) is abundant in the CNS (Matias et 

al. 2008; Johansson et al. 2013; Bondy & Cheng 2004) and its signalling also regulates 

metabolic functions in the brain (Broughton & Partridge 2009; de la Monte 2012). 

There are pieces of evidence of a cross talk between IGF and insulin and their 

respective receptors and thus, in high, non-physiological concentrations IGFs are 

capable of IR activation and insulin can activate the insulin-like growth factor type-1 

receptor (IGF1R) (Denley et al. 2007). Moreover, it was previously found that IR and 

IGF1R can form homo- and heterodimers (Slaaby et al. 2006; Siddle 2012). 

Although IGF1R plays a crucial role in the facilitation of glucose uptake in the 

neuronal processes in the early postnatal brain, IGF1 largely disappears from the adult 

brain (Cheng et al. 2000). Insulin reaches cerebral levels in the adult brain 10-100-

times higher than in the plasma which is the range required to activate the 10-100-

times less insulin-sensitive hybrid IGF-1R/IR heterodimer (Slaaby et al. 2006). 

Furthermore, it has been shown that IGF1 and insulin (500 nM) both can trigger long-

term depression at the Schäffer-collaterals in CA1 synapses, but insulin's action can be 

prevented only by an IR antibody in the perfusion medium, while IGF1-LTD was 

sensitive exclusively to an IGF1R antisera (Huang et al. 2004). Altogether, it is less likely 

but not fully excluded that IGF1R may mediate some of insulin’s action in the adult 

brain. 

  

1.6. Diseases of impaired insulin signalling   

1.6.1. Diabetes type 1, 2 and 3  

The most common forms of diabetes are the type 1 and the type 2. Type 1 diabetes 

is an autoimmune disease associated with genetic susceptibility and pancreatic β-cell 

death. Several studies described the major histocompatibility complex (MHC) as the 

main genetic determinant of this type of diabetes, which is characterized by the total 

lack of insulin production as a consequence of progressive failure and death of 

pancreatic β-cell. On the other hand, the predominant cause of type 2 diabetes, which 
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represent approximately 90% of diabetic cases is related to lifestyle factors, namely 

diet, a sedentary life, stress, smoking and obesity. Nevertheless, type 2 diabetes is also 

associated with genetic predisposition or related pathologic factors, such as 

hypertension (Negre-Salvayre et al. 2009).  

Both type of diabetes are usually associated with long-term macrovascular and 

microvascular complications, which have repercussions in different organs and tissues. 

The most common macrovascular lesion is atherosclerosis in blood vessels. However, 

the most abundant complications are microvascular, which are related with 

hyperglycemia, such as nephropathy, retinopathy, and peripheral neuropathy (Malecki 

2004; Brownlee 2005; Negre-Salvayre et al. 2009). 

Type 2 diabetes is characterized by peripheral and hepatic insulin resistance, in 

addition to a progressive pancreatic β-cell death in the islets of Langerhans (Boura-

Halfon & Zick 2009; Kawahito 2009). This means the inability of insulin to increase 

glucose uptake in the peripheral tissues and repress gluconeogenesis in the liver, 

which is due to the incapacity of cells to respond to insulin’s actions (Regazzetti et al. 

2009; Boura-Halfon & Zick 2009). Consequently, β-cell function is increased, resulting 

in hyperinsulinemia (high levels of insulin circulating in the blood) leading to even 

greater insulin resistance, tissue stress, ROS production and β-cell death – with the 

consequent onset of type-1 diabetes (Lipina et al. 2012; Newsholme et al. 2007; 

Friedrich 2012; Kawahito 2009; Brownlee 2005). All in all, the consequence of either 

deficient insulin secretion or insulin resistance is hyperglycemia in the blood, and 

energy deprivation of the peripheral cells (Brownlee 2005).  

Since at least the 1920’s it is known that disturbances in glucose and insulin 

metabolism in diabetes can affect the CNS. In 1922, the first pieces of evidence of 

brain dysfunction induced by diabetes was reported (Miles & Root 1922). The term 

“diabetic encephalopathy” was introduced to describe this condition (DeJong 1950) in 

which there is a gradually developing end-organ damage to the CNS associated with 

diabetes progression (Brands et al. 2003).  

Furthermore, several studies suggested that disturbances in cerebral insulin 

signalling and in glucose homeostasis could be the cause of neurodegenerative 

disorders like Parkinson’s and Alzheimer’s diseases (Blum-Degen et al. 1995; Steen et 

al. 2005; Craft 2009; Kaidanovich-Beilin et al. 2012). It has been demonstrated that 



     Introduction 

11 
 

experimental brain diabetes produced by intracerebral administration of 

streptozotocin (STZ) leads to cognitive impairment and dysfunction on acetylcholine 

homeostasis, features of AD (Lester-Coll et al. 2006). Hence, this disturbances of 

glucose homeostasis and cerebral insulin resistance (Correia et al. 2012) suggested 

that AD may represent a neuroendocrine disorder and the term “type 3 diabetes” was 

proposed (Steen et al. 2005). 

 

1.6.2. Glucocorticoid-induced insulin resistance 

Glucocorticoids (corticosterone in the rodents and cortisol in man) are hormones 

produced in the adrenal cortex as a physiological response to stress, under the 

activation of the hypothalamic-pituitary-adrenal (HPA) axis (Burén et al. 2002; Hill & 

McEwen 2010; Dalmazi et al. 2012). These hormones are involved not only in stress 

response but also in the homeostasis of energy metabolism, immune and 

inflammatory responses (Sarabdjitsingh et al. 2010). Thus, glucocorticoids trigger rapid 

and adaptive responses to stress, promoting glucose mobilization and redirecting 

energy stores (Hill & McEwen 2010). These receptors include glucocorticoid and 

mineralocorticoid receptors, members of the nuclear receptor family [MR and GR] 

(Funder 1997).  

Previous studies suggested an action of glucocorticoids in the central regulation of 

appetite, both directly and indirectly. Thus, a hypersensitivity to these hormones or an 

increase of its circulating levels (even in therapeutic doses), are involved with the 

induction of food intake and the development and maintenance of obesity syndromes 

(Tataranni et al. 1996; Zakrzewska et al. 1999). 

Hence, the chronic exposure to glucocorticoid excess, for example of cortisol, can 

result in a number of chronic metabolic complications and thus, in the clinical 

condition of endogenous hypercortisolism (EH), the Cushing’s syndrome/disease in 

which frequently associates with glucose intolerance (Schneiter & Tappy 1998). This is 

due to the glucocorticoid-induced global insulin resistance which can be reversible 

upon cessation of the glucocorticoid administration (Amatruda et al. 1985; Sonino et 

al. 1998; Lansang & Hustak 2011). Hypercortisolism can also increase in the rate of 

incidence in diabetes and sporadic Alzheimer's disease (AD) likely due to cerebral 
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insulin resistance (Solas et al. 2013). Diabetes is an important contributing factor to the 

morbidity and mortality of the patients with EH (Dalmazi et al. 2012; Yi et al. 2012; 

Ferris & Kahn 2012). Moreover, chronic stress and hyperglucocorticoidism in animal 

models permanently alter the activity and the metabolism in the dopaminergic areas, 

including the NAc, which may signify stress-induced impairment in the reward area 

(Bock et al. 2012; Barik et al. 2013). 

  

1.7. Cannabinoid receptors and insulin 

Peripheral CB1R can influence insulin action in several tissues including the adipose 

tissue, the liver and the skeletal muscle, independently of central activation of CB1R or 

food intake (Matias et al. 2008; Nogueiras et al. 2009). This occurs through the insulin-

stimulated Akt phosphorylation by eCBs which leads to the decrease of glucose uptake 

in skeletal muscle cells. Besides, CB1R blockade increases the insulin sensitivity of the 

skeletal muscle (Eckardt et al. 2009) which is dependent of the activation of PI3K 

(Esposito et al. 2008). Hence, the activation or inhibition of this receptor can lead to 

either enhancement or attenuation of insulin-mediated signalling in skeletal muscle 

(Lindborg et al. 2010; Lipina et al. 2012). Furthermore, in diabetes mouse models, CB1R 

activation prevented the autophosphorylation of IRs and the activation of downstream 

signals in pancreatic β-cells as well as in non-insulin-secreting cells (Kim et al. 2011).  

Recently, it was found that CB1Rs can form a heteromeric complex with receptors 

tyrosine kinase (RTKs) (Berghuis et al. 2007; Dalton & Howlett 2012) including the IRs 

(Kim et al. 2012). Thus, the kinase activity of the receptor is inhibited which reduces 

the Akt-mediated phosphorylation of the proapoptotic protein Bad, leading to β-cell 

death. This study has provided direct evidence of physical and functional interactions 

between CB1R and IR, suggesting a mechanism by which the peripherally acting CB1R 

antagonists improve insulin action in insulin-sensitive tissues independent of the other 

metabolic effects of CB1Rs (Kim et al. 2012). 

The activation of CB2Rs is also involved in insulin secretion of pancreatic β-cells by 

regulating intracellular calcium signals that leads to the decrease of insulin secretion 

(Juan-Picó et al. 2006). 
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1.8. The reward system and insulin  

The reward system was identified as the behavior mediator motivated by pleasure, 

evoked by food, drugs of abuse or sex (Wise & Rompre 1989; Bruijnzeel et al. 2011). 

Thereby, reward system drives behaviors to those usually associated with positive 

outcomes (Kelley & Berridge 2002). A dysregulation in the brain reward circuitry can 

lead not only to drug addiction but also promote continued overfeeding behavior - the 

“non-homeostatic feeding”, which is controlled by the mesolimbic pathway (Zheng et 

al. 2009; Wang et al. 2010). Thus, the high consumption of palatable foods can be a 

result of a variety of sensory stimuli and emotional states or feelings, and provokes 

neuroadaptative changes in this brain area (Berthoud et al. 2011). Thus, this induced 

overfeeding behaviour can contribute to the human overweight prevalence increase 

and ultimately to obesity (Wang et al. 2010; Berthoud et al. 2011; Davis et al. 2010).  

One of the most important anatomical substrate areas involved in the reward and 

motivation circuitry is the NAc (also called ventral striatum in primates and men) which 

receives dopaminergic inputs from the ventral tegmental area (VTA) of the midbrain. A 

dysfunction on this brain reward area may contribute to anhedonia, decreased sex 

drive, social withdrawal, and other symptoms of depression (Nestler & Carlezon 2006; 

Wang et al. 2010). 

The postprandial reward effect is the result of accumbal activation induced by 

dopaminergic inputs from the VTA of the midbrain and it regulates both normal 

feeding behavior and aversive motivational processes (Kelley 2004; Salamone & Correa 

2012). It was demonstrated that a decrease in lever pressing for food reward was 

associated with a reduction on dopamine (DA) turnover in this brain reward area 

(Davis et al. 2008; Berthoud et al. 2011), which is in concert with dopamine's crucial 

role in the regulation of feeding, motivation and pleasure (Palmiter 2007). These 

alterations in reward behaviors and in the mesolimbic dopamine signaling can be an 

outcome of both high-fat diet and obesity per se (Berthoud et al. 2011). Hence, some 

recent studies proved that reward and metabolism are probably regulated by an 

overlapping brain circuitry (Davis et al. 2010). Central resistance to insulin and leptin 

can impair the control of systemic energy homeostasis in brain reward areas apart 

from the hypothalamic system (Berthoud et al. 2011). Hence, this raises the possibility 

that insulin and leptin may regulate reward-related behavior through providing 
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feedback on the mesolimbic circuitry (Speed et al. 2011). Lines of evidence support the 

notion that alterations in insulin and glucose can influence mesoaccumbal DA release 

(Bello & Hajnal 2008). A recent study demonstrated that the insulin-induced long-term 

depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons employs 

the presynaptic CB1R-mediated inhibition of glutamate release (Labouèbe et al. 2013).
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Chapter 2. Objectives 

The aim of this study was to map and characterize the multifaceted role of the ECS 

in the regulation of cerebral glucose. Based on the involvement of this system in the 

physiological control of appetite and satiety, mainly through CB1R action, we sought to 

investigate whether insulin affects (increases) glucose uptake in the NAc and if this 

purported action of insulin is dependent on local CB1R signalling.  

NAc is involved in postprandial satiety elicited in part by insulin and the consequent 

termination of food-seeking behaviour. Moreover, glucocorticoid excess can lead to 

insulin resistance, diabetes or Alzheimer’s disease, and recent findings suggested that 

glucocorticoids can trigger endocannabinoid release.  Thus, we aimed at understanding 

how the glucocorticoid dexamethasone affect insulin-mediated glucose uptake in the 

nucleus accumbens and whether this is dependent on local CB1R signaling.  

Since brain glucose hypometabolism is a preclinical symptom of Alzheimer’s disease 

and CB2Rs are upregulated in AD patients and in animal models of AD, we also aimed 

at study the putative regulation of glucose uptake by CB2R in the hippocampus of 

healthy rodent brain and under Aβ burden. 
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Chapter 3. Materials and Methods 

3.1. Animals 

All studies were conducted with the principles and procedures outlined in the 

European Union (EU) guidelines (86/609/EEC) and by FELASA, in accordance with the 

recommendations of the NC3Rs Reporting Guidelines Working Group (2010), and were 

approved by the Portuguese Ministries of Agriculture, the local Animal Care 

Committee of the institutes (license numbers: 280279-31-A and 025781 respectively) 

and the Federation of Laboratory Animal Science Associations. All efforts were made 

to reduce the number of animals used and to minimize their stress and discomfort. 

Animals were housed in the specific pathogen-free facilities, with 12 h light on/off 

cycles, under controlled temperature (23±2 ºC), and ad libitum access to food and 

water.  

For in vitro experiments, six-week-old male Wistar rats and male mice of the CD-1 

strain were purchased form Charles-Rivers (Barcelona, Spain). Middle-aged (12 

months) C57Bl/6j mice containing the human transgene, APP695 with the double 

mutations at KM670/671NL transgenic line 2576, (hereafter, TgAPP) mice, expressing 

Aβ-burden but no evident cell loss (Hsiao et al. 1996) and the age-matched C57Bl/6j 

(hereafter referred as WT [wild-type]) mice were genotyped at and provided by the 

Cajal Institute, Madrid, Spain. At 12 months, TgAPP mice did not differ in weight (WT: 

39.6±2.4 g; TgAPP: 38.6±2.3 g, n=5 randomly chosen mice) and did not show brain 

amyloidogenic plaques, but had compromised new object recognition compared to WT 

mice.  

Soluble Aβ 1-42 peptide (2 nmol) or vehicle (0.1% NH3) was injected in young male 

Wistar rats to induce AD-like pathology. This leads to an accumulation of soluble but 

not aggregated forms of Aβ in the hippocampus, causing delayed memory impairment 

without evident acute effects (Canas et al. 2009). Eighteen days after Aβ or vehicle 

injection and 1 day after memory tests - all carried out by colleagues - rats were 

sacrificed on the day 18 post-injection for in vitro glucose uptake experiments in brain 

slices. 

 



  Materials and Methods 

17 
 

3.1.1. Experimental model of diabetes 

Experimental model of type-1 (insulinopenic) diabetes was induced in Wistar rats 

with 2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranose (streptozotocin or STZ) 

(Calbiochem, Merck Biosciences, Germany). STZ solution was prepared freshly at the 

concentration of 60 mg/mL in citrate buffer (pH 4,5). Adult rats after four hours of 

food deprivation were injected intraperitoneally with a dose of 60 mg/kg of the body 

weight. Body weight and glycemia (blood glucose levels) were determined before the 

injection and three and fifteen days post-injection. Glycemia was measured from the 

tail vein through the glucose oxydase method, using a glucometer and reactive test 

stripes (Elite-Bayer SA, Portugal).  

STZ induces diabetes within 3 days by destroying the β cells (Akbarzadeh et al. 

2007). Three days after injection, glycemia was determined to confirm rats’ diabetic 

condition: Animals were considered diabetic only if exhibiting glycemia > 300 mg/dl 

(Table 1).  Animals were housed in metabolic cages (two animals for each cage) with 

two bottles of water under feeding and metabolism control until the scarification day 

(15 days post-injection) for glucose uptake experiments. Body weight was determined 

again before sacrifice (Table 1). 

 

Table 1. Body weight and glycemia of control and STZ-injected Wistar rats (n=9).  

 

 

3.1.2. Fasted rats 

Male Wistar rats used for glucose uptake experiments were subjected to food 

privation for 16 hours before sacrifice. Body weight was determined before and after 

the fasting period. Fasted rats lost 6.6 ±0.21 % of their body weight.  

 Weight (g) Glycemia (mg/dl) 

 Control  STZ-treated Control  STZ-treated 

Before treatment n.d. 262.4 ± 1.9 106.7 ± 10.4  113.6 ± 0.7 

3 days after treatment n.d. n.d. n.d. 477.3 ± 10.1 

15 days after treatment  369.4 ± 9.9  251.5 ± 2.0 106.1 ± 5.9 505.4 ± 19.8 

n.d.: not determined.     
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3.2. In vitro glucose uptake assays  

Around  14:00  o’clock  each  experimental  day  to  reduce  putative circadian  

hormonal  effects, animals were deeply anesthetized with halothane (no reaction to 

handling or tail pinch, while still breathing) before decapitation with a guillotine.  

A previously optimized in vitro glucose uptake protocol for acute brain slices was 

used (Lemos et al. 2012). This protocol allows the simultaneously comparison the 

effect of various treatments in pairwise arrangement.  

Brains were rapidly removed and placed in ice-cold carboxygenated (95% O2 and 5% 

CO2) Krebs’- HEPES (KH) solution with the following composition (in mM): 133 NaCl, 3 

KCl, 1.2 KH2PO4, 1.2 MgSO4, 2.5 CaCl2, 25 NaHCO3, 5.5 glucose, and 10 HEPES (pH 7.4). 

Nuclei accumbens (rat brain) or hippocampi (mice/rat) were dissected on ice within 4 

min after decapitation, and sliced into 450 µm- thick transversal slices with the help of 

a McIlwain tissue chopper (Ted Pella, CA, USA). Whenever possible, we used the same 

rats' hippocampal and accumbal slices for the two different studies to economize the 

number of animals used. 

From each animal and for each of the experimental conditions (in different 

chambers), five hippocampal and/or 3 accumbal slices were used from the pair of 

NAc/hippocampi. The slices were transferred into a multichamber slice incubator and 

incubated in 50 mL of continuously gassed (95% O2 and 5% CO2) KH solution at 37 ºC 

until the end of the experiment.  

Acute slices were first subjected to 60 min of preincubation necessary for metabolic 

recovery (see our previous study: Lemos et al. 2012). Subsequently, drugs or their 

vehicle dimethyl sulfoxide (DMSO) (0.1% v/v) were bath applied, and 5 min later, the 

following radioactive glucose analog was added for a period of 30 min: 2-3H(N)-deoxy-

D-glucose (3H-2-deoxyglucose; 3HDG; 2.5 nM; 60 Ci/mmol; American Radiolabeled 

Chemicals - ARC). The length of this incubation period was chosen based on 

preliminary results. Upon completing the incubation, the slices were washed gently 

but extensively (twice) in Petri-dishes with ice-cold uptake solution and collected in 1 

mL NaOH (0.5 M). Slices were left to dissolve overnight then boiled at 90ºC for 20 min 

to allow homogenous disintegration for protein and radioactivity measurements.  
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Of each sample, 800 µL were collected in scintillation vials containing 2.5 mL of 

scintillation liquid (Zinsser Analytic, Germany) and assayed for 3H (value X 

disintegration/minute [dpm]) counts with the help of a Tricarb β-counter (dual-label 

protocol) (PerkinElmer, USA) The rest of the sample was used for the quantification of 

total protein (P mg) with the bicinchoninic acid assay (see below). 

The incubation bath (181.8 µL) containing the radioactive glucose analogs was also 

sampled and assayed for 3H dpm (value A). Values A represent 1 µmol quantity of cold 

glucose molecules, because in a 5.5 mM glucose solution, a 181.8-µL volume contains 

1 µmol glucose. Knowing how much 3H signal is associated with 1 µmol glucose in the 

initial assay medium allows then determining how many nmols of glucose were taken 

up by the slices: The accumulation of the hardly metabolizable glucose analogue 3HDG 

(Figure 2) in the slice represents the total uptake which shows linearity in the 30 min 

period. Hence, if A = 1000 nmol (1 µmol), the total uptake was X/A nmol/mg protein in 

the slice. 

 

Figure 2. Schematic representation of the cell uptake of the radioactive glucose analog, the non-

metabolizable 
3
H-2-deoxyglucose. 

 

3.2.1. Protein quantification by the bicinchoninic acid method  

Quantification of protein was carried out using the bicinchoninic acid (BCA) assay 

(Merck Biosciences, Germany), a colorimetric method. A standard curve with bovine 

serum albumin (BSA) (Sigma-Aldrich, Portugal) was prepared in NaOH, using the 
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following concentrations: 0; 0.25; 0.50; 1; 2; 3; 4 and 5 mg/ mL of BSA. To prepare the 

standard curve, 50 µL of each concentration of BSA are added, in duplicate, in a 96 

multi-well plate/dish. The same amount is added for protein samples, also in duplicate. 

The working reagent was created by mixing 50 parts of reagent A (BCA reagent) 

with 1 part of reagent B- copper (II) sulfate solution (BCA reagent). Then, 200 μL of BCA 

working reagent was added to all samples and the dish was placed in a 37ºC incubator 

for 1 hour. The absorbance was measured at 562 nm in a spectrophotometer. Sample 

concentrations are estimated using the BSA standard curve.  

 

3.3. Fluorescent glucose uptake assays in mice coronal brain slices 

Around  14:00  o’clock  each  experimental  day  to  reduce  putative circadian  

hormonal  effects, young male C57bl/6j mice were deeply anesthetized with halothane 

(no reaction to handling or tail pinch, while still breathing) before decapitation with a 

guillotine. Brains were quickly removed into the ice-cold carboxygenated KH solution 

(composition described above) and mounted on metal platforms to cut 300 µm-thick 

coronal slices with the help of a vibratome. Slices were placed in the carboxygenated 

KH solution at room temperature (RT) for 60 min. 

Hemisphere slices were mounted on a coverslip placed on a RC-20 superfusion 

chamber in a PH3 platform (Warner Instruments, Harvard, UK) on  the  stage  of  an  

inverted  fluorescence  microscope  (Axiovert  200M,  Carl  Zeiss, Germany). We placed 

a cover glass above which helps smoothen liquid flow. This helps to prevent optical 

noise owing to fluctuation of the medium surface level. The experiment was conducted 

with a continuous superfusion system, at a rate of 0.5 mL/min in a closed circuit, with a 

carboxygenated KH solution at RT.  

Subsequently, acquired images of a defined region of hippocampus in the 

hemisphere coronal slices were captured with CoolSNAP digital camera (Roper 

Scientific, Trenton, NJ, USA) at every 30 seconds during a total of 30 minutes, using a 

5× PlanNeofluar-objective (NA 0.25, inverted Axiovert 200M fluorescence microscope, 

Carl Zeiss, Germany, coupled to a Lambda DG-4 integrated 175 Watt light source and 

wavelength switching excitation system [Sutter Instrument Company, Novato, CA, 

USA] allowing real-time video imaging) and band-pass filters for excitation (BP470/40) 
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and emission (BP525/50), with identical parameters throughout the study. The average 

value of pixel intensities was evaluated at each time point. Values were processed 

using the MetaFluor software (Universal Imaging Corporation, Buckinghamshire, UK). 

Basal ratio was measured during the first minute of the experiments, which allowed 

the evaluation of autofluorescence (AF) (recording of 4 images to set zero level). After 

the first minute, the fluorescent glucose analogue tracer: 2-(N-(7-nitrobenz-2-oxa-1,3-

diazol-4-yl)amino)-2-deoxyglucose (2-NBDG; 30 µM) was bath applied in the reservoir 

with the carboxygenated KH solution. This allows the real-time monitorization of 2-

NBDG uptake, useful in the analysis of mechanisms underlying glucose uptake and 

concomitant cellular functions in mammalian cells (Yamada et al. 2000; Yamada et al. 

2007).  After 15 minutes of basal line we bath applied JWH133 (1 µM), or GP1a (100 

nM) or their vehicle, DMSO (0.1% v/v). Each condition was carried out in duplicate per 

animal. The experiments were carried as exemplified in the scheme bellow (Figure 3). 

 

 
Figure 3. Schematic representation explaining the timeline of the experiments. 

 

To data processing, AF is subtracted to the raw data (Figure 4A) collected with the 

help of MetaFluor software. The initial rapid increase in 2-NBDG intensity is followed 

by a transient dip which has been previously published by O'Neil and colleagues 

(2005). Excluding the initial phase from the curve fitting, data points which represent 

individual intensity values from the whole hippocampal slice, can be simulated with 

the following curve: 

Y = Tmax × X / (Kd + X) + M × X + AF, 

where Y stands for the intensity (arbitrary unit), X is the time, Tmax represents the 

maximum number of transporters for 2-NBDG, Kd is the inverse of the affinity of 2-
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NBDG to its transporters, while M stands for the constant for the "metabolic drain" (2-

NBDG is a metabolizable glucose analog) which we assume to be steady for the sake of 

simplicity, whereas AF is the value to be subtracted from the raw data resulting in the 

plots in Figure 4B. 

  

Figure 4. Representative graph of the real-time monotorization of fluorescence intensity changes. Auto-

fluorescence (AF) was subtracted to raw data processing. The theoretical curve (red line) is represented 

as an illustration, calculated for the average of the GP1a curves. Points represent the mean ± SEM of 5 

independent experiments (animals) performed in duplicate. 

Approx. seven minutes after the addition of 2-NBDG, the rate of increase in 

fluorescence intensity turns fairly linear, thus allowing recording a ~8 min 

pretreatment period and an additional 15 min post-treatment phase, which altogether 

~23 min period is marked with the rectangle. This represents the theoretical curve 

which is presented as the Y=0. Points represent the mean ± SEM of 5 independent 

experiments (animals) performed in duplicate. 

  

3.4. Data presentation and statistical analysis 

All data are expressed as means ± SEM of the indicated number of independent 

observations (n≥5). Raw metabolism and normalized uptake data were tested for 

normality by the Kolmogorov–Smirnov normality tests. If data suggested Gaussian 
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distribution, statistical significance was calculated by one sample t-test. In case of 

glucose uptake, the control equals 100%. If more than two groups were compared, 

one-way ANOVA with Bonferroni’s post-hoc test was performed. Data from paired 

experiments were compared with the pairwise version of student's t-test or ANOVA, 

and a value of p<0.05 was accepted as a significant difference. 

 For the fluorescent glucose uptake assay, normalized data was tested for normality 

by the Kolmogorov-Smirnov normality tests and statistical significance was calculated 

by one-sample t-test against a hypothetical control value and a value of p<0.05 was 

accepted as a significant difference. Groups were compared with the DMSO group with 

the help of Repeated Measures ANOVA followed by Dunnett's Multiple Comparison 

Test (*p<0.05, **p<0.01). 

 

3.5. Chemicals 

HEPES, DMSO, CaCl2, MgSO4, NaHCO3 and KH2PO4 were purchased from Sigma–

Aldrich Portugal (Sintra, Portugal). NaCl, KCl, NaOH, HEPES and D-glucose were 

purchased from Calbiochem, Merck Biosciences, Germany. 2-NBDG was purchased 

from Invitrogen (Carslbad, California, USA). Non-water soluble substances and 2-NBDG 

were dissolved or reconstituted in DMSO, and stored aliquoted at -20ºC. The synthetic 

glucocorticoid dexamethasone 21-phosphate was purchased from Sigma Chemical Co. 

(St. Louis, MO), dissolved in 0,9% saline, and then diluted into vehicle (saline or 0,2% 

DMSO in saline]. Insulin, O-2050, dexamethasone (DEX), THL, JZL184, WWL70, 

mifepristone, OMe-Tyr, AM630, DuP697, JWH133, GP1a, LY2183240 and WIN55212-2 

were obtained from Tocris Bioscience (Bristol, U.K.), except SR141716A which was 

bought from ARC. 
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Chapter 4. Results 

4.1. CB1R mediation of insulin-induced glucose uptake in the NAc of wild-type rats 

 

4.1.1. Insulin and CB1R blockade increased accumbal glucose uptake 

NAc metabolism was measured through an in vitro procedure which allows glucose 

uptake quantification as already described (Lemos et al. 2012). Briefly, glucose uptake 

was measured through the uptake of non-metabolizable 3H-2-deoxyglucose by the 

acute slices. Control was normalized to 100%, representing the glucose uptake without 

any treatment. From the two concentrations tested, insulin at 30 nM had no effect 

(see Figure 9 below). However, at 300 nM, insulin increased glucose uptake in the 

accumbal slices (n=4, p<0.05), thus this concentration was selected for subsequent 

experiments (Figure 5). 

The blockade of the CB1R by the selective neutral antagonist, O-2050 (500 nM) 

significantly increased glucose uptake in accumbal slices (n=16, p<0.05) similarly to 

insulin. Moreover, when both were present, mutual occlusion was observed between 

the two treatments (n=14, p<0.05). CB1R activation by WIN55212-2 (WIN, 500 nM) had 

no significant effect on basal and insulin-stimulated glucose uptake (Figure 5).  

Next, we tested the dependence of insulin’s action on IGF1Rs. Fifteen minutes of 

preincubation by the IGF1R antagonist, I-Ome-Tyrphostin AG (OMe-Tyr, 1 µM) failed to 

affect either accumbal glucose uptake per se and or the insulin-induced glucose uptake 

(n=8, p<0.05) (Figure 5), indicating the sole involvement of the insulin receptors in the 

observed effects. 
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Figure 5. The pharmacology of insulin effect on glucose uptake, in 450 µm-thick accumbal slices of male 

Wistar rats, under the blockade (O-2050, 500 nM) or activation (WIN, 500 nM) of CB1R as well as the 

blockade of IGF1R (OMe-Tyr, 1 µM). Data represent the mean ± SEM of n≥6 and statistically significant 

differences on glucose uptake were calculated by the one sample t-test against the hypothetical value of 

100 (* p<0.05, relative to control [100%]; n.s., not significant (between O-2050 vs. O-2050+insulin). 

 

4.1.2. Dexamethasone impairs insulin’s action - an effect reversed by CB1R blockade 

The glucocorticoid dexamethasone (DEX, 10 µM) prevented insulin from increasing 

glucose uptake in accumbal slices. Notably, the facilitator effect of the CB1R agonist, O-

2050 persisted in the presence of DEX, and as before, insulin failed to modulate the 

glucose uptake any further under this condition (n=8, p<0.01; p<0.05) (Figure 6). 
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Figure 6. The pharmacology of insulin effect on glucose uptake in 450 µm-thick accumbal slices of male 

Wistar rats, in the presence of dexamethasone (DEX, 10 µM) alone or in combination with the CB1R 

antagonist, O-2050 (500 nM). Data represent the mean ± SEM of n≥6 and statistically significant 

differences on glucose uptake were calculated by the one sample t-test against the hypothetical value of 

100 (* p<0.05, ** p<0.01, relative to control [100%]; n.s., not significant (between DEX+O-2050 vs. 

DEX+O-2050+insulin).  

 

4.1.3. The inhibition of endocannabinoid synthesis or metabolism affects insulin’s 

action on accumbal glucose uptake 

We sought to investigate insulin-evoked cerebral glucose uptake in the presence of 

endocannabinoid synthesis or metabolism inhibitors. To this end, we incubated the 

slices for one hour during the recovery period with the DAGL inhibitor, 

tetrahydrolipstatin (THL, 10 µM). THL exhibited a tendency to increase glucose uptake 

such to a similar level as O-2050 did. When DAGLα-mediated 2-AG synthesis was 

blocked by (THL, 10 µM) no effects were produced, alone and when combined with 

DEX (10 µM). However, THL prevented the inhibitory action of DEX on the insulin-

mediated glucose uptake (n=9, p<0.05). On the other hand, inhibitors of the 2-AG 

metabolizing enzymes MAGL (by JZL184, 1 µM) and the α/β-hydrolase domain 6 (by 

WWL70, 1 µM), prevented insulin-induced glucose uptake in NAc (Figure 7).  
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Figure 7. The pharmacology of insulin effect on glucose uptake in 450 µm-thick accumbal slices of male 

Wistar rats, in the presence of inhibitors of 2-AG synthesis: THL (10 µM) or metabolism: JZL184 (1 µM) 

and WWL70 (1 µM). Data represent the mean ± SEM of n≥6 and statistically significant differences on 

glucose uptake were calculate by the one sample t-test against the hypothetical value of 100 (* p<0.05, 

relative to control). 

4.1.4. Insulin effects in glucose uptake in acute accumbal slices from fed, fasted and 
STZ-induced diabetic rats 

Insulin at the concentration of 300 but not at 30 nM, significantly increased glucose 

uptake in NAc slices (n=14, p<0.05). On the other hand, insulin’s effect was reverted by 

16 hours fasting, that is, insulin (300 nM) significantly inhibited the basal glucose 

uptake (n=6, p<0.01). Finally, in accumbal slices of STZ-induced diabetic rats, insulin 

failed to produce any effect on glucose uptake (Figure 8). 
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Figure 8. The pharmacology of insulin effect on glucose uptake in 450 µm-thick accumbal slices. Two 

concentrations of insulin were tested (30 nM and 300 nM) in fed, fasted and STZ-injected diabetic rats. 

Experiments were carried out in pairwise arrangement. Data represent the mean ± SEM of n≥6 and 

statistically significant differences on glucose uptake were calculated by the one sample t-test against 

the hypothetical value of 100 (* p<0.05, ** p<0.01, relative to control). 



Results 

29 
 

4.2. CB2R activation triggers glucose uptake in the hippocampus 

 

4.2.1. CB2R activation increased glucose uptake in both wild-type and TgAPP mice 

Basal glucose uptake in hippocampal slices of both WT mice and TgAPP mice was 

determined in a pairwise protocol similar to the above detailed. Both strains had 

similar values for basal glucose uptake (n=18, p>0.05). 

In the WT and the TgApp mice, the selective CB2R agonist JWH133 (1 µM), as well as 

the non-selective CB1R/CB2R agonist WIN (1 µM), significantly increased glucose 

uptake, when compared to vehicle (DMSO) (n=8, p<0.05) (Figure 9).  

However, the blockade by DuP697 (500 nM) of COX-2, an enzyme responsible for 

anandamide degradation, augmented glucose uptake (n=6, p<0.05) only in the WT 

(n=6, p<0.05), but not in TgAPP mice (n=6, p<0.05) (Figure 9). The selective CB2R 

antagonist AM630 (1 µM) had no effect per se. However, it fully prevented the effects 

of JWH133 and WIN in both strains and the effect of DuP697 in WT mice (Figure 9). 

Finally, LY2183240 (100 nM), a potent dual inhibitor of FAAH and FAAH-like 

anandamide transporter (FLAT), failed to change glucose uptake in the WT mice 

(Figure 9).  

 

Figure 9. The CB2R effect on glucose uptake in 300 µm-thick acute hippocampal slices of WT or TgAPP 

mice. CB2R was activated by JWH133 (1 µM) or WIN55212-2 (1 µM) and inhibited by AM630 (1 µM); 

COX-2 was blocked by DuP697 (500 nM) and FAAH and FLAT were inhibited by LY2183240 (100 nM). 

Data represent the mean ± SEM of individual measurements (6≤n≤18) dashed line indicates the WT 

DMSO value (which was virtually identical to the TgAPP DMSO value). Statistically significant differences 

on glucose uptake were calculated by the one sample t-test against the DMSO controls (*p<0.05 vs. 

vehicle treated slices). 
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4.2.2. Glucose uptake in other rodent strains and its regulation by CB2R  

The basal rate of glucose uptake in hippocampal slices from young adult rats 

previously treated with Aβ (2 nmol, icv) did not change, when compared to control rats 

(18-day sham). In control young adult Wistar rats, JWH133 was effective only with the 

higher concentration (10 µM) (Figure 10). However, middle-aged C57Bl/6J mice 

showed increased glucose uptake in the presence of 1 µM JWH133 (n=10, p<0.05) 

(Figure 9). Similarly to the middle-aged C57Bl/6J mice, JWH133 significantly increased 

glucose uptake in hippocampal slices of young adult CD-1 mice (n=8, p<0.05) (Figure 

10).  

 

Figure 10. Basal and JWH133-stimulated glucose uptake values in acute hippocampal slices of young 

adult Wistar rats (young adult Wistar rats 18-days sham and 18-days after Aβ injection (yellow bars) and 

another set of young adult Wistar rats (green bars)) and of young adult CD-1 mice (purple bars). One-

Way ANOVA with Bonferroni's post-hoc analysis failed to detect differences (p>0.05) in the rate of 

glucose uptake in control (DMSO-treated) slices throughout the following pairs of rodent groups: rat 

sham vs. control rat, control rat vs. control CD-1 mice control CD-1 mice vs. control C57Bl/6J. Data 

represent the mean ± SEM of individual measurements from 6-8 animals (*p<0.05).
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4.2.3. CB2R activation rapidly enhances fluorescent glucose uptake in hippocampal 
slices of young adult C57Bl/6 mice  

Fluorescent glucose uptake assay allows better subregional and temporal 

resolution, i.e. the real-time observation of the accumulation of fluorescent 

deoxyglucose (2-NBDG) by fluorescent microscopy. In the superfused hippocampal 

slices of young adult C57Bl/6 mice, the accumulation of 2-NBDG signal show 

subregional differences. The greatest uptake was observed in the stratum lacunosum, 

followed by the strata radiatum and moleculare, and the smallest signal was found in 

the strata pyramidale and granulare (Figure 11). Thus, both CB2R agonists JWH133 (1 

µM) and GP1a (100 nM), increased 2-NBDG uptake, mainly concentrated in astrocyte-

rich zones of the hippocampus, i.e. strata lacunosum, radiatum, and moleculare 

(Figure 11).  

 

Figure 11. Time-course and subregional variation of the effect of CB2R agonists on the uptake of the 

fluorescent glucose analogue 2-NBDG, in 300 µm-thick hippocampal slices of young C57Bl/6j male mice. 

The figure shows representative individual images, selected from an experiment, illustrating the slice 

autofluorescence and the distribution of fluorescent signal right before the treatment (minute 15 of 

baseline), and 7.5 min after adding GP1a (100 nM). The numbers mark the regions highlighted by their 

difference in 2-NBDG uptake: 1: stratum oriens 2: s. pyramidale (low intensity) 3: s. radiatum (high 

intensity), 4: s. lacunosum (greatest uptake activity), 5: s. moleculare (high intensity), 6: s. granulare 

(lowest signal), 7: hylus (high signal). 

 

DMSO (0.1% v/v) tendentiously slowed the progressive increase of 2-NBDG signal, 

whereas the selective CB2R agonists GP1a (100 nM) (Figures 11,12) and JWH133 (1 

µM) rapidly increased the velocity of 2-NBDG accumulation in the total area of the 

slices (Figure 12). The figure 12B represents the significant increases in fluorescence 

intensity with GP1a (100 nM) (p<0.01 vs DMSO) or JWH133 (1 µM) (p<0.05 vs DMSO) 

in the post-treatment period. 
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Figure 12. Time-course and fluorescence intensity variations of the effect of CB2R agonists on the uptake 

of 2-NBDG, in 300 µm-thick hippocampal slices of young C57Bl/6j male mice. A) Changes in 2-NBDG 

uptake rate after the treatment with the vehicle DMSO (0.1%), GP1a (100 nM) or JWH133 (1 µM). 

Dashed line at zero represents the predicted velocity of 2-NBDG uptake if the slices were left untreated 

(theoretical curve). This indicates a tendency for DMSO to decrease the velocity of glucose uptake 

(p>0.05 with one-sample t-test). Curves represent the mean ± SEM of the averaged duplicate 

experiments from five mice. B) Scatter graph illustrates the individual amplitude variations in 

fluorescence intensity upon treatment with DMSO, JWH133 and GP1a, obtained in 5 animals in 

duplicate. The JWH133 and the GP1a groups were compared to the DMSO group with the help of 

Repeated Measures ANOVA followed by Dunnett's Multiple Comparison Test (*p<0.05, **p<0.01).  
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Chapter 5. Discussion  

The ECS have been extensively investigated in the past two decades due to its 

involvement in human health and disease. The ECS as therapeutic target in metabolic 

and neurodegenerative disorders such as diabetes and AD (Matias et al. 2008; Lipina et 

al. 2012; Mulder et al. 2011) have been long recognized which led to the introduction 

of Acomplia (rimonabant, an antiobesity medicine) to the market in 2006 (Di Marzo & 

Matias 2005; Matias et al. 2008; Silvestri & Di Marzo 2013). My research has resulted 

in additional findings suggesting that the cerebral ECS may possess therapeutic 

potential to control both local cerebral and peripheral metabolic homeostasis. 

It has been previously recognized that both peripheral and cerebral CB1Rs are 

involved in systemic glucoregulation (Matias et al. 2008; Penner et al. 2013). Recently, 

we found that the density of hippocampal CB1Rs is altered after STZ-injection in the rat 

(Duarte et al. 2007), and that CB1R inhibit the TCA cycle in hippocampal neurons and 

astrocytes (Duarte et al. 2012), while the genetic ablation rather than the acute 

pharmacological blockade of CB1Rs decreases the basal rate of hippocampal glucose 

uptake in mice (Lemos et al. 2012). These altogether indicate the intricate involvement 

of the endocannabinoid system in cerebral glucoregulation. Due to the therapeutic 

potential of these critical observations we decided to further investigate the roles of 

the ECS including those of the CB1R and the CB2R in cerebral glucoregulation. 

 

GR activation causes accumbal insulin resistance via CB1R activation  

Brain glucose uptake is not dependent on insulin. However, in certain brain areas, 

insulin may mediate glucose uptake by an indirect mechanism as a result of the 

neuronal activity modulation (Vogt & Brüning 2013). In this manner, insulin increases 

GABAergic neurotransmission (Wan et al. 1997; Jin et al. 2011), thereby decreasing 

cortico-hippocampal activity in humans (Mielke & Wang 2005). In fact, this suggests 

that insulin may regulate reward-related feeding behavior through a postprandial 

feedback mechanism, on the mesolimbic circuitry (Speed et al. 2011; Vogt & Brüning 

2013).  

In my thesis work, we regard accumbal glucose uptake as a measure of accumbal 

activity. We used a relatively high concentration of insulin (300 nM) to  guarantee  that  
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even  if  the  glassware  and  plastic  tubes  absorb  insulin  from  the  medium,  enough  

peptide  remains  in  solution  to  rapidly  saturate  the  slices (Goebel-Stengel et al. 

2011). However, most in vitro studies in brain preparations use hundreds of 

nanomolars of insulin (Labouèbe et al. 2013) and insulin levels are 10-100-times higher 

in the brain than in the plasma (Ghasemi et al. 2013). Insulin (300 nM) acutely 

increases glucose uptake in rat accumbal slices, which was also demonstrated in the 

NAc of humans in vivo (Anthony et al. 2006). This is in concert with that the ECS is 

involved in the control of food intake, stimulating the preference for sweet and tasty 

food, through the modulation of the activity of hypothalamus, brainstem and 

mesolimbic system, including the VTA and the NAc (Soria-Gómez et al. 2007; Matias et 

al. 2008; Silvestri & Di Marzo 2013). 

CB1R activation by WIN55212 per se had no effect on the basal glucose uptake but it 

prevented the action of insulin when combined. In turn, when we blocked the CB1R by 

O-2050, glucose uptake also increased indicating the presence of some tonic inhibitory 

endocannabinoid action. O-2050 and insulin failed to produce additive effect indicating 

a mutual occlusion between the two actions, suggesting convergent mechanisms of 

action. Moreover, it was found recently that CB1R form a heteromeric complex with IRs 

in pancreatic β-cells (Kim et al. 2012) and also with RTKs in neuronal cells (Dalton & 

Howlett 2012). Thus, our results suggest that there is a possible interaction of these 

receptors in the brain. 

IGF1R can regulate many insulin actions in the brain and also may be more 

important than insulin in the regulation of cerebral glucose uptake, at least during 

development (Russo et al. 2005). Our results indicated that IGF1R blockade by I-OMe-

Tyr had no effect on insulin-induced glucose uptake in NAc slices, supporting the idea 

that IR, and not IGF1R, is responsible for insulin-stimulated glucose uptake.  

The glucocorticoid DEX impaired the effect of insulin in the accumbal slices. This 

result is in agreement with previous studies, which indicate that glucocorticoid excess 

leads to insulin resistance through the inhibition of insulin signaling (Lansang & Hustak 

2011; Di Dalmazi et al. 2012). Moreover, it is known that a sub-acute and chronic 

administration of DEX in healthy individuals leads to insulin resistance, 

hyperinsulinemia, and impaired glucose tolerance (Nicod et al. 2003). Previous reports 

suggested an involvement of a hypersensitivity to glucocorticoids, or an increase of 
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their circulating levels, with the induction of food intake and the development and 

maintenance of obesity (Tataranni et al. 1996; Zakrzewska et al. 1999). Additionally, 

this is associated with a permanent alteration in the activity and metabolism of 

dopaminergic areas, including the NAc, which may have a role in stress-induced 

impairment in the reward area (Bock et al. 2012; Shpilberg et al. 2012; Barik et al. 

2013).  

However, the pathomechanism whereby glucocorticoids impair insulin signaling is 

still unknown. O-2050 in the presence of DEX was still capable of increasing glucose 

uptake, and CB1R blockade also rescued insulin’s action. Thus, this suggested that CB1R 

blockade prevented the effect of DEX in the impairment of insulin’s action in the NAc. 

Accordingly, previous findings suggested that the ECS is responsive to modulation by 

both stress and glucocorticoids, within the hypothalamus and limbic structures. 

Moreover, CB1R signaling is involved with the rapid effects of glucocorticoids (Hill & 

McEwen 2010; Ko et al. 2012; Atsak et al. 2012). The modulation of ECS may occur 

through the binding of these hormones to a G protein-coupled receptor, activating an 

intracellular signaling pathway, which induces the synthesis of eCBs in the brain (Di et 

al. 2003). Besides, there are several pieces of evidence of a decrease of eCB levels and 

CB1R expression, under a prolonged exposure to stress and/or glucocorticoids (Marco 

et al. 2011), suggesting a biphasic relationship between the ECS and stress (Wang et al. 

2012).  

The endocannabinoid 2-AG is synthesized on demand by DAGLα in the nervous 

system (Alger & Kim 2011; Castillo et al. 2012). Hence, it is expected that 2-AG 

signaling is associated with greater energy expenditure, as well as, the increase of 

glucose consumption under brain activity (Pellerin & Magistretti 2012). Moreover, 

previous findings demonstrated in rat models, that stress appears to mobilize 2-AG 

signaling in a variety of limbic structures (Hill & McEwen 2010). In this manner, we 

investigated how alterations in 2-AG levels could affect NAc glucose uptake.  

Although CB1R blockade by O-2050 produced facilitator effect on glucose uptake, 

this was not seen by the removal of the endogenous CB1R agonist 2-AG beyond 

tendency, indicating that another endocannabinoid, probably anandamide also 

tonically activated the CB1R. However, in the presence THL, DEX failed to impede 

insulin to increase glucose uptake. Hence, dexamethasone-induced insulin resistance is 
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prevented by the blockade of either the CB1R or of 2-AG synthesis. As expected, an up-

regulation of 2-AG levels through the inhibition of 2-AG metabolism prevented insulin 

from stimulating glucose uptake. These results support the idea that dexamethasone 

produces the release of the endocannabinoid, 2-AG, and in turn, 2-AG prevents the 

action of insulin. These are in concert with previous findings of DAG-induced insulin 

resistance (Amati 2012). This may suggest that the glucocorticoid-induced DAGL 

activation and the consequent 2-AG release activate the CB1R which is an inhibitory co-

partner of the IR. The scheme below represents the proposed mechanism for the DEX-

induced insulin action impairment through the ECS (Figure 13). 

 

Figure 13. Schematic diagram of the proposed model for the DEX-induced insulin-resistance. The 

activation of the glucocorticoid receptor (GR) by glucocorticoids (stress and hypercortisolemia) 

stimulates 2-AG synthesis through DAGLα activity. 2-AG activates CB1R which inhibits insulin’s action.  

 

Thus, mechanisms that lead to increased endocannabinoid signaling including 

chronic stress and Cushing-syndrome will impair insulin actions, may be involved in the 

onset of neurological disorders such as AD, obesity and type 2 diabetes (Sonino et al. 

1998; Lansang & Hustak 2011; Solas et al. 2013). In this manner, blockers of CB1R 

would be beneficial to combat over feeding behavior, obesity and diabetes. For this 
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purpose, the CB1R antagonist rimonabant (Acomplia) was marketed by Sanofi in 2006 

(Matias et al. 2008). 

Rimonabant is an example of an antagonist/inverse agonist of CB1R, which proved 

to be helpful in the reduction of food intake leading to reduced body weight and also 

able to ameliorate obesity-associated metabolic syndrome (Jbilo et al. 2005; Thornton-

Jones et al. 2006; Després 2007). Unfortunately, rimonabant was banned from the 

market in 2008 due to exerted unacceptable side effects, causing anxiety, depression 

and even instigate suicide in patients (Kang & Park 2012; Kirilly et al. 2012). 

Recently it was shown that rimonabant’s side effects are attributed to the inverse 

agonism at CB1R. In contrast, silent CB1R antagonists such as O-2050 and NESS0327 did 

not cause anxiety or anhedonia in the first in vivo experiments and yet, efficiently 

reduced food intake and weight gain (Meye et al. 2012), envisaging a new class of 

antiobesity medicines. 

It is known that the nutritional state (e.g. fasted versus fed) and different food 

stimuli can alter the activity of brain reward systems demonstrating a interaction 

between homeostatic and hedonic features of feeding behavior with biasing fasting 

reward systems towards high-calorie foods (Goldstone et al. 2009). In our results, 

insulin (300 nM) significantly reduced accumbal glucose uptake in fasted rats. Although 

this experiment seems paradoxical for the first sight, in fact, after severe fasting, more 

food intake is necessary than during a normal meal. Hence, the first rise of plasma 

insulin levels should not trigger the same satiety response as normally to prevent the 

termination of the food intake. Hence, our data supports the notion that insulin may 

have a complex role as modulator of the satiety response. 

Indeed, dopamine, insulin and the PKB/Akt signaling are intricately intertwined in 

the mesolimbic area (Garcia et al. 2005; Williams et al. 2007; Speed et al. 2011). As 

already mentioned, PKB/Akt is a key element in the insulin and growth factors 

signaling pathways and this kinase is also involved in feeding behavior, regulating DA 

signaling and homeostasis (Speed et al. 2011). Thus, it is expected that the ability of 

reward circuits to respond to insulin can be impaired in insulin resistant states, such as 

in obesity and prediabetes (Figlewicz et al. 2008; Egecioglu et al. 2011).  

Insulin availability in the brain depends on its ability to cross the BBB from the 

peripheral circulation, although the controversy about a small insulin production in 
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CNS still exists (Santos et al. 1999; Banks 2004). Nevertheless, insulin effects in CNS 

depend mostly from circulating insulin. In STZ-induced diabetic rats, the accumbal 

effect of insulin is impaired indicating a maladaptive pathological alteration which 

requires further investigation. 

 

Cerebral role of CB2R in the hippocampus: stimulation of glucose uptake 

Since it is known that diabetes and AD have much in common including the 

impairment in insulin signaling and glucose metabolism (Correia et al. 2012; Jolivalt et 

al. 2012), we aimed at mapping how ECS can influence glucose or insulin-mediated 

glucose uptake.  

Although it was suggested that the cerebral glucose metabolism could be altered in 

this disease, the lower 18FDG signal detected in AD patients only measures the rate of 

the uptake instead of the metabolism of the metabolically resistant glucose analogue 

18FDG (Martín-Moreno et al. 2012). Since acute CB1R activation affects only glucose 

metabolism (Duarte et al. 2012) rather than 3H-deoxyglucose (3HDG) uptake in the 

rodent hippocampus (Lemos et al. 2012) we turned now to the CB2R to map if it is 

involved in the control of glucose uptake. Moreover, CB2R density is positively 

correlated with the severity of Aβ pathology rather than CB1R (Esposito et al. 2008; 

Solas et al. 2013) implicating that CB2Rs may serve as a better therapeutic target than 

CB1Rs to control the pathology of AD. 

Our results indicate that the activation of CB2R by a selective (JWH133) and a non-

selective (WIN) CB2R agonists stimulated glucose uptake in acute hippocampal slices of 

both middle-aged WT and TgAPP mice. The concentration of agonists (1 µM) was 

already maximal to activate the receptors but still, substantially smaller responses 

were detected to both JWH133 and WIN in TgAPP mice, indicating a tendency for 

decreased CB2R sensitivity in this model. The effect of the agonists was prevented by 

the selective CB2R antagonist, AM630, which alone had no effect. Notably, CB2R 

activation increased glucose uptake by 1/3-1/5 over the basal rate, which is a 

considerable increase because basal activity represents ~90% of brain metabolism 

(Magistretti 2006). 
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The eCB anandamide has an antagonistic relationship with Aβ which appears to be 

bi-directional: in vitro Aβ-toxicity is prevented by anandamide in human cell lines 

(Milton,  2002),  and  vice  versa,  Aβ-treatment  decreases  anandamide  levels  in  C6  

rat astroglioma cells (Esposito et al. 2007). Accordingly, anandamide levels decrease in 

the AD brain and inversely correlate with Aβ levels (Jung et al. 2012). COX-2 is a major 

metabolizing enzyme for anandamide in the mouse brain (Glaser & Kaczocha 2010) 

and β-amyloidosis induces COX-2 expression in astrocytes (Giovannini et al. 2002)  and 

in AD-affected neurons; this renders COX-2 inhibition helpful to decrease the rate of 

incidence or to slow the progress of AD (Berk et al. 2013).  

Our results suggested that COX-2 inhibition by its selective antagonist, DuP697 

(Gierse et al. 1995), facilitated glucose uptake via CB2R activation which was observed 

in the WT mice but not in the TgAPP mice. This pharmacologic intervention was also 

sensitive to the selective CB2R antagonist AM630. This suggests that anandamide levels 

were (physiologically) suppressed by COX-2 only in the WT mice according to previous 

reports (Glaser & Kaczocha 2010; Pamplona et al. 2010; Straiker et al. 2011). It is hence 

more likely that the synthesis rather than the metabolism of anandamide is altered in 

TgAPP mice. In anterior studies, where TgAPP 2576 mice were orally treated for four 

months with the CB2R-selective agonist JWH133, AD phenotype was attenuated, 

including recovery from memory impairment and tissue pathology and the 

normalization of pathologically increased COX-2 levels (Martín-Moreno et al. 2012). 

Furthermore, the dual FAAH and FLAT inhibitor, LY2183240 lacked effect on glucose 

uptake, indicating that either the uptake of anandamide or its metabolism by FAAH do 

not play a significant role in cerebral glucoregulation in the WT mice. Indeed, 

anandamide production in cortical structures requires the concurrent stimulation of 

both NMDA and acetylcholine receptors (Stella & Piomelli 2001), both of which 

become hypofunctional with β-amyloidosis (e.g. AD) (Pavía et al. 1998; Giovannini et 

al. 2002), thus prompting an impaired anandamide synthesis. This may explain why 

COX-2 blockade is not capable to trigger glucose uptake in TgAPP mice (Figure 14). 
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Figure 14. Schematic diagram of the hypothetic glucoregulator control of anandamide in healthy 

rodents and under β-amyloidosis. Anandamide is produced in neurons upon muscarinic and NMDAergic 

stimuli, but is also metabolized rapidly by astrocytic COX-2. Thus, COX-2 blockade can trigger CB2R 

activation and glucose uptake in the healthy brain tissue. 

Since there was a lack of effect by the CB2R antagonist, AM630 in WT mice, this 

suggests a lack of tonic stimulation of glucose uptake by these receptors. Together 

with our others results, it is suggested that the tonic stimulation of glucose uptake is 

due to the basal metabolism of anandamide by COX-2. Hence, if Aβ accumulation 

impairs anandamide synthesis it will have no direct consequence on basal glucose 

uptake rates - and this is what we observed in both the chronic transgenic mouse and 

the Aβ-injected rat model. There was no difference in glucose uptake between control 

and young adult rats previously treated with Aβ, indicating that the glucoregulator role 

of CB2Rs was age or strain/species-dependent. The CB2R activation by JWH133 (1 µM) 

increased glucose uptake in young adult CD-1 mice, similar to the middle-aged 

C57Bl/6J mice. In control young Wistar rat, it was observed that a concentration of 1 

µM of JWH133 had no effect and only a higher concentration (10 µM) stimulated 

glucose uptake, indicating some species’ differences. 

CB2Rs are present in most brain cell types, including activated microglia and 

astrocytes controlling neuroinflammation (Halleskog et al. 2011; Ashton & Glass 2007), 

and astrocytoma, inhibiting its growth (Sánchez et al. 2001; Cudaback et al. 2010). 

These receptors are also expressed in neurons (Atwood & Mackie 2010) and they are 

present in cortical, hippocampal, brain stem, striatal and other neurons, either in the 

soma or in the nerve terminals, modulating neuronal communication (Van Sickle et al. 

2005; Lanciego et al. 2011; Andó et al. 2012; Callén et al. 2012; den Boon et al. 2012). 
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However, the cellular site where CB2R exert their glucoregulatory actions remains to 

be defined. Our results indicated that CB2R activation by both agonists JWH133 and 

GP1a, increased 2-NBDG uptake in hippocampal slices of young adult C57Bl/6 mice. 

This 2-NBDG uptake increase was mainly concentrated in astrocyte-rich zones of the 

hippocampus, i.e. strata lacunosum, radiatum, and moleculare than in neuronal cell 

body-rich zones such as the strata pyramidale and granulare. This supports previous 

studies reporting that 2-NBDG is preferentially taken up by astrocyte-rich areas than 

neuronal areas (Jakoby et al. 2013), although it can be taken up by both neurons and 

astrocytes in culture (Abeti et al. 2011). This result does not exclude a glucoregulating 

role for neuronal CB2R. Hence, CB2R may either directly stimulate glucose uptake by 

changing intracellular calcium waves and the activity of the circuitry (den Boon et al. 

2012) or CB2R may rescue CB1R-mediated suppression of glucose uptake since CB1R 

activation attenuates glucose metabolism in both astrocytes and  neurons (Duarte et 

al. 2012) and CB1R and CB2R form heterodimers in the brain, exerting negative cross-

talk on their common signaling pathway (Callén et al. 2012). Further studies should 

also detail the mechanisms underlying this CB2R glucoregulation in brain.  

Our results further support the idea of CB2R agonists as a novel class of nootropics 

since glucose facilitates cognition and memory in human (Messier 2004), and 

metabolic boosting alleviates the cognitive symptoms of dementias (Branconnier 

1983). These receptors have also gained attention as attractive therapeutic targets for 

the regulation of food intake, eating disorders, pain management and immune system 

modulation (Ishiguro et al. 2010; Atwood & Mackie 2010).  

The advantages of therapeutic targeting CB2Rs over the manipulation of the most 

abundant CB1Rs are the lack of psychoactivity of CB2Rs. A long-term exposure to CB1R 

agonists triggers different adverse psychoactive effects in different brain cells, whereas 

CB2Rs activation appears to affect specific targets and processes (Ashton & Glass 2007; 

Atwood & Mackie 2010; Pertwee 2012). Another advantage is due to the expression 

changes in disease models: cortical CB1R density does not increase or even decreases 

in AD (Ramírez et al. 2005; Mulder et al. 2011; Solas et al. 2013) whereas CB2Rs density 

increases in AD and Down-syndrome, as well as in vitro β-amyloidosis (Esposito et al. 

2007; Ruiz-Valdepeñas et al. 2010; Halleskog et al. 2011; Solas et al. 2013). This likely 
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represents a self-defense process as CB2Rs activation confers neuroprotection in 

several experimental models (Ramírez et al. 2005; Esposito et al. 2007; Ashton & Glass 

2007; Ruiz-Valdepeñas et al. 2010; Martín-Moreno et al. 2012).  
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Chapter 6. Conclusions 

In these two lines of investigations we addressed the multifaceted role of the 

endocannabinoid system in the regulation of cerebral glucose uptake. The ECS is 

deeply involved in the control of food intake and food-induced satiety, e.g. through the 

modulation of NAc activity. Moreover, insulin is now being suspected to mediate 

feeding-related reward, and thus, may create a postpandrial feedback mechanism. 

Hence, we wanted to investigate whether insulin affects (increases) accumbal glucose 

uptake and if this purported action of insulin was dependent on local CB1R signaling. 

Our results indicate that these were indeed the case. Interestingly, CB1R activation 

counteracted the stimulation of glucose uptake, i.e. it produced a negative effect, and 

the endocannabinoid likely to be involved in CB1R activation appeared to be 2-AG. 

Interestingly, these findings were fully complementary in the hippocampus, where 

the other cannabinoid receptor, the CB2R and the another major endocannabinoid, 

anandamide were found to be involved in the control of glucose uptake. Their effect 

was positive, corresponding to the stimulation of glucose uptake. 

Altogether, these indicate that both (in)direct CB1R blockade and (in)direct CB2R 

activation may prove to be beneficial to combat impaired brain functions involving - in 

part - insulin resistance, such as type-2 diabetes and AD. To explore these possibilities, 

additional studies are necessary. 
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