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“Science! true daughter of Old Time thou art! 

Who alterest all things with thy peering eyes. 

Why preyest thou thus upon the poet's heart, 

Vulture, whose wings are dull realities? 

How should he love thee? or how deem thee wise? 

Who wouldst not leave him in his wandering 

To seek for treasure in the jewelled skies” 

 

 

 

 

 

“Sonnet: To Science” 

 

Edgar Allan Poe 
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Abstract 

 

A fructose rich diet has been known to have nefarious effects on both mice and 

humans. However, the effects of this diet upon the intestine and surrounding tissues are 

still unclear. The intestine and the liver are the only organs that absorb fructose directly 

into metabolic processes, and are tightly connected via bile duct and hepatic portal vein, 

which means they both influence each other in the process, forming the intestine-liver 

axis. This connection makes this axis susceptible to inflammatory and metabolic changes. 

The present work intends to show how a fructose rich diet can affect the intestine’s 

permeability, and how a change in permeability can affect the expression of certain 

proteins in liver in mice. 

 In this study we compared a fructose rich diet versus normal chow over the course 

of three months. Intestinal permeability was evaluated by gavaging a fluorescent probe 

(FITC-dextran) into fasting mice. The amount of probe present in blood was correlated 

with permeability. Protein expression levels in liver were quantified by Western blot, in 

which peroxisome proliferator associated receptor alpha and beta, tumor necrosis factor 

alpha and glucose transporter 2 were measured. 

Intestinal permeability in high fructose fed mice was consistently and significantly 

higher than in the control mice in all time points. The data also suggests that there is an 

adaption of the intestine to the diets, as both control and experimental group have an 

increase in permeability until week 6, but both had a significant reduction in this value at 

week 12, which would mean that the intestine recovered some of its integrity. Western 

blot in the liver revealed an increase in cytokine expression (tumor necrosis factor alpha) 

as well as fructose associated transporters (glucose transporter 2). Expression of anti-

inflammatory nuclear receptor peroxisome proliferator associated receptor alpha was 

decreased while its beta form was unchanged. 

 In this work it was possible to conclude that a fructose rich diet damages the 

intestine, which leads to a higher intestinal leakage than a regular diet would. Such 

increased leakage releases toxins and metabolites into the blood stream, directly affecting 

the liver, resulting in an increase in inflammation and fructose transport.  
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Resumo 

 

A dieta rica em fructose é conhecida por causar efeito nefastos em ratos e em humanos. 

Contudo, os efeitos desta dieta no intestino e nos orgãos circundantes são ainda pouco 

claros. O intestino e o fígado são os únicos orgãos que absorvem fructose directamente 

para os seus processos metabólicos, e estão intrisecamente ligados entre eles pela vesícula 

biliar e pela veia portal hepática, o que significa que ambos se influenciam um ao outro 

no processo, formando assim o eixo intestino-fígado. Esta conecção torna este eixo 

susceptível a mudanças inflamatórias e metabólicas. O presente trabalho predispõe-se a 

mostrar de que forma é q uma dieta rica em fructose pode afectar a permeabilidade 

intestinal, e como é que uma mudança de permeabilidade pode afectar a expressão de 

certas proteínas nos fígado de ratinhos. 

 Neste estudo comparou-se uma dieta rica em fructose contra uma dieta normal no 

decorrer de três meses. A permeabilidade intestinal foi avaliada através da gavagem de 

uma sonda fluorescente (FITC-dextran) em ratinhos em jejum. A quantidade de sonda 

presente no sangue foi correlacionada com permeabilidade. Os níveis de expressão de 

proteína foram quantificados por Western Blot, nos quais foram medidos os níveis dos 

receptores associados a proliferação de peroxissoma alfa e beta, factor de necrose tumoral 

alfa e o transportador de glucose 2. 

 A permeabilidade intestinal dos ratinhos alimentados a dieta de fructose foi 

consistemente e significativamente mais alta que a do grupo controlo em todos os pontos 

temporais. Estes dados sugerem que há adaptação do intestino às dietas, visto que tanto o 

grupo de controlo como o grupo experimental tiveram a sua permeabilidade aumentada 

até à semana 6, mas ambos tiveram uma redução significante desse valor na semana 12, 

o que significa que o intestino recuperou alguma da sua integridade. Western blots no 

fígado revelaram que houve um aumento na expressão de citoquinas (factor de necrose 

tumoral alfa), tal como no transportador associado a fructose (transportador de glucose 

2). A expressão do receptor nuclear anti-inflamatório associados a proliferação de 
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peroxissoma alfa foi reduzida, enquanto que os valores da sua forma beta se mantiveram 

inalteráveis. 

Neste trabalho foi possível concluir que uma dieta rica em fructose danifica o 

intestino, o que vai levar a mais “vazamento” intestinal do que uma dieta normal. Tal 

aumento de permeabilidade vai corresponder a um aumento de toxinas e metabolitos na 

corrente sanguínea, afectando directamente o fígado, resultando num aumento em 

inflamação e em transporte de fructose. 

 

Palavras chave: dieta rica em fructose; permeabilidade intestinal; receptores nucleares 

hepáticos;



1 

 

 

1. Introduction 
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1. Introduction 

 

1.1 Fructose in diet & Consumption 

 

 Fructose is a sugar that is naturally present in fruit and is also widely used in 

preserved food and sweetened beverages.  Due to the increased availability and use of 

high-fructose corn syrup, fructose consumption in Western countries is rising at an 

alarming rate. A diet rich in fructose has been shown to provoke adverse alterations in 

carbohydrate and lipid metabolism in both animal models and humans. To date, the 

adverse effects of high fructose consumption have been explained in terms of its direct 

effects on hepatic metabolism.  However, high fructose consumption may also indirectly 

influence hepatic metabolism through hitherto undefined effects on the intestinal 

microflora. 

High fructose corn syrup is a cornstarch derived product.  Glucose results from 

hydrolysis of starch and after isomerization of glucose, it is possible to obtain fructose. 

Before this syrup is complete it goes through chromatographic fructose enrichment, 

which will make this 90 % of this syrup rich in fructose1,2. 

Nowadays, fructose is present in many types of food as a sweetener and its usage 

contributes to higher sugar diets.  In the United States of America from 1978 to 2003 3 

the consumption of fructose increased 17%, replacing sucrose as one of the main 

sweeteners (sucrose availability in food supply decreased about 32%). It is usually added 

in non-alcoholic beverages, which are the main source of fructose intake, particularly in 

children and young adults. In weight terms, this translates into an amount of 69 kg of 

fructose consumed per capita per year4–6 . Fructose and sugar sweetened beverages have 

a high impact on health , and can lead to hypertriglyceridemia and other metabolic 

syndromes7–9. 

 

1.2. NAFLD:  an important outcome of high fructose consumption 
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 Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease which is 

characterized by a diagnosis of excessive triglyceride accumulation in the liver as 

measured by liver biopsy or magnetic resonance spectroscopy 10–12.  The incidence of 

NAFLD has risen in line with a steep rise in fructose consumption, hence excessive 

dietary fructose intake is highly implicated as a risk factor. NAFLD is also associated 

with both obesity and insulin resistance13–15 and is considered to be an early milestone 

toward development of Type 2 diabetes.   

The overall incidence of NAFLD in obese and diabetic individuals is between 60 

and 80 %, rising to near 100% in morbidly obese patients16. Both NAFLD and obesity 

are associated with systemic and hepatic insulin resistance17,18.  Peripheral tissues 

contribute to hepatic lipid overload and insulin resistance by increased release of non-

esterified fatty acids and pro-inflammatory factors into the blood stream 19,20,21 . NAFLD 

can also act as a gateway to more severe liver disease, and can eventually progress to 

nonalcoholic steatohepatitis (NASH), which is a condition in which there is lobular 

inflammation as well as elevated fat deposits of the liver22, which can be diagnosed via 

biopsy23.  NASH can further progress into cirrhosis, which is characterized by extensive 

fibrosis of the liver and overall loss of hepatic function24. 

While NAFLD disease presents similar symptoms to the initial stages of alcoholic 

fatty liver disease 25,26, it is considered to be independent of alcohol intake27.  However, 

despite an absence of ethanol intake, it is possible that the liver could be exposed to 

intestinal ethanol generation via bacterial fermentation (see later section).  The extent to 

which this could contribute to NAFLD pathology is not known.  

Excessive fructose intake can have negative effects on the liver through direct and indirect 

ways27.  Direct mechanisms include the generation of toxic intermediary metabolites, and 

a temporary decrease in adenosine-triphosphate (ATP) levels by fructokinase and 

triokinase activites28.  As will be subsequently discussed, indirect mechanisms include an 

increased inflammatory response that may originate from alterations in intestinal 

microflora and their interactions with enterocytes.  Also, high fructose intake (coupled 

with intestinal malabsorption) may result in altered production of fermentative 

metabolites by intestinal bacteria, including possibly ethanol.  Metabolite and 

inflammatory factors act synergistically to promote hepatic lipid accumulation and insulin 

resistance. 
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1.3 Fructose uptake & metabolism  

Fructose is initially absorbed passively into the enterocytes (eukaryotic cells that share 

the intestine with bacteria and fungi). The enterocytes are the intestine’s epithelial cells 

whose function is to absorb nutrients and to send them to the bloodstream, through the 

intestine-blood barrier29. Fructose is carried to the blood stream via glucose/fructose 

facilitated transporter 5 (GLUT5) which is a low affinity high capacity bi-directional 

fructose transporter, and GLUT2, another hexose transporter, also present in the 

membrane of enterocytes30,31.  Under-expression of intestinal GLUT5 is associated with 

malabsorption of fructose30. Fructose can also be metabolized in the intestine prior to 

intestinal absorption and may 1) result in increased levels of potentially harmful bacterial 

fermentation products such as ethanol and 2), alter bacterial numbers and species 

distribution that constitute the intestinal microflora. Since the intestine is one of the 

primary nutrient absorption source 32, the type of nutrients that are absorbed affect the 

whole human body 33–38.  

 

The hepatic portal vein drains the intestinal bed and directly delivers the absorbed 

nutrients to the liver.  Absorbed fructose is taken up by the liver via GLUT5 transporters.  

Following absorption, fructose is phosphorylated by fructokinase to make fructose-1-

phosphate.  Expression of this enzyme is up-regulated by fructose, so an increase in 

fructose uptake results in increased fructokinase activity. Fructose-1-phosphate is 

metabolized by aldolase to make dihydroxyacetone phosphate and glyceraldehyde.  This 

latter metabolite can be phosphorylated via triokinase to form glyceraldehyde 3-

phosphate and enter glycogenesis. Both glyceraldehyde and dihidroxyacetone phosphate 

will form  of these will form a pool of triose phosphate that can be converted to pyruvate, 

which in turn is be able to form acetyl-CoA (which can be further metabolized in the 

Krebs cycle) and citrate inside the mitochondria . 

Unlike glucose metabolism, the uptake of fructose in the liver bypasses two of the 

main rate-determinant enzymes in hepatic glycolysis, glucokinase and 

phosphofructokinase. Glucokinase is an insulin sensitive high flux controller for 

gluconeogenesis in the liver39, that can also mediate the coupling of glycolysis to 
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mitochondria at low glucose levels 40. This kinase converts glucose to glucose-6-

phosphate. Its activity is not affected by the presence of glucose-6-phosphate and it has 

low affinity for glucose.41 Phosphofructokinase is an unidirectional enzyme which 

converts fructose-6-phosphate, that comes from normal glycolytic metabolism, into 

fructose-1, 6-biphosphate. This reaction is crucial in glycolysis, and can be inhibited by 

ATP and citrate42 . Phosphofructokinase has also been reported to interact indirectly with 

glucokinase, as fructose-6-phosphate can repress this enzyme, through interaction with 

glucokinase receptor protein43. Another important factor that distinguishes fructose 

metabolism in the liver from the glucose one is the different insulin dependence, since 

insulin is the main inducer of phosphofructokinase and glucokinase 36,44,45. 

The uptake of fructose by the liver can also lead to increased hepatic 

gluconeogenic and lipogenic fluxes, which can disrupt the liver’s function in regulating 

blood glucose and triglyceride levels. Gluconeogenesis is sustained by the inflow of triose 

phosphate products of fructose catabolism46.Thus, following a bolus of fructose, plasma 

glucose levels show a rapid increase, reflecting an increase in endogenous glucose 

production that is fuelled by gluconeogenesis from fructose36,47  

Fructose can also contribute to the hepatic glycogenesis through an indirect 

pathway, which initially involves phosphorylation of fructose into fructose-1-phosphate. 

Fructose-1-phosphate will be cleaved into glyceraldehyde and dihydroxyacetone 

phosphate. After glyceraldehyde is phosphorylated to glyceraldehyde-3-phosphate, it will 

be joined with dihidroxyacetone to make fructose-1,6-biphosphate. This reaction will be 

followed by formation of glucose-6-phosphate and end in the formation of glycogen via 

glucose-1-phosphate and UDP-glucose46 . 

The stimulation of hepatic de-novo lipogenesis is another important change that 

is attributed to high fructose consumption. Metabolism of its triose phosphate 

intermediates to acetyl-CoA is postulated to increase the supply of acetyl-CoA precursors 

for the de novo lipogenesis pathway.  In addition to supplying the carbons for de novo 

lipogenesis, alterations in hepatic sugar phosphate intermediates and other metabolites 

resulting from fructose metabolism may also upregulate the transcription of novo 

lipogenesis enzymes36,48.   Increased lipogenic activity is coupled to increased export of 

very low density lipoproteins (VLDL) resulting in a rise of plasma VLDL levels49–51.  

VLDL are TAG-rich lipoproteins that are highly atherogenic and are well known risk 
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factors for cardiovascular disease.  Increased VLDL flux is also associated with the 

accumulation of triglycerides in tissues other than adipocytes, such as skeletal muscle and 

pancreas.  These so-called ectopic lipid pools are characteristic of dyslipidemia and are 

tightly associated with the development of insulin resistance in the afflicted tissue.  

Based on its effects on hepatic intermediary metabolism, an excess of fructose is 

expected to increase hepatic triglyceride and VLDL production. Given this, it is plausible 

to hypothesize that high fructose consumption induces insulin resistance in part via 

alterations in hepatic and systemic lipid metabolism52,31,36,47,53,54. 

 

 

 

Figure 1: Overview of the reactions that fructose can partake in the cell. Adapted from 

Tran et al, 2009 55. 

 

Insulin resistance may be conferred by hereditary and by environmental factors.  

Environmental mechanisms include epigenetic modifications of gene expression 56 and 

over-nutrition 34,35,57,58.  Altered nutrient intake may also induce changes in the species 
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distribution and metabolic activity of intestinal microbiota which may in turn result in 

exposure of the liver to agents that promote the development of insulin resistance 32,38,59–

62.  Since the focus of this thesis is to study the promotion of fructose-induced hepatic 

insulin resistance via mechanisms likely related to intestinal microbial activity, intestinal 

microflora and their interactions with intestinal function will be discussed in more detail. 

The intestine can be considered as a system composed of two main metabolic 

parts: enterocytes and microbial flora. Each has a specific type of metabolism, and both 

have access to a wide range of nutrients. The intestine’s commensal flora and the 

enterocytes are separated by a mucus layer that protects the enterocytes from bacterial 

endotoxin, which among other things, are highly pro-inflammatory.  The interplay 

between flora and enterocytes can dictate our susceptibility to diet-induced complications 

such as insulin resistance (Figure 2).   

 Enterocytes are polarized epithelial cells connected between each other by tight 

junction, whose main function is to transfer nutrients including fructose30.as well as 

fasting inducing factors into the blood stream.. Absorption is mediated by two different 

mechanisms: passive diffusion and protein-mediated transport63. 

Since the intestine is the gateway for nutrient absorption into the bloodstream, it 

is hypothesized that intestinal microbial metabolic activity can have effects on 

metabolism of the host tissues and organs.  For example, short-chain fatty acids such as 

acetate and butyrate that are generated by microbial fermentation contribute to muscle 

energy metabolism; acetate can also potentially sustain hepatic lipogenesis, while other 

products (like L-α -Lysophosphatidylinositol64) may activate G coupled protein receptors 

(GPR) that are connected with obesity and insulin resistance 60,64,65.  

An output “burst” of fatty acids from the intestine can also lead to the production 

of cytokines like fasting induced adipose factors (FIAF), which are involved with energy 

homeostasis66,67  through the regulation of fat storage. The intestine also receives lipid 

products from whole body catabolism of sterols via the bile circulation.  In addition to 

serving as emulsifying agents for solubilizing dietary triglycerides, these products can 

also be metabolized by intestinal bacteria to form conjugated bile acids, which can be 

recirculated into the host. 
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Bile is synthetized in hepatocytes and is stored in the bile ducts before being 

excreted into the gallbladder, where it stays until the gallbladder contracts after meals to 

pump bile acids into the intestine through the common ducts to mix with the food present 

there. Bile is a micellar aqueous solution of salts, bilirubin, bile acids and proteins, 

phospholipids and cholesterol. Bile acid salts are reabsorbed in the small distal bowel, 

directly into the portal vein to be taken up by the liver68. It is important to note that bile 

can help break down cholesterol into cholic and chenodeoxycholic acid, which can be 

used to produce more bile, but its main function is to act as physiological detergent for 

transport and absorption of nutrients69. 

Excessive fructose may lead to higher lipid output from the liver to the 

gallbladder, which in turn will emulsify these lipids (with bile) and increase the efficiency 

of intestinal lipid absorption 36,44,70  

 

1.5 Intestinal microflora 

 

 

Figure 2 Schematic representation of how the muscle, liver and adipocytes are dependent 

on the intestinal metabolic reactions. SCFA stands for short chain fatty acids, and FIAF 

stands for fasting induced adipose factors Adapted from Cani et al, 2011, 49. 
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Intestinal microorganisms account for nearly 90 % of the total body cell number 

61 .The gastrointestinal organisms have different distributions in this system, as each 

organ has a different micro environment and different metabolic function. The stomach 

has the least bacteria, with 103 colony forming units (CFU) per gram of gastric juice. The 

small (or upper) intestine (duodenum and jejunum) also have a low count of bacteria, with 

about 102-104 CFU per gram of content, while increasing greatly in number as you reach 

the end of the gastrointestinal system, with ileum accounting for 1010 CFU per gram and  

the colon harbouring around 1010-1012 CFU per gram71 .If there is an increase in the 

number of bacteria in the small intestine it can cause small intestine bacterial overgrowth, 

which is an unhealthy condition associated with malabsorption72. This condition can 

happen in cases where fructose cannot be absorbed correctly in the small intestine so 

colonic bacteria have to metabolize more fructose, since metabolization of fructose by 

bacteria will make hydrogen, carbon dioxide and short chain fatty acids 73,74. These 

bacterial products will cause enterocyte luminal distention and contribute to the nausea, 

abdominal discomfort and gas formation that are felt in small intestinal bacterial 

overgrowth. 

Their principal sources of energy include simple and complex carbohydrates.  For 

clearance of simple carbohydrates such as fructose and glucose, intestinal absorption 

competes with microbial metabolism. Impaired absorption of carbohydrate is therefore 

expected to increase its availability to intestinal bacteria.  In the case of fructose, intestinal 

GLUT5 deficiency can limit its absorption and potentially provide intestinal bacteria with 

fructose for fermentation.  This may explain symptoms of discomfort and excessive gas 

production in GLUT5-deficient individuals 30. Complex carbohydrates are not digested 

by endogenous intestinal enzymes, nor are they transported into the bloodstream. 

Complex carbohydrates are fermented by colonic bacteria to make SCFA, of 

which butyric acid, propionic acid, and acetic acid are the main products75. Acetic acid 

can cross the intestinal-blood barrier and reach the portal vein, where it can be absorbed 

into the liver to be used in the form of acetyl-CoA76. This and other SCFA derived 

products can then be used in the liver as precursors for Krebs cycle oxidation, 

lipogenesis77, and gluconeogenesis 78. 
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For simple carbohydrates, the Crabtree79 effect happens whenever bacteria80,81, 

yeast82–84 and even eukaryotic cells85,86 have access to high levels of sugar , and 

metabolize them to ethanol. 

 

 

 

Figure 3 Schematic representation of the Crabtree effect in microorganisms. "1" 

represents glycolysis pathway. "2" represents Entner Doudoroff pathway. "3" represents 

methyl glyoxal bypass/glyoxilate system. Adapted from Pronk et al , 1996,135 

 

In addition to glycolysis, bacterial also possess the Entner Doudoroff and glyoxal 

bypass pathways (Figure 3). The Entner Doudoroff87,88 pathway is a prokaryote exclusive 

pathway that acts as an alternative way (for some bacteria) to convert glucose to pyruvate. 

This pathway is usually associated with bacteria that lack some of the glycolytic enzymes, 

and can allow bacteria such as E. coli to use fructose as sole carbon source89. The methyl 

glyoxal pathway is also a glycolysis bypass90, which is mostly found in prokaryotes. 
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 The intestine is mostly filled with gram negative bacteria, its main strains are 

specifically Bacterioidetes and Firmicutes (this type has gram positive and negative 

strains). These two strains have an impact on how the gastrointestinal system behaves 

because they are envolved with intestinal mucosa immunity development and help the 

intestine in controlling bacteria by stimulation of the mucosa to produce 

immunoglobins91. It has also been reported that gram-negative bacteria are the main 

source of endotoxin from the intestine92. Due to the great number of gram negative 

bacteria in this system and due to the tight control of the balance between inflammation 

and symbiosis, any alteration in bacterial or enterocyte metabolism will have 

repercussions on the intestine itself. 

 

1.5 Intestinal permeability 

 

Intestinal permeability is now considered as an important factor in the 

development of hepatic insulin resistance. The quantity and type of leaked microbiota 

(species, metabolites and toxins) may trigger inflammatory and other processes in both 

enterocytes and adjacent tissues and organs, such as visceral fat and liver.. There have 

already been some studies on the effects of high-fat diet on inflammation of the intestine 

and surrounding tissues in mice 33–35,37,38,57,93.  They indicate that high fat feeding per se 

does not completely explain the observed inflammation, However it is implied that 

altering the intestinal permeability conjugated with endotoxin leakage should help justify 

the low grade inflammation set on metabolic diseases like NAFLD26,94–96 and insulin 

resistance 32,62,97–102.  

Non-invasive intestinal permeability assays have been used since the 1970’s and 

103,104,105.  All these tests use the same principle: oral administration of a large-molecular 

weight substance that is not metabolized in the intestine and is not transported by the 

normal enterocyte nutrient transporters, followed by its detection in blood or urine.  The 

substance may be tagged with a fluorescent group to aid its detection by fluorescence 

emission spectroscopy, for example FITC-dextran59,105 Alternatively, the substance may 

be identified and quantified by HPLC or NMR spectroscopy106.  In any case, the higher 

the levels of the substance measured in blood or urine, the greater the degree of intestinal 
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permeability.  While these methods do not provide absolute values of intestinal 

permeability, their non-invasive nature means that they can be used to assess relative 

changes in permeability following dietary or other interventions. 

Endotoxin leakage and generation  of an inflammatory response in surrounding 

sites known to be influenced by diet 65,94,107.  One possible explanation is that a particular 

diet modifies the species and distribution of bacteria that in turn results in an increased 

permeability to endotoxin leakage 59,62,108. 

 

 

Figure 4 Overview of the diet´s effect on the intestine and it´s inflammatory properties. 

Adapted from Burcelin et al 11 

 

Figure 4 illustrates some proposed mechanisms that link diet-induced changes in 

intestinal bacteria to systemic inflammation.  Increased intestinal permeability can allow 

translocation of endotoxin or even entire bacteria into surrounding tissues including liver, 

mesenteric fat and adipocytes thereby contributing to inflammation and metabolic 
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deregulation of these tissues94,95,107,109–117.  While the extent of bacterial or endotoxin 

translocation and resulting systemic response are far below the catastrophic effects 

associated with sepsis or intestinal perforation, it is becoming increasingly clear that the 

sub-acute but chronic inflammation response is a key factor for promoting hepatic insulin 

resistance. 

  

1.6 Endotoxin and inflammation mechanisms 

 

The main endotoxin produced by the intestine´s microbiota is LPS. LPS is a 

powerful endotoxin produced by Escherichia coli and other gram negative bacteria  118,119. 

LPS is considered to be the main endotoxin excreted by the intestine´s flora and is known 

to induce Toll like receptor 4 (TLR4) 111,120–123 stimulates inflammation in various tissues 

such as adipocytes 96,114,115,124,125, kidney 111, pancreas98,126–129 and is nowadays 

considered to contribute to development of insulin resistance 32–34,38,56,57,59,62,98–102,130,131, 

NAFLD27,126,132 and cirrhosis26,107,111. The chronically elevated levels of circulating 

endotoxin constitutes a low-grade endotoxemia119,126,133,134, and has been associated with 

over nutrition.  

Toll Like Receptors (TLR) are pathogenic “sensors” found in vertebrates that 

modulate inflammatory response62, and control the host´s innate response, which are 

usually present in macrophages and dendritic cells. TLR 4 is a specific receptor for LPS  

62,121, (and its co receptor CD14) (figure 5), that triggers release of cytokines, such as 

TNFα, IL-6, SOCS-3 and SOCS-6. TLR4 is expressed in adipocytes, hepatocytes62 and 

Kupfer cells135  
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Figure 5 Overview of the TLR4 activation pathway by LPS recognition. Adopted from 

Jerala et al 156 . 

After its release from intestinal bacteria, LPS exists as multimolecular aggregates.  

Lipid binding proteins (LBP’s) “dismantle” these aggregates and transfer individual  LPS 

molecules to CD14 136 and MD-2 (which binds exactly one LPS molecule per MD-2). It 

is important to note that LBP’s are also involved with chylomicron metabolism, as both 

LPS and chylomicron have lipid A in their structure. There is also the possibility of a 

trimeric CD14:LPS:MD-2 complex as the final product of this pathway118. Activation of 

TLR4 is mediated by the CD14:LPS and MD-2:LPS complexes which leads to the 

inflammatory response. 

The capacity of LPS to induce an immune response response is determined in part 

by the number of Lipid A “units” it contains. The higher the lipid A in LPS, the higher 

affinity it has to bind LBP 118,137 (Figure 5)  Theoretically, if there is excess lipid available, 

part of it may be converted into lipid A, which can be incorporated in LPS “assembly” 

thereby modifying its core and augmenting its inflammatory capacity.  Toll like receptor 
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activation is also associated with recruitment of other inflammatory factors, mostly 

interleukins and tumor necrosis factor alpha TNF-α) 138. The latter stands out since it is 

not dependent on macrophage activation to be produced (although macrophage activation 

also contribute). TNF-α, is associated with inflammation and is known to be involved 

with fructose induced metabolic syndromes 139.  However, since TNF-α secretion is 

triggered by a variety of factors, it is not known to what extent bacterial or endotoxin 

translocation contributes to elevated TNF-α levels in diet-induced insulin resistance.  

 

1.3 Nuclear Receptors: a link between inflammatory factors and metabolism 

 

 Nuclear receptors are a class of molecules that act directly on the cell’s nucleus 

and are tightly connected to metabolism. There are two main classes of these receptors: 

liver X receptors and peroxisome proliferator activated receptors.  Liver X receptors 

(LXR) are nuclear receptors associated with regulation of cholesterol and lipid 

metabolism140–146, They form heterodimers with Retinoic X receptors, and are also 

involved with peroxisome proliferator associated receptors147,148. However these 

receptors have a role that goes beyond metabolic regulation, as they are also implied in 

inflammatory response. The various isoforms of LXR 149, are known to be present in vital 

organs and cell types, specifically the liver, intestine, kidneys, adrenal glands, adipose 

tissue and macrophages 150. This also contributes to the idea that nuclear receptors are 

important “players” in lipid metabolism, as all of the above deal with high access to lipids. 

   LXR activation151 can happen by cholesterol and will lead to its efflux, until 

homeostasis is recovered. However in diseases like atherosclerosis this activation can be 

excessive in macrophages and lead to the downregulation of membrane cholesterol 

transporters and eventually lead to unhealthy lipid accumulation, this is what causes the 

formation of foam cells 140,152. 

LXR’s can a be activated via general inflammatory receptors, specifically 

interleukin receptors, toll like receptors and tumor necrosis factor receptor, the latter two 

are also activated by lipids 112,114,139,153,154. LXR also doubles as an anti-inflammatory 

mediator when activated by these receptors 140,141,144–146,151,155. This just shows that LXR 

as a nuclear receptor can adapt according to the activation it received, which ends up 
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being a double edged knife, because over stimulation can have different outcomes156. This 

can be seen in NAFLD, where it is known that LXR is expressed in abnormal levels 157. 

 

1.3.1 Peroxisome Proliferator Activated Receptors 

 

 Peroxisome proliferator activated receptors (PPAR’s) are orphan nuclear 

receptors, which are activated by free fatty acids142,158, and much like LXR’s they also 

deal with metabolism and inflammation. These receptors act as transcription factors that 

can induce changes in the expression of other genes when activated. It is known that there 

are different types of PPAR’s and that each one has a different function, besides being 

present in a different site, in table 1 we can see more details on the matter. 

Type of 

PPAR 

Site of expression Function References 

PPAR 

alpha 

Liver, kidney, heart, 

endothelial cells, skeletal 

muscle, macrophage 

Mediator of lipoprotein 

metabolism; anti-

inflammatory effector, 

control lipid homeostasis in 

macrophages 

149,159–161 

PPAR 

beta/delta 

Ubiquitously expressed Regulates inflammatory 

response, lipid metabolism 

and cell proliferation, can 

modulate insulin 

sensitivity. 

147,162–167 

PPAR 

gamma 

Adipose tissue, immune 

cells, dendritic cells, colon, 

spleen, smooth muscle, 

retina 

Adipose differentiation, 

lipid metabolism 

homeostasis, modulator of 

insulin action, in charge of 

anti-inflammatory action 

142,159,168–172 

 Table 1 Depiction of the PPAR types, location and function 

 Figure 6 shows a quick summary of how PPAR’s work in the cell, when 

inflammatory bursts like TLR are laid out, but these are not the only events that trigger 
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the PPAR’s. Lipid metabolism derivatives are one of the main activators of PPAR and 

each type of PPAR can be activated or repressed depending on what molecule binds to it. 

Leukotriene B4 and hydroxyeicosatetraenoic acid are known to successfully activate 

PPAR α, both these molecules come from arachidonic or linoleic acids after going 

through the cyclooxygenase and lipoxygenase pathways173–176 and acyl-CoA’s, which 

basically means that after going under oxidative metabolism these fatty acids may interact 

with PPAR, but most unsaturated fatty acids should be able to deal with at least one type 

of PPAR. PPARβ can be activated by 15-deoxy-prostaglandin and 15-HETE, 

prostacyclin, while PPAR γ is only known to be activated by 9-HODE 

(hydroxyoctadecadienoic acid) and 13-HODE. Co factor recruitment has also been 

described with the most studied one being rosiglitazone (an insulin sensitizer that also 

increases adiponectin171), that can act as an agonist for PPAR170,177,178. 

 

Figure 6 General representation of the PPAR pathways 

 

 Just like the liver X receptors, PPAR’s also form heteromdimers with RXR, this 

will lead to some competion for binding sites and it has been reported that they can even 

downregulate each others expression147. After the PPAR has had stimulation it will 

proceed to bind with the peroxissome proliferator response element (PPRE) sequence (in 
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the nuclei) and depending on the PPAR form it will act on different regions and help 

express diferent proteins179 (figure 7), PPAR β can even inhibit expression of the target 

genes for PPARα and PPARγ180,181.   

PPAR α is the most studied of this subfamily of nuclear receptors, and is known 

to promote expression of many proteins essencial for metabolic pathways, this can be 

particularly important in the liver. There are too many proteins regulated by this PPAR 

to mention here, but I will mention some of the most important. Regarding fatty acid 

metabolism , Acyl-CoA oxidase, one of the enymes that starts the β-oxidation process in 

acyl-CoA chains, ketogenic enzymes, fatty acid uptake genes (Abcd2 and Abcd3) , are 

related to PPAR α. Some mitochondrial uncoupling proteins and dehydrogenases are also 

expressed via PPAR α activation, as well as some lipogenic and some “major” fatty acid 

binding proteins like fatty acid binding protein 1 through 5. PPAR α can also help control 

lipoprotein pathways and lower fasting tryglicerydes and raise plasma high density lipids. 

Glucose and glycerol metabolism is also mediated by this receptor, as the genes for 

phosphoenolpyruvate kinase 1, pyruvate carboxylase and lactate dehydrogenase A are 

targets for PPAR α. These targets are just a small fraction of what PPAR α can interact 

with, it is also important to consider the regulation of bile acid production and amino acid 

metabolism are also a part of its many targets. 
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 Figure 7 General representation of PPAR activation 84  

Just as LXR’s, PPAR α has a strong connection with inflammatory targets, 

although its activity is far more anti-inflammatory than the remaining PPAR’s. Just like 

the metabolical aspect of PPAR α only a part of the inflammatory genes will be 

highlighted, as this receptor also acts as an important regulation factor for many of these 

genes. C-jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) 

both transcription factors associated with inflammatory response to cellular stress 70,162,182 

are inhibited by PPAR α. Fibronogen, C-protein, interleukin and TLR expression is also 

repressed by PPAR α activation183–185. As we can see PPAR is one of the best candidates 

for studying when considering diet induced liver damage, since it can stimulate fatty acid 

oxidation and downregulate hepatic inflammation. 

 PPAR β and γ action mechanisms are quite unclear at the moment, however there 

are some correlations that have already been made. PPAR β can act as a toxicity handler, 

and is known to protect the liver by regulating CD14, NF-kβ, calcium binding proteins, 

cyclin D1 and kinase signalling 162,186–189. PPAR γ is even less studied, as only indirect 

evidence for its function has been provided yet, and little is known of its target genes. 

However, its connection with adipogenesis has been proved168, as well as a relationship 

between this receptor and insulin sensitivity and beta-oxidation172,188.  Thus, LXR’s, 

PPAR’s and cytokines work hand in hand during alterations in metabolic and 

inflammatory states.  More generally, hepatic nuclear receptor expression feels the 

repercussions of altered intestinal microbiota.  

  

1.8 Objectives / Scope of this work 

 

 As seen in previous sections there is justification in considering the effects of a 

fructose rich diet on the intestinal-liver axis as an important contributor to the 

development of fatty liver disease and insulin resistance.  To date, indirect intestine-

mediated mechanisms of hepatic injury from high fructose feeding have been much less 

studied in comparison to those attributed to direct modifications of hepatic intermediary 

metabolism.  Therefore this study aims test the primary hypothesis that high-fructose 

feeding results in and increased intestinal permeability and the secondary hypothesis 
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that increased intestinal permeability is associated with a pro-inflammatory expression 

of hepatic nuclear receptors and cytokines.  
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2. Methods 
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2. Methods 

 

2.1 Mice keeping and diet 

 

In this study the experimental group mice were fed with 60 % fructose (the only 

sugar intake in this diet) and 40% of other nutrients for 12 weeks. This diet has a value of 

3,6 kcal for gram, and for each 100 calories we have 20,2 calories of protein, 66,8 calories 

of carbohydrates and 12,9 calories of fat. After the 12 weeks mice were sacrificed, that 

time frame was used to evaluate metabolic and physiological changes, as it is common to 

have mice dieting for this long in diet based studies26,93,96,105. The control group was 

composed of mice fed with normal chow, which contains the following in g per kg of 

chow: casein, 200 g/kg; L-cysteine, 3 g/kg; corn starch, 397,486 g/kg; maltodextrin, 132 

g/kg; sucrose, 100 g/kg; soybean, 70 g/kg; cellulose, 50 g/kg; mineral mix, 35 g/kg; 

vitamin mix, 10g/kg; choline bitartarate, 2,5 g/kg; tert-butylhydroquinone (antioxidant), 

0,014 g/kg. The mix in normal chow corresponds to 3,8 kcal/g , and for 100 calories it 

has 18,8 calories from protein, 63,9 calories from carbohydrates and 17,2 calories from 

fat, which means that even though this diet is different from the high fructose diet, both 

have nearly the same amount of calories from fat, protein and carbohydrates. The diet in 

the control group is the standard rodent “baseline” for metabolic and nutritional studies. 

 

2.2 Blood collection and Intestinal Permeability 

 

The intestinal permeability assay used in this work, is based in the method 

described by Cani in 2009 104. It consists on using a fluorophore molecule, FITC-dextran, 

which has a high molecular weight (4.4 kDa) to acess whether or not there has been 

intestinal damage. The FITC-dextran was gavaged to mice, and one hour later blood was 

collected from the tip of the tail, to be treated with PBS buffer and read on a fluorometer. 

The fundament behind this assay is that FITC-dextran is not able to cross the intestinal 

barrier and leak out into the blood current in a healthy situation, at least not in a 

quantifiable way 104. In a situation of intestinal leakage the probe will be able to get to the 

portal vein, and we are able to establish a relationship between fluorescence and leakage, 
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since higher concentrations of probe in the blood stream can be associated with higher 

leakage, which in turn correlate with a damaged intestinal mucosa. 

The mice were gavaged with 6,5 µg of Fluorescein isothiocyanate-Dextran (FITC-

Dextran), average molecular mass 4.4 kDa, after fasting for at least 4 hours. The mice 

rested for an hour before being subjected to infrared light (to cause vasodilation). With 

the aid of a surgical blade, the mice had their tail tip cut and 100 uL of blood was collected 

from it.  The blood samples were centrifuged at 13,000 relative centrifuge force (RCF) 

for 10 minutes. Afterwards the supernatant plasma was recovered (50 µL) and added to 

equal volume of phosphate buffered saline (PBS) buffer. 

These samples were transferred to a 96 well plate with clear bottom and read in 

the fluorometer. The excitation and emission wavelength were set at 425 nm and 535 nm 

respectively, for this is the setting used for fluorescence assays with FITC molecules 

59,122,190–192. The presence of FITC-dextran was quantified in each sample after obtaining 

a concentration curve of this molecule in blood (1:2 dilution),  prepared according to 

literature59. Calculation of intestinal permeability was done by calculating the 

concentration of probe in the mice’s blood, quantifying the probe for whole mice blood 

and then a comparison with the gavaged quantity. 

 

2.3 Tissue Collection 

  

 After three months of dieting the mice were sacrificed for organ collection. The 

mice were sacrificed at the start of the light period and were therefore in the early 

postabsorptive phase.  They were anesthetized with haloethanol and killed by cardiac 

puncture.  Liver was collected in aseptic conditions to avoid bacteria leakage, fat was 

scraped from the samples collected to ensure the least metabolite and protein 

contamination. The livers collected were kept in -80º C. 

 

2.4 Western Blots 
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 Western blot was used to evaluate the quantity and to identify proteins present in 

samples193–195, since it is a simple technique for obtaining intracellular protein expression 

levels, while quantifying them via fluorescence. 

 

2.4.1 Cell lysate preparation 

 

5 grams of liver for each sample were weighed and homogeneized in 400 uL of 

cold RIPA (radio immuno precipitation assay) Buffer. RIPA was prepared with 20 mM 

Tris HCl pH 7.4, 25 mM NaCl, 1% NP-40 (Nonidet P-40), 5 mM EDTA, 10 mM Sodium 

diphosphate (Na4P2O7), 10 mM Sodium Fluoride (NaF), 2 mM Sodium Vanadate 

Na3VO4, 10 μg ml-1 Aprotinin from bovine lung, 1 mM Benzamidine and 1 mM 

Phenylmethylsulfonyl fluoride (PMSF), (Sigma-Aldrich, St. Louise, MO, USA)) .  

Cell lysates were homogeneized 3 times at 13500 rpm on a ULTRA-TURRAX® 

T 25 basic, IKA®-Werke (Staufen, Germany) homogeneizer, to disrupt cellular structure. 

The next step was to centrifuge the samples at 13,000 g at 4ºC. The supernatant was 

collect and centrifuged again. This procedure was repeated for 2 times to make sure the 

liver’s lipids and other contaminants were properly discarded in the pellet. 

 

2.4.2 Protein Quantification 

 

The protein quantification of the lysates was assessed by the bicinchoninic acid 

assay196–198  (BCA assay).  This assay’s principle revolves around copper ion reduction 

(Cu2+ to Cu+) in an alkaline medium (figure 8). After copper was added to the protein in 

solution (in Cu2+ form), it made a blue colored compound, copper reduction occurred, 

and the Cu+ was detected by colometry via bicinchoninic acid.   
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Figure 8 Schematic representation of the BCA protocol. Adapted from Thermo Scientific 

Pierce's "Protein Assay Technical Handbook Version 2" 

 

Relative amount of protein expressed in the liver was quantified by Western Blot analysis. 

20 ug of protein was used in each Western Blot, except when using GLUT2 antibody, in 

which was used 5 µg of protein.  

 

2.4.3 SDS-PAGE 

 

 The Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is 

a commonly used method for observing protein mass differences on an acrylamide gel. 

This method is based around the SDS compound, which when mixed with proteins in 

solution will charge every protein in sample negatively, and make them have the same 

charge density, i.e. every protein will have the same negative charge per mass. 

Afterwards, the proteins are added to a gel and “run” against an electric field, which 

makes them migrate from negative to positive pole (in the gel) and separates them by 

mass, due to the SDS properties. 

 Before performing this technique the liver had to be prepared in order to be added 

to the acrylamide gel. Samples were unfrozen and diluted in Sample Buffer (  10% β-
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mercaptoethanol, 4 % SDS, 250 mM Tris pH 7,4 , 20% glycerol , bromophenol,blue, pH 

6,8) before being denatured at 95º C for 5 minutes.  

 In order to perform the SDS-PAGE protein separation a 12 % acrylamide gel was 

prepared (0,375 M Tris pH 8,8 ; 0,2 % SDS and 0,1 % 2-Acrylamido-2-methylpropane 

sulfonic acid (AMPS)) as a “running gel” and a 4 % acrylamide gel (“stacking” gel) (0,16 

M Tris, 0,1 % SDS,  0,05 % AMPS). The selected electric current for the proteins was 

130 V, and the gel ran vertically in the appropriate buffer (125 mM Tris, 0,96 M Glycine, 

0,5% SDS, pH 8,3)  for about 1 hour and a half, or until the bromophenol blue from the 

sample buffer had left the gel. 

 

2.4.4 Electric Transfer to PVDF Membrane 

 

 Afterwards the samples were transferred from gels to polyvinylidene fluoride 

(PVDF) membranes. This transference lasted for 1 hour at 100 Volts, and was mediated 

by transference buffer (100 mM CAPS pH 11). 

 

2.4.5 Antibody blocking and detection 

 

 The membranes were then washed with distilled water and blocked in 5% milk 

with PBS before incubating the primary antibody (GLUT2, PPARα and PPARβ diluted 

in 1:1000 while Tnf-α had a 1:500 dilution, all antibodies were in 5% milk) overnight in 

cold. Afterwards the membranes were washed, blocked and then incubated at room 

temperature with secondary antibody (1:5000 anti-rabbit) 

Antibody binding was revealed with chemoluminescence, using ECF as the 

luminescent molecule. The secondary antibody had alkaline phosphatase attached to its 

terminal, this way when ECF is added luminescence can be observed in the form of a 

yellow shade on the membranes and was revealed via Versa Doc model 3000 by BioRad, 

which also allows for relative protein expression quantification. 
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2.5.4 Results analysis 

 

All results are presented in a mean plus standard error of the mean (SEM) using 

Graph Pad, version 6 (GraphPad Software, San Diego, CA, USA). When comparing two 

groups (control vs. fructose rich diet) against the hypothesis that they are different the 

Mann-Whitney-Wilcoxon test was used. Differences were considered significant when p 

< 0.05. 
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3. Results  
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3. Results  

 

3.1 Weight Gain 

 

 Mice weight was controlled throughout the study, it was measured once each two 

weeks. In figure 9 we can see how weight varied between normal chow and fructose rich 

diet fed mice for 10 weeks of dieting, it is important to note that all mice were used for 

this measurement.  

 

Figure 9 Weight control of mice from the two diet groups for 10 weeks (N=6 per group) 

 

  While overall weight gain was not significantly different between the two groups, 

the fructose fed mice had a tendency not to gain weight over the first four weeks, but then 

showed comparable rate of weight gain over the last four weeks.  This difference may 

reflect some degree of metabolic adaptation to high fructose feeding.  
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3.2 Intestinal Permeability 

 

Figure 10 Representation of the intestinal leakage of FITC-Dextran through time with 

standard error mean. The number of animals used per group were 6. 

 

 Intestinal permeability was evaluated in 3 time points in mice, after two, six and 

twelve weeks of dieting (figure 10).  Intestinal leakage values for mice fed with control 

diet were residual, in agreement to results described by Cani in 2009 59 for this intestinal 

permeability assay.  In week 2 there was already a significant difference between control 

and high fructose diets, as the experimental group had values of leakage 37,32 ± 2,149% 

, while the control group had only 0,07448 ± 0,03576% (P < 0,0001). In week 6 this 

difference was more aggravated as the high fructose fed group had leakage in the 49,96 

± 9,884% , in contrast with the control group , whose leakage also rose, and had a value 

of 2,352 ± 0,01685% (P=0,0029). By week 12 the intestinal permeability of the high 

fructose diet had decreased, (27,01 ± 3,961%) but remained significantly higher than , the 

control group had a (0,8657 ± 0,4707% , p< 0,0001).  

 Changes in permeability appear to be associated with weight changes in mice. 

For instance, in week 2 we can see a slight decrease in the weight of both groups, but a 

significant change in leakage of FITC-dextran was observed in fructose fed mice at this 

time point, as well as in week 6 when leakage reached its maximum value, which 
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corresponds to a weight increase in both groups. However a decrease in leakage can be 

observed in week 12 to the lowest values in this study, which also matches the reach of a 

weight threshold in both groups. 

  

3.3 Western Blots 

 All results for Western Blots are the result of a repletion of 4 different experiments 

with all mice (N=6) for each group (high fructose diet vs. normal chow), and were tested 

against “Mann-Whitney” statistical test and “Student t-test”. 

 

PPAR α 

 

Figure 11: Representative Western blotting (six different mice from each group) showing 

the hepatic protein content of PPARα. Densitometry analysis of specific bands from all 

mice studied is shown. Values are expressed as a percentage relative to Dextrose (100 

%) and are means versus SD. Equal loading of the gels was as demonstrated by probing 

the membranes with an anti-β-actin polyclonal antibody. P value was 0,0290 for unpaired 

t-test. Proteins bands are shown at the right of the figure. 
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Expression levels of PPAR α (Figure 11) were decreased in the liver of fructose 

rich diet fed mice when compared with the control.  The levels obtained of PPAR- α in 

the experimental group were of 79,77 ± 3,120 (P=0,029) 

 

 

PPARβ 

 

 

Figure 12:  Representative Western blotting (six different mice from each group) showing 

the hepatic protein content of PPARβ. Densitometry analysis of specific bands from all 

mice studied is shown. Values are expressed as a percentage relative to Dextrose (100 

%) and are means versus SD. Equal loading of the gels was as demonstrated by probing 

the membranes with an anti-β-actin polyclonal antibody. P value was 0,0076 for unpaired 

t-test. Proteins bands are shown at the right of the figure 

 

 Levels of PPAR-β in the liver of the test group showed small but significant 

differences from the control group, even though it has been described that it helps regulate 
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toxicity in the liver186.  The experimental group had levels of 103,9 ± 0,9966 (P=0,0076) 

of PPAR- β (figure 12). 

  

Tumor necrosis factor α (TNF-α) 

 

Figure 13: Representative Western blotting (six different mice from each group) showing 

the hepatic protein content of TNF-α. Densitometry analysis of specific bands from all 

mice studied is shown. Values are expressed as a percentage relative to Dextrose (100 

%) and are means versus SD. Equal loading of the gels was as demonstrated by probing 

the membranes with an anti-β-actin polyclonal antibody. P value was 0,0002 for unpaired 

t-test. Proteins bands are shown at the right of the figure. 

 

In figure 13 is shown that the expression of TNF- α in the liver of the test group 

has increased by nearly 30 % when compared to the control. Expression levels obtained 

for the experimental group were 127,9 ± 3,6 (P=0,0002). 
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Glucose transporter 2 (GLUT2) 

 

 

 

 

Figure 14 Representative Western blotting (six different mice from each group) showing 

the hepatic protein content of GLUT2. Densitometry analysis of specific bands from all 

mice studied is shown. Values are expressed as a percentage relative to Dextrose (100 

%) and are means versus SD. Equal loading of the gels was as demonstrated by probing 

the membranes with an anti-β-actin polyclonal antibody. P value was 0,0055 for unpaired 

t-test. Proteins bands are shown at the right of the figure 

 

 GLUT2 expression in the liver (figure 14) was increased almost two fold in the 

fructose rich diet group, with its expression levels around 180,4 ± 19,0 (P=0,0055).  
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4. Discussion  
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4. Discussion 

  

 

 The difference in intestinal permeability between high fructose diet fed mice and 

normal chow fed mice is quite substantial, and it’s clear that the experimental group had 

many times the amount of intestinal leakage that the control group at all times.  

An increase in intestinal permeability with high fructose feeding has not been 

reported yet, even though there had already been some speculation on the matter 199,200. 

The increase in permeability for the first six weeks can be assigned to the fact that fructose 

induces production of short-chain fatty acids, hydrogen and butyrate in the intestine, all 

of these metabolites were already know to be associated with luminal distension, and 

therefore could be associated with increasing intestinal leakage. The decrease in leakage 

in week 12 can probably be associated with host adaptation to the fructose rich diet, as 

the intestine’s bacteria can respond to this diet by causing small intestine overgrowth74 or 

by changing its species201. It is also implied that there could be fructose malabsorption 

related problems due to this fructose induced small intestine overgrowth72, which can lead 

to a deficiency in fructose transporters in the enterocytes30, this may as well contribute to 

a threshold in fructose absorption. Considering the impact a change in intestinal 

microbiota can have in the host61,182 , and the fact that the host can adapt its mucosal 

immunity to this change154 it is plausible for a decrease in leakage to occur in week 12.  

 The fact that intestinal leakage is increased in fructose rich diet has implications 

for the liver, as this increase means that bacterial translocation is made easier, and that 

there is an increase in the quantity of intestinal blood barrier crossing endotoxins and 

metabolites, all of these can easily reach the liver via portal vein. These pro-inflammatory 

agents, combined with the increased lipogenesis associated with high fructose ingestion, 

can lead to the development of NAFLD and NASH10. 

 A decrease in PPAR α could reflect increased transport of fatty acids and 

triglycerides from the gut into the liver.  This increase will likely induce the repressors 

for PPAR α, and down regulate anti-inflammatory proteins and factors, besides leading 

to increased synthesis of lipoproteins. A decrease in this anti-inflammatory receptor is 
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also in agreement with reports of increased inflammation (and higher production of 

cytokines) in NAFLD 157. 

 Since the production of cytokines can induce the production of mitogen activated 

kinase (MAPK), which can phosphorylate and repress PPAR-β202,203 , it is possible that 

these levels of expression of PPAR-β result from a balance of increased levels due to 

toxicity (following intestine leakage204) against increased repression of PPAR-β via 

phosphorylation. This may lead to this maintenance of PPAR-β levels in the liver, even 

though PPAR-α levels are altered. 

 The increase in Tnf-α expression concurs with the data shown in figure 11 and 12, 

as an increase in levels of this cytokine was reported for inhibiting PPAR- α expression 

in the liver205. This increase likely reflects higher intestinal leakage of endotoxin and other 

bacterially-derived pro-inflammatory agents which activate the immune system and lead 

to Tnf- α production.  This represents a mechanism that links toll like receptor activation 

and fructose induced steatosis 206.  

 The increase in GLUT2 expression is possibly due to the overproduction of 

hepatic glucose from gluconeogenic fructose metabolism.  Increased GLUT2 expression 

would mediate a more effective export of hepatic glucose into the bloodstream207. This 

result is in agreement with older research in which fructose had been associated with 

upregulation of GLUT2 mRNA in a hepatocyte cell line208. 

In table 2 the expression and possible causes and effects of the measured protein 

expressions are summarized. The increase in Tnf-α157 and the decrease in PPAR-α209 are 

in agreement with the inflammatory effects felt in NAFLD, as well as some of its 

metabolic outcomes, like the increase in lipogenesis. PPAR β had not been described yet 

in this disease.  
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 Average expression 

level ± Standard 

Deviation 

Caused by Effects 

PPAR-α 79,8 ± 3,1 Repressed by excess of fatty acids and 

TAG’s;  

Less anti-inflammatory factor 

expression ; Less lipid catabolism 

PPAR-β 103,9 ± 2,0 Increase due to liver toxicity; 

Repression by cytokines  

Higher expression of pro 

inflammatory factors: 

Tnf- α 127,0 ± 7,2 Increased by excess of fatty acids and 

of bacterial byproducts from the 

intestine; Possible macrophage 

infiltration 

Activation of inflammatory 

pathways; 

GLUT2 180,0 ± 38,0 Increased by overload of fructose Higher levels of fructose and 

glucose on the bloodstream and 

liver 

 

Table 2 Analysis of each protein expression along with the causes and effects of different 

expressions 

  



39 

 

 

5. Conclusions  



40 

 

 

5. Conclusions 

 

The effect of a high fructose diet on intestinal permeability is yet to be fully 

established, but the data on the present work are a step forward in unravelling what 

happens in this complex system. Furthermore, this also serves to show how important the 

intestine can be in forming metabolic diseases liver and how both can interact with each 

other. This also leads to the conclusion that fructose metabolism in the intestine has quite 

an impact on the mucosa itself, as leakage increased at a fast pace. The differences in the 

intestinal leakage between groups can point out to the importance that the intestine’s 

bacteria can have as therapeutic target for NAFLD and NASH, as modulation of the flora 

affects what is leaked into the portal vein and may alter the outcome of liver disease. 

Putting everything into perspective, a fructose rich diet was capable of altering the 

intestinal permeability of our mice after a short period of time (figure 10) to high levels 

of leakage. Besides giving information on how the intestine barrier is, this also points out 

to a possible increase in the production of hydrogen, carbon dioxide and short chain fatty 

acids by bacteria, after consuming fructose. This alteration will lead to a higher leakage 

of fatty acids, fructose and other metabolites into the blood stream, besides leaking toxins 

and bacterial by-products that may lead to an increased inflammatory response (figure 4). 

The hepatic portal vein delivers molecules to the liver before any other organs, therefore 

indicating that changes in the liver's metabolome and proteome are also linked to 

increased intestinal permeability. High amounts of fatty acids in the liver eventually leads 

to metabolic stress, causing PPAR alpha shutdown (figure 15). This will also contribute 

to higher TNF-alpha levels. High fructose access by the liver is indicated by the up 

regulation of GLUT2, which is overexpressed in order to regulate hepatocytes 

intracellular glucose levels and glucose homeostasis. All these changes will contribute to 

the development to NAFLD, and may even lead to NASH and cirrhosis in liver, besides 

a possibility for insulin resistance and small intestine overgrowth.  
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Concluding, there is still the need to look deeper into the intestine to figure out 

what bacteria species are associated with this increase in leakage in dietary changes, what 

is in fact the main product leaking through the intestinal blood barrier, but mostly what is 

more devastating for the host’s liver, if the bacterial translocation or the toxins and 

metabolites that are responsible for this metabolic effects. For the last, it is also quite 

important to “pin down” the mechanisms behind fructose induced enterocyte tight 

junction destruction. 

 

Figure 15 Representation of what is thought to happen in a fructose rich diet on the gut 

and the liver. 
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