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Throughout the last decades, Darwin’s theory of natural selection has 
fuelled a vast amount of research in the field of computer science, and more 
specifically in artificial intelligence. The majority of this work has focussed 
on artificial selection, rather than on natural selection. In parallel, a growing 
interest in complexity science brought new modelling paradigms into the 
scene, with a focus on bottom-up approaches.

By combining ideas from complex systems research and artificial life, we 
present a multi-agent simulation model for open-ended evolution, and a 
software framework (BitBang) that implements it. We also present a rule 
list based algorithm implemented for the brain component of the agents. 
Genetic variation operators were created to drive the evolution of the rule 
list brains.

Several simulation environments were created using the BitBang frame-
work. Experimental results are presented and analysed, validating our mod-
el. The results presented show that the model is capable of evolving agents’ 
controllers in an open-ended evolution simulation. We see that populations 
evolve sustainable reproduction behaviours, without hard-coding the repro-
duction conditions into the simulations. By providing evolutionary pres-
sure through the modelling of the environment, we see that on increasingly 
complex environments, agents evolve increasingly complex behaviours. The 
rule list brain is shown to provide an important analysis advantage by hav-
ing readability into the agents’ evolved behaviours. This feature proved to be 
especially important when unexpected behaviours emerged.

Keywords: Artificial Life, Open-Ended Evolution, Complex Systems, 
Multi-Agent Systems, Computational Intelligence.
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2    Introduction

In this chapter we present the motivation behind the work described in this 
document. We then detail the problem we aimed to solve and our contri-
butions to that regard. Finally, we set out the roadmap for the rest of this 
document.

1.1.  Motivation
Ever since the dawn of its time, Man has always wondered about the di-
versity and complexity found in Nature. This interest has driven a lot of 
research work in a multitude of sciences.

The work of Charles Darwin and his theory of the evolution of spe-
cies (1859) is certainly one great example of this interest. In his seminal 
work, Darwin has showed that all species found in Nature descended from 
common ancestors, as a result of a process he called natural selection. This 
process determines that organisms that possess traits advantageous to their 
survival and reproduction will gradually overtake a population. Darwin’s 
theory was rather successful in convincing most biologists and the general 
public that evolution had indeed occurred. However, he did not include in 
his theory a detailed explanation of how new species arise.

It was only later in the beginning of the twentieth century that the rec-
ognition of Gregor Mendel’s work on genetics (1985), brought a better ex-
planation for the process of speciation. Combining Mendel’s and Darwin’s 
ideas, the modern evolutionary synthesis theory provided a widely accepted 
and unified explanation of evolution. Later, the discovery of the double 
helix structure of DNA by Watson and Crick (1953), and of the molecular 
structure of nucleic acids by Wilkins (1953), paved the way to a better 
understanding of the processes involved in the evolutionary exploration of 
possibilities, like genetic mutation and crossover.

On a different path, but also with a deep interest in the complexity found 
in Nature, is the recent research field of Complex Systems. Although one 
could consider that this type of system has been the subject of study since 
ancient times, it was only in the twentieth century that the specific study 
of the properties of these systems became a field on its own, with applica-
tion in a multitude of sciences. A formal definition of complex system is 
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yet to receive consensus. However a generally accepted definition is that a 
complex system is a system composed of a large number of interacting parts 
that as a whole exhibits properties not directly inferred from the properties 
of the individual parts. Some examples of such systems include ant colonies, 
human social structures, economic markets, climate, the human brain, or 
the Internet.

In computer science, the pursuit to reproduce the complex behaviours 
found in Nature is also a recurrent research topic. Most of the work done 
on this topic can be attributed to the field of Artificial Intelligence (AI) 
(Russel and Norvig 2002), whose broad aim is to mimic Human intelli-
gence and implement it in machines. Some of this effort has used inspira-
tion on Biology to create intelligent computational systems. One example 
of such an endeavour was the creation of Artificial Neural Networks (ANN) 
that try to mimic the functionality of the Human brain. This direction of 
research involves the study and reproduction in silico of structures found 
in Nature.

A more recent trend in AI research deals not as much with the structures 
found in Nature, but with the processes by which they came to be. This 
kind of nature inspired system has an example on the field of Evolutionary 
Computation (Eiben and Smith 2003). Using some concepts of Darwin’s 
evolutionary theory and Mendelian genetics, Evolutionary Computation 
techniques are mostly used to solve combinatorial optimization problems. 
A number of different methods were developed, like Lawrence J. Fogel’s 
Evolutionary Programming, John H. Holland’s Genetic Algorithm, Ingo 
Rechenberg and Hans-Paul Schwefel’s Evolution Strategies, or the more re-
cent Genetic Programming method. In a nutshell, these techniques evolve 
populations of solutions to a given problem, by promoting diversity us-
ing mutation and recombination operators, and selecting the best ones by 
evaluating their fitness through a fitness function (or cost function).

Using most of the same principles of the afore mentioned models, 
Artificial Life (ALife) has a generally different goal. Instead of being used 
to solve combinatorial optimization problems, ALife deals mostly with 
the imitation of traditional biology, trying to recreate not only the natural 
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phenomena, but also synthetic life. In fact, Christopher Langton (1989) 
defines Artificial Life as modelling not only life-as-we-know-it, but also life-
as-it-could-be.

Equally, on the field of complex systems, computer science has had a 
major role in the creation of tools for research. When systems are too com-
plex to model using standard mathematical tools, one common solution has 
been to model the system using a computer simulation. One such simula-
tion method, gaining momentum, are multi-agent systems. These systems 
are composed of multiple interacting intelligent agents who share several 
important attributes, of which, the most important are autonomy, local 
views, and decentralization.

A special case of multi-agent systems are John H. Holland’s (1995) 
Complex Adaptive Systems (CAS), where both the agents and the whole 
system are adaptive. Some of the interesting properties of CAS include 
emergence and self-organization. These properties are common to most 
complex systems, and constitute a major source of inspiration when design-
ing artificial simulations.

Today the process of evolution of species is well understood thanks to 
the natural selection theory proposed by Darwin, and complemented by 
the laws of inheritance discovered by Mendel. Evolution is a slow, time con-
suming process, that started more than three billion years ago. In the last 
years Darwin’s theory and the molecular biology central dogma — “DNA 
made proteins, and proteins made us” — has been under criticism and revi-
sion, with some researchers pointing out the importance of other dimen-
sions (e.g. epigenetic, behavioral, symbolic) to the process of natural evolu-
tion. Notwithstanding, nobody denies that there is no goal, no plan and no 
end in evolution: it is an open-ended process. An established definition of 
open-ended evolution has not yet surfaced, however, some authors consider 
that one of the major requirements is the absence of an explicit fitness func-
tion (Channon 2000; Channon and Damper 2000). In other words, to 
have open-ended evolution, a system should be based on Natural Selection 
rather than Artificial Selection.
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In the last few decades, both the fields of complex systems and evolution-
ary computation have been the focus of a large quantity of research work, 
both theoretical and applied. However, not as much on the interplay of the 
two fields. We believe that, by combining aspects of both complex systems 
and evolutionary computation, it is possible to evolve complex behaviours 
in an open-ended evolution environment.

1.2.  Goals
The main goal of our work is to develop a mechanism to evolve complex 
behaviours in societies of agents. Namely, we aim to develop a multi-agent 
simulation environment where agents are able to evolve complex behaviours 
from initial simple configurations. Rather than relying on fitness functions 
to provide evolutionary pressure, we favour open-ended evolution in the 
sense that the evolutionary pressure should be exerted by the specificities of 
the environment and of the agent’s makeup. We strive to remove the burden 
of over-specifying from the researcher.

Another goal of our work is to produce a software framework that imple-
ments the concepts proposed. This tool should be flexible enough to enable 
its use in different fields of research on complex systems, e.g. Biology, Social 
Sciences, Physics, or Mathematics. We aim to make this tool available to 
the community, so that our work can have application in all those fields.

The entertainment industry has been using tools developed by artificial 
intelligence research. For example, in most modern computer games some 
form of artificial intelligence algorithm is used to control the non-player 
characters and logic. In more recent developments, these concepts have also 
had application in movies’ special effects. We believe the work proposed 
here can also be applied to these areas. For example, the artificial intelli-
gence of non-player characters in computer games could be evolved rather 
than hard coded. Regarding the use in movies’ special effects, one possible 
application could be the evolution of more accurate behaviours for charac-
ters in crowd simulations.
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1.3.  Contributions
The main contribution of our work is the model developed to accomplish 
the goals proposed above. The design of this model encompassed several 
steps, each giving rise to an important contribution on its own. Thus, we 
can list the several contributions of our work as:

•	 A novel multi-agent model for the open-ended evolution of com-
plex behaviours, based on principals from Complex Systems, 
Evolutionary Computation, and Artificial Life;

•	 A specific agent brain model to use in our simulation environ-
ments. The agent brain model created is a rule list;

•	 An implementation of genotype editing for the brain model used, 
based on previous work by Luis Rocha. Genotype editing aims to 
capture the essential aspects of the RNA editing process in biology.

•	 A software framework – BitBang – that implements the multi-
agent model developed, and combines it with both a graphical 
three-dimensional engine and a physics engine to enable the simu-
lation and visualization of three-dimensional worlds. Due to its 
object-oriented and abstract architecture, the BitBang Framework 
can be used in different complex systems simulation scenarios;

•	 Several different simulation environments were created for valida-
tion of the model. The several considerations and conclusions that 
came out of these simulations also constitutes an important contri-
bution of this work.

Part of the work presented here has also been published in several peer-
reviewed conferences and journal (Baptista and Costa 2006, 2007, 2008, 
2011; Menezes et al. 2006a, 2006b).

To allow widespread use of the software created, both for complex sys-
tems and artificial life research, the BitBang Framework is made available to 
the community under the open source license GPL version 21.

1  The text of this license can be reviewed at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
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1.4.  Roadmap
The rest of this document will be organized as follows. In chapter two we 
will describe a series of background concepts required to better understand 
our work, as well as present the state of the art in open-ended evolution 
multi-agent models for artificial life and complex systems research. In chap-
ter three we detail the architecture of our model. We describe the multi-
agent model, the rule list brain model, and also the BitBang software frame-
work. In the next two chapters we will present the simulation scenarios 
developed to test our model, and analyse the results of the experiments 
conducted. Finally, in chapter six, we present our conclusions and discus-
sion of future work.

We also provide a companion Compact Disc with the source code and 
binaries of the BitBang Framework, the source code and binaries of the 
simulation scenarios created, the logs of the experiment results, and the 
papers published.





Chapter Two

Background
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In this chapter we present some background concepts, material to the re-
search described in the following chapters. We will also present a study on 
the state of the art in multi-agent systems for artificial life and complex 
systems research.

2.1.  Core Concepts
In this section we give a brief introduction to the core concepts underlying 
the work presented in this thesis. We will start with an introduction to the 
concepts of complex systems, emergence, self-organization, and multi-agent 
systems, and proceed into concepts more specific to artificial intelligence, 
like evolutionary computation, artificial life, and open-ended evolution.

2.1.1.  Complex Systems
The study of complex systems has been gaining momentum over the last 
decades (Kauffman 1993; Holland 1995; Per Bak 1997; Strogatz 2003). 
However, a definitive definition of complex system, or some of the related 
concepts, like emergence and self-organization, has not gathered consen-
sus yet. Nevertheless, we can define a complex system as one composed 
of several individual elements that interact in such a way that the system 
as a whole will exhibit properties, not directly derived from the individual 
components.

An important characteristic of complex systems is their usual hierarchi-
cal structure. That is, a set of components of a system interact in such a 
way as to form higher level structures, which in turn, interact to also form 
other higher level structures. We can name these hierarchical layers as levels 
of complexity. In a complex system, whenever phenomena observed on a 
given level of complexity, that is not directly derived from the properties 
of the lower level, we say those phenomena are emergent. This kind of lev-
elled structure and emergent phenomena can be easily found on a variety of 
natural systems, like physical, biological or human social systems (Per Bak 
1997).

Another important concept related to complex systems is that of self-
organization. Whenever a pattern or structure can be observed in a system, 
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without it being enforced or planned by a central authority or external 
element, the system is said to have self-organization. Again, we can find a 
number of examples of self-organization in Nature (Camazine et al. 2001; 
Strogatz 2003), like the swarming behaviours of insects, molecular self-as-
sembly, or the evolution of life.

2.1.2.  Multi-agent Systems
The dynamics of complex systems, being nonlinear, are usually difficult to 
model using standard mathematical tools, like differential equations. One 
tool that has recently gained widespread adoption is that of computer simu-
lation. By simulating the several individual components and their interac-
tions of one level of a complex system, it is possible to observe the dynamics 
and emergent phenomena at the higher levels. One specific type of simula-
tion used for complex systems research is the multi-agent system.

The concept of multi-agent system (MAS) can be broadly defined as a 
system composed of several interacting intelligent agents. As defined by 
Wooldridge (2002), an intelligent agent has four main properties: autono-
my, reactivity, pro-activity, and social-ability. An agent is autonomous if it 
is capable of independent action, i.e., there is no central control mechanism 
dictating their actions. The property of reactivity means that an agent is able 
to react to changing conditions in the environment. Pro-activity is defined 
as the ability to generate and attempt to achieve goals. And lastly, social-
ability is the power to interact with other agents via cooperation, coordina-
tion, or negotiation.

Although other mechanisms can be used to implement MAS (e.g robot-
ics), most use computer simulations. The ongoing increase in computa-
tion power available to researchers, has fuelled a growing popularity of this 
tool. A variety of research areas have used MAS to study complex systems, 
namely biology, economics and other social sciences, or the most relevant 
to our work, artificial intelligence.

A special kind of complex system, highly related to MAS, are complex 
adaptive systems (CAS). This field of research was born at the highly inter-
disciplinary environment of the Santa Fe Institute, with one the main pro-
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ponents being John H. Holland. The main characteristic that defines CAS 
is that of coherence under change (Holland 1995). A generic definition of 
CAS given by Holland (2006) is: “Cas are systems that have a large number 
of components, often called agents, that interact and adapt or learn”. This 
adaptation to changes in the system occurs in such a way that some type of 
coherence is preserved.

2.1.3.  Evolutionary Computation
Evolutionary Computation (EC) is a research field within computer science 
(Eiben and Smith 2003), and more specifically artificial intelligence. EC 
applies the concept of natural evolution to computational problem solv-
ing, like combinatorial optimization problems. The core inspiration to EC 
comes from Darwin’s theory of the evolution of species (1859), and the 
genetics theory pioneered by Mendel (1865), later combined to form the 
modern evolutionary synthesis (Huxley 1942). Despite the fact that currently 
the field of EC is considered to encompass a greater number of techniques, 
those know collectively as Evolutionary Algorithms (EAs) form the core of 
the field.

Historically, a number of sub-categories of EAs have been developed, 
for the most part independently of each other. In the USA, Fogel, Owens 
and Walsh introduced evolutionary programming (Fogel et al. 1966), while 
Holland called his method genetic algorithm (Holland 1975). Meanwhile, 
in Germany, Rechenberg and Schwefel proposed evolution strategies 
(Rechenberg 1973; Schwefel 1981; Schwefel 1995). These three methods 
were later joined by a fourth alternative called genetic programming, pro-
posed by Koza (1992). At the core, all these techniques share a common 
generic algorithm that we present in pseudo-code in Listing 2.1.

1.	 population = GenerateRandom()
2.	 fitnesses = Evaluate(population)
3.	 WHILE not stop_condition DO
4.	     parents = Select(population, fitnesses)
5.	     offspring = Recombine(parents)
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6.	     offspring = Mutate(offspring)
7.	     fitnesses = Evaluate(offspring)
8.	     population = Select(offspring, fitnesses)

Listing 2.1  Pseudo-code of the generic procedure of evolutionary algorithms

Given a specific problem to be solved, the EA process starts by generat-
ing a population of random solutions to the problem, and then will con-
tinuously select and vary that population of solutions, biased by a fitness 
function. This generic algorithm can be changed by employing different 
techniques or parameters to its most important components (Eiben and 
Smith 2003):

•	 representation of individuals
•	 fitness function
•	 population
•	 parent selection
•	 variation operators
•	 survivor selection
•	 initialization procedure
•	 termination condition

The different types of EAs will vary mainly on the techniques or param-
eters employed in one or more of these prime components. One example 
can be the representation of individuals. In genetic algorithms, individual 
solutions are typically represented as strings over a finite alphabet (e.g. bit 
strings), whereas in evolutionary strategies they are represented as real-val-
ued vectors. In evolutionary programming, individuals are classically, finite 
state machines, and in genetic programming, trees are used.

In EAs the representation of individuals is thought of as the mapping 
from genotypes to phenotypes. Following the inspiration from biology, an 
individual has a genotype and a phenotype. Its phenotype is the candidate 
solution to which the fitness function can be applied, and the genotype is 
an encoding used to represent the phenotype. For example, considering 
that we want to maximize the value of a function f(x), where x is an integer 
value. Considering the candidate solution x=34 (the phenotype), we could 
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use its binary code as its representation, making its genotype the bit-string 
100010. The variation operators will be applied to the genotype of solu-
tions, and the fitness function operates on their phenotypes.

The representation can either be direct or indirect. We say that we have a 
direct representation if there is in practice no mapping between phenotype 
and genotype. In that case the individual’s genotype is equal to its pheno-
type. In indirect representations, as exemplified above, an encoding is used 
to map the phenotype to the genotype.

Because the variation operators are applied to the genotype of candidate 
solutions, they are highly related to the representation chosen. Both these 
choices, representation and variation operators, can have a high impact on 
the performance of the evolutionary algorithm and are tightly coupled to 
the specific problem to be solved (Tavares 2007). 

The variation operators used can either be recombination operators or 
mutation operators. Recombination operators are applied to two parents 
to produce one or more offspring by combining the parents genotypes, and 
represent the biological concept of sexual reproduction. The mutation op-
erators are used to vary one individual by randomly changing its genotype. 
On a given instance of application, we can use both recombination and 
mutation, or only the latter.

The selection mechanisms in EAs are responsible for providing the nec-
essary evolutionary pressure towards higher quality solutions. Two separate 
selection steps may be defined, occurring at different times in the algorithm: 
parent selection and survivor selection. Typically, parent selection is stochas-
tic, whereas survivor selection is usually deterministic. Having a probabil-
istic selection step allows low quality individuals to have a small, but posi-
tive chance of being selected, avoiding the search process to get stuck in a 
local optimum. Both selection steps are usually fitness biased, where fitter 
individuals have a higher probability of being selected. A number of differ-
ent parent selection strategies exist, of which probably the most common 
are roulette wheel and tournament. In roulette wheel, the probability of an 
individual of being selected as a parent is biased by its relative fitness in the 
population. Considering that fi is the fitness value of an individual, and that 
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N is the size of the population, the probability pi of the individual i being 
selected is given by:

(2.1) 

In tournament selection, a number of individuals is randomly chosen from 
the population, and from those, the one with the highest fitness is selected 
as a parent. This procedure is repeated until all parents are selected. By 
changing the number of individuals that are randomly chosen each time 
(tournament size), the selection pressure can be adjusted.

The initialization procedure determines the generation of the initial 
population. The most common is to randomly generate the individuals, al-
though, in some cases, heuristics can be employed to ensure an initial popu-
lation with higher fitness, or that uniformly covers the search space. The 
termination condition will determine when to stop the search process. In 
some cases, there is a known optimum fitness that we look to achieve, pro-
viding a natural stopping condition. However, being a stochastic process, 
the EA may not reach that optimum in a reasonable time frame, and usu-
ally, other termination conditions are also used. For example, we can stop 
the search after a number of generations have been created, after a specified 
CPU time has elapsed, or after a specified number of fitness evaluations.

2.1.4.  Artificial Life
Artificial Life (ALife) is considered by some as a sub-field of evolutionary 
computation. Though it does share its inspiration in Biology with EC, es-
pecially regarding the theory of evolution, at its core, ALife has a different 
purpose. Instead of trying to solve optimization problems, ALife’s main 
goal is to replicate the mechanisms found in Nature to study not only life-
as-we-know-it, but also life-as-it-could-be (Langton 1989). This means that 
the research in ALife is not restricted to the imitation of life in order to 
study its properties, as it also studies the synthesis of life-like systems from 
the bottom-up. This type of synthesis can lead us to create structures that 
have life-like properties, but do not have a direct equivalent in the real 

pi =
fi∑N
j=1 fj
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world. We could envision this as exploring the different paths that evolu-
tion could have taken.

ALife experiments are not constrained to those performed in comput-
ers. In fact, the field can be divided into soft, hard, and wet ALife, refering 
to the medium used to perform the experiments. Soft ALife uses software, 
hard ALife, hardware, and wet ALife, biochemistry (Bedau 2003). Of all 
these mediums, the one that is mostly related to the our work is that of soft 
ALife.

The term “artificial life” was coined by Christopher Langton (1989), but 
the research field has its deepest roots in John von Neumann’s self-repro-
ducing, computation-universal cellular automata (von Neumann and Burks 
1966). The usage of cellular automata, and other low-level simulations, like 
artificial chemistries, has had a strong presence in ALife research. Another 
popular path has been the study of higher-level phenomena, mainly through 
the already introduced concept of agent and the theory of evolution, similar 
to what is done in EC.

 A number of different approaches to the evolution of agents in ALife 
research can be identified. For example, the coevolution of morphologies 
and controllers, as pioneered by Karl Sims (1994a; 1994b), and later devel-
oped upon by other researchers (Miconi and Channon 2006; Miconi 2007; 
Chaumont et al. 2007; Lassabe et al. 2007). Another important direction 
of research has been on a more generic evolution of digital organisms, using 
virtual CPUs as a metaphor, like in Tierra (Ray 1992) or Avida (Adami and 
Brown 1994; Ofria and Wilke 2004). Other fields of Alife like evolutionary 
robotics (Brooks 1990; Nolfi and Floreano 2000) or even artificial econom-
ics (Tesfatsion 2002), have also had developments in recent years. Some 
of the research referred can fall into the field of artificial life, evolutionary 
computation, or complex systems.

The work presented in this document falls on the category of artificial 
life systems, using a high-level multi-agent systems approach. A variety of 
similar systems have been developed under the umbrella of ALife, some of 
which were referenced above. The ones most relevant to our work will be 
further detailed later in this chapter.
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2.1.5.  Open-Ended Evolution
The concept of open-ended evolution is mainly related to artificial life re-
search, and has been considered one of the open issues in alife research 
(Bedau et al. 2000). Although a formal definition of open-ended evolution 
has not yet gathered consensus, it can be broadly defined as the ability of an 
evolutionary system to continually produce novel forms (Standish 2003). 
To achieve open-ended evolution, a number of authors consider that a ma-
jor requirement is the absence of an explicitly defined goal or notion of 
“better” individual (Channon 2000; Channon and Damper 2000).

Both evolutionary computation and artificial life research have a core in-
spiration on Darwin’s concept of Natural Selection (1859). However, in the 
process of adapting this concept to computational problem solving, some 
compromises were made, namely the creation of an artificial evolutionary 
goal, usually via the fitness function. In the real world, there are clearly no 
explicit fitness functions governing the evolution of organisms. Thus, in 
these artificial systems we say that instead of Natural Selection, we have 
Artificial Selection. Packard (1989) makes this distinction when comparing 
extrinsic and intrinsic adaptation.

This distinction between natural and artificial selection is paramount to 
the construction of open-ended evolution systems (Channon and Damper 
1998; Channon 2000). In fact, Darwin (1859) introduced the concept of 
artificial selection by referring to selective breeding of animals and plants 
carried out by mankind, which is an active selection mechanism. In con-
trast, natural selection is a passive selection mechanism. Channon (2001) 
further developed on this distinction between natural and artificial selec-
tion, by making the distinction between biotic and abiotic selection. Biotic 
selection is induced by living organisms (biota) whereas abiotic selection is 
not. In artificial systems, the most commonly used tool to implement selec-
tion is the usage of fitness functions to select the best individuals.  Thus, 
one of the main requirements to achieve open-ended evolution is to free the 
artificial evolution systems from the fitness function.

Research into artificial evolution systems that use natural selection, and 
into open-ended evolution, has seen less adoption than into systems with 
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artificial selection. This trend might have some ground in the fact that 
open-ended evolution seems harder to model (Maley 1999) and heavier 
on the computational resources. Notwithstanding, there have been some 
important efforts into creating artificial systems that exhibit open-ended 
evolution. Von Neumann’s self reproducing automata (1966) may be con-
sidered as the first computational system capable of open-ended evolution 
(Rocha 1998; McMullin 2000). Sannier’s distributed GA (1987) might be 
one of the early examples of using what Ray (2001) would consider par-
tial natural selection. Other examples include Tierra (Ray 1992), Polyworld 
(Yaeger 1994), ECHO (Holland 1995), Geb (Channon 2001), New Ties 
(Eiben et a. 2007), or Evosphere (Miconi 2007). Also, in the field of evolu-
tionary robotics there have been some recent attempts to implement open-
ended evolution (Bianco and Nolfi 2004; Baele et al. 2009). Some of these 
examples, the ones most relevant to the work described in this document, 
are detailed in the next section.

In our work, we will refer to open-ended evolution solely regarding the 
absence of an explicit fitness function, or any other type of artificial selec-
tion mechanism.

2.2.  Models and Frameworks
In this section we present the state of the art in artificial life multi-agent 
systems. A larger number of systems could be described, however, we limit 
this analysis to the ones that are more closely related to our work or that 
served as inspiration to the model presented in this document.

2.2.1.  Tierra and Avida
Tierra is an artificial life simulation created by the ecologist Thomas S. Ray 
(1992). In Tierra virtual creatures (computer programs) compete for central 
processing unit (CPU) time and access to memory in a virtual machine. 
Competing programs in virtual computers had been implemented before, 
most notably in the Core War game (Dewdney 1984, 1988).

The assembly language created for the virtual computer in Tierra was 
developed with a special care to allow evolution to be possible. This was 
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accomplished by creating a small instruction set, removing the use of oper-
ands, and using addressing by template.

The Tierran virtual computer has one block of memory, called the “soup” 
where all programs live. This block of memory can be viewed as the envi-
ronment. Each creature is assigned one block of  memory from the soup, 
over which it has exclusive write privileges, forbidding creatures to write to 
each others blocks. Read and execute privileges are not protected. All crea-
tures can read and even execute each others code. Creatures can, through 
the use of a memory allocation instruction, a second block of memory can 
be reserved with write privileges. This second block can be used to grow or 
reproduce into. When the instruction divide is called, the creature looses its 
write access to this second block.  

To enable the creatures to live simultaneously, the Tierran operating 
system must have multitasking. The system attributes time slices to each 
creature in the soup one by one, through the use of a circular queue. When 
a creature is born, it is given one virtual CPU and its placed in this queue. 
The number of instructions executed at each time slice is proportional to 
the size of the program, and this proportion can be configured. By doing 
this, it is possible to exert selective pressure for larger or smaller programs.

Another important process of the operating system is the reaper. This 
process is used to kill programs when the total memory of the soup is al-
most filled up. The reaper process uses a first in first out (FIFO) queue. 
Creatures are inserted at the beginning of the queue when they are born, 
and when the need to kill a program arises, the one at the end of the queue 
is selected. Programs are killed by deallocating their memory block, remov-
ing their virtual CPU, and removing them from both queues (slicer and 
reaper). Their instructions however, are not deleted from the soup.

In order for evolution to occur, a variation mechanism had to be in-
troduced. Variation is implemented using bit-flip mutation. There are two 
situations when these mutations occur. First, in the background, the operat-
ing system randomly mutates one bit of the soup, with a low probability. 
Secondly, the copy instruction imperfectly copies the code. In this process, 
a bit flip can occur in the destination copy of the code. This mutation can 
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occur with a higher probability than the background mutation. Other than 
mutation, a second mechanism was introduced. The instructions have a 
low probability of being executed incorrectly, making the outcome of the 
programs nondeterministic. In Tierra, simulations are initially seeded with 
a hand-coded program that essentially has the ability to self-replicate. No 
other functionality was coded into this seed program.

Emergence of interesting organisms was show to occur in Tierran simula-
tions. Most of these emerged behaviours relate to parasitism or the coevolu-
tion of hosts and parasites, resulting in a Lotka-Volterra cycle (Lotka 1956).

  Another system closely related to Tierra is Avida (Adami and Brown 
1994; Ofria and Wilke 2004). Avida extends the Tierra model by adding 
the two-dimensional grid where the creatures live, thus introducing the con-
cept of spacial locality to the simulated world. Another extension included 
in Avida is the usage of fitness rewards. By executing predefined operations, 
creatures can be rewarded with energy. The slicer method is also differ-
ent than the one used in Tierra. Although several slicing algorithms exist 
in Avida, the one that mostly relates to its goals is the “integrated” slicer. 
Agents are awarded time based on a merit measure, that is also related to the 
execution of predefined operations. Avida’s time slicer and merit system su-
perimpose a fitness landscape over the evolutionary process. In that regard, 
although arguable, Avida introduces artificial selection into the simulation.

Avida has gained great recognition in the artificial life community as a 
successful tool for research in theoretical biology, with several contributions 
to the field in recent years.

2.2.2.  ECHO
Echo is generic ecosystem model, or class of models, developed to simulate 
complex adaptive systems (Jones and Forrest 1993; Holland 1994, 1995; 
Hraber et al. 1997). Echo is devised as a simple model that is then extended  
by incrementally adding mechanisms, as proposed by Holland.

The Echo world, shared by all extensions to the model, consists of a net-
work of interconnected sites. The neighbourhood relation, or geographical 
disposition of these sites is left to the designer to choose. However, the most 
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common is to use a two-dimensional grid. In each site, a resource fountain 
continuously generates resources for that site. A site can hold many agents. 
The amount and type of resources generated, varies from site to site. The 
resources in the Echo models are represented by letters of the alphabet. For 
example, we might define for a given simulation an alphabet of {a,b,c,d}. 
Agents are constructed with strings on this alphabet.

In the basic Echo model, an agent is composed of a reservoir of resources, 
and a chromosome string. An agent can gather resources either from the 
site it occupies, or through interaction with other agents. The agent will 
need these resources to reproduce, as it will only be able to do so when it 
has gathered enough resources to make a copy of its chromosome string. 
This makes the implicit fitness be the agents’ ability to gather resources. The 
chromosome in this basic model contains only the specification of two tags, 
an offense tag, and a defence tag. When two agents interact, the offense tag 
of one agent is compared to the defence tag of the other agent (and vice-
versa), to determine the outcome of the encounter in terms of exchange 
of resources. This basic model is then augmented with the following five 
mechanisms: an interaction condition, a transformation segment, an adhe-
sion tag, a mating condition, and a replication condition.

The interaction condition mechanism permits selective interaction be-
tween agents. An agent will only interact with other agents whose offense 
tag matches his own interaction condition. The transformation segment 
mechanism allows agents to transform resources. For example, an agent 
could transform a resource that is abundant in the environment into a re-
source it needs for reproduction. The adhesion tag mechanism allows agents 
to adhere to one another, thus forming multi-agent aggregates. The amount 
of adhesion will be determined by the degree of match between two agents 
adhesion tags. The mating condition mechanism is similar to the interac-
tion condition one. It allows agents to selectively mate with one another. 
To accomplish this a mating condition is checked against the offense tag to 
determine if the agents mate. By adding this mechanism, the emergence 
of species is made possible. Finally, the replication condition mechanism 
is related to the concept of multi-agent aggregates. An agent will check its 
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replication condition against the offense tag of other active agents within 
the same aggregate to determine if it will try to reproduce. The addition of 
these extension mechanisms has the main objective of mimicking the proc-
ess of producing a complex aggregate from a single seed organism.

To complete the simulation model, two steps are added to all the agent-
agent and agent-site interactions: agent migrations and agent deaths. No 
specific recommendations are made on the nature of implementation of 
these simulation steps. A simple example given for both cases is to ran-
domly choose agents to migrate, or to die.

The Echo model has been implemented, primarily at the Santa Fe 
Institute. Their implementation however does not cover all the extensions 
of the model. As of version 1.3 beta 2, the adhesion tag and replication 
condition extensions are not present in the tool. To assess if Echo does pos-
sess all the properties of CAS, Smith and Bedau (2000) analysed the results 
of a series of experiments using this simulation tool. They conclude that, 
although Echo does show some of the properties of CAS, it does not pos-
sess all of Holland’s proposed properties, namely that of aggregation. These 
results can be attributed to the implementation not having all the extension 
mechanisms.

Recently, a new implementation of Echo was developed (McIndoe 2005) 
that added the adhesion tag mechanism. The author collected experimental 
data that indicates the emergence of aggregates, but also states that only 
with a final implementation of Holland’s final extension (the replication 
condition) will it be possible to fully test the model.

2.2.3.  Polyworld
Polyworld (Yaeger 1994) simulates the evolution of organisms living in a 
flat world. A three-dimensional visualization is provided but the simula-
tion is actually in two dimensions. In this world agents can move freely, 
reproduce sexually, fight and kill each other, eat dead agents, and eat food 
that grows throughout the world. The environment can optionally contain 
barriers that constrain the agents movement in the world and can favour 
speciation via geographical isolation.
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The controller of the agents in Polyworld is an artificial neural network. 
The input to this network, and thus the agent’s world perception, is a ren-
dered, one-dimensional, image of the world from the agent’s point of view. 
Added to this world perception, other inputs to the neural network are the 
agent’s own health-energy level and a random value. The output of this 
network will determine the agent behaviour from a set of seven possible 
actions: move, turn, attack, eat, mate, focus, and light. A Hebbian learning 
algorithm (Hebb 1961; Paulsen and Sejnowski 2000) is used to update the 
network’s weights, allowing the agents to learn during the course of their 
lifetime.

Both the neural network topology and the agents’ physiology are en-
coded in their genotype, composed of 8-bit genes. On the initial creation of 
the population the genotype of the agents is created randomly, and is then 
evolved through both mutation and crossover operators. Agents reproduce 
when two of them physically overlap and both execute the mating action. 
As the world is initially populated with random agents, it is highly prob-
able that the agents will not successfully reproduce. To solve that, a fitness 
function is used to create new agents as the offspring of two highly fit indi-
viduals. This fitness measure is only used up to the point that agents exhibit 
what Yaeger calls a Successful Behaviour Strategy (SBS), which allows the 
population to have self-sustainable reproduction.

 Agents store two types of energy: health-energy and food-value-energy. 
Both are replenished by eating, and both are spent by living. But only the 
health-energy is affected by fighting. In Polyworld all agent activity has 
an energy expenditure, that is affected by the organisms size and strength. 
Neural activity also carries an energy expenditure, proportional to the size 
of the network.

From the experimental simulation runs, Yaeger (1994) found a number 
of recurrent evolved behaviour strategies, that can he categorized as differ-
ent species. The frenetic joggers are simply always running forward, eating 
and mating. The indolent cannibals are slow moving agents that live close 
together, mate with each other, kill and eat each other. The edge runners 
roam the world always following the edges. And the dervishes, that appear 
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when the environment is configured so that the crossing of an edge is dead-
ly, explore the world in rapid turning movements to avoid the edges.

Yaeger also found a number of interesting individual behaviours evolved 
in some simulation runs: responding to visual stimuli by speeding up, re-
sponding to an attack by running away, responding to an attack by fighting 
back, slowing upon encountering each food patch, seeking out and circling 
food, and following other organisms.

2.2.4.  Geb
Geb (Channon and Damper 1998; Channon 2001) was developed as a  sys-
tem where virtual organisms evolve by means of natural selection alone. It is 
in many aspects similar to Polyworld, despite having been created without 
prior knowledge of the former (Channon 2001). In fact, Geb could be seen 
as a simplified version of Polyworld.

Organisms live in a two-dimensional toroidal grid and are controlled 
by neural networks. Both time and space are discreet. Each grid cell can 
only be occupied by one organism, and organisms’ actions are evaluated at 
discreet time steps. By only allowing one organism to live in each grid cell, 
the system creates an intrinsic limit to the maximum number of organisms 
in the population. There is no notion of energy in the system, so organisms 
only die due to fighting or if replaced by a new-born organism.

The organism’s neural network outputs determine the action of the cur-
rent time step. The actions available to the organisms are: reproduce, fight, 
turn anti-clockwise, turn clockwise, and move forward. An organism repro-
duces if, when executing the reproduce action, there is another individual 
in the grid cell directly in front (the organisms have an orientation). The 
offspring is placed in the cell beyond that individual, if empty, or replaces 
the organism being mated with, otherwise. Fighting works in a similar way. 
If the organism executes the fight action, the organism in front, if one ex-
ists, will be killed. The movement actions use an excitatory output of the 
corresponding neuron to determine the  length or angle of the movement. 
Each network node has a bit-string character attached to it. These charac-
ters are used to match the network input nodes of an organism with the 
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network output nodes of other individuals. An organism’s input nodes have 
their excitatory inputs set to the weighted sum of the excitatory output of 
matching output nodes from the other individuals in its neighbourhood.

Genotypes encode the neural network of an organism using a develop-
mental system to provide the genotype to phenotype mapping. The devel-
opmental system uses a class of L-system (Prusinkiewicz and Lindenmayer 
1990) with context-free production rules. The bit-string genotype encodes 
the production rules, that are then used to develop the neural network. 
Reproduction uses both crossover and mutation on this bit-string genotype. 
On initialization of a simulation, all cells on the grid have an individual cre-
ated with a single bit 0 genotype.

A number of emergent behaviours have been identified from simulation 
runs. These range from very simple do everything and always go forward and 
kill, to somewhat more complex behaviours like turning to face a member 
of a dominant species and holding its direction while trying to reproduce 
and kill. However, identifying behaviours in Geb proved to be a difficult 
task as the evolved neural networks are hard to understand, and so relied 
solely on visual inspection of the running simulations.

2.2.5.  New Ties
The New Ties system (Gilbert et al. 2006; Eiben et al. 2007) was developed 
to study socio-biological simulations. It implements a multi-agent system 
where the world is a discreet two-dimensional grid, and time passes in dis-
creet time steps. The agents can perform actions on this environment like 
moving, eating, mating, talking, or picking up objects. Other actions are 
possible to implement, depending on the simulations intended. Agents also  
possess characteristics like weight, colour, shape, or sex.

The controller component of the agents are Decision Q-Trees (DQT). 
The DQT has three types of nodes: test, bias, and action nodes. The test 
and bias nodes are intermediary nodes and are used to traverse the tree up 
to an action node (leaf nodes). The test nodes are used to provide a situa-
tion description to the agents. Example test nodes could be my-energy-low, 
food-ahead, or female-nearby. When traversing the tree, if we reach a test 
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node, we continue to the branch corresponding to the answer to the test 
node. Bias nodes are traversed in a probabilistic manner, adjusted by the 
weights of its sub-trees.

In New Ties, the adaptation of the agents’ controllers has three separate 
mechanisms which the authors name: evolutionary learning, individual 
learning, and social learning. All these types of adaptation occur on the 
DQT controller.

In evolutionary learning agents’ controllers are subject to variation 
through recombination and mutation with genetic operators similar to those 
used in genetic programming. The tree itself is the genotype of the agent. 
Because the controller will be the subject of further adaptation via lifetime 
learning, the agents’ initial controller is stored to adopt a non-Lamarckian 
notion of evolution. No fitness function is used in New Ties. Agents die due 
to age or lack of energy, and reproduce by choosing the mate action. In New 
Ties the initial population of a simulation is started with preprogrammed 
basic trees to allow the population to survive and reproduce.

The other adaptation mechanisms model lifetime learning. In individual 
learning the controller tree’s weights are updated using a reinforcement 
learning algorithm, with rewards based on energy. In social learning the 
trees are modified by exchanging sub-trees with other agents. One of the 
main goals of the New Ties project is to study the interactions between 
these three types of learning in socio-biological simulations.

Although promising an interesting set of features, published data about 
the New Ties project is scarce and it mostly details the theoretical model. 
To our knowledge, no actual experimental data has been published, and the 
project seems to have stopped development.

2.2.6.  Summary
We described a series of models and frameworks that can be used for ar-
tificial life simulations. The features of these systems are quite varied and 
mostly derive form the specific goals each one was developed for. In Table 
2.1 we provide a comparison, showing the characteristics we consider are 
most relevant to our work.
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One feature not shown in this table is that of flexibility. For example, the 
flexibility to simulate systems at different complexity levels, or the flexibility 
to change the structure of the agents or the environment. Tiera, Avida, and 
ECHO are all especially geared towards low level simulations. This type of 
simulation is more targeted towards thought experiments, rather than prac-
tical real-world scenarios. In Polyworld, a number of different scenarios can 
eventually be created, but all based on the same general type of agent and 
environment. In Geb, the structure of both the environment and the agents 
is fixed, and simulation is particularly geared towards evaluation of evolu-
tion through natural selection. New Ties seems to have a flexible structure 
for the agents, but not for the environment. However, we could not find a 
description of how the structure of the agents can be changed. It is also not 
clear if the three learning mechanisms can selectively be turned on and off.

Table 2.1  Comparison of artificial life frameworks

Environ-
ment

Brain Reproduc-
tion*

Artificial 
selection

Initial 
population

Tierra
virtual 
machine

machine 
code agent no hand-coded

Avida 2D grid machine 
code agent yes (merit 

system) hand-coded

ECHO
abstract / 
2D grid

not appli-
cable system no hand-coded

Polyworld
2D continu-
ous

neural 
network

system / 
agent initially random

Geb 2D grid neural 
network agent no random

New Ties 2D grid decision 
trees agent no hand-coded

*  Reproduction is either triggered by the agent or by the system.

Other than the flexibility feature mentioned above, which we aim to 
provide with our model, there are two main characteristics where we fo-
cused our development: open-ended evolution, and the readability of the 
brain algorithm. Contributing to the former, we identify three of the char-
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acteristics presented in the table. The reproduction mechanism should be 
triggered by the agents to avoid having to define the conditions when repro-
duction occurs. There should be no fitness function, or other artificial se-
lection schemes conditioning evolution. And the initial population should 
be created randomly, to avoid having to define a-priori good behaviour. 
Regarding the readability of the brain algorithm, we wish to provide the ca-
pability of easily interpreting the evolved behaviours. To that end we chose 
to use a brain algorithm that is simple, yet powerful enough to enable the 
emergence of complex behaviours. Using a rule list, we get both those fea-
tures, and also get the added benefit of being able to interpret the evolved 
behaviours. Considering all these characteristics, we built a new open-end-
ed evolution, multi-agent framework, which we will detail later, since none 
of the described frameworks had all of our requirements.



Chapter Three

Conceptual 
Model and 
Framework
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In this chapter we lay out both the conceptual model proposed to tackle the 
goals presented in chapter 1, and the framework implemented to test the 
model. We will begin by presenting a general overview of the agent-based 
conceptual model, and then detail all its components. Next, we will explain 
the evolutionary process applied to this model. On the succeeding section 
we detail the software framework developed — the BitBang Framework.

3.1.  Conceptual Model
The model we propose has roots in both Artificial Life and Complex Systems. 
We use an agent-based approach to define our simulation world — a tech-
nique that is becoming more and more popular in both areas of research. 
Our aim was to develop a base model capable of sustaining a wide range 
of different simulation worlds. To that end, the components of this base 
model are fairly abstract.

In our model, the world is composed of entities. These can either be in-
animate objects which we designate as “things”, or entities that have reason-
ing capabilities and power to perceive and affect the world — the “agents”. 
Both have traits that characterize them, such as colour, size, or weight. We 
designate these as “features”. The agents perceive and change the world by 
means of their “perceptions” and “actions”, making decisions using the 
“brain”.

Fig. 3.1  Diagram depicting the components of the conceptual model, and the relations between 
them.
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In Fig. 3.1 we show a diagram of these basic components and their rela-
tions. Note that the environment is illustrated in a different fashion than 
other components. This is due to the fact that the environment is a slightly 
different component than the rest. In fact, we don’t consider the environ-
ment as a component per se, as it is made up of the set of all the agents and 
things in the simulation. Nonetheless, this “virtual” component is of no less 
importance than the rest. Actually, as we will discuss later, the environment 
has a major role in the facilitation of the evolutionary process.

With all these components specified for a given world, it is possible to 
simply start the simulation and observe the behaviours that emerge from 
their interaction. In this model, there is no definition of a simulation step, 
as there is no centralized control. In this regard, the simulation is asynchro-
nous. The agents will, independently, perceive, decide, and act.

3.1.1.  Components
In this section we will detail each component of our conceptual model, as 
presented in Fig. 3.1.

3.1.1.1.  Agent
An agent is an object of the world that has the capability to affect the world. 
An agent has a set of perceptions, a set of actions, a set of features, and a 
brain component.

3.1.1.2.  Perceptions
Perceptions are the input from the world to the agent. Being an abstract 
concept, we can have higher or lower order perceptions. A higher order 
perception would be, for example, the friend is near perception, and a lower 
order perception would be, for example, the temperature perception. One 
other thing to note is that the world referenced here also includes the agent 
himself, thus opening up the possibility to have a perception on oneself. 
That would be the case of, for example, a perception on the agent’s own 
energy level.
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One other interesting possibility is the use of direct rather than symbolic 
perceptions. An example of a direct perception is a render of the three-
dimensional world as viewed through the agent’s eyes, or the wave of the 
sound reaching the agent. These kind of perceptions can, at first, seem more 
difficult to deal with, but we believe that for a large enough world, they can 
prove easier to handle and also faster to compute. Also, using direct percep-
tions, one could aim to emerge new kinds of data processing schemes.

3.1.1.3.  Actions
The actions are the output from the agent to the world. Again, we can have 
higher and lower order actions. We could have the action go home or the 
action go forward. This choice of granularity will have an impact on where 
on the zone of emergent phenomena we can place our world. This is ex-
plained later in this section. As with the perceptions, actions can also act on 
the agent himself. An example of such an action could be the action store 
in memory. Note that we categorize the perceptions and actions as higher 
or lower order just as an example of different possibilities for the abstract 
concepts. Other categorizations are also possible.

Both the perceptions and the actions can be seen as the capabilities of 
the agent. In a world with several species, each would have its intrinsic ca-
pabilities, and as such, what it can perceive from the world and how it can 
act on the world.

3.1.1.4.  Features
The features are, again as an abstract concept, the characteristics of the agent 
or thing. It can be, for example, colour, energy, the 3D form, or anything 
that we want to characterize our agents and things with. A feature can then 
act as a source for a perception, be it a self-referenced perception like seeing 
your own colour, or a perception on other objects.

3.1.1.5.  Brain
The brain is a decision making component. It receives the perceptions 
through the agent, and decides what actions the agent should take. The 
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brain is not bound to any kind of predefined artificial intelligence model. It 
is possible to implement the brain using for example, a rule system, a neural 
network, or anything that can take perceptions on the input and output a 
decision on the action to take.

3.1.1.6.  Thing
A thing is an inanimate object. As opposed to the agents that are considered 
to be living, the things can be used to represent all nonliving entities in the 
simulated world. A thing has a set of feature that can be used to represent 
different types of objects, and different characteristics of these objects. Still, 
the concept of thing is of major importance to the model as it permits the 
artificial world to more closely mimic the real world. We can view the thing 
as having no active power to change the world, but make a difference in the 
phenomena that emerges from the interactions of the agents with the things 
and the perceptions the agents have of the things.

3.1.2.  Evolution
In the past section we described our base conceptual model. Although the 
main goal of this project is to evolve complex behaviours, notice that there 
is no definition of an evolutionary mechanism in the base model. In an 
effort to maintain both its generic properties, and its biological rationality, 
we implement the evolutionary process by means of the agents’ actions. We 
accomplish this by giving the agents the capability (action) of reproduction. 
With this method, we also add an extra flexibility to the model. The repro-
duction action can be implemented as a simple cloning mechanism, include 
variation promoters like mutation and cross-over, or any other process one 
would like to test.

Again, there is no central control bound to the evolutionary process. 
Each agent will independently choose when and, if it is the case, with whom 
to reproduce by deciding to execute the corresponding action. Moreover, 
there is no explicit fitness function or generations, like in standard genetic 
algorithms. The agents die due to lack of resources, predators, age, or any 
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other mechanism implemented in their world. All these techniques allow us 
to create an open-ended evolution system.

This method of implementing evolution on the model, being generic, 
has also the capability of being used at different levels of complexity (see 
section 2.1.1). It is generally accepted that complex systems are structured 
hierarchically, where each system is composed of subsystems, these subsys-
tems are themselves composed of subsystems, and going on until we reach 
the most basic components, like sub-atomic particles. It is also generally 
accepted that most emergent properties appear across levels. That is, an 
emergent property observed at a given level, is the product of interactions 
of components on the level below. In our model, by implementing both 
the agents perceptions and actions accordingly, it is possible to simulate any 
level. At the limit, having enough computational power, it would be theo-
retically possible to simulate a system at the quantum level.

Another important theory that gathers some consensus is that evolu-
tion is not continuous, but happens mostly in large transitions (Smith and 
Szathmáry 1995). This theory states that, although small changes can occur 
and propagate in a population, the big changes are the ones that drive the 
evolutionary process. Some of the major transitions identified in the evolu-
tionary history of our planet are: the origin of eukaryotes from prokaryotes, 
of meiotic sex, and of the genetic code itself.

3.1.2.1.  Step Evolution
In our model, by combining aspects of the two aforementioned theo-
ries — levels of complexity and major transitions in evolution — we intro-
duced in the model a technique we named Step Evolution. This technique 
consists of identifying the perceived complexity levels, and dividing the 
problem accordingly. We first simulate a scaled down version of the prob-
lem, and when the agents evolve to solve this simpler problem, we change 
the simulation by adding the features removed earlier, and continue the 
evolution. In other words, if a problem with a very large search space, has 
an extremely small number of possible solutions, we can simplify the prob-
lem, maintaining the search space, but increasing the number of solutions. 
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When the simpler version of the problem is solved, we then try to solve the 
initial problem, starting from the solutions already found. Obviously, not 
all problems are prone to this kind of decomposition. For example, when 
using a standard genetic algorithm to optimise a function, it may not be 
easy, or possible, to decomposed that function into simpler components.  
Nonetheless, we believe that evolutionary processes, especially when open-
ended, are ideal candidates to apply this technique.

In our model, this technique consists of allowing the agents to evolve in 
steps, by periodically changing the environment and/or the agents’ struc-
ture (perceptions, actions, features). For example, if an agent is in an en-
vironment where the possible survival behaviours are very few, the evolu-
tionary search process will effectively be almost like a random search. We 
thus, change the environment  in such a way that widens the space of good 
behaviours, for example by removing constraints. We then let the agents 
evolve and later reintroduce the removed constraints.

3.1.2.2.  Genotype Editing
An additional technique we implemented in the evolutionary process is 
based on Luís M. Rocha’s Agent-Based Model of Genotype Editing (Huang 
et al. 2007; Rocha and Kaur 2007), that tries to mimic the processes of 
RNA editing in an artificial evolution scenario, namely in Artificial Life.

Fig. 3.2  The process of RNA Editing in the context of gene transcription and translation.

RNA editing (Benne 1993; Bass 2001) is a process of modification of 
the genetic information, after the transcription from DNA to RNA, and 
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before the translation to proteins. There have been identified several forms 
of RNA Editing in higher eukaryotes, such as the insertion and / or dele-
tion of bases in the messenger RNA (mRNA), or the substitution of bases 
in the mRNA. One specific, vastly studied, example of one of these editing 
processes is the insertion and deletion of Uridine (u) in the mitochondrial 
mRNA in trypanosomes (Benne et al. 1986; Benne 1993; Stuart 1993). In 
this case, the editing process requires a special class of RNA molecules called 
guide RNA (gRNA), encoded mostly by what was previously thought of as 
non-functional or non-coding genetic material. This gRNA base-pairs with 
the unedited mRNA and inserts or, less commonly, deletes uridine into the 
mRNA.

Based on this these processes of RNA editing, Luis M. Rocha proposed 
an extension to the traditional GA, by stochastically editing the genotypes 
before the translation into solutions. This model was tested first with the 
Genetic Algorithm with Editing (GAE) (Huang and Rocha 2003; Rocha and 
Huang 2004; Huang and Rocha 2004), and later by an extended version 
called the Agent-based Model of Genotype Editing (ABMGE) (Huang et al. 
2007; Rocha and Kaur 2007). In both instances, the models where tested 
against a series of standard fitness functions and some dynamic variations.

In our model, the goal is to apply the concepts in the ABMGE into an 
open-ended evolution environment. With our method of implementing ev-
olution, the inclusion of genotype editing is fairly straightforward. All that 
is required is the implementation of the editing functions and an equivalent 
to the base-pairing mechanism. We will explain our implementation later 
in this chapter.  

3.2.  The BitBang Framework
To test our conceptual model, we developed a software framework — the 
BitBang Framework. In this section we’ll detail the design and implementa-
tion of this software, and provide some examples on how to use it.
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3.2.1.  Global Architecture
The BitBang Framework is composed of two separate software components: 
the BitBang Core, and the BitBang Simulation Engine. The BitBang Core 
implements, in essence, the abstract conceptual model, and the BitBang 
Simulation Engine adds a three-dimensional graphics engine (Irrlicht 
Engine) and a physics engine (Bullet Physics). In Fig. 3.3 we show the es-
sential connections between the various software components of the frame-
work.

This two-part architecture was chosen mainly to facilitate the inter-
change of the environmental components, like the three-dimensional or 
physics engines. It is fairly straightforward to plug in a different engine, 
or even use only the BitBang Core and change the design possibilities of 
the environment. For example, it is possible to create a simulation on a 
grid world, or on a two-dimensional world. Moreover, this architecture also 
aids in our goal of applying our model to the entertainment industry. The 
BitBang Core, as an independent component, can be used as the artificial 
intelligence module of a game engine, or special effects framework.

Fig. 3.3  Global architecture diagram of the BitBang Framework.
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3.2.2.  BitBang Core
As mentioned above, the BitBang Core essentially implements the compo-
nents of the conceptual model. In fact, if one looks at Fig. 3.4, and com-
pares it to Fig. 3.1, one can easily find the similarities. In this class diagram 
we only show the fundamental classes of the framework. The class BBObject 
represents both the Agent and Thing components. The class BBWorld is 
used to simulate the environment. The rest of the classes represented map 
directly to their conceptual model counterparts.

Fig. 3.4  Class diagram of the fundamental classes of the BitBang Core.

The BitBang Core library has, however, other secondary classes, mostly 
used to provide some supplementary services to the programmer. These 
classes are shown in the class diagram presented in Fig. 3.5. We provide 
through these classes a logging facility to record the simulation results and 
configuration, a timer to keep the simulation time and its correspondence to 
real time, and a scheduler to periodically run tasks. The BBPerceptionSphere 
class is a utility class that is used to enable the computation of special kinds 
of perceptions. One example, is the vision system implemented through the 
BBVisionReach3DCone class.

Most of the fundamental classes in BitBang Core are abstract, i.e. they 
are intended to be derived to implement specific cases of perceptions, ac-
tions, features, brains, objects, and worlds. For some of these, the frame-
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work already provides some ready to use implementations. We provide a 
description of these in the next sections.

3.2.2.1.  Perceptions
The BBPerception class only defines the base methods and variables that all 
perceptions should implement. To create a specific type of perception, one 
must specify the type of data that the perception holds, and the operators 
available to evaluate that data.

Fig. 3.5  Expanded class diagram of the BitBang Core.

In the framework we provide implementations of perceptions of the fol-
lowing types: boolean, number, and string. For the number and string per-
ception types, we also provide a class to represent a fixed value perception 
(BBPerceptionFixedNumber and BBPerceptionFixedString). For each of the 
perception types we also implement a class that gets its perception value 
from an object’s feature of the same type (e.g. BBPerceptionFeatureBoolean).
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Fig. 3.6  Class diagram of the perception classes.
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Each of these implemented perception types has a set of operators avail-
able. The boolean perceptions have two possible unary operators: true and 
false. Numeric perceptions have three possible operators: equal, less than, 
and greater than. String perceptions have two implemented operators: equal 
and starts with. Naturally, for any of these types of perceptions, new opera-
tors can be implemented.

In addition to these base type perception classes, the framework also pro-
vides some final perception classes, either as examples or as utility percep-
tions. An example of a utility perception is the BBPerceptionRandom class. 
This perception changes its data, on each update, to a random boolean 
value. The BBPerceptionSeeResource and the BBPerceptionReachResource per-
ceptions are provided as examples on how to implement a perception class. 
The first evaluates to true when there is an object of type “resource” in the 
vision range of the agent, and the second evaluates to true if the object is 
within the agent’s reach. All these perception classes are shown in the class 
diagram presented in Fig. 3.6.

3.2.2.2.  Actions
Having also a base class from which all actions must derive (BBAction), we 
do not however provide implementations of specific actions. This is due to 
the fact that actions are too problem and environment specific. Nonetheless, 
there are some important characteristics to take into account when deriving 
the base class.

There are two main types of actions: continuous and atomic. The atomic 
actions are executed in a single operation, when triggered by the brain. 
Continuous actions, on the other hand, are executed continuously, from 
the time they are triggered, and until a specific stop condition occurs. We 
provide three different options for these stop conditions. Actions can be 
timed, being automatically stopped when the defined timeout is reached. 
Another option is to make the action be rule-bound. This type of action 
keeps active as long as it is triggered by the brain, i.e. the action is stopped 
when, after a series of brain algorithm evaluations with this same triggered 
action, an evaluation triggers a different one. Finally, if the stop condition 
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does not fit into any of these options, it is possible to make the action 
“flaggable”. This option allows the stop condition to be triggered from the 
outside, e.g. from the environment.

3.2.2.3.  Features
Similarly to the perceptions, the features also derive all from the base 
BBFeature class. Again, to implement a specific type of feature, one must 
specify the type of data that the feature holds.

In the framework we provide some implementations of feature types. 
Once again, the types implemented are: boolean, number, and string. These 
feature type classes are displayed in the class diagram of Fig. 3.7.

Fig. 3.7  Class Diagram of the feature classes.

3.2.2.4.  Rule List Brain
The base class for the brain component (BBRain) is decision algorithm ag-
nostic. However, to test our model, we needed to implement a specific al-
gorithm to use in our simulations — the Rule List brain. We chose to use a 
rule list mainly to allow for an easy understanding of the evolved behaviours 
by directly inspecting the brains of the agents.

The Rule List brain is composed of an ordered list of rules. The reason-
ing process is straightforward. The rules are evaluated in order, and the first 
one whose conditions are all true, is selected. Each rule is composed of a 
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conjunction of conditions and an action. The structure of a rule is shown 
in Listing 3.1.

1.	 <rule> ::= IF <condition-list> THEN <action>
2.	 <condition-list> ::= <condition>
3.	 <condition-list> ::= <condition> AND <condition-list>
4.	 <condition> ::= <perception> <operator> <perception>
5.	 <condition> ::= <perception> <operator>

Listing 3.1  Syntax of the Rule List brain.

Conditions have one or two perceptions and an operator. The possible 
operators are defined by the type of perceptions used. Several base percep-
tion types are already implemented, but new ones can be implemented if 
needed. The usage of one or two perceptions in a condition depends on the 
operator used. If the operator is unary, only one perception is needed. If 
the operator is binary, two perceptions must be provided. We only defined 
unary and binary perception operators, but the system can be easily aug-
mented to accommodate higher arity operators.

To better illustrate, in Listing 3.2 we provide an example of a short rule 
list.

1.	 IF reach_resource TRUE THEN eat
2.	 IF resource_location = 2 THEN move_front
3.	 IF resource_location = 1 THEN turn_right
4.	 IF resource_location = 3 THEN turn_left

Listing 3.2  Example of a Rule List brain.

In this example we are using two different perceptions and four different 
actions. The reach_resource perception is of type boolean, and evaluates to 
true whenever a food source is within the agent’s grasp. The resource_loca-
tion perception is of type number, and provides an indication of where, 
within the vision range of the agent, a food source is. It evaluates to 1 if 
the resource is on the agent’s left, 2 if the resource is in front of the agent, 
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3 if the resource is on the agent’s right, and 0 if no resource is found on the 
vision range. The actions used in this example have self-explanatory names. 
This rule list codes a simple foraging behaviour. The agent will search for 
and move towards food items and eat whenever it finds one within its grasp.  
Remember that the rules are evaluated in sequence, and that the one that 
first evaluates to true will be chosen.

To be able to evolve this brain architecture we need to define its equiva-
lent to the genotype, and the operators that modify it on reproduction. The 
brain’s genotype is the rule list itself, no translation is applied, making it a 
direct representation. Maintaining our focus on simplicity, the variation 
operators defined are only mutation operators. These operators are listed in 
Table 3.1.

Table 3.1  Mutation operators implemented for the Rule List Brain.

Operator Description

Add Rule This operator adds a rule to the rule list.

Delete Rule This operator deletes a rule from the rule list, randomly 
chosen.

Mutate List This operator iterates through the rule list, and replaces a rule 
with a new random one.

Mutate Rules
This is the lowest level operator. It drills down to the percep-
tions on the conditions and mutates both the perceptions and 
their operators. It also mutates the action of the rules.

Mutate Order This operator iterates through the rule list and moves a rule to 
the top of the list.

Mutate Order 2 This operator iterates through the rule list and moves a rule 
one position towards the top.

Having the structure of our rule list in mind, the rationale behind the 
creation of the mutation operators was providing a large coverage of the 
search space. As our rule list is ordered, we needed mutation operators that 
would affect the order. Two different operators were created. One with a 
more disruptive effect (Mutate Order), and another with less disruptive 
effect (Mutate Order 2). To provide variation of the inner structure of 
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rules, we created two operators. Again, one that completely replaces one 
rule (Mutate List), having a larger disruptive effect, and one with a higher 
granularity, affecting the components of the rules (Mutate Rules). Finally, 
to provide the capability of changing the size of the rule list, operators that 
add or delete rules were created. With these three groups of operators, we 
believe that the search space is adequately covered.

To test the genotype editing technique described earlier in the chapter, 
we also implemented a variation of the Rule List brain. In line with the 
definitions of the ABMGE model, we divided the genotype defined for the 
Rule List into a codotype part and an editype part. The former is the actual 
rule list, as was the case for the standard Rule List brain. The latter is com-
posed of a series of editors of the form (Ej, Fj, vj), again, in line with the 
ABMGE. The Ej editor string is defined here as a rule list condition. This 
rule condition is compared to the codotype’s rules conditions to search for 
a match. Each editor Ej has an associated editing function Fj that specifies 
how that particular editor modifies the codotype. In our implementation 
we defined two editing functions. One substitutes the first perception of the 
condition with a new random one, and the other substitutes the operator of 
the condition with a new random one. More editing functions can be eas-
ily implemented for a specific simulation. Regarding the vj  parameter, we 
maintain the same definition as in ABMGE. It determines the probability 
of the Ej editor string being checked against the codotype.

The variation operators (mutation) applied to the codotype in this ver-
sion of the Rule List brain are the same as those defined for the standard 
version (shown in Table 3.1). Furthermore, the editype itself is also subject 
to variation. As previously, we follow the definition of the ABMGE and 
only apply mutation to the editor string, and not to the editing function or 
the concentration parts of the editor. The mutation operator applied is the 
same as the one defined for the Mutate Rules operator, but affecting only the 
condition. Once more, this variation operation can be easily modified and 
extended to include the other editype parts, or with new variation opera-
tors.
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In the class diagram shown in Fig. 3.8, we show the implementation 
classes of the Rule List brain, its genotype editing version, and its connec-
tions to the perception and action classes.

Fig. 3.8  Class diagram of the Rule List brain classes.

3.2.3.  BitBang Simulation Engine
As mentioned previously, the main purpose of the BitBang SE (Simulation 
Engine) is the joining the BitBang Core with a three-dimensional graphics 
engine and a physics engine, and thus, provide a experimental simulation 
environment in which to test our model. In Fig. 3.9 we provide a class 
diagram of the main classes of the BitBang SE and its connections to the 
other engines. In this diagram we can see that there are two versions of the 
object class. This implementation allows the use of both 3D and physics 
(using the CPhyscisObject class), or to use only the 3D engine (using the 
CSimObject class).
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Fig. 3.9  Class diagram of the BitBang Simulation Engine, and its connections with the BitBang 
Core classes, and the third-party 3D and physics engines.

Fig. 3.10  Screenshot of a running simulation on the BitBang Simulation Engine.
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In addition to the classes represented in the class diagram, there are oth-
ers supplied in the engine. Those are mainly utility classes to provide some 
auxiliary services for visualisation, input event handling, and simulation 
configuration.

On a more technical note, both the BitBang Core and the BitBang SE 
are implemented in C++. This choice permitted a better optimization of 
the code to take advantage of all the power that modern processors can 
supply. When simulating open-ended evolution scenarios, one needs all the 
processing power available. The framework is cross-platform and is tested 
on Microsoft Windows, Mac OS X, and Linux. In Fig. 3.10 we show a 
screenshot of a running simulation using the three-dimensional graphics 
engine.



Chapter Four

Foraging 
Simulations
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In this chapter we present the results from two different simulation sce-
narios, developed to test the model and framework implemented. Both 
scenarios are based on the foraging task. In Nature, the foraging task, is of 
vital importance to all organisms, big and small. We can find a great variety 
of different behaviours associated with this task. For example, social insects 
like bees and ants, have evolved complex collective foraging behaviours to 
cope with this task.

The first scenario's main purpose is the testing of the various simulation 
parameters, mainly those governing the evolution of the agents control-
lers — the mutation operators. Next, on the second scenario, we try to up 
the ante by making the environment more challenging to survive in, and 
thus forcing the evolution of more complex behaviours. That is also, ulti-
mately, the motivation to develop the scenarios presented in the next chap-
ter. We expect to find the emergence of increasingly complex  behaviours, 
by creating increasingly complex environments.

For each of the scenarios presented, we will first describe the virtual 
world implemented, following the BitBang Framework architecture, and 
then we present the results of the simulations executed.

4.1.  Basic Foraging
The experiments described in this section implement a world where agents 
and resources are randomly placed in the environment, and the agents will 
need to develop good navigation capabilities in order to find and eat the 
resources. This task may seem too simple, but consider that the agents are 
initialized with random brains, and that we do not have a fitness function 
to guide their evolution. Moreover, as these simulations serve the main pur-
pose of benchmarking the effects of the configuration parameters on the 
evolutionary process, we didn't want to make them overly complicated.

4.1.1.  World Definition
In this section we will set out all the implementation details and archi-
tecture of the virtual world created. As expected, these simulations were 
implemented using the BitBang framework, and therefore we will present 
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the architecture according to the framework's specifications. We begin by 
describing the simulation environment, then detail the agents' architecture 
(features, perceptions, actions, and brain), and then we present the things 
defined in this world.

4.1.1.1.  Environment

Fig. 4.1  Screenshot of a running simulation. We can see the agents (turtles) and the food items 
(small boxes).

Our world is a two dimensional world1 where agents and resources are 
placed (see Fig. 4.1). The terrain is a square. This area restricts the place-
ment of agents and resources, but does not restrict the movement of the 

1  The world is two dimensional, but the visualisation is three dimensional, as the underlying 
BitBang Framework is three dimensional.
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agents. The world is infinite, i.e., an agent can move past the boundaries of 
the populated terrain. 

At startup, the field is populated with a configured amount of randomly 
placed food items. These are periodically replenished so that the total food 
count is maintained. As soon as the agents gain good foraging capabili-
ties, they will deplete the world of resources, and ultimately the population 
would die out. As our model is open-ended, and evolution is continuos, 
we need to keep introducing energy into the environment to maintain the 
evolutionary process.

The number of resources available is configurable to be able to fine tune 
the system so as to allow agents to survive but also provide enough evo-
lutionary pressure. If there are too few resources in the environment, the 
world could be impossible to live in. But if there are too many resources, 
the foraging task could become too easy and thus not provide any pressure 
to evolve better foraging behaviours. New resources are introduced using 
a schedule that periodically checks the number of resources in the envi-
ronment and, if its below the configures threshold, creates new randomly 
placed ones.

On initialization, the world is populated with randomly placed, and ran-
domly generated agents. At this time, having completely random brains, it 
is highly probable that the agents will not execute the reproduction action, 
either by not choosing it, or because they do not have enough energy to 
reproduce. Thus, if nothing is done at this stage, the population will most 
likely die out.

We identified two different paths to solve this problem. Either generate 
the initial agents with basic foraging and reproduction capabilities — simi-
lar to what is used in New Ties — or force the reproduction of agents during 
the initial stages of the simulation — similar to what is used in Polyworld. 
The first option would, to some extent, defeat our purpose of keeping the 
simulation open-ended, in the sense that we would need to initially define 
good behaviour and intrinsically define a goal. So we chose the second op-
tion.
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To keep the population alive, whenever the number of agents in the 
world falls bellow a given threshold, new agents are created. If there are live 
agents in the environment, one will be picked for reproduction, otherwise a 
new random agent is created. Note that, as there is no explicit fitness func-
tion, the agent chosen for reproduction will be randomly selected from the 
population. Considering that an agent with a behaviour better adapted to 
the environment will live longer, it will have a greater probability of being 
chosen for forced reproduction.

This process is only active whenever the population falls below a con-
figured threshold. This happens at the start of the simulation. As soon as 
the agents evolve behaviours capable of sustaining the population, no new 
agents will need to be created this way.

4.1.1.2.  Agents
In this simulation only one type (species) of agent exists, and has the fol-
lowing architecture:

•	 Features: energy, metabolic rate, and birth date.
•	 Perceptions: energy, resource location, reach resource, light level.
•	 Actions: move front, turn left, turn right, sleep, eat, reproduce.
•	 Brain: rule list.

We now describe each one of these components.

Features
•	 Energy: This feature represents the current energy level of the agent. 

When this feature reaches zero, the agent dies. The feature is initial-
ized with a predetermined value at agent birth.

•	 Metabolic Rate: The metabolic rate is the amount of energy the 
agent consumes per time unit. The agents energy decreases linearly, 
using the formula presented in equation (4.2), where e(t) is the en-
ergy of the agent at time t, and mr is the metabolic rate of the agent. 
The metabolic rate can vary and is composed of a base metabolic 
rate that increases by a configurable amount whenever the agent 
moves.
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(4.2)

•	 Birth Date: This feature is set to the current time at birth and re-
mains constant. It is used to calculate the agent’s age. When the 
agent reaches a given age, it dies. This procedure allows the evolu-
tion to continue past the moment when the agents have devel-
oped good navigation and eating capabilities, whilst maintaining 
an asynchronous and open-ended simulation. The maximum age 
of the agents is configurable.

Perceptions

•	 Energy: This is a self-referencing perception on the agent’s current 
energy level. This perception is tied to the corresponding feature. 
This is a numerical perception, and the range of values is config-
ured according to the corresponding feature.

•	 Resource Location: This is the agent's perception of vision, repre-
senting the position of the nearest resource, relative to the agent's 
position and orientation. The agent's vision field is defined by a 
given range and angle. An object is within the vision field of an 
agent if its distance to the agent is less than or equal to the vision 
range, and the relative angle to the agent is within the defined vi-
sion angle (see Fig. 4.2). This is a numerical perception with pos-
sible values 0, 1, 2, and 3. The value 0 means no resource is visible. 
The value 1 means there is a resource to  the left. The value 2 means 
there is a resource directly in front of the agent. The value 3 means 
there is a resource to the right.

Fig. 4.2  Diagram of the vision field of an agent.

e(t+∆t) = e(t)−mr∆t
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•	 Reach Resource: This is a boolean perception that evaluates to true 
whenever the agent has a resource within its reach. The distance the 
agent can reach is configurable.

Actions

•	 Movement: We define three actions for movement. One to walk 
forward, one to turn left, and one to turn right. These actions have 
a tie to the metabolic rate feature in such a way that whenever the 
agent is moving, the metabolic rate increases by a configured fix 
amount.

•	 Eat: This action enables the agent to eat a resource within its range. 
If no resource is in range when the action is executed, nothing hap-
pens. This action will add a configured amount of energy to the 
agent’s energy feature.

•	 Reproduce: This action allows the agent to reproduce itself. The re-
production implemented is asexual. When the action is executed, 
a new agent is created and placed in the world. The new agent will 
be given a brain that is a mutated version of its parent’s brain. Note 
that, as each mutation operator has been given a probability of be-
ing applied, the child’s brain can be a perfect clone of its parent’s 
brain. The action will also transfer energy from the parent to the 
offspring. The amount of energy consumed in the action is the sum 
of the initial energy for the new agent and a configurable fixed cost. 
It’s important to have a cost of reproduction higher than the initial 
energy of an agent, so as to provide evolutionary pressure.

Brain

The agents’ brain used in these experiments is a rule list, whose architecture 
was detailed in section 3.2.2. On initial creation of an agent, the brain is 
randomly initialized. This initialization conforms to some configurable pa-
rameters: the maximum number of rules, the minimum number of rules, 
and the maximum number of conditions per rule. Other configured values 
are the mutation probabilities used in the reproduction action.
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4.1.1.3.  Things
Only one type of thing is defined for this world: the resources that the 
agents eat to acquire energy. No features are associated with them. A con-
figurable parameter defines the amount of energy each resource provides.

4.1.2.  Results
In this section we present and analyse the results of the simulations per-
formed with this foraging scenario. But first we present the various param-
eters and their configuration values used in these experiments. In Table 4.1 
we present the base values used for this scenario. We later vary some of these 
parameters to study their influence in the evolutionary process. For each 
different set of configuration parameters tested, we ran thirty independent 
simulations, and collected the results.

Table 4.1  Basic Foraging: Configuration values

Parameter Values

Terrain Size 1000 x 1000
Time Limit 100 000
Minimum Food 200
Food Energy Content 3
Minimum Agents 20
Vision Range 200
Vision Angle 60º
Agent Reach 20
Agent Initial Energy 10
Metabolic Rate 0.1
Move Metabolic Rate Increase 0.01
Maximum Age 500
Reproduction Cost 2
Minimum Rules 15
Maximum Rules 20
Maximum Conditions 2
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Parameter Values

Mutation List Probability 0.01
Mutation Rules Probability 0.01
Mutation Order Probability 0.01
Mutation Order 2 Probability 0.01
Mutation Add Probability 0
Mutation Delete Probability 0

A statistical analysis of these results is presented later. Now, we show 
some plots of the evolution of the population of agents throughout one 
simulation run. The plots shown are from an experiment with the configu-
ration values presented in Table 4.1, and are typical of all simulation runs 
of that experiment.

In the plots shown in Fig. 4.3 we can clearly spot the time when agents 
start having a good foraging behaviour (at around 2000 time units), and 
then have a significant improvement around time 19 000. We can also spot 
the time where agents start reproducing by themselves (at around time 
27 000), by looking at the evolution of the number of agents in the popu-
lation. At this time we can see that the average gathered energy per agent 
drops. This happens due to the increase in population size, and the number 
of resources being kept constant.

Since we do not use fitness functions, we are not able to assign a fitness 
value to agents, and thus cannot compare runs based on fitness. We have, 
however, a number of different values that we could use to benchmark the 
experiments. From the analysis of the evolutionary plots presented above, 
we can see that there are two important events in these simulations: the 
evolution of foraging, and the evolution of self sustained reproduction. We 
will use the time when these events occur in the run as a performance meas-
ure. If in a given run, the agents never evolve either foraging or reproduc-
tion, the value used will be the time limit of the run. Naturally, using these 
measures of performance, the lower the value, the better the performance.
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Fig. 4.3  Plot of the evolution of the number of agents, their average age, and average gathered 
energy over the course of one simulation run.

We divide the benchmarking experiments into three groups. First we test 
the effect of the time limit, then the environmental conditions, and finally 
we test the mutation operators. For each set of experiments, the parameter 
values not explicitly presented in the text, are set to the values show above 
in Table 4.1.

To analyse the results from the various parameter configuration varia-
tions, we determined the statistical significance of the null hypothesis of no 
difference with Mann-Whitney U test with α=0.05, whenever we have two 
experiment sets to test. In the cases where we have more than two sets of 
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experiments, we use Kruskal-Wallis ANOVAs with α=0.05. If a significant 
difference in a these sets of experiments is found, further pairwise Mann-
Whitney U tests with Holm's p-value adjustment were conducted. These 
non-parametric tests were chosen because the data is not guaranteed to fol-
low a normal distribution.

4.1.2.1.  Time Limit
In these first experiments we tested two different values for the time limit of 
the simulation. On experiment one, we set the time limit to 100 000 time 
units, and on experiment two, we set it to 200 000. The results from these 
experiments are shown in Fig. 4.4. The plots show that both experiments 
present identical results. In fact, we didn't find any significant difference in 
the results with a p-value of 0.9646 for the time of evolution of foraging, 
and a p-value of 1 for the time of evolution of reproduction.

Fig. 4.4  Results from experiments with different time limit. The results show the time when 
evolution of foraging or reproduction occur in the runs.

4.1.2.2.  Environment
In these experiments we tested the effect of changing the amount of food 
available in the environment. We run experiments with values of 200, 100, 
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and 50 for the minimum food parameter. The results from these experi-
ments are shown in Fig. 4.5, Table 4.2 and Table 4.3.

Fig. 4.5  Results from experiments with different number of food items in the environment. The 
results show the time when evolution of foraging or reproduction occur in the runs.

Table 4.2  Pairwise comparisons: time of evolution of foraging

200 100

100 0.10372 —
50 0.00076 0.09027

Table 4.3  Pairwise comparisons: time of evolution of reproduction

200 100

100 0.00838 —
50 2.93 x 10-9 1.04 x 10-6

We find that the best median values for both foraging and reproduction 
are obtained for 200 food items. The results were found to be significantly 
different with p-values of 0.00116 for foraging and 9.65 x 10-11 for re-
production. Pairwise tests reveal that performance significantly worse for 
50 food items in both foraging and reproduction. We can also see that, in 
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terms of reproduction, the value of 200 food items is significantly better 
than both 100 and 50, and that 100 is significantly better than 50.

4.1.2.3.  Mutation Operators
The experiments presented in this section test the effect of the mutation 
operators. The first set of experiments, whose results are shown in Fig. 4.6, 
Table 4.5 and Table 4.6, tests different values for the probability of muta-
tion for all operators at the same time (except for the add and delete rule 
operators). In Table 4.4  we show the configuration for the various experi-
ments of this set. In this first test of the mutation probability values, we 
change simultaneously all the mutation operators probabilities in order to 
test the systems sensibility to mutation. Later, we will test each mutation 
operator independently. 

Table 4.4  Mutation Operators: Experiments configuration

Experiment Mutate Rules Mutate Order Mutate Order2 Mutate List

1 0.01 0.01 0.01 0.01
3 0.001 0.001 0.001 0.001
4 0.005 0.005 0.005 0.005
5 0.02 0.02 0.02 0.02
6 0.05 0.05 0.05 0.05
7 0.1 0.1 0.1 0.1
8 0.2 0.2 0.2 0.2
9 0.5 0.5 0.5 0.5

The results show that the best medians were found for experiments one, 
four and five in the case of foraging, and for one and five in the case of 
reproduction. Tests show that the results are significantly different in terms 
of both foraging and reproduction with p-values of 0 in both cases. Further 
pairwise tests show that experiments one, four, and five perform signifi-
cantly better than all other experiments in terms of foraging, and experi-
ments one and five perform significantly better than all others in terms of 
reproduction.
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Fig. 4.6  Results from experiments with different probabilities for the mutation operators, except 
for the Add Rule and Delete Rule operators. The results show the time when evolution of foraging 
or reproduction occur in the runs.

Table 4.5  Pairwise comparisons: time of evolution of foraging

1 3 4 5 6 7 8

3 0.00110 — — — — — —
4 0.35482 0.02410 — — — — —
5 0.71000 0.00170 0.71000 — — — —
6 1.2 x 10-6 0.71000 0.00023 3.4 x 10-6 — — —
7 3.0 x 10-11 9.2 x 10-10 3.0 x 10-11 3.0 x 10-11 8.1 x 10-9 — —
8 3.0 x 10-11 9.2 x 10-10 3.0 x 10-11 3.0 x 10-11 8.1 x 10-9 — —
9 3.0 x 10-11 9.2 x 10-10 3.0 x 10-11 3.0 x 10-11 8.1 x 10-9 — —

Table 4.6  Pairwise comparisons: time of evolution of reproduction

1 3 4 5 6 7 8

3 9.1 x 10 -9 — — — — — —
4 0.01903 9.3 x 10 -7 — — — — —
5 0.75235 1.9 x 10 -9 0.00310 — — — —
6 0.00031 0.00181 0.13119 0.00008 — — —
7 3.0 x 10 -11 0.00002 3.0 x 10 -11 3.0 x 10 -11 9.1 x 10 -9 — —
8 3.0 x 10 -11 0.00002 3.0 x 10 -11 3.0 x 10 -11 9.1 x 10 -9 — —
9 3.0 x 10 -11 0.00002 3.0 x 10 -11 3.0 x 10 -11 9.1 x 10 -9 — —
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We can also see that experiments seven, eight, and nine perform signifi-
cantly worse than all others. In fact, in these experiments agents never de-
velop either foraging or reproductive behaviours in the assigned time limit. 
These results show that the best global values for the probability of muta-
tion are 0.01 and 0.02.

Next, we tested the effect of only using each one of the mutation opera-
tors independently. In Table 4.7 we show the configuration values for these 
experiments. We present the results from these experiments in Fig. 4.7, 
Table 4.8, and Table 4.9.

Table 4.7  Mutation Operators: Experiments configuration

Experiment Mutate Rules Mutate Order Mutate Order2 Mutate List

10 0.01 0 0 0
11 0 0.01 0 0
12 0 0 0.01 0
13 0 0 0 0.01

Fig. 4.7  Results from experiments using each of the mutation operators independently. The results 
show the time when evolution of foraging or reproduction occur in the runs.

The best median both in terms of foraging and reproduction was found 
for experiment ten, where we only use the Mutate Rules operator. Sets were 
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found to be significantly different both in term of foraging and reproduc-
tion, with p-values of 8.58 x 10-6 and 1.68 x 10-16 respectively. Pairwise 
tests show that the Mutate Rules operator performs significantly better than 
all other operators.

Table 4.8  Pairwise comparisons: time of evolution of foraging

10 11 12

11 0.00994 — —
12 0.00011 0.01697 —
13 0.00501 0.47279 0.01257

Table 4.9  Pairwise comparisons: time of evolution of reproduction

10 11 12

11 2.9E-10 — —
12 2.9E-10 — —
13 0.00002 0.00029 0.00029

Fig. 4.8  Results from experiments with different probabilities for the operator Mutate List. The 
results show the time when evolution of foraging or reproduction occur in the runs.
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In the experiments whose results are shown in Fig. 4.8, Table 4.10 and 
Table 4.11, we test different values for the probability of applying the 
Mutate List operator, whilst keeping all other mutation operators with a 
probability of 0.01. We tested the values 0.001, 0.01, 0.05, 0.1, and 0.5.

Tests show that there are significant differences in this set of experiments, 
with p-values of 4.52 x 10-15 for foraging and 4.17 x 10-15 for reproduc-
tion. Pairwise tests reveal that probability 0.5 has significantly worse per-
formance than all other values. There was no significant difference found 
between the rest of the values.

Table 4.10  Pairwise comparisons: time of evolution of foraging

0.001 0.01 0.05 0.1

0.01 1.00000 — — —
0.05 1.00000 1.00000 — —
0.1 1.00000 1.00000 1.00000 —
0.5 1.2 x 10-11 1.2 x 10-11 1.2 x 10-11 1.2 x 10-11

Table 4.11  Pairwise comparisons: time of evolution of reproduction

0.001 0.01 0.05 0.1

0.01 1.00000 — — —
0.05 1.00000 1.00000 — —
0.1 1.00000 1.00000 1.00000 —
0.5 1.2 x 10-11 1.2 x 10-11 1.2 x 10-11 1.2 x 10-11

In the experiments whose results are shown in Fig. 4.9, Table 4.12 and 
Table 4.13, we test different values for the probability of applying the 
Mutate Order operator, whilst keeping all other mutation operators with 
a probability of 0.01. We tested the values 0.001, 0.01, 0.05, 0.1, and 0.5.

The best median in terms of both foraging and reproduction was found 
for the probability of 0.01. Tests show that there are significant differences 
in this set of experiments both in terms of foraging and reproduction, with 
p-values of 8.39 x 10-16 and 8.80 x 10-15 respectively. Pairwise tests reveal 
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that probability 0.5 has significantly worse performance than all other val-
ues, and that 0.01 is significantly better than 0.1 in terms of foraging.

Fig. 4.9  Results from experiments with different probabilities for the operator Mutate Order. The 
results show the time when evolution of foraging or reproduction occur in the runs.

Table 4.12  Pairwise comparisons: time of evolution of foraging

0.001 0.01 0.05 0.1

0.01 0.17199 — — —
0.05 1.00000 0.17199 — —
0.1 0.10958 0.00079 0.10958 —
0.5 2.8 x 10-10 1.9 x 10-10 2.6 x 10-10 1.8 x 10-9

Table 4.13  Pairwise comparisons: time of evolution of reproduction

0.001 0.01 0.05 0.1

0.01 0.17884 — — —
0.05 0.76347 0.35112 — —
0.1 0.87755 0.08921 0.74343 —
0.5 2.3 x 10-10 1.2 x 10-10 1.2 x 10-10 1.1 x 10-9
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In the experiments whose results are shown in Fig. 4.10 we test different 
values for the probability of applying the Mutate Order 2 operator, whilst 
keeping all other mutation operators with a probability of 0.01. We tested 
the values 0.001, 0.01, 0.05, 0.1, and 0.5. In this set of experiments we 
found that there are no significant differences either in terms of foraging 
and of reproduction, with p-values of 0.34371 and 0.37198 respectively.

Fig. 4.10  Results from experiments with different probabilities for the operator Mutate Order 2. 
The results show the time when evolution of foraging or reproduction occur in the runs.

In the experiments whose results are shown in Fig. 4.11, Table 4.14, 
and Table 4.15 we test different values for the probability of applying the 
Mutate Rules operator, whilst keeping all other mutation operators with a 
probability of 0.01. We tested the values 0.001, 0.01, 0.05, 0.1, and 0.5.

The best median was found for the values 0.01 and 0.05, both in terms 
of foraging and reproduction. Tests show that there are significant differ-
ences in the set both in terms of foraging and reproduction, with p-values 
of 0 in both cases. Pairwise tests reveal that both values of 0.01 and 0.05 
perform significantly better than all other values, and that 0.5 performs 
significantly worse than all others.
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Fig. 4.11  Results from experiments with different probabilities for the operator Mutate Rules. 
The results show the time when evolution of foraging or reproduction occur in the runs.

Table 4.14  Pairwise comparisons: time of evolution of foraging

0.001 0.01 0.05 0.1

0.01 0.01417 — — —
0.05 0.01272 0.46866 — —
0.1 0.16998 0.00019 0.00014 —
0.5 1.2 x 10-11 1.2 x 10-11 1.2 x 10-11 1.2 x 10-11

Table 4.15  Pairwise comparisons: time of evolution of reproduction

0.001 0.01 0.05 0.1

0.01 0.00178 — — —
0.05 0.00002 0.15695 — —
0.1 0.15695 0.04460 0.00004 —
0.5 4.0 x 10-10 1.2 x 10-11 1.2 x 10-11 3.7 x 10-11

In the experiments whose results are shown in Fig. 4.12, we tested the 
effect of using either version of the Mutate Order operator. We ran ex-
periments with either Mutate Order operator or Mutate Order 2 operator 
turned on, and with both operators turned on (see Table 4.16). No signifi-



Basic Foraging    69

cant differences were found  in this set of experiments, both in term of for-
aging and reproduction, with p-values 0.66837 and 0.21955 respectively.

Table 4.16  Mutate Order operators: Experiments configuration

Experiment Mutate Rules Mutate Order Mutate Order2 Mutate List

1 0.01 0.01 0.01 0.01
15 0.01 0.01 0 0.01
16 0.01 0 0.01 0.01

Fig. 4.12  Results from experiments using either the Mutate Order, the Mutate Order2, or both 
operators. The results show the time when evolution of foraging or reproduction occur in the runs.

In the experiments whose results are shown in Fig. 4.13, we tested the 
use of the Add Rule and Delete Rule mutation operators. To that end we 
run two experiments with these operators turned off (probability of zero) 
and turned on with probability of 0.01. No significant differences were 
found in the results with a p-value of 0.43307 in terms of foraging and a 
p-value of 0.09479 in terms of reproduction.

Owing to the fact that in these experiments we are using operators that 
affect the size of the agent's brains, by adding or removing rules, it is rel-
evant to add performance measures related to brain size. Thus, for these 
experiments we also collected the performance values for the brain size and 
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for the number of used rules in the brain of the agents. Both these values are 
averages taken from the agents that lived in the last ten thousand time units 
of the simulation. We define used rules as the ones that have been selected 
at least once during the lifetime of the agent.

Fig. 4.13  Results from experiments with the Add Rule and Delete Rule operators turned on or off. 
The results show the time when evolution of foraging or reproduction occur in the runs.

One interesting phenomenon that we can check with these performance 
values, is if the brain size tends to increase in size, without a correspond-
ing increase in the number of used rules. In genetic programming, and 
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other evolutionary computation techniques, an equivalent phenomenon is 
usually referred to as bloat. Such an increase in brain size could affect com-
putational performance and eventually render the simulations too slow to 
complete in reasonable time.

The results show that, in terms of brain size, the lowest median is found 
for the case where the add and delete operators are used. This result is sta-
tistically significant, with a p-value of 0.00005. In terms of used rules, the 
sets are not significantly different, with a p-value of 0.0935.

4.1.3.  Analysis of the Results
In this first experiment set, we tested various parameters of the simulation, 
to test how they affect the evolutionary process. We first tested the time 
limit parameter and found no significant difference in the results. This hap-
pens because all the thirty runs were successful in evolving good foraging 
behaviours and sustainable reproduction for the lower time limit. At least 
for the complexity of this world, 100 000 time units seem to be enough.

Next we tested the availability of resources in the environment. In this 
case, we found that the best performance attained for was for two hundred 
food items. This result was expected, as the least food we have in the envi-
ronment, the harder the foraging task gets.

The rest of the experiments were used to test the various mutation op-
erators implemented. Regarding the overall mutation probabilities test, we 
verified the best performance was obtained for the values 0.01 and 0.02. 
Next we tested each mutation operator individually. The results show that 
the only operator that could eventually be used alone is the Mutate Rules 
operator. This is probably due to the low level working of this operator. As 
it can mutate each component of the rules, it can eventually modify the rule 
list completely. If we had to choose only one operator to use, this would be 
the one to choose.

In the subsequent four sets of experiments, we tested the sensitivity to 
the mutation probability of each mutation operator, whilst keeping the rest 
of the operators with a probability of 0.01. In these experiments we were 
able to verify that for all operators, except for the Mutate Order 2, the prob-
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ability of 0.5 has the worst performance. Another relevant result is that 
of the Mutate Rules operator, as this is the only operator that shows some 
sensitivity to the probability of being applied. In this case, the values 0.01 
and 0.05 both have better performance than the rest. Again, this might be 
due to the high granularity of the operator. Overall, the results indicate that 
a value of 0.01 for all operators seems to be a good choice.

The next set of experiments tests the two operators that change the order 
of rules, in order to check if one might be better than the other. However, 
we could not find any significant differences between them, and also in ap-
plying both. This might indicate that we could drop one of these operators 
and maintain good performance.

On the final set of experiments we tested the usage of the add and delete 
rule operators. We were especially interested in checking if these operators 
would cause bloat. The results show that, in fact, these operators not only 
do not cause bloat, but reduce the size of the brain.

This foraging simulation was also used as a first test of our open-ended 
evolution model. From the analysis of the evolutionary plots at the begin-
ning of this results section, we can that the agents do evolve good foraging 
behaviours and sustainable reproduction in this environment.

4.2.  Ant Foraging
As mentioned before, the scenario described in this section is inspired by 
the known ant foraging behaviours fond in Nature. The study of these 
collective behaviours has crossed the discipline of biology and inspired a 
number of computational algorithms generally known as swarm intelli-
gence (Bonabeau 1999). Specifically, in ants, both the use of a random walk 
and of pheromone as a tool to communicate and coordinate the foraging 
task, has fuelled a vast number of ant based algorithms like Dorigo's Ant 
Colony Optimization algorithms (2004, 2006).

A random walk is a process of defining a trajectory where at each step a 
random direction is chosen. The mathematical formalisation of the random 
walk has been the inspiration for a vast body of research in diverse areas. 
The term was first used by Karl Pearson (1905) on a letter to Nature jour-
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nal. The random walk can be considered in n dimensions, however, of inter-
est to our work is the two-dimensional random walk (McCrea and Whipple 
1940). The most important property of the random walk, to our work, is 
that, given enough time, all points in space will eventually be visited. It has 
been observed that the foraging behaviour os some species of ants is analo-
gous to a random walk, when in the absence of pheromone trails.

The other important aspect of the ant foraging behaviour is the use of 
pheromone trails to guide and recruit other ants to the task (Deneubourg 
1983; Camazine et al. 2001). Pheromone is a chemical substance that ants 
deposit on the ground to mark the path to a food source. When an ant 
finds a food source, it will deposit pheromone on the way back to the nest. 
Other ants will then sense the pheromone and follow the trail to the food 
source. This description is a simplification of the possible variations of this 
behaviour, but encompasses the main aspects important to our research.

Although most research on these issues is based on the implementa-
tion of ant algorithms, using the known biological behaviours, some re-
search onto the emergence of these behaviours also exists (Collins 1991; 
Kawamura 2000; Nakamichi and Arita 2005). In those papers, the authors 
use standard genetic algorithms to evolve populations of agents, controlled 
by  artificial neural networks. In our research, however, we are concerned 
with the open-ended evolution of these behaviours.

In the scenario presented in this section, we look to make the foraging 
task harder for the agents, in order to see if more complex behaviours are 
evolved. To that end we changed the placement of food in the environment 
by gathering all the available resources in a patch far away from the agents' 
initial position. With this change, the agents will need to evolve a behaviour 
that allows them to find the patch of food in the environment, for example, 
a random walk.

4.2.1.  World Definition
The world created for these experiments has some common components 
with the one described previously. Thus, in this section, we will only de-
scribe the new or changed components.
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4.2.1.1.  Environment
Again, we use a two dimensional world where agents and resources are 
placed. However, this time the terrain is a bounded square. By using a 
bounded square in this environment, we force the ants to stay within the 
populated terrain, thus allowing the better coverage of the whole environ-
ment when performing a random walk. Inside this arena we define a nest 
(the place where all the agents are born), and a feeding zone. This feeding 
zone is a circle of a given radius where all food items are placed. At startup, 
we fill the zone with food items, and these are periodically replenished so 
that the total food count is maintained. These different zones can be seen in 
the screenshot shown in Fig. 4.1. On initialization, the world is populated 
with randomly generated agents, placed at the nest. All the agents born dur-
ing the simulation will also be placed at the nest.

Fig. 4.14  Screenshot of a running simulation. At the top left corner there is a feeding zone with 
food items and at the bottom right we see the nest and an ant agent walking away from the nest.
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To accommodate the placement and evaporation of pheromone, we cre-
ated an influence map in the environment. The map divides the continuos 
environment into a grid. Each cell will have a value indicating the amount 
of pheromone it contains. Agents can deposit pheromone in the environ-
ment, and once placed, the pheromone will evaporate linearly at a constant 
rate. Each cell has a maximum value of pheromone it can contain. If an 
agent tries to place pheromone into a cell that already has the maximum 
amount, no more pheromone will be deposited.

4.2.1.2.  Agents
In this simulation only one type (species) of agent exists, and has the fol-
lowing architecture:

•	 Features: energy, metabolic rate, birth date, and placing pherom-
one.

•	 Perceptions: energy, resource location, reach resource, pheromone 
location, placing pheromone, and random number.

•	 Actions: move front, turn left, turn right, sleep, eat, reproduce, and 
place pheromone.

•	 Brain: rule list.
We will now describe these components, but only those that are new in 

this world.

Features
•	 Placing Pheromone: This boolean feature indicates if the agent is 

currently placing pheromone on the environment. Whenever this 
feature is true, the agent will place pheromone at a given rate.

Perceptions

•	 Pheromone Location: This perception is similar in values to the 
Resource Location perception, but instead of identifying resources, 
it identifies pheromone values in the vicinity of the agent. To de-
termine the value of this perception we will look to the nearby cells 
(1 cell neighbourhood) in the pheromone influence map, and find 
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the one with the maximum pheromone value. Cells are processed 
starting from the one at the front and left of the agent. In the case 
of a tie, the first processed cell will be selected. If none of the neigh-
bouring cells have pheromone, the value of the perception will be 
0. If the maximum is to the left of the agent (the agent's orientation 
is taken into account), the value of the perception will be 1. If it 
is to the right, the value is 3. And if it is in front of the agent, the 
value is 2.

•	 Placing Pheromone: This is a self-referencing perception that takes 
the same value as the corresponding feature. With this perception, 
the agent can perceive if it is currently placing pheromone.

•	 Random Number: This perception provides a source of random-
ness to the agent. Without some source of randomness, the agents 
would never be capable of having a random behaviour, and thus 
would not have the capacity to perform a random walk. The per-
ception will take a new random number each time it is evaluated. 
The number is selected from the range 0 to 3. We use this range, as 
it is the same range of values that the location perceptions can take.

Actions

•	 Place Pheromone: This action toggles the value of the Placing 
Pheromone feature, turning it on if it is off, and off if it is on.

4.2.1.3.  Things
Only one type of thing is defined in this world, representing the food items 
that the agents can eat to acquire energy. These things have no associated 
features.

4.2.2.  Results
In this section we present the main configuration values used in the ex-
periments and then show the results from the simulation runs. Table 4.17 
shows all the parameters used, and their configured values. If, for a given 
parameter, several values where tested, we present them separated by a semi-
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colon. Most of the values used for these parameters are the result of previous 
experimentation.

Table 4.17  Ant Foraging: Configuration values

Parameter Values

Terrain Size 1000 x 1000
Time Limit 100 000; 500 000; 5 000 000
Nest Location 100, 100
Food Location 800, 800
Minimum Food 100; 200
Food Energy Content 3
Minimum Agents 20
Vision Range 100
Vision Angle 100º
Agent Reach 20
Agent Initial Energy 10
Metabolic Rate 0.1
Maximum Age 500
Reproduction Cost 2
Minimum Rules 15; 20; 30
Maximum Rules 20; 30; 40
Maximum Conditions 2; 3
Mutation Probability 0.01
Pheromone Deposit Rate 50
Pheromone Evaporation Rate 10

The choice of the parameters to test was focussed on the evaluation of 
three main aspects. As introduced earlier, we know that the evolutionary 
process is very time consuming, especially when considering open-ended 
evolution. So, we tested three different values for the time limit of the simu-
lations, one small, one medium, and one large. Secondly, we wanted to test 
if the size of the brain would influence the behaviours that emerge. So, we 
tested different values for the parameters that govern the creation of the 
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brains. And lastly, as discussed earlier, the configuration of the number of 
food items available is important to provide enough evolutionary pressure, 
but also creating a world where life is at all possible. In that regard, we also 
tested two different values for the number of food items in the environment. 
For each tested configuration, we ran thirty independent simulations. The 
combinations of tested configuration values are presented in Table 4.18.

Table 4.18  Ant Foraging: Experiments configuration

Exp. Num. Time Limit Min. Rules Max. Rules Max. Cond. Food

1 100 000 15 20 2 100
2 500 000 15 20 2 100
3 500 000 20 30 3 100
4 500 000 30 40 3 100
5 5 000 000 15 20 2 100
6 500 000 15 20 2 200

As explained previously, in these experiments we are interested in find-
ing out if the agents evolve good foraging behaviours in this environment. 
Namely we are looking for the random walk that characterizes the foraging 
behaviour of some species of ants. To that end we will first show some plots 
of an example typical simulation run. In Fig. 4.15 we show the data from a 
run of experiment two.

By inspecting the plots shown on Fig. 4.15, it's clear that the agents 
evolve foraging capabilities. We can see that at about 80 000 time units, 
both the average age and average energy of the agents rises, and in the case 
of the energy, it keeps improving up to time 150 000. At that time, we see 
that the agents start reproducing by themselves, and the population size 
quickly goes to about 250 agents. With the increase in population, the aver-
age energy per agent drops, because now there is greater competition for the 
same total amount of food.

Next, in Fig. 4.16, we show another group of plots from the same sim-
ulation run, showing the evolution of the average brain size and average 
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number of used rules. We define used rules as the ones that have been se-
lected at least once during the lifetime of the agent.

Fig. 4.15  Plot of the evolution of the number of agents, their average age, average energy, and 
average gathered energy, over the course of one simulation run of experiment two.

The results shown are from the same run of experiment two, and thus 
the number of rules of an agent is between fifteen and twenty. We can see 
from the plot that, at the start of the simulation, the average brain size var-
ies between these two values. Then, after about 80 000 time units (the time 
when agents start gathering food, as seen on above), the average brain size 
stabilizes. From the analysis of all the simulations, we found that from the 
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point where an agent starts to have a good foraging behaviour, most of the 
subsequent agents will be from the lineage of this first ancestor. Moreover, 
considering that the mutation operators used do not change the number of 
rules, the brain size will consequently stabilize.

Fig. 4.16  Plot of the evolution of the average brain size and average number of used rules, over 
the course of one simulation run of experiment two.

However, if we examine the second plot, we see that the number of used 
rules does not completely stabilize. Thus, having a stable brain size, and 
an increasing number of used portions of that brain, indicates that there 
is an increase in the complexity of the agents and their behaviours. It is 
important to note that within the population of about 250 agents, there 
are a some that make it to the feeding zone, but also a large number that do 
not, pulling the average down. In the simulation run shown here, towards 
the end, the number of used rules for agents that do make it to the feeding 
zone is seven.
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The analysis of the previous plots tells us that the agents do develop 
foraging capabilities, but does not show what kind of behaviours are emerg-
ing. These could be better observed by watching the running simulation, 
but that is not possible to show in this document. In any case, as the brain 
algorithm used in this experiments is fairly readable, we present an example 
of a brain taken from the population of agents from the same run as the 
plots shown. In Listing 4.1 we show an example of a brain taken from the 
end of the simulation.

1.	 IF Feature energy > 18.4609 THEN reproduce
2.	 IF istrue(Reaching Resource) THEN eat
3.	 IF Resource Location > 1 THEN go front
4.	 IF istrue(Feature placing pheromone) THEN turn left
5.	 IF Resource Location = 1 THEN place pheromone
6.	 IF istrue(Feature placing pheromone) THEN place 

pheromone
7.	 IF Resource Location < Random Number THEN go front
8.	 IF Feature energy > 25.0065 THEN go front
9.	 IF Random Number = 2 THEN reproduce
10.	IF istrue(Reaching Resource) THEN turn right
11.	IF Random Number = Feature energy THEN go front
12.	IF Resource Location = 0 THEN turn left
13.	IF Feature energy > 34.5193 THEN turn right
14.	IF istrue(Feature placing pheromone) THEN eat
15.	IF Feature energy < Feature energy THEN turn right
16.	IF istrue(Feature placing pheromone) THEN reproduce

Listing 4.1  Example brain of an agent that evolved good foraging capabilities. This agent was 
born at time 499 211. Used rules are set in bold.

The example brain shown, allows us to decode some of its behaviour 
from the rule list presented. It is important to remember that the rule list is 
ordered, and the rule that is executed is the first one that evaluates to true. 
From rule one, we see that the agent has as first priority reproduction, and 
reproduces whenever it has more than 18.5 units of energy. And, from rule 
two, the agent eats whenever a food item is within its reach. The rest of the 
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behaviour can be divided into two parts: the movement behaviour when 
either there is some, or no food in the vision range. In other words, the be-
haviour is different when the agent finds the feeding zone. Examining rules 
three, four, and five, we can see that the agent will move forward if there is 
a food item in front or to the right, and turn left if there is a food item to 
the left. This is not the best possible behaviour because the agent does not 
turn right when the food is on its right, but it is a good enough behaviour. If 
there is no food item in the vision range, the value of the Resource Location 
perception is zero. Thus, if we consider the rules seven and twelve, we can 
see that the agent has a random walk behaviour. The agent will move for-
ward if the Random Number perception is greater than zero (probability of 
0.75), and will turn left otherwise. Again, this is not a perfect random walk, 
but it is good enough.

The data shown above is from one simulation run of one of the experi-
ments conducted. Although the results are typical of all the runs where the 
agents evolve good foraging behaviours, we need to analyse global results 
from all the simulations. To that end we show in Table 4.19, for each exper-
iment defined, the number of runs that were successful. We define a run as 
being successful if the agents evolve foraging and reproductive behaviours. 
This will give us an indication on how the conditions set by the parameters 
in each experiment influence the evolution of the agents.

Table 4.19  Ant Foraging: number of successful runs.

Experiment Total Runs Successful

1 30 0
2 30 13
3 30 11
4 30 10
5 30 30
6 30 27

To analyse the data from Table 4.19, we recall the three aspects consid-
ered for the definition of experiments: time limit, brain size, and environ-
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mental resources. Considering the value of the time limit we will look at 
experiments one, two, and five. The results show that, when given enough 
time (5 000 000), all runs are successful. To analyse the effect of the brain 
size, we look at experiments two, three, and four. In these experiments there 
is no significant difference in the number of successful runs. That seems to 
indicate that the lower value used (fifteen to twenty rules, with one or two 
conditions) is sufficient to accommodate the evolved behaviours. Finally, 
considering the amount of available food in the environment, we'll examine 
experiments two and six. Again, we see that, as was the case for the time 
limit, the availability of resources has a significant influence in the evolu-
tionary process. By increasing the food count from 100 to 200, the number 
of successful runs raised form thirteen to twenty seven.
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Most, if not all biological systems have some sort of adaptation to our plan-
et’s cycle of day and night. This adaptation is a current subject of scientific 
research (Rand et al. 2006; O’Neil and Reddy 2011). Despite having been 
extensively studied, these phenomena still have much to be investigated, 
but rather than wanting to learn more about the internals of this biological 
process, we use it as an inspiration to study the emergence of this kind of 
adaptation to a daily cycle. To that end we implemented a world with a day 
/ night cycle, and analyse the ways the agents adapt to that cycle. In this 
chapter we describe and analyse the results of these experiments.

With these experiments, we aim to evolve different behaviours from 
those found in the foraging experiments. Namely, we test the agents’ capa-
bility to adapt to the daily cycle. Again, we aim to evolve increasingly com-
plex behaviours by modelling an increasingly complex world, while keeping 
the simulation free of any fitness function.

The chapter is divided into three sections. First we describe the base 
DayNight world, used for all the experiments in this chapter. Next, we 
describe a special dynamic version of this world created to test the genotype 
editing technique. And the third set of experiments adds more complexity 
to the environment by adding caves where the light is low as if it were night.

5.1.  The DayNight World
In order to study the agents’ adaptation to a daily cycle of day and night, 
we created a simulated world similar to the one described in section 4.1 
(basic foraging), and added a daily cycle of lightness and darkness to the 
environment. This change in the light level of the environment will affect 
the agents’ vision, making it harder to find food during the night. We also 
added to these simulations a varying level of metabolic rate for the agents. 
Rather than always having the same metabolic rate during their lifetime, the 
agents will vary their metabolic rate by moving or by sleeping. Naturally, 
when an agent moves, its metabolic rate will increase, and when it sleeps, 
its metabolic rate will decrease. This energy conservation achieved by sleep-
ing will hopefully give an advantage to agents that evolve nightly sleeping 
behaviours.
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By adding these extra characteristics to the simulated world, we aim to 
make the environment harder to evolve in and more complex. This added 
complexity will hopefully force the agents to evolve accordingly more com-
plex behaviours adapted to their environment.

5.1.1.  World Definition
The architecture of the experiments is analogous to that of the foraging 
simulations. We augmented the world defined in those experiments with 
the new requirements. We will now detail this architecture.

5.1.1.1.  The Environment
Our world is a two-dimensional world where agents and resources are 
placed. The terrain is a square. This area restricts the placement of agents, 
caves, and resources, but does not restrict the movement of the agents. The 
world is infinite, i.e., an agent can move past the boundaries of the popu-
lated terrain. At startup, the field is populated with a configured amount of 
randomly placed food items.

There are three schedules defined. The first schedule keeps replenishing 
the world with resources. The number of resources available is configurable 
to be able to fine tune the system so as to allow agents to survive but also 
provide enough evolutionary pressure.

Another schedule generates new agents whenever the number of agents 
in the world falls below a given threshold. This schedule will pick agents 
that are still alive and create new agents based on them, as if they had repro-
duced. If there are no agents alive, new random agents are generated.

The last schedule generates the day / night cycle. It raises and lowers the 
light level at specified intervals. The light level oscillates between a config-
urable maximum and minimum. For each day the maximum light level is 
randomly calculated as the overall maximum minus a random value be-
tween zero and the delta. The same applies for the day’s minimum. For 
example, if the maximum light level is 100, the minimum light level is 0, 
and the delta is 10, each day’s maximum light level will be a random value 
between 90 and 100, and each day’s minimum light level will be a random 
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value between 0 and 10. Additionally, the light level does not rise or fall 
abruptly, but rather changes linearly during a specified time interval, simu-
lating dusk and dawn. To better illustrate, in Fig. 5.1 this variation of the 
light level can be observed. The duration of one day, can be configured, and 
remains constant for the full length of the simulation run.

Fig. 5.1  Example of the variation of the light level over the course of five days. In this example, 
the maximum light level is 100, the minimum is 0, and the delta is 10. The duration dawn and 
dusk is 10.

5.1.1.2.  Agents
In this simulation only one type (species) of agent exists, and has the fol-
lowing architecture:

•	 Features: energy, metabolic rate, and birth date.
•	 Perceptions: energy, resource location, reach resource, light level.
•	 Actions: move front, turn left, turn right, sleep, eat, reproduce.
•	 Brain: rule list.

We now describe each one of these components.

Features
•	 Energy: This feature represents the current energy level of the agent. 

When this feature reaches zero, the agent dies. The feature is initial-
ized with a predetermined value at agent birth.
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•	 Metabolic Rate: The metabolic rate is the amount of energy the 
agent consumes per time unit. This rate is initialized to its con-
figured base value, and changes as the agent moves or sleeps. The 
increase or decrease amounts for move and sleep are configurable.

•	 Birth Date: This feature is set to the current time at birth and re-
mains constant. It is used to calculate the agent’s age. When the 
agent reaches a given age, it dies. This procedure allows the evolu-
tion to continue past the moment when the agents have devel-
oped good navigation and eating capabilities, whilst maintaining 
an asynchronous and open-ended simulation. The maximum age 
of the agents is configurable.

Perceptions

•	 Energy: This is a self-referencing perception on the agent’s current 
energy level. This perception is tied to the corresponding feature. 
This is a numerical perception, and the range of values is config-
ured according to the corresponding feature.

•	 Resource Location: This is the agent’s perception of vision, repre-
senting the position of the nearest resource, relative to the agent’s 
position and orientation. The agent’s vision field is defined by a giv-
en range and angle. An object is within the vision field of an agent 
if its distance to the agent is less than or equal to the vision range, 
and the relative angle to the agent is within the defined vision angle 
(shown previously in Fig. 4.2). This is a numerical perception with 
possible values 0, 1, 2, and 3. The value 0 means no resource is vis-
ible. The value 1 means there is a resource to  the left. The value 2 
means there is a resource directly in front of the agent. The value 3 
means there is a resource to the right. This perception is influenced 
by the light level of the environment. As the light level drops, so 
does the range of vision for the agent, using the formula shown in 
equation (5.3), where V(t) is the vision range at time t, V0 is the 
configured base vision range of the agents, L(t) is the light level at 
time t, and L0 is the configured maximum light level.
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(5.3)

•	 Reach Resource: This is a boolean perception that evaluates to true 
whenever the agent has a resource within its reach. The distance the 
agent can reach is configurable.

•	 Light Level: This perception gives the agent the power of sensing 
the brightness of the environment. This can also be considered a 
perception of vision. The value of the perception is numeric and, 
at each time, is evaluated to the environment’s current light level.

Actions

•	 Movement: We define three actions for movement. One to walk 
forward, one to turn left, and one to turn right. These actions have 
a tie to the metabolic rate feature in such a way that whenever the 
agent is moving, the metabolic rate increases.

•	 Eat: This action enables the agent to eat a resource within its range. 
If no resource is in range when the action is executed, nothing hap-
pens. This action will add a configured amount of energy to the 
agent’s energy feature.

•	 Sleep: The agent can use this action to sleep. In this simulation, 
when an agent is sleeping, it will stand still and its metabolic rate 
will decrease, falling below the base metabolic rate and thus allow-
ing the agent to conserve energy. As for the rest of the actions, it 
gets executed whenever the agent chooses to do so. 

•	 Reproduce: This action allows the agent to reproduce itself. The re-
production implemented is asexual. When the action is executed, 
a new agent is created and placed in the world. The new agent will 
be given a brain that is a mutated version of its parent’s brain. Note 
that, as each mutation operator has been given a probability of be-
ing applied, the child’s brain can be a perfect clone of its parent’s 
brain. The action will also transfer energy from the parent to the 
offspring. The amount of energy consumed in the action is the sum 
of the initial energy for the new agent and a configurable fixed cost. 

V (t) = V0
L(t)

L0
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It’s important to have a cost of reproduction higher than the initial 
energy of an agent, so as to provide evolutionary pressure.

Brain

The agents’ brain used in these experiments is a rule list, whose architecture 
was detailed in section 3.2.2. On initial creation of an agent, the brain is 
randomly initialized. This initialization conforms to some configurable pa-
rameters: the maximum number of rules, the minimum number of rules, 
and the maximum number of conditions per rule. Other configured values 
are the mutation probabilities used in the reproduction action.

5.1.1.3.  Things
Only one type of thing is defined for this world: the resources that the 
agents eat to acquire energy. No features are associated with them. A con-
figurable parameter defines the amount of energy each resource provides.

5.1.2.  Results
In this section we present and analyse the results of the experiments. But 
first we give an overview of the main configuration values used for the simu-
lations. In Table 5.1 we present all the values configured for the parameters 
of these experiments. These values were chosen empirically based on previ-
ous experimentation.

Table 5.1  DayNight: Configuration values

Parameter Values

Terrain Size 1000 x 1000
Time Limit 100 000
Day Length 100
Day Transition Length 10
Maximum Light Level 100
Minimum Light Level 0; 10; 20
Light Level Delta 10
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Parameter Values

Minimum Food 200
Food Energy Content 3
Minimum Agents 20
Vision Range 200
Vision Angle 60º
Agent Reach 20
Agent Initial Energy 10
Base Metabolic Rate 0.1
Move Metabolic Increase 0.01
Sleep Metabolic Decrease 0.03
Maximum Age 500
Minimum Rules 15
Maximum Rules 20
Maximum Conditions 2
Mutation Probability 0.01

In these experiments, as we are testing the evolution of the agents’ ad-
aptation to the daily cycle, the main parameter to test is the minimum 
light level. For that parameter we show here the three tested values. These 
three experiments are numbered as shown on Table 5.2. Using these values, 
we ran thirty independent simulations for each configuration of minimum 
light level and collected the results.

Table 5.2  DayNight: Experiments configuration

Experiment Min. Light Level

1 0
2 10
3 20

In Fig. 5.2 we show the results from a typical simulation run, and are able 
to examine the evolution of the agents ability to gather food and the point 
where they start to reproduce by themselves. By analysing the progress of 
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the average energy and average age of the agents, its clear that they learn to 
gather food. In this example, the agents start to eat at about 28 000 time 
units, then make a considerable improvement in their food gathering capa-
bilities around time 38 000. At that time almost every agent will die of old 
age, as can be seen by the average age of the population reaching 250. Note 
that the maximum age of an agent is configured to be 500, and new agents 
are continually being born.

Fig. 5.2  The evolution of the total number of agents in the population, their average age and 
average energy, over the course of one simulation run of experiment one.
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Fig. 5.3  Extracts from a simulation run of experiment one, showing the average metabolic rate 
of the agents and the environments’ light level over a period equivalent to five days. The three plots 
cover different times in the course of the simulation run.

Then, at about time 48 000, the agents start to reproduce by themselves. 
When that happens, both the average age and the average energy of the 
agents fall. As the number of agents competing for the food increases, the 
quantity of food each one can harvest is naturally smaller. As for the aver-
age age of the agents, we notice that the fall is not as high as for the energy. 
This indicates that most agents are still capable of reaching old age. Some 
time after, at about time 52 000, both the average age and average energy, to 
some degree. This, again, suggests another improvement in the agents food 
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gathering capabilities. From here on the values stabilize, except for a slow 
increase in the population size.

In Fig. 5.3 we try to show the adaptation of the agents to the cycle. 
Note that the simulation run presented in these plots is not the same of 
Fig. 5.2. This phenomenon would be best observed by watching the real-
time visualisation of a running simulation. In that case one can clearly see 
that the agents stop moving during the night and are active during the day. 
On the companion CD we provide a video of a running simulation where 
these behaviours can be observed. As that is not possible to show here, we 
can get a sense of that phenomenon by analysing the variation of the agents 
metabolic rate, which is affected by the variation of their movement and 
sleep patterns.

Fig. 5.4  The evolution of the total number of agents in the population, their average age and 
average energy, over the course of one simulation run from experiment one.

We can see that at the beginning of the simulation, the agents’ behav-
iours have no connection to the light level. In the middle plot, we can see 
that, by the time 30 000, the agents have started to adapt to the daily cycle. 
It is interesting to note, however, that the average metabolic rate of the 
population does not fall to 0.07 during the night. Keep in mind that the 
base metabolic rate is 0.1, and that when sleeping it decreases 0.03, making 
the rate be equal to 0.07 when the agent sleeps. This can be due to any of 
two possibilities: first, at this time, there might still be some agents in the 
population that don’t follow the cycle, and second, the agents have evolved 
to do nothing at night, rather than sleep. In the case of this simulation run, 
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it seems to be the latter, owing to the fact that an agent that does nothing 
will have a metabolic rate of 0.1. Then, by the time 52 000, the value of the 
average metabolic rate lowers, nearing the 0.07 value, as more and more 
agents follow a circadian rhythm, sleeping during the night.

To allow an overview of the effects this adaptation has on the popula-
tion, we show a plot in Fig. 5.4, similar to that of Fig. 5.2, but with the 
data from this simulation run. It is interesting to verify that, once the agents 
start sleeping during the night, both the average age and average energy of 
the population go up, as does the number of agents, due to the increased 
energy efficiency.

In the previous figures we show the results of typical simulation runs. 
However, we ran thirty trials for each configuration scenario. Most simula-
tion runs exhibited similar results, differing mainly on the time where the 
phenomena can be observed. In Table 5.3 we give an overview of the results 
from all simulation runs.

Table 5.3  Overview of the success of runs

Experiment Foraging Reproduction Sync

1 28 93% 21 75% 23 83%
2 23 77% 21 91% 15 65%
3 28 93% 24 86% 1 4%

By analysing the results from the simulation runs, it is clear that, the 
added evolutionary pressure introduced by having a lower minimum light 
level, forces the agents to adapt to the daily cycle. The percentages shown 
in the reproduction and sync columns consider only the runs where forag-
ing was developed. In general we verify that the runs where agents develop 
foraging capabilities but don’t synchronize are the ones where agents only 
gain foraging capabilities near the end of the simulation (about 90 000 time 
units), leaving no time to evolve the circadian rhythm.

As for the experiment with a minimum light level of twenty, the broader 
range of possible wining strategies reveals itself, as different behaviours are 
evolved, not synchronized to the daily cycle. Moreover, these behaviours 
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seem to be, to some extent, a better strategy to survive in this world with 
that value for minimum light level. One example of a different behaviour 
evolved is the case of agents that are always moving during day and night. 
In Fig. 5.5 we can see that the population size will grow to about 350, 
whereas in the previous examples shown, the population would only raise 
to about 200.

Fig. 5.5  The evolution of the total number of agents in the population, their average age, average 
energy, and average gathered energy over the course of one simulation run from experiment three.

5.2.  Dynamic Version
In this section we present the simulations conducted to test the genotype 
editing evolutionary technique (see section 3.1.2.2). In the previous experi-
ments that used this technique with standard genetic algorithms, the au-
thors concluded that the method has best results in dynamic environments 
(Rocha et al. 2006; Huang et al. 2007).

Following these conclusions we developed a dynamic version of our day 
and night simulation. Although our original simulation environment al-
ready has some dynamic characteristics, namely the dynamics of the envi-
ronment’s light level, the evolutionary pressure does not change over the 
course of one simulation run. Thus, in order to create an environment that 
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has a dynamic evolutionary pressure, we introduced a periodic variation 
to the agents’ vision capabilities. The agents will either have day vision, or 
night vision, and this will change periodically throughout the simulation 
run.

5.2.1.  World Definition
As mentioned above, the simulated world in these experiments differs from 
the  previous one mainly in the added environmental dynamics. Therefore, 
in this section we will only describe the changes introduced with these ex-
periments. 

5.2.1.1.  The Environment
In order to impose a periodic change to the evolutionary pressure, we added 
to the environment a schedule that periodically changes the agents’ vision 
capabilities. The agents will either have good day vision or good night vi-
sion, effectively changing its capacity to find food. 

5.2.1.2.  Agents
In these simulations, the agents have almost the same architecture as those 
defined in the standard DayNight world. We thus have one agent species 
with the following structure:

•	 Features: energy, metabolic rate, and birth date.
•	 Perceptions: energy, resource location, reach resource, light level.
•	 Actions: move front, turn left, turn right, sleep, eat, reproduce.
•	 Brain: editype rule list.

These agents differ from the former in the brain used. To test the geno-
type editing technique, we use a slightly modified version of the rule list 
brain that adds the required components to edit the genotype (see section 
3.2.2.4). The other change is brought by the new environmental dynamics. 
The Resource Location perception will be affected by the periodic change. 
When an agent has good day vision, its vision range will be governed by the 
equation (5.3), presented above. Conversely, when an agent has good night 
vision, we will use the formula in the equation below.
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(5.4)

5.2.2.  Results
In this section we present and analyse the results of the experiments, but 
first we give an overview of the main configuration values used in the simu-
lations. As most of the configuration values are the same as seen in the 
previous experiments, we will focus on the what changed. In Table 5.4 we 
show all the new and changed parameter values used for these experiments.

Table 5.4  Dynamic DayNight: Configuration values

Parameter Values

Time Limit 100 000; 200 000; 350 000; 600 000
Minimum Light Level 0
Use Dynamic Version Yes; No
Dynamic Version Start 0; 100 000
Dynamic Version Period 10 000; 25 000; 50 000
Minimum Editors 1
Maximum Editors 2; 5
Use Genotype Editing Yes; No

We introduced some new parameters in these experiments related to the 
generation and evolution of the agents’ editypes. Upon initial creation of 
the agents, their editype has to be randomly generated. Similarly to what is 
defined for the generation of rules, we determine a minimum and a maxi-
mum of editors that can be generated for each agent. To evolve the editype 
we need to set the probability for the editype mutation operator.

The rest of the new parameters are related to the dynamic version. 
Namely, we can configure the time at which the periodic change in the 
environment starts, and the time interval for each period.

Despite having created a dynamic version of the DayNight world spe-
cifically to test the genotype editing technique, we first tested it with the 
standard world. To that end we executed two experiments using the stand-

V (t) = V0

�
1− L(t)

L0

�
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ard DayNight world, but with the genotype editing version of the brain. 
The two experiments differ only the value for the parameter that defines the 
maximum number of editors.  In Table 5.5 we show the main configuration 
values for these experiments. As usual, we performed thirty independent 
simulation runs for each of the experiments.

Table 5.5  Genotype Editing: Experiments configuration

Experiment Dynamic Min. Editors Max. Editors

101 No 1 5
102 No 1 2

Analysing the results from the runs with the genotype editing technique 
turned on, we verify that the results are similar to those obtained with the 
technique turned off. In Fig. 5.6 and Fig. 5.7 we display plots of a typical 
run from experiment 101. Comparing with those shown on the previous 
section, we can find the same kind of evolutionary scenario. The agents first 
develop foraging capabilities, then start reproducing by themselves, and fi-
nally synchronize with the daily cycle.

Fig. 5.6  The evolution of the total number of agents in the population, their average age, average 
energy, and average gathered energy, over the course of one simulation run of experiment 101.
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Fig. 5.7  The evolution of the percentage of agents in sync over the course of one simulation run 
of experiment 101.

From the analysis of the evolution plots, we cannot detect any significant 
difference in using genotype editing. So, we looked into the overall success 
of the runs from each experience to see if there is an advantage or disad-
vantage in using the technique. The summary of that data is presented in 
Table 5.6. We present the total number of runs that are successful in the 
evolution of foraging, reproduction, and synchronization. Regarding the 
percentages shown for the reproduction and synchronization success, we 
calculate it considering only the number of runs where foraging capabilities 
were evolved. In this table we also recall the results from experiment 1 of 
the standard DayNight world from the previous section, in order to have a 
comparison measure.

Table 5.6  Comparison of the results from experiments with and without genotype editing, on the 
standard DayNight world.

Experiment Foraging Reproduction Sync

1 28 93% 21 75% 23 82%
101 24 80% 17 71% 19 79%
102 25 83% 22 88% 22 88%

Again, from these results we cannot find a clear advantage or disadvantage 
in using genotype editing. The differences encountered may be attributed 
to the randomness of the initial population. We can however verify that the 
technique does not hinder the evolutionary capability of the system.
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As mentioned earlier, to further test this technique we used the dynamic 
version of the world. In Table 5.7 we show the values tested for these experi-
ments. We also run experiments of the dynamic version with the genotype 
editing technique turned off to permit the comparison of results. 

Table 5.7  Dynamic DayNight: Experiments configuration

Exp. Time 
Limit

Gen. 
Editing

Min. 
Editors

Max. 
Editors

Dynamic 
Start

Dynamic 
Period

103 200k No N/A N/A 100k 10k
104 200k Yes 1 5 100k 10k
105 200k Yes 1 2 100k 10k
106 350k Yes 1 5 100k 25k
107 600k Yes 1 5 100k 50k
108 100k No N/A N/A 0 10k
109 100k Yes 1 5 0 10k
110 100k Yes 1 2 0 10k

We can divide these experiments into two groups. The fist five shown 
in the table use a two step process, using the step evolution technique de-
scribed in chapter 3. First we let the agents evolve in the standard version of 
the DayNight world for 100 000 time units, and then turn on the dynamic 
version and check how the agents perform in this new environment. In the 
second group (the last 3 experiments), we use the dynamic version from the 
start of the simulation, effectively making the initial evolution environment 
more challenging.

As usual, we show in Fig. 5.8 a series of plots from one simulation run. In 
this case, we show a run from experiment 103. Although not entirely typi-
cal of all runs form the first group of experiments, it provides an example of 
the agents re-adaptation to the new conditions after time 100 000. We say 
that the run is not entirely typical because the number of times the agents 
are able to recover from the abrupt change in the environment is not the 
same for all runs. Otherwise, the plots are similar for the periods where they 
do adapt. This is true for both the experiments without genotype editing 
and with genotype editing.
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Fig. 5.8  The evolution of the total number of agents in the population, their average age, average 
energy,, average gathered energy, and percentage of agents in sync over the course of one simulation 
run of experiment 103.



104    Day and Night Simulations

Analysing the plots, we can see that the agents quickly recover after every 
change of the environment conditions. Beginning at time 100 000, which is 
when we turn on the dynamic version, its easy to pinpoint the time of each 
periodic change. We see that the population suddenly drops and also looses 
its synchronization, but then quickly recovers.

The second group of experiments, however, shows a different scenario. 
Although there are still cases where the agents develop foraging, reproduc-
tion, and synchronization, the number os periods where they can recover 
drops, and the number of successful runs also drops.

In Table 5.8 we provide an overview of the results from all runs of the 
experiments. In that table we show, for each experiment, the total number 
of successful runs and the average number of successful recovery periods 
per run. Note that the maximum number of recovery periods possible is 
ten. We consider a run to be successful if, in the first 100 000 time units the 
agents are able to adapt to the daily cycle. We also show in Fig. 5.9 boxplots 
of these results.

Table 5.8  Comparison of the results from experiments with dynamic version

Experiment Successful Runs
Number of recovery periods

Average Std. Dev.

103 24 6.42 2.21
104 21 6.24 3.24
105 21 5.95 2.64
106 21 7.24 2.36
107 21 7.81 2.20
108 20 2.10 1.33
109 18 2.89 1.23
110 16 2.69 2.15

Analysing the data from all the runs of the experiments, we can see that, 
again, there doesn’t seem to be a clear difference in the results from the 
experiments with and without genotype editing. Although the number of 
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successful runs drops when we use genotype editing, the agents capability 
to recover is maintained on those runs that are successful.

  

Fig. 5.9  Boxplots of the number of recovery periods for experiments in one step and two steps.

To further test if we can find differences in the these results, we deter-
mined the statistical significances null hypothesis of no differences with 
Kruskal-Wallis ANOVAs with α=0.05.

If we consider only the successful runs, comparing among the first group, 
we find there is no significant difference, with p-value of 0.130. Comparing 
among the second group, we also find no significant difference, with p-val-
ue of 0.242. If we consider unsuccessful runs as having 0 recovery periods 
and include them in the statistical tests, we get a p-value of 0.643 for the 
first group, and 0.526 for the second group.

Comparing across groups we do, however, find a significant difference 
with a p-value of 2.73 x 10-7. Running further pairwise tests using the 
Mann-Whitney U tests with Holm’s p-value adjustment, we get the results 
shown in Table 5.9. We can see that overall we can find a better perform-
ance of experiments of the first group, when compared with the second 
group, except for experiments 104 and 105 where significant differences are 
not found for all pairwise tests. Thus, generally, evolution in two steps had 
better performance than evolution in one step.
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Table 5.9  Pairwise comparisons across dynamic version groups

103 104 105 106 107 108 109

104 1 — — — — — —
105 1 1 — — — — —
106 1 1 1 — — — —
107 1 1 1 1 — — —
108 0.00049 0.06378 0.07956 0.02461 0.01344 — —
109 0.00165 0.16326 0.15967 0.03595 0.02354 1 —
110 0.00071 0.04583 0.05019 0.01456 0.00728 1 1

5.3.  DayNight with Caves
In an effort to add more complexity to the DayNight world, and conse-
quently forcing the agents to evolve more complex behaviours, we intro-
duced a new element to the environment: caves. Inside the caves, the light 
level is the same as if it were night. An agent entering a cave will, thus, not 
be able to distinguish between “night” and “cave”. This will add an evolu-
tionary pressure to the simulation, forcing the agents to develop behaviours 
that cope with this new reality.

The introduction of caves in the environment is to some extent based on 
the work of Mirolli and Parisi (2003). In that paper, a similar environment 
is used to investigate different types of circadian rhythm controllers. They 
employ standard genetic algorithm techniques to evolve the neural network 
of agents in this environment, with a fitness function that selects for both 
good foraging capabilities and low activity levels. In our work, as men-
tioned previously, we use open-ended evolution and so we do not directly 
select for any given behaviour.

5.3.1.  World Definition
For these experiments the world created differs little from the one described 
in section 5.1.1. We simply added the caves and the effect they have on 
the light level perceived by the agents. As most of the architecture is main-
tained, in this section we only describe what was changed.
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Fig. 5.10  Screenshot of a running simulation. We can see the agents (turtles), the edible resources 
(very small boxes), and the caves (large boxes).

5.3.1.1.  The Environment
The total simulation time for these experiments was divided into two equal 
parts. For the first part of the simulation, the agents live in an environment 
that only has food items. Then, we randomly place in the environment a 
number of caves (implemented using a schedule), and continue the simula-
tion in this new environment. In Fig. 5.10 we show a screenshot of a run-
ning simulation where the presence of caves in the environment can be seen. 
The number of caves that are placed in the environment is configurable.

When an agent enters a cave, the light level it perceives will be the same 
as if it were night, creating a new challenge for our agents. By the time the 
caves are created, the agents will have evolved a behaviour adapted to the 
light level, sleeping when the light is low, and being active when its high. 
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However, when an agent enters a cave, it will not be able to distinguish if 
the low light level means “night” or “cave”. If it simply goes to sleep when-
ever the light level is low, it will never wake up again, as the light level in 
the cave will never rise. Our agents will now have to adapt their behaviour 
to this new environment.

5.3.1.2.  Agents
In these simulations, the agents have almost the same architecture as those 
defined in the standard DayNight world. We thus have one agent species 
with the following structure:

•	 Features: energy, metabolic rate, and birth date.
•	 Perceptions: energy, resource location, reach resource, light level.
•	 Actions: move front, turn left, turn right, sleep, eat, reproduce.
•	 Brain: rule list.

The only difference is on the agents’ perception of light level. As we 
now have caves in the environment, this perception will evaluate to the 
environment’s light level whenever an agent is outside, but when inside a 
cave, the perception will evaluate to the experiment’s configured minimum 
light level.

5.3.1.3.  Things
In this version of the DayNight world, we added a new type of thing to 
represent the caves. Although we do use things to model the caves, they 
are not visible to the agents, or it would be easier for them to distinguish 
“night” and “cave”.

5.3.2.  Results
In this section we present and analyse the results of the experiments. But 
first we give an overview of the main configuration values used for the simu-
lations. Again, most of the configuration values for this experiments are 
similar to those used in the first DayNight experiments, thus we will focus 
on the new parameters. Nevertheless, we also present here a table with all 
the values for the configured parameters in these experiments.
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Table 5.10  DayNight with Caves: Configuration values

Parameter Values

Time Limit 200 000
Cave Placement Time 100 000
Minimum Light Level 0
Number of Caves 10; 20; 50
Size of Caves 50 x 50

The main differences in configuration are in the simulation time limit, 
and in the new parameters for the caves. The time limit for the simulations 
is now 200 000, and we introduce the caves in the environment at 100 000 
time units. This two step process follows what is done in Mirolli and Parisi’s 
work (2003). Regarding the cave configuration parameters, we ran experi-
ments with different values for the number of caves placed

Again, we ran thirty independent simulations for each configuration of 
the parameters. As is the case in the previous experiments, from those 30 
simulations, there are some where the agents will not be successful in evolv-
ing good foraging behaviour, and thus will not be able to further evolve 
reproduction or synchronization to the day cycle. We will say that those 
simulations were unsuccessful.

Next, we will present and analyse the data of typical runs from the simu-
lations. From all the simulations and runs analysed, we found mainly two 
different types of plot. In Fig. 5.11 and Fig. 5.12 we show the first type, and 
in Fig. 5.13 and Fig. 5.14 we show the second. These represent the majority 
of results from the runs, except for those that are considered unsuccessful. 
All these figures are taken from runs with the same parameter configuration 
(fifty caves).

The first type of plot, shown in the first two figures, is what we expected 
to find in this experiment. Here, the population collapses and loses syn-
chronization when the caves are inserted into the environment. Examining 
this plot, we can clearly see the agents are successful in evolving food gather-
ing, reproduction, and synchronization in the first environment (up to time 
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100 000). Then, when the environment changes, most of the population 
dies and never recovers food gathering capabilities, or synchronization.

Fig. 5.11  The evolution of the total number of agents in the population, their average age, 
average energy, and average gathered energy, over the course of one simulation run. The number of 
caves for this simulation run is fifty.

Fig. 5.12  Plot showing the evolution of the percentage of agents in sync with the day cycle, and 
the percentage of agents that found caves during the course of one simulation run. The number of 
caves for this simulation run is fifty.

In fact, this data is consistent with what is presented in Mirolli and 
Parisi’s paper (2003). In that paper, the authors show that, when the agents 
only have an input of the light level, they are not able to differentiate the 
“caves” from the “night”. They provide a possible solution to the problem, 
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by incorporating in the structure of the brain, a clock source. However, in 
our simulations, we found that on a significant number of runs (shown later 
in this chapter) the agents do recover.

Fig. 5.13  The evolution of the total number of agents in the population, their average age, 
average energy, and average gathered energy, over the course of one simulation run. The number of 
caves for this simulation run is fifty.

Fig. 5.14  Plot showing the evolution of the percentage of agents in sync with the day cycle, and 
the percentage of agents that found caves during the course of one simulation run. The number of 
caves for this simulation run is fifty.

In  Fig. 5.13 and Fig. 5.14 we show an example of a typical run where 
the agents recover in the second environment. In the first environment, we 
find a plot similar to that of the previous example. The agents develop good 
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food gathering capabilities, reproduce, and synchronize with the daily cycle. 
When the environment changes at 100 000 time units, both the size of the 
population and the average gathered anergy drop, but then quickly recover. 
More importantly, by analysing the percentage of synchronized agents, we 
can see that, although it takes longer to recover, the agents also re-synchro-
nize to the daily cycle. One might wonder if it is the case that the agents 
are simply not entering caves. But the plot also shows that about 80% of 
the agents find at least one cave during their lifetime. Note that, as these 
percentages are taken from the whole population at a given time interval, 
and there are constantly new agents being born, the percentage could never 
rise to 100%. New agents will normally need some time to move before 
they find a cave.

These results may seem counter-intuitive, as there doesn’t seem to be any 
way for the agents to detect the caves. To clarify, we analysed some agents’ 
brains. In Listing 5.1 and Listing 5.2 we show two examples of agents’ 
brains from the simulation run shown in Fig. 5.14. The first one is taken 
from an agent living in the environment without caves (time 84 536), and 
the second is taken from the environment with caves and at a time where 
the agents have re-synchronized (time 183 513).

1.	 IF Resource Location = 3 THEN turn right
2.	 IF Light Level < Light Level THEN eat
3.	 IF Resource Location > 3 THEN eat
4.	 IF Light Level < 26.5859 THEN sleep
5.	 IF Light Level < 36.3748 THEN sleep
6.	 IF Light Level = 47.8427 THEN eat
7.	 IF Feature energy > 16.7159 THEN reproduce
8.	 IF Feature energy = 26.0336 THEN reproduce
9.	 IF Resource Location = 3 THEN eat
10.	IF Light Level < Feature energy THEN sleep
11.	IF istrue(Reaching Resource) THEN eat
12.	IF Resource Location < 2 THEN turn left
13.	IF istrue(Reaching Resource) THEN turn left
14.	IF not(Reaching Resource) THEN go front
15.	IF Resource Location > 1 THEN sleep
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16.	IF istrue(Reaching Resource) THEN turn right
17.	IF Light Level < 97.9668 THEN turn right

Listing 5.1  Example of the structure of the brain of an agent born at time 84536, for the 
simulation run shown in Fig. 5.14.

The analysis of the brain in Listing 5.1 allows us to see that the agent has 
good food gathering behaviour (rules 1, 11, 12, and 14), reproduces when-
ever it has more than 16.7159 energy (rule 7), and sleeps when the light 
level falls below 26.5859 (rule 4). If put in the environment with caves, this 
agent would clearly not survive, as it would fall asleep in a cave (from rule 
4) and never wake up again.

1.	 IF istrue(Reaching Resource) THEN eat
2.	 IF Resource Location = Light Level THEN go front
3.	 IF Light Level = 29.2361 THEN turn right
4.	 IF Resource Location = 1 THEN turn left
5.	 IF Resource Location < Resource Location THEN sleep
6.	 IF Feature energy < Feature energy THEN sleep
7.	 IF istrue(Reaching Resource) THEN eat
8.	 IF Feature energy > 16.7159 THEN reproduce
9.	 IF istrue(Reaching Resource) THEN reproduce
10.	IF Light Level = Resource Location THEN eat
11.	IF Light Level = 59.7254 THEN eat
12.	IF istrue(Reaching Resource) THEN go front
13.	IF Resource Location = 2 THEN go front
14.	IF Light Level > 11.8449 THEN turn right
15.	IF Resource Location < 0 THEN sleep
16.	IF Resource Location < Light Level THEN sleep
17.	IF Resource Location < 0 THEN reproduce

Listing 5.2  Example of the structure of the brain of an agent born at time 183513, for the 
simulation run shown in Fig. 5.14.

Examining the brain presented in Listing 5.2, we can finally see how the 
agents adapt to the environment with caves. The important rule in this case 
is the one at position 2. To explain the behaviour induced by this rule, we 
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need to take a closer look. Lets first consider that the agent is in a cave. If 
the agent doesn’t have any resource within its vision range (very likely as in 
the cave the vision range is small), the value of Resource Location will be 0. 
As we know, in a cave the light level is equal to the minimum light level, 
which is 0. Therefore, this rule will make the agent move forward whenever 
it is inside a cave. In fact, we find this rule (or some small variation) in all 
the agents analysed in runs where there is recovery of synchronization.

The rest of the capabilities of the agent are also relatively easy to find in 
this rule list. From rules 1, 4, 13, and 14, we can see that the agent has a 
good foraging behaviour. Rule 8 provides reproduction capabilities. And 
rule 16, when combined with rule 14, makes the agent sleep if the light 
level of the environment is less than 11.8449 and greater than 3 (maximum 
value for the Resource Location perception).

Table 5.11  Comparison of the success of runs

Num. Caves Runs Successful Don’t Rec. Recover

50 30 23 9 39% 14 61%

20 30 22 3 14% 19 86%
10 30 24 1 4% 23 96%

In Table 5.11 we show an overview of the successful runs from all the 
tested simulation configurations. As stated earlier, we ran simulations 
with different values for the number of caves present in the environment. 
These results show that the configuration change doesn’t seem to affect the 
number of successful runs out of the total of thirty runs. This was expected, 
as we were only changing the number of caves, which didn’t affect the first 
environment. However, if we look at the number of runs where agents re-
cover in the environment with caves, we find different results for the three 
configurations. Analysing the results, we see that with a smaller number 
of caves in the environment, the probability an agent has of finding a cave 
within its lifetime diminishes, making it easier to maintain the synchroniza-
tion from the first environment.
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Fig. 5.15  The evolution of the total number of agents in the population, their average age, 
average energy, and average gathered energy, over the course of one simulation run. The number of 
caves for this simulation run is twenty.

Fig. 5.16  Plot showing the evolution of the percentage of agents in sync with the day cycle, and 
the percentage of agents that found caves during the course of one simulation run. The number of 
caves for this simulation run is twenty.

In Fig. 5.15 and Fig. 5.16 we show a run of the simulation with twenty 
caves. The plots are similar to those shown previously, with the main differ-
ence being in the percentage of agents that find caves. In this case we can see 
that the percentage stabilizes at about 50%, whereas with the fifty cave con-
figuration it stabilizes at about 80%. In the configuration with ten caves, 
the percentage falls to about 30%. As expected, the less caves in the envi-
ronment, the lower the probability of an agent finding a cave in its lifetime.





Chapter Six

Conclusion
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In this chapter we discuss the overall results of this work while also giving a 
summary of its contributions. We will also present some proposals of future 
work.

6.1.  General Discussion
The goal of our work has been to research the evolution of complex behav-
iours in societies of agents, through open-ended evolution, by combining 
ideas from complex systems research and artificial life. We aimed to develop 
a highly abstract multi-agent model inspired by the evolutionary processes 
found in Nature, devoid of any centralized or supervised control, or selec-
tion mechanism.

We believe that the goal we proposed has been achieved through the 
modelling, implementation, and experimental validation of an artificial life 
framework capable of open-ended evolution.

Our main focus on devising our model was on allowing open-ended evo-
lution. With that goal in mind, we consider that the principal feature need-
ed is Natural Selection, achieved by freeing the system of any centralized 
control, like fitness functions. The model is centred on the agent, following 
Darwin’s idea that the main unit of evolution is the organism. Towards 
this effort, we believe that the modelling of reproduction as an action that 
is triggered by the agents, and itself affected by evolution, is an important 
feature of the model. The other features of the model that we consider 
have contributed in the effort of achieving open-ended evolution are the 
following. First, the initial generation of the population is random, free-
ing the model from introducing, even if unintended, a-priori knowledge. 
Next, evolution is asynchronous, i.e. agents reproduce at any given time 
of the simulation, thus not having fixed generations. Next, two different 
features that both contribute to roughly the same goal of having situated 
agents. These are the modelling of the environment as part of the simulated 
world, and the incorporation of the notion of lifetime of the agent. Finally, 
the flexibility of the base model allows the simulation of different levels of 
complexity, and the easy incorporation of new techniques into the model.
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In order to test the model we implemented a component for the brain 
of the agents, modelled as a rule list. The main focus on creating this com-
ponent was on simplicity and readability. We believe that results show that 
being able to understand the inner workings of the agents’ brains, gave us 
an important tool to analyse the results of the simulations. However, this 
brain architecture may have some limitations in the range of behaviours it 
can ultimately produce. This is a trade-off from the simplicity and read-
ability requirements. Although we haven’t found clear evidence of these 
limitations, this issue merits further research.

The incorporation of the genotype editing technique into our evolution-
ary process, also constitutes an important contribution. Although the re-
sults didn’t show a clear advantage on using genotype editing in that specific 
simulated world, we consider that this development showed one of the ad-
vantages of having a base flexible model. The implementation of genotype 
editing was easy to fit into the system and required no specific tweaking 
of the simulations. It is also significant to note that, although not hav-
ing shown an advantage, the technique also didn’t hinder the evolutionary 
process.

The validation of our model followed a methodology common to com-
plex systems research, which is the experimentation through computer 
simulations. To that end, the implementation of the BitBang Framework, 
which constituted a considerable part of this work, has proved to be an 
important tool to achieve our goals. The framework was made available to 
the community as open source software. As a result of the highly flexible 
nature of the framework, some research work has already been published in 
another complex systems research field (Caillou et al. 2008; Caillou et al. 
2009; Curchod et al. 2009).

In the experimental scenarios created we set out to test the overall capa-
bility of the model to evolve agents’ controllers in open-ended evolution. 
The first foraging scenario was developed to perform a benchmark of the 
parameters used in the simulations. Overall we found that the mutation 
operators chosen are capable of producing viable behaviours. We could also 
see that the operators are not very sensitive to variation of the probability 
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of mutation. The results show that there is a wide range of values that have 
good performance for most operators. However, having to choose, the value 
for probability of mutation that showed overall best performance was 0.01.

The second foraging scenario created, provided an environment where 
the agents had to develop more complex behaviours to cope with the forag-
ing task. The environment is more challenging because the food is out of 
the initial vision range of the agents. The results show that the agents adapt 
to this environment by evolving a random walk behaviour, similar to what 
is found in Nature in some species of ants. We also included in this scenario 
the scenario the capability to communicate via pheromone. However, the 
results showed that the agents did not take advantage of this capability. The 
analysis of the results did not give us any indication as to why this happens. 
Nonetheless, we believe that in the environment created, the agents do not  
need that capability to have a good enough foraging behaviour. In Nature, 
some species of ants use this form of communication to aid in the foraging 
task. Though, whereas in our simulations the agents can eat the food as 
soon as they find it, in the real world we see that ants gather the food and re-
turn it to the nest. Without this added complexity in our simulated world, 
there will be no evolutionary pressure to take advantage of the pheromone.

With the day and night simulations, we were able to verify that, by cre-
ating increasingly complex environments, the agents evolve increasingly 
complex behaviours. We could also find that unexpected behaviours can be 
evolved, as was the case in the environment with caves. In that environment 
the agents adapted to distinguish the low light of the night from the caves, 
by taking advantage of a specificity of the environment. As the light level 
when inside a cave is always zero, and outside a cave, at night, it is between 
zero and ten, the agents adapted to that fact. It is important to note that the 
scenario was not designed with this in mind, and in that regard that behav-
iour was unexpected. Moreover, this result shows that in this kind of simu-
lation, the agents are able to take advantage of environmental features not 
designed for the purposed they use them for. This result may have a parallel 
in the real world, where it is common to find species that take advantage of 
specific properties of the environment, creating niches.
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The scenario developed to test the genotype editing technique, gave us 
an opportunity to also test the step evolution technique. Although in the 
first case, as we have already discussed, no clear advantage was found in us-
ing genotype editing, in the case of step evolution we did find that it can 
have an impact in the results. By using step evolution and gradually chang-
ing the environment by increasing its complexity, agents are able to more 
easily evolve adapted behaviours in the more complex environment.

Overall, the experimental results show that our model is capable of evolv-
ing agents’ controllers, from initial random conditions, and without any 
supervised evolutionary process. Moreover, we have seen that, populations 
evolve sustainable reproduction behaviours, without needing to hard-code 
the reproduction conditions into the simulation.

As already discussed, the framework developed is highly flexible. We be-
lieve that this flexibility can contribute to solving a current issue of artificial 
life research. Alife has a strong basis in the biosciences, however in the last 
couple of decades, since alife inception, biology witnessed tremendous ad-
vances in our understanding of life, that have not been incorporated into 
alife research (Rocha 2007). We believe that the freedom of evolution based 
on natural selection, and the flexibility of our framework, can contribute 
to more easily incorporate new biological knowledge into alife simulations. 

6.2.  Future Work
As expected from the nature of the work presented in this document, many 
open research issues are still left to be explored. Some of these issues that we 
consider deserve further study are presented in this section.

The step evolution technique was tested only in one simulation, showing 
good promise. This technique should be further studied, and simulations 
with more evolutionary steps should be created.

In the ant foraging scenario we have successfully evolved random walk 
behaviours. However, further development of this scenario should be fo-
cused on finding the environmental conditions, or agent architecture 
needed to evolve communication using pheromone. The evolution of com-
munication, or cooperation, has been extensively studied, but mostly in 
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evolutionary simulations that use artificial selection. To our knowledge, no 
successful attempts have been made in open-ended evolution simulations.

On all the simulations presented we used the rule list for the brain of 
the agents. As the framework was created with an abstract concept of brain, 
other architectures can be tested. We could implement several different al-
gorithms, like neural networks, or other rule list architectures, and compare 
the results obtained. The simulation scenarios already developed could be 
easily used to test new brain architectures.

One extension to the rule list brain that is already being considered is 
to make the decision process stochastic. Instead of evaluating all rules in 
sequence, and choosing the first that evaluates to true, we could for example 
choose a random one among all rules that evaluate to true, eventually em-
ploying a bias. The choice of this bias presents a particular challenge, con-
sidering that we want to keep the evolution open-ended and thus can not 
directly reward good rules based on fitness. One possible solution to this 
problem is the implementation of a bucket brigade type algorithm, similar 
to what Holland (1985) proposed for classifier systems.

The add and remove rule mutation operators were tested only on the 
basic foraging scenario. Further tests should be made to assess the effects 
of these operators on new simulation scenarios. Special attention should 
be taken into checking if these operators are also bloat-free in the new sce-
narios.

One other interesting direction of research related to the rule list brain, 
and its mutation operators, is the study of the effects of neutral mutations, 
and of non-coding genetic information in our open-ended evolution proc-
ess. From the visual inspection of the brains conducted, we found some 
parts of the brains that were never used, but could account for neutral mu-
tations. We also found some cases where the non-used rules of the brain 
could serve as memory of past good behaviour. To better study these issues, 
specific experiments and analysis techniques should be created.

The flexibility of the framework can be used to apply this open-ended 
evolutionary model to a number of different simulation scenarios. For ex-
ample, one that could show interesting results, is the coevolution of agents’ 
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controllers and morphologies, following Karl Sims work. The added free-
dom that a natural selection system can give to such a simulation, may 
enable the evolution of an interesting and diverse set of behaviours and 
morphologies.

In conclusion, we believe that our work can be used in a variety of re-
search areas, and hope that our initial effort can be developed upon by other 
researchers, mainly in the fields of artificial life and complex systems.
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