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Abstract 

Calpains are ubiquitous calcium-dependent cysteine proteases. Calpains 

are best known for the cleavage of proteins during excitotoxic cell death (del Cerro 

et al. 1994, Bednarski et al. 1995), which translates into a strong participation of 

calpains in the loss of brain tissue in either acute situations, like stroke, traumatic 

brain injury or seizures (Araujo et al. 2008), or in slow progressing disorders like 

Alzheimer’s, Parkinson’s or Huntington’s disease (Vanderklish & Bahr 2000, Wu et 

al. 2004). One function described for calpains is their role in cell adhesion, motility 

and migration (Stifanese et al. 2006). Rho GTPases are described as targets of 

calpains and are involved in the regulation of cytoskeleton modification. Recently, 

Rho GTPases were linked to the enhanced spreading of platelets in µ-calpain(-/-) 

mice (Kuchay et al. 2012). In turn, extracellular signal-regulated kinase (ERK) is 

part of the mitogen-activated protein kinase (MAPK) signaling pathway and is also 

described as involved in cell migration (Anand-Apte et al. 1997, Klemke et al. 

1997, Webb et al. 2000). However, the involvement of calpains, Rho GTPases and 

ERK in the proliferation and migration of neural stem cells (NSC) during 

neurogenesis in the adult central nervous system remains elusive. Another 

important factor is the possible involvement of integrins in NSC migration. Integrins 

appear described as being involved in the process of remodeling the cytoskeleton 

(Hynes 1992), and on this way they could be involved in NSC migration. 

Previous work by our group demonstrated that inhibition of calpains 

increases migration rates of cultured NSC and subventricular zone (SVZ) explants. 

However, the signaling pathways involved in this process remain to be identified. 

Based on these assumptions, we investigated the signaling pathways by which 

calpains modulate adult neural stem cell migration, in cultures of NSC isolated 
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from the SVZ. For this purpose, we assessed whether calpain modulation of the 

activity of the Rho GTPases Cdc42, Rac1 and RhoA, ERK signaling pathway and 

integrin signaling is involved in the regulation of SVZ-derived NSC migration. On 

the other hand, we also analyzed cell migration in the rostral migratory stream 

(RMS) of brain sections from wild-type and calpastatin-deficient mice (CSTN). 

Our data suggests that Cdc42 and Rac1, but not RhoA or the ERK signaling 

pathway, are involved in the migration of NSC. Moreover, we show that integrins 

are important for the migration of these cells, as well as laminin. On the other 

hand, calpains seem to be modulating Rho GTPases as well as integrins 

signaling. In addition to that, our in vivo studies show that the absence of 

calpastatin leads to a decrease in doublecortin (DCX) immunoreactivity along the 

RMS, which is translated to an impairment of cell migration from the SVZ to the 

olfactory bulbs. This suggests that calpains negatively regulate the migration of 

NSC. 

 

Keywords: calpains; intracellular signaling; migration; neural stem cells; 

neurogenesis. 
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Resumo 

As calpaínas são proteases cisteínicas ubíquas dependentes de cálcio. 

Estas proteases estão amplamente descritas como envolvidas na clivagem de 

proteínas durante a morte celular por excitotoxicidade (del Cerro et al. 1994, 

Bednarski et al. 1995), o que se traduz numa participação clara das calpaínas em 

processos de perda de tecido cerebral, como no caso de situações agudas, tais 

como isquémia cerebral, traumatismo crânio-encefálico ou convulsões (Araujo et 

al. 2008), ou em patologias de progressão lenta, como o caso das doenças de 

Alzheimer, Parkinson ou Huntington (Vanderklish & Bahr 2000, Wu et al. 2004). 

Uma função descrita para as calpaínas é o seu papel na adesão, motilidade e 

migração das células (Stifanese et al. 2006). As Rho GTPases estão descritas 

como alvos das calpaínas, e estão envolvidas na regulação das alterações que 

ocorrem a nível do citoesqueleto. Recentemente, as Rho GTPases foram 

identificadas como intervenientes no aumento do spreading das plaquetas em 

murganhos knock-out para as µ-calpaínas (Kuchay et al. 2012). Por sua vez, a via 

de sinalização da proteína cinase regulada por sinais extracelulares (ERK), que 

faz parte da via de sinalização das proteína-cinases activadas por mitogénios 

(MAPK), também se encontra descrita como envolvida na migração celular 

(Anand-Apte et al. 1997, Klemke et al. 1997, Webb et al. 2000). No entanto, o 

envolvimento das calpaínas, Rho GTPases e da ERK na proliferação e migração 

das células estaminais neurais (NSC) durante o processo de neurogénese no 

sistema nervoso central adulto permanece por esclarecer. Um outro facto que 

permanece por elucidar é o envolvimento das integrinas na migração das NSC. 

As integrinas estão descritas como envolvidas em processos de remodelação do 
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citoesqueleto (Hynes 1992), podendo estar a intervir no processo de migração 

das NSC. 

Resultados preliminares do nosso grupo mostraram que a inibição das 

calpaínas leva a um aumento da migração das NSC em cultura e em explantes da 

região subventricular (SVZ). Contudo, as vias de sinalização envolvidas neste 

processo permanecem por ser identificadas. Com base nestes pressupostos, 

investigámos as vias de sinalização através das quais as calpaínas modulam a 

migração das NSC, em culturas de NSC isoladas da SVZ. Neste sentido, fomos 

avaliar se a modulação pelas calpaínas da actividade das Rho GTPases Cdc42, 

Rac1 e RhoA, da via de sinalização ERK e das integrinas está envolvida na 

regulação da migração das NSC derivadas da SVZ. Foram feitos ainda estudos 

de migração celular ao longo da via migratória rostral (RMS) in vivo, usando 

animais wild-type e animais geneticamente modificados (CSTN) que não possuem 

o inibidor endógeno das calpaínas, a calpastatina. 

Os nossos resultados sugerem que a Cdc42 e a Rac1 estão envolvidas na 

migração das NSC, ao contrário do que acontece no caso da RhoA e da via da 

ERK. Para além disso, também mostramos que as integrinas são importantes 

para que a migração destas células ocorra, assim como a laminina. Por outro 

lado, as calpaínas parecem estar a actuar sobre a sinalização das Rho GTPases 

e sobre a sinalização pelas integrinas. Além disso, os nossos estudos in vivo 

mostraram que na ausência do inibidor endógeno das calpaínas ocorre uma 

diminuição na imunoreactividade da doublecortin (DCX) ao longo da RMS, o que 

se traduz numa diminuição da migração celular da SVZ até aos bolbos olfactivos. 

Isto sugere que as calpaínas exercem um efeito negativo na regulação da 

migração das NSC. 
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Palavras-chave: Calpaínas, sinalização intracelular, migração, células 

estaminais neurais, neurogénese 
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1. Neurogenesis 

Neurogenesis is defined as the process of generating new neurons from 

progenitor cells and over many years it was thought that this process occurred 

exclusively during embryonic development in the mammalian central nervous 

system (CNS). Altman was the major contributor to show that neurogenesis also 

occurs in the adult rat brain. Altman used in his study ([3H])-thymidine that was 

incorporated by dividing cells and showed a constitutive production of new 

neurons in the hippocampus (Altman & Das 1965) and olfactory bulb (OB) (Altman 

1969a). However, this finding was not accepted by the majority of biologists, 

because the method used in the study of Altman was not able to prove that the 

newborn cells would become neurons with the capacity to integrate in the CNS. In 

1984, Paton and Nottebohm showed a functional integration of new neurons in the 

adult CNS of songbirds (Paton & Nottebohm 1984). However, the method used in 

the study was the same that Altman used (incorporation of ([3H])-thymidine by 

dividing cells) combined with electron microscopy, which still raised some issues 

with the fate of the newborn cells. In 1996, Kuhn and colleagues showed the 

occurrence of neurogenesis in the dentate gyrus (DG) of the adult rat, using 

another thymidine analogue, 5-bromo-2’-deoxyruridine (BrdU), as a proliferation 

marker. This new marker allows the phenotypic analysis and stereological 

quantification of new cells through immunocyto- or immunohistochemistry, leaving 

behind the need to resort the autoradiographic detection of ([3H])-thymidine 

(Sidman et al. 1959, Gratzner 1982).  In fact, with the evolution of the research 

techniques, it was possible to prove the existence of adult neurogenesis, which 

has been demonstrated to occur in the brain of almost all mammalians, including 

humans (Eriksson et al. 1998). 
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The paradigm of the adult brain as a static structure was abandoned and 

regions where neurogenesis can occur were identified and designated as 

neurogenic areas. 

 

1.1. Neurogenic niches in the adult mammalian brain 

Two main regions of the adult mammalian brain were identified as the local 

of occurence of neurogenesis: the subgranular zone (SGZ) of the DG in the 

hippocampus and the subventricular zone (SVZ), in the wall of the lateral 

ventricles (Altman & Das 1965, Altman 1969a, Reynolds et al. 1992, Lois & 

Alvarez-Buylla 1993, Palmer et al. 1995). Other regions in the adult mammalian 

brain were also suggested as places where neurogenesis occurs, such as the 

cortex (Gould et al. 1999, Dayer et al. 2005) and the substantia nigra (Zhao et al. 

2003), but this is still an issue with some controversy and further experimental 

support is needed (Rakic 2002, Gould 2007). Basically, the neurogenic niches 

provide a specific microenvironment that allows the maintenance of self-renewal 

and/or multipotency of neural stem cells (NSC). NSC have been extensively 

characterized and present two major characteristics: capacity of self-renewal 

through cell division and the ability to differentiate into specialized cell types such 

as neurons, astrocytes and oligodendrocytes (for more details see Gage 2000 and 

Reynolds et al. 1992). Adult neurogenesis occurs in several stages: the 

proliferation of adult NSC or progenitor cells, fate specification of progenitor cells, 

migration of immature neurons of the SGZ or the SVZ into the granule cell layer of 

the dentate gyrus or through the rostral migratory stream (RMS) towards the OB, 

respectively, differentiation and, finally, integration of newborn neurons in the 
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existing neuronal network and their survival and maturation into fully functional 

neurons (described in more detail in the next section). 

 

1.2. Stages of neurogenesis 

The introduction of new techniques such as detection of BrdU incorporation 

(Kuhn et al. 1996) or retroviral labeling methods (van Praag et al. 2002) allowed 

the characterization of the different steps of the neurogenic process. 

The SVZ region of the adult brain has ependymal cells, quiescent radial 

glia-like cells, also known as B cells, which give rise to transient amplifying cells 

(or C cells) with high proliferative capacity. C cells in turn give rise to migrating 

neuroblasts (A cells) (Doetsch et al. 1999) that migrate through the RMS, in a 

chain along a tube formed by astrocytes, into the olfactory bulbs (OB) (Lois et al. 

1996). Once in the OB, neuroblasts detach from the RMS and migrate radially, 

towards the granule cell layer and glomerular layer, where they differentiate into 

mature neurons and integrate into the neuronal circuits (Figure 1) (Ming & Song 

2011). 
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In the SGZ of the DG of the adult brain, immature neurons are derived from 

neuroblasts, which, in turn, derived from progenitor cells. In this case, migration of 

newly formed cells takes place within a smaller area, compared to the SVZ. Thus, 

immature neurons from the SGZ migrate into the inner granule cell layer, where 

they differentiate into granule neurons. The newborn neurons extend their axons 

to the CA3 region of the hippocampus, being integrated in the hippocampal neural 

circuitry (Figure 2) (Zhao et al. 2006). 

 

Figure 1 - Schematic representation of adult neurogenesis in the SVZ. Five developmental 

stages: (1) activation of radial glia-like cells in the wall of the lateral ventricles (LV); (2) quiescent 

radial glia-like cells give rise to C cells which proliferate; (3) C cells give rise to migrating 

neuroblasts; (4) chain migration of neuroblasts allong the RMS, through a tube formed by 

astrocytes; and (5) synaptic integration, survival and maturation of immature neurons in the OB. 

Adapted from (Ming & Song 2011). 
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1.3. Regulation of adult neurogenesis 

Adult neurogenesis is regulated in several ways by intrinsic as well as 

extrinsic mechanisms. Numerous factors have been described to be involved in 

the regulation of the neurogenic process: signaling pathways, factors/receptors in 

neurogenic niches, cytoplasmatic and transcription factors. For example, cell-cycle 

inhibitors, such as p16, p21 and p53, play an important role in maintaining the 

quiescent state of adult neural precursors since the deletion of these factors 

Figure 2 - Schematic representation of adult neurogenesis in the DG. Five developmental 

stages: (1) activation of quiescent radial glia-like cell in the SGZ; (2) proliferation of non-radial 

precursors and intermediate progenitors in the SGZ molecular layer; (3) progenitor cells give rise to 

neuroblasts; (4) immature neurons from the SGZ migrate into the inner granule cell layer and 

differentiate in granule neurons; and (5) mature neurons integrate the neural network and suffer 

maturation becoming totally functional neuronal cells, receiving inputs from the entorhinal cortex 

and extending axonal projections to the CA3 region. Adapted from (Ming & Song 2011). 
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results in transient activation and, consequently, loss of the precursor pool (Ming & 

Song 2011). The Notch signaling pathway has been described as another 

controller of the maintenance of the NSC pools, since the ablation of Notch1 

during the early post-natal period and along adulthood leads to an increase in 

neuronal fate specification of NSC and, consequently, to a decrease in the 

proliferation of these cells (Chojnacki et al. 2003, Breunig et al. 2007). 

Hormones are other regulators of adult neurogenesis. Estrogens, for 

example, present a proliferative effect over progenitor cells of the DG (Tanapat et 

al. 1999). However, this hormone does not seem to affect neurogenesis in the 

SVZ of adult rats, although these cells express specific receptors for estrogen 

(Brannvall et al. 2002, Isgor & Watson 2005). Stress hormones, such as 

corticosteroids and particularly glucocorticoids, on the other hand, appear 

described as decreasing neurogenesis in the DG of young rats and primates 

(Gould et al. 1998, Kippin et al. 2004). 

Another group of regulators of adult neurogenesis is composed by trophic 

factors. EGF and bFGF are described as potent factors in promoting NSC 

proliferation in the SVZ in vivo. However, only bFGF leads to an increase in the 

number of newborn neurons in the OB (Kuhn et al. 1997). Brain-derived 

neurotrophic factor (BDNF) is also of the growth factor family and appears 

described as preventing neural death during development (Hempstead 2006), and 

also as increasing cell proliferation in the granule cell layer of the OB and in the 

DG of rodents (Benraiss et al. 2001, Lee et al. 2002). 

Classic neurotransmitters, such as glutamate and gamma-aminobutyric acid 

(GABA), are also described as increasing the differentiation of hippocampal 

progenitors (Tozuka et al. 2005). 
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The migration that occurs during neurogenesis is also controlled by 

innumerous factors. In the SVZ, migrating neuroblasts are normally bipolar, 

presenting extensions that allow the connection with adjacent cells forming 

“chains” (Lledo & Saghatelyan 2005). These chains allow the sliding of migrating 

cells and are coated by astrocytes, being this structure also called glial tube.  The 

SVZ is characterized as being a thin cell layer founded next to the ependyma of 

the telencephalic lateral walls of the lateral ventricles (Altman 1969b, Zhao et al. 

2008) (Figure 3). Extracellular signals from neighboring cells, humoral factors and 

the extracellular matrix are other important cues involved in the regulation of 

neuronal migration, axon/dendritic development and synapse formation, during 

adult neurogenesis. The close proximity between stem cells and ependymal cells 

in the SVZ, blood vessels and the direct contact with the cerebrospinal fluid (CSF) 

are responsible for controlling the migration of NSC (Kazanis & ffrench-Constant 

2011, Kazanis et al. 2008). Chemorepellent signals such as Slit1 and Slit2, cyclin-

dependent kinase 5 (Hirota et al. 2007), EphB2-ephrin-B2 and neuroregulin-ErbB4 

pathways, polysialic acid-neural cell adhesion molecule (PSA-NCAM) protein, β1-

integrin, proteoglicans and laminins appear described as important for the 

regulation of the migration of SVZ neuroblasts (Lledo & Saghatelyan 2005) 

(discussed in more detail in section 3.1). 
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1.4. Role of adult neurogenesis 

Neurogenesis in the adulthood contributes to improve adult brain function in 

terms of neuronal network, under physiological conditions (Kempermann et al. 

2004). In the last decades, a lot of research regarding adult neurogenesis has 

been done. However, only in 2002 was proved that newborn neurons are 

functional in the adult brain (Carlen et al. 2002). According to the region, the 

newborn cells can have different contributions to the CNS. In the adult DG, newly 

formed granule cells demonstrated a greater predisposition for synaptic plasticity 

when compared with existing granule cells (Wang et al. 2000, Snyder et al. 2001, 

Schmidt-Hieber et al. 2004), whereas in the OB newborn granular and 

Figure 3 – The neurogenic niche in the SVZ. (A) Cross section of the adult mouse brain 

showing the subventricular zone (SVZ, purple), adjacent lateral ventricle (LV, light purple), cortex 

and the striatum. (B) Schematic illustration of the SVZ architecture and cell types. Multiciliated 

ependymal cells (E, brown), SVZ astrocytes or B cells (B, blue), C cells (C, light blue) that give rise 

to A cells or neuroblasts (A, green). Adapted from (Zhao et al. 2008). 
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periglomerular cells presented different membrane properties compared with 

existing neurons surrounding them (Belluzzi et al. 2003, Carleton et al. 2003). 

Neurogenesis in the SGZ presents another important role, since it provides a 

substrate for additional brain plasticity and is crucial for spatial learning and 

memory in adult mice (Imayoshi et al. 2008). One proof of this, is the significantly 

decrease in learning capacity in rats when neurogenesis in the hippocampus is 

inhibited (Shors et al. 2001).  In the OB, neurogenesis showed to be as important 

as in the hippocampus. In fact, when adult neurogenesis is suppressed olfactory 

learning and memory, in adult crickets, is impaired (Scotto-Lomassese et al. 

2003). Similar results were obtained in the OB of rodents, where adult 

neurogenesis was also associated to the learning process (Alonso et al. 2006, 

Mouret et al. 2008, Mandairon et al. 2006). 

Moreover, neurogenesis seems to be closely involved with tissue repair in 

pathological conditions (Lowenstein & Parent 1999). Brain injury, such as ischemic 

brain events (Kokaia & Lindvall 2003), traumatic brain injury (Dash et al. 2001, 

Rice et al. 2003), epileptic seizures (Parent et al. 1997, Gray & Sundstrom 1998) 

and neurodegenerative diseases (such as Huntington’s disease (Lazic et al. 2004) 

and Alzheimer’s disease (Jin et al. 2004a, Jin et al. 2004b)) have already been 

shown to present increased neurogenesis. In other words, these pathologies 

induce proliferation of NSC and migration of newborn cells into the lesioned areas, 

where they may potentially differentiate and integrate the neuronal network to 

substitute the lost cells (Arvidsson et al. 2002, Magavi et al. 2000). 

However, the regulatory mechanisms by which NSC migrate into lesioned 

areas remain to be clarified. 
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2. Calpains 

First described by Guroff in the rat brain (Guroff 1964), calpains are 

ubiquitous calcium-dependent cysteine proteases with maximum activation at 

neutral pH. Calpains belong to the papain superfamily of cysteine proteases. 

Fifteen different isoforms of calpains have been described, six of which are tissue-

specific, while the other nine are ubiquitously expressed (Sorimachi et al. 2011). 

Two of the latter ones are the most extensively studied and well characterized, 

namely µ- and m-calpains, also known as calpain I or calpain II, respectively 

(Suzuki & Sorimachi 1998). This designation is closely linked to the calcium 

concentration required for their activation in vitro. For µ-calpain activation, calcium 

concentration is approximately 2-8 µM and, for m-calpain, 0.2-0.8 mM (Cong et al. 

1989). µ-calpain and m-calpain are commonly designated as ‘conventional’ 

calpains, because their study was on the basis for the creation of the calpain 

superfamily (Suzuki et al. 1995). Meanwhile, all the other calpains are called 

“unconventional”. 

 

2.1. Structure of calpains 

Calpain isoforms µ- and m- present a heterodimeric structure (Figure 4). 

They are composed by a large catalytic subunit, with 80 kDa (Capn1 in µ-calpain 

and Capn2 in m-calpain, which are not identical) and a small regulatory subunit 

with 28 kDa, identical for both isoforms. The large catalytic subunits are encoded 

by two different genes, capn1 and capn2 (for µ- and m-calpain, respectively) 

(Ohno et al. 1990). The small subunit is encoded by capn4 (Franco & Huttenlocher 

2005). 
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The large catalytic subunit has a cysteine protease domain and a calcium-

binding domain with five helix-loop-helix (EF-hand) structures and the small 

regulatory subunit has also five EF-hand structures. It is through the fifth EF-hand 

domain of each subunit that the assembly of the heterodimers occurs (Blanchard 

et al. 1997, Lin et al. 1997, Hosfield et al. 1999). 

According to the domain structure of the catalytic subunit, calpains are 

classified as classical (with a structure for the catalytic domain similar to µ- and m-

calpains) or non-classical (with a different catalytic domain from µ- and m-

calpains) (Ono & Sorimachi 2012). At the moment, fifteen genes for calpains were 

identified in humans, nine of them encoding the classical calpains (calpains 1, 2, 3, 

8, 9, 11 and 14). They are distributed in a wide range of living organisms, such as 

prokaryotes and almost all eukaryotes (Croall & Ersfeld 2007). 

 

2.2. Expression and localization of calpains 

In the cell, patterns of calpain localization present a wide complexity and 

variability (Beckerle et al. 1987, Gil-Parrado et al. 2003, Kifor et al. 2003, Hood et 

al. 2004, Raynaud et al. 2004), which suggests that the subcellular localization of 

calpains may be an important factor in the modulation of their functions. In fact, 

calpains are typically described as intracellular proteases (Nishihara et al. 2001, 

Figure 4 - Schematic representation of µ-calpain and m-calpain structure. 
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Xu & Deng 2004). Calpains are localized mostly in the cytoplasm of cells, but can 

also act outside the cell in some circumstances, as suggested by Adachi and 

collaborators (Adachi et al. 1990). Another consideration about the localization of 

calpains is related to their activation, because it is speculated that, when active, 

they associate to the cell membrane (Croall & DeMartino 1991). 

As the name suggests, ubiquitous calpains play a fundamental role in all 

cells, while tissue-specific calpains have more specified cellular functions. A clear 

example of this is that defects in ubiquitous calpains (e.g. capn2-/-) can be lethal 

(Dutt et al. 2006), while defects in tissue-specific calpains may result in different 

phenotypes (e.g. Capn3 mutation results in muscular dystrophy) (Richard et al. 

1995). 

µ-calpain and m-calpain, as mentioned before, were first identified in the rat 

brain (Guroff 1964) and, despite their wide distribution, they have a particular 

expression in CNS. Calpains were found in the axoplasm of giant axon of the 

Myxicola (Gilbert & Newby 1975), in squid (Pant et al. 1979) and in the rat 

peripheral nerve (Schlaepfer & Freeman 1980, Kamakura et al. 1983), and their 

localization is exclusively intracellular (Hamakubo et al. 1986). 

On the other hand, there are at least six tissue-specific calpains identified 

until now. Capn3 was identified in skeletal muscle (Sorimachi et al. 1989), Capn6 

in the placenta and embryonic striated muscle (Dear & Boehm 1999, Dear et al. 

1997), Capn8 and Capn9 in the gastrointestinal tract (Sorimachi et al. 1993), 

Capn11 in testis (Dear et al. 1999, Dear & Boehm 1999) and, finally, Capn12 was 

found in hair follicles (Dear et al. 2000). The discovery of tissue-specificity of 

calpains has been described to be linked to specific calpain functions in the 

respective tissues. 
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2.3. Regulation of calpain activity 

There are two ways of regulating calpains: through the small regulatory 

subunit or via calpastatin.  

The small regulatory subunit acts as a chaperone-like component for the 

catalytic subunits of the conventional calpains, stabilizing them (Yoshizawa et al. 

1995). This subunit is extremely important, as shown by the embryonic lethality of 

capn4-/- mice, indicating that the small regulatory subunit is required for the 

stability of catalytic subunits of µ- and m-calpain in vivo (Arthur et al. 2000, 

Zimmerman et al. 2000). 

Calpastatin, a protein encoded by the CAST gene (Ono & Sorimachi 2012), 

appears described as ubiquitously expressed and as a selective and reversible 

endogenous inhibitor for both calpains (Murachi 1984). Calpastatin acts through 

the prevention of the autolysis of calpains, necessary for their activation, and by 

competing with the native protein during its binding to the cell membrane (Melloni 

et al. 1992, Kawasaki & Kawashima 1996). Calpastatin exert its inhibitory effect 

through four repeats calpain inhibitory domains (CID) (Kawasaki et al. 1993, 

Nishimura & Goll 1991, Takano et al. 1995, Yang et al. 1994). After an increase in 

the intracellular concentration of calcium, it binds to calpains and they suffer 

conformational alterations, and autolysis can occur. Through this mechanism, 

calpains active center becomes available for calpastatin binding (Cottin et al. 

1981, Shigeta et al. 1984, Pal et al. 2001). 

Synthetic calpain inhibitors have also been developed. MDL28170 and 

calpeptin are two examples of peptidyl aldehydes, which reversibly inhibit calpains 

(Figure 5) (Mehdi et al. 1988, Yano et al. 1993). 
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There are also irreversible peptide and non-peptide inhibitors for calpains, 

such as leupeptin (Mehdi 1991) and α-mercaptoacrylates (as PD150606 and 

PD151746) (Wang et al. 1996), respectively. Calpain inhibitors vary in their 

chemical structure, selectivity and membrane permeability, thus presenting 

different efficacies (Donkor 2000, Mehdi 1991). 

Calpains are also physiologically regulated by other mechanisms, such as 

elevations in the intracellular calcium concentration (Figure 6). In fact, the calcium 

concentration necessary for calpain activation in vitro is too high to be supported in 

vivo, which suggests the existence of some mechanisms capable of decreasing 

these calcium requirements (Franco & Huttenlocher 2005). Thus, autolysis of the 

large subunit (Suzuki et al. 1981, Zimmerman & Schlaepfer 1991, Brown & 

Crawford 1993) and connection to phospholipids (Coolican & Hathaway 1984, 

Saido et al. 1992) have been described to be important events that lead to a 

decreased requirement of calcium for calpain activation. Moreover, µ- and m-

calpains can be regulated by the phosphorylation of specific residues, such as Tyr, 

Figure 5 - Chemical structures of synthetic inhibitors of calpains. (A) Chemical structure of N-

protected dipeptide aldehyde MDL28170 (CbzValPheH); (B) Chemical structure of calpeptin, 

synthetic aldehyde CbzLeu-nLeuH. Calpeptin and MDL28170 are similar compounds. Both are 

short and are hydrophobic N-blocked dipeptidyl aldehydes lacking charged residues. They have 

the ability to penetrate membranes by passive diffusion. When compared in terms of selectivity, 

MDL28170 and calpeptin present a similar spectrum of inhibition of calpains. Adapted from (Mehdi 

1991). 
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Ser and Thr, according to the isoform (Goll et al. 2003). For example, m-calpain 

can be activated by phosphorylation of the Ser50 residue through different 

mechanisms, which may involve the activation of the mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and/or 

EGF increased signaling (Glading et al. 2000, Glading et al. 2004). On the other 

hand, m-calpain activity can also be inhibited by phosphorylation of 

Ser369/Thr370, namely through protein kinase A (PKA) increased signaling 

(Shiraha et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Mechanisms of control of calpain activity. Calpain can be activated by calcium, the 

best-studied mechanism. When occurs an increase in the intracellular calcium concentration, 

calpains suffer a conformational change; autolysis is another process that leads to calpain 

activation, by decreasing the levels of calcium necessary, but it is a process that occurs more in 

the progression of activation than in its initiation; protein-protein interactions change the calcium 

requirements of calpains, facilitating the activation process; phosphorylation of some specific sites 

can also control calpain activation. On the other hand, calpain can be inhibited by their 

endogenous inhibitor, calpastatin, attenuating the activity of calpains, and by phosphorylation 

through PKA. 
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2.4. Targets of calpains 

Calpains are proteases with a broad range of substrates, such as 

transcription factors, transmembranar receptors, signaling enzymes and 

cytoskeleton proteins (as reviewed in Table I) (Chan & Mattson 1999, Goll et al. 

2003, Wang & Yuen 1997). However, calpain substrates in vitro may not be 

substrates in vivo, and the degradation of a specific substrate is dependent on 

external/internal signals, the presence/absence of calpains within the cell, among 

other factors (Goll et al. 2003). Calpains can cleave their substrates in a limited 

number of sites, creating large stable fragments rather than small peptides or 

amino acids (Carragher & Frame 2002). Brain α-spectrin is cleaved by both 

calpain isoforms in the same manner resulting in two fragments of approximately 

145 and 150 kDa, which can serve as a mean of identifying calpain activity in 

lysates or via fragment-specific antibodies visualized by immunofluorescence 

(Wang 2000). 

Table I - Examples of some calpain targets. This table is a sampling of some reported substrates 
for calpains; not all classes of calpain substrates are included. 

Class Target proteins 

Cytoskeletal / Secretory 

pathway 

SNAP-23, ICA512, L-type, calcium-channel, α-actinin, αII-

spectrin/α-fodrin, talin, ezrin, paxillin, vinculin, desmin, γ-

filamin, titin, focal adhesion kinase, integrin β3, RhoA, tubulin, 

tau, microtubule-associated protein 1, microtubule-associated 

protein 2, myosin light chain 1, filamin C, SNAP-25 

Membrane-bound receptors 

and proteins 

EGF receptor, AMPA receptor, anion channel, calcium 

release channel, L-type calcium channel, G proteins 

Calmodulin-binding proteins 

Calcium pump, calcineurin, calmodulin-dependent kinase II, 

myosin light chain kinase, neuromodulin, connexins, inositol 

triphosphate kinase 

Signaling enzymes 
Protein kinase C, HMG-CoA reductase, cyclic-AMP-depend 

kinase, pyruvate kinase, phosphorylase kinase 

Myofibrillar proteins Troponin I, troponin T, tropomyosin, myosin 

Transcription factors c-fos, c-jun, Pit-1, Oct-1, CP1a, CP1b, c-Myc, p53 
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As shown in Table I, calpains can act in the “remodeling” of the 

cytoskeleton, particularly during motility and cell migration through a rapid 

cleavage of cytoskeleton elements. The first implication of calpains in cell 

migration was showed when pharmacological inhibition of calpains lead to a 

decrease in integrin-mediated cell migration (Huttenlocher et al. 1997, Palecek et 

al. 1998). These studies showed that calpain inhibition resulted in the stabilization 

of adhesion complexes, and for that reason, an increase in adhesiveness was 

verified, which caused a reduction in the rate of detachment of the rear of the cell, 

consequently decreasing cell migration. Calpains are also involved in cell 

spreading and Croce et. al showed that inhibition of µ-calpain in platelets reduce 

their ability to spread (Croce et al. 1999). Basically, cell spreading and cell motility 

require degradation of focal adhesions at the attachment sites in both the leading 

and rear edges of the cells, by calpains (Perrin & Huttenlocher 2002, Glading et al. 

2002). The membrane protrusions are also regulated by calpains, since whereas 

calpain inhibition by calpastatin results in abnormal lamellipodia and filopodia 

(Potter et al. 1998). On the other hand, calpains can exert a negative effect in cell 

migration being neutrophils an example of that. In resting neutrophils, high levels 

of calpain activity were detected and inhibition of this protease resulted in 

membrane protrusion formation and rapid chemokinesis (Lokuta et al. 2003), 

which is the opposite of what has been seen in other cell types. 

The different effects of calpains according to the cell type can be linked with 

the signaling mechanisms that calpains are regulating. In the case where it was 

observed an increase in cell migration when calpains were inhibited, this effect 

may be related with the possible negative regulation of the Rho GTPases, as 

showed in neutrophils (Lokuta et al. 2003). 
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2.5. Physiological and pathological roles of calpains 

Calpains have also been linked to numerous physiological roles in cells, 

such as exocytosis, cell fusion, differentiation, apoptosis, proliferation, migration 

and other important cellular processes (Goll et al. 2003). The involvement of 

calpains in the rearrangement of the cytoskeleton is the most referenced process. 

The detachment of the cell from the extracellular matrix, which allows cell 

migration, needs a coordinated mechanism between the focal adhesion assembly 

in the leading edge of the cell and the disassembly at its rear. Since proteins 

involved in this process are targets of calpains, these proteases have been linked 

to important events occurring during cell migration, such as adhesion, spreading, 

membrane protrusion and detachment of the cell, but also to the regulation of 

signaling mediators of cell migration such as integrins, Rho GTPases and growth-

factor-mediated signaling (Franco & Huttenlocher 2005). 

Some studies have addressed the effect of calpain inhibition in different cell 

types, and distinct results were reported. A decrease in the spreading ability was 

observed in platelets, T-cells, vascular smooth muscle cells, pancreatic cells and 

fibroblasts when calpains were inhibited (Croce et al. 1999, Parnaud et al. 2005, 

Paulhe et al. 2001, Potter et al. 1998, Rock et al. 2000). In contrast, calpain 

inhibition in neutrophils leads to an increased capacity of cells to spread (Lokuta et 

al. 2003). The physiological roles of calpains in the CNS are poorly described, but 

preliminary results from our group suggested that the inhibition of calpains in NSC 

leads to an increased cell migration (Inês Araújo, unpublished results). However, 

the mechanisms involved in this process are not known yet. It is necessary to 

identify the signaling pathways involved in the modulation of cell migration by 

calpains. 
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Calpains have been reported to be involved in several pathological 

conditions. Although they are not linked to a genetic cause for the diseases, in 

almost all pathologies the deregulation of their activity seems to be the leading 

cause for their involvement in these conditions. The loss of calcium homeostasis, 

particularly increased calcium influx into the cell, seems to be a major cause for 

calpains increased proteolytic activity, which has been associated with the 

following diseases: Alzheimer’s disease, cataract formation, muscular dystrophies, 

myocardial infarcts, multiple sclerosis, brain ischemia (stroke), obsessive-

compulsive disorders and traumatic spinal cord (brain) injury. However, some 

authors suggested other mechanisms to be the leading cause for the increased 

activation for calpains, such as failure on the activation of calpastatin and/or 

phosphorylation of Ser369/Thr370 by PKA (Goll et al. 2003). 

 

3. Cell migration 

3.1. Cell migration during neurogenesis 

Cell migration is described as a key point of normal and abnormal 

processes, such as embryonic development, defense against infections, wound 

healing, development of tumor cell metastasis, atherosclerosis and chronic 

inflammatory diseases (e.g. rheumatoid arthritis) (for more detailed information, 

see Martin 1997, Ridley 2001). As previously mentioned, cell migration is one of 

the five different processes occurring during neurogenesis. However, the 

mechanisms beyond migration of NSC are not fully understood. 

As described in section 1.3, the close proximity between stem cells and 

ependymal cells in the SVZ, blood vessels and the direct contact with the CSF are 
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responsible for controlling the migration of NSC (Kazanis & ffrench-Constant 2011, 

Kazanis et al. 2008). Several studies referred the involvement of different 

molecules in migration of neuroblasts and referred that migration through RMS 

occurs in parallel with the directional flow of CSF, in the lateral ventricle (LV) 

(Sawamoto et al. 2006). The physical adjacent position of the NSC to the 

ependymal cells implies an interaction between them. Ependymal cells are 

described as exerting a supporting/regulatory function in the niche, since they can 

modulate the transport of ions and other factors from the CSF (Bruni 1998). The 

choroid plexus is responsible to the secretion of chemorepulsive factors, being 

created a concentration gradient of these factors in CSF flow. Ependymal cells 

allow the access of CSF proteins or exogenous tracers through the ciliary beating 

(Sawamoto et al. 2006), being indispensable for the formation of chemorepulsive-

factor gradients that conduct neuroblasts migration in the adult brain. These 

chemorepulsive factors may contain axon guidance molecules such as 

semaphorins (Kolodkin 1996a, Kolodkin 1996b), ephrins (Flanagan & 

Vanderhaeghen 1998) and Slits, which help guiding the migration of the 

neuroblasts through RMS. 

Semaphorins are described as axonal guidance molecules with attractant or 

repellent activity. They participate in processes like early development, 

angiogenesis and cell migration (Tamagnone & Comoglio 2000). The presence of 

semaphorin-3A and its homodimer receptor NP1 was reported along the entire 

RMS in the adult brain, which suggests that they are involved in the regulation of 

neuroblast migration (Melendez-Herrera et al. 2008). Ephrins are transmembrane-

associated proteins that need to be linked to Ephrin (Eph) receptors to exert their 

action. Axonal growth and cell guidance are referred to as being processes where 
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ephrins-Eph interaction is involved, during development (Wilkinson 2001), and 

during neurogenesis, this interaction has also been implicated (Conover et al. 

2000, Holmberg et al. 2005, Theus et al. 2010). Eph-B1-3 and EphA4 receptors 

are expressed in the SVZ and RMS (Conover et al. 2000, Theus et al. 2010), and 

EphB2 receptor seems to be surrounding chains of migrating neuroblasts, in the 

RMS (Conover et al. 2000). The ephrin/EphB interaction controls cell spatial 

organization in the SVZ (Conover et al. 2000). These findings indicate that ephrin 

signaling is involved in the regulation of the neuroblast guidance into chain 

migration during adult neurogenesis. Slit is a secreted protein that binds directly to 

it receptor, the Roundabout (Robo), and acts as a chemorepulsive for OB axons 

(Li et al. 1999). In fact, in mammals Slit1-3 and Robo1-3 have been identified and 

implicated in axonal repulsion as in cell guidance (Brose & Tessier-Lavigne 2000). 

Studies with brain explants showed that Slit1 and Slit2 are expressed in the 

septum, where they act repelling progenitor cells rising from SVZ and maintained 

along the RMS (Wu et al. 1999). Another study using knockout Slit1 mice showed 

that Slit1 is important in directing migration since neuroblasts raised from the SVZ 

migrate caudally to the corpus callosum, rather than to the RMS, in this mice 

(Nguyen-Ba-Charvet et al. 2004). Based on this, Slit1 and Slit2 are suggesting as 

being involved in cell migration from the SVZ towards the OB. 

PSA-NCAM is another important factor that regulates the migration of SVZ 

neuroblasts. NCAM is a cell surface glycoprotein, while PSA is a polymer of 

neuroaminic acid added to the NCAM molecule. The expression of this molecule 

has been reported in neurogenic niches in the adult brain (Seki & Arai 1993), and 

that neuroblasts in the chain migration in the RMS also express PSA-NCAM 

(Rousselot et al. 1995). It was also showed that PSA-NCAM deficient mice have 
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an altered RMS, and present an altered morphology due to the accumulation of 

migrating cells (Chazal et al. 2000). 

The extracellular matrix is an important controlling element of neurogenesis, 

being laminin its best-known constituent. Laminin is a heterodimeric glycoprotein, 

which can present a wide range of possible combinations of its subunits (in 

mammals - five alpha, three beta and three gamma subunits) (Colognato & 

Yurchenco 2000). Besides the involvement of laminin in the transduction of 

different signals in NSC, members of laminin-like secreted molecules, nominated 

neutrin and reelin, have also been described as being involved in the regulation of 

the migration of newly generated cells along the RMS. Neutrin and reelin are 

known to be involved in the regulation of axon guidance during development, 

being expressed by astrocytes that surround the RMS (Staquicini et al. 2009). 

Moreover, these molecules have also been described to control the positioning of 

newborn neurons during embryonic cortical development (Frotscher 2010, Gaiano 

2008), and as regulator elements of the migration of neuroblasts from the RMS 

into the olfactory bulb (Hack et al. 2002). 

Cell migration requires changes in the cytoskeleton, cell-substrate adhesion 

and in the extracellular matrix (ECM). The first step of this process consists in the 

release of extracellular cues, like diffusible factors and/or signals coming directly 

from the ECM. The intracellular machinery triggered by transmembranar 

receptors, which are activated by extracellular stimuli. Depending on the trigger, 

different intracellular signaling molecules can be recruited to participate in cell 

migration. These molecules include small GTPases, calcium-regulated proteins, 

MAPK pathway, protein kinase C, phosphatidylinositide kinases, phospholipases 

C and D, and tyrosine kinases (Ridley 2001). Integrins have been described as 
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having an important role in cell spreading and migration (Lafrenie & Yamada 1996, 

Meredith et al. 1996). This large-range of different intracellular signaling molecules 

is connected with a wide diversity of extracellular signals that can induce cell 

migration and also with the huge number of cellular responses that have to be 

synchronized along the process. 

 

3.2. Integrins in cell migration 

Integrins are cell surface glycoproteins composed of one α and one β 

subunit that allow the binding to the ECM components. They are the major group 

of cell-surface receptors for the ECM and cell-surface molecules (Montgomery et 

al. 1996, Ruppert et al. 1995). Both of the non-covalent transmembrane 

glycoproteins (α and β subunits) have been described as being involved in inside-

out signaling and in processes such as the coordination of the actin cytoskeleton 

and the cellular response to growth factors (Hynes 1992). It has also been 

described the clustering of integrins into small complexes with cytoskeleton 

proteins (e.g. vinculin and talin (Jockusch & Rudiger 1996)) and signaling 

molecules (e.g. Rho GTPases), following integrin-ligand interaction. These 

clusters are known as focal adhesions. Calpains have been indentified in focal 

adhesions, thus suggesting cell migration as being a calcium-mediated event 

(Beckerle et al. 1987, Du et al. 1995, Cooray et al. 1996). Moreover, focal 

adhesions allow integrin signal transduction, which ultimately leads to changes in 

cell morphology and physiology (Clark & Brugge 1995, Schwartz et al. 1995, 

Yamada & Miyamoto 1995). The signals transmitted from this clusters include 

activation of tyrosine kinases, such as focal adhesion kinase (FAK) or Src, and 
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activation of serine/threonine kinases, such as ERK or AKT (Chen et al. 1994, 

Schlaepfer et al. 1994, King et al. 1997). 

Rho GTPases also seem to contribute to integrin signaling transduction, 

and their activation induces actin cytoskeleton alterations. An important example 

of the involvement of integrins in cell migration is the presence of β1 integrin in the 

RMS, as described by Jacques and collaborators (Jacques et al. 1998). 

Furthermore, it has been shown that absence of β1 integrin perturbs the RMS, 

which appears less compact and with cells no longer assembled into chains. It 

was also founded defects in the size of the OB and in cell migration in this animal 

model. The OB was significantly reduced in size in the absence of β1 integrin, and 

the migration was also impaired in this case (Belvindrah et al. 2007). 

 

3.3. Rho GTPases in cell migration 

The Rho family of GTPases has been shown to regulate many intracellular 

events, such as morphogenesis, polarity, movement and cell division. These 

GTPases are present in all eukaryotic cells and are part of the Ras superfamily of 

small (21 kDa) signaling G proteins. There are at least twenty two different Rho 

GTPases, being the most important for cell migration the Ras homolog gene 

family-member A (RhoA), cell division control protein 42 (Cdc42) and Ras-related 

C3 botulinum toxin substrate 1 (Rac1) (Jaffe & Hall 2005). Rho GTPases present 

a cycling switch between their active and inactive states. In their active state, they 

are bound to guanosine triphosphate (GTP), and in the inactive state to guanosine 

diphosphate (GDP). It is their intrinsic phosphatase activity that hydrolyses GTP to 

GDP that leads to the turning "off" of the protein. The transition between this two 

states is controlled by: a) guanine nucleotide exchange factors (GEFs) that allow 
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the exchange of GDP to GTP, activating the switch (Schmidt & Hall 2002), b) 

GTPase-activating proteins (GAPs), which inactivate the switch under the 

stimulation of intrinsic GTPase activity (Bernards 2003), and by c) guanine 

nucleotide dissociation inhibitors (GDIs), which seem to block spontaneous 

activation of Rho GTPases (Olofsson 1999) (Figure 7). Thus, Rho GTPases are 

known as “molecular switches” playing their cellular functions through the 

activation of numerous downstream effectors. There are many effector proteins 

described for Rho, Rac and Cdc42. These include serine/threonine kinases, 

tyrosine kinases, formins, families of WASp proteins, as example (Bishop & Hall 

2000). 

 

 

 

Figure 7 - Switch model for Rho GTPases activation. Rho GTPases cycle between an inactive 

state - GDP-bound form - and an active state - GTP-bound form. This GTPases are regulated by 

GEFs, GAPs and GDIs. When active, GTPases interact with effector proteins to mediate a 

response. Adapted from (Jaffe & Hall 2005). 
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Rho GTPases have been linked to the control of cytoskeletal organization, 

and are also involved cell morphology changes. RhoA has an active function in 

stimulating microfilament bundling, originating stress fibers, and is also essential 

for the formation of focal adhesion complexes that allow the generation of 

contractile forces at the rear of the cell, which make the cell body move forward 

(Hotchin & Hall 1995, Riento & Ridley 2003). RhoA also seems to have a 

controlling function, since it can inhibit inappropriate lateral protrusion, through the 

restriction of the formation of new integrin adhesion complexes (Worthylake & 

Burridge 2003). Rac1 is required to induce actin polymerization in the mobile edge 

of cells during migration and is responsible for controlling the formation of 

lamellipodia, which is a sheet-like structure consisting in a cross-linked meshwork 

of actin filaments (Ridley et al. 1992). Cdc42 mediates the formation of long, thin, 

actin-dependent extensions beyond lamellipodia, also known as filopodia, that 

allows the pushing forward of the leading edge of migrating cells (Nobes & Hall 

1995). Filopodia and lamellipodia, represent two protrusive structures found in the 

leading edge of cells during migration. At the rear of the cell, it is necessary the 

contraction of the actin:myosin filaments that drive the forces for migration (Figure 

8). 

There is a connection between integrins, calpains and Rho GTPases. It has 

been shown that the presence of calpains is necessary for the formation of specific 

types of integrin clusters (Fox et al. 1993). Moreover, the activation of Rac1 seems 

to occur in integrin clusters, immediately after integrin-ligand interactions. Since 

calpains are located in integrin clusters, it has been suggested that they might be 

involved in the regulation Rho GTPases activity (Bialkowska et al. 2000). 
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Rho GTPases have an important role in controlling cell movement, as 

mentioned before. Two different types of migration have been described. Some 

cells present an isolated movement, as leukocytes that migrate towards 

chemotactic factors, while others present a coordinated migration, as NSC during 

neurogenesis (Lois et al. 1996). The dynamic of the cytoskeleton is extremely 

important to allow these different kinds of migration. 

 

 

 

 

 

 

 

 

 

 

3.4. ERK in cell migration 

ERK is part of the MAPK signaling pathway. There are two isoforms of 

ERK, p44 (ERK-1) and p42 (ERK-2), and both present a Thr-Glu-Tyr motif within 

the activation loop of the kinase domain. ERK activity can be stimulated by 

numerous growth factors and mitogens (Johnson & Lapadat 2002). ERK has been 

described as being involved in the migration of various cell types. The inhibition of 

Figure 8 - Representative scheme of migration steps. Extension of lamellipodium at the front of 

the cell; stabilization of the structure through the formation of new adhesions with the extracellular 

matrix; forward movement of the cell body through actin:myosin contraction; retraction of the tail of 

the cell after cell detachment. Adapted from (Ridley 2001). 
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ERK, for example, inhibits the migration of platelets, in response to fibronectin 

stimuli (Anand-Apte et al. 1997), even in the presence of vitronectin. Moreover, 

collagen migration does not occur when ERK is inhibited (Klemke et al. 1997, 

Webb et al. 2000), which indicates that ERK has an important role in the regulation 

of cell migration. Different substrates of ERK have been identified, such as nuclear 

proteins, transcription factors, paxilin and calpains. Furthermore, the activity of m-

calpain can be stimulated by ERK, which seems to be required for adhesion 

turnover and cell migration (Glading et al. 2004). However, the relationship 

between calpain and ERK in regulation cell migration is still unclear. 
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4. Objectives 

Although there is no information regarding the involvement of calpain 

signaling in the proliferation and migration of NSC during neurogenesis in the adult 

CNS, calpains have been already described as being involved in the proliferation 

and migration of cells in other systems. Moreover, previous results of our group 

demonstrated that inhibition of calpains increases the migration rates of cultured 

NSC and SVZ explants. However, the signaling pathways involved in this process 

remain to be identified. Therefore, in this work our aim was to analyze the effect of 

calpain modulation in adult NSC migration and the signaling pathways by which 

calpains modulate this process, using NSC isolated from the SVZ and treated with 

calpain inhibitors and/or different signaling pathways inhibitors. Furthermore, cell 

migration will be analyzed in brain sections from wild-type (WT) and calpastatin-

deficient mice (CSTN), by looking at the immunoreactivity of DCX. 
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1. Materials 

Dulbecco’s Modified Eagle’s Medium: F-12 nutrient mixture, (DMEM/F12 

with GlutaMAX™ I), B27 supplement, antibiotic (10,000 units/ml penicillin, 10 

mg/ml stretomycin), gentamicin, trypsin-EDTA, were purchased from GIBCO BRL, 

Life Technologies (Invitrogen, Paisley, UK). Phenylmethylsufonyl fluoride (PMSF), 

dithiothreitol, orthovanadate, chymostatin, leupeptin, leuptin, antiparin, pepstatin A, 

Tween-20, tetramethylethylenediamine (TEMED) and trypan blue were purchased 

from Sigma Chemical (St Louis, MO, USA). Epidermal growth factor (EGF) and 

basic fibroblast growth factor (bFGF) were from PeproTech Inc. (London, UK) and 

the matrix from Stoelting Co. (Wood Dale, IL, USA). Slides, coverslips and Tris 

base were obtained from Thermo Fisher Scientific Inc. (Waltham, MA, USA). 

Calpeptin, MDL28170, NCS23766, EHT1864 and ML141 were purchased from 

Tocris Bioscience (Bristol, UK), Echistatin from Sigma Aldrich (St. Louis, MO, 

USA). Laminin was obtained from Roche (Mannheim, Germany), U0126 from Cell 

Signaling Technology, Inc. (Danvers, MA, USA) and DAKO fluorescence mounting 

medium was obtained from DAKO (Glostrup, Denmark). Bovine serum albumin 

(BSA) was purchased from Calbiochem (San Diego, CA, USA). Hoechst 33342 

dye and phalloidin were obtained from Molecular Probes (Leiden, The 

Netherlands). Goat anti-DCX was acquired from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA). Rabbit anti-goat IgG conjugated with Alexa Fluor 594 secondary 

antibody was purchased from Molecular Probes (Leiden, Netherlands). G-LISA™ 

Rac1 Activation Assay Biochem Kit™ was purchased from Cytoskeleton (Denver, 

CO, USA). Bicinchoninic acid (BCA) Protein Assay kit was obtained from Pierce 

(Rockford, IL, USA). Polyvinylidene difluoride (PVDF) membranes and enhanced 

chemifluorescence (ECF) were from Amersham Pharmacia Biotech 
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(Buckinghamshire, UK). Bis-acrilamide and other reagents used in immunoblotting 

were purchased from Bio-Rad Laboratories Inc. (Hercules, CA, USA). All the 

primary and secondary antibodies used for Western blot analysis are described in 

Table II. 

 

Table II - Primary and secondary antibodies used in Western blot experiments. 

 

 

2. Methods 

2.1. In vitro experiments 

2.1.1. Animals 

C57BL/6J mice were obtained from Charles River (Barcelona, Spain) and 

kept in our animal facilities with food and water ad libitum in a 12 hours dark:light 

Antibody Host Dilution Origin 

Anti-Erk 1/2 Rabbit 1:1 000 
Cell signaling Technology, 

Inc. (Danvers, MA, USA) 

Anti-phospho-Erk 1/2 Rabbit 1:1 000 
Cell signaling Technology, 

Inc. (Danvers, MA, USA) 

Anti β-tubulin Mouse 1:10 000 
Signal Chemical (St Louis, 

MO, USA) 

Anti-calpain 1 Rabbit 1:1 000 
Santa Cruz Biotechnology 

(Santa Cruz, CA, USA) 

Anti-calpain 2 Rabbit 1:1 000 
Cell signaling Technology, 

Inc. (Danvers, MA, USA) 

Alkaline phosphatase- 

conjugated anti-rabbit 
Mouse 1:20 000 

GE Healthcare Life Sciences 

(Buckinghamshire, UK) 

Alkaline phosphatase-

conjugated anti-mouse 
Mouse 1:20 000 

GE Healthcare Life Sciences 

(Buckinghamshire, UK) 
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cycle. All experiments were performed in accordance with institutional and 

European guidelines (86/609/EEC) for the care and use of laboratory animals. 

 

2.1.2. Subventricular zone cultures 

Neural stem cell cultures were obtained from C57BL/6J mice (0-3 days old), 

as previously described (Carreira et al. 2010). Brains were removed from the skull, 

following decapitation, and placed in dissection medium composed of Ca2+ and 

Mg2+-free Hank’s balanced salt solution (HBSS) (137 mM NaCl, 5.36 mM KCl, 

0.44 mM KH2PO4, 4.16 mM NaHCO3, 0.34 mM Na2HPO4.2H2O and 5 mM 

glucose, supplemented with 0.001% phenol red, 1 mM sodium pyruvate and 10 

mM HEPES, pH 7.4), supplemented with 0.25% gentamicin. Then, the meninges 

were removed and brains were sectioned in 1 mm thickness coronal slices with a 

mouse brain matrix, from which the SVZ was excised. The sections were kept in 

0.24% gentamicin/HBSS and the SVZ was isolated from each section. The 

fragments of SVZ in 0.24% gentamicin/HBSS were then digested in 0.025% 

trypsin/0.265 mM EDTA, for 15-20 min at 37ºC, washed with 0.24% 

gentamicin/HBSS, and then mechanically dissociated by gentle dissociation with a 

pipette tip. The cells were ressuspendend in D-MEM/F12 with GlutaMAX™-I, 

supplemented with 1% B27, 1% antibiotic (Pen/Strep, 10,000 units/ml of penicillin, 

10 mg/ml streptomycin), 10 ng/ml EGF and 5 ng/ml basic FGF, and plated on 

uncoated flasks with filter caps, at a density of 100,000 cells/ml. Cell viability was 

evaluated by 0.1% Trypan Blue exclusion assay. SVZ-derived neural stem cells 

were grown as floating aggregates in a 95% air/5% CO2 humidified atmosphere at 

37ºC, for about 7 days. Then, the primary neurospheres were harvested, 

centrifuged and mechanically dissociated as single cells.  Cells were replated as 
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above and allowed to grow as secondary neurospheres. Six-seven days later, the 

floating neurospheres were collected and plated on 0.1 mg/ml poly-L-lysine and 10 

µg/ml laminin-coated 16-mm diameter glass coverslips, for migration assays, or on 

12-well plates for preparation of lysates and maintained with the same medium as 

before. 

 

2.1.3. Experimental treatments 

SVZ cells were left for 30 min and then treated with different inhibitors as 

follows. For the migration assays, SVZ-derived NSC were treated for 4 h with 

different stimuli, described as follows: calpain inhibitors, MDL28170 10 and 25 µM 

and calpeptin 10 and 25 µM; RhoA inhibitor, Y27632 10 µM; Rac1 inhibitors, 

EHT1864 1, 10 and 20 µM and NCS23766 50, 100 and 200 µM; Cdc42 inhibitor, 

ML141 1, 10 and 50 µM; MEK 1/2 inhibitor, U0126 1 µM; or β1 and β3 integrins 

inhibitor, Echistatin 10 nM. The calpain inhibitors were applied alone or together 

with the different Rho GTPase inhibitors or the MEK 1/2 inhibitor. 

To analyze the activity of Rac1 and Cdc42 GTPases, EHT1864 10 µM or 

ML141 1 µM, respectively, were applied alone or together with the calpain 

inhibitors MDL28170 10 µM or calpeptin 10 µM, for 30 min. 

All the experiments were performed together with the respective controls 

(untreated cells). 

 

2.1.4. Migration assay 

After treatment, cells were washed with phosphate-buffered saline 0.01 M 

(PBS, 7.8 mM Na2HPO4.2H2O, 2.7 mM NaH2PO4.H2O, 154 mM NaCl, pH 7.2), 
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and fixed with 4% paraformaldehyde/4% sucrose in PBS 0.01 M, for 20 min, and 

washed again with PBS 0.01 M. Nuclei were stained with Hoechst 33342 (2 µg/ml) 

for 3 min, protected from light. Cells were washed with PBS 0.01 M and mounted 

in uncoated glass slides with DAKO fluorescence mounting medium. The 

migration radia of SVZ-derived NSC were measured in images acquired by phase 

contrast microscopy (Axioskop 2 Plus, Zeiss, Jena, Germany) with the AxioVision 

software Rel. 4.8. The migration distance of five different cells was measured and 

the average value was used (Figure 9). Each experimental condition was 

evaluated by the analysis of 20 neurospheres. 

 

 

 

 

 

 

 

 

 

 

 

2.1.5. Preparation of lysates 

SVZ cells were washed with PBS 0.01 M and whole cell extracts were 

prepared by lysing the cells in 100 mM Tris-HCl, 10 mM ethylene glycol tetraacetic 

Figure 9 - Representative image, acquired by phase contrast microscopy, of the 

determination of migration distance of five different cells. Scale bar: 100 µm. 
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acid, 1% Triton X-100 and 2 mM MgCl2, supplemented with 200 µM 

phenylmethanesulphonyl fluoride, 1 mM dithiothreitol, 1 µg/ml CLAP (chymostatin, 

pepstatin, antipain and leupeptin), 1 µM sodium orthovanadate and 5 mM sodium 

fluoride, pH 7.4, at 4ºC. Three freezing/thawing cycles followed by 5 seconds 

sonication cycles were applied, separated by 2 seconds. Protein concentration 

was determined by the BCA method, according to the manufacturer’s instructions. 

Cell lysates were then used for Rho GTPase activity assays. For Western blot 

experiments, 6X concentrated sample buffer (0.5 M Tris-HCl/0.4% SDS pH 6.8, 

30% glycerol, 10% SDS, 0.6 M dithiothreitol, 0.012% bromophenol blue) was 

added and samples were denatured at 95ºC for 5 min. 

 

2.1.6. Rho GTPase activity 

Rac1 activity was determined using a commercially available kit (G-LISA™ 

Rac1 Activation Assay Biochem Kit™). This method is based on interactions of 

Rac-GTP-binding protein with active Rac1, while inactive Rac1 is removed by 

washing. Detection of active Rac1 was performed by using a Rac1 specific 

antibody. The protein concentration was determined by the bicinchoninic acid 

method, using the BCA protein kit, according to the manufacturer’s instructions. 

 

2.1.7. Western blot analysis 

Samples for Western blot analysis were electrophoresed in SDS-

polyacrylamide gels using MiniPROTEAN® 3 systems. Resolving gels were 

composed by 12% bis-acrylamide, 25% Tris-HCl 1.5 M pH 8.0, 0.1% SDS, 0.05% 

TEMED and 0.05% ammonium persulfate, in milliQ water, for all Western blot 
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experiments. Stacking gels were composed by 4% bis-acrylamide, 25% Tris-HCl 

0.5 M pH 6.8, 0.1% SDS, 0.05% TEMED and 0.05% ammonium persulfate, in 

milliQ water. Equal amounts of protein were applied on each lane of the SDS-

polyacrilamide gels submerged in a running buffer (25 mM Tris, 25 mM bicine and 

0.1% SDS, in milliQ water). Proteins were separated by electrophoresis, firstly at 

60 V for 10 min, followed by 120 V until proper bands separation were reached. 

The polyvinylidene difluoride membranes were activated, first in 100% methanol 

(2.5 to 5 min), followed by water (2.5 to 5 min) and, finally, 15 to 30 min in 

electrotransference buffer (CAPS 10 mM, methanol 10%, pH 11.0). Proteins were 

electrophoretically transferred to the activated membranes, submerged in 

electrotransference buffer at 750 mA, for 90 min, at 4ºC, using the Trans-Blot Cell 

apparatus. Membranes were blocked for 1 h, at room temperature, with Tris-

buffered saline (137 mM NaCl, 20 mM Tris-HCl, pH 7.6) containing 0.1% Tween-

20 (TBS-T) and 3% BSA. Incubations with the primary antibodies (rabbit anti-

phospho-ERK 1/2; rabbit anti-calpain 1 (sc-7531) and rabbit anti-calpain 2, 1:1000) 

in TBS-T containing 1% blocking solution were performed overnight, at 4ºC. After 

rinsing with TBS-T (20 min, with 2 quick washes before and after), incubation with 

the appropriated alkaline phosphatase-linked secondary antibodies (anti-rabbit or 

anti-mouse, 1:20 000 in TBS-T containing 1% blocking solution) was performed at 

room temperature, during 1 h. After extensive washing in TBS-T (for 1 h, changing 

into new TBS-T every 20 min), followed by the incubation of the membranes with 

the enhanced chemifluorescence reagent for the maximum of 5 min, 

immunoreactive bands were visualized in the VersaDoc 3000 imaging system 

(Bio-Rad Laboratories Inc., Hercules, CA, USA). Data were analyzed with the 

Quantity One software version 4.6.9 (Bio-Rad Laboratories Inc., Hercules, CA, 
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USA). Protein control loadings were performed after membranes reactivation (5-10 

seconds in 100% methanol and 20 min in TBS-T), using primary antibodies 

against rabbit ERK 1/2 (1:1000) or mouse β-tubulin (1:10 000). The protocol used 

was the same as explained above. 

 

2.1.8. Actin cytoskeleton labeling with phalloidin 

Following fixation and permeabilization, non-specific binding was blocked 

with 3% BSA. After this process, nuclei were stained with Hoechst 33342 (2 µg/ml) 

and actin cytoskeleton with phalloidin (1:50) for 1 h, protected from light. Then, 

coverslips were mounted on glass slides with DAKO fluorescence mounting 

medium. Images were acquired in a laser scanning microscope LSM 510 META 

(Zeiss, Jena, Germany). 

 

2.1.9. Statistical analysis 

Data are expressed as means ± SEM. Statistical significance was 

determined using two-tailed t-test or one-factor analysis of variance (ANOVA) as 

appropriate, followed by post hoc Bonferroni’s or Dunnett’s test, as indicated in the 

figure legends and in the text. Differences were considered significant when 

p˂0.05. The software used was GraphPad Prism 5.0 (GraphPad Software, La 

Jola, CA, USA). 
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2.2. In vivo experiments 

2.2.1. Animal models 

C57BL/6J male WT and calpastatin knockout (CSTN) (Takano et al. 2005) 

mice with 6 months were used in this study. Takano and colleagues (Takano et al. 

2005) used a targeting vector for the CSTN animals, containing the following 

deoxyribonucleic acid (DNA) fragments: a 1.5-kb Sphl fragment from intron 4 to 

exon 6, three tandem repeats of 250-bp SV40 early mRNA polyadenylation signals 

to terminate transcription, a 5-5-kb Sphl-Scal calpastatin gene fragment from 

intron 6 to intron 8, a 2.0-kb pgk-neo gene cassette (for positive selection), and a 

1.0-kb Sacl-Notl diphtheria toxin A fragment cassette from pMC1DT-A (for 

negative selection). Polyadenylation signals were placed in exon 6 to inhibit 

transcription of the calpain-inhibitory domains (Takano et al. 2005). C57BL/6J WT 

mice were obtained from Charles River (Barcelona, Spain) and kept in our 

facilities. All animals were kept with food and water ad libitum in a 12 hours 

dark:light cycle. All experiments were performed in accordance with institutional 

and European guidelines (86/609/EEC) for the care and use of laboratory animals. 

 

2.2.2. Experimental treatments 

The animals were perfused transcardially on day 12, with 0.9% NaCl 

followed by 4% paraformaldehyde in PBS, following deep anesthesia with Eutasil 

(20% sodium pentobarbital). Brains were removed and kept overnight in 4% 

paraformaldehyde for further fixation, and then dehydrated in 20% sucrose/0.2 M 

phosphate buffer (PB, 48 mM NaH2PO4.H2O, 152 mM Na2HPO4.2H2O, pH 7.2), at 

4ºC. Sagittal sections from the striatum region were cryosectionated (30 µm thick, 
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in 6-series) and stored in an antifreeze solution (0.05 M PB, 30% ethylene glycol, 

30% glycerol), at 4ºC. 

 

2.2.3. Immunohistochemistry 

Free-floating sagittal sections from the striatum region were processed for 

immunohistochemistry against DCX. Brain sections were blocked for 1 h with 5% 

normal horse serum (NHS) in 0.25% Triton X-100 in PBS. Slices were then 

incubated with the primary antibody goat anti-DCX (1:400), overnight at room 

temperature or 48 h at 4ºC. After rinsing with 0.25% Triton X-100 in PBS and with 

2% block solution (NHS), the sections were incubated with the correspondent 

secondary antibody (1:200), in 2% block (NHS), conjugated with Alexa Fluor 594, 

for 2 h in the dark, at room temperature. After rinsing with 0.25% Triton X-100 in 

PBS and with PBS alone, the sections were mounted in 2% gelatin-coated slides 

with DAKO fluorescence mounting medium. 

 

2.2.4. Doublecortin immunoreactivity 

The immunoreactivity of doublecortin in the RMS was quantified using an 

image analysis software (ImageJ, version 1.43u). The images were acquired in an 

inverted research microscope (Zeiss ObserverZ1, Zeiss, Jena, Germany), with the 

Axio CAM HRm and with the AxioVision software Rel. 4.8.2 through module 

Mosaix. Immunopositive staining was measured for each image, in 3 boxes with 

250 µm x 250 µm, randomly placed along the length of the RMS, as previously 

described by Kuhn and collaborators (Kuhn et al. 1997) (Figure 10). Data are 

reported in immunopositive area (µm2). 
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2.2.5. Statistical analysis 

Data are expressed as means ± SEM. Statistical significance was 

determined using two-tailed t-test, as indicated in the figure legends and in the 

text. Differences were considered significant when p˂0.05. The software used was 

GraphPad Prism 5.0 (GraphPad Software, La Jola, CA, USA). 

 

Figure 10 – DCX immunoreactivity determination. Representative image of DCX  

immunoreactivity along RMS. Three boxes with 250 µm x 250 µm were distributed along the RMS 

and the immunoreactivity of those areas was determined using image analysis software (ImageJ, 

version 1.43u). The immunoreactivity is reported in immunopositive area (µm2). Scale bar: 200 µM. 
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1. In vitro modulation of SVZ-derived NSC migration by calpains 

1.1. µ-calpain and m-calpain are present in NSC isolated from the SVZ 

The presence of both µ-calpain and m-calpain isoforms in SVZ cell cultures 

was evaluated by Western blot analysis (Figure 11). We observed that both 

calpain isoforms were present in SVZ-derived NSC lysates. 

 

 

1.2. Laminin is essential for SVZ-derived NSC migration 

To assess the involvement of laminin in SVZ-derived NSC migration, SVZ 

cells were plated in 16-mm glass coverslips coated with poly-L-lysine with or 

without laminin, for 4 h. 

In the absence of laminin, migration of NSC was significantly decreased 

(70.72 ± 4.08 µm, p<0.001) after 4 h, when comparing to cells plated in 16-mm 

glass coverslips coated with poly-L-lysine and laminin (181.80 ± 7.46 µm) (Figure 

12C). 

 

 

Figure 11 - µ-calpain and m-calpain are present in NSC from the SVZ. µ-calpain (A) and m-

calpain (B), respectively, were detected in SVZ cultures by Western blot, using 15 µg of protein. β-

tubulin was used as a loading control. 
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1.3. SVZ-derived NSC migration is increased by calpain inhibition 

With the purpose of studying the effect of calpain inhibition on NSC 

migration, SVZ-derived NSC were treated with the inhibitors MDL28170 and 

calpeptin, for 4 h. Two different concentrations were tested for both inhibitors (10 

µM and 25 µM). Cell migration was analyzed in images acquired by phase 

contrast microscopy (Figure 13A, B and C). 

 

 

Figure 12 - Laminin is essential for SVZ-derived NSC migration. Representative laser scanning 

confocal images of actin cytoskeleton of SVZ NSC cells labeled against phalloidin, in red, after 4 h 

in the presence (A) and absence (B) of laminin. Nuclei, in blue, were labeled with Hoechst 33342. 

Cells were left for 4 h in the presence or absence of laminin, and the migration radia were 

measured in images acquired by phase contrast microscopy. The means ± SEM of four 

independent experiments were analyzed by two-tailed t-test, ***p<0.001 (significantly different from 

cells in contact with laminin) (C). Scale bar: 20 µm. 
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Both concentrations tested of MDL28170 (10 µM, 184.79 ± 6.03 µm, 

*p˂0.05; 25 µM, 184.18 ± 5.99 µm, *p˂0.05; Figure 13D) and calpeptin (10 µM, 

182.42 ± 7.12 µm, *p˂0.05; 25 µM, 191.50 ± 2.23 µm, **p˂0.01; Figure 13E), 

significantly increased cell migration when compared to control (untreated cells) 

(161.08 ± 4.55 µm). Neither MDL28170 (10 µM, 17.68 ± 2.77%; 25 µM, 17.99 ± 

3.16%, p>0.05) nor calpeptin (10 µM, 17.47 ± 2.60%; 25 µM, 17.53 ± 2.079%, 

p>0.05) had a cytotoxic effect in SVZ-derived NSC under the conditions tested, as 

assessed by the evaluation of the percentage of condensed nuclei, as compared 

Figure 13 - SVZ-derived NSC migration is increased by calpain inhibition. (A), (B) and (C) - 

Representative images showing the migration of SVZ-derived NSC for the different conditions. 

Cells were treated for 4 h with the calpain inhibitors MDL 28170 (D) and calpeptin (E). The means 

± SEM of at least five independent experiments were analyzed by one-way ANOVA (Dunnett’s 

post-test), *p˂0.05 (significantly different from control). Scale bar: 100 µm. 
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to untreated cells (16.59 ± 1.198%) (see Table III). According to these results, 

MDL28170 10 µM and calpeptin 10 µM were selected for all of the following 

experiments. 

 

1.4. Integrins are involved in SVZ-derived NSC migration 

Integrins are the major laminin receptors, being the α6β1 integrin receptor 

present at high levels on embryonic NSC and proliferating adult NSC (Kazanis et 

al. 2010, Staquicini et al. 2009). With the purpose of evaluating the involvement of 

integrins in the migration of SVZ-derived NSC, cultures were exposed to 

echistatin, a polypeptide disintegrin isolated from the venom of Echis carinatus 

(Gould et al. 1990). Disintegrins are the most potent inhibitors of integrin function. 

We observed that 10 nM echistatin decreased SVZ-derived NSC migration 

(118.01 ± 9.00 µm, **p˂0.01) following 4 h of exposure, as compared to control 

(166.26 ± 5.45 µm) (Figure 14C). 
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Furthermore, echistatin prevented the increased migration observed 

following calpain inhibition to MDL28170 (162.60 ± 5.85 µm, ++p˂0.01), as 

compared to MDL28170 alone (184.79 ± 6.03 µm) (Figure 15F). Similar results 

were observed in the experiments where calpains were inhibited by calpeptin. 

Although echistatin did significantly prevent the increased migration observed 

following calpain inhibition with calpeptin, a clear tendency for a decrease in cell 

migration in the presence of both inhibitors (163.58 ± 5.33 µm, p>0.05) can be 

observed, when compared to calpeptin alone (181.25 ± 5.93 µm) (Figure 15G). 

 

 

Figure 14 - Integrins are involved in SVZ-derived NSC migration. Cells were treated for 4 h 

with integrins inhibitor. Migration radia were measured in images acquired by phase contrast 

microscopy in the presence (A) and in the absence of integrins inhibitor (B). The means ± SEM of 

at least four independent experiments were analyzed by two-tailed t-test and one-way ANOVA 

(Bonferroni’s post-test), **p˂0.01 (significantly different from control) (C). Scale bar: 100 µm. 
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1.5. Involvement of Rho GTPases in SVZ-derived NSC migration 

In order to study the involvement of Rho GTPases in SVZ-derived NSC 

migration, SVZ cells were treated with four different Rho GTPase inhibitors: the 

selective inhibitor of Cdc42 ML141 (1, 10 and 50 µM), the Rac1 inhibitors 

EHT1864 (high affinity) (1, 10 and 20 µM) and NSC23766 (low affinity) (50,100 

Figure 15 - Calpains acting through integrins. (A), (B), (C), (D) and (E) - Representative images 

showing the migration of SVZ-derived NSC for the different conditions. Cells were treated for 4 h 

with integrins inhibitor, or with calpain inhibitor, or with both. Migration radia were measured in 

images acquired by phase contrast microscopy. The means ± SEM of at least four independent 

experiments were analyzed by two-tailed t-test and one-way ANOVA (Bonferroni’s post-test), 

*p˂0.05, **p˂0.01 and ***p˂0.001 (significantly different from control), and ++p˂0.01 (significantly 

different from MDL28170) (F and G). Scale bar: 100 µm. 
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and 200 µM) (Figure 16F, G and H) or the RhoA inhibitor Y27632 (Figure 16I). The 

effect of Rho GTPase inhibitors on the cell migration was evaluated by 

determining the migration radia in images acquired by phase contrast microscopy. 

 

Figure 16 - Involvement of Rho GTPases in SVZ-derived NSC migration. (A), (B), (C), (D) and 

(E) - Representative images showing the migration of SVZ-derived NSC for the different 

conditions. Cells were treated for 4 h with 1 µM, 10 µM or 50 µM ML141 (F), 1 µM, 10 µM or 20 µM 

EHT1864 (G), 50 µM, 100 µM or 200 µM NSC23766 (H), or 10 µM Y27632 (I), and the migration 

radia were measured in images acquired by phase contrast microscopy. Data are expressed as 

means ± SEM of at least three independent experiments. Two-tailed t-test (I) and one-way ANOVA 

(F, G and H Dunnett’s post-test), *p<0.05 and **p<0.01 (significantly different from control). Scale 

bar: 100 µm. 
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All concentrations of ML141 showed a significant decrease in cell migration 

(1 µM, 128.27 ± 4.32 µm, **p˂0.01; 10 µM, 127.27 ± 6.44 µm, *p˂0.05; 50 µM, 

119.59 ± 6.33 µm, **p˂0.01; Figure 16F), as compared to 153.52 ± 5.74 µm in 

untreated cells. Concerning Rac1, just two of the three concentrations tested for 

EHT1864, showed a significant decrease in cell migration (10 µM, 132.87 ± 5.37 

µm; 20 µM, 113.34 ± 3.27 µm, **p˂0.01; Figure 16G), when compared to 

untreated cells (155.91 ± 5.05 µm). When using NSC23766, only the higher 

concentration showed a significant decrease in cell migration (200 µM, 118.24 ± 

4.80 µm; *p˂0.01; Figure 16H). 

None of the Rho GTPase inhibitors showed a cytotoxic effect as evaluated 

by assessing the percentage of condensed nuclei (see Table III). Based on these 

results, ML141 1 µM, EHT1864 10 µM and NSC23766 200 µM were chosen for all 

the following experiments. No changes in cell migration were observed following 

RhoA inhibition by Y27632 (157.9 ± 5.60 µm, p>0.05; Figure 16I), comparing to 

untreated cells (164.16 ± 6.09 µm). 
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Table III - Cell viability of NSC after treatment with different pharmacological inhibitors. 

 
Cell viability was assessed through analysis of nuclear morphology after treatment with two 

different calpain inhibitors (MDL28174 and calpeptin) and with three different Rho GTPase 

inhibitors (ML141, EHT1864 and NSC23766), at different concentrations, and after treatment with 1 

µM of MEK 1/2 inhibitor (U0126). When nuclei were condensed/fragmented and brightly stained 

with Hoechst 33342, cells were considered dead. In the presence of a cell regular nuclear 

morphology and a light nuclear stain with bright nucleoli, cells were considered as live cells. The 

means ± SEM of at least five independent experiments were analyzed by one-way ANOVA, 

Dunnett’s post-test. n.s. (non-significant) p˃0.05, not different from the control. 

 

 

1.6. SVZ-derived NSC migration is regulated by Rho GTPases and 

calpains 

We next investigated if Rho GTPases were involved in the migratory effect 

observed with calpain inhibition in SVZ-derived NSC. For that purpose, cell 

migration was evaluated following exposure to Rho GTPase inhibitors (ML141, 

Treatment % dead cells % live cells 

Control 29.239 ± 1.259 % 70.761 ± 1.259 % 

10 µM 17.678 ± 2.767 % (n.s.) 82.321 ± 2.767 % (n.s.) 
MDL28170 

25 µM 17.987 ± 3.157 % (n.s.) 82.013 ± 3.157 % (n.s.) 

10 µM 17.468 ± 2.596 % (n.s.) 82.531 ± 2.596 % (n.s.) 
Calpeptin 

25 µM 17.534 ± 2.079 % (n.s.) 82.466 ± 2.079 % (n.s.) 

1 µM 27.725 ± 1.410 % (n.s.) 72.275 ± 1.409 % (n.s.) 

10 µM 28.484 ± 2.732 % (n.s.) 71.516 ± 2.732 % (n.s.) ML141 

50 µM 29.672 ± 3.896 % (n.s.) 70.328 ± 3.896 % (n.s.) 

1 µM 24.143 ± 1.184 % (n.s.) 75.857 ± 1.184 % (n.s.) 

10 µM 25.633 ± 1.369 % (n.s.) 74.367 ± 1.369 % (n.s.) 
EHT1864 

 
20 µM 32.368 ± 1.897 % (n.s.) 67.632 ± 1.897 % (n.s.) 

50 µM 23.108 ± 1.755 % (n.s.) 76.892 ± 1.755 % (n.s.) 

100 µM 25.549 ± 1.264 % (n.s.) 74.451 ± 1.264 (n.s.) 
NSC23766 

 
200 µM 27.461 ± 1.476 % (n.s.) 72.539 ± 1.476 % (n.s.) 

U0126 1 µM 27.534 ± 2.221 % (n.s.) 72.476 ± 2.221 % (n.s.) 
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EHT1864 or NSC23766) in the presence of calpain inhibitors (MDL28170 or 

calpeptin), for 4 h. 

We observed that both calpain inhibitors MDL28170 (184.79 ± 6.03 µm, 

**p˂0.01) and calpeptin (184.87 ± 5.76 µm, **p˂0.01) increased cell migration in 

comparison to control (154.98 ± 4.44 µm). On the other hand, the Cdc42 inhibitor 

ML141, alone, decreased cell migration (127.65 ± 4.95 µm, **p˂0.01) as 

compared to control. Furthermore, the increased migration rates observed 

following calpain inhibition were prevented when ML141 was added to cultures 

(128.74 ± 4.62 µm; 124.70 ± 5.49 µm, +++p˂0.001, respectively), being the 

migration distances similar to those observed when Cdc42 is inhibited (ML141 

alone), and significantly different from control (**p˂0.01 and ***p˂0.001, 

respectively) (Figure 17F and Figure 18F). An identical approach was made to 

study the involved of the Rac1 signaling pathway in the migratory effect observed 

with calpain inhibition in SVZ-derived NSC. Similar to what was described for 

Cdc42, calpain inhibitors MDL28170 (184.79 ± 6.03 µm, ***p˂0.001) and calpeptin 

(184.87 ± 5.76 µm, **p˂0.01) increased cell migration, in comparison to control. 

Furthermore, inhibition of calpains (with either MDL28170 or calpeptin) and Rac1 

(with EHT 1864) prevented the increased migration following calpain inhibition 

(130.94 ± 2.70 µm; 115.09 ± 1.85 µm, +++p˂0.001, respectively) being the 

migration distances similar to those observed when Rac1 is inhibited (132.87 ± 

5.37 µm, **p˂0.01), and significantly different from control (**p˂0.01 and 

***p˂0.001, respectively), (Figure 17G and Figure 18G). Similar results were 

obtained with the other Rac1 inhibitor, NSC23766 (Figure 17H and Figure 18H). In 

the presence of MDL28170 and NSC23766 together the increased migration 

following calpain inhibition was also inhibited (122.78 ± 5.68 µm; 123.96 ± 4.57 
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µm, +++p˂0.001, respectively), being the migration distance similar to those 

observed when Rac1 is inhibited 132.87 ± 5.37 µm, **p˂0.01), and significantly 

different from control (***p˂0.001). 

Figure 17 - SVZ-derived NSC migration in the presence of Rho GTPases and MDL28170. (A), 

(B), (C), (D) and (E) - Representative images showing the migration of SVZ-derived NSC for the 

different conditions. Cells were treated for 4 h with MDL28170 or with Rho GTPases inhibitors and 

with both. Migration radia were measured in images acquired by phase contrast microscopy. The 

means ± SEM of at least five independent experiments were analyzed by one-way ANOVA 

(Bonferroni’s post-test), **p˂0.01 and ***p˂0.0019 (significantly different from control) and 
+++p˂0.001 (significantly different from MDL28170) (F), (G) and (H). Scale bar: 100 µm. 
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1.7. Rac1 activity is not altered in the presence of calpain inhibitors 

Next, we studied of the involvement of Rac1 GTPase in the migratory effect 

observed with calpain inhibition in SVZ-derived NSC by assessing Rac1 activity by 

G-Lisa assay. We observed an increased activity in Rac1 activity 30 min following 

plating of SVZ-derived NSC (150.41 ± 16.86%, p˃0.05), when compared to the 

Figure 18 - SVZ-derived NSC migration in the presence of Rho GTPases and calpeptin. (A), 

(B), (C), (D) and (E) - Representative images showing the migration of SVZ-derived NSC for the 

different conditions. Cells were treated for 4 h with calpeptin or with Rho GTPases inhibitors and 

with both. Migration radia were measured in images acquired by phase contrast microscopy. The 

means ± SEM of at least five independent experiments were analyzed by one-way ANOVA 

(Bonferroni’s post-test), **p˂0.01 and ***p˂0.001 (significantly different from control) and 
+++p˂0.001 (significantly different from calpeptin) (E), (F), (G) and (H). Scale bar: 100 µm. 
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control (0 min). In the presence of EHT1864 or calpeptin, we observed a 

decreased activation of Rac1, although the differences observed were not 

significantly different when compared to migration rates observed 30 min following 

plating (125.36 ± 21.90% and 124.13 ± 29.31%, respectively, p>0.05) (Figure 19A 

and C). Moreover, calpain inhibition by MDL28170 does not alter Rac1 activity 

(154.58 ± 26.70%, p>0.05), when compared to the 30 min following plating 

(150.41 ± 16.86%, p˃0.05) (Figure 19B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 - Rac1 activity following 30 min of treatment with Rac1 inhibitor and calpain 

inhibitors. Rac1 activation levels following treatment with EHT1864 (A), MDL28170 (B) or 

calpeptin (C) for 30 min were assessed by G-Lisa assay. The means ± SEM of at least five 

independent experiments were analyzed by one-way ANOVA (Bonferroni’s post-test), *p˂0.05 

(significantly different from control). 
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1.8. ERK 1/2 pathway is not involved in SVZ-derived NSC migration 

To evaluate the involvement of the MAPK/ERK 1/2 pathway in SVZ-derived 

NSC migration, cultures were treated with 1 µM U0126, a selective inhibitor of 

MEK 1/2, the kinase immediately upstream of ERK 1/2. In the presence of U0126, 

cell migration was not significantly altered (159.17 ± 8.95 µm, p>0.05) when 

compared to untreated cells (180.95 ± 5.84 µm) (Figure 20G). Moreover, no 

changes were observed in cell migration following inhibition of calpains (with either 

MDL 28170 or calpeptin) and MEK 1/2 (with U0126) (Figure 20H and I). 

 

 

 

Figure 20 – ERK 1/2 pathway is not involved in SVZ-derived NSC migration. (A), (B), (C), (D), 

(E) and (F) - Representative images showing the migration of SVZ-derived NSC for the different 

conditions. Cells were treated for 4 h with an MEK 1/2 inhibitor, with calpain inhibitors, or with both. 

Migration radia were measured in images acquired by phase contrast microscopy. The means ± 

SEM of at least four independent experiments were analyzed by two-tailed t-test or one-way 

ANOVA (Bonferroni’s post-test). Scale bar: 100 µm. 
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We also analyzed the phosphorylation of ERK 1/2 by Western blot. Thirty 

min following plating, there is an increased activation of ERK 1/2 (335.51 ± 

60.24%, *p˂0.05), when compared to control (0 min) (Figure 21A). Calpain 

inhibition (either by MDL28170 or calpeptin) significantly increased ERK 1/2 

phosphorylation (calpeptin: 422.04 ± 92.18%, Figure 21B; MDL28170: 362.79 ± 

65.02%, Figure 21C; *p<0.05). 

 

Figure 21 - ERK 1/2 phophorylation following 30 min of treatment with MEK 1/2 inhibitor and 

calpain inhibitors. Phospho-ERK 1/2 levels following plating (A), calpeptin (B) or MDL28170 (C), 

for 30 min were assessed by Western blot. The means ± SEM of five independent experiments 

were analyzed by one-way ANOVA (Bonferroni’s post-test), *p˂0.05 (significantly different from 

control). 
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2. In vivo modulation of SVZ-derived neuroblast migration, in the 

subventricular zone 

2.1. Calpastatin deletion decreases neuroblast migration in the RMS 

SVZ-derived neuroblast migration was also evaluated in vivo by assessing 

DCX immunoreactivity, which is a migrating neuroblast marker, along the RMS. 

We observed a decreased immunoreactivity in CSTN animals (1899.90 ± 

575.26 µm2, p>0.05) when compared to WT (4259.21 ± 764.81 µm2) (Figure 22C), 

which suggests a decreased migration of neuroblasts along the RMS in those 

animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - Calpastatin deletion results in impaired neuroblast migration in the RMS. 

Representative images of WT (A) and CSTN (B) mice, showing migrating cells in red, labeled for 

DCX. Brain slices were stained for DCX and its immunoreactivity in the RMS was measured in 

sagittal sections of the striatum for each animal (C). The means ± SEM of five independent 

experiments were analyzed by two-tailed t-test. Scale bar: 300 µm 
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In this work, we show that calpains have a negative effect in the controlling 

of migration of SVZ-derived NSC since the inhibition of calpains leads an increase 

in cell migration. We also show that Rho GTPases are involved in migration of 

SVZ-derived NSC, since in the presence of inhibitors of the different molecules, 

cell migration is like abolished. Interestingly, we show in this work, for the first time 

that calpains are modulating SVZ-derived NSC through Rho GTPases and 

integrins because in the presence of calpain inhibitors and Rho GTPases or 

integrin inhibitors, as result was observed a decrease in cell migration. On the 

other hand, ERK signaling pathway showed be active in migrating NSC, but was 

not mandatory for cell migration as showed in the lack of effect of the MEK 1/2 

inhibitor on migration. Additionally, in an in vivo model without the endogenous 

calpain inhibitor (calpastatin), we show that the absence of calpastatin results in a 

decrease in the migration of neuroblasts along the RMS. 

 

1. Calpains modulate SVZ-derived NSC migration 

SVZ-derived NSC shows the ability to migrate from the SVZ to the OB 

(Carleton et al. 2003) or in direction of a lesioned area of the brain in case of injury 

(Kaneko & Sawamoto 2009). Our results strongly suggest that calpains are 

regulating the migration of NSC since we showed a significant increase in cell 

migration, following 4 h of treatment with 10 µM MDL28170 and calpeptin. These 

suggest that calpains, when active, regulate SVZ-derived NSC migration, resulting 

in a lower migration rate than what occurs when they are inactive. Similar results 

were obtained when µ-calpain was blocked in human neutrophils, where an 

increase in cell polarization and migration were registered (Lokuta et al. 2003). 
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More recently, was showed that platelets from µ-calpain(-/-) mice present an 

enhanced spreading (Kuchay et al. 2012). 

On the other hand, laminin, an ECM component of the neurogenic niche, 

showed to be important to the migration of these cells, since in the absence of this 

element the migration observed is significantly lower, in comparison with the 

situation in which laminin is present, which strongly suggests that laminin is 

essential for cell migration to occur. In fact, it is described that lack of response to 

laminin-1 is associated with downregulation of the α6β1 integrin (the major laminin 

receptor), which leads a blocked in migration of neural precursor cells (Jacques et 

al. 1998). 

As introduced in chapter I, integrins are described as being involved in the 

regulation of some processes, such as cell proliferation, migration and 

differentiation, in a wide range of tissues (Danen & Sonnenberg 2003). β1 and β3 

integrins are the most expressed in the brain, and as refereed in the previous 

section integrins composed by β1 subunit appear involved in the regulation of 

some process in the CNS as migration of neural precursor cells (Jacques et al. 

1998). 

We demonstrated that integrins are involved in the migration of NSC since 

the presence of echistatin (β1 and β3 integrins inhibitor) induced a decrease in cell 

migration following 4 h of exposure to the inhibitor. This could be associated with 

the loss of the laminin receptor α6β1 since we bloqued the possible dimerization 

between α and β subunit being unable to signaling, which was previously 

described as leading a decrease in neural precursor cells migration (Jacques et al. 

1998). 



Chapter IV | Discussion 

69 

To further demonstrate the involvement of calpain modulation in the 

integrins signaling in NSC migration, cells were treated with calpain inhibitors, 

echistatin, or both. In the presence of both inhibitors our results show that both 

calpains and integrins are involved in NSC migration. The migration radia obtained 

in the presence of both inhibitors was similar to the levels obtained in the control, 

which suggest that the inhibition of calpains leads another signaling pathway to be 

able to induce migration. 

 

2. Rho GTPases are involved in the migration of SVZ-derived NSC  

Since Rho GTPases are described as being involved in cytoskeleton 

reorganization during spreading, migration, proliferation and differentiation in many 

types of cells (Hall 1998, Lauffenburger & Horwitz 1996), we studied the 

involvement of these GTPases in migration of NSC. Our results showed a 

decrease in cell migration distance in the presence of Cdc42 (1 µM ML141) and 

Rac1 (10 µM EHT1864 and 200 µM NSC23677) inhibitors. However, in the 

presence of the RhoA inhibitor (10 µM Y27632), no alteration was observed in cell 

migration, in comparison to the control. This strongly suggests that Cdc42 and 

Rac1 are involved in the migration of SVZ-derived NSC, whereas RhoA is not. We 

cannot say that RhoA is not a signaling pathway important to this type of cells 

because this signaling pathway can be involved in another important process to 

the cells besides migration. 

To understand if Rho GTPase were involved in the migratory effect 

observed with calpain inhibition in SVZ-derived NSC, since calpain inhibition 

increases NSC migration, we evaluated the migration radia in the presence of 

both, calpain and Rho GTPases inhibitors (for Cdc42 and Rac1). We observed 
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that, in the presence of any of the Rho GTPases in combination with any of the 

calpain inhibitors, the migration radia decreased to levels similar to those obtained 

when cells were treated with the Rho GTPases inhibitors alone. This strongly 

suggests that the migratory effect observed with calpain inhibition in NSC has the 

participation of Rho GTPases. Some studies reported the modulation of Rho 

GTPases signaling by calpains, like the recent study of Kuchay and collaborators 

(Kuchay et al. 2012). 

The activity of Rac1 was studied, in order to understand if the effect 

observed in the migration was directly linked to the activity of these signaling 

pathways. So, it was expected that, in the presence of calpain inhibitors, Rac1 

activity would be increased. In fact, this signaling pathway presented a higher 

activation in untreated NSC after 30 min, and this activation is slightly inhibited in 

the presence of EHT1864, its selective inhibitor. However, in the presence of 

calpain inhibitors, the activation of Rac1 is not altered. Here we showed that Rac1 

is a signaling pathway important for the occurrence of migration in NSC, although 

calpains are not involved in the modulation of this signaling pathway. 

Altogether, our results show that Cdc42 and Rac1 are involved in migration 

of SVZ-derived NSC and calpains are involved in this process modulating by some 

way the Cdc42 Rho GTPases since Rac1 is not its target. However, the precise 

mechanisms involved on this process remain to be addressed. 

 

3. ERK 1/2 is active in SVZ-derived NSC but is not involved in the 

migration of these cells 

The study of Noma et al. reported that ERK 1/2 signaling pathway is 

involved in the migration of monocytes, in the presence of calpain inhibitors (Noma 
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et al. 2009). Based on this report we decided to investigate if this signaling 

pathway is also involved in the migration of NSC and if so, whether it is modulated 

through calpains. 

Our results showed a no effect in NSC migration in the presence of MEK 

1/2 inhibitor, which indicate that this signaling pathway is not involvement in NSC 

migration. In order to understand if calpains are involved in regulation of this 

signaling pathway, cells were treated with calpain inhibitors or MEK 1/2 inhibitor or 

with both. Our results in this situation were clear because in the presence of both 

inhibitors, the migratory effect of the calpain inhibitor was not changed by U0126. 

Our data suggests that this signaling pathway is not involved in NSC migration nor 

participate in the migratory effect of calpain inhibitors. 

By Western blot analysis, we investigated the activation of this signaling 

pathway in NSC. After 30 min, ERK 1/2 presented a significantly increased 

activation. In the presence of calpain inhibitors, it was not observed an alteration of 

ERK 1/2 activation, which in fact is in agreement with the results that we have 

obtained in migration assay. 

This study suggests that calpain inhibition-mediated NSC migration is 

independent from the activation of ERK 1/2. Despite the fact that the ERK 1/2 

signaling pathway is not involved in the migration of NSC, this kinase can still be 

involved in other important processes, such as proliferation, since it is already 

showed by our group that this signaling pathway is involved in proliferation of this 

type of cells (Carreira et al. 2010). 

 



Chapter IV | Discussion 

72 

4. Calpastatin depletion in an in vivo model leads to a decrease in the 

migration of neuroblasts along the RMS 

To evaluate the effect of calpains in migration of NSC in vivo, we examined 

migration of neuroblasts in a mouse model with calpastatin deficiency (CSTN), in 

comparison to WT mice. We observed that migration was greatly decreased in the 

RMS, in comparison to WT mice since DCX immunoreactivity was significantly 

lower in CSTN mice. This data strongly suggests that the lack of the endogenous 

inhibitor of calpains leads calpains negatively regulate the migration of these cells. 

These results are consistent with the results that we have obtained in the in vitro 

studies since we observed that calpain inhibition enhances migration of NSC. 

Similar results were obtained by our group in the DG (Vanessa Machado 

and Inês Araújo, data not shown). Significantly less migrating neuroblasts were 

observed in the DG of CSTN mice, and the new cells (that incorporated BrdU) also 

presented a shorter distance of migration into the SGZ (data not shown), which 

suggest that calpains exert their negative effect in the migration of NSC from the 

SVZ, as well as in NSC from the SGZ. 
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1. Conclusion 

During this work, we came to the following conclusions: 

 

- Calpain inhibition was shown to lead to an increase in NSC migration. 

- Cdc42 and Rac1 signaling pathways are involved in NSC migration. 

Although RhoA signaling pathway was not involved in the migration of 

these cells. 

- The migratory effect observed with calpain inhibition in SVZ-derived 

NSC occurs via Rho GTPases and integrins. 

-  ERK 1/2 signaling pathway is active in NSC but is not involved in 

migration of these cells. 

- Depletion of calpastatin, in an in vivo model, results in an impairment of 

cell migration from the SVZ to the OB, through the RMS. 

 

There are still many open questions to answer before determining the best 

way to modulate calpain activity in order to improve brain injury repair. However, 

the observation that calpain inhibition enhances NSC migration opens many doors 

to this investigation. 
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2. Future perspectives 

In our in vitro study about the involvement of Rho GTPases in NSC 

migration we just studied the activation of Rac1. Therefore, it would also be 

interesting to investigate the activation of Cdc42, as well as the activation of RhoA 

in a normal situation as either in the presence of calpain inhibitors. The use of 

other tools would be useful, in order to verify if what we saw with the 

pharmacological inhibitors used also happens with, for example, dominant 

negative mutants, or with siRNAs. 

Investigating the effect of calpain inhibitors in neurogenesis following brain 

ischemia is another step of interest in this study. For that, we can use the 

genetically modified animals as tools in an experimental model of brain stroke, the 

middle cerebral artery occlusion (MCAO) model. Associated with this model we 

can apply blood-brain-barrier permeable calpain inhibitors, to show that calpain 

inhibition not only affords neuroprotection against stroke, but also possibly 

enhances migration of neuroblasts to the injured areas. 
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