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Abstract

Here is presented an initial attempt to develop the necessary equa-

tions and algorithms to study non-collinear spin phenomena using the

orbital dependent functionals with the open source code OCTOPUS.

The main equations derived from the OEP method which allow one to

evaluate the exact exchange potential are derived. After, the results

for single atoms are presented, together with tests to the numerical

implementation when the system is subjected to an initial magneti-

zation direction. The results for the spectra of the Xe+3 cluster are

presented afterwards and compared with what is obtained from using

the LSDA functional with the spin-orbit correction.





Resumo

Aqui apresenta-se uma tentativa inicial de desenvolver as equações e

algoŕıtmos necessários para estudar fenómenos relacionados com spin

não colinear usando funcionais dependentes de orbitais com o código

aberto OCTOPUS. As equações principais que permitem determinar

o potencial de troca exacto são derivadas do método OEP. A seguir,

apresentam-se os resultados para átomos isolados, juntamente com

testes à implementação numérica quando o sistema é sujeito a uma

direcção inicial de magnetização. Os resultados para o espectro de

absorção do agregado de Xe+3 são apresentados depois e comparados

com o que é obtido usando o funcional da LDSA com a correcção de

spin-órbita.





Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis’ outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The N-electron problem in Quantum Mechanics 5

2.1 The Many-body Hamiltonian . . . . . . . . . . . . . . . . . . . . 5

2.2 Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Hartree-Fock method . . . . . . . . . . . . . . . . . . 8

2.3 Density Functional Theory (DFT) . . . . . . . . . . . . . . . . . . 12

2.3.1 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . 12

2.3.2 The Kohn-Sham scheme . . . . . . . . . . . . . . . . . . . 16

2.3.3 Exc functionals and Jacob’s ladder . . . . . . . . . . . . . 21

2.3.4 The Optimized E↵ective Potential (OEP) method . . . . . 24

2.4 Time-Dependent Density Functional Theory (TDDFT) . . . . . . 29

3 Non collinear spin Density Functional Theory (SDFT) 33

3.1 Pauli’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The HK theorems in SDFT . . . . . . . . . . . . . . . . . . . . . 35

3.3 OEP in SDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



CONTENTS

3.3.1 KLI approximation in SDFT . . . . . . . . . . . . . . . . . 40

4 Numerical results and analysis 47

4.1 Validation of the implementation: orbital energies of single atoms 48

4.2 Rotation of the magnetization direction . . . . . . . . . . . . . . . 60

4.3 Optical response of the Xe+3 cluster . . . . . . . . . . . . . . . . . 60

4.3.1 Results with the Slater potential . . . . . . . . . . . . . . 64

4.3.2 Results with full KLI . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusions and future work 73

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix A - On the inversion of Mµ⌫(r) 75

Appendix B - Transformation of the equations and rotation 77

Appendix C - The algorithm 83

References 89

x



List of Figures

1.1 Absorption spectrum of the Xe+3 cluster, from [18] . . . . . . . . . 2

2.1 Functional ladder, from [17] . . . . . . . . . . . . . . . . . . . . . 23

4.1 Absorption cross section for the Xe+3 cluster obtained from both

LSDA and the Slater part of the non-collinear formalism. . . . . . 65

4.2 Absorption cross section for the Xe+3 cluster obtained from both

LSDA and the KLI response of the non-collinear formalism. . . . 66

4.3 Time variation of the total energy during the propagation using

the full KLI response. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Diagonal elements of the electronic density matrix obtained from

the Slater part only and full KLI response using the non-collinear

formalism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Dipole moments obtained from the full KLI response using the

non-collinear formalism. . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Dipole moments obtained from the Slater part only using the non-

collinear formalism. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xi





List of Tables

4.1 Values of eKS, average values of Sx, Sy, Sz and values of � for each

state of the atoms H, Li and Na (radius = 4.5 Å, spacing = 0.4 Å,
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xiv



Chapter 1

Introduction

1.1 Motivation

Numerical simulation of ab-initio theoretical models of many-body systems has

been hindered by computational cost, due to the fact that the amount of data

needed to be stored increases very quickly with the number of particles. One way

to avoid this is by using Density Functional Theory (DFT), which through use

of the Hohenberg-Kohn theorems make the ground state particle density the key

object. The density is easily obtained from the auxiliar Kohn-Sham system of

independent fermions.

Still, the theory needs approximations as the e↵ects of the interaction between

the particles are placed in the exchange-correlation energy functional, which exact

form is unknown. Approximations can be built through di↵erent methods and

have become more accurate, propelling the growth of the use of DFT. Despite

this, the theory is not flawless.

In [18] the authors have studied the time-dependent DFT results for the pho-

toabsorption of small cationic xenon clusters. When ionized, rare-gas clusters

shift their absorption spectrum from the ultra-violet to the visible region. The

authors found good agreement between the calculated and experimental peak

positions of the spectra, but there were deviations between the strengths of the

oscillators. In their analysis, the authors attributed this e↵ect partially to an

1



1. Introduction

Figure 1.1: Absorption spectrum of the Xe+3 cluster, from [18]

unsatisfactory treatment of the exchange energy functional. From preliminary

calculations, the authors noticed that the results were improved when adding a

fraction of exact exchange, via the B3LYP functional [? ].

Also, very few numerical implementations have incorporated exact exchange

within non-collinear spin DFT, which is needed when one wishes to take into

account the e↵ects from spin-orbit coupling, and they are not (mostly) available

to the community.

1.2 Objectives

The main objective is to obtain the absorption spectrum of the Xe+3 cluster.

Doing so will require to study the e↵ects of the exact exchange functional when

developed within the formalism of non-collinear spin Density Functional The-

ory (SDFT) and to implement the resulting equations in the open source code

OCTOPUS. As such, it is intended that the following steps are to be taken:

• Development of the equations needed to obtain the exchange potential in

2



1. Introduction

systems with non-collinear spin using the Optimized E↵ective Potential

method (OEP);

• Use the Krieger-Li-Yafrate (KLI) approach to obtain a working approxima-

tion of the equations obtained for the exchange potential;

• Implement the equations in the code OCTOPUS;

• Compare the obtained results with the ones given from collinear spin DFT

for simple systems;

It should be noted that, since the numerical implementation is general, it can

(in theory) be applied to any system.

1.3 Thesis’ outline

This section aims to give a general idea of the structure of the thesis, along with

the motivation behind it.

In the second chapter an introduction to the N -electron problem in Quantum

Mechanics is given. After introducing the Born-Oppenheimer approximation, the

Hartree-Fock (HF) method is presented and the expression for the Hartree-Fock

exchange energy will be derived, along with the self-consistent formulation of the

HF method and the definition of the classical correlation energy. It follows a

small introduction to Density Functional Theory, starting with the Hohenberg-

Kohn theorems and the Kohn-Sham scheme. Then the ladder of approximations

for the xc functional is presented, along with the main di�culties that arise from

the choice of each kind of functional. The Optimized E↵ective Potential (OEP)

is explained next, along with its advantages and disadvantages in comparison

with the other xc functionals. Finally, in the end of this chapter one has a short

introduction to the Time-Dependent Density Functional theory, since one of the

objectives of the work present in this thesis is to obtain the absorption spectra

of the Xe+3 cluster.

3



1. Introduction

In the third chapter one is presented with the formalism behind non-collinear

spin Density Functional Theory (SDFT), starting with a derivation of Pauli’s

equation and followed by what one needs to consider in order to have the non-

collinear spin version of the Hohenberg-Kohn theorems. The auxiliary KS system

is defined after these considerations, along with the components of the KS poten-

tial and magnetic field. Afterwards are discussed the OEP method and the KLI

approximation in SDFT and the main equations which allow one to evaluate the

exchange potential are derived.

Chapter four contains the results and their analysis. In the first part one has

the results obtained for atoms of the first three periods of the Periodic table

and the comparison with what was obtained for the same atoms but with the

collinear spin formalism. The second part presents the results obtained for the

absorption spectra of the Xe+3 cluster from both formalisms and the analysis of

the simulation data.

Through the appendices one can find more information omitted in the chapters

for the sake of brevity. Appendix A contains a few remarks on the conditions

needed in order to use the OEP method in non-collinear SDFT. Appendix B has

the modifications done upon the final equations in Chapter 3 so that they could

be implemented in a subroutine of OCTOPUS and in Appendix C one will find

a transcript of said subroutine.

4



Chapter 2

The N-electron problem in

Quantum Mechanics

2.1 The Many-body Hamiltonian

Consider a system of N electrons and M nuclei in condensed matter or molecular

physics. For all the practical purpose nuclei can be considered as point like charges

and the electrostatic interaction between electrons and nuclei can be described

using the usual Coulomb potential in a full non-relativistic scheme. This first

part follows what is done in [23]. The full Hamiltonian of the system, in the real

space representation, is (in atomic units)1

Ĥ = �
N
X

i=1

r2
i

2
�

M
X

A=1

r2
A

2mA

�
N,M
X

i,A=1

ZA

|RA � ri|
+
1

2

N
X

i,j=1
i 6=j

1

|ri � rj|
+
1

2

M
X

A,B=1
A 6=B

ZAZB

|RA �RB|

(2.1)

where mA is the relative mass of the nucleus with respect to the electron, ZA is

the atomic number of the nucleus, RA represents the nuclear space-coordinates

and ri represents the space coordinates of each electron.

1Atomic units ~ = me = e = 4⇡✏0 = 1 will be used almost in the entire thesis, except in
some specific parts where the reader will be warned.
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2. The N-electron problem in Quantum Mechanics

The usual approach is to use the Born-Oppenheimer approximation [23] in

order to solve the time-independent Schrödinger equation. One writes the wave

function  (ri,RA) as

 (ri,RA) =  (ri;RA)�(RA) (2.2)

where  (ri;RA) is a function of the set of coordinates ri and depends paramet-

rically on RA and �(RA) is an explicit function of RA.

Now, as the nuclei’s mass is greater than that of the electrons (a proton’s mass

is about 1830 times the mass of an electron) the time it takes for the electrons

to readjust their position in response to the nuclear motion can be neglected.

This means that the electrons move adiabatically with the nuclei. Also, due to

their much larger mass, the nuclei wave function will be extremely more localized,

almost like the classical description of point charges. So, there must be a region

in space where

|rA�(RA)| � |rA (ri;RA)| (2.3)

So, when applying the operator of the nuclei kinetic energy to the wave function,

one can ignore the variation of the electronic part in comparison with the nuclear

one. This will lead to the following equation

h

T̂e + V̂ee(ri) + V̂eN (ri,RA)
i

 (ri;RA)

 (ri;RA)
+

h

T̂N + V̂NN(RA)
i

�(RA)

�(RA)
= E (2.4)

where one can identify the following operators as the electron kinetic energy,

T̂e = �
N
X

i=1

r2
i

2
(2.5)

the electron-nuclei potential,

V̂eN (ri,RA) = �
N,M
X

i,A=1

ZA

|RA � ri|
(2.6)
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2. The N-electron problem in Quantum Mechanics

the electron-electron potential,

V̂ee(ri) =
1

2

N
X

i,j=1
i 6=j

1

|ri � rj|
(2.7)

the nuclei-nuclei potential

V̂NN(RA) =
1

2

M
X

A,B=1
A 6=B

ZAZB

|RA �RB|
(2.8)

and the nuclei kinetic energy

T̂N = �
M
X

A=1

r2
A

2mA

(2.9)

respectively. By defining a parametric function

✏(RA) = E �

h

T̂N + V̂NN(RA)
i

�(RA)

�(RA)
(2.10)

equation (2.3) can be decoupled in one equation for the nuclei and one equation

for the electrons, respectively

h

T̂N + V̂NN(RA) + ✏(RA)
i

�(RA) = E�(RA)
h

T̂e + V̂ee(ri) + V̂eN (ri,RA)
i

 (ri;RA) = ✏(RA) (ri;RA)
(2.11)

Although a quantum mechanical treatment for the nuclei is possible under such

approximation, they are most often considered as classical particles described by

Newtonian Mechanics. So, now one only has to find solutions for the second equa-

tion of (2.11), which can be re-written more simply by omitting the parametric

dependence on RA

Ĥe n(ri) =
h

T̂e + V̂ee(ri) + V̂eN (ri)
i

 n(ri) = ✏n n(ri) (2.12)
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2. The N-electron problem in Quantum Mechanics

As electrons are fermions, solutions for equation (2.12) must obey Pauli’s exclu-

sion principle, which states that a wave function of a system of N fermions must

be antisymmetric, that is, when subjected to a singular permutation operation

between two particles, its sign must change. Let P̂i,j be an exchange operator

that switches the particles i and j in the wave function. So

P̂i,j n (r1, ..., ri, ..., rj, ...rN) = � n (r1, ..., rj, ..., ri, ...rN) (2.13)

but as quantum mechanical particles cannot be distinguished, the new wave func-

tion must also be an eigenvector of the electronic hamiltonian. This remains true

no matter how many permutation operators one applies to the original eigen-

vector, so any anti-symmetrized wave function would be an eigenvector and obey

equation (2.12). This will also hold true for any linear combination of eigenvectors

under a permutation.

Although it looks simple, equation (2.12) is only solvable, either numerically

or arithmetically, for simple models or cases with few electrons. In order to go

around this problem, physicists and quantum chemists developed approximation

methods.

2.2 Hartree-Fock approximation

As said before, even with the Born-Oppenheimer approximation, the N -electron

problem is still far from solvable. So, one usually has to apply additional approx-

imations. The most simple approximation is the Hartree-Fock, which neglects all

interactions between particles except those due to Fermi statistics. The latter is

named exchange interaction. Since this is central in this thesis, the Hartree-Fock

method is briefly presented.

2.2.1 The Hartree-Fock method

In section 2.1, one could see that any linear combination of eigenvectors subjected

to a permutation operator (2.13) was also a solution of the N -electron problem.

Let such wave function be called | i and let the eigenvectors of Ĥe be |1122...NNi

8



2. The N-electron problem in Quantum Mechanics

where ij represents the group of quantum numbers i that characterizes the state

of the particle j. As particles in Quantum Mechanics are indistinguishable, in

such a wave function the contribution of each anti-symmetrized eigenvector must

be the same in absolute value. So, by defining the anti-symmetric operator

Â =
1p
N !

X

↵

"↵P̂↵ (2.14)

(here ↵ can represent either the particle or the set of quantum numbers which

characterizes the state) such a wave function can be written as

| i = Â|11...NNi =
1p
N !

X

j1,...,j
N

"j1,...,j
N

|1j1 ...Nj
N

i = 1p
N !

X

j1,...,j
N

"j1,...,j
N

|j11...jNNi

(2.15)

where "↵ is 1 if the permutation is even and �1 if it is odd. The Hartree-

Fock approximation enters here. In (2.12), the electrostatic potential couples

the coordinates of the electrons, so a solution using the separation of variables

method is not optimal. Ignoring this interaction one can use an ansatz [23] in

the form of

|11...NNi = |11i|22i...|NNi (2.16)

with hik|jki = �ij. Equation (2.12) can then be separated in a set of N solvable

independent equations. Slater [23] later realized that such a wave function could

be written as a symbolic determinant, now known as a Slater determinant

| i = 1p
N !

�

�

�

�

�

�

�

�

�

�

|11i |12i · · · |1Ni
|21i |22i · · · |2Ni
...

...
. . .

...

|N1i |N2i · · · |NNi

�

�

�

�

�

�

�

�

�

�

(2.17)
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2. The N-electron problem in Quantum Mechanics

When such a solution is used to evaluate the corresponding energy E[ ] =

h |Ĥe| i, using the full N -electron hamiltonian, one gets

E[ , ⇤] =
N
X

i=1

ˆ
d3r ⇤

i (r)



�r2

2
+ veN(r)

�

 i(r)+

+
1

2

N
X

i,j=1

¨ �

�

�

�

| i(r)|2| i(r0)|2

|r � r0| �
 ⇤
i (r) j(r) ⇤

j (r
0) i(r0)

|r � r0|

�

(2.18)

and here hx|ii = �i(x) =  i(r)�(s) with x = {r, s} (the spin functions disappear

from the expression, because in the evaluation of E one has to sum up all spin

values). The first term corresponds to the energy of a system of N independent

electrons, while the second to the classic Coulomb interaction between two charge

distributions and the third to the energy due to exchange interaction1. This last

term is called the Hartree-Fock exchange energy

EHF
x [{ i, 

⇤
i }] = �1

2

N
X

i,j=1

¨
d3rd3r0

 ⇤
i (r) j(r) ⇤

j (r
0) i(r0)

|r � r0| (2.19)

and this functional form is central in this thesis.

A self consistent Hartree-Fock method can now be derived from the variational

principle [23]. As seen before, the energy of the N -electron system is a func-

tional of  (and  †) but is restricted to Slater determinants whose elements are

orthogonal. One can, then, construct the following Lagrangean

L[{�a}] = E0[{�a}]�
X

a,b

"ab(ha|bi � �ab) (2.20)

where "ab are the Lagrangean multipliers and E0 is the Hartree-Fock energy given

by (2.18). One now has to evaluate the variations of the Hartree-Fock wave

function, | 0i ! | 0i+|� 0i that keep the Lagrangean invariant, that is, �L = 0.

1To obtain the total energy of the system, one should also add the energy corresponding to
the nuclear interaction.
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2. The N-electron problem in Quantum Mechanics

By defining the Coulomb operator

Ĵb�a(x1) =

ˆ
d3r2

|�b(x2)|2

|r1 � r2|
�a(x1) (2.21)

and the exchange operator

K̂b�a(x1) =

ˆ
d3r2

�⇤
b(x2)�a(x2)

|r1 � r2|
�b(x1) (2.22)

it is possible to write the Hartree-Fock equation

F̂|ai =
"

ĥ+
N
X

b=1

⇣

Ĵb � K̂b

⌘

#

|ai =
N
X

b=1

"ab|bi (2.23)

with F̂ being the Fock operator, ĥ the one-electron Hamiltonian

ĥ = �r2

2
�

M
X

A=1

ZA

|r �RA|
(2.24)

By introducing an unitary transformation which diagonalizes the matrix of the

Lagrangian multipliers, (2.23) can be transformed in an eigenvalue equation (also

called the canonical form of the Hartree-Fock equation).

The Hartree-Fock method neglects correlation e↵ects between the electrons and

therefore, if one defines the energy of the N -electron system calculated by the

Hartree-Fock method as EHF and the exact one has E0, it is possible to define

the classical correlation energy EC [23] as

EC = E0 � EHF (2.25)

and since Hartree-Fock is a variational method, one will always have EHF > E0,

so the correlation energy defined by (2.25) will always be negative.
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2. The N-electron problem in Quantum Mechanics

2.3 Density Functional Theory (DFT)

It is easy to see that in order to perform a calculation of any expectation value of

a quantum mechanical observable, the data that must be stored increases rapidly

with the number of electrons (if the atom has n electrons, one must store 3n

positions, each one with m entries, which leads to m3n entries in total). One can

ask if all the information stored in the many-particle wave function is useful, or

if one could calculate another quantity which requires a lesser amount of data to

be stored (the reduced density matrix for instance).

In 1964, in an article by Hohenberg and Kohn [12], it was proved that all

quantum mechanical observables could be expressed as a (implicit or explicit)

functional of the ground state density. This is a remarkable thing, as in principle

one could study very large systems just using a real scalar function of three

variables (and hence the name of the theory).

2.3.1 The Hohenberg-Kohn theorems

The purpose of Density Functional Theory is to solve the problem expressed by

the Schrödinger equation (2.12). It is assumed that the electrons are subjected

to an external potential of the form

V̂ =
N
X

i=1

v(ri) (2.26)

so to better distinguish it from the electron-electron interaction, one changes the

V̂ee in (2.7) to Ŵ

Ŵ =
1

2

N
X

i,j=1
i 6=j

1

|ri � rj|
(2.27)

Now, the key quantity is not the many-particle wave function, but the electronic

ground state density

n0(r) = N
X

�

ˆ
d⌫2...

ˆ
d⌫N | 0(r, �, x2, ..., xN)|2 (2.28)

12



2. The N-electron problem in Quantum Mechanics

with  0 being the ground state wave function and using the notation
´
d⌫i =

P

�
i

´
d3ri. The ground state of the system is assumed to be non-degenerate (see

[10] for the case of a degenerate ground state).

Looking at equation (2.12), one should note that the operators T̂ and Ŵ are

the same if the number of electrons N is fixed and, therefore, the solution should

be uniquely determined by the external potential. This means that there must

exist a functional relation n0 = n[v(r)]. It is convenient now to think in terms of

mappings between three groups.

The ground state density is obtained from the ground state wave function,

which obeys Schrödinger’s equation. One can define three groups:

• V which contains all physical external potentials which di↵er from each

other by more than a constant and give non-degenerate ground state wave

functions;

• W which contains all physical ground state wave functions (square normal-

izable, non-divergent, continuous and di↵erentiable) of interacting systems

which di↵er from each other by more than a constant phase factor;

• D which contains all physical ground state densities of interacting systems;

If A is the mapping between V and W and B is the mapping between W and

D, one can define C = B � A. The mappings A and B represent a functional

relation between the elements of each group, as the ground state is considered to

be non-degenerate and one cannot obtain two di↵erent densities from the same

wave function. Now, to invert such relations, one must be sure that A and B are

injective (and therefore C will also be injective)1

A : V ! W
V̂ ! | 0i

B : W ! D
| 0i ! n0(r)

)
C : V ! D
V̂ ! n0(r)

(2.29)

1 The correspondences D ⌘ C(V), D ⌘ B(W) and W ⌘ A(V) which make each mapping a
bijection are not needed as long as one restricts oneself to the counter domain of each group.

13



2. The N-electron problem in Quantum Mechanics

The proof that A is injective goes as follows: let V̂ and V̂ 0 be two external po-

tentials which di↵er from more than a constant c and | 0i and | 0
0i their respective

ground state wave functions. Now, if one assumes that the wave functions are

equal and subtracts the corresponding Schrödinger equations, one gets

(V̂ � V̂ 0)| 0i = (✏0 � ✏00)| 0i (2.30)

which contradicts the assumption that the potentials di↵er from more than a

simple constant. So, by reduction ad absurdum, the mapping A is shown to

be injective, and therefore invertible. For this mapping, the criteria of being a

bijection also holds. If a ground state wave function | 0i is given it is possible

to evaluate the corresponding potential by inverting the Schödinger’s equation,

giving
N
X

i=1

v(ri) = �1

2

N
X

i=1

r2
i 0({ri})
 0({ri})

+W ({ri}) + const. (2.31)

Now one must prove that the mapping B is also injective. This is also done by

reduction ad absurdum. Let | 0i and | 0
0i, which di↵er by more than a constant

phase factor, be each a solution of the Schrödinger’s equation for the external

potentials V̂ and V̂ 0, respectively. Assuming that the ground state density given

by each wave function is the same, that is, n0(r) = n0
0(r), then ground the state

energy associated with each one is

E0 = h 0|Ĥ0| 0i E 0
0 = h 0

0|Ĥ 0| 0
0i (2.32)

Using the Rayleigh-Ritz variational principle, one has

E 0
0 < h 0|Ĥ 0| 0i = h 0|Ĥ + V̂ 0 � V̂ | 0i = E0 +

ˆ
d3r [v0(r)� v(r)]n0(r)

E0 < h 0
0|Ĥ| 0

0i = h 0
0|Ĥ 0 + V̂ � V̂ 0| 0

0i = E 0
0 +

ˆ
d3r [v(r)� v0(r)]n0(r)

(2.33)

So, adding both equations, one arrives to the following contradiction

E0 + E 0
0 < E0 + E 0

0 (2.34)

14



2. The N-electron problem in Quantum Mechanics

which proves that n0 and n0
0 must be di↵erent. Therefore, the mapping B is also

an injection between the groups W and D and C = B � A is also an injection

between V and D, so there is a functional relation v = v[n0(r)]. This proof forms

what is known as the first Hohenberg-Kohn theorem [24]:

HK theorem 1. In a finite system with N interacting electrons the external

potential v(r), and therefore the ground state energy E0 are unique functionals of

the ground state density n0(r).

The second Hohenberg-Kohn theorem is a consequence of the Rayleigh-Ritz

variational principle. By looking at the expression for the ground state energy,

one notes that it can be rewritten in the form

E[n0] = h 0[n0]|T̂ + V̂ + Ŵ | 0[n0]i = F [n0] +

ˆ
d3rn0(r)v(r) (2.35)

where

F [n0] = h 0[n0]|T̂ + Ŵ | 0[n0]i (2.36)

is unknown. For another wave function | [n]i associated with an electronic den-

sity n 6= n0 the energy can be written as a v-representable functional, with v not

related with n

Ev[n] = F [n] +

ˆ
d3rn(r)v(r) (2.37)

and by the Rayleigh-Ritz variational principle, one has that

Ev[n] > Ev[n0] (2.38)

which is translated in the following theorem

HK theorem 2. The ground state energy E0 can be obtained variationally and

to the exact ground state density n0 corresponds to the exact ground state energy.

Now all that is needed is a method through which n0 can be evaluated. Such

a method was proposed by Kohn and Sham in 1965 [13] and will be explained

next.
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2. The N-electron problem in Quantum Mechanics

2.3.2 The Kohn-Sham scheme

The variational character of the Hohenberg-Kohn theorems allows one to write

a variational principle not in terms of the wave function but using the ground

state density. Using (2.37) the exact n0 would be the one that leaves the energy

functional invariant under a change in the density, under the restriction that

N =

ˆ
d3rn0(r) (2.39)

So, by defining the Lagrange multiplier µ the problem would be reduced to solving

the Euler equation

�

�n(r)



F [n] +

ˆ
d3rn(r)v(r)� µ

✓ˆ
d3rn(r)�N

◆�

= 0 (2.40)

Defined in (2.36) F [n] is called the universal functional, in the sense that its

expression in terms of the density is independent of the external potential to

which the system is being subjected to. It only depends on the number of electrons

present in the system. With this, (2.40) turns to

�F [n]

�n(r)
+ v(r) = µ (2.41)

Of course, as the exact form of F [n] is unknown, (2.41) is not of much use in

practice. In order to transform DFT in a workable theory, Kohn and Sham

devised a method that would take advantage of a simpler system: the system of

N independent fermions [13].

In such a system, the interaction operator Ŵ disappears from (2.1). Let the

new Hamiltonian be called Ĥs. In real space, one has that

Ĥs| k,si =
N
X

i=1



�r2
i

2
+ vs(ri)

�

| k,si = ✏k
s

| k,si (2.42)

By application of the HK theorems, there is a functional relation between vs and

the ground state density of this system, n0,s. The total energy functional (2.37)
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2. The N-electron problem in Quantum Mechanics

changes to

Ev
s

[n] = Ts[n] +

ˆ
d3rn(r)vs(r) (2.43)

and the universal functional coincides with the noninteracting kinetic energy func-

tional Ts[n]. The Euler equation (2.40) is simplified to

�Ts[n]

�n(r)
+ vs(r) = µs (2.44)

As the exact form of Ts[n] is unknown, it is best to work on a solution for (2.42).

As seen in section 2.2, for a system of independent fermions, the solution can be

written as a Slater determinant like (2.17) of single-particle orbitals �i(r), with

each one satisfying
✓

�r2

2
+ vs(r)

◆

�i(r) = ✏i�i(r) (2.45)

and the electronic density is written as

ns(r) =
N
X

i=1

✓i|�i(r)|2 (2.46)

with ✓i being the occupation function for the state with index i. The kinetic

energy is an explicit functional of the orbitals

Ts[n0] = �1

2

N
X

i=1

ˆ
d3r�†

i [n0](r)r2�i[n0](r) (2.47)

but due to the HK theorems, it will also be an implicit functional of the ground

state density.
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2. The N-electron problem in Quantum Mechanics

The idea of Kohn and Sham was to rewrite equation (2.37) by adding and

subtracting terms

E[n] = T [n] +W [n] +

ˆ
d3rn(r)v(r)

= (T [n]� Ts[n]) + (W [n]� EH [n]) + Ts[n] + EH [n] +

ˆ
d3rn(r)v(r)

= Ts[n] + EH [n] +

ˆ
d3rn(r)v(r) + Exc[n]

(2.48)

where the functional EH [n] is the classical Coulomb energy or the Hartree energy

EH [n] =
1

2

¨
d3rd3r0

n(r)n(r0)

|r � r0| (2.49)

The last term in (2.48), Exc[n] is called the exchange-correlation functional. It is

defined as

Exc[n] = T [n]� Ts[n] +W [n]� EH [n] (2.50)

and it is easy to see that it contains information concerning the di↵erence between

the non-interacting system and the real one. If one now inserts (2.48) in the Euler

equation (2.40), the result is

�Ts[n]

�n(r)
+ v[n](r) +

ˆ
d3r0

n(r0)

|r � r0| +
�Exc[n]

�n(r)
= µ (2.51)

So, in order to reproduce the exact ground state density, subtraction of (2.44)

and (2.51) gives

vs[n](r) = v[n](r) +

ˆ
d3r0

n(r)

|r � r0| + (µ� µs) +
�Exc[n]

�n(r)
(2.52)

and by choosing the asymptotic limit of the functional derivative of Exc, the

di↵erence in the Lagrange multipliers can be absorbed and one finally writes

vs[n](r) = v[n](r) +

ˆ
d3r0

n(r0)

|r � r0| + vxc[n](r), with vxc[n](r) =
�Exc[n]

�n(r)
(2.53)
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The exchange-correlation energy is usually split in two additive components:

the exchange part Ex and the correlation part Ec. For the exchange part, one

can derive a expression with the same form of (2.19)

Ex[n] = h�[n]|Ŵ |�[n]i � 1

2

¨
d3rd3r0

n(r)n(r0)

|r � r0| (2.54)

and in the limit of exact exchange, the previous expression changes to

Ex[n] = �1

2

N
X

i,j=1

✓i✓j

¨
d3rd3r0

�⇤
i (r)�j(r)�⇤

j(r
0)�i(r0)

|r � r0| (2.55)

It is important to note that the di↵erence in notation is not just a coincidence. In

(2.19) the orbitals involved are obtained by solving the Schrödinger equation with

a non-local Coulomb potential, while in (2.55) the orbitals are the eigenvectors

of the Kohn-Sham equation for a local potential. So, although both expressions

have the same functional dependence, they evaluate di↵erent quantities.

Through the use of second quantization and Many-body perturbation theory,

it is actually possible to derive an exact expression for Exc[n] (see [7]). First of

all, the KS Hamiltonian operator can be written as

Ĥs = T̂ +

ˆ
d3rn̂(r)vs(r) (2.56)

where n̂(r) is the density operator. The ground state wave function of (2.56) can

be written in terms of the vacuum state |0i and the creation operator a†k

|�0i =
Y

✏
k

✏
F

a†k|0i (2.57)

and as usual
n

a†k, a
†
l

o

= 0 = {ak, al}
n

ak, a
†
l

o

= �kl (2.58)

In this formalism, one defines the KS field operators (in the Heisenberg picture)

 ̂0(r, t) = eiĤs

t ̂(r)e�iĤ
s

t =
X

k

b̂k�k(r)e
�i✏

k

t (2.59)
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and the KS time-ordered Green’s function

Gs(r, t; r
0, t0) = �ih�0|T  ̂0(r, t) ̂

†(r0, t0)|�0i =

� i✓(t� t0)
X

✏
k

✏
F

�(r)�†
k(r)e

�i✏
k

(t�t0)+

+ i✓(t0 � t)
X

✏
k

✏
F

�(r)�†
k(r)e

�i✏
k

(t�t0)

(2.60)

With these ingredients, one can evaluate a perturbative expansion for the ground

state energy using the coupling constant technique. Let Ĥ1 be the di↵erence

between the full interaction Hamiltonian operator Ĥ and the KS hamiltonian

operator. Then, one has

Ĥ1 = Ŵ �
ˆ

d3rn̂(r) [vH(r) + vxc(r)] ) Ĥ(g) = Ĥs + gĤ1 (2.61)

with g being the coupling constant which allows one to turn on and o↵ the

correction to the KS Hamiltonian. After some calculations, it is possible to arrive

to the following expression for the exchange-correlation energy functional

Exc[n] =
1

2

¨
d3rd3r0

1

|r � r0|

h

h�0| ̂†(r) ̂†(r0) ̂(r0) ̂(r)|�0i � n(r)n(r0)
i

+

+ lim
✏!0

1
X

n=1

(�i)n

(n+ 1)!

ˆ +1

�1
dt1...

ˆ +1

�1
dtne

�✏(|t1|+...+|t2|)⇥

⇥ h 0|TĤ1,I(0)Ĥ1,I(t1)...Ĥ1,I(tn)| 0il
(2.62)

The first term is obviously the exchange part while the remaining series is the

correlation part. Here, Ĥ1,I represents the perturbation in Dirac’s picture (also

known as the interaction picture)

Ĥ1,I(t) = eiĤs

tĤ1e
�iĤ

s

t (2.63)

and the index l removes the contribution of non-linked diagrams in the evaluation

of (2.62) (done with help of Wick’s theorem). Although this expression is exact,

it holds a rather complicated functional dependence, as vxc is part of Ĥ1, making

Exc functionally dependent on it is own derivative.
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In order to go around the impossibility of obtaining exact expressions for Ec

and thus for Exc, one usually uses approximations. In principle, the higher the

complexity of the approximation the closer to reality, but this usually also involves

an higher “computational” cost.

2.3.3 E
xc

functionals and Jacob’s ladder

Described in the Book of Genesis, Jacob’s ladder appears in a dream to the

character of the same name, creating a path between Heaven and Earth. This

metaphor can be applied to the di↵erent approximations for the functional Exc

accuracy. As one climbs up, the approximation gets closer to what can be called

Chemical Heaven.1

The first step on the ladder corresponds to the Local-density approximation

(LDA) proposed in 1965 by Kohn and Sham. The idea is to approximate the xc

energy of the inhomogeneous electron cloud to an integral of the homogeneous

electron liquid xc energy density. In such a system, the exchange energy density

is known and given by (in three dimensions) [24]

ex[n] = �3

4

✓

3

⇡

◆1/3

n4/3(r) (2.64)

and the correlation energy density is usually obtained through an interpolation

formula. At the high density limit, the interpolation formula is

ec ⇡ a ln(rs) + b+ rs [c ln(rs) + b] (2.65)

and at the low density limit [24]

ec ⇡
1

2

✓

↵0

rs
+

↵1

r3/2s

+ ...

◆

(2.66)

1All trademark resemblances with this expression are purely coincidental.
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with the Wigner-Seitz radius rs being (in three dimensions)

rs =

✓

3

4⇡n

◆1/3

(2.67)

and the parameters are usually obtained by interpolation of numerical results

from quantum Monte Carlo calculations. A good LDA functional usually gives

values for energies, geometrical parameters and vibrational frequencies with a low

percentage error. As systems diverge from the uniform limit, the e↵ectiveness

range of LDA can be estimated by comparison with the magnitude of the Fermi

wave vector, kF (r),

kF (r) �
rn(r)

n(r)
(2.68)

though this condition is often violated.

Although it is a very good starting point for a calculation and works perfectly

well in a lot of systems, the LDA approximation fails, e.g., for long range inter-

actions due to the wrong asymptotic limit of vLDA
xc . The potential is often not

deep enough to allow another electron to be bound, so negative ions cannot be

created within this approximation.

In the second step in the approximation ladder one adds terms that depend on

the gradient of the density, the gradient expansion approximation (GEA). The

idea is to express Exc[n] as a functional not only of the density but its gradient in

real space. The most usual way is to define a parameter involving the condition

(2.68). One thus defines [24]

s(r) =
|rn(r)|

2n(r)kF (r)
(2.69)

as the parameter of the power expansion. For the exchange correlation energy,

the expression is usually [24]

EGEA
xc [n] =

ˆ
d3r
⇥

ehxc(r) + C(2)
xc [n]s

2 + ...
⇤

(2.70)
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Figure 2.1: Functional ladder, from [17]

and further terms in the expansion can be obtained through response theory. Un-

fortunately, gradient expansions are di�cult to deal with in terms of convergence

and such functionals can give worse results than LDA. Another order of function-

als which use the density’s gradient uses the generalized gradient approximation

(GGA), where [24]

EGGA
xc =

ˆ
d3rexc(n(r),rn(r)) (2.71)

Now, while the GEA can be built analytically, the same does not happen with

GGA. Expansions in this case are built by introducing terms which satisfy some

known exact properties and, as there is no recipe for it, sometimes one uses a

set of empirical parameters. As such, the number of GGA functionals one can

find is usually immense. GGA’s exchange-correlation functionals often give good

results for integrated quantities due to error cancelation with the correlation and

exchange e↵ects, but sometimes fail to reproduce the asymptotic behavior of vxc.
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The next step on the ladder has the Meta-GGAs functionals, in which one

includes more terms [24]

EMGGA
xc =

ˆ
d3reMGGA

xc (n,rn,r2n, ⌧) (2.72)

with ⌧ = 1
2

N
P

i=1
✓i|r�i(r)|2. Unfortunately this last parameter is only implicitly

dependent on the density, so a direct evaluation of vMGGA
xc is impossible. Still,

this is actually the way the next steps in the ladder go. If one goes up, the next

functionals will contain some portion of the exact exchange functional (2.55).

The ones that depend on the density, its derivatives of first and second order

and the exact exchange are called hyper-GGAs. They haven’t been particularly

successful in general, but a certain subclass of them seems to be working quite

well. These hybrid functionals express the exchange-correlation functional as a

linear combination of the exchange and correlation parts of LDA, GGA and exact

exchange, with the linear coe�cients being of some semi-empirical nature.

2.3.4 The Optimized E↵ective Potential (OEP) method

The initial purpose of DFT was to eliminate the need of the N-electron wave

function in the calculations so that the computational cost would decrease. But,

as seen before, as one climbs the ladder of approximations in the functionals, the

KS orbitals are introduced once again leading to the concept of orbital functionals.

Two examples of such entities already appeared in the form of Ts[n] and the exact

exchange functional. As seen in section 1.1, there are a few reasons to go back

to using the wave functions explicitly. Also, LDA and GGA functionals often

present some problems [7]:

• Heavy Metals: LDA underestimates the bonding energy and overestimates

the bond length. GGA diverges from experimental data for high nuclear

charge;

• Negative Ions: LDA and GGA fail to reproduce the asymptotic behavior of

the xc-potential (this is also true for any finite system);
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• Dispersion forces: Due to their short range behavior, both LDA and GGA

fail to reproduce dispersion forces;

• Strong correlated systems: LDA and GGA fail to predict the correct be-

havior of some anti-ferromagnetic insulators, presenting them as metals;

There is also a mathematical reason to use orbital functionals. If one takes into

account the expression (2.62) and expands the exchange correlation functional in

powers of e2 (with e being the absolute value of the electron’s charge), one will

get [7]

Exc[n] =
+1
X

j=1

e2jE(j)
xc [n] = Eexact

x [n] + E(2)
c [n] + ... (2.73)

and taking the functional derivative

vxc[n] =
+1
X

j=1

e2jv(j)xc [n] = vexactx [n] + v(2)c [n] + ... (2.74)

So, in first order approximation, Exc[n] can be taken as almost equal to the exact

exchange functional.

Let one consider the following equality obtained using the chain rule for func-

tional derivatives

�Exc[n]

�vs(r)
=

ˆ
d3r0

�Exc

�n(r0)

�n(r0)

�vs(r)
=

=
N
X

k=1

⇢ˆ
d3r0



�Exc

��(r0)

��(r0)

�vs(r)
+ c.c.

�

+
�✏k

�vs(r)

@Exc

@✏k

� (2.75)

which is valid as through the HK theorems Exc is a functional of n and through

the definition (2.62) a functional of the KS eigenvectors and eigenvalues. Using

general first order perturbation theory applied to the KS Hamiltonian, one can
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derive easily the following identities [7]

��k(r0)

�vs(r)
=

N
X

j=1
j 6=i

�j(r0)�⇤
j(r)

✏i � ✏j
�k(r) = �Gk(r

0, r)�k(r) (2.76)

�n(r0)

�vs(r)
= �s(r

0, r) = �
N
X

k=1

✓k [�
⇤
k(r

0)Gk(r
0, r)�k(r) + c.c.] (2.77)

�✏k
�vs(r)

= |�k(r)|2 (2.78)

with �s(r0, r) being the linear response function and Gk(r0, r) the Green’s func-

tion. This leads to the known OEP equation

ˆ
d3r0�s(r

0, r)vxc(r
0) = ⇤xc(r)

⇤xc(r) =
N
X

k=1

⇢

|�k(r)|2
@Exc

@✏k
�
ˆ

d3r0


�Exc

��(r0)
Gk(r

0, r)�k(r) + c.c.

�� (2.79)

This is a Fredholm equation of the first kind, with ⇤xc(r) being the inhomogene-

ity. As it can be expressed as a linear operator acting on Exc, each one of its

components can be treated separately, and solving (2.79) eliminates the need to

insert the density in vxc[n].

There is a problem with the e�ciency of these equations. As the Green’s func-

tions need the complete spectrum of eigenvectors and eigenvalues (both occupied

and unoccupied) the amount of data needed to be stored is very large and also,

they don’t have analytic expressions. One of the many approximations was pro-

posed by Krieger-Li-Yafrate [7],[16],[15] and it has the following philosophy: the

higher levels of the spectrum of a system are very close to each other, so that

one can replace the di↵erence in the denominator in the Green’s function as an

average value �✏. With this, and taking into account the completeness relation
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for the KS eigenvectors, one can write

Gk(r
0, r) ⇡=

1

�✏

N
X

j=1
j 6=k

�j(r
0)�⇤

j(r) =
1

�✏
(�(r � r0)� �k(r’)�

⇤
k(r)) (2.80)

and insertion in (2.79) gives

vKLI
xc (r) =

1

2n(r)

N
X

k=1

⇢

�Exc

��k(r)
�k(r) + c.c.

�

+ |�k(r)|2


�vk ��✏
@Exc

@✏k

��

�vk =

ˆ
d3r



✓k|�k(r)|2vxc(r)�
�Exc

��k(r)
�k(r)

�

+ c.c.

(2.81)

Of course there is an ambiguity in the expression above, as �✏ is present through

the dependence of Exc in the KS eigenvalues and fitting this parameter would

require some extra calculations for each system. If one wants to solve the full

OEP equation with this approximation, the dependency on the eigenvalues can be

eliminated since it only introduces a new energy scale. As this is a non-relativistic

formalism, there is no problem in rescaling the energies so that such dependency

is eliminated.

In the limit of the exact exchange, such problem is not part of one’s concern,

as (2.55) has no explicit dependency on ✏k. This immediately gives

vKLI
x (r) =

1

2n(r)

N
X

k=1

⇢

�Exc

��k(r)
�k(r) + c.c.

�

+ |�k(r)|2�vKLI
k

�

(2.82)

This equation can be solved either iteratively by starting with an approximation

for �vKLI
x obtained from some approximate functional (LDA or GGA for exam-

ple) and then iterate until convergence is obtained. Alternatively one can rewrite

the equations in order to obtain a set of linear equations for �vKLI
x that can be

then evaluated directly. The latter is implemented in OCTOPUS [4] and goes as
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follows: one starts by rewriting (2.82) as

vKLI
x (r) = vslater(r) +

1

n(r)

N
X

k=1

|�k(r)|2hk|vKLI
x (r)� u⇤

x,k(r)|ki (2.83)

with the exchange potential ux,k(r) being defined as

�Ex

��⇤
k(r)

= u⇤
x,k(r)�k(r) (2.84)

and the Slater potential

vslater(r) =
1

2n(r)

N
X

k=1



�Exc

��k(r)
�k(r) + c.c.

�

(2.85)

which was initially proposed by Slater in [22] as a local approximation simplifi-

cation to Hartree-Fock.

Evaluating the diagonal terms of vKLI
x one gets that

hi|vKLI
x (r)|ii = hi|vslater(r)|ii+

N
X

k=1

Mi,k�vKLI
k , Mi,k =

ˆ
d3r

|�i(r)|2|�k(r)|2

n(r)

(2.86)

and so, by adding and subtracting diagonal element hi|ux,i(r)|ii, one arrives to

the matrix equation

N
X

k=1

(�i,k �Mi,k)�vKLI
k = hi|vslater(r)|ii � hi|ux,i(r)|ii (2.87)

that allows the evaluation of �vKLI
k .
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2.4 Time-Dependent Density Functional Theory

(TDDFT)

DFT can be extended to the time-dependent regime, where the Hamiltonian of

(2.12) contains an explicitly time-dependent scalar potential v(r, t). The evolu-

tion of the system is now governed by the time-dependent Schödinger equation

Ĥ| i = i
@

@t
| i (2.88)

which is used to propagate an initial state | 0i from an instant t0 to t1. It is

usually convenient to consider that for t < t0 the system was in the ground

state under the e↵ect of a static potential v0(r) and that at t0 a time-dependent

component is switched on. Analytically, this is expressed as

v(r, t) = v0(r) + ✓(t� t0)v1(r, t) (2.89)

As in DFT, the key idea is to establish the density of the system (now time-

dependent), n(r, t), as the key ingredient from which all observables can be eval-

uated once they are written as a functional of the density. In 1984 [21], Runge

and Gross proved that, under certain conditions, the mapping between the time-

dependent potential and density could be inverted and stated what is known as

the Runge-Gross theorem [21]

Runge-Gross theorem. Two densities n(r, t) and n0(r, t), evolving from a com-

mon initial many-body state  0 under the influence of two di↵erent potentials

v(r, t) and v0(r, t) 6= v(r, t) + c(t) (both assumed to be Taylor-expandable around

t0), will start to become di↵erent infinitesimally later than t0. Therefore, there is

a one-to-one correspondence between densities and potentials, for any fixed initial

many-body state.

Still, the theorem as limitations. To begin with, it excludes vector poten-

tials which are essential to study the e↵ects of electromagnetic waves or time-

dependent magnetic fields (although such potentials can be included through the

use of time-dependent current-DFT, but such theory is out of the scope of this
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thesis). The theorem is also restricted to finite systems, since in its proof a sur-

face integral should vanish. This problem can be avoided by taking into account

potentials that come only from finite normalizable external charge distributions

(this problem is also surpassed in the TDCDFT formalism, see [24]). Another lim-

itation is that, since the potential must be analytic around t0, potentials that are

adiabatically switched from t0 = �1 using a function e�t (with 0 < � <1) cannot

be included, since the switch function has a singularity at t = �1. Numerically

this doesn’t turn out to be a significant problem if one chooses a su�cient large

although finite negative instant t0.

Another importan result is the van Leeuwen theorem [25] which is stated as

follows

van Leeuwen theorem . For a time-dependent density n(r, t) associated with a

many-body system with a given particle-particle interaction, external potential and

initial state, there is a di↵erent many-body system with another particle-particle

interaction and time-dependent external potential (up to a c(t) function) which

reproduces the same time-dependent density. The initial state of the system  0

must be chosen such that it correctly gives the same density and its derivative at

the initial time t0

This theorem gives the theoretical justification for the use of the Kohn-

Sham auxiliary system, in which the particle-particle interaction is null. Time-

dependent KS simulations usually start with a ground state calculation using

equation (2.45) with the ground state density given by equation (2.46) and the

ground state KS potential by equation (2.53). Right after the instant t0, the

time-dependent part of the potential begins to act. The KS eigenvectors follow

the time-dependent KS equation



�r2

2
+ vs[n](r, t)

�

'i(r, t) = i
@

@t
'i(r, t) (2.90)

given that 'i(r, t0) = �i(r). The time-dependent density is given by

n(r, t) =
N
X

i=1

✓i|'i(r, t)|2 (2.91)
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and the e↵ective KS potential in (2.90) is given by

vs[n](r, t) = v(r, t) +

ˆ
d3r

n(r0, t)

|r � r0| + vxc[n](r, t) (2.92)

It is important to say that the xc potential used for the ground state calculation

and the time-dependent xc potential used for the time propagation must match

at the initial time in order to guarantee that the density remains static if no

time-dependent potential is applied to the system at t > t0 or to any sudden

change at t = t0.

It should also be stated that starting from the ground state is not actually

necessary. The equations will still hold if one starts from another energy configu-

ration as long as the many-body wave function is still a Slater determinant. The

only di↵erence is that in this case the potential will be a functional of the initial

state.
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Chapter 3

Non collinear spin Density

Functional Theory (SDFT)

3.1 Pauli’s equation

The full relativistic description of the interaction between fermions and an elec-

tromagnetic field requires the use of Dirac’s equation [9]1

(i�µ⇡̂µ �m)| i = 0 (3.1)

where  (x) is a four-dimension Dirac spinor, ⇡̂µ is the canonical conjugated mo-

mentum, ⇡̂µ = p̂µ�qÂµ, where Aµ is the four-vector potential and q is the charge

of the particle. �µ are Dirac’s gamma matrices, whose algebra is defined by the

anti-commutation relation [9]

�µ�⌫ + �⌫�µ = 2gµ⌫ (3.2)

with gµ⌫ = diag(1,�1,�1,�1) being the Minkowski metric. Now, if one isn’t

interested in studying the full relativistic description of a system of electrons,

Dirac’s equation can be brought to an approximate form [9]. First, as usual in

1For now the atomic units are abandoned and one only has ~ = c = 1.
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3. Non collinear spin Density Functional Theory (SDFT)

Relativistic Quantum Mechanics, any Dirac spinor can be written as

 =

 

'̄

�̄

!

(3.3)

and in Pauli-Dirac’s representation of the gamma matrices, Dirac’s equation for

a particle with charge q and spin 1/2 assumes the form

i@t

 

'̄

�̄

!

=

 

� · ⇡̂�̄+ qA0'̄+m'̄

� · ⇡̂'̄+ qA0�̄�m�̄

!

(3.4)

with

� = �1î+ �2ĵ + �3k̂ (3.5)

�1 =

 

0 1

1 0

!

�2 =

 

0 �i

i 0

!

�3 =

 

1 0

0 �1

!

(3.6)

and one should remember the relation which defines the algebra of this matrices

�i�j = I2⇥2�i,j + i✏ijk�k (3.7)

where ✏ijk is the Levi-Civita andy-symmetric tensor. Now, taking the ansatz
 

'̄

�̄

!

= e�imt

 

'

�

!

and assuming that |i@t�| << |m�| and |qA0�| << |m�| one

gets that

� =
� · ⇡̂'
2m

(3.8)

which immediately leads to the Pauli equation

i@t' =
(� · ⇡̂)2

2m
'+ qA0' =



(p̂� qA)2

2m
+ qA0 � µB� ·B

�

' (3.9)

with µB being Bohr’s magneton (note that external potentials other than those

coming from electromagnetic interactions are being neglected). Assuming a time-

separable solution, it is trivial to express the energy of such particle as (for a
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normalized solution)

E =
1

2m

ˆ
d3r'†(r)(p̂� qA)2'(r) + q

ˆ
d3rA0(r)n(r)�

ˆ
d3rm(r) ·B(r)

= T + V + Um

(3.10)

with the magnetization density vector being defined as

m(r) = µB'
†(r)�'(r) (3.11)

In case of weak magnetic fields, the vector potential can be discarded and one

only works the magnetic field. Furthermore, the magnetic field resulting from the

interaction between the nuclei and the electrons can also be ignored, so only the

external magnetic field is considered.

3.2 The HK theorems in SDFT

It is clear from the previous section that in SDFT, due to the presence of a

magnetic field in the Hamiltonian, one needs three extra ground state densities

in order to establish something with the same idea as normal DFT. This section

follows what was done for the relativist version of DFT [6].

Like in DFT, one starts by assuming that there must be a unique correspon-

dence between the external potential and magnetic field, and the density and

magnetization density.1 Following the same arguments as in section 2.3.1, one

assumes that there are two four vectors (v(r),B(r)) and (v0(r),B0(r)) which

di↵er from each other by more than a constant vector but whose ground state

wave function | 0i and  0
0i (which should di↵er from each other by more than a

constant phase) are equal. Like in (2.30), one gets that

h

V̂ � V̂ 0 + µB� · (B �B0)
i

| 0i = (✏0 � ✏00)| 0i (3.12)

1Instead of B and m one could also establish a relation between A and j (the current
density), but as B and m are uniquely determined from A and j once a certain gauge is fixed,
both formalisms would be equivalent.
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so, as long as two external potentials and magnetic fields di↵er from each other

by more than a constant, there is a unique relation between the pair (v(r),B(r))

and the (non-degenerate) ground state wave function.

The second part requires a bit more thought. Going with the same arguments

as in section 2.3.1, one gets

E0 < E 0
0 +

ˆ
d3r [v(r)� v0(r)]n0(r)� µB

ˆ
d3r0 [B(r)�B0(r)] ·m(r) (3.13)

and the extra term also appears in the equation equivalent to the second part of

(2.33). Now one should be reminded that what defines the magnetic field is the

vector potential. Using Gauss’ theorem and a property of the del operator, one

easily gets that

ˆ
d3r m(r) ·B(r) =

ˆ
d3rA(r) · j(r)�

"
S

dA [m(r)⇥A(r)] · n̂ (3.14)

and as the surface terms should vanish when r ! +1, one can change the last

term in (3.13) to ˆ
d3r0 [A(r)�A0(r)] · j(r) (3.15)

Now, if the vector potentials di↵er from each other by a gauge transformation

such that

A0(r) = A(r) +rg(r) r ·A0(r) = 0 ) r2g(r) = 0 (3.16)

one immediately gets that

ˆ
d3rrg(r) · j(r) = �

"
S

dA [g(r)j(r)] · n̂+

ˆ
d3rg(r)r · j(r) (3.17)

and as the currents should vanish in the infinite and because of the continuity

equation, the integral is zero. So, the HK theorems for spin DFT require not

only that the electrostatic potentials di↵er by more than an additive constant,

but also that the vector potentials from which the external magnetic fields are

evaluated di↵er by more than a gauge transformation that respects (3.16)

36



3. Non collinear spin Density Functional Theory (SDFT)

So, it is possible to establish an equivalent to the first HK theorem for spin

DFT. The second theorem can also be easily extended, as it only reflects the

nature of the Rayleigh-Ritz variational principle. As such, and due to the unique

relation between the vector potential and the magnetic field (once a certain gauge

is fixed), and the current and magnetization, it is possible to write

E[n(r),m(r)] = F [n(r),m(r)] +

ˆ
d3rn(r)v(r)�

ˆ
d3r0m(r) ·B(r) (3.18)

with F [n(r),m(r)] = T [n(r),m(r)] + W [n(r),m(r)] being the universal func-

tional.

With the HK theorems, one can now assume the existence of a Kohn-Sham

auxiliary system. For an electron that interacts with an external weak electro-

magnetic field, the Kohn-Sham equation is



1

2
(� · p̂)2 + vs(r)I2⇥2 + µB� ·Bs(r)

�

�i(r) = ✏i�i(r) (3.19)

The sign di↵erence in the Stern-Gerlach term with respect to (3.9) is due to the

use of atomic units. Using the KS system, the universal functional can be written

as

F [n(r),m(r)] = Ts[n(r),m(r)] + EH [n(r)] + Exc[n(r),m(r)] (3.20)

By defining the ground state density and ground state magnetization density of

the N electron system respectively as

n(r) =
N
X

k=1

✓k�
†
k(r)�k(r) (3.21)

m(r) = �µB

N
X

k=1

✓k�
†
k(r)��k(r) (3.22)
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one can define the KS potential and magnetic field as

vs(r) =

✓

�E[n,m]

�n(r)

◆

m

= vext(r) + vH(r) +

✓

�Exc[n,m]

�n(r)

◆

m

(3.23)

Bs(r) = �
✓

�E[n,m]

�m(r)

◆

n

= Bext(r)�
✓

�Exc[n,m]

�m(r)

◆

n

(3.24)

and thus, one can define the exchange-correlation potential and magnetic field

vxc(r) =

✓

�Exc[n,m]

�n(r)

◆

m

Bxc(r) = �
✓

�Exc[n,m]

�m(r)

◆

n

(3.25)

3.3 OEP in SDFT

Having established the grounds for spin DFT the remaining work now is to de-

velop approximate functionals for the exchange-correlation energy in order to

work with the ground state density and magnetization density. This section fol-

lows the derivation of the OEP method done in [6] and [20]

Using Many-Body theory it is possible to derive a functional expansion for

Exc[n,m] in terms of powers of e2, much like (2.73)

Exc[n,m] =
+1
X

j=1

e2jE(j)
xc [n,m] = Ex[n,m] + E(2)

c [n,m] + ... (3.26)

vxc[n,m] =
+1
X

j=1

e2jv(j)xc [n,m] = vx[n,m] + v(2)c [n,m] + ... (3.27)

and again, one can choose as first order approximation the exact exchange energy,

which has the same expression as (2.55)

Ex[n,m] = �1

2

N
X

i,j

✓i✓j

¨
d3rd3r0

�†
i (r)�j(r)�

†
j(r

0)�i(r0)

|r � r0| (3.28)

although now one is working with the Kohn-Sham spinors, solutions of (3.19).
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The rest of the derivation goes in a similar way. One starts by writing the

following equalities

�Ex

�vs(r)
=

ˆ
d3r0



�Ex

�n(r0)

�n(r0)

�vs(r)
+

�Ex

�m(r0)
· �m(r0)

�vs(r)

�

=

=

ˆ
d3r0

N
X

k=1

"

��†
k(r

0)

�vs(r)

�Ex

��†
k(r

0)
+ c.c.

# (3.29)

�Ex

�B(i)
s (r)

=

ˆ
d3r0

"

�Ex

�n(r0)

�n(r0)

�B(i)
s (r)

+
3
X

j=1

�Ex

�m(j)(r)

�m(j)(r0)

�B(i)
s (r)

#

=

=

ˆ
d3r0

N
X

k=1

"

��†
k(r

0)

�B(i)
s (r)

�Ex

��†
k(r

0)
+ c.c.

#

(3.30)

Through the use of perturbation theory, one can derive the sixteen components

of the linear response tensor

�nn(r
0, r) =

�n(r0)

�vs(r)
= �

N
X

k=1

✓k
h

�†
k(r

0)Gk(r
0, r)�k(r) + c.c.

i

(3.31)

�nm(r
0, r) =

�n(r0)

�Bs(r)
= �µB

N
X

k=1

✓k
h

�†
k(r)�Gk(r, r

0)�k(r
0) + c.c.

i

(3.32)

�mn(r
0, r) =

�m(r0)

�vs(r)
= µB

N
X

k=1

✓k
h

�†
k(r)Gk(r, r

0)��k(r
0) + c.c.

i

(3.33)

�(i,j)
mm(r0, r) =

�m(i)(r0)

�B(j)
s (r)

= µ2
B

N
X

k=1

✓k
h

�†
k(r)�jGk(r, r

0)�i�k(r
0) + c.c.

i

(3.34)

which are obtained by using the following relations

��k(r0)

�vs(r)
=

N
X

j 6=k
j=1

�j(r0)�†
j(r)

✏k � ✏j
�k(r) = �Gk(r

0, r)�k(r) (3.35)
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��k(r0)

�Bs(r)
=

N
X

j 6=k
j=1

�j(r0)�†
j(r)

✏k � ✏j
��k(r) = �µBGk(r

0, r)��k(r) (3.36)

Using equations (3.31) to (3.36) in equations (3.29) and (3.30), the functional

derivatives of Ex can be written as a set of four coupled integral equations

ˆ
d3r0 {vx(r0)�nn(r

0, r)�Bx(r
0) · �mn(r

0, r)} =

= �
ˆ

d3r0
X

k

(

�†
k(r)Gk(r, r

0)
�Ex

��†
k(r

0)
+ c.c.

) (3.37)

ˆ
d3r0

(

vx(r
0)�(i)

nm(r
0, r)�

3
X

j=1

B(j)
x (r0)�(j,i)

mm(r
0, r)

)

=

= �µB

ˆ
d3r0

X

k

(

�†
k(r)�iGk(r, r

0)
�Ex

��†
k(r

0)
+ c.c.

)

i = 1, 2, 3

(3.38)

3.3.1 KLI approximation in SDFT

Now one can apply the KLI approximation. Using the same arguments as in

section 2.3.5, the linear response functions can be approximated to1

�nn(r
0, r) = �2n(r)�(3)(r � r0) + 2

X

k

✓k|�k(r)|2|�k(r
0)|2 (3.39)

�nm(r
0, r) = 2m(r)�(3)(r � r0) + 2µB

X

k

✓k�
†
k(r

0)��k(r
0)|�k(r)|2 (3.40)

�mn(r
0, r) = �2m(r)�(3)(r � r0)� 2µB

X

k

✓k|�k(r)|2�†
k(r

0)��k(r
0) (3.41)

1The coe�cient �✏ is ignored in the expressions and from now on, as in the exact exchange
limit it is irrelevant.
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�(i,j)
mm(r0, r) = 2µ2

Bn(r)�ij�
(3)(r�r0)�µ2

B

X

k

✓k
h

�†
k(r)�j�k(r)�

†
k(r

0)�i�k(r
0) + c.c.

i

(3.42)

An interesting thing happens during the evaluation of �mm within KLI. One

can notice that two of its elements can be written as

µ2
B

X

k

✓k�
†
k(r) {�i, �j}�k(r) (3.43)

as one should sum two terms that are the complex conjugate of each other and

(�i�j)† = �j�i, this will lead to the elimination of a pure imaginary term in �mm

2iµ2
B [m(r)⇥Bx(r)]i (3.44)

which is a direct contribution from the torque of the exchange magnetic field.

Each right hand side of equations (3.29) and (3.30) can now be written as

�
X

k

"

�†
k(r)

�Ex

��†
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(3.46)

So, one can finally write an inhomogeneous system of equations which when solved

would give the expressions for vx and Bx. As one has to deal with the relations

between two groups of four objects, it is convenient to use Einstein’s summation

convention and the usual notation from Special Relativity [8]. Due to the use of

atomic units, one should define the metric matrix as ⌘µ⌫ = diag(1, 1, 1, 1) = I4⇥4.

If one defines the four vector exchange potential and the four density as

vµx(r) = (vx(r), µBBx(r)) nµ(r) =

✓

n(r),
m(r)

µB

◆

(3.47)
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3. Non collinear spin Density Functional Theory (SDFT)

and by establishing the following four vector

�µ = (I2⇥2,�) (3.48)

one can rewrite the four equations in the KLI approximation [(3.29) and (3.30)]

in the compact form

Mµ⌫(r)vx,⌫(r) = ⇤
µ
x(r) (3.49)

with
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and

⇤µ
x(r) =

1

2
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X

k=1
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µ �Ex

��k(r)
+ c.c.
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with the exchange potential di↵erence now being

�vKLI
k =

ˆ
d3r
n

✓k�
†
k(r)

h

vx(r) + µB� ·Bx(r)� u†
x,k(r)

i

�k(r) + c.c.
o

(3.52)

as long as the potential u†
x,k(r) (now a 2⇥ 2 matrix) is defined as

�Ex

��†
k(r)

= u†
x,k(r)�k(r) (3.53)

The system of equations can be inverted in order to obtain a set of coupled inte-

gral equations which can be solved iteratively in order to evaluate the exchange

potential and magnetic field. Inverting the matrix Mµ⌫ in (3.49) yields1

vµx(r) = �(r)N
µ⌫(r)⇤x,⌫(r) (3.54)

1One should note that there is no di↵erence between the covariant and contravariant forms
of the vectors and matrices, since the metric is purely an identity matrix. Again, the notation
is used only because of its usefulness when dealing with four-vectors and 4 ⇥ 4 matrices and
one should remind oneself that this is not a relativistic theory.
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3. Non collinear spin Density Functional Theory (SDFT)

with

[�(r)]�1 = n(r)



n2(r)� m(r) ·m(r)

µ2
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�

(3.55)

and

N00(r) = n2(r) N0i(r) = n(r)
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(3.56)

Obviously, there is the question of whenever or not [�(r)]�1 (which when mul-

tiplied by the density is the determinant of Mµ⌫(r)) is zero. Contrary to what

happens in relativistic-spin DFT (see [3]) where it can be proven that the deter-

minant of the correspondent matrix will be always positive, as o↵ the date of this

thesis such statement cannot be said for the case of SDFT (Appendix A contains

a few calculations on the conditions for �(r) to be di↵erent than zero).

The set of equations (3.54) can be solved iteratively or through the same

method from which equation (2.87) is obtained. It is obvious at first sight that

one cannot simply write hi|vµx(r)|ii and just add the resulting components. Look-

ing at (3.19), it is obvious that the right way to combine the elements of vµx is

through the scalar product �µvµx . First, one gets that

�µv
µ
x = ��µN

µ⌫⇤x,⌫ = �
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(3.57)

and it can be easily obtained that
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provided that one keeps in mind the metric defined previously due to the use of

atomic units. The factor of 1/2 in �vk shows up because in (3.51) the complex

conjugate part of the second term is already inside the definition of �vk.

Combining (3.58), (3.59) and (3.57) the resulting expression for �µvµx(r) is
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with
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There is no factor 1/2 before �vk in the second sum as one should note that

�k(r) = �
†
k(r).

It is convenient now, due to the form of equations (3.57) - (3.60), that one

changes the main objects of spin DFT from four vectors to two by two hermitian
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matrices. Let the following matrices

Vs(r) = �µv
µ
s (r) =
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!

(3.63)

be the KS potential in its matrix form and
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the ⇢matrix be (aside a factor which is the determinant of the density) the inverse

of the density of the system in its matrix form, which is given by

N(r) =
n(r)

2
I2⇥2 � � · m(r)

2µB

(3.65)

Thus equation (3.60) can be rewritten as1
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Like in 2.3.5, this equation can be separated in two main components, giving

Vx(r) = Vslater(r) +
N
X

k=1

n

2�(r)⇢(r)�†
k(r)⇢(r)�k(r)+

+
1

2n(r)
�k(r)

�

�vKLI
k

(3.67)

1Using the matrices ⇢ and Vs as the key components, one should note that the function
�(r) is now expressed as [�(r)]�1

= 4
⇥

⇢

↵↵(r) + ⇢

��(r)
⇤

det(⇢(r))
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by redefining the Slater part as
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So, in order to obtain a equation for �vKLI
k like (2.87), once should write

hi|Vs|ii � hi|u†
x,i|ii = hi|Vslater|ii � hi|u†
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(3.69)

and by adding both, one obtains

N
X
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x,i(r)|ii+ c.c. (3.70)

but the matrix elements are now
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For some specific details concerning the implementation of the equations in

OCTOPUS see Appendix B. The code file is transcript in Appendix C.
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Chapter 4

Numerical results and analysis

In this section the results obtained through simulation using OCTOPUS, ([4], [1])

will be presented and analyzed. In Sections 4.1 and 4.2 are presented results for

ground state calculations within KLI and Slater approximations on atoms of the

first three periods and Xe, that have been done to validate the implementation.

The atoms are arranged in the tables in accordance to their pseudo-potential

description.

In Section 4.3 are the results for the Xe+3 cluster obtained by real-time propa-

gation.

Octopus solves the equations (Kohn-Sham and time-dependent Kohn-Sham)

in real space by sampling the wave functions in a grid and using an high finite

di↵erence order method to evaluate derivatives. The grid is defined by spheres

centers on the atoms with a given radius and spacing, that are input parameters

in the simulation. Standard LDA’s and GGA’s functionals are available from the

LibXC [17].
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4. Numerical results and analysis

4.1 Validation of the implementation: orbital

energies of single atoms

Results were obtains by preforming a ground state calculation over a real space

grid. The Tables 4.1 to 4.12 contain the results obtained through OCTOPUS for

the KS eigenvalues (eKS) and average value of each spin moment for each KS

eigenstate (Sx, Sy, Sz)

hSii =
1

2

ˆ
d3r�†(r)�i�(r) (4.1)

They also show the order of magnitude of the di↵erence between the eigenvalues

calculated with the non-collinear spin expressions and the collinear spin formal-

ism, which will be represented by �. Significant di↵erences were not expected

since there were no added corrections to the simulation (e.g. there was no rela-

tivistic correction). The radius, spacing and starting guess for the wave functions

are indicated in each table.

In this section there should be no results for H and alkali atoms. As it is ex-

plained in Appendix A, it would be impossible to obtain results for these systems

since they are described as only having one occupied state. Still, by making the

determinant of (3.64) not zero but something very small (10�20 was the value

chosen in this case) it is possible to get good results for the atoms of the first

group, as it can be seen in Table 4.1

Table 4.1: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms H, Li and Na (radius = 4.5 Å, spacing = 0.4 Å, starting from
LSDA)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

H 1 -13.050 1 0.000 0.000 -0.500 0.1

Li 1 -5.380 1 0.000 0.000 -0.500 -

Na 1 -5.167 1 0.000 0.000 0.500 -
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4. Numerical results and analysis

Table 4.2: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms He, Be and Mg (radius = 4.5 Å, spacing = 0.15 Å, starting
from LCAO)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

He 1 -25.462 1 0.000 0.000 -0.500 0.00
2 -25.462 1 0.000 0.000 0.500 0.00

Be 1 -8.425 1 0.000 0.000 -0.500 0.00
2 -8.425 1 0.000 0.000 0.500 0.00

Mg 1 -6.961 1 0.000 0.000 -0.500 0.00
2 -6.961 1 0.000 0.000 0.500 0.00

For the He, Be and Mg atoms (Table 4.2), calculations where performed start-

ing from the LCAO states available in OCTOPUS. The results match the ones

evaluated from the spin-polarized KLI calculation up to the numerical precision

given by the code. This was expected, as they are described as a core of e↵ective

charge 2e (e being the absolute value of the electron charge) with two electrons

in a s orbital.

Note that in fact, for one and two electron systems KLI coincides with the Slater

approximation. Concerning the performance of the Slater potential, Tabels 4.6,

4.8, 4.10 and 4.12 show that the collinear spin limits is reproduced within 10�3

to 10�4 eV, depending on the system.

The results obtained within KLI require a more extensive discussion.

For the atoms of the 18th group, OCTOPUS gives a residual polarization along

the Ox axis in the case of Ar and Xe. It is possible to reduce this remnant

along Ox by changing the grid spacing, as it can be seen in Table 4.4, but most

likely this is just a numerical artifact that does not disappear during the SCF

cycle, since in the first iteration OCTOPUS puts some states with a polarization

component along Ox. It may also depend on the starting point.
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Table 4.3: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms Ne, Ar and Xe (radius = 4.5 Å, spacing = 0.15 Å, starting
from LCAO)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

Ne 1 -53.606 1 0.000 0.000 0.500 10�4

2 -53.606 1 0.000 0.000 -0.500 10�4

3 -21.691 1 0.000 0.000 -0.500 10�4

4 -21.691 1 0.000 0.000 -0.500 10�4

5 -21.691 1 0.000 0.000 -0.500 10�4

6 -21.691 1 0.000 0.000 0.500 10�4

7 -21.691 1 0.000 0.000 0.500 10�4

8 -21.691 1 0.000 0.000 0.500 10�4

Ar 1 -30.084 1 -0.015 0.000 -0.499 10�5

2 -30.084 1 0.015 0.000 0.499 10�5

3 -16.183 1 -0.015 0.000 -0.499 10�5

4 -16.183 1 -0.015 0.000 -0.499 10�5

5 -16.183 1 -0.015 0.000 -0.499 10�5

6 -16.183 1 0.015 0.000 0.499 10�5

7 -16.183 1 0.015 0.000 0.499 10�5

8 -16.183 1 0.015 0.000 0.499 10�5

Xe 1 -24.034 1 -0.010 0.000 0.499 10�5

2 -24.034 1 0.010 0.000 -0.499 10�5

3 -12.434 1 0.010 0.000 -0.499 10�5

4 -12.434 1 0.010 0.000 -0.499 10�5

5 -12.434 1 0.010 0.000 -0.499 10�5

6 -12.434 1 -0.010 0.000 0.499 10�5

7 -12.434 1 -0.010 0.000 0.499 10�5

8 -12.434 1 -0.010 0.000 0.499 10�5

Table 4.4: Variation of |hSx|i for Ar with the grid spacing

Spacing |hSx|i
0.12 0.0048
0.15 0.0151
0.18 0.0022
0.21 0.0013
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Table 4.5: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms C and Si with the KLI response (radius = 4.5 Å, spacing =
0.4 Å, starting from LCAO)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

C 1 -22.314 1 0.000 0.000 -0.500 10�4

2 -19.362 1 0.000 0.000 0.500 10�4

3 -7.856 0 0.000 0.000 -0.500 10�4

4 -7.856 0 0.000 0.000 -0.500 10�4

5 -7.856 0 0.000 0.000 -0.500 10�4

6 -5.726 2/3 0.000 0.000 0.500 10�4

7 -5.726 2/3 0.000 0.000 0.500 10�4

8 -5.726 2/3 0.000 0.000 0.500 10�4

Si 1 -13.326 1 -0.027 0.000 -0.499 10�4

2 -12.118 1 0.027 0.000 0.499 10�4

3 -6.389 0 -0.027 0.000 -0.499 10�4

4 -6.389 0 -0.027 0.000 -0.499 10�4

5 -6.389 0 -0.027 0.000 -0.499 10�4

6 -5.519 2/3 0.027 0.000 0.499 10�4

7 -5.519 2/3 0.027 0.000 0.499 10�4

8 -5.519 2/3 0.027 0.000 0.499 10�4
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Table 4.6: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms C and Si for the Slater part only (radius = 4.5Å, spacing =
0.15Å, starting from LCAO for C and random w.f. for Si)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

C 1 -18.481 1 -0.061 0.000 -0.496 10�4

2 -16.046 1 0.061 0.000 0.496 10�4

3 -9.997 2/3 -0.061 0.000 -0.496 10�4

4 -9.997 2/3 -0.061 0.000 -0.496 10�4

5 -9.997 2/3 -0.061 0.000 -0.496 10�4

6 -8.029 0 0.061 0.000 0.496 10�4

7 -8.029 0 0.061 0.000 0.496 10�4

8 -8.029 0 0.061 0.000 0.496 10�4

Si 1 -13.802 1 0.091 0.000 -0.492 10�4

2 -12.337 1 -0.091 0.000 0.492 10�4

3 -6.944 2/3 0.091 0.000 -0.492 10�4

4 -6.944 2/3 0.091 0.000 -0.492 10�4

5 -6.944 2/3 0.091 0.000 -0.492 10�4

6 -5.848 0 -0.091 0.000 0.492 10�4

7 -5.848 0 -0.091 0.000 0.492 10�4

8 -5.848 0 -0.091 0.000 0.492 10�4
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Table 4.7: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms N and P with the KLI response (radius = 4.5 Å, spacing =
0.4 Å, starting from LSDA)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

N 1 -32.976 1 0.000 0.000 0.500 10�5

2 -30.640 1 0.000 0.000 -0.500 10�5

3 -11.281 1 0.000 0.000 0.500 10�4

4 -11.281 1 0.000 0.000 0.500 10�4

5 -11.281 1 0.000 0.000 0.500 10�4

6 -8.458 0 0.000 0.000 -0.500 10�4

7 -8.458 0 0.000 0.000 -0.500 10�4

8 -8.458 0 0.000 0.000 -0.500 10�4

P 1 -19.556 1 0.000 0.000 0.500 10�5

2 -15.387 1 0.000 0.000 -0.500 10�4

3 -10.719 1 0.000 0.000 0.500 10�4

4 -10.719 1 0.000 0.000 0.500 10�4

5 -10.719 1 0.000 0.000 0.500 10�4

6 -6.975 0 0.000 0.000 -0.500 10�4

7 -6.975 0 0.000 0.000 -0.500 10�4

8 -6.975 0 0.000 0.000 -0.500 10�4
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Table 4.8: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms N and P for the Slater part only (radius = 4.5Å, spacing =
0.15Å, starting from random w.f.)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

N 1 -28.474 1 0.061 0.000 0.496 10�4

2 -19.242 1 -0.061 0.000 -0.496 10�4

3 -16.742 1 0.061 0.000 0.496 10�4

4 -16.742 1 0.061 0.000 0.496 10�4

5 -16.742 1 0.061 0.000 0.496 10�4

6 -8.383 0 -0.061 0.000 -0.496 10�4

7 -8.383 0 -0.061 0.000 -0.496 10�4

8 -8.383 0 -0.061 0.000 -0.496 10�4

P 1 -20.192 1 0.124 0.000 0.484 10�4

2 -14.607 1 -0.124 0.000 -0.484 10�4

3 -11.542 1 0.124 0.000 0.484 10�4

4 -11.542 1 0.124 0.000 0.484 10�4

5 -11.542 1 0.124 0.000 0.484 10�4

6 -6.671 0 -0.124 0.000 -0.484 10�4

7 -6.671 0 -0.124 0.000 -0.484 10�4

8 -6.671 0 -0.124 0.000 -0.484 10�4
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Table 4.9: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms O and S with the KLI response (radius = 4.5 Å, spacing = 0.4
Å, starting from LSDA)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

O 1 -47.256 1 0.000 0.000 0.500 1.0
2 -31.534 1 0.000 0.000 -0.500 10�4

3 -16.562 1 0.000 0.000 0.500 10�4

4 -16.562 1 0.000 0.000 0.500 10�4

5 -16.562 1 0.000 0.000 0.500 10�4

6 -2.287 1/3 0.000 0.000 -0.500 10�4

7 -2.287 1/3 0.000 0.000 -0.500 10�4

8 -2.287 1/3 0.000 0.000 -0.500 10�4

S 1 -25.825 1 0.000 0.000 0.500 1.0
2 -14.523 1 0.000 0.000 0.500 1.0
3 -14.523 1 0.000 0.000 0.500 1.0
4 -14.523 1 0.000 0.000 0.500 1.0
5 -13.337 1 0.000 0.000 -0.500 0.1
6 -3.137 1/3 0.000 0.000 -0.500 10�4

7 -3.137 1/3 0.000 0.000 -0.500 10�4

8 -3.137 1/3 0.000 0.000 -0.500 10�4
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4. Numerical results and analysis

Table 4.10: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms O and S for the Slater part only (radius = 4.5Å, spacing =
0.15Å, starting from LCAO)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

O 1 -36.059 1 -0.017 0.000 0.499 10�5

2 -23.566 1 0.017 0.000 -0.499 10�4

3 -20.156 1 -0.017 0.000 0.499 10�4

4 -20.156 1 -0.017 0.000 0.499 10�4

5 -20.156 1 -0.017 0.000 0.499 10�4

6 -8.183 1/3 0.017 0.000 -0.499 10�4

7 -8.183 1/3 0.017 0.000 -0.499 10�4

8 -8.183 1/3 0.017 0.000 -0.499 10�4

S 1 -24.004 1 -0.269 0.000 -0.422 10�4

2 -16.631 1 0.269 0.000 0.422 10�4

3 -13.599 1 -0.269 0.000 -0.422 10�4

4 -13.599 1 -0.269 0.000 -0.422 10�4

5 -13.599 1 -0.269 0.000 -0.422 10�4

6 -6.684 1/3 0.269 0.000 0.422 10�4

7 -6.684 1/3 0.269 0.000 0.422 10�4

8 -6.684 1/3 0.269 0.000 0.422 10�4

56



4. Numerical results and analysis

Table 4.11: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms F and Cl with the KLI response (radius = 4.5 Å, spacing =
0.4 Å, starting from LSDA)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

F 1 -39.643 1 0.000 0.000 0.500 1.0
2 -29.620 1 0.000 0.000 -0.500 10�4

3 -19.440 1 0.000 0.000 0.500 10�4

4 -19.440 1 0.000 0.000 0.500 10�4

5 -19.440 1 0.000 0.000 0.500 10�4

6 -10.295 2/3 0.000 0.000 -0.500 10�4

7 -10.295 2/3 0.000 0.000 -0.500 10�4

8 -10.295 2/3 0.000 0.000 -0.500 10�4

Cl 1 -30.142 1 0.000 0.000 0.500 1.0
2 -22.041 1 0.000 0.000 -0.500 10�4

3 -16.545 1 0.000 0.000 0.500 1.0
4 -16.545 1 0.000 0.000 0.500 1.0
5 -16.545 1 0.000 0.000 0.500 1.0
6 -9.085 2/3 0.000 0.000 -0.500 10�4

7 -9.085 2/3 0.000 0.000 -0.500 10�4

8 -9.085 2/3 0.000 0.000 -0.500 10�4
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Table 4.12: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the atoms F and Cl for the Slater part only (radius = 4.5Å, spacing =
0.15Å, starting from LCAO)

Atom State eKS (eV) Occupancy hSxi hSyi hSzi � (eV)

F 1 -44.392 1 0.009 0.000 0.499 10�3

2 -35.879 1 -0.009 0.000 -0.499 10�3

3 -22.354 1 0.009 0.000 0.499 10�3

4 -22.354 1 0.009 0.000 0.499 10�3

5 -22.354 1 0.009 0.000 0.499 10�3

6 -14.294 2/3 -0.009 0.000 -0.499 10�3

7 -14.294 2/3 -0.009 0.000 -0.499 10�3

8 -14.294 2/3 -0.009 0.000 -0.499 10�3

Cl 1 -27.734 1 0.084 0.000 -0.493 10�4

2 -22.807 1 -0.084 0.000 0.493 10�4

3 -15.541 1 0.084 0.000 -0.493 10�4

4 -15.541 1 0.084 0.000 -0.493 10�4

5 -15.541 1 0.084 0.000 -0.493 10�4

6 -10.962 2/3 -0.084 0.000 0.493 10�4

7 -10.962 2/3 -0.084 0.000 0.493 10�4

8 -10.962 2/3 -0.084 0.000 0.493 10�4
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4. Numerical results and analysis

For the atoms of the 14th to 17th groups (Tables 4.5, 4.7, 4.9 and 4.11), the

KLI results show good agreement with the spin-polarized simulations. There are

some larger di↵erences of O and S (Table 4.9), and F and CL(Table 4.11) in the

eigenvalues.

Note that for C and Si (Table 4.5) one needs to force an hole below the Fermi

energy to reproduce the spin-polarized results, in which the (unoccupied) minor-

ity p-down-spin orbitals are lower in energy that the corresponding (occupied)

majority p-up-spin orbitals.

For F and Cl (Table 4.11), the states corresponding to the majority spin channel

in the spin polarized calculations present a larger error of 1 eV. By inspecting

results more carefully, once finds that those states are rigidly shifted be -1.472

eV (F) and by 1.226 eV (Cl) with respect to the spin-polarized results.

These di↵erences can be understood since with respect to the spin-polarized

case, fixing the xc potential gauge (e.g. value of the potential at +1) is far from

trivial.

Within spin-unpolarized KLI, the gauge is fixed by subtracting the highest

occupied atomic/molecular orbital before solving the linear equation which de-

termines the potential (2.87). Within polarized spin-collinear KLI, one has two

independent equations for each spin-channel and the gauge is fixed, as in the spin

unpolarized case, for booths channels.1

Within non-collinear spin, one has one equation to fix the gauge for the two

components of the spinor. Since a general condition to fix the gauge was not

found, it was decided to use the iterative solution of the KLI, as it is presented

in Appendix B. In this case one of the gauge is ‘chosen’ by the procedure (the

other one is fixed to zero as in the unpolarized case) and is system dependent.

It seems that this gauge depends strongly on how the starting value for the KLI

1The problem with the gauge choice was found by Myrta Grüning.
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4. Numerical results and analysis

potential is chosen. To the results presented here, the KLI potential at the first

iteration is chosen to be equal to the Slater one.

An alternative implementation of the code gives similarly good results though

the “gauge problem” shows up for all atoms in the 14-17th group and the results

are more dependent on the starting point.

4.2 Rotation of the magnetization direction

As further validation of the implementation, this sub-section shows the test results

for the non-collinear Slater behavior when used to calculate the ground state

configuration over initial LSDA results, with the state polarization along Ox,

Oy or Oz. The previous tests only shown if the implementation would predict

correctly the results in the spin-polarized limit, but did not test the behavior of

the o↵-diagonal components. The tests were done with the N atom.

The expected behavior is that non-collinear Slater should keep each state polar-

ization and only improve the results given by LSDA, as it can be seen in Appendix

B.

Analyzing Tables 4.13 to 4.15, one can see that, within a small margin of

error, the results for the eigenvalues are very close to each other and that each

state polarization is kept the same after the non-collinear KLI calculation over

the LSDA results. The larger errors may be due to these simulations also being

a↵ected by the “gauge problem”. Still, the maximum error is in the order of

the 1eV and this gives some confidence that the implementation is behaving as

expected from Appendix B.

4.3 Optical response of the Xe+3 cluster

In the Introduction was said that one of the objectives of this thesis is to obtain

the optical response of the Xe+3 cluster and compare it with the results from [18].
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4. Numerical results and analysis

Table 4.13: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the N atom with LSDA and non-collinear Slater with an initial polariza-
tion along Ox (radius = 5.0Å, spacing = 0.2Å)

Approximation State eKS (eV) Occupancy hSxi hSyi hSzi
LSDA 1 -19.438 1 0.500 0.000 0.000

2 -14.847 1 -0.500 0.000 0.000
3 -8.512 1 0.500 0.000 0.000
4 -8.512 1 0.500 0.000 0.000
5 -8.512 1 0.500 0.000 0.000
6 -4.188 0 -0.500 0.000 0.000
7 -4.188 0 -0.500 0.000 0.000
8 -4.188 0 -0.500 0.000 0.000

KLI 1 -27.003 1 0.500 0.000 0.000
2 -19.122 1 -0.500 0.000 0.000
3 -15.865 1 0.500 0.000 0.000
4 -15.865 1 0.500 0.000 0.000
5 -15.865 1 0.500 0.000 0.000
6 -8.553 0 -0.500 0.000 0.000
7 -8.553 0 -0.500 0.000 0.000
8 -8.553 0 -0.500 0.000 0.000
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Table 4.14: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the N atom with LSDA and non-collinear Slater with an initial polariza-
tion along Oy (radius = 5.0Å, spacing = 0.2Å)

Approximation State eKS (eV) Occupancy hSxi hSyi hSzi
LSDA 1 -19.438 1 0.000 0.500 0.000

2 -14.847 1 0.000 -0.500 0.000
3 -8.512 1 0.000 0.500 0.000
4 -8.512 1 0.000 0.500 0.000
5 -8.512 1 0.000 0.500 0.000
6 -4.188 0 0.000 -0.500 0.000
7 -4.188 0 0.000 -0.500 0.000
8 -4.188 0 0.000 -0.500 0.000

KLI 1 -27.003 1 0.000 0.500 0.000
2 -19.122 1 0.000 -0.500 0.000
3 -15.865 1 0.000 0.500 0.000
4 -15.865 1 0.000 0.500 0.000
5 -15.865 1 0.000 0.500 0.000
6 -8.553 0 0.000 -0.500 0.000
7 -8.553 0 0.000 -0.500 0.000
8 -8.553 0 0.000 -0.500 0.000
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4. Numerical results and analysis

Table 4.15: Values of eKS, average values of Sx, Sy, Sz and values of � for each
state of the N atom with LSDA and non-collinear Slater with an initial polariza-
tion along Oz (radius = 5.0Å, spacing = 0.2Å)

Approximation State eKS (eV) Occupancy hSxi hSyi hSzi
LSDA 1 -19.438 1 0.000 0.000 0.500

2 -14.847 1 0.000 0.000 -0.500
3 -8.512 1 0.000 0.000 0.500
4 -8.512 1 0.000 0.000 0.500
5 -8.512 1 0.000 0.000 0.500
6 -4.188 0 0.000 0.000 -0.500
7 -4.188 0 0.000 0.000 -0.500
8 -4.188 0 0.000 0.000 -0.500

KLI 1 -27.003 1 0.000 0.000 0.500
2 -19.122 1 0.000 0.000 -0.500
3 -15.865 1 0.000 0.000 0.500
4 -15.865 1 0.000 0.000 0.500
5 -15.865 1 0.000 0.000 0.500
6 -8.553 0 0.000 0.000 -0.500
7 -8.553 0 0.000 0.000 -0.500
8 -8.553 0 0.000 0.000 -0.500
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4. Numerical results and analysis

In this system, the spin-orbit e↵ects are important, hence the use of non-collinear

spin.

Ground state calculations were performed in a grid with 4.5 Å and 0.42 Å

spacing and the starting point where the LCAO states. The geometry of the

cluster and the pseudo potential were provided by [11]. The ions were initially

magnetized along the Oz axis.

The time-dependent Kohn-Sham equations are solved by time propagation.

The system is initially perturbed by a delta-like field, that excites the system in

all the frequencies. Time-propagation used 4000 steps of 0.01 fs, with the Lanczos

method for the time propagator [5]. The strength of the perturbation was set to

0.002. The grid spacing and radius were the same that were used for the ground

state calculations.

4.3.1 Results with the Slater potential

As it can be seen in Figure 4.1, while the numerical data obtained from the Slater

potential calculation using the non-collinear expressions inverted the strength of

the peaks with respect to LSDA, it worsen the peaks’ position with respect to

the experiment.

It should be said that the Slater results do not include correlation e↵ects, so

some e↵ects which will wide the distance in between the peaks might be missing.

Also, as it was said in [18], the spin-orbit coupling strength a↵ects the position

of the peaks, so its e↵ect in the simulations using the Slater potential should be

investigated.

4.3.2 Results with full KLI

The results from the full KLI calculation were not so good. It can be seen that

the obtained spectra shows a significant negative part. In order to see where

the problem might be, the time variation of the total energy (Figure 4.3), dipole
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4. Numerical results and analysis

Figure 4.1: Absorption cross section for the Xe+3 cluster obtained from both
LSDA and the Slater part of the non-collinear formalism.
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4. Numerical results and analysis

Figure 4.2: Absorption cross section for the Xe+3 cluster obtained from both
LSDA and the KLI response of the non-collinear formalism.
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moments (Figures 4.5) and electronic density (Figure 4.4) for the KLI calculation

where plotted and compared with the results from the Slater only calculation.

In Figure 4.3, it is clearly shown that the KLI calculation is not conserving the

total energy of the system. Taking this and with the help of Figure 4.4, it is clear

that after 15 fs, the system starts to transfer electronic charge from the spin-up

states to the spin-down ones and vice-versa. Such a thing does not happen with

the Slater only calculations.

By looking at Figures 4.5 and 4.6, it is also clear that the dipole moments

have larger oscillations when the time-propagation is running with the full KLI

response than when only the Slater part is used.

One possible reason for this is that what may have been found during the

ground state calculation might not have been an absolute minimum, but a local

one. As such, during the time-propagation, OCTOPUS may have found a lower

energy configuration and started to switch to it, and thus the non-conservation

of the total energy.

Note that for the time-evolution it was used as initial guess for the KLI in

the iteration procedure the potential found in the previous step. Test are now

in progress for an alternative algorithm in which the initial guess is the Slater

potential. This algorithm was the one already used for the results of atoms.
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Figure 4.3: Time variation of the total energy during the propagation using the
full KLI response.
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(a)

(b)

Figure 4.4: Diagonal elements of the electronic density matrix obtained from the
Slater part only and full KLI response using the non-collinear formalism.
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(a)

(b)

(c)

Figure 4.5: Dipole moments obtained from the full KLI response using the non-
collinear formalism.
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(a)

(b)

(c)

Figure 4.6: Dipole moments obtained from the Slater part only using the non-
collinear formalism.
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Chapter 5

Conclusions and future work

5.1 Conclusions

It is important to note that, although these are just preliminary results and likely

as it is that some of them may change in the future, along with their analysis

and derived conclusions.

Regarding the equations that were derived for this thesis, it is important to

note that they predict the known limits of the unpolarized and spin-polarized

systems. Not only that, but it has also been shown when the equations cannot

be applied, as seen in Appendix A, although this barrier can be surpassed with

a numerical artifact.

Regarding the numerical results, the Slater-only and full KLI results on atoms

are close to what is predicted by the spin-polarized formalism. The results for

full KLI have larger errors when there was a shift, but otherwise they show good

agreement with the spin-polarized limit.

The full KLI passed the tests concerning the rotation of the magnetization,

where the behavior of the o↵-diagonal terms was important. The behavior of the

Slater potential was tested, but the results were not presented for brevity.
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In what concerns the optical response of theXe+3 cluster, the Slater-only results

were able to invert the intensity of the peaks, although the peaks’ position is worse

than what was predicted by LSDA. The full KLI results also manage to invert

the intensities, but due to the fact that the calculations did not conserve the total

energy of the system and appears to be very susceptible to the gauge choice, this

simulation must be repeated. KLI is also showing a strong dependence on the

initial guess for the wave functions. This may be due to the the fact that in the

used version there are two self consistent cycles running, one for the KLI potential

and another for the ground state. This may lead to setting the ground state or

the KLI potential in a local minimum and not an absolute one.

5.2 Future work

It will be important to study on why does the exact exchange improve the peaks’

relative weight. There might be self interacting errors in LDA, so it would be

interesting to see the results for LDA with Self-Interaction Correction (SIC) [19].

This may correct the asymptotic behavior as well.

The exact exchange spoils the peak position agreement of LSDA. It would be

important to study the interference of the spin-orbit coupling strength as well

as to see what results may come from using SIC in the simulations in order to

include correlation e↵ects.

Since the Slater potential is working and managed to invert the relative strength

of the peaks, it would be interesting to see if approximations to Slater are working

(e.g. Becke-Roussel, [2]).
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Appendix A - On the inversion of

Mµ⌫
(r)

In Chapter 3 it was shown that in order to evaluate the exchange potential and

magnetic field one would need to invert the matrix Mµ⌫(r) in (3.49). For that,

[�(r)]�1 must be di↵erent than zero. Looking at the expression

[�(r)]�1 = 4
⇥

⇢↵↵(r) + ⇢��(r)
⇤

det(⇢(r)) (5.1)

the two ways for such a thing not to happen are if n(r) is zero or det(⇢(r)) is

zero. The ground state density is assumed to be always positive (see [14]) so any

problem concerning the inversion must come from the determinant of ⇢(r).

In [3] it was shown that for relativistic-spin DFT, such problem does not show

up, since the determinant of the matrix in question is proportional to

1� j2(r)

n2(r)
= 1� v2(r)

c2
> 0 (5.2)

since v(r) would be the velocity field and a particle with mass cannot reach the

speed of light. If one tries to use the same argument for SDFT, one will get (using

Einstein summation convention from here on)

m2 = ✏ijk✏ilm
@(nvk)

@xj

@(nvm)

@xl

=
@(nvk)

@xj



@(nvk)

@xj

� @(nvj)

@xk

�

(5.3)
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taking into account that ✏ijk✏ilm = �j,l�k,m � �i,m�k,l. This relation is not very

helpful since there are no upper bounds for the derivatives of n or the velocity

field.

Expanding n and the components of m in the components of the spinors, one

easily gets that

n = ✓i
⇣

|�↵
i |2 + |��

i |2
⌘

(5.4)

mx = �µB✓i
⇣

�⇤↵
i �

�
i + c.c.

⌘

(5.5)

my = iµB✓i
⇣

�⇤↵
i �

�
i � c.c.

⌘

(5.6)

mz = �µB✓i
⇣

|�↵
i |2 � |��

i |2
⌘

(5.7)

From here and taking into account that

n2 � m2

µ2
b

= ✓i✓j
h

|�i|2|�j|2 � �†
i�k�i�

†
j�k�j

i

(5.8)

one arrives at the final expression

n2 � m2

µ2
b

= 2✓i✓j
⇣

�⇤↵
i �

⇤�
j � �⇤�

i �
⇤↵
j

⌘⇣

�↵
i �

�
j � ��

i �
↵
j

⌘

(5.9)

which, besides the obvious case that at least one of the spinors is zero at a given

point, will be zero if there is only one occupied state or if the the states are fully

polarized (one of the components of the spinor is zero).
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Appendix B - Transformation of

the equations and rotation

The following equations show how the formulas in Chapter 3 where transformed

in order to be implemented in a subroutine in OCTOPUS and they follow the

notes of Myrta Grüning. One starts by writing for the Slater part of (3.54)

vµx(r) = �(r)N
µ⌫(r)⇤x,⌫(r) (5.10)

with

[�(r)]�1 = n(r)



n2(r)� m(r) ·m(r)

µ2
B

�

(5.11)

vµx(r) = (vx(r), µBBx(r)) (5.12)

⇤µ
x(r) =

1

2

N
X

k=1



�†
k(r)�

µ �Ex

��k(r)
+ c.c.

�

, µ = 0, 1, 2, 3 (5.13)

One now can write

N0µ = n

0

B

B

B

B

@

n

mx/µB

my/µb

mz/µB

1

C

C

C

C

A

N iµ =
mi

µB

0

B

B

B

B

@

n

mx/µB

my/µb

mz/µB

1

C

C

C

C

A

+
ui

n�
(5.14)
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so that

N ⌫ = N⌫N +
u⌫

n�
(5.15)

with N = (n(r),m(r)/µB) and u⌫ = (0, �v1, �v2, �v3). Then, one can rewrite

(5.10) as

vµx(r) = n(r)�(r)Nµµ(r)Nµ(r)⇤x(r) +
uµ(r)⇤(r)

n(r)
(5.16)

Now it is possible to define the previous expression in terms of

⇢ =
N
X

i=1

✓i
⇣

|�↵
i |2, |�

�
i |2, Re(�↵

i �
⇤�
i ), Im(�↵

i �
⇤�
i ))

⌘T

=

✓

n� mz

µB

, n+
mz

µB

,�mx

µB

,
my

µB

◆T

(5.17)

and, by analogy,

V =
�

V ↵↵, V ��, Re(V ↵�), Im(V ↵�)
�T

= (vx + µBBz, vx � µBBz, µBBx,�µBBy)
T

(5.18)

Transformation between ⇢ and N is done via the matrix

T1 =

0

B

B

B

B

@

1/2 0 0 �1/2

1/2 0 0 1/2

0 �1/2 0 0

0 0 1/2 0

1

C

C

C

C

A

, (T T
1 )

�1 =

0

B

B

B

B

@

1 0 0 �1

1 0 0 1

0 �2 0 0

0 0 2 0

1

C

C

C

C

A

(5.19)

while vx and V transform via

T2 =

0

B

B

B

B

@

1 0 0 1

1 0 0 �1

0 1 0 0

0 0 �1 0

1

C

C

C

C

A

(5.20)

Starting with the transformation of the product

NT⇤! (T1N)T [(T T
1 )

�1⇤] (5.21)
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and defining

w↵� =
N
X

k=1

�⇤↵
k

✓

�Ex
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B
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then
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One will also get that

T2N = 2 (⇢2, ⇢1,�⇢3,�⇢4)T T2(u
⌫⇤) =
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And thus
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B

B

B

B

@

⇢��

⇢↵↵

�Re(⇢↵�)

�Im(⇢↵�)

1

C

C

C

C

A

⇢⇤̂

2�
+

0

B

B

B

B

@

Re(w↵↵ � w��)

�Re(w↵↵ � w��)

Re(w↵� + w�↵)

Im(w↵� � w�↵)

1

C

C

C

C

A

(5.25)

with � = 4n�, � = 1
4(n

2 � m2

µ2
B

) = [⇢1⇢2 � (|⇢3|2 + |⇢4|2)].

In the limit of unpolarized spin, one has that ⇢1 = ⇢2 = ⇢0
2 , ⇢3 = ⇢4 = 0 and

that ⇤̂1 = ⇤̂2 = w0, ⇤̂3 = ⇤̂4 = 0. Thus, one will obtain

V ↵↵ =
w0

⇢0
= V �� V ↵� = 0 (5.26)
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For the case of collinear spin with polarization along Oz, ⇢1 =
⇢0+�
2 , ⇢2 =

⇢0��
2 ,

⇢3 = ⇢4 = 0. The transformed potentials are ⇤̂1 = w0 � �, ⇤̂2 = w0 + � and

⇤̂3 = ⇤̂4 = 0. After some algebra, one will arrive at

V ↵↵ =
w0 +�

⇢0 + �
V �� =

w0 ��
⇢0 � �

V ↵� = 0 (5.27)

which is the result for the spin-polarized limit along Oz.

Now, for the limit where the polarization lies along Ox, ⇤̂1 = ⇤̂2 = w0 and

⇢̂1 = ⇢̂2 = ⇢0
2 . As there is no polarization along Oy, ⇤̂4 = 0 and ⇢̂4 = 0, but

⇤̂3 = �2� and ⇢̂3 =
�
2 . After some calculations one will get

V ↵↵ = V �� =
1

2

✓

w0 ��
⇢0 � �

� w0 +�

⇢0 + �

◆

(5.28)

Re(V ↵�) =
1

2

✓

w0 +�

⇢0 + �
� w0 ��

⇢0 � �

◆

Im(V ↵�) = 0 (5.29)

Now, the matrices
 

⇢↵↵ ⇢↵�

⇢�↵ ⇢��

!  

V ↵↵ V ↵�

V �↵ V ��

!

(5.30)

will transform in the same way as �3 transforms to �1, which is through the

matrix
1p
2

 

1 1

1 �1

!

(5.31)

So, one will have
 

⇢1 0

0 ⇢2

!

! 1

2

 

⇢1 + ⇢2 ⇢1 � ⇢2

⇢1 � ⇢2 ⇢1 + ⇢2

!

(5.32)

 

V1 0

0 V2

!

! 1

2

 

V1 + V2 v1 � V2

V1 � V2 V1 + V2

!

(5.33)

which when replaced by the values of the spin-polarized limit along Oz match

the results for the Ox case.
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When the polarization is along Oy, the matrix transformation is done by

1p
2

 

1 �i

�i 1

!

(5.34)

and so,
 

⇢1 0

0 ⇢2

!

! 1

2

 

⇢1 + ⇢2 �i(⇢1 � ⇢2)

i(⇢1 � ⇢2) ⇢1 + ⇢2

!

(5.35)

and W and V will transform in the same way. For V ↵↵ and V �� the expressions

are the same, but in this case Re(V ↵�) = 0 and

�Im(V ↵�) = �1

2

✓

w0 +�

⇢0 + �
� w0 ��

⇢0 � �

◆

(5.36)

When adding the KLI response part, one will arrive at the following equation
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B

B

B

@
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KLI

V ��
KLI

Re(V ↵�
KLI)

�Im(V ↵�
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C

C

C

C

A

=

0

B

B

B

B

@

V ↵↵
S

V ��
S

Re(V ↵�
s )

�Im(V ↵�
S )

1

C

C

C

C

A

+
1

n

0

B

B

B

B

@

⇢2

⇢1

�⇢3
�⇢4

1

C

C

C

C

A

⇢�̂

2�
+

N
X

k=1

0

B

B

B

B

@

�↵↵
k � ���

k )

�(�↵↵
k � ���

k )

2Re(�↵�
k )

�2Im(�↵�
k )

1

C

C

C

C

A

�vKLI
k

2

(5.37)

with �↵�
k = �⇤�

k �
↵
k and

�̂ =
N
X

k=1

0

B

B

B

B

@

���
k

�↵↵
k

�2Re(�↵�
k )

2Im(�↵�
k )

1

C

C

C

C

A

�vKLI
k =

N
X

k=1

P̂k�vKLI
k (5.38)

Going back to the definition of �vKLI
k , one defines

�vKLI =
N
X

k=1

ˆ
d3r
n

✓k�
†
k(r)

h

vx(r) + µB� ·Bx(r)� u†
x,k(r)

i

�k(r) + c.c.
o

(5.39)
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N
X

k=1

�†
k(r) [vx(r) + µB� ·Bx(r)]�k(r) = �V ! [(T�1

2 )T�]V (5.40)

ū⇤
k =

ˆ
d3r�†

ku
†
x,k(r)�k(r) (5.41)

and

�̂0 =
N
X

k=1

0

B

B

B

B

@

�↵↵
k

���
k

2Re(�↵�
k )

�2Im(�↵�
k )

1

C

C

C

C

A

=
N
X

k=1

P̂ 0
k (5.42)

To evaluate �vKLI , one has to multiply (5.37) by (P̂ 0
i )

T on the right and on the

left, then subtract from both sides ū⇤
i , sum on i and integrate in r, thus arriving

at

�vKLI =
N
X

i=1

ˆ
[(P̂ 0

i )
TVS � ū⇤

i ]d
3r+

+
N
X

i=1

N
X

k=1

ˆ
1

2n�
(P̂ 0

i )
T

0

B

B

B

B

@

⇢2

⇢1

�⇢3
�⇢4

1

C

C

C

C

A

(⇢P̂k)d
3r�vKLI+

+
N
X

i=1

N
X

k=1

ˆ
(P̂ 0

i )
T

0

B

B

B

B

@

�↵↵
k

���
k

2Re(�↵�
k )

�2Im(�↵�
k )

1

C

C

C

C

A

d3r�vKLI

(5.43)
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Appendix C - The algorithm

! ! Copyright (C) 2002�2006 M. Marques , A. Castro , A. Rubio , G. Bertsch

! !

! ! This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify

! ! i t under the terms o f the GNU General Publ ic L icense as publ i shed by

! ! the Free Software Foundation ; e i t h e r ve r s i on 2 , or ( at your opt ion )

! ! any l a t e r ve r s i on .

! !

! ! This program i s d i s t r i bu t ed in the hope that i t w i l l be use fu l ,

! ! but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

! ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

! ! GNU General Publ ic L icense f o r more d e t a i l s .

! !

! ! You should have r e c e i v ed a copy o f the GNU General Publ ic L icense

! ! a long with t h i s program ; i f not , wr i t e to the Free Software

! ! Foundation , Inc . , 59 Temple Place � Su i te 330 , Boston , MA

! ! 02111�1307 , USA.

! !

! ���������������������������������������������������������

subrout ine xc KLI Pau l i s o l v e (mesh , st , oep )

type ( mesh t ) , i n t en t ( in ) : : mesh

type ( s t a t e s t ) , i n t en t ( in ) : : s t

type ( xc oep t ) , i n t en t ( inout ) : : oep

!

i n t e g e r : : i s , ip , i i , j j , i s t , e igen n , i t , k s s i

FLOAT : : rho (mesh%np , 4 ) , lambda (mesh%np ) , n(mesh%np ) , T rho (mesh%np , 4 )

FLOAT, a l l o c a t a b l e : : T V ( : , : ) ,V( : , : ) , rhoV ( : ) , V m1 ( : , : ) , P i ( : , : , : ) , T Vi ( : , : , : ) , Delta V ( : ) , Vs ( : , : )

CMPLX, a l l o c a t a b l e : : we ighted hf ( : , : , : ) , r h o i ( : , : , : , : )

FLOAT : : r eached th r e sho ld (4)

l o g i c a l , save : : f i r s t = . t rue .

!

c a l l p r o f i l i n g i n (C PROFILING XC KLI)

PUSH SUB( xc KLI Pau l i s o l v e )

!

! Density r e l a t ed quan t i t i e s

!

rho = s t%rho

do ip = 1 ,mesh%np
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do i s = 1 ,2

i f ( rho ( ip , i s ) . l t .CNST(1 e�20)) rho ( ip , i s ) = CNST(1 e�20)

end do

end do

!

n ( : ) = rho ( : , 1 ) + rho ( : , 2 )

lambda ( : ) = rho ( : , 1 )⇤ rho ( : , 2 ) � ( rho ( : , 3 )⇤⇤2 + rho ( : , 4 )⇤⇤2 )

!

! Po t en t i a l r e l a t e d quan t i t i e s

! ( Bu i l t from HF po t e n t i a l s weighted with o r b i t a l d e n s i t i e s )

!

SAFE ALLOCATE( we ighted hf (mesh%np , s t%d%dim , s t%d%dim ) )

we ighted hf = M Z0

!

! w {up , down} = \ sum i \ ph i { i , down}ˆ⇤ u xˆ{ i , up}ˆ⇤ \ ph i { i , up}

!

do i i = 1 , s t%d%dim

do j j = 1 , s t%d%dim

do i s t = s t%s t s t a r t , s t%st end

we ighted hf ( : , i i , j j ) = weighted hf ( : , i i , j j ) + &

&oep%socc ⇤ s t%occ ( i s t , 1 )⇤ conjg ( s t%zp s i ( : , j j , i s t , 1 )⇤ oep%z lx c ( : , i s t , i i ) )

! oep%z lx c => (\ ph i j )ˆ⇤ u xˆ j

end do

end do

end do

!

SAFE ALLOCATE(T V(mesh%np , 4 ) )

T V = M ZERO

!

T V ( : , 1 ) = r e a l ( we ighted hf ( : , 2 , 2 ) ,REAL PRECISION)

T V ( : , 2 ) = r e a l ( we ighted hf ( : , 1 , 1 ) ,REAL PRECISION)

T V ( : , 3 ) = �r e a l ( we ighted hf ( : , 1 , 2 ) + weighted hf ( : , 2 , 1 ) ,REAL PRECISION)

T V ( : , 4 ) = �aimag ( we ighted hf ( : , 1 , 2 ) � weighted hf ( : , 2 , 1 ) )

!

SAFE DEALLOCATE A( weighted hf )

!

SAFE ALLOCATE(V(mesh%np , 4 ) )

V = M ZERO

!

V( : , 1 ) = T V(: ,2) �T V( : , 1 )

V( : , 2 ) = �V( : , 1 )

V( : , 3 ) = �T V( : , 3 )

V( : , 4 ) = �T V( : , 4 )

!

! Combine them to obta in S l a t e r part

!

SAFE ALLOCATE( rhoV(mesh%np ) )

rhoV = M ZERO

f o r a l l ( ip = 1 :mesh%np) rhoV( ip ) = sum( rho ( ip , : ) ⇤T V( ip , : ) )

rhoV = rhoV/lambda
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SAFE DEALLOCATE A(T V)

!

T rho ( : , 1 ) = rho ( : , 2 )

T rho ( : , 2 ) = rho ( : , 1 )

T rho ( : , 3 : 4 ) = �rho ( : , 3 : 4 )

!

f o r a l l ( ip = 1 :mesh%np) V( ip , : ) = (V( ip , : ) + T rho ( ip , : ) ⇤ rhoV( ip ) )/ n( ip )

!

i f ( oep%l e v e l == XC OEP SLATER) then ! i f S l a t e r e x i t here

!

oep%vxc = V

!

c a l l p r o f i l i n g o u t (C PROFILING XC KLI)

POP SUB(X( xc KLI Pau l i s o l v e ) )

SAFE DEALLOCATE A(V)

SAFE DEALLOCATE A( rhoV)

!

re turn

end i f

!

SAFE ALLOCATE(Vs(mesh%np , 4 ) )

Vs = V ! S l a t e r part

!

! i t e r a t i o n c r i t e r i a

!

c a l l s c f t o l i n i t ( oep%s c f t o l , ”KLI” , def maximumiter=20)

!

! get the HOMO sta t e

!

c a l l xc oep AnalyzeEigen ( oep , st , 1)

e i gen n = oep%e igen n

!

i f ( e i g en n == 0) then

oep%vxc = Vs

return

end i f

!

! o r b i t a l d e n s i t i e s

!

SAFE ALLOCATE( rh o i (mesh%np , s t%d%dim , s t%d%dim , e i gen n ) )

r h o i = M Z0

!

do i i = 1 , s t%d%dim

do j j = i i , s t%d%dim

do i s t = 1 , e i g en n

k s s i = oep%e ig en index ( i s t )

r h o i ( : , i i , j j , i s t ) = oep%socc ⇤ s t%occ ( ks s i , 1 )⇤ conjg ( s t%zp s i ( : , j j , k s s i ,1))⇤&

&st%zp s i ( : , i i , k s s i , 1 )

r h o i ( : , j j , i i , i s t ) = conjg ( r h o i ( : , i i , j j , i s t ) )

end do
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end do

end do

!

! arrange them in a 4�vector

!

SAFE ALLOCATE( P i (mesh%np , 4 , e i g en n ) )

P i = M ZERO

!

P i ( : , 1 , : ) = r e a l ( r h o i ( : , 1 , 1 , : ) )

P i ( : , 2 , : ) = r e a l ( r h o i ( : , 2 , 2 , : ) )

P i ( : , 3 , : ) = MTWO⇤ r e a l ( r h o i ( : , 1 , 2 , : ) ,REAL PRECISION)

P i ( : , 4 , : ) = MTWO⇤aimag ( r h o i ( : , 1 , 2 , : ) )

!

SAFE DEALLOCATE A( rh o i )

!

! Ca l cu la te i t e r a t i v e l y response part

!

SAFE ALLOCATE(V m1(mesh%np , 4 ) )

SAFE ALLOCATE( Delta V ( e igen n ) )

SAFE ALLOCATE(T Vi (mesh%np , 4 , e i g en n ) )

!

i f ( f i r s t ) then !

V = M ZERO

f i r s t = . f a l s e .

e l s e

V = oep%vxc � Vs

end i f

!

KLI i t e r a t i on : do i t = 1 , oep%s c f t o l%max iter

V m1 = Vs + V

!

! Delta VˆKLI

!

Delta V = M ZERO

do i s t =1, e i g en n

k s s i = oep%e ig en index ( i s t )

do i s = 1 , s t%d%nspin

Delta V ( i s t ) = Delta V ( i s t )+ dmf dotp (mesh , P i ( 1 : mesh%np , i s , i s t ) ,V m1 ( 1 : mesh%np , i s ) )

end do

Delta V ( i s t ) = Delta V ( i s t ) � r e a l (sum( oep%uxc bar ( k s s i , : ) ) )

end do

!

!

T Vi ( : , 1 , : ) = P i ( : , 2 , : )

T Vi ( : , 2 , : ) = P i ( : , 1 , : )

T Vi ( : , 3 , : ) =�P i ( : , 3 , : )

T Vi ( : , 4 , : ) =�P i ( : , 4 , : )

!

f o r a l l ( ip =1:mesh%np , i s =1: s t%d%nspin ) T Vi ( ip , i s , : ) = T Vi ( ip , i s , : ) ⇤ Delta V ( : )

!
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V = M ZERO

do ip=1,mesh%np

V( ip , 1 ) = sum(T Vi ( ip ,2 , : ) �T Vi ( ip , 1 , : ) )

V( ip , 2 ) = �V( ip , 1 )

V( ip , 3 ) = �sum(T Vi ( ip , 3 , : ) )

V( ip , 4 ) = �sum(T Vi ( ip , 4 , : ) )

end do

!

rhoV = M ZERO

do ip = 1 ,mesh%np

do i s t =1, e i g en n

rhoV( ip ) = rhoV( ip ) + sum( rho ( ip , : ) ⇤ T Vi ( ip , : , i s t ) )

end do

end do

rhoV = rhoV/lambda

!

f o r a l l ( ip = 1 :mesh%np) V( ip , : ) = (V( ip , : ) + T rho ( ip , : ) ⇤ rhoV( ip ) )/ n( ip )

!

do i s = 1 ,4

r eached th r e sho ld ( i s ) = dmf nrm2 (mesh , ( Vs ( 1 : mesh%np , i s ) + V( 1 : mesh%np , i s ) � &

&V m1( 1 : mesh%np , i s ) ) )

end do

!

i f ( a l l ( r eached th r e sho ld ( : ) . l e . oep%s c f t o l%conv abs dens ) ) e x i t

end do KLI i t e r a t i on

!

wr i t e ( message (1 ) , ’ ( a , i4 , a , es14 . 6 ) ’ ) &

&”In fo : After ” , i t , ” i t e r a t i o n s , KLI converged to ” , maxval ( r eached th r e sho ld ( : ) )

message (2) = ’ ’

c a l l mes sage s in f o (2)

!

oep%vxc = V m1

!

c a l l p r o f i l i n g o u t (C PROFILING XC KLI)

POP SUB( xc KLI Pau l i s o l v e )

!

SAFE DEALLOCATE A(T Vi )

SAFE DEALLOCATE A( P i )

SAFE DEALLOCATE A( rhoV)

SAFE DEALLOCATE A(Delta V )

!

end subrout ine xc KLI Pau l i s o l v e
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