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RESUMO 

Nitrato de Amónio (NH4NO3) é a componente base de uma conhecida família de 

misturas geradoras de gases e compósitos pirotécnicos. Nitrato de Ureia 

((NH2)2COHNO3) é um nitrato recentemente utilizado em estudos de deflagração e 

detonação. Ambos os nitratos foram utilizados em grandes atentados terroristas e são 

frequentemente utilizados em explosivos ocasionais. 

Foram testadas misturas de nitrato de amónio (AN) e de nitrato de ureia (UN). Foram 

utilizados poliuretano como ligante e, como aditivos, pó de Al e uma mistura de 

Magnésio com Teflon (MT). A decomposição dos reagentes foi prevista em função da 

temperatura através do código THOR. As temperaturas de combustão também foram 

teoricamente previstas, de modo a optimizar composições e a avaliar as performances 

esperadas. Os termogramas dos reagentes, adquiridos por DSC/TGA, ajudaram a definir 

as composições testadas, pois demonstram os seus níveis de decomposição. Os 

termogramas adquiridos do AN e do UN mostram algumas diferenças significativas 

entre eles. O UN apresenta um pico exotérmico a baixas temperaturas. Os testes 

experimentais recorreram a duas configurações: amostras cilíndricas, cuja ignição era 

feita no topo, e contentores em forma de disco, compostos por uma base cilíndrica de 

PVC e uma tampa de PMMA. As amostras cilíndricas foram testadas antes dos discos 

para verificar propriedades de combustão. O sistema de termopares permitiu a medição 

de temperaturas de combustão. Filmagens, acima de 1000 fps, permitiram a visualização 

directa da propagação da chama. Assim, as velocidades fundamentais de chama 

puderam ser medidas. 

A combustão com aditivos, Al e MT, demonstram aumentos de temperatura de chama 

na ordem dos 1300ºC e apresentam, sempre para a pressão atmosférica, velocidades de 

propagação de chama de mm/s e velocidades fundamentais de chama superiores a cm/s. 

A mistura de MT, como aditivo, parece aumentar a expansão dos produtos de 

combustão, mais do que o Al. O UN tem um comportamento semelhante ao do AN 

neste tipo de composições energéticas. Foi observada a auto-ignição de uma mistura de 

UN/PU com MT durante o tempo de cura. Este facto parece ser devido a complexos 

fenómenos (reacções entre os reagentes), onde foi observada a produção de gás 

proveniente do UN. Estudos suplementares são necessários antes de realizar novas 

experiências. 
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A espectroscopia de infra-vermelho (IV) foi utilizada para caracterizar os reagentes 

utilizados nas misturas, bem como a sua presença nas respectivas misturas, e para 

avaliar a formação de novas ligações, devido a reacções entre os reagentes. Os espectros 

de IV confirmam as capacidades de detecção para este tipo de misturas e provam a 

existência dos reagentes “frescos” nos resíduos de combustão. 

 

Palavras-chave: Nitrato de Amónio, Nitrato de Ureia, ligante Poliuretano, explosivos 

ocasionais, aditivo alumínio, aditivo Magnésio/Teflon, código THOR, termogramas 

DSC/TGA, testes de combustão de amostras, velocidades fundamental de propagação 

de chama, espectroscopia de infra-vermelho. 
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ABSTRACT 

Ammonium Nitrate (NH4NO3) is the base component of a known family of gas 

generators and pyrotechnic composite mixtures. Urea Nitrate ((NH2)2COHNO3) is a 

recent used nitrate in deflagration and detonation studies. Both of these nitrates were 

used in huge terrorist attacks and are frequently used on Homemade Explosives (HME). 

Mixtures of Ammonium Nitrate (AN) and Urea Nitrate (UN) with polyurethane 

solution, as binder, were tested, having Al and a mixture of Magnesium/Teflon as 

additives. Decomposition of reactants, as a function of temperature, was predicted using 

THOR code. Combustion temperatures were also theoretically predicted in order to 

optimize compositions and evaluate expected performances. DSC/TGA thermograms of 

reactants help to define tested compositions, showing their decomposition levels. AN 

and UN thermograms show some significant differences between them. UN presents an 

exothermic peak at quite low temperature. Experimental tests use two configurations: 

cylindrical samples, ignited at the top, and a cylindrical disk box, formed by a PVC 

cylindrical cup covered by a PMMA lid. Cylindrical samples were tested before 

cylindrical disk boxes, verifying burning properties. A thermocouples system allowed to 

measure burning temperatures. Video records, up to 1000 fps, allowed the direct 

visualization of the flame propagation. Fundamental flame velocities can then be 

measured.  

Combustion with additives, Al and MT, show an increasing flame temperature on the 

levels of 1300 ºC and present, always for atmospheric pressure, flame propagation 

velocities of mm/s and fundamental flame velocities higher than cm/s. MT additive 

seems to present an increased contribution, to the expansion of combustion products, 

more than Al. UN has a quite similar behaviour of AN in this kind of energetic 

compositions. It was observed the self-ignition of one of UN/PU compositions with 

MT, during curing time. It seems to be due to complex phenomena (reactions between 

reactants) where the production of gas, from UN, was observed. Supplementary studies 

are required before new experiences. 

Infra-Red (IR) spectroscopy was used to characterize the reactants used on the mixtures 

and their presence on respective mixtures, to evaluate the formation of new bounds due 

to the reactions between reactants. IR spectra confirm detection capabilities for these 

kind of mixtures and prove the existing unburnt reactants at found residues.  
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Keywords: Ammonium Nitrate, Urea Nitrate, Polyurethane binder, homemade 

explosives, Aluminum additive, Magnesium/Teflon additive, THOR code, DSC/TGA 

thermograms, burning test samples, propagation and fundamental flame velocities, IR 

spectroscopy. 
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CHAPTER 1 – INTRODUCTION 

1.1. Forensic Sciences Framework 

1.1.1. Terrorism definitions – HME and IED 

United Nations defined terrorism (vd. United Nations, 1994) as: “all criminal and 

unjustifiable methods and practices which can jeopardize friendly relations among 

States, territorial and human integrity and the security of the States, wherever and 

whoever committed; all acts, methods and practices which can put in risk international 

peace and security, the good relationships between countries, which can encumber 

international cooperation, and which as the aim of the destruction of human rights, 

fundamental freedoms and the democratic base of society; all criminal acts intended or 

calculated to incite a state of terror in the general public, organized or individual 

persons for political proposes are always unjustifiable and acts justifiable by political, 

philosophical, ideological, racial, ethnic, religious or any nature beliefs”. (Quaresma, et 

al., 2013(2)). 

A quite different definition is given by American law, on Title 18 USC Section 2331, 

(5), specifying domestic terrorism as: “activities that involve acts dangerous to human 

life that are a violation of the criminal laws of the United States or of any State; appear 

to be intended to intimidate or coerce a civilian population; to influence the policy of a 

government by intimidation or coercion; or to affect the conduct of a government by 

mass destruction, assassination, or kidnapping; and occur primarily within the territorial 

jurisdiction of the United States”. (US Code, 1992) 

The Science and Technology (S&T) Directorate of the U.S. Department of Homeland 

Security (Doherty, 2009) determined that “the term HME (Home Made Explosive) has 

been used to cover a wide range of materials from pure explosive compounds, such as 

triacetone triperoxide (TATP), that can be synthesized from readily available articles of 

commerce to home-made variants of explosives, such as ammonium nitrate (ANFO), 

that are used in very large commercial blasting operations. The former is a very 

sensitive material and so ordinarily is not made in large quantities. The latter is 

relatively insensitive and can be made in very large quantities.” 

According to the Army United States Marine Corps, 2005, an Improvised Explosive 

Device (IED) “is a device placed or fabricated in an improvised manner incorporating 
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destructive, lethal, noxious, pyrotechnic, or incendiary chemicals and designed to 

destroy, incapacitate, harass, or distract. It may incorporate military stores, but is 

normally devised from non-military components”.  

IED can vary widely in shape and form – ranging from small pipe bombs to multiple 

artillery shells linked together to create a device with greater explosive weight. They 

can be used in various forms: planted alongside a road, magnetically attached to a 

target, placed in a vehicle, or be loaded in a car or truck and driven into markets or 

buildings. Generically, IED’s can be divided by method of detonation or by method of 

delivery. The first one is divided into three basic methods to initiate detonation, they are 

by command, time and victim. The method of delivery can be divided into vehicle-

borne IED and suicide bombers. (Caldwell, 2011) 

 

 

1.1.2. IED – worldwide panorama 

The IED is the weapon of choice for adversaries operating along the threat continuum, 

represented on Figure 1.  

 

 

Figure 1: Threat continuum. (Joint Improvised Explosive Device Defeat Organization, 2012-1026) 

 

Bombs threats, as international domestic explosive events, occurred on 82000 terrorist 

incidents between 1970 and 2007 (START, 2009). The top three terrorist targets are 

private citizen’s property (20%), government (17%), and business (16%). Bombing was 

51% of the employed terrorists’ tactic. Between Augusts of 2008 and 2009 occurred an 

average of 600 IED attacks per month worldwide (excluding Iraq and Afghanistan). 

(Science & Technology to Counter Improvised Explosive Devices, 2010)  

When a domestic terrorist IED attack occurs, it normally follows a cycle (Figure 2). 
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Figure 2: Domestic Terrorist IED attack cycle. (Science & Technology to Counter Improvised Explosive 

Devices, 2010) 

 

To have a good overview about worldwide terrorism, a search on Global Terrorism 

Database (GTD) was made. (START, 2012)  

An example is presented in Figure 3 related to 4930 incidents from January of 2010 to 

December of 2011. The incidents varied between 150 and 250 per month, being the 

worth moths September and November. 

 

 

Figure 3: Terrorist incidents occurred in from the beginning of 2010 to the end of 2011 using bombing 

and explosion (dynamite is included as weapon). (START, 2012) 
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During the referred years the top three target not varied so much, just the third position 

changed from business to police (Figure 4). 

 

 

Figure 4: Target types of terrorist incidents during 2010 and 2011 which used explosive and incendiary 

devices. (START, 2012) 

 

Explosives, bombs and dynamite were used two hundred times more than incendiary 

devices, during worldwide terrorist incidents on years of 2010 and 2011 (Figure 5 at 

left). On the 9889 incidents (considering all possible weapon types by GTD), 

explosives, bombs and dynamite were the most used weapon on terrorist incidents and 

incendiary devices occupied the third position of the known used weapons (Figure 5 at 

right). 

 

 

Figure 5: Statistic of the use of explosives, bombs dynamite and incendiary devices as weapon on the 

4930 terrorist incidents which used that kind of weapon (at left), and common weapons used on 9889 

reported terrorist incidents during the years 2010 and 2011. (START, 2012) 
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On 4930 terrorist incidents, more than a half not had fatalities or injuries as casualties. 

Occurred more injuries than fatalities, but still this, the values are large. Figure 6 

illustrate the statistic of the casualties occurred on terrorist incidents. 

 

 

Figure 6: Casualties –fatalities on the left and injuries on the right - resultant of 4930 terrorist incidents, 

occurred worldwide between 2010 and 2011. (START, 2012) 

 

Terrorism is a worldwide problem. The zones which suffer more with terrorist attacks 

using explosives, bombs, dynamite and incendiary devices, including recourse to 

suicide, are Middle East, North Africa and South Asia. East Asia is the most pacific 

zone (Figure 7). 

 

 

Figure 7: Regions affected by terrorist attacks with resource to explosives and bombs. (START, 2012) 

 

The Joint IED-Defeat Organization (JIEDDO), a US military command, detailed from 

their 2010 annual report, that IEDs still are the weapon of choice for global insurgents, 

with approximately 260 IED incidents per month, excluding Afghanistan and Iraq. 

(Caldwell, 2011) (vd. Figure 8) 
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Figure 8: Representation of monthly global terrorist events that employed IED’s, excluding Iraq and 

Afghanistan cases, for 2010. (Caldwell, 2011) 

 

More recently, from January to November 2011, JIEDDO reported (outside of Iraq and 

Afghanistan) 6832 IED events averaging 621 per month, 12286 casualties at 111 

countries conducted by individuals, supported by 40 regional and transnational threat 

networks. Many of these acts, methods and practices are always worldwide employed, 

concerning Israel/Palestine, Egypt, Syria, Libya, Russia /Chechnya conflicts, Iraq and 

Afghanistan, between many others. (Deen, 2005)  

 

 

1.1.3. Terrorist incidents in Portugal 

Portugal is a quiet country on west coast of Europe, but it already suffered with 

terrorism. According to GTD (START, 2012), since 1973 until 2011 happened 139 

terrorist incidents in Portugal. As it is possible to see on Figure 9, the worst years were 

from 1976 to 1985.  



HOMEMADE EXPLOSIVES BASED ON AMMONIUM AND UREA NITRATES 

 

7 

Joana Quaresma 

 

Figure 9: Terrorist incidents that occurred in Portugal since 1970 to 2011 (START, 2012) 

 

The top three attack type of the reported attacks were armed assault, assassination and 

bombing/explosion (Figure 10, left), being the last one the most used along the years 

(Figure 10, right). 

 

 

Figure 10: Attacks types used on terrorist incidents (left) and number of occurrences of the top three 

along the years (right) registered in Portugal since 1970 to 2011. (START, 2012) 

 

The preferred targets on terrorist attacks were business, government (general and 

diplomatic) and private citizens and property (Figure 11, left). As referred above, the 

worst decades of terrorism in Portugal were 70’s and 80’s, due to the April 25
th

 

Revolution, 1974, when Portugal suffered the transition from a dictatorial regime to a 

democratic one. This fact is observable in statistics, because government (general plus 

diplomatic) was the most affected target (Figure 11, right). 
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Figure 11: Most common target types (left) and number of occurrences of each top three target (right) of 

the terrorist attacks performed in Portugal from 1970 to 2011. (START, 2012) 

 

The most known terrorist group in Portugal whose was responsible for 47 terrorist 

incidents, was Popular Forces of April 25 (START, 2012), known in Portugal by FP25 

(acronym for Forças Populares). This was the armed organization that supported FUP 

(Força de Unidade Popular – Popular Unity Force), an extreme left political 

organization which was unhappy with the ideological and practical measures taken after 

the Revolution. (Infopédia, 2003 - 2013).  

According to Gobern Lopes (FP-25/30 anos, 2010), one of the founders of this extreme 

left armed organization, the objective of FP25 was the military formation of the 

Portuguese workers, on a defensive perspective, never with the objective of reaching the 

armed fight. In 1980, the FP25 appears on the restructuration process of the 

revolutionary left wing, which started in 1976 by extreme left political organizations 

(Brigadas Revolucionárias – Revolutionary Brigades - and Partido Revolucionário do 

Proletariado - Revolutionary Party of the Proletariat). FP25 felt there were an offensive 

against a set of achievements that workers had succeeded after the Revolution like the 

end of worker’s control, the companies’ self-management and the end of the agrarian 

reform. 1987 was the last year of terrorist attacks performed by this armed organization. 

(FP-25/30 anos, 2010). 

As it is possible to observe in Figure 12, the most used tool and form to attack were 

explosives and bombing, respectively. (START, 2012) FP25 was responsible for 17 

murders, 66 bombing outrages and 99 bank robberies. (FP-25/30 anos, 2010) 
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Figure 12: Attack (left) and weapon (right) types used by FP25 between 1980 and 1987. (START, 2012) 

 

Nowadays, terrorism in Portugal is not usual, but still exists individual cases, as 

occurred in 2011 where groups of anarchist threw cocktails Molotov to State buildings. 

These kind of occurrences has tendency to grow, due to financial and economic 

recession that has been feeling in Europe since 2008. Good examples of this are the 

conflicts that have been occurring in Greece and Spain. 

 

 

1.1.4. HME and supply chain security improvements 

In our occidental quotidian life products, energy, medicine and food are provided by a 

complex global supply chain. These global systems depend on an interconnected web of 

transportation infrastructure and pathways, information technology, cyber and energy 

networks. (The White House, 2012) All these dependencies can be profitable for 

economic activities, but with the development, the world-wide supply chains had 

become more and more complex. Due to that complexity, the supply chains become 

more vulnerable to terrorist or criminal attacks. Consequently, companies started to 

implement regulations and measures in order to improve their supply chain security. 

(Quaresma, et al., 2013(2))  

A secure supply chain is a supply chain where various measures have been taken to 

guarantee a certain level of security. Security measures can be taken with regards to (a 

combination of) physical flows, information flows and/or money flows. (Oosterhout, et 

al., 2007) In order to achieve secure supply chains, technology, clear procedures and 

rules and cooperation between government and companies have to be combined 

effectively. The human factor has always to be considered, because it determines the 

ultimate success or failure of each system. (Quaresma, et al., 2013(2))  
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Supply chain security is a wide concept (vd. Figure 13) (Quaresma, et al., 2013(2)), 

composed by physical and non-physical security and by a preventive versus more 

corrective measures (examples in the figure). The supply chain security has to be 

organized in a way that if a security emergency occurs, the supply chain will quickly 

recover into a normal state of operations. 

 

Figure 13: Components of Supply Chain Security (Oosterhout, et al., 2007) 

 

Three different layers are used (Oosterhout, et al., 2007) to analyze supply chains: 

 physical activities, such as transport and transshipment, are the first 

layer;  

 the second layer is in respect to contracting or transaction activities that 

cover all commercial relationships between parties in the chain;  

 the third layer is the governance layer, where are included all governing 

bodies with their inspection and verification activities. (Quaresma, et al., 

2013(2)). 

An overview of a typical port supply chain with an export flow, ocean transport and an 

import flow, as well as some possible areas of security risks is shown in Figure 14. 

(Oosterhout, et al., 2007) 
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Figure 14: Supply Chain Processes and security risks. (Oosterhout, et al., 2007) 

 

Security risks in the physical layer. The transport supply chain can be seen as a terrorist 

target. (Quaresma, et al., 2013(2)) In the physical layer, risk points are the points of 

stuffing and stripping of a container, plus stop points (used for workers rest, in case of 

truck motorists, for example) where the cargo is not touched. At these points, the load 

can more easily be altered/ stolen by terrorists or criminals. A cargo is safer in 

movement than in rest. Empty containers are easy targets, because they have little 

attention than the loaded ones. (Oosterhout, et al., 2007) 

 

Security risks in the transaction and governance layer. The security risks in the 

transactional and governance layers are related (more or less) to the security of the 

information accompanying the logistical process, like criteria confidentiality, integrity, 

availability and non-repudiation. (Quaresma, et al., 2013(2)) 

 These criteria were defined as confidentiality of data that ensures information 

only accessible to authorized people. (Oosterhout, et al., 2007) Once again, the 

information transparency has advantages and disadvantages. The biggest advantage is 

the safety on planning routes, where preventive measures can be taken in case of 

disturbs. The major disadvantage of information transparency is the detailing which a 

terrorist has access, in case of an attack or theft. (Oosterhout, et al., 2007) 

 

Security measures and requirements. Security measures can be categorized by two 

ways: layers (examples in Table 1) and timing. 
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Table 1: Examples of security measures. (Oosterhout, et al., 2007) 

 

 

Oosterhout et al., 2007, distinguished between three types of possible measures: 

preventive measures, such as surveillance cameras, high fences and gates around the 

place where load and/ or load transport are stored; detective measures, like scanning 

containers or trucks where the cargo will be transported; and corrective measures, which 

are the security measures taken when an incident results in damage, to correct it and 

recover from it.  

To create a secure freight system, Lee and Wolf describe three generic requirements or 

measures from a security perspective (Oosterhout, et al., 2007):  

1. Assuring integrity of conveyance loading, documentation and sealing 

2. Reduce risk of tampering in transit (with comprehensive monitoring of 

tampering and intrusion) 

3. Provide accurate, complete and protected information about shipments 

to those who need it in a timely manner 

By the same authors, four critical requirements from security processes are applied to 

supply chain managers (Oosterhout, et al., 2007): 

i. Commit to processing and inspecting qualifying shipments in ways that 

permit highly reliable and predictable processing times 

ii. Protect all commercial information given to authorities 

iii. Harmonize and standardize security processes internationally 

iv. Security and anti-tampering practices should be by-products of excellent 

supply chain management practices. 

 

A supply chain security sense and respond model (Figure 15) was developed by Dove 

(2001) and by Christopher and Lee (2004). This model is divided in two phases, sense 

and respond. The sensing phase has preventive and detective measures, while 
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responding phase has detective and corrective measures. A learning phase should be 

added to make security measures effective in the long term. (vd. Quaresma et al., 

2013(2)) 

 

 

Figure 15:  Supply chain security sense and respond model. (Oosterhout, et al., 2007) 

 

Implementing security measures: information needs. Nine information blocks were 

created to improve the supply chain security. Beside these, specific data can be required 

for preventive, detective or corrective measures. The nine information blocks are 

(Quaresma, et al., 2013(2)):  

1. Booking information  

2. Cargo information 

3. Nuclear detection 

4. X-ray scan 

5. Status (of container, for example) 

6. Operator and location information 

7. Seal 

8. Certificate information 

9. Personnel 

10.  

The diagram in Figure 16 shows the interconnection between information blocks in 

Rotterdam Port. The rectangles are the information blocks, the diamond shapes are the 

relationships between them. (Oosterhout, et al., 2007) 
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Figure 16: Information blocks and coverage (in width) in Port of Rotterdam IT systems. (Oosterhout, et 

al., 2007) 

 

Gap analysis. Gap analysis, or largest security risks analysis, is defined as the 

“information need versus information availability”. The gaps are found where 

vulnerability for disruption is relatively high and security controls (or measures in 

place) are relatively low. (Oosterhout, et al., 2007) 

Analyzing Figure 16 is understandable that a lot of security relevant information is 

accessible in electronic format and at supply chain workers. The most favorable 

situation, from a supply chain security perspective, is the most difficult challenge: the 

coverage of security relevant data elements by combining data from different IT 

(interconnection) systems of 100%. This situation is extremely hard to achieve, given 

the number of the parties involved, the limited readiness to share data and the 

complexity of a typical supply chain, as the port cases. A way to achieve this situation is 

making a selection of the most relevant data elements, combining all different IT 



HOMEMADE EXPLOSIVES BASED ON AMMONIUM AND UREA NITRATES 

 

15 

Joana Quaresma 

systems into a broader visibility platform. This visibility platform will cover the most 

relevant chain security data elements. (Oosterhout, et al., 2007) 

 

 

 

1.2. HME’s reactants – open market possibilities 

A search on an online open market was made to prove how easy is selecting and 

acquiring products to produce HME’s. (Quaresma, et al., 2013(2)) 

In s similar way, information about the possible products, many documents were 

founded on internet, for terrorist proposes. Between them, it must be cited “The 

Terrorist’s Handbook (Akira, 1998)) and “Indicators and Warnings for Homemade 

Explosives” (Bureau of Alcohol Tobacco Firearms and Explosives; Federal Bureau of 

Investigation, 2007). 

“The Terrorist’s Handbook” (Akira, 1998) shows clearly:  

- The ways of acquiring explosives and propellants, both in common market or 

as illegal acquisitions, for illegal acquisition it also teaches picking locks 

techniques. 

-  A list of useful household chemicals and their availability. 

-  The preparation of some chemicals (ammonium nitrate is one of them).  

- Some notions about explosions theory;  

- Explosives recipes, which are divided into impact, low order (as Fuel + 

Oxidizer mixtures and perchlorates), high order (ammonium nitrate, ANFOs) 

and other explosives (like the much known Molotov Cocktails).  

- Advices about using explosives as: safety, ignition devices and its 

construction, impact ignition, electrical and electro-mechanical ignitions, 

delays of fuse, timers and chemicals; 

- Types of explosive containers: paper, metal, glass and plastic. 

- Advanced uses for explosives where are presented techniques which just can 

be used by a person who had some degree of knowledge on the use of 

explosives, as shaped charges, tube explosives, atomized particles explosions, 

lightbulb bombs, book bombs and phone bombs. 

- Special ammunition for primitive weapons like: bow and crossbow 

ammunition, blowguns, wrist rockets and slingshots. 
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- Special ammunition for firearms: handguns, shotguns, compressed air/gas 

weapons, B.B. guns, .22 calibre pellet guns. 

- Rockets and cannons. 

- Pyrotechnic as perpetrator of violence: smoke bombs, coloured flames, tear 

gas, fireworks, firecrackers, skyrockets, roman candles. 

- A list of suppliers and more information. 

- A checklist for raids on labs. 

- Useful pyrochemistry, where it is possible to find reactions with the reagents 

in study on this thesis. 

Consequently, between free open market materials: 

 Aluminium powder can be found in explosives recipes as fuel in fuel-

oxidizer mixtures. It can be explosive when added to: potassium chlorate, 

potassium permanganate, ammonium perchlorate and a small amount of iron 

oxide, potassium perchlorate, potassium perchlorate and sulphur or barium 

nitrate, barium peroxide and magnesium powder, potassium permanganate 

and icing sugar. The mixture of aluminium and iron oxide powders generates 

enormous quantities of heat and is known as Thermit. (Akira, 1998) 

(Quaresma, et al., 2013(2)) 

 In fuel-oxidizer mixtures is possible to find icing sugar as fuel in some 

mixtures with: potassium chlorate and charcoal, potassium permanganate, 

potassium permanganate and aluminium or magnesium powder. The 

“Chemical Fire Bottle” is composed by sugar, potassium chlorate, 

concentrated sulphuric acid and gasoline. (Akira, 1998) (Quaresma, et al., 

2013(2)) 

 Fuel oil can be found as kerosene at kerosene stoves and can be bought at 

surplus or camping stores. (Akira, 1998) (Quaresma, et al., 2013(2)) 

 Ammonium nitrate, besides of being the main ingredient in fertilizers, can 

be bought at drug or medical supply stores in products as “Cold-Packs” or as 

“Instant Cold”, where it can be found in the second plastic bag, which is 

surrounding the bag of water. This handbook also explains how to synthesize 

ammonium nitrate from nitric acid (which synthesis is also referred) and 

ammonia household products, and how to detonate it with a conventional fire 

train. (Akira, 1998) (Quaresma, et al., 2013(2)) 
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 Potassium perchlorate appears as oxidizer in fuel-oxidizers mixtures with: 

aluminium or magnesium powder and sulphur (optional), barium nitrate and 

aluminium powder. Potassium perchlorate is easily synthesized with 

perchloric acid and potassium hydroxide. (Akira, 1998) (Quaresma, et al., 

2013(2)) 

 

The second cited document “Indicators and Warnings for Homemade Explosives” 

(Bureau of Alcohol Tobacco Firearms and Explosives; Federal Bureau of Investigation, 

2007) focus on the problematic of homemade explosives. (Quaresma, et al., 2013(2)) In 

this manual it is possible to find the following information: 

- Small introduction about characteristics of homemade explosive 

which are important to users (anti-terrorist forces) know them. 

- List of examples of oxidizers, fuels, precursors and binders. 

- Generalities about determining whether or not anti-terrorist forces are 

in a homemade explosives laboratory: 

 Most common homemade explosives: ammonium nitrate, 

chlorate/ perchlorate mixtures, urea nitrate, etc. 

 Chemical components: aluminium powder, ammonium 

nitrate, urea, etc. 

 Manufacturing equipment. 

According to “Indicators and Warnings for Homemade Explosives” (Bureau of Alcohol 

Tobacco Firearms and Explosives; Federal Bureau of Investigation, 2007), aluminium 

powder can also be identified as having colours like silver, grey or black or may look 

whitish and it is odourless. Aluminium powders are extremely flammable; they should 

not be near oxygen rich chemicals, acids, moistures or water, because when in contact 

with water, they release flammable gases and their vapours can be explosive and spread 

in the adjacent areas of their location. They have commercial use in paints, pyrotechnics 

and in manufacture of engines, cars, structural members, etc. They can be found at 

plastic and steel containers, at supply stores of hardware, paint, chemicals and 

pyrotechnics. (Quaresma, et al., 2013(2)) 

 The referred document gives also information about ammonium nitrate 

mixtures. Ammonium nitrate and fuel oil (ANFO) is the most common mixture, it 

appears in form of off-white to pinkish granules or spherical pellets and has the smell of 
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the fuel oil. These mixtures are sensitive to impact, friction, static spark and heat. They 

are commercially used as exploding targets (Tannerite), as blasting agent (ANFO), in 

dynamites, emulsions, water gels and in other packaged high explosives. Ammonium 

nitrate can be found at fertilizers, fuel oil at gas stations or in additives for motors and 

the icing sugar can be found at any market. (Quaresma, et al., 2013(2)) 

Urea nitrate is in form of colourless to off-white crystals which tends to create a 

deposit in the bottom of the recipients where it is contained, however, some additives 

can alter its physical appearance and it is odourless. These crystals are very sensitive to 

impact, friction, static spark and heat. It has not known commercial uses, but it can be 

easily synthesized with nitric acid, which is an industrial chemical, and urea, which is 

present in fertilizers. (Quaresma, et al., 2013(2)) 

Lastly, urea is a white crystalline, granular or powder and it has ammonia-like odour. It 

is used in fertilizers, road de-icers, food supplement and in manufacture or plastics and 

it is accessible in agricultural and hardware supply stores. (Quaresma, et al., 2013(2)) 

This document just gives general information about chlorates and perchlorates mixtures. 

All these mixtures are odourless and the most common are: flash powders, which appear 

in form of silver or gray powders/granules and used in fireworks; Poor Man’s C4, a 

white putty-like, solid or clumps; Armstrong’s Mix, a red powder present in toy gun 

caps. They are extremely sensitive to impact, friction, static spark, and heat. Potassium 

perchlorates are normally used on airbag initiator formulas and pyrotechnics. 

(Quaresma, et al., 2013(2)) 

 

 

1.2.1. HME’s reactants - market products selection 

The preliminary search of HME’s reactants was performed using online information of 

a public Portuguese supermarket (Continente Online). Selection criteria was based in 

oxidant properties and explosive previous reported characteristics. 19 products were 

selected as potential oxidants or fuels to construct homemade explosives. (Quaresma, et 

al., 2013(2)) (vd. Table 2). 
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Table 2: Chosen reagents selected from the market with commercial name, type and motive of selection. 

 for “selected” and  for “not selected” (Quaresma, et al., 2013(2)) 

No. Commercial name Selection Motive of selection 

1 Acetone 
 

Highly volatile solvent 

2 
Citric acid ACS 

reagent  

Very rich (r=2.29) for our purposes, limited 

atomic composition (only has atoms of 

carbon, oxygen and hydrogen). 

3 Icing Sugar “Sidul” 
 

Fuel easily obtained from common markets, 

with a satisfactory richness (r=1.12) 

4 
Aluminium cellulose 

Paint  
Very complex composition 

5 Aluminium powder 
 

Oxidant which improve the power of 

explosions 

6 
UHU The all 

Purpose Adhesive  
Complex solvent and  not has melamine 

7 Cellulose thinner 
 

Although complex, it has a favorable 

composition to produce explosives, because it 

has a lot of fuels in it. 

8 DMFA 
 

Dangerous oxidant, can easily explode by a 

static discharge 

9 
Flour “Branca de 

Neve Flor”  

Fuel with few disponible information and 

unknown composition 

10 Fuel oil 
 

Very efficient fuel (r=3.35) and easily 

obtained from common markets. 

11 Glycine ReagentPlus 
 

Oxidant easily inflammable in the presence of 

heat. Not stable enough for the main 

objectives 

12 
Harpic toilet bowl 

cleaner 2 in 1  

Oxidant which products in its composition 

have unknown thermodynamic properties. 

13 Melamine 
 

Dangerous fuel, can easily explode by a static 

discharge 

14 
Ammonium nitrate 

ACS reagent  
Oxidant very used in terrorist  attacks 

15 
Potassium nitrate 

ReagentPlus  

Oxidant which can easily explode by a static 

discharge. To unstable for the purposes 

16 Urea nitrate 
 

Very effective oxidant 

17 
potassium 

perchlorate  
Oxidant very used in terrorist attacks 

18 

CTX-300/GR 

TRICLORO 

GRANULADO 

(grainy trichloro) 
 

Oxidant with unknown thermodynamic 

composition 

19 
Urea powder, 

BioReagent  

Innovative oxidant. Few studied in explosive 

reactions 

 

An academic example exercise (Quaresma, et al., 2013(2)) was made in order to build a 

reactivity matrix of combined fuels and oxidants.  
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Aluminium 

Powder 

Icing 

Sugar 

Fuel 

Oil 

Ammonium 

Nitrate 

Urea 

Nitrate 

Potassium 

perchlorate 
Urea 

Aluminium 

Powder 
 

      

Icing Sugar    
     

Fuel Oil    
    

Ammonium 

Nitrate 
    

   

Urea Nitrate      
  

Potassium 

perchlorate 
      

 

Urea        

 

Legend: 

 Orange materials – fuels 

 Blue materials – oxidizers 

                     Indifferent 

            Selected 

             Excluded 

 

This exercise proves the complexity of selection, but also shows the effective possibility 

of producing a HME from free market products. 

 

1.3. AN and UN reactants 

Previous reactant matrix shows clearly the use of AN and UN due to the easy 

availability of large quantities in the open market. 
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1.3.1. Historical terrorist attacks using AN and UN 

Several terrorist attacks were performed using ANFO (Ammonium Nitrate/Fuel Oil)  

The explosive hazards of AN were early founded and many catastrophes occurred since 

the beginning of the XX century (Oxley, et al., 2002). Table 3 has a list with the story of 

AN accidents.  

 

Table 3: Synthesis of five most known terrorist attacks using AN as oxidizer. Attacks described by their 

known name (outrage), date and place of occurrence, quantities of used explosives, type of used bombs, 

circumstance and damage from the occurrence. 

Outrage Where When 

Amount 

of 

explosive 

Type of 

bomb 

Circumstance 

/ Damage 

Sterling Hall 

Bombing (Lee, 

2012) 

University of 

Wisconsin 

campus, Madison, 

USA 

August 

24th, 

1970 

≈ 900 Kg 

ANFO – 

vehicle born 

IED 

Students in 

protests anti-

war of 

Vietnam; 1 

dead, 4 injured 

Bishopsgate 

bombing (BBC, 

1993) 

London, UK 
April 

24
th
, 1993 

1000 Kg 

Ammonium 

Nitrate and 

NitroMetane 

(ANNM) 

vehicle born 

(truck) IED 

IRA (Irish 

Republican 

Army); 1 dead, 

44 injuried 

Oklahoma City 

Bombing 

(Silva, 2013) 

Bureau of 

Alcohol, 

Tobacco, and 

Firearm (AFT) 

offices, 

Oklahoma, USA 

April 

19
th
, 1995 

≈ 2300 Kg 

ANFO 

(fertilizer 

bomb) 

vehicle born 

(van) IED 

McVeigh, 

protests against 

FBI measures; 

168 dead, 680 

injured 

Shijiazhuang 

bombings 

(Tang, 2001) 

Shijiazhuang, 

China 

March 

16
th
, 2001 

≈ 600 Kg 

ANFO 

(fertilizer 

bomb) -  

plastic bags 

Jin Ruchao, 

Familiar and 

emotional 

problems; 108 

dead, 38 injured 

Oslo bombing 

(Stigset, et al., 

2011) 

Oslo, Norway 
July 22

nd
, 

2011 

950 Kg 

(150 kg of 

aluminium 

powder) 

aluminium-

powder 

enriched 

(ANNM) 

explosive 

Anders Breivik, 

political and 

religious issues; 

8 dead, 209 

injured 

 

The use of UN on terrorist attacks is not as popular as the use of AN, but for over a 

decade; urea nitrate has been used by terrorists to make improvised explosives. 
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In 1992, use of urea nitrate became so common on terrorist incidents made by the 

Shining Path (a South American terror cell), that sales of urea were outlawed in Peru. 

(Oxley, et al., 2009). It was used in many car bombings in Palestine, in improvised 

mines, which destroyed three Israeli Merkava tanks, in suicide bomber belts, which 

caused the loss of well over 100 lives in Israel during the years 2001–2004, in mortar 

shell and in rockets on Gaza Strip. These kind of terrorist attacks has been the 

motivation for several forensic studies. (Oxley, et al., 2009) (Tamiri, et al., 2009) 

(Almog, et al., 2007) (Tamiri, 2005) 

The most famous terrorist attack using UN was in the bombing of the World Trade 

Center, which occurred on February of 1993, in New York City. According to journalist 

references, Islamic radicals drove a truck loaded with about 680 kg of UN and 

hydrogen-gas cylinders into a garage underneath the World Trade Center. It leaved a 

crater 18 meters wide and caused the collapse of several steel-reinforced concrete floors 

in the surrounding area of the blast. Although the terrorist bomb failed to critically 

damage the main structure of the high-rise building, six people were killed and more 

than 1,000 were injured. The World Trade Center itself suffered more than $500 million 

in damage. After the attack, authorities evacuated 50,000 people from the buildings, 

hundreds of whom were suffering from smoke inhalation. Investigators determined that 

the cell built the bomb in New Jersey by consulting manuals brought from Pakistan. 

(Whitlock, 2007) (History.com, 1996-2013) 

 

 

1.3.2. Selected oxidants, binder and additives 

1.3.2.1. Ammonium Nitrate 

In some kind of applications, ammonium nitrate (AN) is the base component of a recent 

family of gas generators and pyrotechnic composite mixtures, as a candidate to 

substitute ammonium perchlorate (AP), due to its chlorine free characteristics. 

(Quaresma, et al., 2013) (FPNEM, 2013)  

Other factor that contributed for the selection of AN were experimental results from its 

decomposition processes, which show significant influence (Kolaczkowski, 1980) of 

endothermic dissociation and exothermic elimination of some products components, in 

a good agreement with theoretical predictions (Durães, et al., 1996(2)). (Quaresma, et 

al., 2013) (FPNEM, 2013) 
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Previous work, related to the model of combustion of ammonium nitrate based 

propellants (Carvalheira, et al., 1995), proves the influence of pressure and phase 

transition on the stability of flame regression, which are important characteristics to 

know when we want to study the deflagration of mixtures based on AN. (Quaresma, et 

al., 2013) (FPNEM, 2013) This lack of information conciliated with this work shows 

the hazards of using additives on explosive mixtures and the importance of the study of 

the combustion phenomena using these starting materials, for forensic and academic 

proposes. 

 

1.3.2.2. Urea Nitrate 

Urea Nitrate ((NH2)2.COHNO3) is a recent used nitrate in deflagration and detonation 

studies motivated, most of them, by forensic research works concerning HMEs and 

IEDs used in terrorist attacks. Urea Nitrate (UN) has a quite similar behaviour of AN in 

this kind of energetic compositions. (Quaresma, et al., 2013) 

UN become an oxidant candidate because it allows the existence of a carbon atom 

inside its original molecule, which changes the contribution of this nitrate in flame 

propagation of UN/Polyurethane compositions. (Quaresma, et al., 2013) (FPNEM, 

2013) 

The main reasons for the use of UN as energetic raw material comes from the easy 

availability of the precursor chemicals, ease preparation in large quantities (Oxley, et 

al., 2009), relatively low cost, low sensitivity (considerably stable) and high-

performance energetic material (releases a large amount of energy upon explosion) 

(Kohno, et al., 2003) (Tokmakov, et al., 2006). The detonation velocity of UN reached 

5300m/s, which is comparable to that of emulsion explosives, and depended on the bulk 

density (Oxley, et al., 2009). This new candidate is also enclosed in commercial two-

component polyurethane binder solution. (FPNEM, 2013) 

According to Kohno et al., 2003, the decomposition of UN occurs via internal hydrogen 

transfer from one of the amino groups to the others, producing NH3 from the NH2. It is 

formed HNCO (isocyanic acid) with NH3 (ammonium) and HNO3 (nitric acid), or with 

NH4NO3 (ammonium nitrate). The urea nitrate starts to decompose when the hydrogen 

bonds between oxygen’s in urea  and in nitrate are broken, suggesting that these bonds 

may play an important role in “stabilizing” energetic materials. (FPNEM, 2013) 
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Another theoretical study (Hiyoshi, et al., 2002) states that the UN molecule in the gas-

phase has the structure of an acid-base complex stabilized primarily by the hydrogen 

bonding interactions due to partial donation of the acidic proton from nitric acid (HNO3) 

to urea. In urea the electronegative O- and N-atoms can serve as the proton acceptor 

sites. It also predicted the enthalpy of formation of gaseous urea nitrate (ΔfH298° = –

102.3 kcal/mol). (FPNEM, 2013). 

 

1.3.2.3. Polyurethane 

This component was used as a binder, so it is the responsible for the mechanical 

properties of the mixture. The polyurethanes are a synthetic polymeric materials family, 

resulting from the reaction between a prepolymer (molecular weight from 1 000 to 2 

000) with molecules hydroxyl terminated (both sides of the molecule) and a 

diisocyanate. For tests it will be used a commercial polyurethane foam obtained from 

two liquid solutions, A and B, mixed in the ratio 50% of A to 100% of B. (FPNEM, 

2013) 

As it was already said, the AN propellant mixtures generally use the same binder type (a 

PolyUrethane solution system - PU) of the Hydroxyl Terminated PolyButadiene of the 

classic AP based composite propellants, very well justified in previous works. The 

required concentration, near 20 %, is due to the rheological properties. (Carvalheira, et 

al., 1995). However it is possible to reduce this concentration if, during mixing process, 

it is used a high pressure twin screw extruder or other equivalent mixing system that 

pressurize propellant mixture. (Quaresma, et al., 2013) 

 

1.3.2.4. Additives 

Self-propagating high temperature reaction, between oxidizer filler and combustible 

binder, assumes combustion characteristics based in flame propagation due to heat 

transfer, from existing flame to fresh material. Consequently, the fresh material presents 

an increasing temperature that originates the transition of phase of materials, diffusion 

and reaction between decomposed reactants. Combustion products expand and local 

pressure is increased. The expansion of products changes heat transfer complex 

phenomena and it is possible to react, in post combustion, other reactants with previous 

reaction products. This is the contribution of aluminium (Al) powders as additive of 

basic propellants. (Quaresma, et al., 2013) 
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Our suggestion is to use, alternatively to Al, a condensed mixture based in Teflon and 

Magnesium. The prediction of reaction path, partial and final compositions of the 

combustion products of Magnesium/Teflon, as the main components of 

Magnesium/Teflon/Viton (MTV) mixtures (Campos, et al., 2007(2)), show the strong 

influence of decomposition of Teflon and easier ignition of Magnesium (Mg), 

comparatively to Aluminium. (Quaresma, et al., 2013) 

The increased temperature of the products of reaction, demonstrated and well explained 

by (Koch, 2002), allows an increasing gas formation and pressure. (Quaresma, et al., 

2013) 

Aluminium powder, as referred on 1.2., can be found at plastic and steel containers, at 

supply stores of hardware, paint, chemicals and pyrotechnics. Magnesium is acquirable 

on sports stores and Teflon on industries of pans. 

 

 

 

1.4. Thesis description 

On the following thesis, the Chapter 2 is dedicated to ammonium and urea nitrate 

thermal decompositions. In this chapter it will be presented a detailed literature review 

(2.1) about the thermal decomposition mechanisms of these nitrates; the history and 

fundamentals of THOR, the computational code used along this work for 

thermochemical calculations; the experimental techniques employed during this work to 

characterize AN and UN and their thermal decomposition mechanisms (infrared 

spectroscopy and thermal analysis, respectively)  

Chapter 3 is dedicated to the development and detection of studied mixtures. Initially, in 

3.1, it will be presented details about the thermodynamic properties of the reactants used 

and about the mixtures’ composition. After the thermochemical predictions about the 

mixtures based on AN and UN using THOR Code (3.2), the combustion process 

occurred on selected mixtures was studied. This point, 3.3, approach the fundamentals 

about the combustion phenomena, the laboratorial work developed to study that 

phenomena and exposes the acquired results. Infra-red spectroscopy (3.4) was 

performed to characterize the reactants and the mixtures (before and after combustion) 

in the IR spectrum of light.  
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This characterization was made in order to enable the detection, in future, of these 

mixtures by this analytical and inexpensive technique, if used for terrorist or malicious 

proposes or even in case of accidents with the chosen reactants. 

The discussion about the exposed results on Chapters 2 and 3 is presented on Chapter 

4. This chapter is only dedicated to the relevant results acquired and presented along 

this work. 

Lastly, the Chapter 5 is dedicated to the conclusions about the presented work and 

further developments. 
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CHAPTER 2 – AMMONIUM AND UREA NITRATES THERMAL 

DECOMPOSITIONS  

2.1. Literature Review 

2.1.1. Thermal Decomposition Mechanisms  

2.1.1.1. Ammonium Nitrate 

Thermal decomposition is assumed as the reaction processes which reactant materials 

become reaction products, under increased temperature ranges and heating modes 

(slowly or quickly). 

The thermal decomposition of ammonium nitrate (AN – NH4NO3) has been extensively 

studied. (Patil, et al., 1992) (Durães, et al., 1996(2)) (Durães, et al., 1997) (Oommen, et 

al., 1999) (Portugal, et al., 2000) (Oxley, et al., 2009)  

The global reaction mechanism starts, above 169ºC, when occurs the endothermic 

dissociation in ammonia (NH3) and nitric acid (HNO3) (reaction (1)): 

                   (1) 

When solid AN is carefully heated at 200ºC, heat is released by the exothermic 

elimination of nitrous oxide (N2O) (reaction (2)). 

                   (2) 

Reaction (3) corresponds to exothermic elimination of nitrogen gas (N2) and nitrogen 

dioxide (NO2) which occurs for temperatures above 230ºC. 

                        (3) 

Detonation can arise, in a short time delay, AN is decomposed in nitrogen gas (N2), 

oxygen (O2) and water (H2O), being the elimination of N2 and O2 exothermic (reaction 

(4)) 

            
 

 
         

(4) 

Reaction (5) occurs when ammonium nitrate goes under inducted explosion: 

                             (5) 

Basically, two main mechanisms have been proposed for thermal decomposition of AN, 

where the prevalence of one over the other is dependent of the temperature levels. (Patil, 
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et al., 1992) (Oommen, et al., 1999) So, it is possible separate the thermal 

decomposition mechanisms of AN when it occurs for low and high temperatures. For 

both mechanisms, the initial step is the AN dissociation (reaction (1)). 

 

For low temperatures, which is considered to be under 270ºC (Patil, et al., 1992) 

(Oommen, et al., 1999), the nitric acid (HNO3) from the AN dissociation (reaction (1)), 

produces nitronium ions (NO2
+
). These ions will react with ammonia (NH3) to form 

nitrous oxide (N2O) and water (H2O). This mechanism is represented by reactions (6), 

(7) and (8). The global reaction is reaction (2). 

                  
               

       (6) 

        
          

          
  (7) 

        
        (8) 

At high temperatures (Patil, et al., 1992) (Oommen, et al., 1999) (Oxley, et al., 2002) , 

the nitric acid is no more an intermediary specimen, but a formed decomposition 

product. This formed nitric acid (HNO3) goes under dissociation too (reaction (9)), due 

to high temperatures. Its dissociation products are nitrogen dioxide (NO2), water (H2O) 

and oxygen (O2).  

                    
 

 
   

(9) 

On a temperature range of 342 to 387ºC, the formed nitrogen dioxide (NO2) oxidizes 

the ammonia (NH3). This oxidation is shown on reactions (10) to (15). 

                    (10) 

                   (11) 

                (12) 

                 (13) 

               (14) 

                  (15) 

These reactions can be reduced to the global stoichiometry (reaction (16)), where the 

oxidation of ammonia (NH3) by nitrogen dioxide (NO2) forms nitrous oxide (N2O), 

nitrogen gas (N2), water (H2O) and nitric oxide (NO)  
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                               (16) 

The oxygen, formed by nitric acid dissociation, slowly reacts with ammonia but has 

high reactivity on presence of nitric oxide. As a result, the oxygen (O2) is limited to 

oxidize nitric oxide (NO) (from reaction (16)). The subsequent reactions of this 

oxidation are reactions from (17) to (21). 

     
 

 
         (17) 

                       (18) 

                  (19) 

                  (20) 

                  (21) 

These equations can be reduced to their global stoichiometry (reaction (22)). 

            
 

 
                              (22) 

Reaction (22) is typical of AN aerosol decomposition under a high heating rate (80ºC/s). 

The resulting products are nitrous oxide (N2O), water (H2O), ammonium nitrate 

(NH4NO3), nitrogen das (N2) and nitrogen dioxide (NO2) - this AN decomposition can 

be represented by reaction (23): 

                                     (23) 

 Other proposal for AN thermal decomposition at high temperatures is explained 

by the formation of a nitramide intermediary (NH2NO2) which produces nitrous oxide 

(N2O) and water (H2O) (reactions (24) and (25)): 

                    (24) 

                 (25) 

Systhematizing, The thermal decomposition of AN is highly dependent of heating rates. 

Low heating rates result on a bulk decomposition, which is exothermic and produces the 

gaseous species nitrous oxide (N2O) and water (H2O). High heating rates, AN goes 

under an endothermic surface decomposition and produces nitric acid (HNO3) and 

ammonia (NH3).  
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2.1.1.2. Urea Nitrate 

The thermal decomposition mechanisms of urea nitrate (UN) (Hiyoshi, et al., 2002) 

(Kohno, et al., 2003) (Tokmakov, et al., 2006), (Oxley, et al., 2009) (Désilets, et al., 

2011) (Désilets, et al., 2011(2)) (Oxley, et al., 2013) are dependent of pressure and 

temperature rates and levels. In similar way of AN, the thermal decomposition 

mechanisms of UN will be explained for low and high temperatures. 

 

At low temperatures, for thermal decomposition mechanism (Désilets, et al., 2011) 

(Oxley, et al., 2009), UN decomposes at 100ºC, which is a temperature below of its 

melting point (157-159ºC). Its decompositions products are: 

 the condensed-phase ammonium nitrate (NH4NO3), urea ((NH2)2CO) and biuret 

(NH2C(O)NHC(O)NH2);  

 the gaseous products are ammonia (NH3), isocyanic acid (HNCO) and nitric 

acid (HNO3).  

This mechanism can be represented by reactions (26) to (29), shown on Figure 17. 

At an early stage of this thermal decomposition, some UN dissociates into nitric acid 

(HNO3) and urea ((NH2)2CO) (vd. reaction (26)). Reaction (27) shows the urea’s 

thermolysis under 100ºC, which products are ammonia (NH3) and isocyanic acid 

(HNCO). Dependent on the temperature applied to urea, its thermolysis can generate 

more products besides these ones.  

The formed urea reacts with the isocyanic acid (HNCO), which is highly reactive, to 

produce biuret (C2H5N3O2) (vd. reaction (28)). 

Ammonium nitrate (NH4NO3) is a product formed through the reaction of ammonia 

coming from urea’s thermolysis (reaction (27)), with nitric acid formed due to urea 

nitrate dissociation (reaction (26)). This reaction is represented by equation (29). 
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Figure 17: Thermal decomposition mechanism of UN at low temperatures (Désilets, et al., 2011) 

 

At high temperatures, the thermal decomposition mechanism of UN (Oxley, et al., 

2013) (Désilets, et al., 2011(2)) (Oxley, et al., 2009) (Hiyoshi, et al., 2002) is much 

more complex  

The initial phase of this mechanism is identical to the thermal decomposition 

mechanism at low temperatures (Désilets, et al., 2011(2)), which consists on UN’s 

dissociation into nitric acid and urea (Figure 17, reaction (26)), followed by urea’s 

decomposition into ammonia and isocyanic acid (Figure 17, reaction (27)); biuret is 

formed due to the reaction between urea (which not suffered decomposition) with 

isocyanic acid (Figure 17, reaction (28)); the reaction between ammonia and nitric acid 

yields ammonium nitrate (Figure 17, reaction (29)).  

From ambient temperature until 190ºC the urea ((NH2)2CO), suffers thermolysis or 

reacts to form biuret (NH2C(O)NHC(O)NH2), which reaches its maximum of formation 

at 190ºC (reactions of formation (28), (30)). Condensed phase species formation, as 

cyanuric acid and ammelide structures (shown on Figure 18), starts at this temperature.  

                                 (30) 

From 190ºC to 250ºC, urea’s degradation is still occurring and starts biuret’s 

decomposition. Reactions (31) and (32) shows the interactions between biuret and 

isocyanic acid, and from isocyanic acid (from urea) rearrangement to form cyanuric 

acid (C3(OH)3N3↔O3C3(NH)3; molecular structure on Figure 18). The productions of 

cyanuric acid and ammelide (C3H4N4O2, molecular structure on Figure 18) are 

accelerated and new compounds, as ammonium isocyanate (NH4NCO - reaction (33)), 

ammeline (C3H5N5O, molecular structure on Figure 18) and melamine (C3H6N6) 
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(reactions (34), (35) and (36), molecular structure on Figure 18), start appearing in small 

quantities. At 250ºC all urea and biuret are totally decomposed. 

                                   (31) 

                  (32) 

                   (33) 

                          (34) 

                                 (35) 

                  (36) 

 From 250ºC to 360ºC, all material starts to decomposed by the reverse reactions, 

forming ammonia and isocyanic acid as gaseous products. The AN formed during the 

initial phase of UN’s thermal decomposition, as referred before (vd. 2.1.1.1), suffers 

thermal decomposition at high temperatures. It is generally accepted that AN’s 

thermolysis follows two distinct reactions which occur simultaneously. The first one is a 

proton-transfer reaction (reaction (1), vd. 2.1.1.1.), the second is the irreversible reaction 

(reaction (2), vd. 2.1.1.1). All thermal decomposition mechanism at low temperatures is 

dependent on individual reaction rates, products stability and interactivity, as well as 

gaseous species evaporation. Ammonia, nitric acid and nitrous oxide and water are 

products from these two reactions. 

At this temperature range, urea and biuret decompositions generate nitrate compounds 

as nitrourea (CH3N3O3, molecular structure at Figure 18) and nitrobiuret (C2H4N4O4, 

molecular structure at Figure 18), which also thermally decomposes into carbon dioxide 

(CO2), nitrous oxide (N2O), isocyanic acid (HNCO), ammonia (NH3) and water 

(reactions (37) and (38), respectively). The nitration of amine compounds can occur at 

high temperatures due to the presence of NO2
+
 derived from AN decomposition 

(remember reactions (6) and (7) at 2.1.1.1.), or due to the nitric acid formed at high 

temperatures. These instable compounds just decompose in gaseous species.  

                                   (37) 

                                   (38) 
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Figure 18: Some of the condensed phase species formed during UN thermal decomposition (Désilets, et 

al., 2011) 

 

Other study that made the thermolysis of UN in ever harsher conditions (Hiyoshi, et al., 

2002), from 400 to 500ºC through the reaction monitoring with T-jump/FT-IR, 

concluded that in that temperature range UN decomposes under two reactions, (39) and 

(40). NH3 from (39) can combine with HNCO to produce NH4NCO, as shown in 

reaction (33). Some of the UN can undergo to dissociation (reaction (26)) too, but the 

urea product rearranges itself to origin NH4NCO. 

                                         (39) 

                                 (40) 

 

 

2.1.2. THOR - thermochemical evaluation code 

2.1.2.1. Introduction 

The thermochemical computer code, THOR, was developed to predict combustion and 

detonation behaviour based in products thermodynamic properties. (Campos, et al., 

2007). The difficult of following by experiment, the existing reactions in pyrolysis, 

combustion or detonation processes, generating intermediary chemical species and 

compounds, justify the existence of prediction thermochemical codes. (Campos, et al., 

2006) 

The development was started in 1989 by the Thermodynamic Group from the 

Mechanical Engineering Department of FCTUC. (Durães, 1999) 
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THOR was based on theoretical work of Héuze (1985, 1989) (Campos, et al., 2006) 

(Campos, et al., 2007) (Durães, et al., 1995) (Durães, et al., 1996) assuming an isobar or 

an isochoric adiabatic combustion, or a Chapman-Jouguet detonation conditions for the 

minimum Gibbs free energy. Several thermal equations of state (EoS) can be used on 

this computer code. (Campos, et al., 2006) (Campos, et al., 2007) The used HL EoS is 

supported by a Boltzmann EoS, based on physical intermolecular potential of gas 

components, instead of correlations from final experimental results.  

Later on the code was enhanced and upgraded to the use of the new polynomial forms 

of energetic functions, of gas and condensed phases of compounds, proposed by Gordon 

and McBride, 1994, and the ICT Database of Thermochemical Values, 2005, proposed 

in ICT (Campos, et al., 2006) (Campos, et al., 2007) (Campos, et al., 2007(2)). 

 

2.1.2.2. General equations 

CHNO system is generally known to be a classical reactive system that enables to 

generate up to m atomic species and n chemical components.  

To solve this problem (Campos, et al., 2006) (Campos, et al., 2007), is necessary to 

define the m-n equilibrium equations. The solution can be determined by Lagrange’s 

multipliers method, or by equilibrium constants. The final calculation for imposed P 

(pressure) and T (temperature) conditions, is then possible by the use of the chemical 

affinity method (determining the chemical concentrations of n components). Other way 

(Campos, 1991) is solving first the system composed by the m “basic” components, and 

secondly adding one by one more components, in order to optimize the relative 

concentration inside the group related to the same atomic species, for the minimum 

value of global Gibbs free energy (equation (41)). 

    ∑      (41) 

The Gibbs free energy of each component is defined by μi (equation (42)). 

                                  (42) 

The components selection is dependent of the atoms present at the initial composition. 

For a classical CHNO system, the equilibrium composition should start with CO2, CO, 

H2O, N2, O2, H2, OH, NO, H, N, O, HCN, NH3, NO2, N2O, CH4 gases and two types of 

solid carbon, β and α (graphite and diamond, respectively). The solution of composition 

problems, therefore, involves after mass and atomic balance equations:  
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o The thermodynamic equilibrium for G = Gmin(P, T, xi), applying the Tanaka 

model for the condensed phase (for a CHNO system); 

o The thermal equation of sate (EoS); 

o The energetic equation of state, associated to internal energy (equation (43) 

with ei(T) being calculated initially, for initial THOR versions, from JANAF 

Thermochemical Tables and polynomial expressions of Gordon and 

McBride; 

   ∑            
(43) 

o The combustion condition regime, being Pb = P0 (b for burned, 0 for initial) 

constant for isobar adiabatic combustion (equal initial and final total 

enthalpy Hb=H0), the isochors adiabatic combustion being Vb = V0 constant 

(equal initial and final internal energy E) and the Chapman-Jouguet 

condition (mass, momentum and energy balances and equation (44)) for 

detonation regime, sustained on the assumption that the detonation velocity 

D is obtained adding sound velocity a0 with particular velocity up (equation 

(45)). 

  

  
]
 

  
    

    
 

(44) 

          (45) 

Recently, THOR code was enhanced for any kind of systems of atoms or of molecules, 

from the existing databases (from institutions like ICT or NASA). 

 

HL Thermal Equation of State. Used HL EoS has the general expression shown in (46), 

where V represents the volume, T the temperature and Xi the mole number of i 

compound in reaction gaseous products. The second term, σ, is a fifth order polynome 

obtained from virial expansion. (Campos, et al., 2006) (Campos, et al., 2007) 

  

   
             (46) 

This fifth order polynome, σ, represents very well the behaviour of gaseous mixtures at 

high temperature and pressure and it is defined by: 

                                                  (47) 

With 
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 (48) 

   ∑    

 

   

 (49) 

α represents the exponent part of the intermolecular potential. Heuzé deduced H9 and 

H12 EoS, for α=9 and α=12 respectively, based on theoretical and experimental final 

correlations. This parameter has great influence on the results and the preceding values 

are too low to represent the detonation gaseous products, which co-exist in equilibrium 

at very high pressure. The intermolecular potential function considered in HL EoS is the 

Buckingham α-6
 function, where α=13.5, according to several authors studied for that 

case. 

The ωi values are dependent of each gas component. Making the substitution of (49) in 

(48): 

   
∑     

 
   

      
 (50) 

Considering the Boltzmann EoS, is possible to write the equality (51), where Bi is the 

covolume of component i in reaction products. 

∑     
 
   

      
  

∑     
 
   

 
 (51) 

This is valid procedure, because HL EoS is reduced to a Boltzmann EoS when, at low 

densities, the terms of high order (fourth and fifth) in σ expression (47) become 

negligible.  

For the covolume calculation (Bi), it was used a simplified rigid sphere model (equation 

(52)).  

    
 

 
    

     (52) 

    
 

 
 (53) 

Being    
 the intermolecular distance at minimum value of the intermolecular potential 

and     the Avogadro number. Equation (53) represents temperature evolution. Where 

θ is the adimensional temperature, k the Boltzmann constant (k = 1.380x10
-23

J/K) and 

εi/k the parameters of Buckingham α
-6

 intermolecular potential function, for each 

reaction gaseous product in pure state. For each gas in the products, the values of r0i and 
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εi/k parameters are usually obtained by agreement between experimental and 

theoretical data. 

θ values have great influence on predicted dynamic characteristics of condensed 

products of reactive mixtures, several of them were evaluated (Durães, et al., 1995) 

(Durães, et al., 1996) (Durães, et al., 2000). Initially, the value θ=1.4 has been 

considerate the best-adopted constant value, by comparison with experimental and 

theoretical results for detonation. Later, the new proposed value was θ=1, omitting the 

referred comparison and meaning that εi/k is a good measure of each pure compound 

temperature in shock experimental tests, which is more consistent, theoretically, than 

taking any other value.  

 

Energetic Equation of State. As it was mentioned in the beginning of General 

equations, the energetic ES is related to the internal energy, defined by equation (43). 

The ei(T) are calculated by the polynomial expressions of non-dimensional specific 

heat, enthalpy and entropy, given by Gordon and McBride polynomials. In the past were 

used the old Gordon and McBride polynomials (1971) shown by equations (54), (55) 

and (56), respectively.  

   

 
            

     
     

  (54) 

  

  
     

  

 
  

  

 
   

  

 
   

  

 
   

  

 
 (55) 

  

 
              

  

 
   

  

 
   

  

 
      (56) 

The new formats are the recent Gordon and McBride polynomials (equations (57), (58) 

and (59)) and they follow the same logic presented above: 

   

 
     

      
             

     
     

  (57) 

  

  
      

      
             

 

 
   

  

 
   

  

 
   

  

 
 

  

 
 (58) 

  

 
     

   

 
    

                 

  

 
   

  

 
   

  

 
    (59) 

 These recent Gordon and McBride polynomials (1994) implied a mathematical 

and numerical conversion in the modified THOR code achieved in 2008.  
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 The use of the preceding two equations of state (thermal equation of state EoS) 

and the energetic equation of state (ES) allow the optimization of the final composition 

of products ( i) always for the minimum value of the Gibbs free energy, calculated for 

a predefined values of T and P.  

 

Isobar and Isochor Adiabatic Combustion. The basic theoretical combustion approach 

assumes and isobar adiabatic combustion, where dP = 0 and dQ = 0 imply dH = 0, 

which means that equal initial and final total enthalpy (equation (60)). Equation (60) is 

equivalent to (61) and also to (62), where the total enthalpy from burned gases is equal 

to module of the reaction enthalpy. (Campos, et al., 2006) (Campos, et al., 2007) 

  
      

   (60) 

  
      

        
     

    (61) 

  |  

       
    (62) 

Considering a global isobar adiabatic process, formed by a reactive system enclosed in a 

non-resistant wall, working like an enthalpy changer of value ΔH the equation (62) 

takes the form of equation (63), where the enthalpy of reaction is distributed to the 

heated burned gas and the wall, being always P=P0  

  |  

          
    (63) 

As a result, it is possible to consider T0 < T1 < Tb. The corresponding products 

composition can then be changed from the “basic” chemical components, when T1 = T0, 

to the final components, when T1 = Tb, isobar adiabatic combustion temperature with 

the preceding condition. The Gibbs free energy, taking its minimum relative value for a 

(V, T, Xi) group, is also reduced with increasing values of T1, from T0 to Tb 

Thus, the pyrolysis process can now be calculated and justified, like a decomposition 

process, by the mechanism of heat absorption, from the original adiabatic combustion 

condition (where are no heat changes). Therefore, the original global isobar adiabatic 

process, formed by one reactive system enclosed in a non-resistant wall, is modified by 

the enthalpy value ΔH, absorbed from the wall (equation (63)), where the enthalpy of 

reaction is increased by the heat absorbed from the wall, being always P=P0. The Gibbs 

free energy, taking its minimum relative value for a (V, T, Xi) group, is also changed (in 

a similar way) with increasing values of T1, from To to final value Tb. 
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The isochor adiabatic combustion needs the calculation of the internal energy EiT, for 

a specified (V,T,xi), where V represents the volume, T the temperature and xi the mass 

fraction. This EiT can be expressed as a function of the enthalpy, HiT, and of PV 

(equation (64)) for the same conditions, as shown in equation (65).  

         (64) 

  
     

          (65) 

This expression allows the calculation of values for isochor adiabatic combustion from 

the obtained values of the corresponding isobar adiabatic combustion, for the same P 

and T conditions, but needs an interactive method to find the solution 

 

THOR external and internal code structures. The external structure of Thor is outlined 

on Figure 19. 

 

Figure 19: Data access and results output of THOR Code. (Durães, 1999) 

 

The code data access is divided into four files: 

i. ATOM: contains the atomic masses of the twenty atomic species for 

which THOR was programmed for. 

ii. REAC: file where it is possible to find the chemical formula, the 

formation enthalpy at 25ºC and 1 atm, the calorific capacity at constant 

pressure (25ºC, 1 atm) and the specific mass at the same conditions (real 

density), for each one of reactant compound of the chosen mixture. 

iii. PROD: is the file where is stored the molecular formula, the formation 

enthalpy at 25ºC and 1 atm and the phase of each reaction product. It is 

also possible to find in this file, for each gaseous reaction product, the 

seven high temperature coefficients of Gordon & Mc-Bride polynomials. 

For condensed species, from the first until the seventh value, the meaning 
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is: crystal density (theoretical maximum density.- TMS), sound velocity, 

shock relationship, Gruneisen coefficient, Debye temperature, internal 

energy of reference and reference entropy. The chosen products are 

limited to 59, and the condensed phase number is restricted to 29. 

iv. MIST: gives to the program the composition of the reactant mixture 

(reagent name and its quantities in mol), initials temperature and 

pressure, type of problem and the chosen equation of state to predict the 

P-V-T characteristics of gaseous phase. The reactant mixture can contain 

until seven different reagents and it is mathematically assumed that 

mixture is homogeneous. It is possible to acquire properties of mixtures 

with reagents in different phases, because it calculates the average 

properties for the initial mixture starting from the individual properties of 

the mixed reagents.  

Fortran 77 was the language used to program THOR, converted successively to F90 and 

MS Fortran. The program does the data treatment and the calculation of the combustion 

or detonation characteristics. After that, sends the results for RESUL file, under numeric 

values format and tables. Recently, 2008, it was converted and optimized to Windows© 

interface.  

 

 

2.1.2.3. Results and discussion from literature 

 

Decomposition path of ammonium nitrate. Several studies (Durães, et al., 1996(2)) 

(Durães, et al., 1997) (Durães, et al., 2000) (Morgado, et al., 2002) (Morgado, et al., 

2003) (Campos, et al., 2006) were made to determine the decomposition path of 

ammonium nitrate (AN) using the thermochemical calculation code THOR. 

One of them (Durães, et al., 1996(2)) showed the evolution of Gibbs free energy and 

combustion temperature as a function of absorbed enthalpy, ΔH, for AN decomposition 

(Figure 20); the influence of products selection, as a function of obtained combustion 

temperature and Gibbs free energy value (vd. Figure 21) show the main decomposition 

products for AN; and the gas products composition, as function of calculated 

decomposition temperature (Figure 22).  
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The theoretical prediction of temperature (Figure 23, graph (a)) and the products 

composition of the AN thermal decomposition (Figure 23, graph (b)) was also made 

using THOR code, for knowledge of nitrate additives behaviour (Morgado, et al., 2002) 

(Morgado, et al., 2003).  

 

 

Figure 20: Evolution of Gibbs free energy and combustion temperature as a function of absorbed 

enthalpy, ΔH, for AN decomposition (Durães, et al., 1996(2)) 

 

Figure 21: The influence of products selection, as a function of obtained combustion temperature and 

Gibbs free energy value, for AN (Durães, et al., 1996(2)) 

 

Figure 22: Gas products composition, as a function of calculated decomposition temperature, for AN 

(Durães, et al., 1996(2)) 
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Figure 23: theoretical prediction of (a) temperature and (b) products composition of the thermal 

decomposition of AN (Morgado, et al., 2002) (Morgado, et al., 2003) 

 

As said in 2.1.1.1, the AN thermal decomposition can be synthesized through reactions 

which occur for different temperature ranges and heating modes (slowly or quickly). 

Other studies (Durães, et al., 1997) (Durães, et al., 2000) (Campos, et al., 2006) were 

made in order to calculate the reaction path of AN decomposition using THOR code. As 

shown in Tables 4 and 5, it was possible to determine the enthalpy of reaction and 

internal energy of AN decomposition, respectively, as function of selected products. 

The theoretical predictions were in a good agreement with AN thermal decomposition 

described in 2.1.1.1. By order of products appearance on Table 4, it shows the 

endothermic dissociation above 169ºC (reaction (1)), the exothermic elimination of N2O 

on careful heating at 200ºC (reaction (2)); the exothermic elimination of N2 and NO2 

above 230ºC (reaction (3)) and the exothermic elimination if N2 and O2, sometimes 

accompanied by detonation (reaction (4)). 

 

Table 4: Enthalpy of reaction of AN thermal decomposition as function of selected products (Durães, et 

al., 1997) (Durães, et al., 2000) (Campos, et al., 2006) 

Products of reaction Reaction in 2.1.1.1. ΔrH (kJ/mol) 

NH3 + HNO3 (1) 184.3 

N2O + H2O (2) - 39.3 

N2 + NO2 + H2O (3) - 103.5 

N2 + O2 + H2O (4) - 97.4 

N2 + NO + H2O intermediary products - 30.5 

N2 + HNO3 +H2O intermediary products - 97.4 
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Table 5: Internal energy of reaction of AN thermal decomposition as function of selected products 

(Durães, et al., 1997) (Durães, et al., 2000) (Campos, et al., 2006) 

Products of reaction Reaction in 2.1.1.1. ΔrE (kJ/mol) 

NH3 + HNO3 (1) 179.5 

N2O + H2O (2) - 46.6 

N2 + NO2 + H2O (3) - 112.2 

N2 + O2 + H2O (4) - 129.3 

N2 + NO + H2O intermediary products - 39.1 

N2 + HNO3 +H2O intermediary products - 133.5 

 

 

 

2.1.3. Thermal Analysis 

2.1.3.1. Fundamentals of Differential Thermal Analysis (DTA), Differential Scanning 

Calorimetry (DSC) and Thermogravimetric Analysis (TGA) 

According to “The Analysis of Explosives” (Yinon, et al., 1981), thermal analysis is an 

analytical technique where some physical property of the analysed sample is measured 

as a dynamic temperature function. The types of thermal analysis that have been mainly 

used for the analysis of explosives are Differential Thermal Analysis (DTA), 

Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA), 

which will be, succinctly, described below. 

The techniques DTA, DSC and TGA have been used mostly to determine explosives 

thermal properties, as thermal stability, thermal decomposition kinetics and initiation 

and ignition temperatures. Reaction rates, activation energies and explosion heats are 

quantitative properties that can be calculated out of the experimentally obtained values. 

 

Differential Thermal Analysis (DTA). In DTA the sample, accompanied by a reference 

sample, is cooled or heated in a furnace at a controlled rate. The temperature furnace, as 

the temperature difference between the sample and the reference are monitored and 

recorded to produce a thermogram. (Yinon, et al., 1981) 

A differential thermogram consists on a record of the temperature difference between 

the sample and the reference (differential temperature) plotted as time function, sample 

temperature, reference temperature or furnace temperature. (Yinon, et al., 1981) 
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While the sample undergoes reaction, additional heat is absorbed or dissipated 

producing a temperature rise or decrease when compared to the reference material. The 

thermogram provides an indication of the occurring reactions and which characterize 

the sample: the area under the curve is associated to the absorbed or given off energies. 

The system must be calibrated with reference materials of known heat content, as tin, 

indium and lead. (Yinon, et al., 1981) 

 

Differential Scanning Calorimetry (DSC). In DSC, the reference material and the 

sample are enclosed on two separate small heaters. The reference material and sample 

temperatures are simultaneously monitored, and no temperature difference is allowed. 

The difference in power requirements for the two heaters is measured and recorded as 

time or temperature function. (Yinon, et al., 1981) 

 

Thermogravimetric Analysis (TGA). In TGA, a sample’s weight is recorded as 

temperature or time function, during its heating or cooling at a controlled rate in a 

controlled atmosphere. The sample cans either loss weight to the atmosphere or gain 

weight by reaction with it. 

The Derivative Thermogravimetric Analysis (DTA) measures the rate of weight change 

by taking the first derivative of the weight change with time. This technique displays 

more neatly the original curve details and facilitates the kinetic rates calculation. 

 

 

2.1.3.2. The Arrhenius approach to thermal decomposition  

The combustion involves chemical reactions that occur at finite velocities, which 

depend on local temperature, reactant species concentrations and, in some cases, 

pressure. The reaction velocity can be expressed as function of any chemical species 

properties (reactants or products), which are involved on the reaction. (Almada, 1998) 

Consequently, an exponential numerical approach can describe its evolution. 

 

The Arrehnius Equation. A simple chemical reaction can be described by the follow 

stoichiometric relation: 

∑    

 

   

    ∑     

 

   

   (66) 
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Where: 

    ,        Reactants and products stoichiometric coefficients of the reaction, 

respectively 

   Arbitrary property common to all species involved in the chemical reaction 

  Total number of involved species 

 

As the stoichiometric relation above, the velocity of a chemical reaction can also be 

expressed by any arbitrary property common to all species involved in the reaction. It is 

experimentally proved that: 

      

  
   ∏[  ]

  
  

 

   

 (67) 

This equation means that the consumption rate of some specie (
      

  
) is proportional to 

the product of the reactants species concentrations (    
    ) which exponent is the 

correspondent stoichiometric coefficient;   is the proportionality constant known by 

specific velocity constant. The sum of     is the reaction order, many times represented 

by   . 

For a reversible reaction, in equilibrium, both reactions occur at the same velocity, so: 

  ∏[  ]
   

 

   

    ∏[  ]
  

  

 

   

    
 

  
 ∏

[  ]
  

  

[  ]
  

 

   

    (68) 

   is the equilibrium constant. 

Van’t Hoff concluded that the variation of the equilibrium constant with temperature 

(
       

  
  follows the bellow expression, where     is the enthalpy reaction and   is the 

perfect gas constant : 

       

  
  

   

   
   (69) 

Integrating (69), the result is: 

      
 

 

   

 
      

   

             (70) 

As many chemical reactions occur at constant volume (in a limited recipient) or 

constant pressure (atmospheric pressure), especially the ones associated to combustion, 

we can consider that the variation of reaction enthalpy is equal to the variation of the 

internal energy.  
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Taking these considerations, focusing on (70), Arrhenius equation (71) is obtained: 

      
  
             (71) 

Enhance the following variables: 

    Activation energy (also represented by Ea): excess of internal energy of the 

reactants needed to make the reaction occurs (units: 1/min) 

 
  

  
 Boltzmann factor: molecules fraction which has the necessary activation energy 

  Pre-exponential factor: resultant of the combination of other reaction parameters 

referred above (units: 1/min) 

R  Gas constant (8.314 J K
-1

mol
-1) 

T  Temperature (units: K) 

From Arrhenius equation is important to remember that the reaction velocity increases 

with the increase of the temperature and, for high   , small increments in the 

temperature can cause high increases in reaction velocity (when ignition point is 

reached, for example).  

 

Arrhenius approach to combustion evaluation. The chemical reactions involved in 

combustion processes depend on the local temperature, pressure and the reactant species 

concentrations. They occur at finite velocities. The most of these reactions follows first 

order kinetic, which means that the time needed to finish a portion of this reaction is 

independent of the initial concentration of the involved reactant species. 

The consumption rate of a reactant specie, or fresh specie (f), is equal to the formation 

rate of the product species, or burned species (b), by (66) and (67) it is possible to write: 

∑  
  

 

   

     ∑   
  

 

   

     

     

  
 

     

  
   ∏    

 
     

 

   

                  (72) 

Applying the Arrhenius equation (71) to the formation rate (72) of a burned (or product) 

specie concentration ([b]) in a combustion reaction with a first order kinetic: 

     

  
          

 
  
          (73) 

The velocity of the formation rate is given by: 

   

  
            (74) 
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    Burned species mass 

   Fresh species density 

    Flame fundamental velocity 

    Flame area 

The concentration of burned species [b], or the mass loss in the reaction (λ), can be seen 

as the coefficient between the burned mass (mb) and the total mass present in reaction 

(M0), which is the sum of the fresh mass (mf) with the burned mass: 

     
  

     
  

  

  
    (75) 

Applying (75) to (73): 

     

  
 

   

  
      

 
  
          

 
  
      (76) 

Where Z = λ A 

Rearranging equation (75) and making its derived: 

            
   

  
    

  

  
   (77) 

Making the substitution of (74) and (76) in (77): 

                 
 

  
     (78) 

Rewriting (76) bellow, it is possible to conclude that if you apply the Arrhenius 

equation the mass loss rate is directly proportional to burned species concentration, to 

pre-exponential factor A and to   
 

  

    , so the mass loss rate (
  

  
) is: 

  
  

  
 

  
    

 
  
     

  

  
  (79) 

Equation (79) is very important experimentally, because it permits the calculation of Z 

and Tb. The mathematical method used to do this is applying ln to both side of the 

equation, which gives: 

  (
  

  
)       

  

   
 (80) 

 

Arrhenius approach to DSC/TGA kinetics – Borchardt & Daniels Method. According 

with (Rheometric Scientific , 1995), Borchardt & Daniels Method (199), DSC kinetics 

can be defined two main equations: the Arrhenius expression for the specific rate 

constant (equation (81), Z and E have the same meaning than A and ΔE in equation (71) 
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and the equation that must be defined relates the reaction progress (or mass loss rate) 

with time through the use of the rate constant (equation (82)). 

         
 
             (81) 

  

  
          (82) 

Where α is the percent conversion (reaction progress or mass loss rate) and n the 

reaction order. 

The Borchardt & Daniels calculation starts substituting equation (81) for the specific 

rate constant into equation (82): 

  

  
     

 
          (83) 

Applying the natural logarithm of both sides gives: 

  (
  

  
)      

 

  
          (84) 

Combustion reactions follow a first order kinetic and α varies between 0 and 1, which 

make the last term negligible, conducing to equation (80). This last referred equation 

(80) can be associated to the linear equation of type y = mx + b, where: y =   (
  

  
); m 

= - 
   

 
; x = 

 

 
; b=       which make this equation very useful for experimental 

numerical approaches. 

 

2.1.3.3. Results and discussion from literature 

2.1.3.3.1. Ammonium Nitrate (AN)  

AN is a quite peculiar crystal because, under ordinary pressure, it presents up to five 

polymorphic modifications., The study of these phase transitions and how to stabilize 

them are essential to use AN as energetic oxidant material (Simões, et al., 1998) 

(Oommen, et al., 1999) (Oommen, et al., 1999(2)) (Portugal, et al., 2000). 

Transitions temperatures of various phases are represented on Figure 24.  

 

 

Figure 24: Phase modifications and respectively temperature transitions for ammonium nitrate (Oommen, 

et al., 1999) 
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The crystallographic data and stability ranges of each phase are shown on Table 6. 

Besides those transformations referred on Figure 24 and on Table 6, a metastable 

transition at 45-50ºC was also described. There are also descriptions about 

modifications under low temperatures (Théorêt, et al., 1964) and at high pressures. 

Those modifications result on a phase VII below -170ºC, and on a transition at high 

pressures (> 9000 kg/cm
2
) above 160ºC. 

Table 6: Crystallographic data and stability ranges of the AN phases (Oommen, et al., 1999) 

 

 

Fusion temperature (169.6 ºC) and transition temperature at 125ºC are well defined, but 

the temperature transition IV-III is ambiguous and widely debated. This transition is 

especially important, because it occurs near ambient temperature. The principal founded 

reasons for the difficulty in stabilizing this transition phase, are moisture, thermal 

history of the sample, sample weight, mode of crystallization, number of previous 

transformation and heating mode, purity of sample, stabilization additives, grain size 

and employed experimental technique. 

Literature (Davis, et al., 1996) (Simões, et al., 1998) (Oommen, et al., 1999) (Oommen, 

et al., 1999(2)) (Portugal, et al., 2000) shows that the phase transitions are dependent of 

maximum chosen temperature and the water quantity present on the sample.  

To better understand the phase transitions behaviours, Oommen et al., 1999, performed 

thermal cycles (20/150/-50ºC) to AN and the obtained results are present on Figure 25 

and on Table 7. They founded, besides the transition II-I at 125ºC, dry AN suffers the 

phase transitions IV-II-I-IV-V. If AN is wet, the phase III appears during the heating, 

but not during the cooling and the followed path is IV-III-II-I-II-IV-V. When the 

thermal cycle is programmed to reach a maximum temperature of 125ºC (avoiding 

phase transition II-I), the dry AN shows the transitions: IV-II-IV-V, while wet AN 

follows IV-III-II-II-IV-V phase transitions. These referred phase changes are described 
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on Table 7, as well as their peaks temperatures and the enthalpies of involved 

transitions, respectively. 

 

 

Figure 25: DSC trace of AN on thermal cycling (Oommen, et al., 1999) 

 

Table 7: Heat of phase transitions of AN from Figure 25. (Oommen, et al., 1999) 

 

 

The DSC thermogram on Figure 26 (Davis, et al., 1996)is an example of a pure AN 

sample subjected to a 50ºC/min heating rate (fast thermolysis). It is possible to see the 

transitions IV-II at 51ºC, II-I at 124ºC. These transitions are in the same temperature 

range than the described above (deviations 2 and 5ºC, respectively). The melting point 

appears at 124ºC (concordant with the 125ºC described above) and the endothermic at 

257ºC corresponds to the AN thermal decomposition. 
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Figure 26: DSC thermogram of pure AN, acquired with a heating rate of 50ºC/min (Davis, et al., 1996) 

 

Stabilizing the IV to III phase transition, at room temperature, was a concern of 

explosives development. The obtained PSAN (Phase Stabilized Ammonium Nitrate) 

have Ni, Cu or Zn oxides as additives for direct phase change IV-II. 

The pure AN and PSAN were compared by DSC analysis (Oommen, et al., 1999(2)) 

and the results are shown on Figure 27. The first thermogram shows all the reported 

transitions that can occur from ambient until upper temperatures. Those transitions are: 

IV-III transition at 40ºC, III-II transition at 85ºC, and the peak at 125 º C corresponds to 

II-I transition, 125ºC is the melting point and the endothermic thermal decomposition is 

present at 260ºC. The last referred peak is characteristic of reaction (1). 

 

 

Figure 27: DSC traces of AN and PSAN samples (Oommen, et al., 1999(2)) 
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The only difference between AN and PSAN (vd. Figure 27) is that AN shows the III-II 

transition phase and PSAN does not. So, to study the thermal decomposition kinetics of 

AN it can be used AN or PSAN, because the thermal decomposition occurs at the same 

temperature for both compounds. 

Several studies (Almada, 1998) (Simões, et al., 1998) (Portugal, et al., 2000) present the 

thermal decomposition of PSAN and its kinetic parameters. The thermograms acquired 

to show the PSAN thermal decomposition are shown in Figures 28 and 29 (Portugal, et 

al., 2000) (Simões, et al., 1998).The first one shows five different physical solid state 

phases in the temperature range of –18 until 125ºC.. The three first peaks, in 

thermogram, correspond to the following phase changes: solid phase IV directly to solid 

phase II (T≈53ºC); solid phase II to solid phase I (T≈125ºC); and melting point 

(T≈169ºC). The fourth peak corresponds to AN thermal decomposition at 210ºC, 

characterized by reactions (1), (2), (3), (6) and (7), (8). 

The second one (Figure 29) was acquired to study of the decomposition of PSAN by 

simultaneous thermal analysis for determination of kinetic parameters (Simões, et al., 

1998).  

A very similar thermogram was acquired to study the thermal explosion of energetic 

materials, including PSAN (Almada, 1998). PSAN under a heating rate of 10ºC/min, 

presents the same four endothermic peaks at 55.52, 129.20, 169.39 and 272.73ºC 

associated the first two to phase transitions, the third to melting and the fourth to the 

decomposition reaction. The kinetic parameters obtained on this study are presented at 

Table 9.  

The main thermal decomposition products are N2O and H2O result from the exothermic 

decomposition reaction (2). This has been explained (Simões, et al., 1998) due to the 

occurrence of the endothermic dissociation reaction (1), which is coupled with the 

decomposition reaction. This coupling is both kinetic and thermal. The thermal 

behaviour (endothermic or exothermic) depends on the absence of conditions favorable 

to the occurrence of an auto-catalytic regime. The heat produced by the exothermic 

decomposition can then be absorbed by the dissociation reaction - this explain the 

observed endothermic peaks. 
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Figure 28: PSAN thermogram acquired by DSC/TGA at an heating rate of 10ºC/min (Portugal, et al., 

2000) 

 

 

Figure 29:Typical DSC/TGA thermograms for PSAN (Simões, et al., 1998) 

 

Table 8: Endothermic peak temperatures (K) for each phase transition and decomposition of PSAN, 

where β is the used heating rate. 
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Table 9: Experimental values for activation energy and pre-exponential factor for thermal decomposition 

kinetics of AN and PSAN   

Reference Compound 
Activation energy  

E (J/mol) 

Pre-exponential factor  

A (1/min) 

(Vyazovkin, et al., 2001) AN 1.14E+05 3.16E+08 

(Vyazovkin, et al., 2001) AN 8.15E+04 1.58E+08 

(Almada, 1998) PSAN 2.10E+05 3.97E+15 

 

2.1.3.3.2. Urea Nitrate 

Urea nitrate (UN) is “similar” to AN, but its molecular structure is quite different. It is 

interesting to remember that nitrates with an organic cation (carbon and hydrogen 

sources incorporated on molecule, as UN) are very energetic explosive candidates. 

(Oxley, et al., 2009) Furthermore, UN does not need a fuel source to generate an 

explosion. 

Figure 30 shows two different DSC thermograms acquired by the same author on 

different years. (Oxley, et al., 2009) (Oxley, et al., 2013) On both UN thermograms is 

possible to observe three different thermal events (values refer always first for the left 

thermogram and second for the right thermogram, on Figure 30): an exothermic peak at 

166ºC and 162ºC, immediately after, a tight exothermic peak at 172ºC and 167ºC; at the 

end, an exothermic peak at 403ºC and 380ºC. These temperature shifts are, probably, 

due to the different heating rates employed. 

As described on 2.1.1.2, UN decomposes in condensed-phase and gaseous species at 

high temperatures. 

 



HOMEMADE EXPLOSIVES BASED ON AMMONIUM AND UREA NITRATES 

 

55 

Joana Quaresma 

 

Figure 30: DSC thermograms at 20ºC/min (Oxley, et al., 2009) and 10ºC/min (Oxley, et al., 2013), 

respectively 

 

Using different thermogravimetric analysis techniques, the heat flux profiles are also 

different. (Désilets, et al., 2011(2)) (vd. Figures 30 and 31, or just in Figure 31). The 

heat flux obtained by the coupled technique DSC/TGA is attenuated, compared with the 

same heat flux obtained only by DSC. This is, probably, because the sample container 

(alumina crucibles) is open at on extremity, or due to the high ratio between volumes of 

DSC/TGA oven/sample container, which makes that decomposition reaction cannot 

advance to an auto-catalytic stage. Other factor (that contributed for the different heat 

fluxes) was the competitive endothermic volatilization between the reactive gases, 

which occurs at DSC/TGA. This fact is verified through the mass losses acquired by 

TGA. 

The TGA result (Désilets, et al., 2011) shows three mass losses which begins at 133, 

168 and 276ºC, as indicated on Figure 31. The beginning of the first mass loss coincides 

with the first endothermic peak, continues to rapidly go down until 40% of the mass 

volatilize, and ends when the endothermic peak turns into the exothermic peak. At 

168ºC, the maximum of the exothermic peak, takes place the second mass loss, which is 

responsible for the consumption of 54% of the mass sample. The final mass loss begins 

at 276ºC and ends at 330ºC, and corresponds of the final 6% of the remaining mass (the 

sample container has no residues at the end of the experiment). 
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Figure 31: UN thermograms, with a heating rate of 5ºC/min. (Désilets, et al., 2011(2)) 

 

Oxley et al., 2009, and Désilets et al., 2011(2) calculated the Arrhenius activation 

energy (Ea) and its pre-exponential factor (Z). Oxley et al., 2009, used ATSM E 698 

method, and Désilets et al., 2011(2) used Kissinger method according to ASTM E698-

05. Their results are presented at Table 10 Arrehnius activation energy (Ea) and Z (pre-

exponential factor) calculated for Figure 30 and Figure 31. 

 

Table 10 Arrehnius activation energy (Ea) and Z (pre-exponential factor) calculated for Figure 30 and 

Figure 31, respectively 

Reference 
Endothermic Peak Major Exothermic Peak 

Ea (kJ/mol) Z(min
-1

) Ea (kJ/mol) Z(min
-1

) 

(Oxley, et al., 2009) 158 1.39E+12 131 ± 13 2.66E+09 

(Désilets, et al., 2011(2)) 225 ± 76 31 ± 14 206 ± 13 47 ± 4 

 

 

 

2.1.4. Infra-Red Spectroscopy 

2.1.4.1. Introduction fundamentals  

According to literature (Yinon, et al., 1981), Infra-Red (IR) spectroscopy irradiates the 

sample with light from the infra-red region with wavelength (λ) between 2.5 and 15μm 

(IR frequencies are of the same magnitude order as the molecular vibrational 

frequencies). 
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When incident radiation has the same frequencies as molecular vibrational frequencies, 

the molecule absorbs it while transmits the other frequencies which composes the 

incident radiation. The amount of energy (E) absorbed is given by equation (85) where 

h is Planck’s constant and ν the molecule vibrational frequency. 

     (85) 

In an IR spectrometer, the sample is irradiated with light throughout the whole IR 

frequency range. As a result, the IR spectrum plots the sample transmittance as function 

of wavelength or wavenumber. The wavenumber unit is cm
-1

, where 1 cm
-1 

= 10
4
/λ 

(μm). The transmittance is defined as the ratio of the incident power to the transmitted 

radiation power. 

For analytical applications, the vibrations of organic molecules can be divided in two: 

vibrations associated with the molecule as a whole and vibrations associated with 

specific functional groups. 

The vibrations associated to the molecule as a whole typically generate absorption 

bands at wavenumbers bellow 1300 cm
-1

. This region is called “fingerprint region”, 

because the referred absorption bands positions characterize the particular molecule 

and, hence, they can be used as “fingerprints” to identify unknown samples by 

comparison with known compounds. Table 11: IR characteristic bands of explosives 

and some correlations  summarizes some spectral correlations in the main groups of 

explosive compounds, i.e., the vibrations associated to the molecule as a whole. 

 

Table 11: IR characteristic bands of explosives and some correlations (Yinon, et al., 1981) 

Type of Explosive Bands (cm
-1

) Comments 

sym-trinitrocompounds which have the 

following additional groups: CH3, C2H5, 

OCH3, OC2H5, COOH, OH, NH2 

1081 

The band appears to shift to about 

1070 cm
-1

 in the presence of acidic 

groups as COOH or OH 

m-dinitrocompounds which have the 

following additional groups: CH3, C2H5, 

OCH3, CHO, COOH, OH, N=NH2, CH3NH, 

C2H5NH  

913 - 922  

m-dinitrocompounds where other additional 

groups, if any, were ortho to the nitro 
830 - 840 

Not found in sym-trinitrocompounds 

but present in 2,3,4 and 2,4,5-TNT. 

Absent in 1,5-dinitrobenzoic acid and 

4,6-dinitro-o-cresol 

Trinitrocompounds 909-930  
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o-mononitrocompounds which have one of 

the following groups ortho to the nitro: CH3, 

C2H5, CHO, COOH, NH2 

781-787 
Not usually found in dinitro or 

trinitrocompounds 

p-mononitrocompounds which have one of 

the following groups ortho to the nitro: CH3, 

C2H5, CHO, COOH, NH2 

1111 
Not usually found in dinitro or 

trinitrocompounds 

Nitramines 1282  

Organic nitrates 
833, 1282, 

1667 
 

Inorganic nitrates 833  

 

The vibrations associated with functional groups generally produce absorption bands in 

the region above 1300 cm
-1

. These “group frequencies” permit the identification of 

specific functional groups inside a molecule and play, thus, an important role in 

structure clarification of unknown compounds. Table 12 is representative of the wave 

number ranges (1200 cm
-1

 to 3100 cm
-1

) and group assignments for spectra features 

usually observed in explosives IR spectra. 

 

Table 12: Mode assignment and respective wavenumber range, with examples of known explosive 

types or energetic materials (EM), for spectral features commonly observed in the IR spectra of 

explosives (McNesby, et al., 2002) 

Mode assignment 
Example or type of explosive or 

EM 

Wavenumber (cm
-

1
) 

NO2 symmetric stretch Nitramine (RDX) 1260 - 1320 

CH2 bend Nitramine (RDX), TNT 1300 - 1450 

NO2 asymmetric stretch Nitramine (RDX), TNT 1450 - 1600 

C-H stretch Nitramine (RDX), TNT, nitrocellulose 2900 - 3100 

C-C stretch TNT 1620 - 1700 

NO2 symmetric stretch TNT 1325 - 1375 

NO2 symmetric stretch Nitrocellulose 1200 - 1300 

NO2 asymmetric stretch Nitrocellulose 1600 - 1700 

 

The identification of compounds by “fingerprint” comparison and the location of 

functional groups in unknown compounds have made IR spectroscopy one of the most 

extensively used analytical techniques for organic compounds identification. 

When the samples are in solid state, the methodology employed was the KBr technique, 

where the sample is milled with potassium bromide (in 1 to 100 ratio) and then 

mechanically pressed into a pellet which is placed in the IR  
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Many IR spectra compilations were published. From the particular case of explosives it 

can be mentioned NICODOM IR Explosives (NICODOM, 2012).  

IR spectroscopy was also used for quantitative explosive analysis. Quantitative analysis 

of known mixtures can be done successfully by using suitable absorption bands which 

are well separated from each other.  

 

 

2.1.4.2. Results and discussion from literature 

2.1.4.2.1. Ammonium Nitrate 

The main products of the AN thermal decomposition are assumed as NH3. HNO3, N2O, 

H2O, N2, NO2 and NO.  

The IR spectra, presented at Figure 32, was acquired to experimentally demonstrate the 

thermal decomposition of AN (aerosol) at high temperatures (Patil, et al., 1992). 

Following equation (23), the present products in the referred conditions are N2O, H2O, 

NH4NO3 (AN), N2 e NO2.  

The reaction products appear on the IR spectra (Figure 32) on the following vibrational 

modes: H20 at 3200 cm
-1

; around 2200 cm
-1

 it is N2O; the NO2 appears at 1650 cm
-1

; the 

presence of AN is seen at 1350 cm
-1

; NH3 appears around 850 cm
-1

. As expected, due to 

be a bi-atomic molecule with identical atoms, N2 vibrational modes are not detected on 

the IR spectra. The N2O increase concentration is indicative of extensively 

decomposition of AN at high pressures. 
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Figure 32: IR spectra of the decomposition products of AN in the gas phase after 10 s at (a) 15 psi, (b) 

280 psi of argon. The thermal decomposition was made by DSC/TGA coupled with rapid-scan FT-IR, at 

a heating rate of 80ºC/min 

 

2.1.4.2.2. Urea Nitrate 

When the UN thermal decomposition mechanism at low temperatures was studied 

(Désilets, et al., 2011), it was applied IR spectroscopy to the residue resulting from that 

thermal decomposition. The acquired spectrum is shown on Figure 33, as well as the 

characteristic elongations of each detected compound are indicated.  

During the UN thermal decomposition at low temperatures (Désilets, et al., 2011), there 

were acquired two IR spectra, the first one 24h after the exposition of UN at 100ºC and 

the second 48h later. The first acquired spectrum was very similar to the one that will be 

present on Chapter 3 (for reactants IV characterization), in Figure 143, which means 

that UN was slightly decomposed. 48h after the exposure at 100ºC, the obtained 

spectrum is show at Figure 33 and indicates a strong presence of AN, the presence of 

urea, as the disappearance of the UN characteristic band at 2410 cm
-1

. During the 

referred work, there were acquired more IV spectra (but spectra not shown on the 

article), 72 and 144h after 100ºC exposure. The results showed, again, the presence of 

AN and urea, as well as other similar structures to urea. 
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Figure 33: IR spectrum of urea nitrate residue obtained from the UN thermal decomposition at low 

temperatures (Désilets, et al., 2011). 

 

When the UN thermal decomposition mechanism at high temperatures was studied 

(Désilets, et al., 2011(2)), there was no possibility of determining, by IR spectroscopy; 

the liberated gases during the first mass loss (see Figure 31, between 133 and 168ºC), 

due to their rapid volatilization from the sample container. However, it was possible to 

determine the IR spectra of this thermal decomposition at 143, 150 and 190ºC. These 

spectra are shown on Figure 34, as well as the characteristic elongations of present 

molecules. The gaseous products formed at 140ºC (Figure 34, A spectrum), due to the 

UN thermal decomposition, were: nitric acid (HNO3), carbon dioxide (CO2) and nitrous 

oxide (N2O). While temperature was rising until 150ºC, near to the melting point, the 

acquired spectrum (Figure 34, B spectrum) showed the presence of the before referred 

gases, plus isocyanic acid (HNCO), here detected for the first time. Ammonia (NH3) 

was detected from 170ºC. At 190ºC, as shown in spectrum C of Figure 34, were 

detected NH3, HNCO, N2O e CO2. 
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Figure 34: FTIR spectra acquired during the thermal decomposition, made by TGA, of UN at: (A) 143ºC, 

(B) 150ºC and (C) 190ºC (Désilets, et al., 2011(2)). 

 

In even harsher conditions (Hiyoshi, et al., 2002), were obtained the spectra showed on 

Figure 35. The gaseous products obtained from UN (T-jump/FT-IR system) heated at 

400ºC in 8 atm of Ar (Figure 35 (a)) were primarily HNCO (2281 cm
-1

, 2256 cm
-1

), 

CO2 (2359 cm
-1

, 2341 cm
-1

), N2O (2235 cm
-1

, 2214 cm
-1

), NH3 (966 cm
-1

, 930 cm
-1

), 

and H2O (rotational structure centered at about 1600cm
-1

). AN and an unidentified 

product dominate at longer times. A typical residual spectrum from subtraction of the 

known products from UN decomposition is shown in Figure 35 (B) which helped the 

identification of remaining products. The band at 1430 cm
-1

, and the broad Fermi 

resonance triplet at 2950 - 3220cm
-1

 were assigned to AN. The multiple bands at 2150 - 

2300cm
-1

 and 1200 - 1500cm
-1

 are assumed to be from NH4NCO, NH4OCN, and 

species containing –C=N and –C ≡N, such as cyanamide, dicyandiamide, and related 

cyclic azines. 
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Figure 35: FTIR spectras of (A) time dependence of the IR spectra of decomposition products of UN in 

Ar, and (B) decomposition products of UN and urea in Ar , both for 8 atm and 400ºC (Hiyoshi, et al., 

2002) 

 

 

 

2.2. Predicting calculations  

The computational prediction study of the thermal decompositions of AN and UN uses 

the thermochemical computer code THOR. 

All the calculations were performed, for an imposed P and T values, to obtain the 

chemical products composition for the minimum Gibbs free enthalpy result. 

The products compounds were chosen as a combined matrix of reactant atomic species. 

Possible molecules from combined atoms were proposed by NASA thermobuild. 

(NASA, 2003) 

 

 

2.2.1. Ammonium nitrate thermal decomposition prediction 

2.2.1.1. Methodology and results 

Ammonium nitrate (NH4NO3) is a molecule composed by nitrogen (N), hydrogen (H) 

and (C) carbon atoms. NASA thermobuild (NASA, 2003) proposed product molecules. 

From the 40 proposed products molecules it were selected 20.  

After several tentative calculations it were selected the best 16 products molecules and 

composition, always for an isobar adiabatic combustion regime. The used criteria was 
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the validity of   and γ results. It is remembered that (vd. Equation (86)), with hdP = 0, 

edV = 0 and γ   cp/cv: 
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       (86) 

Where the validity of Γ ≈ γ is applied for no phase transition between combustion 

products. 

The best decomposition products were: H2O, H2, N2, O2, H, O, N, NO, OH, NO2, H2O2, 

NH3, HNO3 (g), NH2OH, NH2O2 and N2H4, because gammas values were always equal 

between them, on a range from 1.16 to 1.23. 

The methodology employed to simulate the thermal decomposition was to vary the 

formation enthalpy on the thermochemical data base, on a range of -365.1792 to 

35.1792 kJ/mol. Thermal decomposition on THOR can be simulated assuming the 

chosen formation enthalpy of the reactant to be equal to the original enthalpy of 

reactant, added or subtracted by the value of enthalpy transferred to the environment.  

From the 16 selected decomposition products, just 13 appeared with a molar fraction 

superior to 10
-7

. They were H2O, N2, O2, H2, H, O, NO, OH, NO2, H2O2 and HNO3 (g). 

The results for products present at thermal decomposition of AN, as a function of 

temperature, are shown at Figure 36. 
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Figure 36 Products decomposition of AN as a function of temperature 

 

2.2.1.2. Comparison between experimental results and literature 

Thor predicting decomposition species of Ammonium Nitrate, as a function of 

temperature, presented in Figure 36, show clearly two zones: the first zone is formed by 

H2O, N2 and O2, (major equivalent species formed for the same global enthalpy) 

followed by the others that really shown AN decomposition. 

The AN thermal decomposition mechanism at low temperatures is observed until 

around 550 K (temperature near 270ºC) (Figure 36). Besides the presence of major 

equivalent species (H2O, N2 and O2), there are also present: H2O2, which gets its 

maximum concentration at 550 K; HNO3, which concentration is continuously 

decreasing during the referred temperature range; NO2 with an unstable concentration 

until around 950 K; NO and OH, whose presence stop at 550 K, showing the end of AN 

thermal decomposition at low temperatures. At this temperature range, according to 

reactions (1), (6), (7) and (8) (2.1.1.1), the formed species described by literature are; 

HNO3, H2O, NH3 and N2O. The first two are clearly present on results described above, 

N2O is represented by its dissociation (Pieterse, et al., 2005): 

         
 

 
    (87) 

NH3 was counted by THOR, but not appeared on the results, due to its low 

concentration. Despite of that, THOR gave as result the presence of NO2, OH, NO and 

H2O2, which are species similar to the intermediary ones showed by reactions (6) to (8). 
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One of the characteristic steps of AN thermal decomposition at high temperatures is 

the HNO3 dissociation into H2O, O2 and NO2. The first two are always present in Figure 

36, due to the presented reason in the beginning of this point, but NO2 concentration 

starts stabilizing (presents linear growing) when no more HNO3 is present.  

According to 2.1.1.1, the predominant decomposition products at high temperatures are 

H2O, N2, O2, N2O, NO2 and NO. Again, the presence of the three first ones is clear. N2O 

is represented again by its dissociation products (reaction (87)). The species H2O2, 

HNO3 and NO2 present at temperature range [500-700 K] are representative of more 

complex (more than 3 atoms) intermediary species shown on reactions (10) to (25). OH 

and NO start to appear, once more, for temperatures bigger than 650K and have always 

the same ratio concentrations in order to show the decomposition of the intermediary 

species referred above (Figure 36). NO is itself an AN decomposition product when, for 

example, occurs explosion (reaction (5)). When temperatures are above 1150K, the 

products O and H increase their concentration, showing the decomposition of tri-atomic 

and bi-atomic species into atomic species, which indicates strong energy release, which 

is typical of explosive oxidizers, as AN. 

Comparing the presented obtained results with other studies about thermal 

decomposition of AN (2.1.2.3) (Durães, et al., 1996(2)) (Morgado, et al., 2002) 

(Morgado, et al., 2003), where the results are shown in Figure 22 and Figure 23 (b), the 

similarities are very clear. For both, low (Figure 22) and high temperatures (Figure 

23(b)), the same selected species appears with identical behaviour. 

 

 

 

2.2.2. Urea nitrate thermal decomposition prediction 

2.2.2.1. Methodology and results 

Urea nitrate ((NH2)2COHNO3) is a compound which perfectly fits in a CHNO system 

(the classical combustion system), due to its atomic composition. The methodology 

employed to perform THOR calculations about UN thermal decomposition was similar 

from the shown to AN thermal decomposition. 

NASA thermobuild, from the four atoms C, H, N and O, proposed 180 possible 

molecule compounds. Applying the same choice criteria, 28 molecules were chosen. 
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The physic-chemical properties of these 28 molecules were confirmed at THOR’s 

thermochemical database. 

Performing THOR calculations, the same criteria was used for validation - gammas and 

temperature stabilities. After several calculations, the species CO2, CO, H2O, N2, O2, 

NO2, N, NH3, NO, OH, H, H2, O, C (β), C (α), C (g) and CH4 were selected. The 

gammas values were always equal and varied between 1.10 and 1.23. The thermal 

decomposition of UN was simulated, in THOR, by changing the UN formation enthalpy 

on the thermochemical database, on a range of -632.748 to -182.748 K. From the last 17 

selected species, just 12 had molar fraction superior to 10
-7

: CO2, H2O, N2, CO, O2, NO, 

OH, NH3, H, O, C (α) and H2. The results are shown on Figure 37. 

 

 

Figure 37: Products decomposition of UN as a function of temperature 

 

2.2.2.2. Comparison between prediction results and literature 

In a similar way, Thor thermal decomposition predictions of Urea Nitrate (Figure 37) 

show clearly two zones: the first zone is formed by CO2, H2O, N2 and decreasing values 

of H2 and increasing values of CO,  followed by the others that really shown Urea 

Nitrate decomposition. 

UN also follows different thermal decomposition mechanisms at low and high 

temperatures. 

At low temperatures, which are considered to be below the melting point (until 432 K), 

the formed decomposition products are HNO3, (NH2)2CO, NH3, HNCO, C2H5N3O2 and 

NH4NO3 (see 2.1.1.2, reactions (26) – (29)). This phase can be seen at Figure 37, on a 
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temperature range of 484 - 550 K, with the presence of H2O, N2, CO2, H2 and NH3. The 

only specie found in common was NH3, because other decomposition products (shown 

on literature review) are too complex. HNCO and HNO3 can decompose through 

reactions (88) (Fischer, et al., 2002) and (9), which originate the present NH3, CO2 and 

H2O molecules, calculated by 

                   (88) 

Observing THOR code results for UN (Figure 37). It is possible to see an “empty” zone, 

where is no compounds presence, in a temperature range of 550 – 1187 K. This fact can 

be associated to the condensed phase species production described on the UN thermal 

decomposition mechanism at high temperatures, by reactions (30) to (38) (vd. 

2.1.1.2). When selected species were just gases, THOR code not found ajustable species 

for a pre-given global enthalpy values, on the referred temperature range. The pre-

selected ones always presented inconsistent values for gammas (sometimes different 

between them other times with values under 1), and high temperature variations for 

close enthalpy of reaction values. 

It is possible associate the second zone of UN decomposition to UN thermal 

decomposition (up to 1187 K) above 673 K, which can be related with the harsher 

conditions linked to high temperatures mechanism. The described formed products in 

these conditions (reactions (39) and (40) in 2.1.1.2) were NH3, HNO3, HNCO, N2O, 

CO2 and H2O. NH3, H2O and CO2 are significant species on shown results (Figure 37). 

HNO3, HNCO and N2O are present in form of their dissociation products (reactions (9) 

and (87), respectively), O2, N2, NH3, CO2 and H2O. NO, OH, H, O, C (α) and H2 are 

basic species which can represent, for example, the thermal decomposition of the 

condensed phase products formed during the UN thermal decomposition. 

 The difference between the temperature ranges of literature review (2.1.1.2) and 

the presented computational results (Figure 37) can be justified due to the first ones 

were been determined by DSC/TGA or T-jump methodologies, whose just have isobaric 

conditions; while THOR simulation was made under an isobar and adiabatic regime, 

which justifies the increased temperature ranges. 

 

 

 



HOMEMADE EXPLOSIVES BASED ON AMMONIUM AND UREA NITRATES 

 

69 

Joana Quaresma 

2.2.3. DSC/TGA 

2.2.3.1. Ammonium Nitrate 

Experimental methodology and results. Simultaneous thermal analysis (DSC and 

TGA) was employed to investigate the thermal decompositions of pure ammonium 

nitrate (AN) in non-isothermal conditions. The AN used in this study was AN “Poreux” 

AG from Hydro. 

The measurements were carried out using Rheometric Scientific STA 1500 equipment at 

two different heating rates, 5
o
C/min and 10

o
C/min. Samples weights were between 

13.30 ± 0.05 and 35.40 ± 0.05 mg. Four samples were loaded into open alumina 

crucibles and a dry nitrogen purge flow of 80 ml/min at ambient pressure. This allowed 

the study of AN phase transitions and the kinetic parameters, as activation energies (Ea) 

and pre-exponential factors (Z) of Arrhenius equation. The obtained results are 

presented in Figures 38 to 41 and in Table 13. 

 

DSC/TGA thermograms 

 

Figure 38: DSC/TGA thermograms for AN (blue and red, respectively) heated at 5
o
C/min, contained on 

an open alumina cup (M1 = 34.40 mg) 
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Figure 39: DSC/TGA thermograms for AN (green and orange, respectively) heated at 5
o
C/min, contained 

on an open alumina cup (M2 = 13.30 mg). 

 

 

Figure 40: DSC/TGA results for AN (blue and red, respectively) heated at 10
o
C/min, contained on an 

open alumina cup (M3 = 35.40 mg) 
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Figure 41: DSC/TGA results for ammonium nitrate (green and orange, respectively) heated at 10
o
C/min, 

contained on an open alumina cup (M4 = 20.80 mg)  

 

Kinetic parameters calculation and results. The obtained peak temperatures from DSC 

thermograms and kinetic parameters based on TGA results are presented on Table 13. 

The peak temperatures are correspondent to phase transitions, melting point and thermal 

decomposition of AN. The kinetic parameters (Ea and Z) were obtained through 

calculations based on Borchardt & Daniels method. 

 

 

Table 13: DSC Peak temperatures and kinetic parameters obtained from figures 23 to 26. The kinetic 

parameters were calculated by Borchardt & Daniels method  

Thermograms of 

figure: 

Peak 

temperature 

(ºC) 

Mass Deplection 

38 

T1 = 40.5 
o
C T initial (

o
C)  T final (

o
C)  E (J/mol)  Z (min

-1
)  

T2 = 55.6 
o
C 

256.9 266.3 2.93E+06 23.83 

T3 = 92.6 
o
C 

T4 = 129.6
o
C 

T5 = 170.9
o
C 

T6 = 292.4
o
C  

39 

T1 = 127.3 
o
C 

240.6 266.0 3.65E+06 82.20 T2 = 169.4 
o
C 

T3 = 269.1 
o
C 



 

72 

Joana Quaresma 

40 

T1 = 54.1
o
C 

260.2 266.1 3.08E+06 75.31 

T2 = 93.5
o
C 

T3 = 133
o
C 

T4 = 172.5
o
C 

T5 = 292.8
o
C 

41 

T1 = 60.2
o
C 

268.9 295.8 4.86E+06 532.72 
T2 = 135.2

o
C 

T3 = 172.8
o
C 

T4 = 292.6
o
C 

 

Physical process discussion. The first applied heating rate (5ºC/min) was performed to 

simulate a slow combustion, as the case of driven flame. The fast temperature rate 

(10
o
C/min) was used to be the double of the previous one.  

It was assumed (vd. 2.1.3.3.1), AN presents seven known crystalline modifications Our 

results show, implicitly, five of the seven phases. Figure 38 has phase IV 

(orthorhombic) of AN until 40.5
o
C (transition of phase IV to phase III); since 40.5 to 

55.6
 o

C is present phase IV and III (both orthorhombic); at 55.6
 o

C occurs the transition 

of phase IV to phase II of some AN, which remained stable, this occurrence is 

described. (Théorêt, et al., 1964) at 50
o
C; between 55.6 and 92.6

 o
C are present phases 

III and II (orthorhombic and tetragonal); the transition of phase III to phase II is 

described. (Théorêt, et al., 1964) as occurring at 84.5
 o

C, on our results it appeared at 

92.6
 o

C; between 92.6 and 129.6
 o

C is present phase II (tetragonal); the transition 

showed at our results at 129.6
 o

C is the phase II to phase I transition; at 170.9
o
C is the 

melting point of AN; the thermal decomposition of AN occurs at 250
o
C and it extends 

to 282.1
o
C.  

The difference of reference temperatures, in presented thermal decomposition, can be 

justified by the mean particle size of AN. AN is a solid which can change, non-linearly, 

the molecular geometry and different geometries will have different intra-molecular 

forces. 

Some differences occur when the mass sample is reduced, as shown in Figure 39. The 

acquisition was programmed to start at higher temperature than the acquisition shown in 

Figure 38. Due to that, the first transition occurs at 127.7
o
C and it is correspondent to 

phase II to phase I transition. The temperature difference between this transition and the 

same transition in Figure 38 is around 2
o
C, which means that how much less is the mass 
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sample, lesser is the temperature needed to achieve the same transition. The same 

happens for the melting point (Figure 38: m.p.= 170.9
o
C; Figure 39: m.p.=169.4

o
C), 

because it needs less temperature to broke the same chemical links on a minor number 

of molecules, due to the heat propagation inside of the condensed phase, which 

dissipates across the molecules.  

In Figure 39, the mass loss of thermal decomposition of AN starts between two 

endothermic peaks (169.4 and 269.9
o
C), while in Figure 38 the thermal decomposition 

has a endothermic peak coincident with start of losing mass.  

Figure 40 is very similar to Figure 38 with some little deviations, except the transition 

of phase IV to phase III. It occurs due to the difference between heating rates, the faster 

heating rate (Figure 41) makes the transitions of phase IV to III and phase IV to II 

occurring all at the same time. With the slower heating rate (Figure 39) it is possible to 

clearly see all transitions. 

PSAN was tested previously (Davis, et al., 1996) (Simões, et al., 1998) (Oommen, et al., 

1999(2)) (Portugal, et al., 2000). The difference between PSAN and presented AN was 

the five different physical solid state phases in the temperature range of [-18 – 125] 
o
C. 

PSAN promotes the phase IV changing directly to phase II, avoiding phase III at 32
o
C. 

The three first peaks in thermogram of Figure 28 (vd. 2.1.3.3.1) corresponded to the 

following phase changes: solid phase IV directly to phase II (T≈53
 o

C); solid phase II to 

solid phase I (T≈125
 o

C); and melting point (T≈169
 o
C). The fourth peak corresponded 

to AN thermal decomposition at 210
 o
C. (Portugal, et al., 2000) 

All described peaks (Portugal, et al., 2000) are represented in our results (Figure 41), 

but with some little deviations. Our first four peaks correspond to the following phases, 

according to other referred study (vd. Figure 29, 2.1.3.3.1): solid phase IV to solid phase 

III (T=54.1
 o

C), solid phase III to solid phase II (T=93.5
 o

C), solid phase II to solid 

phase I (T=133
 o

C) and melting point (T=172.5
 o

C). The fifth peak corresponds to AN’s 

thermal decomposition at 257
o
C. Peaks one, three and four were very similar to ones 

described by Portugal et al., 2000. Comparing our results to those presented by 

Oommen et al., 1999(2) (vd. Figure 27 and 2.1.3.3.1), beside the referred deviations, it 

is possible to see the same three peaks on a temperature range of 40 to 140
o
C.  

A DSC test report of AN was presented by NASA (Davis, et al., 1996). Despite the used 

heating rate, it is possible to observe the peaks previously described and compare with 

our results. They (Davis, et al., 1996) (vd. Figure 26, 2.1.3.3.1) have phase changes at 

51, 124 and 170
o
C (same point on our results, Figure 39) and a decomposition 
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endothermic at 257
o
C (same point on our results, Figure 41). The other phase transitions 

are at the same temperature range and with small deviations. Although the mass ratio 

(M3/M4≈1.7) between Figures 40 and 41 was not so high as for figures 38 and 39 

(M1/M2≈2.6), it is possible to see that is a factor that also affects our DSC 

measurements (Figures 40 and 41). Though M3/M4 is smaller than M1/M2, it is still 

enough to show different transitions: in Figure 40 is possible to see the endothermic 

transitions of phase IV to phase III (T=54.1
 o

C), phase III to phase II (T=93.5
 o

C), phase 

II to phase I (T=133
 o

C); while in Figure 41 the transition of solid phase III (T=60.2
o
C) 

goes directly to solid phase I (T=134.9
o
C). The mass effect is also observable at the 

decomposition’s endothermic peaks range of 257 to 292.6
o
C of Figure 40, which shows 

the absorbed heat by decomposition chemical reactions (DSC result) while sample is 

losing mass (TGA result). In Figure 41 this endothermic peaks range disappear and 

became in only one peak, which means that DSC just detect the global heat consumed in 

all reactions of thermal decomposition, because the masses (in this case) are too small. 

A mass ratio of 1.7 (Figures 40 and 41) does not cause so large deviations on 

temperature range of the DSC peaks, as a mass ratio of 2.6 (Figures 38 and 39). In 

Figures 40 and 41, the melting point peaks (T3=172.5
o
C and T4=172.2

o
C, respectively) 

and the thermal decompositions peaks appear at the same temperature, with a deviation 

of 0.3
o
C, almost ten times less than 2

o
C deviation on Figures 38 and 39 (T3=292.6

o
C 

and T4=292.3
o
C, respectively). So, the concordance between DSC assays is bigger when 

the sample mass ratio between them is 1. This can be observed comparing Figure 38 

with 39 (bigger mass ratio), Figures 40 and 41 (minor mass ratio). 

 

Reaction processes discussion. Literature review (2.1.1.1) clarify that reaction (1), due 

to AN’s endothermic dissociation above 169
o
C, corresponds to a proton transfer 

reaction; reaction (2) represents the exothermic elimination of N2O on careful heating at 

200
o
C; reaction (3) corresponds to exothermic elimination of N2 and NO2 above 230

o
C; 

reaction (4) is representative of exothermic elimination of nitrogen and oxygen, 

sometimes accompanied by detonation; and reaction (5) has been suggested when AN 

undergoes explosion 

Reaction 1 is clearly represented in all our results (Figures 38 to 41) on a range of 169.4 

to 172.5
o
C. Reactions (2), (3), (4) and (6) are implicit on results shown at Figures 38 

and 40 (results acquired for bigger masses), on a temperature range of 250 to 2962.6
o
C. 

For small masses (Figures 39 and 41), the endothermic peak, which occurs 
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simultaneously with the mass loss, is well defined. It occurs because, at that 

temperature, the dissociation velocity of remaining AN (reaction (1)) is bigger than the 

reaction velocity of other referred reactions ((2), (3), (4) and (6) to (25)) and, for this, 

the global reaction heat is given by reaction (1), which is endothermic and detectable by 

DSC. The endothermic dissociation is much more significant than exothermic thermal 

decomposition. For bigger masses, the exothermic reactions are not negligible, because 

the present mass seems to be enough to saturate reactions (1), (6) (7) and (8) i.e., the 

bulk decomposition saturation (and still remains mass enough to other reactions occur 

on a detectable scale of DSC). 

 

Kinetic parameters discussion. The results presented on this work present a quite good 

correlation between them. The activation energy (Ea) varied between 2.93E+06 and 

4.86E+06 J/mol and the pre-exponential factor (Z) varied between 23.83 and 532.72. 

The Ea and Z are bigger when the applied heating rate is higher (Table 13, comparison 

between Figures 40 and 41 with Figures 38 and 39) and when the mass sample is 

smaller (Table 13, comparison between Figures 39 and 41 with Figures 38 and 40).  

The mass sample also affects Ea and Z When mass samples are bigger, the Ea and Z are 

smaller because AN undergoes to a surface decomposition, which means that solid AN 

decomposes by “slices”. For smaller masses, the solid AN suffers bulk decomposition, 

i.e., decomposes itself all at the same time, which needs more energy to achieve all 

mass (the input energy is uniformly absorbed). 

 

 

2.2.3.2. Urea Nitrate 

Experimental methodology and results. To study of the thermal decomposition of UN 

in non-isothermal conditions was used pure UN purchased from SelectLab Chemicals, 

GmbH. Once again, the measurements were carried out using Rheometric Scientific STA 

1500 equipment. There were used two different heating rates 5
o
C/min and 10

o
C/min. 

Samples weights were between 7.69 ± 0.05 and 41.0 ± 0.05 mg. Five samples were 

loaded, again, into open alumina crucibles and a dry nitrogen purge flow, of 80 ml/min 

at ambient pressure, was used. This study allowed the determinations of melting point, 

thermal decomposition and the kinetic parameters characteristics from UN. The 
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acquired thermograms are presented on Figures 42 to 45 and the calculated kinetic 

parameters are shown on Table 14. 

 

 

DSC/TGA thermograms 

 

 

Figure 42: DSC/TGA results for urea nitrate (blue and red, respectively) heated at 5
o
C/min, contained on 

an open alumina cup (M1 = 41.0 mg) 

 

 

Figure 43: DSC/TGA results for urea nitrate (green and orange, respectively) heated at 5
o
C/min, 

contained on an open alumina cup (M2 = 9.28 mg) 
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Figure 44: DSC/TGA results for urea nitrate (blue and red, respectively) heated at 10
o
C/min, contained on 

an open alumina cup (M3 = 34.50 mg) 

 

 

Figure 45: DSC/TGA results for urea nitrate (green and orange, respectively) heated at 10
o
C/min, 

contained on an open alumina cup (M4 = 7.69 mg) 

 

Kinetic Parameters. The obtained peak temperatures from DSC thermograms and 

kinetic parameters based on TGA results are presented on Table 14. The peak 

temperatures are correspondent to melting point (first one) and thermal decomposition 

of UN (the last two). The kinetic parameters (Ea and Z) were obtained through 

calculations based on Borchardt & Daniels method. 

 



 

78 

Joana Quaresma 

Table 14: DSC Peak temperatures and kinetic parameters obtained from Figures 42 to 45.   

Thermograms of 

Figure: 

Peak 

temperature (ºC) 

Mass Deplection 

T initial (
o
C) T final (

o
C) E (J/mol) Z (min

-1
) 

42 

T1(endo) = 152.8 
o
C 212.4 232.6 1.615E+06 2.721 

T2(exo) = 171.5 
o
C 240.1 244.5 1.887E+06 4.727 

T3(endo) = 245.2 
o
C 268.9 307.208 3.889E+06 5.874 

43 

T1(endo) = 151.4 
o
C 151.2 161.3 6.133E+06 1.593E+13 

T2(exo) = 161.1 
o
C 164.1 222.7 7.220E+05 5.169 

T3(endo) = 243.2 
o
C 269.7 301.3 1.022E+06 164.120 

44 

T1(endo) = 159.6 
o
C 

209.8 284.7 1.543E+06 1.722 T2(exo) = 178.1 
o
C 

T3(endo) = 286 
o
C 

45 

T1(endo) = 157.7 
o
C 155.9 165.0 9.939E+06 1.656E+20 

T2(exo) = 168.3 
o
C 174.5 262.2 1.236E+06 1.238 

T3(endo) = 263.2 
o
C 278.7 319.8 7.249E+06 189.294 

 

Physical processes discussion. Our DSC results are relatively similar to those ones 

described on Literature Review (Oxley, et al., 2009) (Oxley, et al., 2013) (Désilets, et 

al., 2011(2)). 

Comparing our results (Figures 44 and 45) to those presented on Figure 31 (2.1.3.3.2), it 

can be observed their similarity for temperatures less than 250◦C. Figure 31 has other 

exothermic peak at 403◦C and 380ºC and we just get endothermic peaks after the 

exothermic one (values indicated on Figure 42). These facts probably occur due to the 

different temperature rates used in each experiment. Ours experiments were performed 

with a rate of 10◦C/min, while their experiment was performed at 20◦C/min. These 

different temperature rates can change the degradation mechanism, and mechanisms 

rate. 

Making the comparison between our results (Figures 42 and 43) with those presented on 

Figure 32 (2.1.3.3.2) it is possible to see many similarities: the endothermic and 

exothermic peaks appear on same range temperatures and there are no two exothermic 

peaks. Also, the TGA thermograms had the same profile. Like it was exposed for AN, 

different mass samples of UN and different applied heating rates have different 

contributions for DSC/TGA results (Figures 42 to 45). These influences are few 
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detected on melting point, but they have larger influence on thermal decomposition 

temperatures. Bigger masses and higher heating rates increase the melting temperature, 

but in few Celsius degrees. In first case, the maximum difference is 2.2ºC (comparison 

between Figures 42 and 43 and between Figures 44 and 45). In second case, the 

maximum difference temperature is 7.1ºC (comparison between Figures 42 and 44 and 

between Figures 43 and 45). These considerations, once again, mean that are needed 

higher temperatures to melt and thermal decompose higher masses, and molecular 

movements follow easier slow heating rates than higher ones, because the “thermal 

choke” is smaller. These considerations are more notable for the exothermic and 

endothermic peaks of UN thermal decompositions  

 

Reaction processes discussion. Presented DSC results are very similar to those 

described on Literature Review. (Hiyoshi, et al., 2002) (Oxley, et al., 2009) (Oxley, et 

al., 2013) (Désilets, et al., 2011(2)) 

The first endothermic peak at, approximately, 150
o
C (all results), which is the melting 

point of UN, corresponds to the dissociation of urea nitrate (reaction 26) and to the 

decomposition of urea (reaction (27)). The exothermic peak, for us near 170
o
C (results 

of Figures 42 and 44) or near 160ºC (for Figures 43 and 45) and in Literature Review 

(2.1.1.2) between 166.7 and 172ºC, is due to the occurrence of three reactions: biuret 

formation (reaction (28)), ammonium nitrate formation (reaction (29)) or ammonium 

isocyanate formation (reaction (33)). From 190
o
C to 250

o
C, urea continues to degrade 

while biuret starts to decompose (reversed reaction (28)). Production of cyanuric acid 

and ammelide is accelerated and new compounds slowly appear in low amount: 

ammonium isocyanate (reaction (33)), ammeline and melamine (reactions (34) to (36)). 

In our results, these degradations, decompositions and productions are characterized by 

the endothermic peaks at 245.2 ºC (Figure 42), 243.2ºC (Figure 43), 286ºC (Figure 44) 

and 263.2ºC (Figure 45). 

According to literature, at 250◦C, only cyanuric acid, ammelide, ammeline and 

melamine were present in appreciable amounts, while urea and biuret were completely 

decomposed. Approximately at this temperature we have an endothermic peak (256.5◦

C, Figure 42), which probably means that the previous reactions are still occurring and 

the new compounds are forming in high amounts. 
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From 250 ◦C to 360 ◦C, all material started to decompose essentially by the reverse 

reaction to generate isocyanic acid and ammonia (reactions (1), (2), (37) and (38)). This 

can be proved in our results, by the TGA results, where the last mass loss starts on a 

range of 246 to 280◦C and ends at a range of 300 to 328◦C. Our alumina cup has no 

mass inside when experiment ended, which means that all UN were pyrolised into 

gases. 

 

Kinetic parameters discussion. To determine the kinetic parameters of thermal 

decomposition of UN, it was calculated the activations energies (Ea) and pre-

exponential factors (Z). Our results are based on the same expressions described at 

2.1.3.2 and they are shown on Table 14. 

Oxley et al., 2009 calculated Arrhenius activation energy (Ea) for UN and its pre-

exponential factor, based on a DSC performed at 10
o
C/min to a mass of 0.36 mg, but 

using a different calculation methodology. They used the ATSM E 698 method and we 

used the Borchardt & Daniels methodology. They obtain an Ea = 1.58E+05 J/mol with a 

Z = 1.39E+12 min
-1

 for the endothermic peak, and Ea = 1.31E+05 J/mol with an Z = 

2.66E+09 min
-1

 (Table 10). 

Désilets et al., 2011(2), performed a DSC at 20
o
C/min to a mass of 5 mg of UN and 

determined the activations energies and pre-exponential factors based on the first 

endothermic and exothermic peaks. They reported an activation energy of 

2.06E+05 J/mol with pre-exponential factor Z = 3.850 min
-1

 for the major exothermic 

peak: For the endothermic peak they determined an activation energy of 

2.25E+05 J/mol with a pre-exponential factor Z= 3.434 min
-1

 (Table 10). 

Our results are different from those ones, probably due to the chosen temperature range. 

They made their calculations assuming, as reference, endothermic and exothermic 

peaks, while our results were based in the linear zone at TG measurements. So, different 

temperature ranges means different zones of reaction.  
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CHAPTER 3 – EXPERIMENTAL TESTING OF SELECTED 

COMPOSITIONS 

3.1. Mixtures compositions - Thermodynamic Properties 

It were studied two series of mixtures compositions, shown on Tables 15 and 16. Table 

15 is a selection of Table 16, where mixtures 3.1 and 3.2 are equivalent in mass 

percentage of oxidant/binder/additive to mixtures 4.1 and 4.2, mixtures 3.3 and 3.4 are 

equivalent in richness to 4.1 and 4.2. 

 

Table 15: First serie of mixtures – composition in mass percentage 

 Mixture nº. PU (%) AN (%) UN (%) Al (%) MT (%) 

1
. 

M
ix

tu
re

s 
b

a
se

d
 o

n
 A

N
 o

x
id

a
n

t 

1.1 24 76 0 0 0 

1.2 23 71 0 6 0 

1.3 21 69 0 10 0 

1.4 23 71 0 0 6 

1.5 21 69 0 0 10 

1.6 12 88 0 0 0 

1.7 11 83 0 6 0 

1.8 9 81 0 10 0 

1.9 11 83 0 0 6 

1.10 9 81 0 0 10 

2
. 

M
ix

tu
re

s 
b

a
se

d
 o

n
 U

N
 o

x
id

a
n

t 

2.1 24 0 76 0 0 

2.2 23 0 71 6 0 

2.3 21 0 68 11 0 

2.4 23 0 71 0 6 

2.5 21 0 68 0 11 

2.6 12 0 77 11 0 

2.7 12 0 77 0 11 

2.8 12 0 88 0 0 

2.9 11 0 83 6 0 

2.10 9 0 80 11 0 

2.11 11 0 83 0 6 

2.12 9 0 80 0 11 

PU – PolyUrethane; AN – Ammonium Nitrate; UN – Urea Nitrate; Al – aluminium 

powder; MT – Magnesium / Teflon mixture 
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Table 16: Second serie of mixtures – composition in mass percentage 

 Mixture nº. PU (%) AN (%) UN (%) Al (%) MT (%) 

3
. 

M
ix

tu
re

s 

b
a

se
d

 o
n

 A
N

 

o
x

id
a

n
t 

3.1 7.32 83.59 0 0 9.09 

3.2. 7.32 83.58 0 9.10 0 

3.3. 17.43 73.49 0 0 9.08 

3.4. 17.43 73.49 0 9.08 0 

4
. 

M
ix

tu
re

s 

b
a

se
d

 o
n

 U
N

 

o
x

id
a

n
t 

4.1 7.31 0 83.59 0 9.10 

4.2 7.31 0 83.60 9.09 0 

 

The thermodynamic properties of used reactants components are shown on Tables 17 to 

22.  

 

Table 17: Thermodynamic properties of Ammonium Nitrate (ICT, 2005) (Jolkkonen, 2012) 

Molecular Formula  NH4NO3 

Molar Mass 80.043 g/mol 

Phase Solid 

Density 1.725 g/cm
3
 

Enthalpy of Formation -344.26 kJ/mol 

Entropy of Formation  151.1 J.mol
-1

.K
-1

 

Boiling point  210
o
C 

Heat of combustion/ Enthalpy of Reaction 210.47 kJ/mol 

Cp  139.3 J.mol
-1

.K
-1

 

 

Table 18: Thermodynamic properties of Urea Nitrate (ICT, 2005) (Oxley, et al., 2013) 

Molecular Formula  (NH2)2COHNO3 

Molar Mass 123.068 g/mol 

Phase Solid 

Density 1.67 g/cm
3
 

Enthalpy of Formation -546.47 kJ/mol 

Entropy of Formation  Not found 

Melting point  157-160
o
C  

Heat of combustion/ Enthalpy of Reaction 552.24 kJ/mol 

Cp Not found 

 

Table 19: Thermodynamic properties of PolyUrethane (ICT, 2005)  

Molecular Formula  C10 H18.711 N0.273 O3.294 

Molar Mass 195.495 g/mol 

Phase Solid 
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Density 1 g/cm
3
 

Enthalpy of Formation - 679.52 kJ/mol 

Entropy of Formation  Not found 

Boiling point 250
o
C 

Heat of combustion/ Enthalpy of Reaction Not found 

Cp  Not found 

 

Table 20: Thermodynamic properties of Aluminium (ICT, 2005) (Jolkkonen, 2012)  

Molecular Formula  Al 

Molar Mass 26.982 g/mol 

Phase Solid 

Density 2.702 g/cm
3
 

Enthalpy of Formation 0 kJ/mol 

Entropy of Formation  28.3 J.mol
-1

.K
-1

 

Boiling point 2518
o
C 

Heat of combustion/ Enthalpy of Reaction 838.41 kJ/mol 

Cp  24.4 J.mol
-1

.K
-1

 

 

Table 21: Thermodynamic properties of Magnesium (ICT, 2005) 

Molecular Formula  Mg 

Molar Mass 24.305 g/mol 

Phase Solid 

Density 1.740 g/cm
3
 

Enthalpy of Formation 0 kJ/mol 

Entropy of Formation  148.616 J.mol
-1

.K
-1

 

Boiling point 1107
o
C 

Heat of combustion/ Enthalpy of Reaction 601.64 kJ/mol 

Cp  32.552 J.mol
-1

.K
-1

 

 

Table 22: Thermodynamic properties of Teflon (ICT, 2005) 

Molecular Formula  C2F4 

Molar Mass 100.016 g/mol 

Phase Solid 

Density 2.310 g/cm
3
 

Enthalpy of Formation 820.482 kJ/mol 

Entropy of Formation  9414 J.mol
-1

.K
-1

 

Thermal degradation point 370
o
C 

Heat of combustion/ Enthalpy of Reaction Not Found 

Cp  101.6 J.mol
-1

.K
-1
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3.2. Thermochemical properties predictions for studied mixtures 

3.2.1. Mixtures based on Ammonium Nitrate 

3.2.1.1. Free Gibbs enthalpy and temperatures of combustion predictions 

Prediction of isobar adiabatic combustion temperature, as function of the equivalent a 

ratio (r) of the mixture, gives an evaluation information of reaction effectiveness. This 

value must be couple with Gibbs free energy result for the same r. An example, 

Ammonium Nitrate (AN)/Polyurethane (PU) reaction, is shown in Figure 46, presenting 

the evolution of calculated Gibbs Free Enthalpy and an isobar adiabatic “combustion” 

temperature Tb as a function of equivalence ratio r. The maximum Tb value is always for 

r greater than 1. The presence of Cβ modifies this maximum Tb value. (Quaresma, et al., 

2013) 

 

 

Figure 46: Evolution of predicted Gibbs Free Enthalpy (left) and combustion temperature Tb (right) of 

isobar adiabatic reaction of Ammonium Nitrate – PolyUrethane, as a function of equivalence ratio r 

(adimentional) (Quaresma, et al., 2013) 

 

For richness near 1 (Figure 46, left), the predicted Gibbs Free Enthalpies have 

discrepant values. This fact is due to the change of fundamental species, CO2, H2O, O2 

and N2, for poor mixtures into CO2, H2O, H2 and N2, for rich mixtures.  

The second graph (right) shown on Figure 46 shows that the maximum predicted 

temperature of combustion is 1121.5 K for a mixture with r = 1.9. 

 

3.2.2.2. Prediction of temperature combustion as a function of additives 

concentration 

To study the influence of additives in mixtures composed by AN (as oxidant) and PU 

(as binder) were made several calculations for a composition of PU/AN with r=1.9, 
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which was the composition with higher temperature of combustion. The results, 

obtained in the study of the influence of mass percentage of MT and Al at temperature 

of combustion in mixtures composed by AN and PU, are presented on Figure 47 

andFigure 48. 

 

 

Figure 47: Influence of mass percentage of MT (left) and Al (right) at temperature of combustion in a 

mixture composed by AN and PU (for % (m/m) additives = 0: 76% AN + 24%PU) 

 

 

Figure 48: Comparison between the influences of mass percentages of additives in mixtures composed by 

AN and PU (for % (m/m) additives = 0: 76% AN + 24%PU) 

 

From Figure 47 andFigure 48 is possible conclude that for the same percentage of each 

additive, Al is the one who reaches higher temperatures on the predicted mixtures. It is 

also possible to observe that, for both additives, the increase of the concentration of the 

additive in the mixture increases its temperature of combustion. 
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3.2.2. Mixtures based on Urea Nitrate 

3.2.2.1. Free Gibbs enthalpy and predictions of combustion temperatures  

Some similarities are found changing AN to UN. Predicting results of urea nitrate-

polyurethane reaction, shown in Figure 49. The maximum Tb value is also always for r 

greater than 1, assuming condensed C formation. (Quaresma, et al., 2013) 

 

 

Figure 49: Evolution of predicted Gibbs Free Enthalpy (left) and combustion temperature Tb (right) of 

isobar adiabatic reaction of Urea Nitrate – PolyUrethane, as a function of equivalence ratio r 

(adimensional) (Quaresma, et al., 2013) 

 

The lowest value of predicted Gibbs Free Enthalpy is for r=1.15, which is the value of 

the richness of UN without any binder. With UN, the stoichiometric condition r=1 is 

never reached. On the presence of PU, the lowest value for Free Gibbs Enthalpy is for 

UN/PU mixture is r = 1.75. The maximum temperature of combustion predicted is 1060 

K, for a mixture of UN/PU with r=1.75. 

 

3.2.2.2. Combustion temperature prediction as a function of additives concentration 

The influence of additives in UN plus PU mixtures was studied. All calculations were 

made for a mixture of UN and PU with r=1.75. The results of thermochemical 

calculations are presented on Figure 50 and Figure 51. 
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Figure 50: Influence of mass percentage of MT (left) and Al (right) at temperature of combustion in a 

mixture composed by UN and PU (for % (m/m) additives = 0: 86% UN + 14%PU) 

 

 

Figure 51: Comparison between the influences of mass percentages of additives in mixtures composed by 

UN and PU (for % (m/m) additives = 0): 86% UN + 14%PU) 

 

The predicted results for the combustion temperature as a function of additives for UN 

were very similar to those ones with AN. Al gives to the mixture higher temperatures of 

combustion. All calculations were made for a mixture of UN and PU with r = 1.75. 
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3.3. Combustion experimental study 

 

3.3.1. Introduction 

The definition of combustion, although it has been extensively studied, is not clear. 

(Kubota, 2002) The basis of combustion theory is related to gaseous reaction phase. 

The combustion of gaseous materials produces heat accompanied by emission from the 

luminous reaction products. Chemical reactions occur between the molecules of the 

reactive gas, when it is heated by an external energy source. This reactions belongs to a 

reaction initiation process, which is exothermic and forms high temperature products. 

This process, a part of the combustion phenomena, is known as ignition. When the heat 

produced by this exothermic reaction heats up the unreacted portion of the reactive gas, 

a successive ignition process is established without external heating. This process is 

known as self-sustaining combustion. The ignited region between the unburned and 

burned regions is called combustion wave and it propagates toward the unburned zone 

(Kubota, 2002).  

Although ignition and combustion of energetic solid materials have additional 

physicochemical processes, such as phase transitions, it is fundamentally the same as 

the ignition and combustion of reactive gases (Kubota, 2002).  

When the heat is transferred to the surface of an energetic material, the surface and the 

subsurface temperatures are increased simultaneously. When the surface (zone I - 

Figure 52) reaches the decomposition or gasification temperature, the endothermic 

and/or exothermic reactions occur on and above the surface (zone II - Figure 52). The 

decomposition gases react to form reaction products accompanied by a great heat 

release, and the temperature in the gas phase increases (zone III - Figure 52). If this 

reaction process occurs even after the heat given to the surface is removed, combustion 

is established. On the other hand, if the exothermic and gasification reactions are 

terminated after the heat given to the surface has been removed, ignition has failed and 

combustion is not established. (Kubota, 2002) 

External heating is needed for ignition. Successive heating is needed from the high-

temperature burned portion to the low-temperature unburned portion for combustion. 

(Kubota, 2002) 
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3.3.2. Simplified combustion model – cigar burning approach 

It can be assumed, for energetic solid materials, a simplified combustion phenomena 

when (1) is a one-dimension burning model, and (2) it is a steady-state burning at 

constant pressure, which implies mass conservation. Generically, the mass conservation 

can be expressed in function of the mass burning rate of the material (   , its density 

(ρ), the velocity of mass consumption (u) and the area (A) of the burning surface:  

  
  

  
       (89) 

The velocity of mass consumption (u) is the sum of the propagation velocity ( ) of the 

heat in the “fresh” materials and the fundamental flame velocity ( ), responsible for the 

heat released during the reactions (equation 90). 

        (90) 

The mass burning rate of the materials can be expressed by equation (91), which relates 

the reaction advancement degree (λ) with the formation of the burned material (mb) and 

the total mass present in the combustion (M0). 

   
  

  
   (91) 

Where  

             (92) 

Assuming the mass rate of the burned material(
   

  
), applying equation (91): 

           

   

  
     

  

  
 (93) 

The boundary conditions for λ are 0 when t = t0 (and M0 = mf) and 1 when t = tb (and 

M0 = mb).t0 is the instant when only fresh material is present, tb is the instant when all 

fresh material was converted into burned one. The formation of the fresh material (mf), 

due to the burning of the previous one can be expressed as: 

             (94) 

Assuming equation (93), equation (89) can be now rewritten as: 

   
  

  
       (95) 

To understand the behavior of this parameters in combustion, this simplified 

combustion phenomena is schematized on Figure 52 for our test samples (cigars). 
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Figure 52: Scheme of the simplified combustion phenomena for cigar burning test. Zone I is the 

condensed-phase zone, zone II the condensed-phase reaction zone and zone III is the gas phase reaction 

zone. 

 

The fresh solid mass consumption rate (  ) between zone I and II, assuming the mass 

conservation equation (89), is dependent of the density of: the condensed-phase, which 

is correspondent to the number of the present solid species per volume unit (ρs); the 

burning surface, which is the area where it is possible to occur heat flux between the 

burning surface and the non-burning subsurface (Ac – in Figure 52 is associated to a 

circle); and the velocity of mass consumption (u).  

Equation (89) takes the form: 

  
   

  
         (96) 

 

The left side of the equation can be seen as what is happening in zone II and the right 

side as what is happening at zone I. 

In this case, the velocity of mass consumption (ub) it is equal to the propagation velocity 

( b), because just phase transitions are occurring and flame is not produced ( s ≈ 0). 

Propagation velocity, due to be a physical characteristic can be directly measured: 
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  (97) 

Where dx is the displacement when fresh mass turns into burned mass and dt the time 

interval when it occurs. 

While the fresh solid mass is consumed, degasification occurs at zone II. This means 

that a volume of fresh gases are formed while solid mass is burning. Due to mass 

conservation, the mole number of the burned material is equal to the mole number of the 

formed gases. Applying the Perfect Gases equation (98), which can be applied for rates, 

it is possible to have a relationship between the fresh solid mass consumption  rate (  ) 

and the volume of the fresh gases formation rate ( ) (equation (99)): 

       (98) 

  
 

 
       

    
 

 
 
  

 
 (99) 

Where  is the volume of the fresh gases formation rate,  b is the fresh solid mass 

consumption rate, M is the molar mass of the formed gases multiplied by their molar 

fraction (M = xiMi), R the perfect gas constant, P the atmospheric pressure and T the 

decomposition temperature, which is the phenomena that occurs at the burning surface 

(zone II).  

The volume of the fresh gases formation rate ( ) is directly related with their 

consumption rate (  ) at zone III, because all volume of formed gases are surrounded 

by a reaction zone, between zone III and luminous flame zone, which confines it and 

mass conservation is applied. For this, zone III can be called has gases reaction zone. 

Mathematically this is expressed by relations of equations (91) (92) and (93) between 

fresh (mf  ) and burned material (mb     , which have all the same advancement 

degree (λ), considering the boarder of these two different zones. 

In zone III, due to reactions, the luminous flame zone is formed, so exists a fundamental 

flame velocity. The propagation velocity (  ) is negligible, because chemical reactions 

are occurring, instead of phase transitions. So       (see equation (100)). 

Propagation velocity, due to be a physical characteristic can be directly measured 

(equation (96)), but fundamental flame velocity cannot be, because it is a chemical 
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characteristic (not observable). So, to find fundamental flame velocity (  ) equation 

(89) can be applied and takes the form: 

  
   

  
            (100) 

Where    is the density of the burning gases and AF is the area of the flame (burning 

surface) which, in Figure 52, can be associated to a triangle. Making the analogy 

between equation (100) and Figure 52, the left part is what is happening on periphery of 

zone III and the right part, what is happening between zone II and zone III. 

The density of the burning gases can be given by: 

     
 

 (101) 

Substituting (101) in (100), is possible to get the fundamental flame velocity equation, 

expression that gives the final value of   (102): 

   
 

      

    
  

 (102) 

 

 

3.3.3. Experimental testing 

3.3.3.1. Reactants 

Energetic mixtures, presented at Table 15 Table 16, use Ammonium Nitrate (NH4NO3 

“Poreux” AG from Hydro) and Urea Nitrate (((NH2)2.COHNO3) from SelectLab Chemicals, 

GmbH) particles as fillers. PolyUrethane, from Simões de Carvalho, Ltd, was a 

formulated commercial product of two liquid solutions, one containing the prepolymer 

and the other the diisocyanate solution. It is assumed global compositions of these 

materials according to ICT Database, 2005 (Quaresma, et al., 2013). Thermodynamic 

properties and global values of used components were presented in Table 17,Table 

22Table 19. 

Urea nitrate was bought as wet crystals, so it was needed to dry it. There was needed 

more than 5h (cycles of 30 min) to dry it at a temperature bellow 80 ºC. Both 

ammonium and urea nitrates were micronized and stored on sealed containers. To AN 

was added DMF, in very small concentrations, in order to reduce its hygroscopicity. 
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Aluminum particles (Al “black 000 India” from Carob), Magnesium (delivered from 

pyrotechnics industry CAROB Industries, assuming 92 to 95% purity) and Teflon (delivered by 

Goodfellows, purity was accepted to be up to 98%) were also assumed according to ICT 

Database, 2005. Magnesium/Teflon (MT) mixture has a fixed Mg/Teflon percentage (in 

mass) of 55/45% (Quaresma, et al., 2013) (Campos, et al., 2007). Table 23 presents 

some physical properties of the used Aluminium (vd. Durães, et al., 2006) that is usually 

applied for pyrotechnic proposes. Its appearance is dark grey and it has a greasy coating 

to protect it against water attack during storage. The aluminium particles melting point 

was measured as ≈ 670 ºC by Simultaneous Thermal Analysis (Rheometrics STA 1500), 

10 ºC above the value for pure aluminium. The difference may be due to some partial 

oxidation of aluminium surface by air during storage (Quaresma, et al., 2013) (Durães, 

et al., 2006).  

 

 Table 23. Aluminium physical properties (experimentally measured) 

 Particle size,  

dmean ; d50  

and d90-d10 (m) 

Density,  



(kg m
-3

) 

BET surf. area,  

As 

(m
2
 kg

-1
) 

Aver. pore diameter, 

BET, BJHdesorp. 

(Ǻ) 

Purity 

 

(%) 

Al  black 000 India 

(Carob) 

 18.6 ; 11.8 

47.7 – 1.6 
2700.0  2.8  4475.2  299  238 ; 190 89.3 

 

 
 

Figure 53. Aluminum (Al black 000 India - Carob) particle size distributions obtained by Laser 

Diffraction Spectrometry (left figure) and Simultaneous thermal analysis (DSC/TG) of Al black 000 India 

(Carob), in Ar/H2(48%) atmosphere and heating rate of 40ºC/min (right figure). 

 

Magnesium was considered to have 92 to 95% purity and granulometric size between 3 

and 15 µm. The measure density was 1.60 to 1.67, i.e. less than the approved value cited 

in ICT Tables, 1974, showing that these Mg particles could be coated with some 

polymeric or organic material. Teflon material was the granulometric mean size 
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between 6 to 9 m. The purity was accepted to be up to 98% (Quaresma, et al., 2013). 

Thermodynamic properties and global values of used components were presented in 

Table 20 Table 22. 

3.3.3.2. Mixing Procedure 

The experimental mixtures were mixed using homemade (improvised) mixing systems 

to simulate terrorist conditions. For small quantities (until 8 g), an one screw mixing 

system – screwdriver – was used (similar to a single screw extruder system). The 

mixing container was a PVC cylinder, with six holes of two different diameters. For 

larger quantities (upper to 50 g), a double twin mixing system (kitchen mixer) was used. 

The mixer container was used as mixing container.  

Three different orders of addition of the reactants on the mixing procedure were: 

1. Oxidizer, polyol solution, additive and diisocyanate solution.  

2. Diisocyanate solution firstly added to the oxidizer, additive and polyol solution.  

3. The used one on the optimized mixtures was: oxidizer, polyol solution, 

diisocyanate solution and the additive was the last component to be added. 

The mixing time, for small samples, was around one hour. For larger samples, at least 3 

hours were needed. These times could vary, because the most important parameter 

during the mixing time was the observable homogeneity between reactants. The mixing 

process was stopped when, apparently, bigger homogeneities were reached. 

 

3.3.3.3. Preparation of the samples 

 

Cigar Burning Test. For cigar burning tests, syringes were used as sample container. 

They have 10 mm of diameter, 70 mm of length, a PolyMethylMethAcrylate (PMMA) 

wall (1 mm of thickness) and a piston with 70 mm of length made of PMMA and with 

an extremity of polybutadiene rubber. This kind of container had two configurations: 

with and without the tip (Figure 54).  

Cigars were prepared by two ways: 

1. Injecting the mixtures inside them in a conventional way, which was pressing 

them through the mixture. Then, the mixture inside the cigar was manually 

pressed, added more mixture, and pressed again. This pressing methodology was 

only used when the syringe tip has been cut.  
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2. When syringes was with their tip (10 mm of length and 4 mm of diameter), 

mixture was pressed in a press, using a special apparatus developed exclusively 

for this propose. These king of samples were pressed until they get a pre-defined 

volume, during one minute.  

Preparations were storage from one day to one week before use at room temperature. 

Samples had the look shown on Figure 54. 

 

  

Figure 54: Cigar burning test samples 

 

Disk Burning Test. The disk, which was the sample container, is composed by a 

PolyVinyl Chloride (PVC) container and a PolyMethylMethAcrylate (PMMA) lid. 

(Durães, et al., 2006) Its design is shown on Figure 55. 

 

 

Figure 55: Disk test samples (all dimensions in millimeters). Adapted from Durães, et al., 2006. 

 

For disk burning tests, the mixture was injected and pressed manually, inside the PVC 

container. After put the PMMA cylinder, disk samples were pressed by two different 

ways: 

1. Disks were put between two steel plates and pressed with a vise, remaining for 

one week. The polymerization of PU occurred during that time. 
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2. Disks were pressed in a press, over one minute at 10 tons. The polymerization 

of PU occurred due to exposure to 80 ºC in a hoven. 

Samples were tested after one day to one week of storage at room temperature and they 

looked like as shown on Figure 56, respectively. The hole in the center was made before 

experiments. 

 

  

Figure 56: disk samples 

 

 

3.3.3.4. Experimental set-ups 

 

Cigar Burning Test. To execute this kind of test, two holes were made on the samples, 

spaced between them of 5 mm and with 5 mm of profundity. The distance between the 

top of the sample and the first hole was between 10 and 25 mm. 

The sample was collocated above a metal cylinder, two Cr/Al thermocouples 

(Thermocoax TKI 10/10/NN) were put inside the two holes, as shown on Figure 57. 

These thermocouples were connected to an electronic amplifier for thermocouples 

(having an integrated circuit for cold junction), allowing measurements of flame 

temperature. The amplified signal was recorded by a digital signal analyzer (Tektronix 

TDS 320) and results were printed by a Desk Jet 550C HP printer (Figure 58). 

Independently, a video-crono-photography (Casio Excilim), having recording speed up 

to 1000 fps (frames per second), allowed the real time flame records. Recording speed 

was usually 30 fps, implying a time delay of 1/30 s for two successive frames. This 

camera was collocated in front of the sample. 

The graph paper was used as reference for flame displacement, during the tests. The 

aluminum paper was used to collect the burnt mixture (Figure 57). 
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Figure 57: Experimental set-up for cigar burning tests 

 

 

Figure 58: Recording equipment 

 

Disk Burning Tests. Disk burning tests were performed in two experimental set-ups. In 

the first one, disk was put in the horizontal position, sustained by a laboratory claw, a 

mirror was placed above the disk with an angle around 45º, in order to be possible to 

film the combustion of the mixture through the PMMA surface (Figure 59). All this 

apparatus was sustained by a laboratory support. 
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Figure 59: horizontal experimental set-up for disk burning test 

 

The second experimental set-up used on these tests was in the vertical position. Once 

again, the disk was held by a laboratory claw, but no mirror was necessary. The camera 

was put 1 m away from the disk, due to safety aspects for the machine. This set-up is 

presented on Figure 60. 

 

 

Figure 60: vertical experiment set-up for disk burning test 

 

3.3.3.5. Thermocouples and time delay calibrations 

Calibration of the thermocouples, temperature and time measurements, was done using 

a pyrotechnical cord having standard flame velocities of 1 cm.s
-1

 (Figure 61). This 

procedure allows confirming the measurement of flame velocity, based in time delay 

between the two thermocouples (Figure 62). 
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Figure 61: Thermocouples assembly for calibration of temperature equipment  

 

 

Figure 62: Temperature records showing thermocouples delay allowing flame velocity measurement 

(2 V/div↔ 200 ºC/div.) as a function of time (500 ms/div.) 

 

Between experiments, thermocouples were tested with a lighter flame to ensure that no 

one was damaged. Figure 63 is exemplificative of that kind of calibration. These kind of 

calibration consisted on heating of thermocouples during 5 s, with an interval of 15 s 

between the heating of each thermocouple. 

 

 

Figure 63: Temperature record in function of time of 5 s of lighter flame in each thermocouple. Between 

the heating of two thermocouples, 15 s elapsed. 
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3.3.3.6. Typical testing procedure 

 

Cigar Burning Tests. These kind of tests were performed quite close to isobaric 

combustion conditions. Before tests, the recording equipment was programmed for 

measurements. Temperature measurement records (an example is showed on Figure 64), 

had selected parameters for digital signal analyzer: 5 V/div, 5s/div and trigger varied 

between 1 and 3 V. For real time flame records the selected parameters were: 30 fps, 

HD mode and autofocus for details. Samples were weighed and all relevant lengths 

(height, width, thermocouples positions and diameter) were measured. Cigar burning 

tests consisted on ignite the cigar, on the upper part, with a lighter or with a blowtorch. 

When it was needed, more than one ignition was made. During the combustion of the 

sample, temperatures were acquired by the thermocouples and all combustion behavior 

were recorded by the camera. To study closer the combustion phenomena, a magnifying 

glass was place between the camera and the sample (closer to the sample) (Figure 65). 

When combustion was extinct, the burnt residues were collected, weighed and packed 

for further IR analysis. 

With the recorded movies, it was possible to study: the propagations of the driven 

flames of PMMA, the mixture and the explosions; flame velocities and the analysis of 

the appearance of the flame (reaction zones). 

 

 

Figure 64. Example of experimental temperature record of AN/PU mixture with MT (5 V/div  

500 ºC/div.) as a function of time (5 s/div.) 
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Figure 65: Visualization of the combustion of a cigar with the help of a magnifying glass 

 

Disk Burning Tests. These kind of tests were performed more close to adiabatic 

combustion conditions (due to the existing insulating walls). Before disk burning tests, 

the samples were weighed and mixture thickness was measured. After preparing the 

camera with the same definitions than referred above and collocate the disk on the 

vertical position, the disk burning tests started with the ignition of the sample. That was 

made with a blowtorch at the back part (PVC) of the sample. Sometimes, when ignition 

by the back was ineffective, it was tried at the front part (PMMA). After combustion, 

disks were weighed, opened and the burnt mixture was collected and packed to IR 

analysis. 

With the recorded movies was possible to study the areas of two different explosions, 

time needed by the mixture to acquire that area and all combustion behavior of the 

samples. 

 

Studied parameters. The parameters studied during this work, for cigar burning tests, 

were: densities of the fresh mixtures; maximum temperature acquired by the 

thermocouples, during the combustion of the samples; velocity of propagation of the 

flame in PMMA; velocity of propagation of the flame in one explosion; velocity of 

propagation of the flame in the mixture and flame velocity in the mixture. 

For disk burning tests, the studied parameters were: densities of the fresh mixtures; time 

elapsed since there was no hot points until the appearance of one that originates 

explosion; area of the chosen hot point. For the measurements of the hot points there 

were chosen two different hot points. 
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All results will have a general description about what was observed during the 

combustion and relevant facts about measurements will be described. All results will be 

accompanied by the reference photos that allowed the measurements. 

The results will be present by the order and with the numbers presented on Table 15 and 

Table 16. 

 

Mathematical expressions used for the treatment of the results. The density (ρ) of the 

fresh mixture was calculated based on the follow equation: 

   
 

 
 (103) 

Where m is the weighed mass, V is the volume of the mixture, which was calculated 

through equation (104). 

          (104) 

With r being the radius of the PMMA lid and l the thickness of the sample. 

All velocities of propagation of the different flames ( ) were calculated using equation 

(105): 

= 
  

  
 (105) 

Where Δx is the displacement or the length (in the case of the explosions) of the flames 

during the interval of time, Δt. Δx was measured through chosen frames, where were 

made relationships between the length shown on figures and the diameter of the syringe 

or the diameter of the PMMA lid. Δt was the time elapsed between the chosen frames. 

The flame velocity ( ) was measured through the equation (106): 

  
  

 (106) 

 

  volume flow of the producted gases  

AF  area of the flame.  

The volume flow ( ) was calculated with basis on the bellow equation: 

   
    

    
 (107) 

Where   is the mass flow of the burning mixture, R is the constant for perfect gases, T 

is the average temperature of decomposition acquired by DSC/TGA, P is the 

atmospheric pressure and M is molar mass of the predicted produced gases (by THOR 
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calculations) multiplied by their molar fraction,. The area of the flame (AF) was 

measured approximating the shape of the flame to a geometrical figures and by the 

correlations of the lengths of that with the diameter of the cigar (which is known the real 

value). 

The mass flow (  ) was calculated by equation (108): 

           (108) 

A F


B is the area of the surface of the mixture which was being burning, which is all the 

same and is given by the equation (109): 

            (109) 

For the disk burning tests, the area of the chosen hot point was measured through 

correlations between the measured area and the PMMA lid on the image, which real 

value was known. 

 

 

 

3.3.4. Experimental results 

3.3.4.1. Mixture nº 1.2 - heterogeneous mixture based on AN, PU and Al 

100 g of mixture constituted by 72% AN, 22 % PU and 6% Al (m/m) were prepared 

using the mixing procedure described on section 3.3.3.2. The disk was prepared using 

the methodology described in 3.3.3.3, and used after one week of storage. 

 

Disk burning test. The density of the disk was 1600 kg/m
3
. At Figure 66 the aspect of 

the disk before and after combustion are presented. 

 



 

106 

Joana Quaresma 

           

Figure 66: Disk of mixture nº. 1.2. Image on the right shows the fresh mixture on the disk. Image on the 

left shows the disk after the partial combustion of the mixture. 

 

This test was performed with the disk on horizontal position. During this experiment 

five different ignition modes were tested: with a lighter on the hole of the PMMA face 

of the disk, this PMMA combustion took more than 3 minutes and mixture not burnt; 

with a paper impregnated with commercial ethanol placed on the hole in the center of 

the PMMA face, not even PMMA burnt; with gunpowder and cord fuse placed on the 

hole; with dried paper and with a burning PMMA stick, both placed on central hole of 

the disk. 

Combustion was reached, after 1 minute, the center of the mixture turned incandescent. 

The beginning of the incandescence was not recorded. In the end of the ignition with 

gunpowder and fuse cord there was no incandescence on the mixture, but in the next 

movie, elapsed one minute and a half, the incandescence was present. Between these 

two movies elapsed one minute and a half. Two little spark was seen during this ignition 

time. The incandescence were accompanied by grey smoke, which became stronger 

during the movies. After 1 minute and 10 seconds, the self-combustion was observed, as 

it can be seen on Figure 67. Two last referred ignitions were tried before the 

combustion. Never happened explosions.  

On the flame shown on Figure 67, it can be seen 4 colored zones: the transparent one, 

which corresponds to degasification of the mixture; an orange translucent - ignition 

zone of the gases released by the mixture; orange - combustion and reaction of the gases 

with Al; and the white zone, which corresponds to the combustion products of the 

reaction between Al and the gases released by the mixture. 
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Figure 67: Combustion of the disk with mixture nº. 1.2. 

 

 

3.3.4.2. Mixture nº 1.4 - heterogeneous mixture based on AN, PU and MT 

Mixture nº. 1.4 was composed by 72% AN, 22 % PU and 6% MT (m/m). There were 

made 100 g of mixture through process 2 described on 3.3.3.2. Just disk burning test 

was made with this composition. 

 

Disk burning test. Figure 68 shows the aspect of the sample before it was 

experimented.  

 

 

Figure 68: Disk of mixture nº. 1.4 before its combustion 

 

During this experiment, three ignition with the blow torch were tried and two movies 

were recorded. They lasted 30 seconds, 16 seconds and 6 seconds, respectively.  

On the first movie, beside the three ignitions, occurred one explosion 20 seconds after 

the stop of the last ignition. During this time no incandesce on mixture was seen. 

Explosion lasted 1 minute, originated a thin orange flame, which had 2 seconds of 
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duration. It was possible to see the decrease of the light emitted by the flame. Mixture 

was apparently extinguished during, at least, 7 seconds.  

Auto-ignition occurred between movies, because second movie starts with the described 

flame (but more intense and with a yellow zone). It was auto-ignition, because there was 

no time between movies to do another ignition with the blowtorch. It started with 

combustion and not with explosion, because explosions lasted, at least, 1 seconds and 

the time elapsed between movies was less than that.  

This flame can has several reasons: degasification with expansion was always 

occurring, the flame appeared when that gases reached their temperature of ignition, due 

to the increase of pressure from combustion of MT mixture; the increase of temperature, 

due to gas expansion, was high enough to make an exothermic decomposition of AN; 

the mixture is apparently extinguished until suffers auto-combustion, due to the smolder 

combustion of PU, which reaches enough temperatures to occur thermal decomposition 

of Mg and gas expansion due to combustion of Teflon, which originates the flame.  

The mixture was apparently extinct during 5 seconds and then occurred one explosion. 

During this auto-combustion, occurred 5 explosions, always followed by the described 

flame and the extinction. Mixture was always burning from 4
th

 explosion until the end 

of the last movie. These was observed sometimes on the front part of the disk, other 

times, just in the back (here sometimes was just luminosity, flame was not visible due to 

the disk position).  

 

The experiment described above was performed with the disk on horizontal position. 

Table 24 shows the obtained results. The density was calculated by equation (103). The 

measurement of the areas of explosion one (A1) and two (A2) were made approaching 

the incandescent area to a circle and to two ellipses, respectively. The measurements 

were made comparing the perimeter of the PMMA (see Figure 55) with the perimeters 

of the burning areas shown on Figure 69 Figure 70, respectively. Time (Δt) was the 

elapsed time between frames records of each explosion. The subscript values on A and 

Δt are referent to the studied explosion and they are associated to the indicated figure. 

Explosions one and two corresponds to explosions 2 and 5 in the movies. One minute 

passed between them. 

 

Table 24: Results obtained from the combustion of mixture nº. 1.4.  

ρ (kg/m
3
) Δt1 (s) A1 (m

2
) Fig. Δt2 (s) A2 (m

2
) Fig. 
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2104  0.07 2.29E-05  Figure 

69 

0.07 3.21E-04  Figure 

70 

 

 

Figure 69: Frames which shows the moment before explosion one (at left) and the first appearance of 

explosion one (at right). The measurement of the area was made at right image. 

 

 

Figure 70: Frames which shows the moment before explosion two (at left) and the first appearance of 

explosion two (at right). The measurement of the area was made at right image. 

 

 

3.3.4.3. Mixture nº 1.5 - heterogeneous mixture based on AN, PU and MT 

The composition of this mixture was 69% AN, 21% PU and 10% MT (m/m). There was 

made 50 g of this mixture and that was used methodology 2 described on 3.3.3.2. Both 

tests were performed with this mixture. 

 

Cigar Burning Test. The sample was prepared by methodology 1, for cigar burning 

test, described on 3.3.3.3. Figure 71 shows the cigar before and after combustion.  
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Figure 71: Mixture nº. 1.5 prepared for a cigar burning test (left) and its residues after combustion (right) 

 

On this experiment, the trigger was made manually. 14 explosions occurred during 1 

minute and 51 seconds, with different intensities and durations. There was no significant 

light changes before explosions, but after them, the flames lost their light intensities 

(sometimes, just was possible to see an orange thin perimeter - Figure 74, the right one). 

This fact occurred probably due the strong gas expansion caused by MT mixture. 

During all experiment was possible to see the bubble of the mixture and the porosity of 

burnt material, which proves degasification. This is also possible to see in some shown 

images (Figure 72,Figure 73 Figure 75). The gas expansion was also seen, because the 

volume of the burnt material was higher than the fresh one, during the combustion 

process.  

Analysing the flame shown on Figure 72, it is possible to observe the three zones: the 

almost transparent orange, which corresponds to degasification; the orange zone, which 

is the ignition of the formed gases; and the yellow zone, which is correspondent to the 

combustion of the ignited gases. It is also possible to see the combustion of MT mixture 

by the white trace in the orange hollow zone. The colours of this flame are quite 

different from those which has Al as additive. This fact can be due to the radiative 

formed products, which not get such higher temperatures as the ones formed with Al, 

and / or due to less formation of black carbon, showing a minor pyrolysis from PU. 

The results obtained from the analysis of this experiment are summarized on Table 25. 
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Figure 72: Flame of combustion of mixture nº.1.5 on a cigar burning test. 

 

Table 25: Results obtained from the combustion of mixture nº. 1.5 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum temperatures acquired by thermocouples (Th1 is the 

upper one and Th2 is the downer), velocities of flame propagation of PMMA, explosion, mixture and 

fundamental flame velocity. 

ρ (kg/m
3
) 1377.2 

Maximum temperature – Th1 (ºC) 1300  

Maximum temperature – Th2 (ºC) 1350  

 PMMA (m/s) 2.00E-04  

Studied images for  PMMA Figure 73 

 explosion (m/s) 5.00E-03  

Studied images for  explosion Figure 74 

 mixture (m/s) 1.06E-04  

Studied images for  mixture Figure 75 

 Flame (m/s) 1.43E-01  

Studied image for Flame Figure 72 

 

For calculation of the velocity of flame propagation of PMMA (  PMMA) it was used 

equation (105). The baseline for position measurement was the liquid PMMA, shown 

on Figure 73. The delay time was measured between frame time references. 
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Figure 73: Frames used to study the velocity of flame propagation of PMMA. The initial position is 

image on the left, final position the image on the right. 

 

Equation (105) was used to calculate the velocity of the propagation of the explosion (

explosion) and measurement were made on the left image shown on Figure 74. The 

measurement of the burnt distance was the length of the incandescent part. The time 

was measured as descried above. 

 

 

Figure 74: Frames used to study the velocity of propagation of explosion in mixture nº. 1.5. The frame of 

the left shows the bigger burning area of this explosion and the frame of the right shows the end of the 

explosion (when no more incandescence on the mixture was seen). 

 

Once again, equation (105) was used to calculate the velocity of propagation of the 

mixture (  mixture), based on measurements made on Figure 75. The baseline for 

position measurements was the incandescent bubble on both frames. The delay time was 

measured between frame time references. 
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Figure 75: Frames used to study the velocity of propagation of the mixture nº. 1.5. The frame at the left is 

correspondent to the initial position, and the frame at right, the final position. 

 

To calculate the flame velocity ( Flame), equation (106) was used. The area of the flame 

was measured in Figure 72, approximating the shape of the flame’s area to a triangle 

and by the correlations of the lengths of the triangle with the diameter of the cigar 

(which is known the real value). The base of the triangle was coincident with the last 

line which is possible to see in the hollow zone. There was also considered the area of a 

rectangle which height was from bubbles of burning mixture until the base of the 

triangle. The width considered was the vanished yellow limit. 

 

Disk Burning Test. This sample was prepared by methodology 1 described at 3.3.3.2, 

for disk burning tests. Figure 76 shows the aspect of the sample before it was 

experimented.  

 

 

Figure 76: Disk of mixture nº. 1.5 before its combustion 

 

This experiment was performed with the disk on a vertical position. During almost 1 

minute, three attempt of ignition were made. The first one was for short time, but the 
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next two were longer. Two more ignitions, always with a blowtorch, were tried. The last 

ignition, which lasted 26 seconds, finally turned into combustion.  

During 2 minutes and 3 seconds, 16 explosions occurred. Explosions 8, 9, 10, 11 and 12 

were extinguished with a blowing. . Between explosions there was no possibility to see 

burning mixture, due to PMMA flames. It just was possible to see on shown images of 

studied explosions 1 and 2, which corresponds on reality to explosions 11 and 15.  

Every explosions generated light as shown on left frame of Figure 77. The kind of 

flames shown on Figure 78 corresponds to mixture's combustion, without explosion. 

PMMA flames are more yellow than white, when compared with those ones. 

 

 

Figure 77: Flames generates by explosion. Frame of the left shows the maximum intensity of light during 

explosions. Frame of the right shows the flame on the end of the explosion. 

 

 

Figure 78: Combustion flames generated by the burning of mixture nº.1.5 

 

The studied parameters on this test were the same referred on 3.3.3.2. The results are 

presented on Table 26. 

 

Table 26 Results obtained from the disk burning test of mixture nº. 1.5. 

ρ (kg/m
3
) Δt1 

(s) 

A1 (m
2
) Fig. Δt2 

(s) 

A2 (m
2
) Fig. 

1775.0 0.07 7.39E-05  Figure 

79 

0.07 7.99E-06 Figure 

80 
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The measurements were made taking in account the area of both incandescent parts (the 

most yellow ones) shown on Figure 79 Figure 80. They were approximated to circles. In 

case of explosion two, the sum of the two circles was made. This explosions 

corresponds to self-ignition of the mixture. The Figure 79 Figure 80 were acquired after 

self-extinction and during auto-ignition. 

 

 

Figure 79: Frames which shows the moment before explosion one (at left) and the first appearance of 

explosion one (at right). The measurement of the area was made at right image. 

 

 

Figure 80: Frames which shows the moment before explosion two (at left) and the first appearance of 

explosion two (at right). The measurement of the area was made at frame of the right. 

 

 

3.3.4.4. Mixture nº 1.8 - heterogeneous mixture based on AN, PU and Al 

The chemical composition of this mixture was 69% AN, 21% PU and 10% Al (m/m). 

50 g of mixture were made with procedure 2 (3.3.3.2). Both tests were realized with this 

mixture. 

 

Cigar Burning Test. The sample was prepared by methodology 1, for cigar burning 

test, described on 3.3.3.3. Figure 81 shows the cigar before and after combustion. The 

part of the mixture which is outside of the syringe appeared during the curing time, 

which indicates that the mixture expands during the curing time. 
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Figure 81: cigar of the fresh mixture nº.1.8 (left) and its residues of combustion (right) 

 

During the film measurement (2 minutes and 57 seconds) occurred two explosions. Just 

one ignition (with lighter) was necessary and mixture started the combustion without the 

help of the PMMA flame. The ignition was made directly on the mixture, on the upper 

part of cigar (see Figure 81 – the left one), and the combustion was auto-sustained until 

it arrives to PMMA surrounding material.  

There was gas expansion, because the volume of the burnt material was higher than the 

fresh one. This fact is also observable at Figure 82, by the hollow part on the showed 

flame. On that figure in also possible to see an inclination on burning surface, as well as 

on flame position. It indicates the heterogeneities of the mixture, which different 

concentrations on same area produces different burning conditions, forming a slant on 

effective surface of combustion.  

Analysing the flame (Figure 82), is possible to see three different zones: the hollow one, 

due to gas expansion; the orange one, due to the ignition of the produced gases; and the 

white one, due to combustion of the referred gases. The white colour is due to the 

radiance of black carbon. There is also possible to see some sparks, probably due to 

higher concentrations of Al particles on that surface.  

The explosions occurred probably due to the presence of even higher Al concentrations 

on that surface, which was used to increase the temperature of combustion on mixtures, 

and it was effective. The heterogeneity saw on combustion process is directly related 

with the heterogeneity of the studied mixture. The results obtained from the analysis of 

this test are presented on Figure 27. 
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Figure 82: Flame of combustion of mixture nº. 1.8 on a cigar burning test 

 

Table 27: Results obtained from the combustion of mixture nº. 1.8 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum temperatures acquired by thermocouples (Th1 is the 

upper one and Th2 is the downer), velocities of flame propagation of PMMA, explosion, mixture and 

fundamental flame velocity. 

ρ (kg/m
3
) 1249.8 

Maximum temperature – Th1 (ºC) 850  

Maximum temperature – Th2 (ºC) 1250 

 PMMA (m/s) 1.61E-04 

Studied images for  PMMA Figure 83 

 explosion (m/s) 7.16E-03 

Studied images for  explosion Figure 84 

 mixture (m/s) 1.11E-04 

Studied images for  mixture Figure 85 

 Flame (m/s) 3.93E-01 

Studied image for  Flame Figure 82 

 

The reference for the measurement of the velocity of propagation of flame in PMMA (

 PMMA) was the upper part of the liquid PMMA (Figure 83). Equation (105) was used 

for the calculation of this parameter. The methodology employed to record distance and 

time was the same along all this work (images from delay).  

 



 

118 

Joana Quaresma 

 

Figure 83: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right 

 

The measurement of the velocity of propagation of the explosion (  explosion) was made 

in a similar way than described for mixture nº. 1.5. Due to the reaction of Al with the 

products of combustion of mixture nº.1.8, the length of the burnt residues (the 

incandescent ones on both frames of Figure 84) increased. That length was taken as 

displacement. The initial position was the base of the incandescent part on left frame. 

The final position was the upper part of the incandescent residues on the right frame of 

Figure 84. 

 

 

Figure 84: Frames used to study the velocity of propagation of explosion in mixture nº. 1.8. 

 

The measure of the velocity of propagation of the flame (  mixture) in mixture nº. 1.8 

was acquired between two explosions. The baseline for position measurements was the 

separation between PMMA and the burnt mixture (Figure 85). The methodology 

employed was the correlations between real and photographic distances and equation 

(105). 
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Figure 85: Frames used to study the velocity of propagation of the mixture nº. 1.8. The frame at the left is 

correspondent to the initial position, and the frame at right, the final position. 

 

For measurements of fundamental flame velocity ( Flame) there was constructed a 

triangle which perimeter was coincident with the separation between the orange and the 

yellow zone of the flame of Figure 82. The base of this triangle was coincident with the 

middle part of the burnt mixture. Correlations between real and photographic distances 

were made. The calculation was based on equations (106) to (109). 

 

Disk Burning Test. This sample was prepared by methodology 1 described at 3.3.3.3, 

for disk burning tests. Figure 86 shows the aspect of the sample before it was 

experimented. No pictures were taken to the burnt sample. 

 

 

Figure 86: Disk of mixture nº. 1.8 before its combustion 

 

This experiment was performed with the disk on a vertical position. There were needed 

approximately 4 minutes to get ignition of the mixture in the disk.  

Ignition was made with a blowtorch, at the back part of the disk (PVC) and that was not 

constant during the 4 minutes (some stops were made to see if ignition was already 

happening).  
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During 2 minutes and 11seconds of film occurred 10 explosions, with different 

durations and intensities.  To count explosions, the reference were: the burning mass 

and the intensity / colour of the light of the flame emitted by the mixture.  

When there was mass consumption, which was possible to see as represented on Figure 

87, the emitted flame was yellow, almost white. When, apparently, there was no mass 

burning, the flame was orange, almost transparent, with some sparks (Figure 87, the 

right one). This transparency was due to degasification of the mixture and the sparks 

due to Al’s reaction with gaseous combustion products. When the mass consumption 

was higher, longer was the duration of the yellow flame. These descriptions show the 

mixture heterogeneity. This heterogeneity was also seen due to the propagation of the 

mass consumption, which was no linear. Sometimes, just a little area burnt, other times 

were possible to see the incandescence propagates through the mixture. 

 

 

Figure 87: Flames of combustion of mixture nº.1.8 when it had mass consumption (at left) and when there 

was no mass consumption (at right). 

 

The results presented on Table 28 were calculated from equation (109). 

 

Table 28 Results obtained from the disk burning test of mixture nº. 1.8. 

ρ (kg/m
3
) Δt1 (s) A1 (m

2
) Fig. Δt2 (s) A2 (m

2
) Fig. 

2080.1 0.07 8.17E-05 Figure 

88 

0.03 6.16E-06 Figure 

89 

 

The measurements of areas were made comparing the perimeter of the PMMA (which 

was measured before combustion) with the perimeters of the burning areas shown on 

Figure 88 and Figure 89, which were approximated to circles. The delay time was 

measured between frame time references. 
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Figure 88: Frames which shows the moment before explosion one (at left) and the first appearance of 

explosion one (at right). The measurement of the area was made at right image. 

 

 

Figure 89: Frames which shows the moment before explosion two (at left) and the first appearance of 

explosion two (at right). The measurement of the area was made at frame of the right. 

 

 

3.3.4.5. Mixture nº 2.6 - heterogeneous mixture based on UN, PU and Al 

This mixture had, as composition, 77% UN, 12% PU and 11% Al (m/m). The used 

mixing procedure was the 2, referred on 3.3.3.2, and 50 g of mixture were produced. 

Just cigar burning test was experimented. 

 

Cigar Burning Test. Sample was prepared according to methodology 1 presented on 

Preparation of the samples, for cigar burning test. Figure 90 shows the look of the 

mixture nº.2.6 before and after its combustion. 
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Figure 90: Mixture nº. 2.6 prepared for a cigar burning test (left) and its residues after combustion (right) 

 

At the beginning of this test, the burning mixture suffered self-extinction. Movie was 

recorded immediately after the second ignition with lighter. It was recorded other self-

extinction of the flame. These extinctions can be explained by the heterogeneity of the 

mixture, high gas production and low temperature flames of PMMA, whose conciliation 

not promote the combustion of the mixture.  

Combustion is reached by driven flame due to self-combustion of PMMA at zones 

where heterogeneity is not so high, and the temperature of the PMMA flame (plus its 

slow burning rate) is enough to keep the driven flame of the mixture. In zones where the 

additive concentration is higher, explosions occurs.  

Driven-flame process, from PMMA surrounded cylinder, was very important to sustain 

flame progression in the mixture. 

Analysing the flame of combustion (Figure 91), this degasification is observable, it is 

the hollow zone between the ashes and orange part of the flame. After degassing, the 

formed gas reacts with oxygen from air, suffering ignition (orange zone of the flame) 

and posterior combustion. The yellow (almost white) zone of the flame corresponds to 

the emission of light from gaseous combustion products, which had gases as reactants. 

This colour corresponds to the emission of black carbon, when exposed to high 

temperatures.  

Table 29 summarize the results achieved on the treatment of this experiment. 
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Figure 91: Flame of combustion of mixture nº. 2.6 on a cigar burning test 

 

Table 29: Results obtained from the combustion of mixture nº. 2.6 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum temperatures acquired by thermocouples (Th1 is the 

upper one and Th2 is the downer), velocities of flame propagation of PMMA, explosion, mixture and 

fundamental flame velocity. 

ρ (kg/m
3
) 1345.4 

Maximum temperature – Th1 (ºC) 1300 

Maximum temperature – Th2 (ºC) 1800 

 PMMA (m/s) 2.41E-04 

Studied images for  PMMA Figure 92 

 explosion (m/s) 6.00E-03 

Studied images for  explosion Figure 93 

 mixture (m/s) 1.75E-04  

Studied images for  mixture Figure 94 

 Flame (m/s) 2.45E-01 

Studied image for  Flame Figure 91 

 

The baseline for the measurement of  PMMA was the lower part of the liquid PMMA, 

for both images of Figure 92. The expression (105) was used to this calculation. The 

delay time was measured between frame time references. 
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Figure 92: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right. 

 

To calculate  explosion equation (105) was used and there was measured the height of the 

incandescent part of the mixture (right image of Figure 93). That was made relating the 

distances of the photo with the real ones, like the width of the cigar. Time was measured 

as referred above. 

 

 

Figure 93: Frames used to study the velocity of propagation of explosion in mixture nº. 2.6. 

 

For calculation of  mixture equation (105) was used. Initial position was determined 

immediately on the beginning of sustained combustion (without external source), and 

final position was determined by the last incandescent point on the video. The reference 

frames are shown on Figure 94. Time was recorded by the video. During this 

measurements occurred two explosions. 
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Figure 94: Frames used to study the velocity of propagation of the mixture nº. 2.6. The frame at the left is 

correspondent to the initial position, and the frame at right, the final position. 

 

The fundamental flame velocity ( Flame) was measured through the calculation using 

expressions (106) to (109) and with base on flame showed on Figure 91. The area of the 

flame was measured approximating the shape of the flame to a triangle and by the 

correlations of the lengths of the triangle with the diameter of the cigar (which is known 

the real value). 

 

 

3.3.4.6. Mixture nº 2.7 - heterogeneous mixture based on UN, PU and MT 

Mixture nº. 2.7 was composed by 77% UN, 12%PU and 11%MT (m/m). The employed 

mixing procedure was the 2 on 3.3.2.2. 50 g of mixture were prepared. 

This mixture never was collocated on disks or on syringes, because it suffered self-

ignition 10 minutes after its preparation. 

After its preparation, mixture was stored on a plastic cup covered with aluminium 

paper. In less than 10 minutes, it was possible to see the formation of dense gases, with 

a green dark colour near the mixture and with white colour near the aluminium paper. 

Since this observation until self-ignition occurred few seconds passed. The aluminium 

paper was projected, a white and very brilliant flame was formed, which had the 

diameter of the cup, around 1 meter of height. The colour of the flame was very similar 

to that one showed on left image of Figure 77, typical from combustion of the MT 

mixture. 

A fire extinguisher was used to extinguish this combustion.  
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3.3.4.7. Mixture nº 3.1 - heterogeneous mixture based on AN, PU and MT 

The chemical composition of this mixture was 84% AN, 7% PU and 9% MT (m/m). 

50 g of mixture were made with procedure 3 (3.3.3.2). Both tests were realized with this 

mixture. 

 

Cigar Burning Test. The sample used in this experiment was prepared according 

methodology 2 described on 3.3.3.3, for cigar burning tests. The preparation of the 

sample was made one month after mixture’s preparation. Temperature measurement 

was performed with only a thermocouple. 

Figure 95 shows the aspect of the mixture before and after its combustion on a cigar 

burning test. 

 

           

Figure 95: Mixture nº. 3.1 prepared for a cigar burning test (left) and its residues after combustion (right). 

 

During the combustion was possible to see the expansion of the burnt mixture and the 

outflow of the liquid mixture (visible at Figure 98 andFigure 99). This outflow, coupled 

with large gas expansions during explosions, caused the inclination of the burning 

mixture (visible at Figure 96).  

There occurred 60 explosions during 3 minutes and 54 seconds, with different durations 

and intensities. After one of the explosions, there were burning mixture that jumped 

away and continued to burning outside the cigar. At this point, the PMMA flame was 

enough to cause other explosion which extinguished the combustion, showing the large 

gas expansion. This phenomena was seen a couple of times.  

During 1 minute and 19 seconds of ignition (after one explosion that extinguished the 

combustion of the mixture), the lighter flame was enough to cause bubble of the mixture 
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and 5 explosions, without combustion get to a PMMA driven-flame combustion. When 

driven-flame combustion was reached, mixture continued the combustion during 2 

minutes and 34 seconds, always with explosions happening.  

The flame of this mixture was also very irregular between explosions, as described 

above. At Figure 96, is possible to see the PMMA combustion (blue zone), gas 

expansion (bubble and hollow zone of the flame), gas ignition (orange zone), gas 

combustion (yellow zone) and the presence of high temperature on the burning mixture 

(incandescent parts in the mixture). The explosions caused by MT mixture have much 

more luminosity than the ones caused by Al, and that is the reason to use MT 

compositions on flares. 

The results of the analysis of this test are presented on Table 30. 

 

 

Figure 96: Flame of combustion of mixture nº. 3.1 on a cigar burning test 

 

Table 30: Results obtained from the combustion of mixture nº. 3.1 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum temperatures acquired by thermocouples (Th1 is the 

upper one and Th2 is the downer), velocities of flame propagation of PMMA, explosion, mixture and 

fundamental flame velocity. 

ρ (kg/m
3
) 1332.6 

Maximum temperature – Th1 (ºC) 1250 

Average temperature – Th1 (ºC) 900 

 PMMA (m/s) 2.00E-04 

Studied images for  PMMA Figure 97 

 explosion (m/s) 2.89E-03 

Studied images for  explosion Figure 98 

 mixture (m/s) 5.00E-05 
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Studied images for  mixture Figure 99 

 Flame (m/s) 4.451E-01 ± 0.0005 

Studied image for  Flame Figure 96 

 

To calculate  PMMA it was used equation (105). The baseline for positions in this 

measurement of was the separation between liquid PMMA and liquid mixture, on both 

frames showed on Figure 97. The delay time was measured between frame time 

references. 

 

 

Figure 97: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right. 

 

According to equation (105) to calculate  explosion, the measurement of the burnt 

distance was based on the left frame of Figure 98 and was the length of the incandescent 

part. The delay time was measured between frame time references. 

 

 

Figure 98: Frames used to study the velocity of propagation of explosion in mixture nº. 3.1. 

 

The measurement for  mixture was made between explosions, according to equation 

(105). The baselines for positions were the bubble part of the mixture, for both frames 

on Figure 99. The time was measured as referred above. 
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Figure 99: Frames used to study the velocity of flame propagation in the mixture nº. 3.1. The frame at the 

left is correspondent to the initial position, and the frame at right, the final position. 

 

For calculations of  Flame, equations (106) to (109) were used. The baseline for this area 

measurement was the hollow triangle, surrounded by yellow flame (Figure 96). The 

rectangle area correspondent to the burnt products (which are visible on the hollow part) 

was subtracted of triangle's area. 

 

Disk Burning Test. This sample was prepared by methodology 2 described at 3.3.3.3, 

for disk burning tests. The preparation of the sample was made one month after 

mixture’s preparation. Figure 100 shows the aspect of the sample before and after it was 

experimented. 

 

           

Figure 100: Disk of mixture nº. 3.1. Image on the left shows the fresh mixture on the disk. Image on the 

fight shows the disk after the combustion. 

 

This test was performed on the vertical position. During this test were recorded one 

movie with 6 minutes and 18 seconds. Three ignitions were tried, always with a 

blowtorch and at the back of the sample. The first lasted 8 seconds, the other two lasted 

around 30 seconds.  
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On first ignition, 7 explosions occured. The mixture appeared always incandescent 

between explosions and, sometimes, it was possible to see its increase and decrease. 

When blowtorch was off, mixture just sustain the combustion for 1 minute and a half. 

Total time of combustion was 1minute and 8 seconds.  

During the second ignition occurred 6 explosions and the incandescence between 

explosions were not so notable. Sometimes, there were any incandescence between 

explosions. Once again, after blowtorch was off, the combustion just sustained itself 

during 1 minute and a half.  

Third ignition lasted 30 seconds and occurred 7 explosions. After blowtorch was off, 

was possible to see a blue flame. Self-sustained combustion (without flame) and PMMA 

driven flame combustion (blue flame) lasted 3 minutes and 14 seconds. During this time 

occurred 78 explosions. The blue flame was not present between explosions in most of 

the time, but sometimes it reappeared. One time, when mixture was apparently 

extinguished, a blow was enough to promote an explosion. 

Due to the back part the sample container was almost totally destroyed, when 

explosions occurred, it was possible to observe a yellow/white flame emerge, but it was 

extinguished in the end of explosions. Some explosions were enough to propagate other 

explosions. Just the explosions which come from extinguished mixture were counted. It 

was possible to observe that, for maintain self-combustion which occurred just on the 

end of the third ignition, mixture had to be incandescent on the centre.  

The fact that was possible to see the mixture totally extinguished between explosions is, 

probably, due to the gas expansion from MT. The increase of pressure originated the 

explosions, and probably not the increase of temperature. Other hypothesis for these 

pulsed explosions can be the non-linearity of heat transfer along the mixture, due to 

heterogeneities. Explosions could occurred when heat reached zones of higher 

concentrations of MT mixture. The facts of there were no incandescence between 

explosions and there happened heat transfer could be due to the smoulder combustion of 

PU. This can also explain combustion due to increase of pressure and not of 

temperature, because PU is formulated for not burn (safety aspects on its uses). 

The results presented on Table 31were calculated from equation (109). 

 

Table 31 Results obtained from the disk burning test of mixture nº. 3.1. 

ρ (kg/m
3
) Δt1 A1 (m

2
) Fig. Δt2 A2 (m

2
) Fig. 
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(s) (s) 

1933.7 0.07 5.41E-06 Figure 

101 

0.07 6.52E-04 Figure 

102 

 

This experiment was performed with the disk on a vertical position. The measurement 

of the areas of explosion 1 and 2 were made approaching the incandescent area to two 

circles and to an ellipse (Figure 101 andFigure 102), respectively. The calculation was 

made as previously was described. The first explosion happened during second ignition. 

Explosion 2 occurred with self-ignition or driven flame ignition  

 

 

Figure 101: Frames which shows the moment before explosion one (at left) and the first appearance of 

explosion one (at right). The measurement of the area was made at right image, on area surrounded by 

blue. 

 

 

Figure 102: Frames which shows the moment before explosion two (at left) and the first appearance of 

explosion one (at right). The measurement of the area was made at right image. 

 

 

3.3.4.8. Mixture nº 3.2 - heterogeneous mixture based on AN, PU and Al 

This mixture was constituted by 84% AN, 7% PU and 9% Al (m/m). The mixing 

procedure used on this mixture was the 3 presented on 3.3.3.2 and 50 g were made. 

Both tests were experimented with this mixture. 
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Cigar Burning Test. The sample was prepared by methodology 2, for cigar burning 

test, described on 3.3.3.3. The preparation of the sample was made one month after 

mixture’s preparation. Figure 103 shows the cigar before its combustion and the 

respective residues in the end of the combustion.  

 

           

Figure 103: Mixture nº. 3.2 prepared for a cigar burning test (left) and its residues in the end of the 

combustion (right). 

 

During 4 minutes and 59 seconds occurred 34 explosions, with different intensity and 

durability. The most of them occurred from the third minute, probably because heat 

transfer was more stabilized after some time of combustion and the pressure, due to gas 

expansion, increased inside the fresh mixture, which made zones with more 

concentration of Al get into explosion, what not occurred in the beginning.  

It was observable that, before explosions, some parts of the burning area got more and 

more incandescent until their get their maximum of intensity and transform into 

explosion, which is the reverse process used for measurement of velocity of propagation 

of explosion in the mixture. What was observable is the burning of Al (responsible for 

colour changing of the incandescent parts) and showed the increase of temperature 

needed by mixture to arrive to explosion.  

The mixture never suffered auto-extinction and ignition was made with a lighter. On 

this mixture was also possible to see the phase transitions of the mixture, solid to liquid 

and liquid to gas (due to bubble).  

On Figure 104, is possible to see degasification (hollow zone), gases ignition (orange 

zone) and gases combustion (white/yellow zone) of the burning mixture. The blue zone 

of the presented fames is due to PMMA combustion and it is the flame responsible for 



HOMEMADE EXPLOSIVES BASED ON AMMONIUM AND UREA NITRATES 

 

133 

Joana Quaresma 

the drive-flame combustion of the mixture. The incandescent parts shows that, during 

the combustion, mixture reaches high temperatures. 

Figure 104 is a good example of the reaction of Al with gaseous products (from 

mixture's combustion) and with oxygen (from air), because of the sparks above the 

homogeneous yellow part of the flame. At the end, ashes had a very porous look. 

Table 32 summarizes the results acquired from this experiment. 

 

 

Figure 104: Flame of combustion of mixture nº.3.2 on a cigar burning test. 

 

Table 32: Results obtained from the combustion of mixture nº. 3.2 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum temperatures acquired by thermocouples (Th1 is the 

upper one and Th2 is the downer), velocities of flame propagation of PMMA, explosion, mixture and 

fundamental flame velocity. 

ρ (kg/m
3
) 1206.6 

Maximum temperature – Th1 (ºC) 800 

 PMMA (m/s) 3.26E-04 

Studied images for  PMMA Figure 105 

 explosion (m/s) 2.46E-03  

Studied images for  explosion Figure 106 

 mixture (m/s) 1.79E-04 

Studied images for  mixture Figure 107 

 Flame (m/s) 2.66E-01 

Studied image for  Flame Figure 104 

 

For measurement of  PMMA, the baseline for positions was the middle point of the 

liquid PMMA (on the upper part of PMMA combustion). The delay time was measured 
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between frame time references (Figure 105). Equation (105) was used for calculation of 

this velocity. 

 

 

Figure 105: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right. 

 

To measure  explosion, Figure 106 was the reference and equation (105) was used. The 

measure was made immediately after the first explosion. The positions measurement 

was based on the height of the burnt part on right frame of Figure 106 (height of blue 

rectangle). Correlations between image length and real length were made. Time 

measurements were performed as described above. 

 

 

Figure 106: Frames used to study the velocity of propagation of explosion in mixture nº. 3.2. 

 

The measurement of  mixture was made after the second explosion until the beginning 

of the third one. Between explosions it is considered zones of bigger homogeneity. 

Equation (105) was used and the reference for position measurement was the middle 

point of the liquid mixture (approximately the middle point of the burnt mixture – 

Figure 107). 
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Figure 107: Frames used to study the velocity of flame propagation in the mixture nº. 3.2. The frame at 

the left is correspondent to the initial position, and the frame at right, the final position. 

 

The methodology employed on the measurement of  Flame was the use of equations 

(106) to (109) and the construction of a triangle which perimeter was coincident with 

the separation between the orange and the yellow zone of the flame. The baseline for the 

base of the triangle was the most above incandescent part of the mixture (Figure 104). 

 

Disk Burning Test. This sample was prepared by methodology 2 described at 3.3.2.3, 

for disk burning tests. The preparation of the sample was made one month after 

mixture’s preparation. Figure 108 shows the aspect of the sample before and after it was 

experimented. 

 

 

Figure 108: Disk of mixture nº. 3.1. Image on the right shows the fresh mixture on the disk. Image on the 

centre shows the disk after combustion. Image on the left shows the mixture after the combustion (disk 

without the PMMA lid). 

 

This experiment was performed with the disk on a vertical position. During 1 minute 

and 50 seconds, there were tried four ignitions, with a blowtorch, at back of the disk. No 

one started the combustion of the mixture and the last one was quite long (46 seconds). 

Two more ignitions with the blowtorch were tried, but now on PMMA face of the disk. 
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PMMA continued its combustion after second ignition, during 27 seconds, but still not 

enough to get combustion of the mixture.  

After, there was tried to make the ignition directly to the mixture and, when PMMA lid 

was removed, it was possible to see that all mixture remained fresh. Two attempts were 

made. Initially, the blowtorch was with no oxygen on the flame and was possible to 

observe the bubble of the mixture, but just on the peripheral area of the disk hole, and 

some drops fell down of the mixture. These drops could be due to polyol or diisocyanate 

which were not polymerized, or water, due to decompositions at low temperatures.  

When oxygen was added to the blowtorch's flame, it was possible to see a more intense 

bubble in all area that were in contact with the flame. The flame reflected by the sample 

(blowtorch's flame plus some flame from mixture), on this point, had spark in it, which 

indicates the presence of Al. Beside these, in this ignition, was also possible to observe 

the colour of the reflected flame changing. Sometimes this flame got whiter and bigger, 

conciliated with incandescence of the burning mixture, which indicate that mixture 

needed high temperatures during a long time to react. Self-combustion was reached 

during almost 3 seconds, followed by auto-extinction. 

Table 33 summarizes the results acquired from this experiment and from equation 

(109). 

 

Table 33 Results obtained from the disk burning test of mixture nº. 3.2. 

ρ (kg/m
3
) Δt1 (s) A1 (m

2
) Fig. Δt2 

(s) 

A2 (m
2
) Fig. 

2086.5 0.03 4.16E-06 Figure 

109 

0.04 2.55E-06 Figure 

110 

 

The measurements were made comparing the perimeter of the PMMA (which was 

measured before combustion) with the perimeters of the burning areas shown on bottom 

Figure 109 andFigure 110. The delay time was measured between frame time 

references. 

 



HOMEMADE EXPLOSIVES BASED ON AMMONIUM AND UREA NITRATES 

 

137 

Joana Quaresma 

 

Figure 109: Frames which shows the moment before explosion one (at left) and the first appearance of 

explosion one (at right). The measurement of the area was made at right image, on area surrounded by 

blue. 

 

 

Figure 110: Frames which shows the moment before explosion two (at left) and the first appearance of 

explosion one (at right). The measurement of the area was made at right image surrounded by a blue 

circle. 

 

 

3.3.4.9. Mixture nº 3.3 - heterogeneous mixture based on AN, PU and MT 

The chemical composition of this mixture was 74% AN, 17% PU and 9% MT (m/m). 

50 g of mixture were made with procedure 3 (3.3.3.2). Both tests were realized with this 

mixture. 

 

Cigar Burning Test. The sample was prepared by methodology 2, for cigar burning 

test, described on 3.3.3.3. Sample was prepared and tested as mixtures nº. 3.1 and nº. 
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3.2. Figure 111 shows the cigar before and its residues after combustion. Just one 

thermocouple was used on this experiment. 

 

           

Figure 111: Mixture nº. 3.2 prepared for a cigar burning test (left) and its residues in the end of the 

combustion (right). 

 

During this test occurred 37 explosions. Some of those explosions were so strong that, 

sometimes, some part of the burnt mixture were projected away from cigar. For two 

times, there were projection of burning mixture which continued the burning far away 

from cigar. This probably can prove self-combustion of the mixture.  

The second explosion as so strong that extinguished the combustion of the mixture. 

These facts, plus the porosity of the burnt residues, proves the large gas expansion 

caused by MT mixture, when present in higher concentrations.  

During the burning process was possible to see the expansion of the burning mixture, 

because burnt residues had more volume than the fresh mixture, and bubble. During 

combustion was possible to see some spark due to the mixture's heterogeneity.  

The flame of this mixture was very heterogeneous, sometimes had the colours of the 

shown figures, but other times it was almost transparent. Figure 112 shows the four 

colours characteristic to reactions already described on other mixtures. Those colours 

are: yellow, orange, transparent and blue. 

The results acquired from this experiment are presented on Table 34. The temperature 

of this sample had a quite different behaviour, because it was possible to record two 

peaks of temperature and two constant temperatures. 
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Figure 112: Flame of combustion of mixture nº. 3.3 on a cigar burning test 

 

Table 34: Results obtained from the combustion of mixture nº. 3.3 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum and average temperatures acquired by thermocouple, 

velocities of flame propagation of PMMA, explosion, mixture and fundamental flame velocity. 

ρ (kg/m
3
) 1393.1 

Maximum temperature (1) – Th1 (ºC) 900  

Average temperature (1) – Th1 (ºC) 500  

Maximum temperature (2) – Th1 (ºC) 1150  

Average temperature (2) – Th1 (ºC) 800  

 PMMA (m/s) 3.57E-04 

Studied images for  PMMA Figure 113 

 explosion (m/s) 7.46E-03  

Studied images for  explosion Figure 114 

 mixture (m/s) 2.47E-04  

Studied images for  mixture Figure 115 

 Flame (m/s) 1.90 

Studied image for  Flame Figure 112 

 

The baseline for position measurement to calculate  PMMA was the base of the liquid 

PMMA. The delay time was measured between frame time references (Figure 113). 

Calculations were based on equation (105).  
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Figure 113: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right. 

 

The measure of distance for calculation of  explosion was measured based on the 

incandescent part on the left frame of Figure 114. Time was measured as described 

before. Equation (105) was used to perform the calculation. 

 

 

Figure 114: Frames used to study the velocity of propagation of explosion in mixture nº. 3.3. 

 

The baseline for measurement of  mixture, for positions, was the upper part of the 

bubble of the mixture, on Figure 115. The delay time was measured between frame time 

references. Equation (105) was used. 

 

 

Figure 115: Frames used to study the velocity of flame propagation in the mixture nº. 3.3. The frame at 

the left is correspondent to the initial position, and the frame at right, the final position. 
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For calculation of  Flame, was analysed Figure 112. The measurement of the area of the 

triangle was made at the same way as described above for other mixtures, but there were 

also subtracted the area of the triangle which involves the incandescent part of the 

burning mixture. Equations (106) to (109) were used. 

 

Disk Burning Test. This sample was prepared by methodology 2 described at 3.3.3.3, 

for disk burning tests. The disk was prepared and tested on time like the previous disk. 

Figure 116 shows the aspect of the sample before and after it was experimented. 

 

 

Figure 116: Disk of mixture nº. 3.3. Images on the top shows the fresh mixture on the disk. Images on the 

bottom shows the disk after combustion.  

 

This test was performed on the vertical position. During this test were recorded three 

movies. On the first one, 25 seconds of ignition on PVC container (back part of the 

sample) by blowtorch was tried, but without reaching the combustion. On second 

movie, 1 minute of ignition was tried by the same way that was as previously described. 

Here, it was possible to observe that mixture suffered some explosion, near the area of 

the central hole, and stayed incandescent for a while. An incandescent point was visible 

during the time between the stop of the ignition and the beginning of the explosion, 

which lasted 2 seconds and then suffered auto-extinction. It shows that is needed the 

temperature of the flame of the blowtorch to reach combustion. The temperature of PVC 

flame is not enough to start the ignition, but it is enough to sustain the combustion. On 

last movie, ignition lasted 20 seconds and occurred 3 explosions during that time. 

During the combustion of the sample occurred 27 explosions, which lasted almost 5 
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seconds (each one). Between explosions several occurrences were observed. It was 

possible to see complete extinction between some of them, between others just an 

incandescent point was observed. Sometimes, before explosions, it was possible to see 

the incandescent part increase and decrease its area. After all explosions, continuous 

incandescence on mixture was observed.  

Explosions had always emitted white light. There was quite difficult to count 

explosions, because sometimes one explosion generates other explosions, which 

occurred simultaneously. Just were counted explosions which not happened due to the 

propagation of other explosions. Besides the heterogeneity, the behaviour of the 

combustion was rather radial, from the centre to the periphery, and top to bottom. This 

behaviour showed that mixture needed the oxygen flame to rise ignition (radial 

behaviour) and PVC flame was just enough to keep the combustion, which has an 

ascendant behaviour.  

Due to that mixture was mostly heated on the upper half, which originated downwards 

heat propagation through the mixture. Gas expansion of MT, which raised the pressure 

inside the sample container, contributed for the downward propagation.  

During the test, in periods of extinction of the mixture, was possible to see burnt and 

fresh areas. The irregularities during the combustion, which lead to explosions, can have 

several reasons: the critical thickness for homogeneous propagation of combustion was 

not reached, the heterogeneity of the mixture, which leads to a heterogeneous heat 

transfer (hotspots were observable, as described above), the PVC flame not had enough 

temperature to sustain a constant driven-flame combustion.  

The large gas expansion, from MT mixture, was proved again, due to the deformation of 

the PMMA on the end of the experiment (see Figure 116, the right one, at the bottom). 

The results acquired from this experiment are presented on Table 35 and equation (109) 

was used to do the calculations. 

 

Table 35 Results obtained from the disk burning test of mixture nº. 3.3. 

ρ (kg/m
3
) Δt1 

(s) 

A1 (m
2
) Fig. Δt2 

(s) 

A2 (m
2
) Fig. 

1979.0 0.07 7.37E-05 Figure 

117 

0.07 7.26E-05 Figure 

118 
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The measurement of the areas of explosion 1 and 2 were made approaching the 

incandescent area to a trapezium (Figure 117) and to an ellipse (Figure 118), 

respectively. Between the two shown explosions elapsed more than 3 minutes. 

 

 

Figure 117: Frames which shows the moment before explosion one (at left) and the first appearance of 

explosion one (at right). 

 

 

Figure 118: Frames which shows the moment before explosion two (at left) and the first appearance of 

explosion two (at right). 

 

 

3.3.4.10. Mixture nº 3.4 - heterogeneous mixture based on AN, PU and Al 

This mixture had, as composition, 74% AN, 17% PU and 9% Al (m/m). The used 

mixing procedure was the 3, referred on 3.3.3.2, and 50 g of mixture were produced. 

Both tests were performed with this mixture. 

 

Cigar Burning Test. Sample was prepared according to methodology 2 presented on 

Preparation of the samples (3.3.3.3), for cigar burning test. The sample was prepared 

and tested in the same periods as the previous mixture. Figure 119 shows the look of the 

mixture nº.3.4 before and after its combustion. 
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Figure 119: Mixture nº. 3.4 prepared for a cigar burning test (left) and its residues of combustion (right). 

 

In this experiment, just one thermocouple was used. During the experiment, the trigger 

was manual (not automatic as programmed). Due to that, the only peak temperature 

appeared on the beginning of the measurement and probably its maximum was not 

recorded.  

During 6 minutes and 19 seconds, 6 explosions occurred. During the combustion was 

very usual to see the liquid mixture bubble, which proves the degasification of the 

mixture and it is supported by the hollow zone on the flame. These two facts are 

observable on Figure 120 and Figure 123.  

The incandescent part of the mixture on both images proves the high temperatures 

present on mixture's combustion. It was also possible to see that, after explosions, the 

degasification was higher than in constant burning, due to the hollow zone formed 

between the mixture and the radiative part of the flame. On Figure 120 and Figure 123, 

is possible to see the four zones of reaction, already described on 3.3.4.8 – hollow, 

orange, white/yellow and blue zones. 

Figure 120 is a good example of the reaction of Al with gaseous products (from 

mixture's combustion) and with oxygen (from air), because of the sparks above the 

homogeneous yellow part of the flame. Looking carefully, is possible to see that those 

spark have different colours (between orange, yellow and white), which proves the 

different stages of Al's combustion. At the end, ashes had a very porous look. 

The results acquired from the analysis of this test are synthetized on Table 36. 
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Figure 120: Aspect of the flame during the combustion of the mixture nº. 3.4 on a cigar burning test 

 

Table 36: Results obtained from the combustion of mixture nº. 3.4 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum and average temperatures acquired by thermocouple, 

velocities of flame propagation of PMMA, explosion, mixture and fundamental flame velocity. 

ρ (kg/m
3
) 1316.6 

Maximum temperature – Th1 (ºC) 1150 

Average temperature – Th1 (ºC) 700  

 PMMA (m/s) 3.98E-04 

Studied images for  PMMA Figure 121 

 explosion (m/s) 3.05E-03 

Studied images for  explosion Figure 122 

 mixture (m/s) 1.20E-04  

Studied images for  mixture Figure 123 

 Flame (m/s) 4.30E-01  

Studied image for  Flame Figure 124 

 

The reference frames for measurements of  PMMA are presented on Figure 121 and the 

used equation was (105). The baseline for positions used for this measurement was the 

zone, of liquid PMMA, immediately below the blue part of the flame. The delay time 

was measured between frame time references. 
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Figure 121: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right. 

 

The positions measurement, for calculation of  explosion (equation (105)) was based on 

the height of the incandescence on left frame of Figure 122. The delay time was 

measured between frame time references  

 

 

Figure 122: Frames used to study the velocity of propagation of explosion in mixture nº. 3.4. 

 

To calculate  mixture was used equation (105) and Figure 123 presents the studied 

frames. The baseline for the measurement of the positions was the bubble part of the 

burnt mixture. Time was the acquired as referred above. Correlations that were made 

were the same that was already described. 

 

 

Figure 123: Frames used to study the velocity of flame propagation in the mixture nº. 3.4. The frame at 

the left is correspondent to the initial position, and the frame at right, the final position. 

 

The methodology employed on the measurement of  Flame was by a triangle which 

perimeter was coincident with the separation between the hollow and the yellow zone of 
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the flame (Figure 124). The base of this triangle was coincident with the middle part of 

the burnt mixture. The calculation was made using equations (106) to (109). 

 

 

Figure 124: Flame of combustion of mixture nº. 3.4 used for measurements of fundamental flame 

velocity. 

 

Disk Burning Test. The pressing methodology employed was the 2 (3.3.3.3) and it was 

prepared as described on previously mixture. Figure 125 shows the aspect of the sample 

before and after it was experimented.  

 

 

Figure 125: Disk of mixture nº. 3.4. Image on the left shows the fresh mixture on the disk. Image on the 

right shows the disk after the combustion. 

 

This experiment was performed with the disk on a vertical position. There were made 

11 ignitions to this disk, always with blowtorch. They were made directly in the mixture 

(there was no PMMA lid), and not in the back of the disk, as usual.  

On the first three ignitions, the mixture did not burn. Just in fourth attempt occurred 

combustion. It was possible to see the combustion, due to the incandescence on the 

mixture, bubble, expansion (some part of the burnt mixture was projected away from 

disk) and extinction.  
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After flame extinction, the burnt part of the mixture still was incandescent. The next 

three ignitions were made to sustain the flame. The mixture extinguished the 

combustion, so other attempt was necessary. The mixture burnt, but quickly it 

extinguished again. Three other ignition were made, one to sustain and the other to 

relight the mixture, but at the last ignition mixture were totally burnt.  

Mixture stopped totally the combustion at 3 min and 22 seconds of film. As said before, 

it is possible to say that there happened no explosions, just combustion, because the 

flame pattern was not so different on three combustions. The only observable difference 

was the increase of light intensity, but it was simultaneously with bigger areas of 

combustion. So, the heterogeneity of the mixture was the only responsible for that 

pattern and for irregular mass combustion. The analysis of this experiment is 

synthetized on Table 37 and was made based on equation (109). 

 

Table 37 Results obtained from the disk burning test of mixture nº. 3.4. 

ρ (kg/m
3
) Δt1 (s) A1 (m

2
) Fig. Δt2 

(s) 

A2 (m
2
) Fig. 

1983.2 0.03 1.00E-05  Figure 

126 

0.03 7.55E-06 Figure 

127 

 

The measurements were made at the same way than described above. For A1, the 

incandescent area was approximated to a rectangle (on blue at Figure 126, right) and, 

for A2, the area was approximated to a circle (on blue at Figure 127). 

 

 

Figure 126: Frames which shows the moment before appearance of A1 (at left) and the first appearance of 

A1. 
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Figure 127: Frames which shows the moment before A2 (at left) and the first appearance of A2 (at right). 

 

 

3.3.4.11. Mixture nº 4.1 - heterogeneous mixture based on UN, PU and MT 

The chemical composition of this mixture was 84% UN, 7% PU and 9% MT (m/m). 50 

g of mixture were made with procedure 3 (3.3.3.2). Both tests were realized with this 

mixture. 

 

Cigar Burning Test. The sample used in this experiment was prepared according 

methodology 2 described on 3.3.3.3, for cigar burning tests. The preparation of the 

sample was made one month after mixture’s preparation. 

Figure 128 shows the aspect of the mixture before and after its combustion on a cigar 

burning test. 

 

 

Figure 128: Mixture nº. 4.1 prepared for a cigar burning test (left) and its residues after combustion 

(right). 

 

As shown in all presented photos (bellow and the above one at the right), the mixture 

just burnt peripherally. The flame was mainly produced by PMMA combustion.  
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The influence of the mixture in the flame is not clear. The most effect of temperature on 

this mixture was the expansion of the burnt material.  

In this mixture the extinction was much more frequent, at least 3 additional ignitions 

were necessary. 3 temperature measurements were acquired, the maximum temperature 

presented in Table 38: Results obtained from the combustion of mixture nº. 4.1 on cigar 

burning test. There was studied: density of the fresh mixture (ρ), maximum and 

minimum temperatures acquired by thermocouple, velocities of flame propagation of 

PMMA, explosion, mixture and fundamental flame velocity. is, probably, the 

temperature of the PMMA flame and the minimum temperature is the higher 

temperature acquired in the centre of the mixture.  

The heat transmission by PMMA flame to the mixture, once again, was not enough to 

sustain the driven-flame combustion of the mixture. But worse than in the mixture nº. 

4.2.  

The photo of the burnt mixture (Figure 128) show that the inside part of the mixture did 

not burnt. The Figure 129 shows hotspots (incandescent zones) and the shape of the 

ashes indicate, once again, high temperatures on mixture and gas release, respectively. 

There was no explosions during this cigar burning test. 

The frame shown for the flame of the mixture (Figure 131) shows again the 3 colours of 

the flame (blue, orange and white), which is a mixture from PMMA and mixture gases 

of combustion. Due to the lack of orange zone, the flame shown is probably most due to 

PMMA combustion. The hollow zone between mixture and white flame is not due to 

gas release from mixture, because it not has the orange or blue zone between them, 

which shows that there is no ignition of the released gases, which confirms the previous 

sentence. 

The results acquired from this experiment are summarized on Table 38. 
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Figure 129: Aspect of the mixture nº. 4.1 during its combustion on a cigar burning test 

 

Table 38: Results obtained from the combustion of mixture nº. 4.1 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum and minimum temperatures acquired by 

thermocouple, velocities of flame propagation of PMMA, explosion, mixture and fundamental flame 

velocity. 

ρ (kg/m
3
) 1934.6 

Maximum temperature – Th1 (ºC) 300  

Minimum temperature – Th1 (ºC) 100 ± 0.5 

 PMMA (m/s) 1.74E-04 

Studied images for  PMMA Figure 130 

 explosion (m/s) - 

Studied images for  explosion Not occurred 

 mixture (m/s) 4.91E-04 

Studied images for  mixture Figure 131 

 Flame (m/s) 3.10 

Studied image for  Flame Figure 132 

 

For calculation of  PMMA equation (105) was used and Figure 130 was the reference 

for measurements. The base line for distance measurement was the lower part of the 

blue flame from PMMA, for both frames. The delay time was measured between frame 

time references  

 



 

152 

Joana Quaresma 

 

Figure 130: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right. 

 

The measurement of distance, for calculation of  mixture (equation (105)), was made 

through correlations of the length between two frames (Figure 131) and with the real 

diameter of the cigar. Time was measured as described above. 

 

 

Figure 131: Frames used to study the velocity of flame propagation in the mixture nº. 4.1. The frame at 

the left is correspondent to the initial position, and the frame at right, the final position. 

 

To calculate  Flame, equations (106) to (109) were used. The methodology used was the 

same than described in 3.3.1.10. The base of the triangle was measured between the end 

of the hollow zone of the flame and the burnt PMMA, in Figure 132. 
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Figure 132: Flame of combustion of mixture nº. 4.1 on a cigar burning test 

 

Disk Burning Test. This sample was prepared by methodology 2 described at 3.3.3.3, 

for disk burning tests. The preparation of the sample was made one month after 

mixture’s preparation and it was tested two days after sample’s preparation. Figure 133 

shows the aspect of the sample before and after it was experimented. 

 

Figure 133: Disk of mixture nº. 4.1. Image on the left shows the fresh mixture on the disk. Image on the 

right shows the disk after the combustion. 

 

This experiment was performed with the disk in vertical position. During this test, 

combustion was not reached. 5 ignitions with blowtorch were tried, at the back part of 

the disk. Ignitions lasted between 47 seconds and 7 seconds. Other ignition was tried, 

but at the front part of the disk. The PMMA entered into combustion, but it not affected 

the sample. PMMA combustion lasted 25 seconds and it was extinct with a blow. 
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3.3.4.12. Mixture nº 4.2 - heterogeneous mixture based on UN, PU and Al 

This mixture was constituted by 84% UN, 7% PU and 9% Al (m/m). The mixing 

procedure used on this mixture was the 3 presented on 3.3.3.2 and 50 g were made. 

Both tests were experimented with this mixture. 

 

Cigar Burning Test. The sample was prepared by methodology 2, for cigar burning 

test, described on 3.3.3.3. The preparation of the sample was made one month after 

mixture’s preparation. Figure 134 shows the cigar before its combustion and the 

respective residues in the end of the combustion.  

 

 

Figure 134: Mixture nº. 3.2 prepared for a cigar burning test (left) and its residues of combustion (right). 

 

This mixture barely suffered combustion. Just lateral combustion, due to PMMA. It was 

used a blowtorch, but after the signal acquisition (after the PMMA flame passed through 

the thermocouple).  

Mixture suffered extinction three times. Its ignition was very difficult, there was 

necessary between 25 and 30 seconds for each ignition, with blowtorch and with lighter, 

respectively. 20 seconds with lighter were not enough to make the ignition.  

The left frame of Figure 135 shows one frame of ignition with blowtorch. There is 

possible to see that the area of combustion increased (combustion was occurring on a 

slant), showing the erosion that oxygen flow makes to the mixture surface. The sharp 

incandescent spots and the bubbles show the high local temperatures and the expansion 

of the gases, when mixture passes from liquid to gaseous phase. The right image of 

Figure 135 shows the weak flame produced during the driven-flame combustion of the 
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mixture. That kind of flame just ensured the transition of solid to liquid phase (mistletoe 

on the upper part of the right frame in Figure 135 and right frame of Figure 138).  

Due to the bubbles on liquid phase and the porous ashes, it is possible to conclude that 

gases were released. But two hypothesis could happen for self-extinction: gases were 

produced in lower quantities, or the reactions between the produced gases and oxygen 

from air not produced radiant species and, consequently, produce low temperatures.  

The temperature acquired by the thermocouple shows that heat flux is not well 

transmitted along the mixture. Analyzing the flame shown on right frame of Figure 135 

upward, the blue zone corresponds to the formation of the gases, due to the combustion 

of PMMA (transparent blue), and to their ignition (more opaque blue) - also visible on 

left frame of Figure 135; the white zone is the combustion of the gaseous products from 

PMMA's combustion. Upper to this white zone, it is possible to see an orange zone, 

which shows the ignition of the gases released during the combustion of the mixture.  

The upper white zone, which corresponds to the combustion of the PMMA and the 

mixture, is surrounded by an orange "line", closer to the burnt mixture, showing that 

there is only combustion of the mixture, with few gas release. The bubbles just occur 

when there is contact between the flame and the mixture.  

When the flame extinguishes, the gas release stops. Never occurred explosions. 

A good example of a driven flame in this combustion is Figure 138. It is possible to see 

the blue zone from PMMA combustion; the transparent zone, due to the release of gases 

during the combustion of the mixture; the orange zone that is the ignition of released 

gases; and the white zone, which is correspondent to the combustion of the gases 

released by the combustions of the PMMA and the mixture, due to the oxygen present 

in air. 

Table 39 summarizes the results obtained from this experiment. 

 

 

Figure 135: Aspect of the mixture nº. 4.2 and its flames during its combustion on a cigar burning test 
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Table 39: Results obtained from the combustion of mixture nº. 4.2 on cigar burning test. There was 

studied: density of the fresh mixture (ρ), maximum temperature acquired by thermocouple, velocities of 

flame propagation of PMMA, explosion, mixture and fundamental flame velocity. 

ρ (kg/m
3
) 1902.8 

Maximum temperature – Th1 (ºC) 100  

 PMMA (m/s) 1.74E-04 

Studied images for  PMMA Figure 136 

 explosion (m/s) - 

Studied images for  explosion Not occurred 

 mixture (m/s) 4.91E-04 

Studied images for  mixture Figure 137 

 Flame (m/s) 3.10 

Studied image for  Flame Figure 138 

 

The measurement of  PMMA was made considering equation (105) and Figure 136. The 

baseline for distance measurement was the lower part of the blue flame from PMMA, 

for both frames. The delay time was measured between frame time references  

 

 

Figure 136: Frames used to study the velocity of the propagation of the flame on PMMA. The initial 

position is image on the left, final position the image on the right. 

 

The measurement of distance, for calculation of  mixture (equation (105)), was made 

through correlations of the length between two frames shown on Figure 137, and with 

the real diameter of the cigar. The delay time was measured between frame time 

references. 
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Figure 137: Frames used to study the velocity of flame propagation in the mixture nº. 4.2. The frame at 

the left is correspondent to the initial position, and the frame at right, the final position. 

 

To calculate  Flame, equations (106) to (109) were used. The area of the flame was 

measured approximating the shape of the flame to a triangle and by the correlations of 

the lengths of the triangle with the diameter of the cigar (which is known the real value). 

Figure 138 was used for measurements. 

 

Figure 138: Flame of combustion of mixture nº. 4.2 on a cigar burning test 

 

Disk Burning Test. This sample was prepared by methodology 2 described at 3.3.3.3, 

for disk burning tests. The preparation of the sample was made one month after 

mixture’s preparation. Figure 139 shows the aspect of the sample before and after it was 

experimented. 
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Figure 139: Disk of mixture nº. 4.2. Image on the left shows the fresh mixture on the disk. Image on the 

right shows the disk after the combustion. 

 

This experiment was performed with the disk in vertical position. During this test, 

combustion of the mixture was not reached.  

2 ignitions with blowtorch were tried, at the back and at the front part of the disk. The 

first lasted 1 minute and 20 seconds and the second one lasted 22 seconds, respectively. 

On first ignition, nothing happened. After second ignition, just PMMA suffered 

combustion, which lasted 2 minutes and 28seconds, and was extinct with a blow.  

During and after this ignition on PMMA's face, it was possible to see the mixture 

emerging from the periphery of the PMMA and bubble. During the combustion of 

PMMA it was possible to observe several incandescent point on the emerged mixture 

(Figure 140) 

 

Figure 140: Combustion of disk with mixture nº. 4.2 where it is possible to see the PMMA’s flame and 

hotspots of the mixture. 
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3.4. Infra-Red Spectroscopy 

The Infra-Red (IR) spectra present during this thesis were acquired using a FTIR 

Thermo Scientific Spectrometer, 6700 Nicolet model, with a DTGS KBr as detector. The 

acquisition was programmed in transmittance mode, with a resolution of 4, with 32 scan 

per run and in a wavenumber range of 400 to 4000 cm
-1

.  

All the pills were made in proportions of 1 mg of each studied compound / mixture for 

100 mg of Potassium Bromide (KBr), pressed less than 10 ton during 10 minutes.  

The spectra of pure reactants, the collection of the main characteristics in table and the 

comparison with theoretical values and experimental data collected from literature are 

presented in this point. 

 

 

3.4.1. Reactants 

In order to attempt the identification of the reactants in explosive mixtures, before and 

after their combustion, the IR spectra of reactants were acquired. The main bands of 

each reactant, as well as their intensity and correspondent wavenumbers will be 

described in function of their correspondent molecular vibrational modes. 

 

 

3.4.1.1. Ammonium Nitrate 

The IR spectrum of pure ammonium nitrate (AN) which was one of the oxidants used in 

our explosive mixtures is presented at Figure 141. At Table 40 the spectrum 

characteristics, namely, maximum wavenumber of the band and band type, as well as 

the attribution of the vibration mode are collected. 
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Figure 141: IR spectrum of pure Ammonium Nitrate 

 

Table 40: IV spectra band types, wavenumber ranges of appearance and characteristic vibrational modes 

for pure ammonium nitrate. The assignment of vibrational modes to the spectrum bands were made 

comparing with early reports. (Théorêt, et al., 1964) (Silverstein, et al., 1998) (Chattopadhyay, 1996) 

Band type and range 

Peak band 

Wavenumber 

(cm
-1

) 

Vibrational mode 

Strong band; [3300 - 2800] cm
-1

 3126 
NH4

+
 asymmetric stretch and 

deformation 

Weak and thin band; [2450 -

2380] cm
-1

 
2425; 2396 AN’s paraffinic coating 

Weak band; at  approximately, 

1700 cm
-1

 
1763 

combination of NO3
-
 symmetric stretch 

and NO3
-
 in-plane deformation 

Strong band ;[1500 – 1250] cm
-

1
 

1384 
overlap of NH4

+
 asymmetric deformation 

and NO3
-
 asymmetric stretch 

Strong but thin; at, 

approximately, 800cm
-1

 
825 NO3

-
 out-of-plane deformation 

 

The acquired IR spectrum of pure AN was concordant to those ones founded on 

literature. 

 

A small quantity (3 % m/m) of dimethylformamide (DMF) was added to pure AN in 

order to reduce its hygroscopicity, after the micronization and during the storage. The 

IR spectra of AN with DMF is presented on Figure 142. It was acquired to study the 

influence of DMF on the IR spectra of pure AN. Both spectra were plotted together 

(Figure 142) to found the differences between them.  

The AN with DMF spectra (Figure 142) was also acquired to make possible the 

identification of AN in our explosive mixtures and in their combustion products. This 

will be the spectrum used to evaluate the presence of AN. 
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Figure 142: Overlap of AN (red) and AN with DMF (blue) spectra 

 

Comparing both spectra (Figure 142) it is possible to see that 3 % (m/m) of DMF has no 

significant influence on IR spectrum of AN. It is possible to see saturation of some 

bands: the large band at around 3300 to 3000 cm
-1

 has the influences of NH4
+
 

asymmetric stretch and deformation from AN, and N-H axial deformation of a primary 

amide from DMF; the band at 1425 to 1335 cm
-1

 has the influences of overlap of NH4
+
 

asymmetric deformation and NO3
-
 asymmetric stretch from AN, and the C – N axial 

deformation from DMF. 

The appreciable difference is the increase of signal at ≈ 2300 cm
-1

, due to the vibration 

of the methyl groups of DMF. 

One interesting fact is that the double peaked band at, around 2400 cm
-1

, is potentiated 

by DMF. Probably it is due to R – C – N bounds between AN and DMF or between AN 

and the paraffin used to produce the AN prills, which can be a derivate from stearic 

acid. (Chattopadhyay, 1996) 

 

 

3.4.1.2. Urea Nitrate 

The IR spectrum of pure urea nitrate, also used as oxidant during this work, is presented 

at Figure 143. The most relevant are collected at Table 41. 
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Figure 143: IR spectrum of pure Urea Nitrate 

 

Table 41: Most relevant band types, wavenumber ranges of appearance and characteristic vibrational 

modes of pure urea nitrate. The assignment of vibrational modes to the spectrum bands were made 

comparing with early reports. (Oxley, et al., 2013) (Désilets, et al., 2011) 

Band type and range 

Peak band 

Wavenumber 

(cm
-1

) 

Vibrational modes 

Strong band (double peak); 

[3500-3200] cm
-1

 

3414 

(minimum) 
NH2 asymmetric stretch 

Strong band (double peak); 

[3500-3200] cm
-1

 

3204 

(minimum) 
NH2 symmetric stretch 

Medium and large band; [2330 - 

2550] cm
-1

 
2426 

C=O
…

H
…

ONO2 symmetric stretch (most 

typical from UN) 

Strong but thin band  1708 C=O symmetric stretch 

Strong but thin band 1573 N – H angular deformation 

Strong band (four peaks) ;[1500 

– 1250]cm
-1

 

1384 

(minimum) 
NO3

-
 asymmetric stretch 

Medium and thin band 816 NO3
-
 out-of-plane deformation 

 

The acquired IR spectrum for UN was concordant with those ones described at 

literature, which proves that our reactant was really UN in pure state. 

 

 

3.4.1.3. PolyUrethane 

The acquired IR spectrum of PU is presented at Figure 144 and its more relevant bands 

are presented at Table 43. Even being a commercial product, the exact composition was 

unknown, so the comparisons were made with some spectra of different kinds of PU 

presented on literature (Neves, 2010) and by the correlation with typical vibrational 

modes, also founded in literature (Silverstein, et al., 1998). 
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Figure 144: IR spectrum of commercial PolyUrethane 

 

Table 42: Most relevant band types, wavenumber ranges of appearance and characteristic vibrational 

modes of the used commercial PU. The assignment of vibrational modes to the spectrum bands were 

made comparing with early reports. (Silverstein, et al., 1998) (Neves, 2010) 

Band type and range 

Peak band 

Wavenumber 

(cm
-1

) 

Vibrational modes 

Strong band; [3500-3250] cm
-1

 3311 

(minimum) 

O – H stretch characteristic of 

intermolecular hydrogen bound 

Strong band (multiple peaks) 

peak); [3000-2800] cm
-1

 

2970 

(minimum) 

C – H  symmetric and asymmetric 

stretches 

Strong but thin band 1727 C=O stretch characteristic of ester bound 

Medium and thin band 
1600 

C=C stretch from a di-substituted 

benzene 

Strong but thin band 
1533 

Band overlap: C-N stretch and N-H 

elongation typical from urethane group 

Strong but thin band 
1225 

C(=O)-O axial deformation characteristic 

of ester bound 

Strong band; [1170 – 1030]cm
-1

 

1061 

Bands overlap: C –O-C symmetric and 

asymmetric axial deformations, typical 

from ethers. 

Weak and large band; [720 – 

620] cm
-1

 
669 

N-H out-of-plane symmetric angular 

deformation, typical from amides 

 

The PU used in this work presents a vibrational band at 1384 cm
-1

, not assigned to any 

structural characteristic of this product that could be a problem for the identification of 

products intended in this work, because it is coincident with one of the bands 

characteristic of the NO3
-
 species. 
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3.4.1.4. Aluminium 

Aluminium (Al) was used in our experiments as additive for our mixtures, in order to 

rise combustion temperatures (Quaresma, et al., 2013). Due to the used Al has a greasy 

coating to protect it against water attack during storage, the IR spectrum was made to 

see if that had vibrational modes on IR region of light. The result (Figure 145) shows 

that this greasy coating has no significant vibrational modes that can identify fresh 

aluminium in our mixtures, before and after combustion. 

 

 

Figure 145: IR spectrum of aluminium lined with a greasy coat  

 

 

3.4.1.5. .Magnesium and Teflon mixture 

The Magnesium/Teflon (MT) mixture was used in our mixtures to increase the gas 

expansion during the combustion (Quaresma, et al., 2013). Teflon is a CF2 polymer 

commercialized by Dupon as powder. The correspondent IR spectrum is presented at 

Figure 146 and Table 43 contents the description of main parameters. As expected, the 

IR spectra just shows the vibrational modes of Teflon because, as Al, Mg not have 

vibrational modes. 
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Figure 146: IR spectrum of Magnesium and Teflon (MT) mixture 

 

Table 43: Most relevant band types, wave number ranges of appearance and characteristic vibrational 

modes of Teflon. The assignment of vibrational modes to the spectrum bands were made comparing with 

early reports. (Silverstein, et al., 1998) (Hopp, et al., 2007) 

Band type and range 

Peak band 

Wavenumber 

(cm
-1

) 

Vibrational modes 

Strong band (three peaks); 

[1400 – 1000] cm
-1

 

1400 C – F axial deformation 

1213  
CF2 typical elongations 

1154 

Medium and thin band 640 Chain stretching and wagging modes 

Strong band (two peaks); [550 – 

502] cm
-1

 

555 
Bending and rocking modes 

504 

 

 

 

3.4.2. Studied Mixtures 

3.4.2.1. Mixture nº 3.1 - heterogeneous mixture based on AN, PU and MT 

Mixture 3.1 was composed by AN (84% (m/m)), PU (7% (m/m)) and MT mixture (9% 

(m/m)), as described on Table 16. 

Fresh mixture characterization 

To study the influence of PU on AN and their possible products of reaction after the 

curing, was acquired the IR spectrum of AN with PU (Figure 147 (b)). Using the same 

mass content but without additive, obtaining a mass percentage of 92% for AN and 8% 

of PU in the mixture. 

Figure 147 (a) shows the overlap of AN (with DMFA) spectrum (Figure 142) with PU 

spectrum (Figure 144).  
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Figure 147: (a) Overlap of IR spectra of AN with DMF (red) and PU (blue) and (b) the acquired IR 

spectrum for AN with PU mixture. 

 

The IR spectrum of the mixture AN/PU is very similar with the AN’ IR spectrum 

(Figure 141). It was already expected, because AN was the major constituent of the 

mixture. PU was only 8% of the total mixture mass percentage, which makes that its 

own spectrum had been covered by the AN’s spectrum.  

 

For characterization of global mixture composition, the same methodology was 

employed. Figure 148 shows (a) the overlap of IR spectrum of AN / PU mixture (same 

as Figure 147 (b)) with the IR spectrum for MT mixture; and (b) the acquired IR 

spectrum for fresh mixture nº. 3.1. Table 44 shows the analysis of the presence of the 

reactants used in mixture.  

There is no new peaks that can only be associate to the mixture AN/PU/MT. Once 

again, the IR spectrum of this mixture was correspondent to spectrum of the majority 

component, which was the AN. 

 

         

Figure 148: (a) overlap of IR spectra of AN / PU (orange) mixture and MT mixture (blue); (b) IR 

spectrum for mixture 3.1 (84%AN/ 7%PU/ 9%MT) 
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Table 44: Analysis of the presence of reactants in fresh mixture 3.1 by compound, typical peak band 

wavenumber from Table 40,Table 42 andTable 43, new wavenumber of the typical peak in Figure 148 (b) 

and respective presence. 

Compound 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Peak band 

Wavenumber 

on Figure 

148 (b) (cm
-1

) 

Vibrational modes 

Presence 

in fresh 

mixture 

Ammonium 

Nitrate 

2425 / 2396 2426 / 2396 AN coating Yes 

1384 1394 

overlap of NH4
+
 asymmetric 

deformation and NO3
-
 asymmetric 

stretch 

Yes 

Polyurethane 

1533 (1394) 

Band overlap: C-N stretch and N-H 

elongation typical from urethane 

group 

No –

overlaped 

by AN 

669 669 

N-H out-of-plane symmetric 

angular deformation, typical from 

amides 

Yes 

MT mixture 

1155 1155 CF2 typical elongations Yes 

505 505 

fingerprint zone of Teflon, 

elongation characteristic of bending 

and rocking modes 

Yes 

 

Burnt mixture characterization 

As referred at 3.3.3.4, there were used two experimental test configurations: vertical 

cylindrical set-up (or “cigar” burning test) and horizontal thin layer circular box (or 

“disk” test).  

 

“Cigar” burning test. In order to know if there was the presence, or not, of fresh 

material in the end of this kind of test, two IR spectra were compared. Figure 149 shows 

both spectra used on these comparisons: (a) IR spectrum of burnt material from the 

combustion of mixture 3.1 (experimental isobaric conditions).and (b) the overlap of 

spectrum (a), in orange, with the spectrum (b) of Figure 148 (fresh mixture), displayed 

in blue. 
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Figure 149: IR spectra of: (a) burnt mixture nº3.1 in experimental isobaric conditions; (b) overlap of 

spectra of burnt material (orange) and fresh mixture nº3.1 (blue). The transmittance of burnt mixture, in 

(b) was increased 5 times, in order to be possible the visualization of its characteristic bands. 

The IR spectrum of burnt material from mixture nº. 3.1 is almost linear when compared 

with the one from the fresh mixture (Figure 149 (b)). This indicates that mixture nº.3.1 

mainly produces β – carbon, which has no IR spectrum, during its combustion. This fact 

was visible during the experiments, on ashes formation. Table 45 shows the presence of 

reagents on burnt mixture, according to IR spectrum at Figure 149 (a). 

 

Table 45: Analysis of the presence of reactants in burnt mixture 3.1 (cigar test burning) by compound, 

typical peak band wavenumber from Table 40,Table 42 andTable 43, new wavenumber of the typical 

peak at Figure 149 (a). 

Compound 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Peak band 

Wavenumber 

on Figure 

149 (cm
-1

) 

Vibrational modes 

Presence 

in burnt 

mixture - 

cigar 

Ammonium 

Nitrate 

2425 / 2396 - AN coating No 

1384 - 

overlap of NH4
+
 asymmetric 

deformation and NO3
-
 asymmetric 

stretch 

No 

Polyurethane 

1533  

Band overlap: C-N stretch and N-H 

elongation typical from urethane 

group 

No 

669 - 

N-H out-of-plane symmetric 

angular deformation, typical from 

amides 

No 

MT mixture 

1155 - CF2 typical elongations No 

505 - 

fingerprint zone of Teflon, 

elongation characteristic of bending 

and rocking modes 

No 

 

Typical products of combustion of a MT mixture were also found. The more notable 

bands (Figure 149 (a)), at 466 and 551 cm
-1

, are correspondent to MgF2 and to Mg-C-F 

unit elongations, respectively. These bands are described in literature as appearing at 

459 and 565 cm
-1

 (Koch, 2002). 
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The large but weak band that appears on wave number range of 640 to 710 cm
-1

 can be 

attributed to the products of combustion of this kind of mixture as: primary and 

secondary amines, more concretely to N–H out-of-plane angular and symmetric 

deformations (typical wave number range: [930 – 666] cm
-1

), C–H out-of-plane angular 

deformation characteristic from alkenes (typical wave number range: [1000 – 650] cm
-

1
); O – H out-of-plane deformation from alcohols (typical wave number range: [770 – 

650] cm
-1

) (Silverstein, et al., 1998). Probably, this band is largely affected by the 

products of combustion of PU, because those kind of products are described in literature 

(Chattopadhyay, et al., 2009) and the characteristic peak of PU at 669 cm-
1
 disappears 

to origin this new band. It can be also products of the reaction of PU and AN, because 

all reaction products of AN are gaseous and PU produces solid products which can react 

with the gaseous ones, to origin bounds like the ones described before. As there is no 

presence of the characteristic bands of AN, neither of PU, which means that all of them 

suffered combustion. 

Due to lack of information about the combustion of these king of mixture, there is no 

possibility to attribute these last referred peaks to compounds in concrete. 

By spectral comparison, only combustion residues of PU and MT were identifiable, 

there was no presence of AN, PU or MT on these combustion products, which means 

that all fresh mixture was consumed on experimental isobaric combustion conditions. 

 

“Disk” burning test. The same methodology referred above was made to discover the 

presence of fresh material at burnt mixture nº. 3.1, in experimental adiabatic conditions. 

The acquired IR spectrum for burnt material of mixture nº.3.1 is shown at Figure 150 

(a). The overlap of IR spectra of fresh and burnt material of the referred mixture is 

shown at Figure 150(b). 

At Table 46, the comparison between spectra was analysed. 
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Figure 150: IR spectra of: (a) burnt mixture nº3.1 in experimental adiabatic conditions; (b) overlap of 

spectra of burnt (orange) and fresh (blue) materials of mixture nº3.1. 

 

 

 

 

 

 

 

Table 46 Analysis of the presence of reactants in burnt mixture 3.1 (disk test burning) by compound, 

typical peak band wavenumber from Table 40,Table 42 andTable 43, new wavenumber of the typical 

peak in Figure 150 (a). 

Compound 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Peak band 

Wavenumber 

at Figure 150 

(a) (cm
-1

) 

Vibrational modes 

Presence 

in burnt 

mixture - 

disk 

Ammonium 

Nitrate 

2425 / 2396 2426 / 2397 AN coating Yes 

1384 1398 

overlap of NH4
+
 asymmetric 

deformation and NO3
-
 asymmetric 

stretch 

Yes 

Polyurethane 

1533 (1398) 

Band overlap: C-N stretch and N-H 

elongation typical from urethane 

group 

No –

overlaped 

by AN 

669 669 

N-H out-of-plane symmetric 

angular deformation, typical from 

amides 

Yes 

MT mixture 

1155 1160 CF2 typical elongations Yes 

505 - 

fingerprint zone of Teflon, 

elongation characteristic of bending 

and rocking modes 

No 

 

As for the combustion products found at “cigar burning test” described above, here are 

also found the Mg-C-F unit elongations at 553 cm
-1

 (from MT mixture combustion); the 

large but weak band, attributed to the products of combustion of PU, that appears on 

wave number range of 640 to 710 cm
-1

, with the one of the characteristic PU peaks 
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having relevance inside this range (669 cm
-1

). This means that still existed fresh PU in 

our burnt mixture. 

Two bands were found to be associated exclusively with this experimental burning 

conditions: the band present between 3310 and 3650 cm
-1

, which indicates the presence 

of O – H axial deformation in intermolecular bounds, which can be associated to water, 

alcohols produced during the combustion reactions of PU, or AN/PU combustion 

products which have O–H bounds (AN has O – H groups in its products of thermal 

decomposition, see 2.1.1.1), or any O–H intermolecular bound of products formed due 

to the reaction between the four reactants; and the strong but thin band at 1635 cm
-1

, 

which can belong: to vibrations of the skeleton of mononuclear aromatic rings 

(substituted or not), to NO2 asymmetric stretch from nitro compounds in cyclic chain 

composed by C and N atoms. The appearance of these two last bands indicates de 

production of more molecules, which functional groups has now relevance in IR 

spectrum, such alcohols and smaller compounds with aromatic rings or cyclic chains. 

This production can be achieved or by reaction between reactants, or due to breaking 

bounds of PU.  

The mixture AN/PU suffered some combustion, because it characteristic band has its 

intensity reduced. The consumption of AN can also be proved by the decrease of the 

intensity of its characteristic bands. 

There was almost total consumption of the additive (MT mixture), due to the 

appearance of typical bands of MT combustion products and to the vanishing almost 

complete of the band at 1160 cm
-1

. 

 

Correlation between both tests. Experimental isobaric conditions allows the complete 

combustion of the sample, because there was no fresh reactants on the analysed burnt 

material. In experimental adiabatic conditions, the combustion process was not 

complete, because all reactants were identified on burnt sample.  

Although, there were present compounds which came from the thermal decomposition 

and/or further reactions of the reactants. This was proved by the appearance of 

characteristic bands of possible combustion products, which not appeared on IR 

spectrum of the fresh mixture 3.1. These are: strong and large band between 710 and 

640 cm
-1

, which can be associated to the overlap of primary and secondary amines and 

alkenes elongations; medium and thin band at 1635 cm
-1

 (at Figure 149(a) this band is a 

turbulent zone), that can be correspondent to the vibrations of the skeleton of 
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mononuclear aromatic rings (substituted or not) and NO2 asymmetric stretch from nitro 

compounds in cyclic chain composed by C and N atoms; and the large and strong band 

between 3650 and 3310 cm
-1

 (at Figure 149 (a) this band is also a turbulent zone) that 

can be associated to O – H axial deformation in intermolecular bounds, characteristic of 

polymeric structures with OH group or/and water. The first two referred peaks can also 

be associated to unreacted PU, because the PU used on this work is hardly inflammable, 

while our oxidants have a low thermal decomposition temperatures (when compared 

with PU). When thermal decomposition temperatures of the oxidants are reached, some 

of them decomposes into gases and unreacted or barely burned PU is now detectable by 

IR spectroscopy.  

The above referred vibrational modes would be related to combustion products of the 

studied mixture after some further work. It will be necessary to repeat the experiment, at 

least, three times to have reproducibility of the results. It will be essential to the smallest 

and thin bands, because that kind of bands can be also associated to baseline 

modifications of the spectrometer, or to the environmental laboratory conditions. 

IR spectra from those different kind of combustion conditions are very different. 

Isobaric conditions produces an almost liner spectrum, due to the presence of β-carbon. 

Adiabatic experimental burning conditions produces water, while isobaric combustion 

do not. Some products of combustion were the same, or very similar between them, for 

both combustion types, as Mg – C –F unit, primary and secondary amines, carbon 

dioxide and alkenes. 

 

 

 3.4.2.2. Mixture nº 3.2 - heterogeneous mixture based on AN, PU and Al 

Mixture 3.2 was composed by AN (87% (m/m)), PU (7% (m/m)) and Al (9% (m/m)), as 

described on Table 16. This mixture has the same mass portions than the previous one, 

the only change is the additive. 

Fresh mixture characterization 

As shown on 3.4.1.4, Al has no characteristic IR spectrum, due to be a monoatomic 

compound. To see if that has any reactivity with our AN/PU mixture, the IR spectrum 

of mixture 3.2 was acquired. The result is the spectra shown on Figure 151(a). The 

overlap of IR spectrum of (a) with the IR spectrum of mixture AN/PU (already 

presented on Figure 147(b)) is presented on Figure 151(b). 
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Figure 151: (a) IR spectra of fresh mixture 3.2 (b) Overlap of IR spectrum of: fresh mixture 3.2 (same as 

(a) – blue) and of mixture AN/PU (same as figure 44 (b) – dashed orange) 

 

As it was expected, Al has no influence on vibrational modes of AN/PU mixture (see 

Figure 145). 

Burnt mixture characterization 

Al increases the temperature reaction on explosive mixtures due to its post-reaction with 

common combustion products, as O2. As it was seen before, Al has no significant 

influence on IR spectrum of fresh mixture 3.2. So, the main objective of this analysis is 

to demonstrate if Al combustion products are identifiable by IR spectroscopy, in order 

to prove the use of Al in the explosive mixture. 

 

“Cigar” burning test. The IR spectrum of combustion products of mixture 3.2 is shown 

on Figure 152 (a). In order to analyse the similarities and the differences between the 

fresh and burnt material form mixture 3.2, the last referred IR spectrum was compared 

with the IR spectrum of fresh mixture (already presented on Figure 151), and this 

spectra comparison is present on Figure 152 (b). 

 

         

Figure 152: (a) IR spectrum of combustion products of mixture 3.2., burnt at isobaric conditions; (b) 

overlap of IR spectra of fresh (blue) and burnt material (red) from mixture 3.2. 
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Table 47: Analysis of the presence of reactants in burnt mixture 3.2 (cigar test burning) by compound, 

typical peak band wavenumber from Table 40 and Table 42, new wavenumber of the typical peak in 

Figure 152 (a). 

Compound 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Peak band 

Wavenumber 

on Figure 

152 (cm
-1

) 

Vibrational modes 

Presence 

in burnt 

mixture - 

cigar 

Ammonium 

Nitrate 

2425 / 2396 - AN coating No 

1384 - 

overlap of NH4
+
 asymmetric 

deformation and NO3
-
 asymmetric 

stretch 

No 

Polyurethane 

1533 - 

Band overlap: C-N stretch and N-H 

elongation typical from urethane 

group 

No 

669 - 

N-H out-of-plane symmetric 

angular deformation, typical from 

amides 

No 

 

As happened in mixture 3.1, in the same kind of test, there is a linear IR spectrum, 

which probably indicates, again, the total or almost total combustion.  

The most characteristic new band is the large one that appears on a wave number range 

of 1150 to 400 cm
-1

. It probably belongs to aluminium oxide (Al2O3) species, which has 

it IR absorption band between 1100 and 350 cm
-1

, and which are predicted species of 

aluminium’s combustion (Kuzik, et al., 1999) (Ryczkowski, 2001) 

The weak band, with multiple peaks, that appears on a range of 2800 to 3600 cm
-1

 can 

be associated to O – H axial deformation in intermolecular bounds, which can be 

associated to water, alcohols, or any O–H intermolecular or intramolecular bound of 

products formed due to the reaction between the four reactants. Aluminium hydroxide 

(Al(OH)3) is also one of the predicted products that can vibrate on this wave number 

range. 

The weak band, with multiple peaks, that appears on a range of 1400 to 1600 cm
-1

 could 

be associated to the skeleton vibrations of aromatic rings, which can be connected (or 

not) with secondary amines, of PU. But it was still unidentified. 

 

“Disk” burning test. When the combustion of mixture 3.2 was made in experimental 

adiabatic conditions, its products of reaction were collected and analysed. But, as 

demonstrate of 3.3, this composition barely burnt in this conditions. The Figure 153(a) 

is the IR spectra of the referred combustion products, and Figure 153 (b) is the IR 

spectra for fresh mixture. 
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Figure 153: (a) IR spectrum of the collected residues after “disk” test had been employed to mixture 3.2; 

(b) IR spectrum of fresh mixture 3.2 (also shown in Figure 151 (a)) 

 

As expected, both spectra are identical, because combustion did not occur, at least, in 

detectable quantities. 

 

Correlation between both tests. Once again, to find the spectroscopic differences and 

similarities between the two presented combustion processes, the overlap of two IR 

spectrum for different burning conditions was made. The IR spectra overlapping is not 

presented because it is exactly the same that is present on Figure 152 (b). 

In “cigar” burning test, the combustion occurred and consumed all the mixture, and it is 

proved by the absence of fresh material in the combustion material. Otherwise, in “disk” 

burning test, this mixture did not undergo to combustion and just fresh material were 

present. 

 

 

3.4.2.3. Mixture nº 4.1 - heterogeneous mixture based on UN, PU and MT 

Mixture 4.1 was composed by UN (87% (m/m)), PU (7% (m/m)) and MT mixture (9% 

(m/m)), as described at Table 16. It was exactly the same mass proportion than mixture 

3.1, the only change is the oxidant. 

Fresh mixture characterization 

In order to study the influence of PU on UN and their possible products of reaction after 

de curing, was acquired an IR spectrum of UN with PU, which is shown at Figure 154 

(b). Figure 154 (a) shows the overlap of IR spectrum of UN (Figure 143) with IR 

spectrum of PU (Figure 144).  
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Figure 154: (a) Overlap of IR spectra of pure UN (blue) and PU (orange) and (b) the acquired IR 

spectrum for pure UN with PU mixture 

 

It is very difficult to attribute more than one band to each compound, because they have 

very coincident IR spectra, as seen in Figure 154 (a). Although PU has more different 

functional groups than UN, UN is in bigger quantity and has very similar vibrational 

modes to PU, as C=O, N – H and NO3
-
 stretches. 

The only band that can identify the presence of PU in our mixture is the weakest one, in 

a wavenumber range of 3000 to 2800 cm
-1

, having its maximum at 2974 cm
-1

, which 

belongs to C – H symmetric and asymmetric stretches. 

UN can be identified by its most typical band, in a range of 2360 to 2550 cm
-1

, having 

its minimum at 2426 cm
-1

, where C=O
…

H
…

ONO2 symmetric stretch is present. 

One characteristic of this mixture (UN/PU) is that the bands characteristic of NH2 

symmetric and asymmetric stretches, in a range of 3500 to 3200 cm
-1

, get larger and less 

well-defined. 

 

For IR characterization of global mixture composition, the methodology employed was 

identical. Figure 155 shows (a) the overlap of IR spectrum of UN / PU mixture (same as 

Figure 154 (b)) with the IR spectrum for MT mixture (also presented at Figure 146); 

and (b) the acquired IR spectrum for fresh mixture nº. 4.1. Table 48 shows the analysis 

of IR spectrum of fresh mixture 4.1, with basis in previous analysis. 
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Figure 155: (a) overlap of IR spectra of UN / PU  mixture (blue) and MT mixture (orange); (b) IR 

spectrum for mixture 4.1 (84%UN/ 7%PU/ 9%MT) 

 

Table 48: Analysis of the presence of reactants in fresh mixture 4.1 by compound, typical peak band 

wavenumber from Table 41 to Table 43 and Figure 154 (b), new wavenumber of the typical peak in 

Figure 155 (b) and respective presence. 

Compound 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Peak band 

Wavenumber 

on Figure 

155(b) (cm
-1

) 

Vibrational modes 

Presence 

in fresh 

mixture 

Urea Nitrate 2426 2426 
C=O

…
H

…
ONO2 symmetric stretch 

(most typical from UN) 
Yes 

Polyurethane 2970 2806 

Band overlap: C-N stretch and N-H 

elongation typical from urethane 

group 

Yes 

MT mixture 1155 1172 CF2 typical elongations Yes 

UN/PU 

mixture 

3414 / 3346 
3473 / 3367 / 

3183 

overlap of NH2 symmetric and 

asymmetric stretches and water 

presence 

Yes 
3256 / 3195 

 

As shown on Table 48, the most characteristic alteration for spectrum in Figure 154 (b) 

is the extension of the band in the range of 3200 to 3500 cm
-1

. This enlargement is 

probably due to water formation/absorption during the mixing and curing time, or due to 

the free OH groups which came from the polyol. 

The peak at 2426 cm
-1

, from UN, has less intensity when MT mixture is present. This 

indicates the dissolution on UN, probably due to the mixing with the polyol (from PU) 

before adding the diisocyanate. 

Burnt mixture characterization 

The procedure used to study the combustion products of mixtures based on UN, as 

oxidant, PU as binder and MT mixture as additive, was the same already described on 

3.4.2.1. Once again, there were study experimental isobar (“cigar” burning test) and 

adiabatic (“disk” burning test) combustion regimes. 
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“Cigar” burning test. Two IR spectra were compared, in order to know if there was the 

presence of fresh material in the end of this burning test. Figure 156 (a) shows IR 

spectrum of burnt material from the combustion of mixture 4.1 (experimental isobaric 

conditions). Figure 156 (b) represents the overlap of spectrum (a), with the spectrum (b) 

of Figure 155 (fresh mixture). 

 

    

Figure 156: IR spectra of: (a) burnt mixture nº4.1 in experimental isobaric conditions; (b) overlap of 

spectra of burnt (red) and fresh material (blue) from mixture nº4.1 (the last one is also present at Figure 

155 (b)) 

 

The biggest difference in spectra of fresh and burnt mixture is, again, the extension and 

definition of the band inside the range of 3200 to 3500 cm
-1

. It is more defined (more 

similar to Figure 153 (b)) probably due to the evaporation of water. There are, again, 

thermal decomposition products of MT mixture, as MgF2 and Mg – C – F unit 

elongations at 529 cm
-1

 and 588 cm
-1

. 

There is possible to see that some fresh material suffered combustion, because the bands 

of the burnt mixture are less intense, but still characteristic of the fresh mixture. The 

combustion was barely enough to form products with different and detectable 

vibrational modes than the ones present in the fresh mixture. The only difference that 

can be associated to the products of combustion of this kind of mixture are, again, the 

products of thermal decomposition of MT. 

 

“Disk” burning test. Combustion in experimental adiabatic conditions was also tried 

for mixture nº. 4.1. The acquired IR spectrum for burnt material of mixture nº.4.1 is 

shown in Figure 157 (a). The overlap of IR spectra of fresh and burnt material of the 

referred mixture is shown on Figure 157 (b). 
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Figure 157: (a) IR spectrum of combustion products of mixture 4.1, burnt at adiabatic conditions; (b) 

overlap of IR spectra of fresh (blue) and burnt material (red) from mixture 4.1. 

 

As in previous test, adiabatic burning conditions also produces the consumption of 

reactants and water, but in less quantities (bands intensity are closer than in isobaric 

experimental conditions), 

Once again, the only identifiable combustion products are the ones which comes from 

the MT mixture. Now, MgF2 and Mg – C – F unit elongations appears at 448 and 557 

cm
-1

, respectively. 

 

Correlation between both tests. As it is possible to observe at Figure 156 and Figure 

157, the pattern of combustion on both regime types are very similar. The biggest 

difference is that in “cigar” burning test there are more consumption of fresh material, 

as well as water, than in “disk” burning test. 

 

 

3.4.2.4. Mixture nº 4.2 - heterogeneous mixture based on UN, PU and Al 

Mixture 4.2 was composed by UN (87% (m/m)), PU (7% (m/m)) and Al (9% (m/m)), as 

described at Table 16. It has the same mass percentage of same compounds (only 

changed the oxidant) than mixture 3.2. 

Fresh mixture characterization 

As shown on 3.4.2.1, Al has no characteristic IR spectrum and neither affects the IR 

spectrum of AN / PU mixture (Figure 151 (a)). To see if that has any reactivity with 

UN/PU mixture, the IR spectrum of mixture 4.2 was acquired. The result is the 

spectrum shown on Figure 158 (a). The overlap of IR spectrum of (a) with the IR 

spectrum of mixture UN/PU (already presented on Figure 154 (b)) is presented on 

Figure 158 (b). 
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Figure 158: (a) IR spectra of fresh mixture 4.2; (b) Overlap of IR spectrum of: fresh mixture 4.2 (same as 

(a) – blue) and of mixture UN/PU (same as Figure 154 (b) – dashed orange) 

 

As occurred for AN/PU mixture, Al has few influence on the characteristic peaks of UN 

and PU in mixture 4.2. They appear on the same range of wavenumber, with similar 

overlaps, when compared to the IR spectrum of the mixture without the additive. The 

only observable difference is the new peak at 436 cm
-1

. It probably belongs to an Al2O3 

specie (typical bands in a range of 1100 to 350 cm
-1

) that can be formed during the 

mixing or curing time. 

Once again, the dissociation of UN occurs, due to the reaction with the water and the 

polyol (this mixture spent more time without the adding of diisocyanate than the 

previous one). Its characteristic band (2426 cm
-1

) is very thin, when compared to the 

mixture without additive.  

Due to the high level of bands overlapping, between UN and PU, just one band for each 

compound will be taken as reference for its presence on burnt mixtures. 

Urea nitrate will be characterized by its characteristic band at 2426 cm
-1

, PU by its band 

1590 cm
-1

, which characteristic of C=C stretch from a di-substituted benzene (see Table 

43), and the fresh mixture 4.2 by its peak at 436 cm
-1

. 

 

Burnt mixture characterization 

 

“Cigar” burning test. For characterization of burnt compounds and the presence of 

fresh material on mixture nº. 4.2, after its burning on experimental isobaric conditions, 

an IR spectrum of it residues was made. The result is presented at Figure 159 (a). To 

make the referred characterization, the overlap of the IR spectrum of fresh mixture 

(showed at Figure 158 (a)) with the IR spectrum of burnt material (same as presented at 
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Figure 159 (a)) was analysed and it is shown on Figure 159 (b). Figure 49 summarizes 

the referred analysis. 

 

         

Figure 159: IR spectra of: (a) burnt mixture nº4.2 in experimental isobaric conditions; (b) overlap of 

spectra of burnt (dashed orange) and fresh material (blue) from mixture nº4.2 (same as presented at 

Figure 154 (b)) 

 

Table 49: Analysis of the presence of reactants in burnt mixture 4.2 (cigar burning test) by compound, 

typical peak band wavenumber from Table 41 to Table 43, new wavenumber of the typical peak in Figure 

159 (a). 

Compound 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Peak band 

Wavenumber 

on Figure 

159(a) (cm
-1

) 

Vibrational modes 

Presence 

in burnt 

mixture - 

cigar 

Urea Nitrate 2426 2426 
C=O

…
H

…
ONO2 symmetric stretch 

(most typical from UN) 
Yes 

Polyurethane 1590 1589 
C=C stretch from a di-substituted 

benzene 
Yes 

UN/PU/Al 

mixture 
436 436 Al – O  stretching Yes 

 

Although the spectra shown of Figure 159 (b) are very similar, some differences are 

possible to see in the intensity and definition of the peaks. 

The bands between 3500 and 3100 cm
-1

 are now well-marked, which means that the 

water presence was reduce and now it is possible to see vibrational modes that can 

belong to NH2 symmetric and asymmetric stretches, to primary or secondary amine salts 

elongations, which can be also products of reaction (from reaction of PU/UN, or from 

PU’s decomposition, for example) or just the presence of fresh material with this kind 

of bounding (both UN and PU has this kind of bounds in their composition). The very 

thin peak at 2978 cm
-1

shows the presence of C – H symmetric and asymmetric 

stretches, which was no observable on fresh mixture. 

Now the presence of urea nitrate is clear, because its characteristic band is well-marked. 

If there is no heating, UN can dissociate in a reversible reaction into nitric acid and urea. 
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Probably, with the low temperature (bellow the needed one to make the UN dissociation 

irreversible) acquired by this composition during the burning, these two compounds 

reacted again to form UN and that why its presence is so notable on IR spectrum of 

burnt mixture 3.2.  

The intensity of the bands associated to NO3
-
 out-of-plane deformation (825 cm

-1
) and 

to Al2O3 species elongations (436 cm
-1

) are now bigger, which could indicate the 

formation of more compounds with these structures after the burning, or when some UN 

is burned it allows the visualisation of the bands of the other reactants, which were 

covered by the UN characteristic vibrational modes.  

 

“Disk” burning test. Combustion in experimental adiabatic conditions was made for 

mixture nº. 4.2. The acquired IR spectrum for burnt material of mixture nº.4.2 is shown 

at Figure 160 (a). The overlap of IR spectra of fresh and burnt material of the referred 

mixture is shown at Figure 160 (b). The analysis made between the fresh mixture and 

the combustion residues is summarized at Table 50. 

 

     

Figure 160: (a) IR spectrum of combustion products of mixture 4.2, burnt at adiabatic conditions; (b) 

overlap of IR spectra of fresh (blue) and burnt material (orange) from mixture 4.2. 

 

 

 

Table 50: Analysis of the presence of reactants in burnt mixture 4.2 (disk burning test) by compound, 

typical peak band wavenumber from Table 41 to Table 43, new wavenumber of the typical peak at Figure 

160 (a). 

Compound 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Peak band 

Wavenumber 

on Figure 

160 (a) (cm
-1

) 

Vibrational modes 

Presence 

in burnt 

mixture - 

disk 

Urea Nitrate 2426 2427 
C=O

…
H

…
ONO2 symmetric stretch 

(most typical from UN) 
Yes 

Polyurethane 1590 1590 C=C stretch from a di-substituted Yes 
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benzene 

UN/PU/Al 

mixture 
436 436 Al – O  stretching Yes 

 

As occurred in experimental isobaric conditions, the presence of water in the burnt 

material decreased and some characteristic vibrational modes showed up again. These 

are shown again by the definition of the bands in a wavenumber range of 3500 – 3200 

cm
-1

, the well-marked characteristic band of UN and the thinly appearance of the band 

at 2798 cm
-1

.  

There were also the consumption of fresh material and it is visible by the reduction of 

the intensity of the bands present at a wavenumber range of 1300 to 400 cm
-1

. 

 

Correlation between both tests. For find the spectroscopic differences and similarities 

between the two presented combustion processes, the overlap of two IR spectrum for 

different burning conditions was made and it is presented on Figure 161. The analysis of 

these two spectra are synthetized on Table 51. 

 

 

Figure 161: Overlap of IR spectra of burnt material, from mixture 4.2. The blue spectrum shows IR 

spectrum of burnt mixture on the “cigar” burning test (Figure 159 (a)), and the orange one shows the 

burnt material IR spectrum of “disk” burning test (Figure 160 (a)). 

 

Table 51: Analysis of the presence of reactants and common combustion products in burnt mixture 4.2 in 

experimental isobaric (cigar) and adiabatic (disk) conditions by compounds, typical peak band wave 

number from tables 42 to 44, new wave number of the typical peak in Figure 159 (a) and Figure 160 (a). 

Compound 

Typical 

Peak 

band 

Wave 

number 

(cm
-1

) 

Vibrational modes 

Presence 

in burnt 

mixture - 

cigar 

Presence 

in burnt 

mixture - 

disk 
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Urea Nitrate 2426 
C=O

…
H

…
ONO2 symmetric stretch (most 

typical from UN) 
Yes Yes 

Polyurethane 1590 
C=C stretch from a di-substituted 

benzene 
Yes Yes 

MT mixture 1155 CF2 typical elongations Yes Yes 

UN/PU/Al 

mixture 

(both for 

fresh and 

burnt 

mixtures) 

436 Al – O  stretching Yes Yes 

[3500 – 

3100] cm
-

1 

Overlap of NH2 symmetric and asymmetric 

stretches and primary or secondary amine 

salts elongations (for fresh mixture has 

water presence) 

Yes Yes 

825 NO3
-
 out-of-plane deformation Yes Yes 

 

By the analysis made between these two spectra, the only notable difference between 

them is that experimental adiabatic combustion regime consumes more water than the 

isobaric one. Probably it is possible to say the same about the UN’s consumption, due to 

the lower intensity and high definition of the bands peaks at adiabatic burning test. This 

can shows that when UN and H2O are consumed in combustion, it allows the 

appearance of the characteristic peaks from other components in the mixture. 
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CHAPTER 4 - RESULTS DISCUSSION 

4.1. Ammonium and Urea Nitrates Thermal Decompositions 

4.1.1. THOR prediction 

The results acquired from thermochemical calculations, using THOR code, for 

prediction of thermal decomposition species of ammonium and urea nitrates had quite 

similar behaviour (vd. Figure 162 and Figure 163, respectively). They shows two zones: 

the first zone is formed by major equivalent species formed for the same global 

enthalpy, followed by the others that really shown AN and UN decompositions.  

According to literature, UN thermal decomposition shows formation of solid species. 

THOR predicted this fact, because it shows an empty zone, where are no products 

formation (Figure 163). The chosen species for calculations, beside the C(α), were all 

gases. It is difficult to find exactly the products composition founded experimentally in 

bibliography. Predictions keep high temperature conditions and experimental 

compositions are detected after a cooling process. 

 

 

Figure 162: Thor predicted decomposition species of AN in function of temperature. 
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Figure 163: Thor predicted decomposition species of UN in function of temperature. 

 

 

 

4.1.2. DSC/TGA 

4.1.2.1. Ammonium Nitrate 

 At 2.2.2.1, four DSC/TGA thermograms were presented. Two of them were performed 

with a heating rate of 5ºC/min and showed five phase transitions on the predicted 

temperature range - the averaged acquired melting point was 170.2ºC and the averaged 

thermal decomposition temperature acquired was 268.0ºC. The other two DSC/TGA 

thermograms were performed with a heating rate of 10ºC/min and showed four phase 

transition on the predicted temperature range - the averaged acquired melting point was 

172.4ºC and the averaged thermal decomposition temperature acquired was 292.7ºC. 

All thermograms present phase transitions, the melting point was similar, but the 

thermal decomposition temperatures acquired had significant deviations. 

The different number of phase transitions acquired on the different thermograms, as 

well as their temperatures, and the significant deviations acquired for the thermal 

decomposition temperatures of AN were attributed to the samples weights, which affect 

the heat transfer along the solid. Samples with little weight, the exothermic reactions 

had no influence on the DSC result, because the heat released by them is not significant 
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for DSC acquisition, but higher weights promote more reactions and exothermic 

reactions occurs on a detectable way. Higher masses seems to promote bulk 

decomposition saturation. 

The kinetic parameters presented on this work were concordant between them. The 

activation energy (Ea) varied between 2.93E+06 and 4.86E+06 J/mol and the pre-

exponential factor (Z) varied between 23.83 and 532.72 min
-1

. 

The activation energy and the pre-exponential factor Z are dependent of the applied 

heating rate and of the sample’s weight. They increase with the increase of the heating 

rate and with the decrease of the sample’s weight. 

 

 

4.1.2.2. Urea Nitrate 

It was also acquired four DSC/TGA thermograms to study the thermal decomposition of 

UN. They were presented on 2.2.2.2. All thermograms showed three main peaks, two 

endothermic and one exothermic. Except in one case, all peaks appeared associated with 

mass losses. 

For the two thermograms acquired with a heating rate of 5ºC/min, the averaged melting 

point (first endothermic peak) acquired was 158.7ºC, the averaged decompositions 

temperatures for exothermic and second endothermic peaks were 166.3ºC and 244.2ºC, 

respectively. For the other two thermograms, acquired with a heating rate of 10ºC/min, 

the averaged melting point (first endothermic peak) was 152.1ºC, the averaged 

decompositions temperatures for exothermic and second endothermic peaks were 

173.2ºC and 274.6ºC, respectively. 

As happened for AN, different weight of samples and different applied heating rates at 

UN have different contributions for DSC/TGA results, which reflects on different 

temperatures for the same step of mass loss.  

The results presented on 2.2.2.2 were similar to the ones showed on Literature Review, 

which means that it is possible to associate the described thermal decomposition 

mechanisms of UN (2.1.1.2) to our DSC/TGA results.  

In relation to the kinetic parameters, the activation energy (Ea) varied between 

7.22E+05 and 9.94E+06 J/mol and the pre-exponential factor (Z) varied between 1.72 

and 1.66E+20 min
-1

. The calculated activation energies were all in the same magnitude 

order, but the pre-exponential factor varied largely. For bigger masses, this parameters 
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was on the same magnitude order, but for small masses it varied according to the 

studied mass loss step. The first mass loss step, which is coincident with the first 

endothermic had the highest Z, the other two mass loss steps had values on the same 

magnitude order for the equivalent mass loss step, but one hundred times higher 

between the second mass loss step and the third mass loss step. 

 

 

 

4.2. Development and detection of studied mixtures 

Mixtures compositions, by mass percentage, were described on 3.1, as well as the 

thermodynamic properties of all reactants used on them. The parameters used to 

characterize the thermodynamic properties of the reactants were: molecular formula, 

molar mass, phase, density, enthalpy and entropy of formation, boiling point, heat of 

combustion/ enthalpy of reaction and specific heat capacity. 

 

 

4.2.1. THOR predictions of combustion products properties 

4.2.1.1. Free Gibbs enthalpy and temperatures of combustion, for oxidants (AN and 

UN) and binder (PU) mixtures 

The minimum free Gibbs enthalpy and the maximum combustion temperatures, for 

mixtures based on AN and UN as oxidants and PU as binder, were found for richness 

values of 1.9 and 1.75, respectively. Free Gibbs Enthalpies varied between –1.83E+04 

and -1.60E+04 kJ/kg and the considered range for these variations was with r between 

1.5 and 2.9. 

The r = 1.9 corresponds to a mixture of 72% AN and 28% PU (m/m), and r = 1.75 

corresponds to a mixture of 86% UN and 14% PU (m/m), respectively. 

 

4.2.1.2. Predicted temperature of combustion as function of additives for previous 

mixtures (AN and UN with PU) 

There were added 2, 4, 6 and 9% (m/m) of additives - Al and MT mixture - on the 

mixtures described above, for r = 1.9 (AN/PU) and for r = 1.75 (UN/PU). 
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For mixtures composed by different oxidants and same additive, the results were 

identical: how higher was the concentration of the additive, higher was the predicted 

temperature of combustion of the respective mixture. 

The presence of Al in the mixtures increased more their temperature of combustion than 

the presence of the MT mixture. 

The mixtures of AN/PU/Al reached temperatures of combustion between 1595.9 K 

(Al% = 0) and 2329.2 K (Al% = 9) and the ones with MT mixture varied between 

1595.9 K (MT% = 0) and 1716.7 K (MT% = 9). 

The mixtures of UN/PU/Al reached temperatures of combustion between 1500 K 

(Al% = 0) and 2250 K (Al% = 9) and mixtures of UN/PU/MT, the temperatures of 

combustion varied between 1500 K (MT% = 0) and 1666.7 K (MT% = 9). 

 

 

4.2.2. Combustion experiments 

Two types of combustion conditions were performed: cigar and disks burning tests. The 

first type of test was more close to isobaric, at ambient pressure, conditions. The second 

type, having PMMA disks as confinements, was more close to adiabatic conditions. 

The only parameter studied for both tests was the density of the fresh mixture (ρ) 

present on both confinements.  

For cigar burning tests, the studied combustion parameters were: temperatures of 

mixtures combustions (T); the propagation velocities of the heat on PMMA (  PMMA), 

on explosions (  explosion), on the burning mixture (  mixture); and the fundamental flame 

velocity ( Flame), which is product of the exothermic reactions between the gases 

formed during the combustion of the mixture and the oxygen present in air. 

For disk burning tests, the studied parameters, beside density, were: the area of two 

explosions, by deflagration, of the mixture (A) and the time (Δt) needed to occurs the 

deflagration in the fresh mixture. 

 

4.2.2.1. Densities of the fresh mixtures 

To have a general idea about the densities of the studied mixtures, for each test, their 

densities were plotted all together, as shows Figure 164. 
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Figure 164: Densities of all studied mixtures, for each test. 

 

Figure 165 shows the results for the densities measured for the cigar burning tests (left) 

and for disk burning tests (right), separately. 

 

      

Figure 165: densities of the mixtures separated by tests. At left are presented the densities of the mixtures 

on cigars. At right, the densities of the same mixtures, but in disks. Mixtures 1.2 and 1.4 just were 

performed in disks burning tests. 

 

For cigars burning tests (Figure 165, left), the densities of mixtures composed by AN, 

PU and MT, varied between 1332.6 and 1393.1 kg/m
3
. The averaged density for these 

mixtures was 1367.6 ± 0.5 kg/m
3
. For same mixtures, but varying the additive for Al, 

the densities varied between 1206.6 and 1316.6 kg/m
3
 and the averaged density was 

1257.7 ± 0.5 kg/m
3
. Globally, the mixtures of AN had an averaged density of 1312. 

6 ± 0.5 kg/m
3
 

For mixtures composed by UN (Figure 165, left), the density range varied more, 

because of the quantity of the mass used of this oxidant. The density of these mixtures 
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varied between 1345.4 and 1934.6 kg/m
3
 and the averaged density was 1727.6 ± 0.5 

kg/m
3
. 

As expected, higher is the molar masses of the used reactants, higher will be the density 

of the mixture. MT has a higher mass than Al, the mixtures with MT has higher masses 

than mixtures with Al. UN has a higher molar mass than AN, mixtures with UN has 

higher densities than the ones with AN. 

For disk burning tests (Figure 165, right), the mixtures of AN/PU/MT varied theirs 

densities between 1775.0 and 2103.8 kg/m
3
 and the averaged density was 1947.9 ± 0.5 

kg/m
3
. Same mixtures, changing the additive for Al, had densities that varied between 

1600.5 and 2086.5 kg/m
3
, and the averaged density was 1937.6 ± 0.5 kg/m

3
. Globally, 

on disks, the mixtures of AN had an averaged density of 1942.7 ± 0.5 kg/m
3
. 

Mixtures composed by UN, for disk burning tests, had densities of 1420.4 ± 0.5 kg/m
3
 

(for Al) and 1822.5 ± 0.5 kg/m
3
 (for MT mixture). The averaged value for this densities 

is 1621.4 ± 0.5 kg/m
3
. 

Mixtures of AN had similar behaviour for both additives, which means that for high 

pressures (disks were pressed with higher pressure than cigars), the major contribution 

for the density of the mixture is the component in higher quantity, in this case, the AN. 

The influence of the mass of the additive is notable, but not relevant (MT mixture 

produces mixtures with higher densities than Al). 

For mixtures of UN, the presence of the additive is more relevant, but two samples are 

not enough to quantify this relevance. 

The difference between the averaged densities for mixtures of AN and for mixtures of 

UN shows that smaller molecules have higher power of compression and this is why 

AN samples had higher densities than UN samples. 

 

4.2.2.2. Temperature profiles of mixtures in cigar burning tests 

The study of the temperature profile of the mixtures in cigar burning test was made in 

function of the used additive. Figure 166, at left shows the temperature profile of the 

mixtures with MT as additive, and at right shows the temperature profile of the mixtures 

with Al. 
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Figure 166: Temperature profiles of the studied mixtures. Left image is correspondent to samples which 

has MT mixture as addictive. Right image corresponds to mixtures with Al as addictive. 

 

For the temperature profile of samples with MT in their composition (left image on 

Figure 166), it is possible to observe that higher temperature was acquired for the 

sample with higher concentration of MT and for the smaller concentration of AN 

(sample 1.5). For the same concentration of MT (samples 3.1 and 3.3), the higher 

temperature was acquired for the one which had higher concentration of AN, has 

expected. 

As it is possible to observe in Figure 166 (left), the samples 1.5, 3.1 and 3.3 has smaller 

differences on MT mixture concentration (just 1%), the expected was that the dark red 

point (sample 1.5) appears bellow the yellow one ( sample 3.3), because of the 

concentration of the AN. This probably occurred due to the using of different mixing 

procedures. The order of the addition of the reactants was very different from procedure 

2 (3.3.2.2) used in mixture 1.5, to procedure 3 (3.3.2.2.) used in mixtures 3.1 and 3.3. It 

is not possible to say which the factor (on the mixing procedure) that altered the 

temperature profile of the samples. To study that it will be need to do two set of 

mixtures that just change one reactant in the order of addition in each set. From 

procedure 2 to procedure 3, two changes on the order of the addition of the reactants 

were made. 

The mixture with UN (4.1) was the one that had worst conductivity and combustion not 

occurred on the position of the temperature acquisition. 

On mixtures with AN, the concentration of the oxidant increased the temperature (see 

mixtures 3.1 and 3.3 at left image of Figure 166). These temperatures varied between 

900 and 1300 ºC. THOR code predicted temperatures around 1600 K, which means a 

good prediction. 
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For samples with Al as addictive (Figure 166, right image), the profile temperature was 

not conclusive. Mixtures 3.2 and 3.4 were prepared by procedure 3 and mixture 1.8 was 

prepared according procedure 2 (3.3.3.2). Mixtures 3.2 and 3.4 were the extremes, 

which probably means that, in this procedure (3 of 3.3.3.2), the contribution of the PU 

rises the temperature profile of the mixture. Mixture 1.8 has higher concentration of PU 

than mixture 3.4 (mixture with higher concentration of PU and with AN as oxidant) but 

has lower temperature profile.  

Samples of UN had also an inconclusive profile of temperature, because just more 2% 

of Al raised the temperature more than 1000ºC, for minor quantities of UN. The 

temperature profile of the samples with UN/PU/Al varied between 100 and 1330ºC.This 

profile has an explanation that needs to have more study on that. The mixing procedure 

here was determinant, because polyol hydrolyses the UN and diisocyanate not. 

Diisocyanate and UN promote more bounds which breaks are more exothermic. Besides 

the high temperature acquired by mixture 1.8 during the combustion, mixture 2.7 (76% 

UN + 12%PU + 12%MT) which was prepared by the same mixing procedure than 

sample 1.8, suffered auto-combustion.  

When polyol was added first (by mixing procedure 3) the mixture 4.2, as well as 4.1, 

not burned. The hydrolysis of UN reduces its hazards. These facts means that mixing 

procedure (2) promotes the hazards of these mixtures of UN.  

The study about the influence of the mixing procedure, i.e, the influence of the order of 

the addition of the reactants, the curing time and pressing mode in our mixtures needs to 

be further to understand these temperature profiles, on cigar burning tests. 

 

4.2.2.3. Velocity of propagation of PMMA 

Due to the combustion achieved on our cigar burning tests were driven-flame 

combustion, it is important to see the contribution of the self-combustion of the PMMA 

on our mixtures, by the study of the velocity of propagation of heat on the PMMA (  

PMMA). Figure 167 shows the general behaviour of the velocity of propagation of heat on 

the PMMA, in cigar burning tests. 
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Figure 167: Velocities of the flame propagation on PMMA for each studied sample, on cigar burning tests 

 

Analysing Figure 167, there is possible to see a linear distribution of the samples 

between 0.15 and 0.25 mm/s, which gives an averaged value for  PMMA of 

0.196 ± 0.005 mm/s. This proves that, for the majority of the samples, the flame of the 

PMMA was the responsible for a continuous driven-flame that ensures total combustion 

of the sample. 

The three samples (3.2, 3.3 and 3.4), which presented  PMMA higher than 0.25 mm/s 

(Figure 167), were samples of AN/PU which richness was closest from r = 1.9 (richness 

founder for the highest temperature of combustion for mixtures of AN/PU).  

Mixtures 3.3 and 3.4 had the same composition (r = 1.9 for AN/PU), the additive was 

the only different between them. The higher  PMMA was acquired for the one which had 

Al (3.4). Mixtures 3.1 and 3.2 were in the same situation, but with r > 1.9 for AN/PU, 

and just the one with Al (3.2) raised the value of  PMMA. This shows the influence of 

the reactions between Al and higher concentrations of AN, proving that Al not reacts 

directly with AN, but with its combustion products when present in higher quantities, as 

expected. This not occurs for the MT mixture, which combustion products not have 

reactivity with the combustion products of the AN, and that why that  PMMA had is 

value inside the expected range.  
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4.2.2.4. Flame velocity propagation jumps on explosions 

The study of the flame velocity propagation jumps on explosions (  explosion - 

deflagration, to be more correct) was considered the combustion of the pre-expanded 

gaseous products of the burning mixture. This combustion was observed by the 

emission of light on the burnt material, which was characterized by incandescence, as 

shown in figures along 3.3.4.  

The results for  explosion are presented on Figure 168, and not all mixtures presented 

these kind of explosions. The  explosion is an indicative of self-sustained combustion 

with flame velocity jumps. 

 

 

Figure 168: Velocities of the flame propagation on explosions (  explosion) in cigar burning tests. Mixtures 

4.1 and 4.2 are not present because they not presented this kind of combustion. 

 

The velocities of the flame propagation on explosions (  explosion) on studied samples 

varied between 2.46 and 7.46 mm/s. They not had a pattern, but their velocity range was 

small (5 mm/s).  

The mixture with MT which reached higher  explosion was the one with AN/PU with 

r = 1.9 (0.49 mm/s), and the one which reach the lower  explosion was the one with 

higher concentration of AN (0.05 mm/s), which means that MT mixture and AN, and 

their reactions products, not make reactions that produce high amounts of energy. In the 

right stoichiometry of AN/PU, MT mixture promotes this velocity due to its large gas 

expansion. 
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The mixtures with Al which reach higher  explosion were the ones with higher 

concentration of Al, 10 % in the case of AN/PU (7.16 mm/s) and 11% in the case of 

UN/PU (6 mm/s). 

 

4.2.2.5. Velocity of the flame propagation on the studied mixtures 

The velocity of the flame propagation on the studied mixtures (  mixture) was studied by 

the observation of the mixtures, when they were passing from their solid state to liquid 

and gaseous states (all mixtures bubbled). This is the velocity that mixtures needs to 

change their phases and to produce reactions. 

 

 

Figure 169: velocities of the flame propagation on the studied mixtures (  mixture) in cigar burning tests.  

 

Analysing Figure 169, besides the sample 4.1, the velocity of the propagation of the 

heat on the studied mixtures (  mixture) had similar behaviours, because their velocity 

range was tight ([0.05 – 0.25] mm/s).  

These extremes belongs to MT mixtures, the higher one is for AN/PU mixture with 

r = 1.9, and the lower one is for the higher concentration of AN in AN/PU mixture, 

again. This proves that MT mixture, as additive, is just effective when the mixture 

AN/PU has the best stoichiometry. Its gas expansion promotes  mixture when it is not 

big enough to extinguish the combustion. 

For mixtures with Al as additive, the velocity of the propagation of the heat on the 

studied mixtures (  mixture) is proportional to the presence of oxidant. Higher is the 

concentration of the oxidant, higher is the  mixture. This is due to the reactions of Al 
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with the oxygen from the burned mixture. Their range of variation is from 011 to 0.18 

mm/s. 

Although the number of the samples are not enough to have accurate results, for UN 

mixtures it happens the same: the MT mixture is effective on the best stoichiometry of 

UN/PU and Al effectiveness is dependent of the oxidant quantity. 

 

4.2.2.6. Fundamental flame velocities 

The fundamental flame velocity (  ) is an approximated measure of the chemical 

combustion process of the formed gases. This is directly related with the volume 

consumption of the formed gases ( ) and the area of the degasification formed by their 

production (AF) by equation (106) (see 3.3.3.6). The results obtained for this parameter 

of combustion are synthetized on Figure 170. 

 

Figure 170: fundamental flame velocities (      ) for studied mixtures, in cigar burning tests. 

 

Higher flames velocities were achieved for mixtures with MT mixture as additive, with 

oxidant and the binder in proportion of best richness, which means in stoichiometric 

proportions to achieve the best combustion temperatures. For mixture AN/PU/MT (r 

= 1.9 for AN/PU),    was 1.9 m/s, and for mixture UN/PU/MT (r = 1.75 for UN/PU), 

   was 3.1 m/s. These results were predictable, due to large expansion of MT mixture, 

which indicated higher volume rates. 

The other mixtures varied their    on a range of 0.14 to 0.45 m/s, with an averaged 

value for fundamental flame velocity of 0.30 ± 0.01 m/s. 



 

198 

Joana Quaresma 

The    of the mixtures with Al as oxidant had the same behavior previously described. 

Higher was the concentration of the oxidant, higher was the     

Once again, this parameters is also a hazard one, due to the combustion power that those 

mixture can have, if subjected to a proper ignition. 

 

Generally, MT mixture promoted more all the studied velocities, due to its gas 

expansion which revealed to be a physical factor that has great effect on the combustion 

of the studied mixtures, on isobaric conditions. This pressure parameter is more 

effective how close the mixture, of the oxidant and the binder, is in the ideal 

stoichiometry for achieve the highest temperature of combustion. 

The hazards of the Al additive on the studied mixtures are not higher than the ones due 

to MT mixture, but they can be achieved easier when ideal stoichiometry of oxidant, 

binder and additive are unknown. 

 

4.2.2.7. Local explosions areas and time delay in disk combustion samples 

Beside densities, the areas of the explosions by deflagration of the studied mixtures, and 

the time needed to reach the respective explosion were the parameters calculated for 

combustion on disk tests, approaching adiabatic conditions. 

There are no results for UN mixtures because they not suffered combustion. 

Figure 171 and Figure 172 shows the obtained results for the time (Δt).and for areas (A), 

respectively. 
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Figure 171: Time needed by each mixture to reach explosion by deflagration. On the legend, the number 

after the underscore means the number of the studied explosion. 

 

All mixtures with Al in their composition, except sample 1.8 in first explosion, last 

between 0.3 and 0.4 s to reach explosions by deflagration. All mixtures with MT 

mixture as additive and sample 3.4 (first explosion) needed 0.07 seconds to reach the 

explosions. 

 

 

Figure 172: Areas (A) of explosion by deflagration of each mixture in logarithmic scale. On the legend, 

the number after the underscore means the number of the studied explosion. 

 

The pattern of the areas (log(A)) of explosion are not so clear as their time of 

appearance (Δt), although it is possible to see two regions of areas, one above log 

(A) = 10 and other bellow. 
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The areas bellow log (A) = 10 are from mixtures with Al in their composition which 

needed minor times to reach explosions. Once again, mixture 1.8 was an exception. The 

areas above log (A) = 10 belonged to mixtures which had MT mixture as additive, but 

there were two exceptions, mixtures numbers 1.5 (second explosion) and mixture 3.1 

(first explosion).  

These results, from Figure 171 and Figure 172, show that the mixtures with MT mixture 

as additive, needs more time to reach explosions by deflagration than the ones with Al, 

but their areas of deflagration are bigger than the Al ones. 

Both additives increase the hazards on studied mixtures, but MT mixture is worst due to 

gas expansion, which promotes the bigger areas of combustion. 

 

 

 

4.2.3. Infra-Red Spectroscopy 

The main objective of the use of the IR spectroscopy on this work was to characterize 

the studied mixtures, before and after its combustion. The analysis was performed using 

the optimized mixtures described on Table 16. The mixtures with lower concentration 

of AN were not characterized, because their mass percentage, in relation to the others, 

were not significant for big changes on the IR spectra. AN mixtures of lower 

concentrations had a similar combustion behaviour than the higher ones. 

To characterize the studied mixtures by IR spectroscopy was necessary, firstly, to 

analyse the IR spectra of the reactants, in order to detect their presence on the mixture 

and to evaluate the formation of new bounds, with different functional groups, on the 

mixtures.  

Mixtures were analysed after and before their combustion (3.4.2), to evaluate the profile 

of the combustion, to know if there was formation of new solid compounds and to 

evaluate the presence of the fresh mixture in the burnt residues. 

 

4.2.3.1. Reactants IR characterization 

To characterize the presence of the reactants in the mixtures, there were chosen some 

characteristic bands of the IR spectrum of each reactant. Table 52 shows the chosen 
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bands for each reactants, as well as their characteristics, typical wavenumber for each 

peak and corresponding vibrational modes. 

Table 52: Chosen bands and respective bands intensities, ranges and peaks wavenumbers for 

characterization of the reactants in the mixtures, before and after their combustion. 

Reactant 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Band intensity 

and range 
Vibrational modes 

Ammonium 

Nitrate 

2425 / 2396 

Medium and 

thin band [2385 

– 2450] cm
-1

 

AN coating 

1384 

Strong band 

;[1500 – 1250] 

cm
-1

  

overlap of NH4
+
 asymmetric deformation and 

NO3
-
 asymmetric stretch 

Urea Nitrate 

 
2426 

Medium and 

large band; 

[2330 - 2550] 

cm
-1

 

C=O
…

H
…

ONO2 symmetric stretch (most typical 

from UN) 

Polyurethane 

2970 

Strong band 

(multiple 

peaks) peak); 

[3000-2800] 

cm
-1

 

Band overlap: C-N stretch and N-H elongation 

typical from urethane group 

1590 
Strong but thin 

band 
C=C stretch from a di-substituted benzene 

1533 
Strong but thin 

band 

Band overlap: C-N stretch and N-H elongation 

typical from urethane group 

669 

Weak and large 

band; [720 – 

620] cm
-1

 

N-H out-of-plane symmetric angular deformation, 

typical from amides 

MT mixture 

1155 

Strong band 

(thwo peaks); 

[1200 – 1000] 

cm
-1

 

CF2 typical elongations 

505 

Strong band 

(two peaks); 

[550 – 502] cm
-

1
 

fingerprint zone of Teflon, elongation 

characteristic of bending and rocking modes 

Aluminium - 
 Not has IR spectrum due to be a monoatomic 

compound 

 

4.2.3.2. IR characterization of fresh mixtures 

There was found one IR band which can be associated to the mixture of UN and PU. 

That band has a wavenumber range of [3500 – 3100] cm
-1

 and can be associated to 

Overlap of NH2 symmetric and asymmetric stretches and primary or secondary amine salts 

elongations. 
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The addition of the additives to the studied mixtures not changed their IR spectra, just 

added some typical peaks, in case of the MT mixture. Those peaks were at 1155 cm
-1

 

and at 505 cm
-1

. 

The results for the analysis of the mixtures of AN and PU are presented on Table 53. 

The results for mixtures which UN was the oxidizer are presented on Table 54. 

 

Table 53: Analysis of the presence of reactants in fresh mixtures 3.1 and 3.2 (AN as oxidant) by 

compound and typical peak band wavenumbers (see tables above). used to “yes”,   used to “no”. 

Compound Typical Peak band 

Wavenumber (cm
-1

) 
Presence in fresh 

mixture 3.1 

(AN/PU/MT) 

Presence in fresh 

mixture 3.2 

(AN/PU/Al) 

Ammonium Nitrate 2425 / 2396 
  

1384 
   

Polyurethane 1533 
  

669  
  

MT mixture 1155 
  

505 
  

 

Table 54: Analysis of the presence of reactants in fresh mixtures 4.1 and 4.2(UN as oxidant) by 

compound and typical peak band wavenumbers (see tables above). used to “yes”,   used to “no”. 

Compound Typical Peak band 

Wavenumber (cm
-1

) 
Presence in fresh 

mixture 4.1 

(UN/PU/MT) 

Presence in fresh 

mixture 4.2 

(UN/PU/Al) 

Urea Nitrate 2426 
  

Polyurethane 2970 
  

MT mixture 1155 
  

UN/PU mixture 3414 / 3346 
  

 

The mixtures were well characterized and were founded enough characteristic peaks to 

identify, by IR spectroscopy, all fresh compounds (except Al) used on these mixtures. A 

general overview about the IR spectra of the studied mixtures showed that, in all 

spectra, the major component of the mixture was the best visualized. The presence of 

MT mixture, in some cases, was also well seen. 
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4.2.3.3. IR characterization of burned mixtures 

There were also found some typical IR bands for combustion products of the studied 

mixtures, which are presented on Table 55. Table 56 and Table 57 shows the IR 

analysis made to the burned mixtures of AN/PU and UN/PU, respectively. 

 

Table 55: Chosen bands and respective peaks wavenumbers for characterization of the mixtures after 

combustion. 

Combustion 

products of 

Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Vibrational modes 

MT mixture 
466 MgF2 elongations 
551 Mg – C –F  unit elongations 

AN/PU/MT mixture 
Band [3310 – 

3595] 

O – H axial deformation in intermolecular bounds, 

characteristic of polymeric structures with OH group; 

water 

AN/PU/Al mixture 

[1150 – 400] 

cm
-1

 
Al – O  stretching from Al2O3 species 

[3600 – 2800] 

cm
-1

 

O – H axial deformation in intermolecular bounds, which 

can be associated to alcohols, water or to Al(OH)3 

UN/PU/MT mixture 
[3500 – 3100] 

cm
-1

 

Overlap of NH2 symmetric and asymmetric stretches and 

primary or secondary amine salts elongations (for fresh 

mixture was water presence) 

UN/PU/Al mixture 

436 Al – O  stretching 

3500 – 3100] 

cm
-1

 

Overlap of NH2 symmetric and asymmetric stretches and 

primary or secondary amine salts elongations (for fresh 

mixture was water presence) 

 

Table 56: Analysis of the presence of reactants and combustion products in burned mixtures 3.1 and 3.2 

(AN as oxidant) by compound and typical peak band wave numbers (see tables above). used to “yes”, 

  used to “no”. 

Compounds 

Typical Peak / 

band Wave 

number (cm
-1

) 

Presence in burnt 

sample 3.1 

Presence in burnt 

sample 3.2 

Cigar Disk Cigar Disk 

Ammonium 

Nitrate 

2425 / 2396 
    

1384 
    

Polyurethane 
1533 

    

669 
    

MT mixture 
1155 

    

505 
    

Combustion 

products of 

MT mixture 

466 
    

551 
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Combustion 

Products 

typical from 

AN/PU/MT 

formulation 

[640 – 710] 
    

1635 
    

[3310 – 3595] 
    

Combustion 

Products 

typical from 

AN/PU/Al 

formulation 

[1150–400] cm
-1

 
    

[3600–2800] cm
-1 

    

Table 57: Analysis of the presence of reactants and combustion products in burned mixtures 4.1 and 4.2 

(UN as oxidant) by compound and typical peak band wavenumbers (see tables above). used to “yes”, 

  used to “no”. 

Compound Typical Peak 

band 

Wavenumber 

(cm
-1

) 

Presence in burnt sample 

4.1 
Presence in burnt 

sample 4.2 

cigar disk cigar disk 

Urea Nitrate 2426 
    

Polyurethane 2970 
     

1590 
    

MT mixture 1155 
    

UN/PU 

mixture 
3473 / 3367 / 

3183     

Combustion 

products of 

MT mixture 

448 
    

557 
    

Combustion 

products of 

UN/PU/Al 

mixture 

436 
    

 

The burned mixtures with AN as oxidant (Table 57) were well characterized in relation 

of the presence of fresh material, as well as in relation of the typical combustion 

products of each mixture.  

The sample 3.1 burned on both conditions, but in cigar burning test there was no 

presence of fresh material in ashes from its combustion. The sample 3.2 on the disk 

burning test not suffered combustion and, due to that, was not possible to characterize 

the IR spectrum of this mixture at adiabatic conditions. On the opposite side was sample 

3.2 on cigar burning test that completely burned and fresh material was not present in its 

residues. 
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The profile of the burned samples of mixtures based on UN as oxidant (Table 57) had 

closest profiles, because no one of the mixtures totally burned. All mixtures had visible 

presence of fresh and materials and IR spectroscopy confirmed those presences. 

In general, when fresh mixtures (before combustion) are analysed by IR spectroscopy, 

just the vibrational modes of their principal component are observed. This means that 

reactants with less than 10% (m/m) in mixture’s composition are not analysable by this 

technique. 

After combustion, it was possible to analyse the presence of new components when the 

combustion was incomplete. When combustion was total, the IR spectrum is plane and 

there is nothing to analyse. But even when combustion of the mixture is not total, it just 

will be possible to observe new components on IR spectrum if some kind of separation 

would be applied to the combustion products, because if those products are produced on 

percentages less than 10% of the raw material (non-burned) it will be not analysable by 

this technique.  
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CHAPTER 5 – SYNTHESIS AND CONCLUSIONS  

Homemade explosives (HME) and Improvised Explosives Devices (IED) are the 

preferred tool on bombing events. HME and IED can also be applied in disturbances in 

normal supply chains. 

 

Supply chain security is very important for international transporters, operators and 

authorities, in order to guarantee that all essential needs are covered, import and export 

safely and on time. Then, it was tried to follow the steps which a terrorist could be 

follow to choose and perform a terrorist attack using open market products.  

Ammonium and Urea Nitrates were the selected oxidants to produce explosives for 

several reasons: historical know-how from previous accidents and terrorist attacks, 

explosive properties, easy acquisition and transportation for large quantities. 

Besides all incidents, ammonium nitrate (AN) is a good reference to study explosive 

properties and combustion phenomena. It is also a compound very present on daily life - 

fertilizers, cleaning products, civil explosive applications, relatively safe to manage and 

store. 

Urea nitrate (UN) was an elected oxidant essentially due to its explosive potentialities. 

The fact of being an original oxidant molecule with a carbon content in its structure, 

makes it a promisor explosive molecule, which not need the addition of a combustible 

(that is the case of fuel-oil for AN).  

The worst problems seen for both oxidants were their hygroscopicity and their high 

solubility in polar solvents, as polyol solution of the polyurethane (PU) binder. This last 

effect was more notable for UN. 

Mixtures of AN and UN with PU solution, as binder, were tested, with aluminium (Al) 

and a mixture of Magnesium/Teflon (MT) as additive. Decomposition of reactants, as a 

function of temperature, was predicted using THOR code. Combustion temperatures 

were also theoretical predicted in order to define tested compositions. THOR code was 

also used to predict the Free Gibbs enthalpy for mixtures composed by the oxidants and 

the binder, and to predict the temperature combustion as a function of the additive in the 

previous mixtures. For original mixtures, the Free Gibbs Enthalpies varied between –

1.83E+04 and -1.60E+04 kJ/kg, richness (r) between 1.5 and 2.9. Temperatures varied 

between 1227 and 2630 ºC. 
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DSC/TGA thermograms of reactants help to define composition and show levels of 

decomposition. AN and UN thermograms show some significant differences between 

them, showing an exothermic peak of UN in quite low temperatures. This exothermic 

peak of UN, not defined in AN, proves the potential capacities of this oxidant when 

used in explosive compositions. The acquired results were concordant with those 

founded on the literature. 

Experimental tests used two configurations: cigar and disk burning tests. This last 

sample was pressurized in order to keep propellant mixture at high levels of compaction 

and ensuring quite adiabatic conditions in flame progression. Cylindrical samples were 

tested before cylindrical boxes, verifying burning properties.  

Fresh mixtures varied their averaged densities between 1313 and 1943 kg/m
3
 for AN 

mixtures, and between 1728 and 1621 kg/m
3
 for UN mixtures. The coupled values 

corresponds to samples for cigar burning tests and for disk burning tests, respectively. 

For atmospheric pressure conditions, on cigar burning tests, the combustion with 

additives, Al or MT mixture, show an increasing flame temperature on the levels of 

1300 ºC, for both oxidants. 

It was possible to measure three flame velocities in a single experiment: on PMMA, 

which was responsible for driven-flame combustion; on explosions, that was generated 

from deflagration of the gaseous products, on the heterogeneous mixtures, which was 

the reference velocity to pass from fresh to burned materials. All obtained velocity 

values were in the order of mm/s, being the propagation velocities of PMMA and of the 

mixtures ten times lesser that the propagation flame velocity in the explosions. 

Measured fundamental flame velocities presented an averaged value of 0.30 s. 

Disk burning test present an experimentally approach to adiabatic conditions. It was 

observed spontaneous explosions, due to the fast heat propagation, inside the mixture, 

and the consequent gas expansion. MT additive seems to present an increased 

contribution to the expansion. 

It was observed the self-ignition of one of the UN/PU compositions with MT, during 

curing time. It seems to be due to complex phenomena of production of gas, from UN. 

The addition of diisocyanate to the UN, followed by the addition of the MT and, at 

least, the addition of polyol, create physical and chemical conditions to occur gas 

production and self-ignition of the mixture. When polyol is firstly added to UN, UN is 

solubilized and the followed addition of diisocyanate and the additive is no more 

dangerous. These reactions needs further studies to be completely clarified  
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The infrared analysis study here presented is enough to evaluate the presence of the 

reactants (except Al), as well as the presence of some typical compounds associated to 

the fresh and burned mixtures. There were founded typical bands for each situation.  

The most relevant conclusions about the IR spectroscopic study performed on this work 

were that the IR spectra of the mixtures shows, mainly, the presence of the components 

present in quantities higher than 10% (m/m). To evaluate the presence of the 

compounds in lesser quantities, it would be needed separation techniques and further IR 

analysis. To have knowledge and to characterize the formation of new compounds 

before and after burning the mixtures, it would be necessary the employment of other 

analytical techniques as, for example, gas or liquid chromatography (GC or LC, 

respectively) coupled with mass spectrometry (MS). 

 

 The high hygroscopicity of AN and UN is a factor that have to be controlled for 

a successful combustion of these mixtures. Another factor that needs special attention 

on further studies is the mixing procedure.  

As further work, it can also be considered the application of the DSC/TGA technique to 

the fresh mixtures in more large quantities. To study their behaviour when submitted to 

controlled fast heating rates. This will be advantageous to have knowledge about 

relevant phase transitions, melting points, thermal decomposition temperatures, kinetic 

parameters and thermal instabilities of the developed mixtures. 

Spectrometric studies have to be done to have more data about the structure and the 

bounds formed on these heterogeneous mixtures. More depth studies on IR 

spectroscopy, which can include Raman and ATR/FTIR spectroscopy, will be useful to 

evaluate the typical compounds present on mixtures (before and after combustion) that 

just correspond to these mixtures and no other, with reactants with similar functional 

groups and/or structures. It also be useful employ mass spectrometry and RMN to fresh 

and burned mixtures. It will give much more useful forensic data for detection and 

identification of the chosen compounds and mixtures.  

The last, but maybe the more important to further studies, is the deflagration – 

detonation transition (DDT) properties of these mixtures. They will confirm bomb 

capabilities and their critical mass and sizes. 
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