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Summary 

 

Every day the human body turns over billions of cells ensuring the disposal of unwanted 

targets that die by apoptosis. The prompt and efficient removal of apoptotic cells by phagocytes, 

referred as to efferocytosis, plays an essential role during development, tissue repair and in the 

maintenance of homeostasis, triggering an immunological tolerance (Henson and Hume, 2006). 

On the other hand,  defective clearance promote dying cell accumulation, converting harmless 

apoptotic cells into a risky secondary necrotic state that, eventually, expose self-antigens, which 

has been linked to the onset of several human disorders, including autoimmunity and chronic 

inflammatory diseases, such as atherosclerosis (Elliott and Ravichandran, 2010). Atherosclerosis 

remains the biggest cause of mortality and disabilities worldwide, especially in developing 

countries. The formation of the atheroma starts with the retention of low-density lipoproteins 

(LDL) inside the wall of blood vessels, where they become subjected to several chemical 

modifications. These modified-LDL induce the recruitment of monocyte-derived macrophages, 

which internalize the deposited fatty material. Over time, these lipid-loaded macrophages are no 

longer able to process the cholesterol, forming foam-cells that eventually undergo apoptosis. In 

early stages of atherogenesis, efferocytosis is very efficient; however in advanced lesions this 

process somehow fails, triggering an inflammatory response that, in turn, recruits more cells, 

including neighboring smooth muscle cells (SMC). Besides macrophages, SMC, the major cell type 

in the blood vessels wall, play an essential role by dealing with the dying cell accumulation, thus 

preventing atheroma progression (Moore and Tabas, 2011). 

Although many efforts have been done to understand the machinery involved in the 

recognition of apoptotic cells by phagocytic cells (receptors and ligands), as well as the immune 

response elicited, very little is known about the intracellular transport of phagosomes containing 

apoptotic cells and its subsequent digestion into phagolysosomes, the final degradative 

compartment of the host cell (Hochreiter-Hufford and Ravichandran, 2013). Beyond that, C. 

elegans has been the model organism in studies of engulfment and degradation of apoptotic 

cells, which reinforce the need to have more information about the development of this process 

in mammalian systems. Thus, it is crucial to our understanding, to figure out the causes of the 

inefficient efferocytosis and how it contributes to the pathogenesis of certain diseases. 

In this thesis, we have performed a detailed study on the maturation of phagosomes 

containing human aged red blood cells, our apoptotic cell model, using a mammalian phagocytic 
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cell line (vascular SMC). The maturation of phagosomes containing dying cells was compared with 

the processing of phagosomes loaded with IgG-opsonized particles, which are internalized via 

Fcγ-receptors and are the best characterized phagocytic model. At the present work, we provide 

evidence that the nature of the cargo modulates the phagocytic response, since phagosomes 

carrying apoptotic particles reach the lysosomes with a delay when compared to those containing 

IgG-opsonized particles. Furthermore, for the first time, we have identified some canonical 

autophagy effectors in phagolysosome formation, suggesting that LC3-Associated Phagocytosis 

(LAP), a process involved in phagosome maturation, implies more than the phagosomal 

recruitment of LC3 (Sanjuan et al., 2007). Indeed, experiments performed in bone              

marrow-derived macrophages from p62-KO mice clearly suggest that p62, despite not being 

required for LC3 recruitment, is important for phagolysosome biogenesis. 

 In summary, this data will improve our knowledge on the molecular machinery and 

mechanisms involved in efferocytosis. In the end, we hope to contribute to a better 

understanding of efferocytosis and the ways to modulate this process, which could culminate 

with the discovery of therapies that may benefit patients with atherosclerosis and other type of 

diseases in which efferocytosis is not efficient. 
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Resumo 

 

Diariamente o corpo humano degrada bilhões de células garantindo a eliminação de alvos 

indesejados que morrem por apoptose. A remoção rápida e eficaz de células apoptóticas por 

células fagocíticas, processo conhecido como eferocitose, desempenha um papel essencial 

durante o desenvolvimento e na reparação e homeostase dos tecidos, sendo um fator crítico 

para tolerância imunológica (Henson and Hume, 2006). Por outro lado, uma remoção defeituosa 

promove a acumulação de células apoptóticas e subsequentemente necrose secundária, 

exposição de auto-antigénios (autoimunidade) e inflamação (Elliott and Ravichandran, 2010). 

Aterosclerose, uma doença inflamatória crónica, permanece a maior causa de mortes e 

incapacidades em todo mundo, especialmente em países em desenvolvimento. A formação do 

ateroma começa com a retenção de lipoproteínas de baixa densidade (LDL) dentro da parede dos 

vasos sanguíneos, onde estão sujeitas a várias modificações químicas. Estas LDL-modificadas 

induzem o recrutamento de macrófagos derivados de monócitos, os quais internalizam a matéria 

gorda depositada. Com o passar do tempo, estes macrófagos cheios de lípidos deixam de 

conseguir processar o colesterol, formando células espumosas que eventualmente sofrem 

apoptose. Nos estágios iniciais da aterogénese, a eferocitose é muito eficiente, entretanto em 

lesões avançadas este processo de alguma forma falha, provocando uma resposta inflamatória 

que, por sua vez, recruta mais células, inclusive células do músculo liso das artérias. As células 

musculares lisas, o tipo mais abundante de células na parede dos vasos sanguíneos, 

desempenham um papel essencial na eferocitose, contribuindo no atraso da progressão do 

ateroma (Moore and Tabas, 2011). 

Embora muitos esforços tenham sido feitos para compreender a maquinaria envolvida no 

reconhecimento de células apoptóticas por células fagocíticas (recetores e ligandos), assim como 

a resposta imune suscitada, muito pouco é sabido sobre o transporte intracelular de fagossomas 

contendo células apoptóticas e sua subsequente digestão dentro de fagolisossomas, o 

compartimento degradativo final da célula hospedeira (Hochreiter-Hufford and Ravichandran, 

2013). Além disso, C. elegans tem sido o organismo modelo em estudos de internalização e 

degradação de células apoptóticas, o que reforça a necessidade de mais informação sobre o 

desenvolvimento deste processo em sistemas mamíferos. Desta maneira, é crucial ao nosso 

entendimento, descobrir as causas de uma eferocitose ineficiente e como isto contribui para a 

patogenicidade de certas doenças. 
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Nesta tese, nós realizamos um estudo detalhado sobre a maturação de fagossomas 

contendo hemácias humanas envelhecidas, modelo apoptótico usado, utilizando uma linha de 

células do músculo liso como células fagocíticas. A maturação de fagossomas contendo células a 

morrer foi comparada com a maturação de fagossomas contendo partículas revestidas com IgG, 

as quais são internalizadas pelos recetores Fcγ, o mais bem caracterizado modelo fagocítico. No 

presente trabalho, nós fornecemos evidências de que a natureza da carga modula a resposta 

fagocítica, uma vez que fagossomas que carregavam partículas apoptóticas atingiram os 

lisosomas com um atraso em ralação àqueles contendo partículas opsonizadas por IgG. Além 

disso, pela primeira vez, nós identificamos elementos da autofagia canónica na formação dos 

fagolisossomas, o que sugere que a Fagocitose Associada à LC3 (LAP), um processo envolvido na 

maturação do fagossoma, implica mais do que o recrutamento de LC3 (Sanjuan et al., 2007). De 

facto, experiências realizadas em macrófagos provenientes de animais deficientes para a 

proteína autofágica p62 sugerem claramente que a p62, embora não necessária para o 

recrutamento do LC3, é importante para a biogénese do fagolisossoma. 

Em síntese, estes dados vão contribuir para a nossa compreensão sobre a maquinaria 

molecular e mecanismos envolvidos na eferocitose. A longo prazo, esperamos que o 

conhecimento reportado nesta tese possa levar ao desenvolvimento de terapias para doenças 

em que a eferocitose não se processe normalmente. 
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Introduction 

 

1.1. Atherogenesis and apoptosis of pathological foam cells 

Cardiovascular diseases (CVDs) include diseases of the heart, vascular brain accidents and 

blood vessels disorders, and remain the biggest cause of mortality and disabilities worldwide, 

especially in industrialized and developing societies (Roger et al., 2011; Rosamond et al., 2008). 

According to the World Health Organization (WHO), in 2008, more than 17 million people died 

from CVDs, representing 48% of the total number of deaths caused by non-communicable 

diseases, which are not transmissible among people. There are also new dimensions to this 

alarming situation, since over the past two decades, deaths from CVDs have been declining in 

high-income countries, but have increased at an astonishingly fast rate in low- and middle-

income countries. Regarding to the different types of cardiovascular complications, 

atherosclerosis, an underlying disease process in blood vessels, was identified as the responsible 

for a large proportion of deaths: myocardial infarctions (heart attacks) were responsible for 7.3 

million deaths (45%), while cerebrovascular diseases (strokes) were responsible for 6.2 million 

deaths (29%) (WHO, 2011) (see Figure 1.1). 

 

 

 

 

 

 

 

Figure 1.1. Cardiovascular disease mortality trends in 2008. General distribution of global non-communicable 
diseases by cause of death in both sexes (A); and distribution of global CVD burden due to heart attacks, strokes and 
other types of CVDs in males (B). [Adapted from (WHO, 2011)]. 
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Yet, more than 3 million of these deaths occurred before the age of 60 and could have 

largely been prevented by reducing some of the risk factors associated to atherogenesis. This 

involve behavioral risks (e.g. tobacco, unhealthy diet, alcohol abuse and physical inactivity), 

metabolic risks (e.g. hypertension, cholesterol levels, diabetes and overweight), among others 

that are not modifiable, such as poverty, advancing age, male gender, genetic disposition and 

psychological factors. The prevalence of this disease continues to rise due to adoption of a 

“Western life-style” by an increasing fraction of the world population and is likely to reach 

epidemic proportions in the next few decades (Andreassi, 2009; Mehrabian et al., 1998). 

In an overview, atherosclerosis is a chronic inflammatory disease of the arterial walls that 

develops over many years, starting in childhood and adolescence despite manifest mostly in 

advanced age. During atherogenesis, lipid material is deposited inside the wall of medium- and 

large-sized blood vessels. These fatty deposits together with some other elements (atheroma 

plaques) cause the inner surface of the blood vessels to become irregular and the lumen to 

become narrow, making it harder for blood to flow through (Ambrose et al., 1988; Ross, 1993). 

Blood vessels also become less pliable as a result. Eventually, the plaque can rupture, triggering 

the formation of a blood clot (thrombus). If the thrombus develops in a coronary artery, it can 

cause a heart attack; if it develops in the brain, it can cause a stroke. Moreover, sometimes, the 

thrombus can become loose and travel through the blood until to be trapped in small caliber 

vessels. The blocking of the blood flow cuts the supply of oxygen and nutrients, causing damage 

or death of the adjacent tissue, ultimately leading to thrombotic episodes. Another consequence 

can be seen when the thrombus clogs small vessels, leading to their complete disruption and 

bleeding, as aneurysms (Libby et al., 2011; Lusis, 2000). 

In a molecular perspective, atherosclerosis is triggered by the subendothelial retention of 

apolipoprotein B-containing lipoproteins (Apo-B) in susceptible, but still pre-lesional areas of the 

arterial wall. These Apo-B lipoproteins, such as low-density lipoproteins (LDL), consist of a core of 

neutral lipids, markedly cholesteryl esters and triglycerides, surrounded by a monolayer of 

phospholipid, unesterified cholesterol and proteins. Their accumulation occurs predominantly at 

sites of turbulent laminar flow, notably, in arterial branch points and bifurcations, where 

endothelial cells have no particular orientation and polygonal shapes, thus increasing the 

permeability to certain macromolecules (Majesky, 2007; Williams and Tabas, 1995). After being 

transported across the intact endothelium, LDL become trapped in the extracellular matrix of the 

intima layer, space where they are subjected to several modifications to produce highly oxidized 

(ox-LDL) and aggregated LDL. Oxidation is believed to be the most atherogenic chemical 
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modification of LDL, highly contributing to trigger maladaptative responses to the retained 

material (Glass and Witztum, 2001; Navab et al., 1996; Steinberg and Witztum, 2010). Therefore, 

these ox-LDL are potent inflammatory inducers, stimulating the overlying endothelial cells to: 1) 

release chemotactic proteins to promote directional migration of monocytes (Dutta et al., 2012; 

Mestas and Ley, 2008); 2) express adhesion molecules to firmly adhere monocytes before their 

entry into the intima layer (Koenen et al., 2009); and 3) secrete growth factors, such as 

macrophage colony-stimulating factor (M-CSF), in order to differentiate monocytes into 

scavenging macrophages. Yet, recruited monocytes can be also differentiated into dendritic cells, 

which are more related to antigen-presentation (Paulson et al., 2010). Once embedded in the 

intima, the macrophages encounter native- and modified-LDL, which are endocytosed by 

different receptor-mediated processes or by fluid-phase: the native ones are internalized via the 

LDL-receptors, whereas the ox-LDLs are uptaken through scavenger receptors, such as CD36, or 

even via macropinocytosis (Febbraio et al., 2001; Johnson and Newby, 2009) (see Figure 1.2).  

 

 

Figure 1.2. Effects of LDL particles on the vessel wall. Circulating LDL particles invade the arterial wall and 
accumulate in the intima, where they undergo chemical modifications, such as oxidation. Modified LDL can induce 
endothelial cell activation and expression of adhesion molecules. Furthermore, intimal macrophages can internalize 
modified LDL particles through scavenger receptors and become foam cells. Oxidized lipids probably modulate 
smooth muscle cell functions, for example increasing their adhesion to macrophages and foam cells in the plaque. 
[Adapted from (Rocha and Libby, 2009)]. 

 

In normal physiological conditions, the ingested LDL are efficiently delivered to lysosomes, 

where their cholesteryl esters portions are hydrolyzed to free cholesterol and the Apo-B 
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degraded to amino acids. This catabolic process is important for the normal turnover of LDL 

components, and lack of hydrolytic activity leads to an accumulation of undegraded substrates 

within the lysosomes. Then, from the lysosomes the free cholesterol can be exported from the 

cell by exocytosis (cholesterol efflux-reverse cholesterol transport) or transported towards the 

endoplasmic reticulum (ER) for re-esterification. Finally, the resulting cholesteryl ester molecules 

formed are storaged in the cytoplasm, inside a membrane-bound organelle called lipid droplets 

(Brown and Goldstein, 1983). The lipids stored in these cytosolic organelles can be later used by 

the cell for different processes, such as membranes and steroid hormone synthesis (Tall et al., 

2008). However, with time the LDL in the arterial intima undergo modifications and these 

modified-LDL cannot be properly processed, resulting in intracellular irreversible accumulation of 

excess unesterified or free cholesterol into endolysosomal compartments (Maxfield and Tabas, 

2005; Schmitz and Grandl, 2009). Eventually, the macrophages become enlarged and so full of 

lipoprotein-derived cholesterol that they assume a “foamy” microscopic appearance and thus are 

known as “foam cells” (de Duve, 1974) (see Figure 1.2). Foam cell formation in atherosclerotic 

plaques is initiated when the cholesterol removal becomes limited, either: 1) because the 

modified LDL in the arterial wall cannot be processed by the macrophages; or 2) because the 

ability of macrophages to efflux cholesterol becomes impaired. Notable, inefficient efflux of free 

cholesterol has toxic effects, inducing macrophage apoptosis likely by stress of the ER membrane 

bilayer (Feng et al., 2003).  

As macrophages and apoptotic foam cells accumulate with time, they secrete additional 

adhesion molecules, growth factors and pro-inflammatory mediators that reinforce the 

lipoprotein retention and promote the recruitment of more monocytes, as well as T cells, mast 

cells, neutrophils and even smooth muscle cells (SMC) to handle apoptotic cell removal. 

Eventually, this extra assistance also fails to cope with the established disturbed scenario, 

contributing to foam cell formation and apoptotic cell death, thus triggering a chronic 

inflammatory response. All these process involving accumulation of cellular debris, extracellular 

lipids and inflammatory mediators, are predicted to form a lipid-rich pool called the necrotic core 

of the plaque (Tabas, 2010; Virmani et al., 2002). Once in the intima layer, the SMC recruited 

from the tunica media (the middle layer of the artery wall) start to proliferate in response to 

mediators (e.g. platelet-derived growth factor), and produce extracellular matrix molecules, 

including  interstitial  collagen,  elastin  and  proteoglycans,  in  order  to  form  a  fibrous  cap that  
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Figure 1.3. Hallmarks of defective resolution of inflammation in an atherosclerotic plaque. Inflammatory cells, 
including lipid-laden macrophage foam cells, accumulate in the intima owing to the persistent influx of new cells, 
particularly monocytes, and defective egress of the resident cells. Moreover, apoptotic macrophages are not 
efficiently cleared by efferocytosis and so they undergo secondary necrosis. This process contributes to the 
formation of the necrotic core, which promotes plaque disruption, particularly thinning of the fibrous cap. If the 
process continues, the fibrous cap breaches, leading to lumenal thrombosis and arterial occlusion. [Adapted from 
(Tabas, 2010)].  

 

covers the necrotic core of the plaque (Fries et al., 2005; Negoro et al., 1995). Curiously, in 

contrast to many animal species used for atherosclerosis experiments, the intima layer of human 

arteries contains a resident population of SMC, which emphasize the role of this cell type in the 

progression of this disease. The fibrous cap, shaped by the SMC, protects the lesion by separating 

it from the arterial lumen; thus, the consequent death of SMC by apoptosis makes the plaque 

weaker, unstable and prone to rupture (Figure 1.3). Disruption of the fibrous cap exposes 

thrombogenic material, such as collagen to the circulation, which induces thrombus formation 

into the lumen of the vessel (Libby et al., 2011; Stone et al., 2011). 

Early atherosclerotic lesions present only a few number of apoptotic cells, probably 

because they are efficiently cleared by phagocytic cells. In cooperation with neighboring 

phagocytes, apoptotic death is programmed to lead to compartmentalization and                     

non- inflammatory metabolism of intracellular self-antigens. Indeed, the clearance of these dying 

cells renders this process not only harmless, but possibly beneficial, owing to the anti-

inflammatory nature of apoptotic cell removal (Gregory, 2009; Henson, 2005). Nevertheless, in 

advanced lesions, for reasons that are still not completely understood, the clearance of apoptotic 

cells does not function properly, which is associated with secondary necrosis (Thorp, 2010). This 

Adapted from Tabas, 2010 

http://en.wikipedia.org/wiki/Collagen
http://en.wikipedia.org/wiki/Thrombus
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post-apoptotic state involves the loss of plasma membrane integrity, cell leakage, exposure of 

self-antigens and consequent activation of a pro-inflammatory response. Altogether, these 

events block the resolution phase, thus promoting persistent influx of monocytes coupled with 

defective egress of macrophages from the site of inflammation, as depicted in Figure 1.3 (Llodra 

et al., 2004). The intriguing point here may lie not only in the accelerated rates of apoptosis in 

advanced lesions, but perhaps even more so in the reasons for a defective phagocytic clearance 

of apoptotic cells (Kawane et al., 2006; Schrijvers et al., 2005; Tabas, 2005). Furthermore, besides 

macrophages, vascular SMC, that represent the major cell population in the vessel wall, may play 

an important role also by taking over the clearance of apoptotic cells when professional 

phagocytic cells are deficient, since the conditions of hypoxia generated inside the necrotic core 

may hinder local access to recruited monocytes. Therefore, because uncleared dead cells are a 

fundamental issue in the etiology of atherosclerosis, it would seem that the ability to modulate 

apoptotic cell clearance in this environment could serve as a useful and novel tool to prevent or 

even treat the disease.   

 

1.2. Phagocytosis 

1.2.1. Phagocytosis - an overview  

Phagocytosis is defined as a specific form of endocytosis (process of moving cargo from 

outside towards the inside of a cell) involving the vesicular internalization of solid large particles 

(>0.5μm in diameter) and its subsequent elimination. Discovered in 1882 by Élie Metchnikoff, 

during his experiments observing the cellular movement within starfish larvae, this 

philogenetically conserved process is important throughout the animal kingdom, particularly 

within higher vertebrates. In unicellular eukaryotes, as certain protists, it is used as a means of 

feeding, providing their nourishment. Usually, in metazoans, phagocytosis is involved in the 

clearance of apoptotic cells during development and tissue remodeling, while in mammals it is 

also critical for the innate and adaptative immune response, contributing to our ability to fight 

pathogens. Owing to the number of different phagocytic cell types, the variety of targets and the 

extreme complexity of their interactions, the engulfment process is not always identical. In 

general, it involves ligand-receptor binding, intricate signaling networks, focal cytoskeletal 

rearrangement and a dynamic series of membrane fusion/fission events (Greenberg and 

Grinstein, 2002; Stuart and Ezekowitz, 2005; Vieira et al., 2002). Thus, the huge diversity 
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attributed to the phagocytic process might be related to both: the need to immune tolerate 

endogenous materials, coupled with the need to fight microorganisms that have developed, over 

thousands of years, various strategies to subvert the host-defense mechanisms, taking 

advantages of this process in order to survive and proliferate (Sarantis and Grinstein, 2012; van 

der Wel et al., 2007). 

In this context, it is essential for the innate immune system, the first line of host defense, to 

be able to discriminate self from non-self-antigens. Therefore, phagocytic cells evolved several 

tactics based on the recognition of molecular patterns demarcating “non-self”, as well as “normal 

self” and “abnormal self”. These patterns are deciphered by a complex repertoire of receptors 

that either induce or inhibit an immune response, depending on the meaning of these signals 

(Medzhitov and Janeway, 2002). The first type of recognition, the risky “non-self”, depends on 

the ability of the host to recognize conserved products of microbial physiology that are unique to 

microorganisms and are not produced by the host, like lipopolyssacharides (LPS). Usually, after 

invasion, microbes encounter cells from the innate immune system, which identify them as a 

threat and immediately respond with inflammatory mediators (Underhill and Ozinsky, 2002). The 

second strategy of recognition, the “missing self”, depends on the detection of markers of normal 

self, which are products of metabolic pathways that are exclusive to the host and absent from 

microorganisms. The third strategy, the recognition of “abnormal self”, is based on the detection 

of altered self-markers that are induced upon infection or after cellular transformation, for 

instance tumor cells.  

Different types of phagocytosis tend to be ligand specific; so distinct molecular patterns 

from bacteria (~0.5-3μm) or yeast (~3-4μm) are recognized by Toll-like receptors (TLR), for 

example (Akira and Takeda, 2004; Doyle et al., 2004). Microorganisms and endogenous particles 

can also be coated with complement proteins or antibodies (opsonins) and then taken up 

through complement receptors and Fc-Receptors (FcR), respectively (Anderson et al., 1990; Ross 

et al., 1992; van Lookeren Campagne et al., 2007). Still, in the case of apoptotic cells (~5-50μm) a 

multiple range of receptors are involved, suggesting a hierarchy of engulfment mechanisms and 

back-up systems, which include scavenger receptors and phosphatidylserine (PtdSer) receptors 

(Hoffmann et al., 2001). The array of receptors mediating these divergent responses is distinctly 

different and elicits dissimilar signaling and effector cascades. Despite the broad variety of 

receptors (over 20 different phagocytic receptors have been described to date) involved in the 

recognition of distinct targets is remarkable, biologically, the most important difference between 

the engulfment of apoptotic cells and the uptake of foreign agents is the immune response that 
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is elicited. The ingestion of pathogens or FcR-mediated phagocytosis often triggers an 

inflammatory response, followed by the release of pro-inflammatory cytokines (IL-1, IL-8, IL-12, 

TNF-α, etc.), whereas the ingestion of apoptotic cells is generally anti-inflammatory or 

immunologically silent, verified by the secretion of anti-inflammatory cytokines (IL-10 and TGF-β) 

(Devitt et al., 2004; Fadok et al., 1998a). That is such so important that, for instance, mice that 

are deficient in a specific receptor and fail to clear apoptotic cells, eventually generates          

auto-antibodies and develops autoimmune diseases (Hanayama et al., 2004). 

Virtually, almost all cells are able to phagocytose particles; but still they are classified into 

professional or non-professional phagocytes according to their priority to execute phagocytosis 

among their other cellular functions (Parnaik et al., 2000; Rabinovitch, 1995). The professional 

phagocytes represented by macrophages, neutrophils and immature dendritic cells, are cells 

equipped with a complete arsenal of receptors that recognize all type of targets, even pathogens. 

They are experts in the art of entrap, kill and degrade microorganisms, although some phagocytic 

properties can vary according to their particular skills. In this regard, macrophages are considered 

the sentinels of the immune system, since they act as garbage collectors, antigen presenting cells 

and ferocious killers owing to their huge amount of endosomes and lysosomes (Miyake et al., 

2007; Taylor et al., 2005). Meanwhile, neutrophils are highly microbicidal, in spite of play a 

negligible role in antigen presentation and in phagosome acidification, once they have few acidic 

organelles (Beertsen et al., 2008). Conversely, dendritic cells are less microbicidal and acidify 

their phagosomes more gradually in a manner conducive to controlled antigen degradation and 

presentation (Albert et al., 1998). On the other hand, non-professional “amateurs” phagocytes, 

represented by SMC, fibroblasts, epithelial cells, among others, are more limited than 

professional phagocytes in the nature of particles they can take up, since phagocytosis is not 

their principal function. Moreover, they lack efficient phagocytic receptors, in particular for 

opsonins attached to invaders by the immune system. In most sites within higher organisms, cell 

death will occur in the absence of a neighbor macrophage. In such situations, the usual 

phagocyte is likely to be a viable neighbor cell. Although the ability of amateur phagocytes to eat 

apoptotic cells has long been noted, its importance has been under-valued (Bursch et al., 1985; 

Cao et al., 2004; Dini, 1998; Dini et al., 1995; Monks et al., 2005). Given the strong conservation 

in clearance mechanisms (in terms of phagocyte receptors, bridging molecules and apoptotic cell 

ligands) between C. elegans and humans, the "traditional" phagocytes of dying cells are almost 

certainly the non-professional. They have important roles in particular tissues lacking a specific 

macrophage population (e.g. microglia in the brain, Kupffer cells in the liver and so on) or in 

http://en.wikipedia.org/wiki/Macrophages
http://en.wikipedia.org/wiki/Neutrophils
http://en.wikipedia.org/wiki/Dendritic_cell
http://en.wikipedia.org/wiki/Opsonin
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those that monocytes/macrophages cannot easily infiltrate (Henson and Hume, 2006; Hoopfer et 

al., 2006). 

Conceptually, the engagement of phagocytic receptors initiates a complex signaling cascade 

that induces cytoskeleton and plasma membrane rearrangement, driven the extension of 

pseudopods and culminating with particle engulfment inside the phagosome, a             

membrane-bound vesicle containing the ingested particle (Greenberg, 1995; May and Machesky, 

2001). The extension of pseudopods around the phagocytic targets requires either a continuous 

supply of membrane material and cytoskeleton reorganization, in order to form the phagocytic 

cup, a cup-shaped invagination or protrusion of the plasma membrane (Lee et al., 2007). 

Commonly, after formation, the phagocytic cup extends over the particle by sequential local 

responses to the ligand-coated surface, until closure at their distal margins, wrapping the target 

into the phagosome (Jaumouille and Grinstein, 2011). The localized supply of material to 

membrane extension mainly account with focal exocytosis, the accumulation and fusion of 

endosomes and other small vesicles with the plasma membrane in the phagocytic cup region 

(Cox et al., 1999). Moreover, the phagocytic cup organization also relies on the actin 

cytoskeleton, to both: shape the construction of the cup by active 

polymerization/depolymerization, and close the cup through contractile movements when 

associated with myosin. Actin is very concentrated in the advancing cups and persists until the 

closure of the phagosome (Swanson, 2008). Shortly after scission from the cell membrane, the 

nascent phagosome begins to disassembly the actin cytoskeleton surrounding it, this way 

enabling membrane interactions with distinct components of the endocytic pathway. 

In conclusion, understanding phagocytosis is not purely an academic pursuit; derangement 

of the phagocytic process can have life-threatening consequences. Failure to ingest or kill 

pathogens can result in deadly infections, while inappropriate clearance of apoptotic bodies can 

give rise to inflammation and autoimmune disorders (Elliott and Ravichandran, 2010).  

 

1.2.2. Phagosome Maturation 

Immediately after sealing, the phagosome starts to evolve into a remodeling process 

termed phagosome maturation. Maturation is required because the nascent phagosome is not 

effectively degradative. Curiously, its soluble contents are a sampling of the innocuous 

extracellular environment and its membrane resembles the plasmalemma from which it was 

derived. Phagosome maturation proceeds through an ordered series of strictly choreographed 
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membrane fusion and fission events that radically change the lipid and protein composition of 

the phagosome membrane as well as the lumen properties. These continuous alterations are 

believed to enable phagosomes to preferentially interact with different endocytic vesicles, driving 

the stepwise progression of the process (Desjardins et al., 1994; Desjardins et al., 1997; Kinchen 

and Ravichandran, 2008; Vieira et al., 2002). 

In many regards, phagosomal maturation reminds the progression of cargo along the 

endocytic pathway: from early endocytic vesicles to lysosomes for degradation, as schematically 

shown in Figure 1.4. Biochemical changes are mainly dictated by the vesicular traffic from and 

towards the phagosome membrane, which actively involve Rab GTPases proteins, 

phosphoinositide species, soluble N-ethylmaleimide-sensitive factor attachment receptors 

(SNAREs), motor proteins and microtubules [reviewed in (Huotari and Helenius, 2011)]. Rab 

proteins (Ras-related proteins in brain) are considering the master regulators of the intracellular 

membrane trafficking, defining the identity of the different compartments. Basically, they work 

as molecular switches by cycling between their inactive conformation (GDP-bound) and their 

active form (GTP-bound), whereby they associate with several effectors molecules and mediate a 

range of membrane trafficking events: tethering, budding, docking and fusion of vesicular 

intermediates (Rink et al., 2005; Schwartz et al., 2007; Smith et al., 2007; Stenmark, 2009). 

Besides that, are the phosphoinositides lipids (PI), which are produced by mono-, bis- and tris-

phosphorylation of the inositol ring of phosphatidylinositol. These lipids also serve as markers of 

cell compartments by forming unique docking sites in part by conferring special curvature and 

charge to the membrane surface, improving electrostatic attraction and retention of effector 

proteins (Botelho et al., 2000b; Corrotte et al., 2006; Yeung et al., 2006). Regardless of function, 

Rab proteins and PI are also important targets for some pathogens that exploit the vesicular 

trafficking machinery of the host cell, thus impairing phagosome maturation in order to survive 

intracellularly. For instance, the Mycobacterium tuberculosis arrest the maturation process at 

early stages, generating a favorable niche to replicate, while avoiding progression to degradative 

stages (Russell et al., 2002; Vergne et al., 2004).  

One of the earliest known maturation events in a number of systems is the recruitment of 

Rab5 to phagosomes, stimulating their fusion with early endosomes/sorting endosomes ((Bucci 

et al., 1992; Stenmark et al., 1994; Ullrich et al., 1994). The early endosomes are tubulovesicular 

compartments peripherally located, remaining transiently fusogenic with incoming plasma 

membrane cargoes before starting to mature further. Initially, Rabex-5, a guanine-exchange 

factor,  is  recruited  to  early  endosomes,  where  it  activates  Rab5.  Apart  that,  Rabex-5  also 
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Figure 1.4. Schematic view of phagosome maturation. Shortly after target uptake, the phagosome undergoes a 
series of transformations that result from its sequential interaction with subcompartments of the endocytic 
pathway. Different stages of maturation are recognized: early (a), intermediate (b) and late (c) phagosomes - that 
culminate with the formation of phagolysosomes (d). During maturation, the phagosomes acquire various hydrolases 
and undergo a progressive acidification caused by proton pumping by the V-ATPase. [Adapted from (Flannagan et al., 
2009)].  

 

possesses an ubiquitin activity and can bind to ubiquitinated proteins, which is indeed required 

for its association with early endosomal membranes (Mattera et al., 2006). Activated Rab5 

coordinates the endocytic traffic and early phagosome biogenesis by recruiting and activating 

effector proteins, such as the vacuolar sorting protein (Vps34) and the early endosomal antigen-1 

(EEA-1) (Christoforidis et al., 1999; Simonsen et al., 1998). The Vps34, a class III PI3K, locally 

synthesizes the lipid phosphatidylinositol-3-phosphate [PI(3)P] on the cytosolic leaflet of early 

phagosomes, which facilitates the progression to further steps by creating docking sites to 

proteins containing PX and FYVE domains, like EEA-1 (Fratti et al., 2001). Although EEA-1 can 

directly binds Rab5, it can simultaneously engage PI(3)P, where it induces docking and fusion of 

early endosomes (Grosshans et al., 2006). The capacity of EEA-1 to promote fusion of membranes 

is due to its direct interaction with a specific SNARE protein (McBride et al., 1999). The SNARE 

proteins are universal mediators of membrane fusion by forming a hairpin-like complex 

responsible to bring donor and acceptor membrane compartments into direct opposition, so 

reducing the free-energy barrier for membrane fusion (Collins et al., 2002). The SNARE complexes 

are composed by v-SNARE proteins expressed on the membrane of the donor compartment (e.g. 

early endosome) and by t-SNARE proteins expressed on the acceptor membranes (e.g. nascent 

phagosome). After a transient association with the nascent phagosome, Rab5 rapidly dissociates 



Chapter I 

14 

and Rab7 is acquired, allowing the phagosome interaction with late endocytic compartments 

(Vieira et al., 2003). 

Indeed, complete bulk degradation requires that phagosomes keep following the 

degradative pathway, transiently moving from early to late stages of maturation, which is 

accompanied by loss of Rab5 and acquisition of Rab7, at this point forming hybrid organelles 

(Kinchen and Ravichandran, 2010).  Rab7 plays an essential role in the recruitment and fusion of 

lysosomes with phagosomes (Yu et al., 2008). The conversion and activation (nucleotide 

exchange) of Rab7 on phagosomes is mediated for several players, including proteins that form 

the complex termed homotypic fusion and protein sorting (HOPS) (Rink et al., 2005; Wurmser et 

al., 2000). HOPS proteins are believed to be a tethering complex that binds Rab7 and promotes 

SNARE-mediated fusion of late endosomes with the phagosome (Brocker et al., 2012). Another 

effectors here are Rab7-interacting lysosomal protein (RILP) (Cantalupo et al., 2001) and the long 

splice-variant of oxysterol-binding protein related- protein 1 (ORP1L) that function together to 

link the phagosomes to microtubule motor proteins (dynein/dynactin), thereby coordinating the 

centripetal movement of Rab7-positive compartments. It is important because perinuclear 

localization of phagosomes is needed for efficient contact with lysosomes (Harrison et al., 2003; 

Johansson et al., 2007). Apart from Rab7, the phagosomes displaying a late endosome-like 

phenotype additionally expose the lysosome-associated membrane proteins (LAMPs) in their 

membranes. The LAMP proteins (LAMP-1, -2 and -3/CD63) are transmembrane proteins with a 

heavily glycosylated luminal domain, thus forming a continuous carbohydrate lining on the inner 

leaflet of late endosomes, lysosomes and mature phagosomes, sites where they are abundantly 

found (Eskelinen et al., 2003). They are thought to function in the maintenance of the structural 

integrity of membranes by protecting them from the hostile luminal environment. Moreover, 

LAMP proteins are in fact essential for Rab7 recruitment, lysosomal fusion and for acquisition of a 

microbicidal profile (Binker et al., 2007; Huynh et al., 2007). 

Compared with early phagosomes (pH~6.0-6.8), the late ones are much more acidic 

(pH~5.0-6.0), a consequence of the action of additional proton pumps that accumulate on the 

phagosomal membrane along the maturation process. The activity of such pumps is catalyzed by 

the vacuolar-ATPase (V-ATPase), a multimeric complex able to translocate H+ ions across 

endosomal/phagosomal membranes with expense of ATP. The V-ATPase complex consists in two 

functional subcomplexes: the cytosolic V1 that mediates ATP hydrolysis and the integral 

membrane V0 that constitutes the pore whereby the protons go through (Beyenbach and 

Wieczorek, 2006; Marshansky and Futai, 2008). Therefore, the progressive acidification of the 
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phagosomal lumen is a hallmark and critical step of phagosome maturation, as an acidic milieu is 

optimal for the activities of hydrolytic enzymes, the main responsibles for breaking down the 

phagosomal contents. These hydrolases include nucleases, glycosidases, lipases, phosphatases, 

sulfatases, phospholipases and even proteolytic enzymes, such as the cathepsins (Turk et al., 

2000; Vieira et al., 2002). After being synthesized on the ER, the pre-enzymes (inactive 

hydrolases) bearing phosphomannosyl residues bind specifically to the mannose-6-phosphate 

receptor (M6PR) in the Golgi apparatus. There the resulting receptor-ligand complex is package 

into vesicles and transported through the Trans-Golgi-Network (TGN) until fusion with late 

endosomal compartments, wherein the low pH mediates the dissociation of the complex. Then, 

the M6PR is recycled back to the Golgi system, while the late endosome containing the pre-

enzymes progresses on the endocytic pathway, until meeting with a lysosome (Griffiths et al., 

1988).  

Once the late endosome fuses with a lysosome, the key degradative compartment of the 

cell, the inactive hydrolases become activated owing to the marked acidity of this organelle 

(pH~4.5-5.0). Although at low pH levels the hydrolases function optimally, the impressive 

destructive capacity of the lysosomes is also collectively attributed to oxidant agents (reactive 

oxygen and nitrogen species), cationic peptides that permeabilize bacterial membranes and the 

NOX2, an NADPH oxidase enzyme complex (Savina et al., 2006). Furthermore, the drop in the pH 

levels is accompanied by an increase in Cl- and remarkable changes in Ca+2, Na+ and K+ 

concentrations (Hackam et al., 1997). Not surprisingly, if the late phagosomes ultimately fuse 

with lysosomes, forming the phagolysosomes, they acquire all these lytic mechanisms, which 

contribute to their microbiostatic, microbicidal and degradative features (Flannagan et al., 2009; 

Schwartz and Allen, 2006). Following the digestion of the cargo, the resulting building blocks 

leave the lysosomes to the cytosol either via diffusion or with the aid of specialized transporters, 

and there they can be further degraded to fuel energy metabolism or can re-enter biosynthetic 

pathways (Schulze et al., 2009). 

 Likewise, acidification of the phagosome is of such utmost importance that the process of 

antigen presentation relies on that. Molecules of the major histocompatibility complex class II 

(MHC-II) are yielded and assembled on the ER, where occlusion of the peptide-binding site 

prevents premature binding during their transport from the Golgi to late endocytic 

compartments. Within late endosomes the low pH degrades the protective portion of MHC-II 

leaving the peptide-binding region available to extracellular peptide antigens. Peptide loading 

onto MHC-II molecules is then delivered to the cell surface of antigen presenting cells (dendritic 
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cells, macrophages and B lymphocytes) by mechanisms that are still poorly understood, which 

further stimulates antigen-specific T cells for the appropriate immune response (Ramachandra et 

al., 2008). Phagosomal acquisition of MHC-II coincides with the gain of late endocytic markers, 

such as cathepsins and LAMP-2, suggesting that MHC-II is targeted to phagolysosomes, and to 

traditional late endosomes and lysosomes by the same intracellular transport pathways 

(Mantegazza et al., 2013).  

Particularly curious, after the first rounds of fusion events the surface area of the maturing 

phagosomes remain nearly constant, although they become biochemically different from their 

predecessors. These observations imply that some phagosomal membranes are concomitantly 

removed, thus creating space for the next interaction to occur. Therefore, the constant fusion of 

vesicles with the phagosomes is balanced by the endosomal recycling pathway that return much 

of the endocytosed/phagocytosed proteins and lipids back to the plasma membrane (Maxfield 

and McGraw, 2004; van Ijzendoorn, 2006). The traffic machinery involved in components of 

phagosomal membrane back to the plasma membrane is mediated by Rab4 (fast recycling), 

Rab10 and also by Rab11, responsible for the slow recycling. These Rab proteins have been found 

on the limiting membrane of early phagosomes (Cardoso et al., 2010; Grant and Donaldson, 

2009). 

Another mechanism that contributes to the maintenance of the phagosome size is the 

direct delivery of the membrane-associated cargo for degradation into intraluminal vesicles 

(ILVs). This process is related to the assembly of multivesicular compartments inside the 

phagosome during intermediate stages of its maturation (Mobius et al., 2003). The sorting of the 

cargo to ILVs is thought to be facilitated by ubiquitination, that tag the target for subsequent 

degradation (Lee et al., 2005). Those ILVs are originated through the invagination and pinching of 

the phagosomal membrane, in a process akin to the formation of multivesicular bodies (MVB), 

similarly requiring the endosomal sorting complex for transport (ESCRT) machinery (Williams and 

Urbe, 2007). This complex is composed by ESCRT-0 that binds to ubiquitinated cargo, ESCRT-I and 

-II that catalyze the budding, while ESCRT-III mediates the scission of the ILVs (Gill et al., 2007). 

Additionally, distinct ILVs may form as a consequence of different lipid and/or protein cargo 

composition. For instance, the lipid bismonoacylphosphatidic or lysobisphosphatidic acid (LBPA) 

accumulates in internal membranes that are distinct from those membranes mediating the 

degradation of cell surface receptors. LBPA has a unique cone-shaped structure that may induce 

membrane curvature, facilitating its deformation when pH is acidic (Kobayashi and Hirabayashi, 
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2000; Piper and Katzmann, 2007). Moreover, there are some speculations about the role of LBPA 

in the cholesterol storage and efflux from late endosomes (Kobayashi et al., 1999).  

 

1.2.3. Apoptotic cells and Efferocytosis 

Based on the distinct features of the phagocytic process and immune consequences 

elicited, Peter Henson and colleagues have suggested the term “efferocytosis” (from the Latin 

“effero”, meaning “carrying the corpse to the grave”) to specifically refer to the engulfment of 

cells undergoing apoptosis (deCathelineau and Henson, 2003). This type of cell death occurs in all 

multicellular organisms, playing an essential role in development (particularly during 

organogenesis), tissue repair and maintenance of homeostasis (cell death is "balanced" against 

cell birth). Noteworthy, the adult human´s body turns over billions of cells every day (about 1 

million cells per second) ensuring the removal of unwanted cells that die by apoptosis, while 

creating space for new living cells (Henson, 2005; Henson and Hume, 2006; Ravichandran and 

Lorenz, 2007; Vaux and Korsmeyer, 1999). These undesirable targets include superfluous cells, 

constantly arising from development, such on the maturation of T cells in the thymus or in 

specific niches of the brain throughout adult neurogenesis, where only a few number of these 

newly generated cells will survive and mature further. Aged cells also require constant corpse 

removal, for instance used leucocytes and effete red blood cells that are degraded in the spleen 

and liver; or the case of specialized retinal epithelial cells that enable normal vision by clearing 

senescent fragments shed by photoreceptor cells. Another condition that demand turnover are 

damage cells, which emerge from injury or infection, for example skin cells exposed to ultraviolet 

radiation, or macrophage invaded by bacteria. In fact, the efficiency of the efferocytic process 

appears to be huge when we consider that despite the massive daily loss of cells, the incidence of 

histologically detectable apoptotic cells is rarely observed in normal tissues (Gardai et al., 2006; 

Mochizuki et al., 1996; Scott et al., 2001; Vaux and Korsmeyer, 1999).  

The term apoptosis (from the Greek: apo-off, ptosis-fallen) was first proposed in 1972 by 

the trio Kerr, Wyllie and Currie in their work describing a morphologically distinct form of cell 

death (Kerr et al., 1972). The induction of this genetic programmed type of cell death is the result 

of highly complex and sophisticated mechanisms, involving an energy-dependent cascade of 

molecular events, which implicate caspase activation. During the process of apoptosis the cell 

undergo some morphological changes starting with cell shrinkage and chromatin condensation. 

Then, extensive plasma membrane blebbing occurs, followed by nuclear and cell fragmentation 
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into apoptotic bodies (Coleman et al., 2001). At this point the organelle integrity is still 

maintained within an intact preserved plasma membrane (Bortner and Cidlowski, 2002). 

Regarding biochemical features, apoptosis induce modifications such as protein cleavage and 

cross-linking, DNA breakdown and the expression of several cell surface markers that contribute 

for the recognition of the dying cells by adjacent phagocytic cells, thus allowing their prompt 

removal (Elmore, 2007; Wyllie et al., 1980). All these series of controlled events ensure cellular 

remnants are contained and eliminated without initiating a reactive immune response against 

self-antigens. Tolerance is accomplished through several mechanisms, including suppression of 

pro-inflammatory cytokine production and release of anti-inflammatory cytokines, such as IL-10 

and TGF-β (Fadok et al., 1998b). Defective removal lead to a persistent dying cell accumulation 

and activation of self-hydrolytic enzymes, responsible for causing swelling of the cell and 

irreparable damage to the plasma membrane, event known as secondary necrosis (Edinger and 

Thompson, 2004; Savill and Fadok, 2000; Silva et al., 2008). The loss of plasma membrane 

integrity compromises the surrounding tissue, since it is accompanied by leakage of the toxic 

intracellular contents, triggering an inflammatory response . Over the last years, many advances 

have been made to elucidate the mechanisms governing the removal of apoptotic cells, while the 

failure to properly clear them has been linked to non-resolving inflammation (atherosclerosis), 

many autoimmune conditions (systemic lupus erythematosus and rheumatoid arthritis) (Gaipl et 

al., 2005; Munoz et al., 2010a; Nagata et al., 2010; Nathan and Ding, 2010), respiratory diseases 

(chronic obstructive pulmonary disease and asthma) (Henson and Tuder, 2008; Hodge et al., 

2005), neurodegenerative disorders (Parkinson´s, Alzhaimer´s and Hungtington´s diseases) 

(Mochizuki et al., 1996; Su et al., 1994; Thomas et al., 1995; Zhang et al., 1995) and 

tumorogenesis (Condeelis and Pollard, 2006; Solinas et al., 2009). 

Based on work from many laboratories over the past decade, several broadly defined steps 

have been identified in the recognition and removal of apoptotic cells by phagocytes (Hochreiter-

Hufford and Ravichandran, 2013). Current evidence suggests that these steps are very similar 

between professional and non-professional phagocytes, although the kinetics may differ, with 

professional phagocytes exhibiting higher rates and capacity for phagocytosis (Erwig et al., 2006; 

Parnaik et al., 2000). Each stage of the efferocytic process appears to be tightly regulated by 

signaling events involving both apoptotic cells and phagocytes, in a kind of teamwork, to ensure 

swift and efficient clearance. In general, phagocytes and dying cells have to be in proximity; the 

phagocytes then specifically engage the target through the recognition of signals exhibited by the 

dying cells; following, the phagocytes physically engulf the dying cell through cytoskeletal 
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reorganization of their plasma membrane; and lastly, the corpse have to be degraded through 

phagolysosomal processing as described above (Figure 1.5). Collectively, these events mediate 

the selective and immunologically silent versus immunogenic removal of apoptotic cells in vivo 

(Green et al., 2009; Griffith and Ferguson, 2011). 

Early evidence from elegant genetic studies in C. elegans indicated that apoptotic cells may 

be recognized by phagocytes and cleared well before the apoptotic cells are fully dead, 

suggesting  that might exist a mechanism by which the apoptotic cells advertise their imminent 

death (Reddien et al., 2001). In fact, now it is clear that prompt efferocytosis require that cells in 

very early stages of apoptosis announce their presence through the release of chemotactic 

factors, known as “find-me” signals, in order to recruit phagocytes to their proximity. These “find-

me” signals released by different mechanisms, set up a concentration gradient within the tissue 

that allows phagocytes expressing their cognate receptors to migrate toward the site of death 

and locate the corpse (Peter et al., 2010). By assaying the ability of the culture supernatant from 

MCF-7 breast cancer cells to trigger chemotaxis of THP-1 monocytes, Lauber and coworkers 

(Lauber et al., 2003) first identified the lipid lysophosphatidylcholine (LPC) as a find-me signal. 

Since there, some other possible find-me signals have been reported: the sphingosine 1-

phosphate (S1P), fractalkine CX3CL1, and even triphosphate nucleotides like ATP (in very low 

concentrations) and Uridine-5'-triphosphate (UTP). Among these, only fractalkine and the 

nucleotides have been shown to have relevance under in vivo conditions. Furthermore, UTP may 

also promote phagocytic activity of neighboring cells (not a recruited phagocyte), perhaps by 

upregulating phagocytic machinery (Elliott et al., 2009; Truman et al., 2008). 

Although the find-me signals help bring phagocytes to the proximity of apoptotic cells, the 

phagocyte still has to specifically identify the dying cell among the neighboring of living ones. This 

requires that the apoptotic cells express specific markers on their surfaces, the called “eat-me” 

signals, for recognition by phagocytes via specific receptors (Paidassi et al., 2009; Ravichandran, 

2011). At present many eat-me signals have been described, including the exposure of some 

normal intracellular components on the cell surface, and changes in the membrane charge and 

glycosylation patterns. Nuclear splitting and DNA fragmentation are well-established features of 

apoptosis. Meantime, it was demonstrated that nucleosome material associated with DNA is 

rapidly exposed at the surface of dying cells, probably by interactions between histones 

complexes and PtdSer, thus providing ligands for C1q binding (Furnrohr et al., 2007; Radic et al., 

2004). Calreticulin (CRT), an endoplasmic reticulum-resident protein that takes part in calcium 

homeostasis,  was also proposed as an “eat-me” signal, since apoptosis induce not only increased  
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Figure 1.5. The steps of efficient apoptotic cell clearance. First, “find me” signals released by apoptotic cells are 
recognized via their cognate receptors on the surface of phagocytes. This is the sensing stage and stimulates 
phagocyte migration to the location of apoptotic cells. Second, phagocytes recognize exposed “eat me” signals on 
the surface of apoptotic cells via their phagocytic receptors, which leads to downstream signaling events culminating 
in cytoskeletal remodeling. Finally, further signaling events within the phagocyte regulate the digestion and 
processing of the apoptotic cell meal and the secretion of anti-inflammatory cytokines. [Adapted from (Hochreiter-
Hufford and Ravichandran, 2013)].  

 

cell-surface expression of CRT, but also its redistribution into membrane patches that colocalize 

with PtdSer, which facilitate the binding to the lipopolysaccharide receptor CD14 (Gardai et al., 

2005; Williams, 2006). In addition to the appearance of newly exposed elements, the cell surface 

undergoes some changes during apoptosis, which applies to modifications of the cell 

glycosylation profile and oxidative status. Oligosaccharides attached to cell-surface glycoproteins 

become altered during apoptosis due to the removal of the terminal sialic acid from the 

carbohydrate chains. The loss of this terminal residue is associated with a decrease of the 

negative charges around the dying cell, allowing increased adhesion to phagocytes and binding to 

lectin proteins (Azuma et al., 2002). More, the oxidative stress induced by the apoptotic stimuli 

produce reactive oxygen species (ROS), ultimately, leading to membrane lipid peroxidation and 

oxidized-phospholipids that may be perceived as ligands to scavenger receptors (e.g. CD36, CD68 

and LOX-1) (Oka et al., 1998; Savill et al., 1991). The expression of intercellular adhesion molecule 

3 (ICAM-3), as well as the exposure of annexin-I and the binding of serum proteins such as 
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thrombospondin and complement C1q on the apoptotic cell surface are also signals for 

engulfment (Takizawa et al., 1996; Vandivier et al., 2002). 

Although apoptosis induce many different modifications on cell surface, the most widely 

studied and universally seen alteration is the loss of phospholipid asymmetry and exposure of 

PtdSer on the outer leaflet of the plasma membrane. This evolutionarily conserved phenomenon 

is observed in many different cell types after multiple modalities of apoptosis induction, what is, 

perhaps, the reason why PtdSer externalization is a generally accepted definition for calling a cell 

apoptotic (Asano et al., 2004; van den Eijnde et al., 1998). PtdSer constitutes about 2-10% of the 

lipids in the plasma membrane in most eukaryotic cells. In healthy cells it is normally confined to 

the inner leaflet of the plasma membrane. However, when cells initiate the apoptotic program, 

there is a dramatic change in the amount of PtdSer exposed on the outer leaflet (more than 280-

fold), which occur very early during apoptosis, when cells still retain their plasma membrane 

integrity (Borisenko et al., 2003). The exact mechanism by which PtdSer externalization occurs is 

just beginning to be better defined, but it appears to be a caspase-dependent event, in which 

ATP-dependent translocases that maintain PtdSer at the inner leaflet of the plasma membrane 

are inactivated, while Ca+2-dependent phospholipid scramblases are activated, causing 

randomization (“flip-flop”) of the membrane leaflet components (Sahu et al., 2007; Tang et al., 

1996; Zullig et al., 2007). 

The specific recognition of PtdSer appears to come in two kinds of receptors: those that are 

membrane proteins so can directly bind and recognize PtdSer, and those that indirectly recognize 

PtdSer through binding of soluble bridging molecule. The receptors capable of directly 

recognizing PtdSer include members of the T cell immunoglobulin and mucin (TIM) family (TIM-4, 

as well as TIM-1 and TIM-3) (Kobayashi et al., 2007; Miyanishi et al., 2007; Nakayama et al., 

2009); the seven transmembrane brain angiogenesis inhibitor 1 (BAI1) (Park et al., 2007); and the 

atypical epidermal growth factor (EGF)-motif containing membrane protein Stabilin-2 (Park et al., 

2008). On the other hand, the indirectly recognition is mediated by soluble proteins like the milk-

fat-globule-EGF-factor 8 (MFG-E8) (Hanayama et al., 2002), the growth arrest-specific 6 (Gas6) 

and the serum Protein S. One region of MFG-E8 can bind PtdSer on apoptotic cells with high 

affinity, whereas a second region can simultaneously engage Integrin αvβ3 on phagocytes, thus 

mediating PtdSer-dependent uptake of apoptotic cells. Likewise, Gas6 and Protein S link up 

PtdSer exposed on apoptotic cells, being recognized in turn by Tyro-3-Axl-Mer family of receptors 

(denoted as TAM receptors) on phagocytes (Lemke and Rothlin, 2008; Rothlin et al., 2007; Scott 

et al., 2001). The most recent PtdSer receptor described is the receptor for advanced glycation 
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end products (RAGE), which curiously binds PtdSer in both its membrane-bound and soluble 

forms (He et al., 2011). Moreover, PtdSer oxidation itself was considered critical to induce 

efferocytosis, working as a ligand that binds to scavenger receptors on phagocytes (Figure 1.6).  

Over the past decade, there has been a significant increase in our understanding in how 

PtdSer is recognized on apoptotic cells, although it is still a puzzle to understand why we need so 

many different receptors to do the same job, that is: grab the corpse. So far, the consensus in the 

field has been that not all receptors are expressed on a given phagocyte, and therefore multiple 

combinations of recognition are necessary depending on the tissue context (place, cell types 

involved, apoptotic stimuli, hierarchy affinity, etc.) (Bratton and Henson, 2008; Savill and Fadok, 

2000). In agreement to this, several years ago, was hypothesized the model of “tethering and 

tickling”, wherein some receptors may serve only with an adhesion purpose, whereas the others 

may mediate signaling (Henson et al., 2001). In fact, the interpretation of the current data 

suggest that PtdSer alone is not sufficient to mediate efferocytosis, which indicates that PtdSer 

on apoptotic cells is recognized by phagocytes in conjunction with one or more eat-me signals 

simultaneously, sequentially or even cooperatively to enhance engulfment (Hoffmann et al., 

2001; Somersan and Bhardwaj, 2001). 

 

 

Figure 1.6. Apoptotic cell “eat me” signals and phagocytic receptors involved. As apoptotic cells undergo apoptosis, 
they expose “eat me” signals on their surfaces. PtdSer is the best studied “eat me” signal; however, several others 
are also pictured here. “Eat me” signals are recognized by phagocytic engulfment receptors either directly (as with 
PtdSer receptors including TIM-4, BAI1, and Stabilin-2) or indirectly via bridging molecules or accessory receptors (as 
with Gas-6/TAM receptors, MFG-E8/αvβ3/5, and αvβ3/5 in conjunction with CD36 in the recognition of 
thrombospondin). [Adapted from (Hochreiter-Hufford and Ravichandran, 2013)]. 

 



Chapter I 

23 

Receptor engagement to eat-me signals induces cytoskeletal reorganization in different 

types of cellular movements, which is regulated by members from the Rho-family GTPases, 

including RhoA and Rac1. Usually, apoptotic cell ingestion is described as a locally and 

temporarily controlled “zipperlike” mechanism, which implies that pseudopods follow the 

contour of the target particle and that both surfaces are tightly juxtaposed (as described before) 

(Krysko et al., 2006). Nevertheless, there are some evidence showing a different process, more 

akin to macropinocytosis (Hoffmann et al., 2001), which is associated with the uptake of 

surrounding fluid and the formation of spacious phagosomes (Erwig and Henson, 2008). Once 

again, both physical modes of uptake might be involved depending on the combination of “eat-

me” signals exposed by the dying cell in a determined tissue situation. Activation of the protein 

RhoA seems to have a negative effect on engulfment, since it influences the phosphorylation 

status of the myosin light chain, promoting increased stress-fiber formation and cell contractility, 

which impair pseudopods extension (Tosello-Trampont et al., 2003). However, this inhibitory 

effect of RhoA contrasts with the positive effect of Rac1 that is activated by an upstream 

signaling pathway composed by the ELMO1-DOCK180 complex, which drives actin polymerization 

and the membrane ruffles formation, thus facilitating uptake at the phagocytic cup (Brugnera et 

al., 2002; Gumienny et al., 2001; Ravichandran and Lorenz, 2007). 

After engulfment, the efferocytic process is still not complete, and must undergo 

phagosomal maturation to proper degradation and processing of the apoptotic material in order 

to maintain self-tolerance via cross-presentation of engulfed cell peptides through the MHC 

complex. The steps involved in apoptotic cell digestion are quite similar to the general process of 

phagosome maturation already discussed somewhere before (Bellone et al., 1997; Lu and Zhou, 

2012; Zhou and Yu, 2008). However, this specific type of cargo initially recruits a different player 

to the phagocytic cup, the Dynamin, an evolutionarily conserved large GTPase that interacts with 

Vps34, leading to Rab5 recruitment and activation, which in turn promotes Vps34 activation and 

focal generation of PI(3)P on the phagosome surface (Praefcke and McMahon, 2004; Schmid and 

Frolov, 2011) . Data obtained from studies using the nematode C. elegans have shown that 

Dynamin controls both engulfment and phagosome maturation by stimulating the delivery of 

essential organelles to pseudopods and phagosomes (He et al., 2010; Yu et al., 2006). 

Furthermore, recent reports brought to light that components of autophagy machinery (but not 

intact autophagosomes) are associated with maturing phagosomes containing different types of 

cargo, including apoptotic cells. Apart from other common aspects shared by phagocytosis and 

autophagy, such as lysosome delivery of cargo, this additional crosstalk highlights the striking 
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conservation of regulatory factors between the two pathways (Lamb et al., 2013). So far, the 

appearance of autophagy effectors on phagosomal membranes is a quite unexplored field of 

research and, presumably, it works to enhance the degradative capacity of the phagosomes by 

promoting fusion with endosomes and lysosomes (Martinez et al., 2011; Sanjuan et al., 2007). 

Altogether, these new findings show us that the phagosome is not merely a large endosome and 

that phagosome maturation is a much more sophisticated process than previous thought.  

 

1.3. Autophagy 

1.3.1. Canonical Autophagy - general concepts 

The term autophagy comes from the Greek words “phagy” meaning eat, and “auto” 

meaning self. By definition, this evolutionarily conserved self-eating mechanism is a stress-

induced catabolic process that involves the sequestration and transport of cytosolic components 

to lysosomes for degradation. Notably, this is the only known mechanism that eukaryotic cells 

possess to dispose of intracellular organelles or protein aggregates that are too large to be 

degraded by the ubiquitin-proteasome system (UPS) (Ciechanover et al., 2000; Wong and Cuervo, 

2010). Following lysosomal degradation, recycling occurs to replenish the cell with nutrients and 

building blocks for anabolic processes. The first descriptions of autophagy are from the early 

1960s, when Christian de Duve described the presence of membrane vesicles containing parts of 

the own cytoplasm and organelles in various stages of disintegration inside normal cells. More, 

he pointed out that this process involving sequestering vesicles was related to lysosomes, stating 

that conditions such as starvation triggers its activation (De Duve and Wattiaux, 1966). 

Traditionally, autophagy was thought to be just a process of adaptation to nutrient deprivation, 

in which long-lived proteins and organelles were nonselective degraded to maintain cell 

homeostasis and survival (Mizushima, 2007). However, more recently, the scientific interests in 

the field remarkably increased and autophagy has been show to carry out a broad range of 

selective functions, including the turnover of superfluous organelles and misfolded proteins, as 

well as the clearance of defective organelles, protein aggregates and even intracellular 

pathogens, controlling aspects of immunity in multicellular organisms. Therefore, the autophagy 

machinery is thought to have evolved as a cellular response to allows unicellular eukaryotic 

organisms to survive during harsh conditions, probably by regulating energy homeostasis and/or 

protein and organelle quality control (Klionsky, 2007; Kubota, 2009).  
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Despite the most primordial function of autophagy is to protect cells by managing stressful 

conditions to maintain the cellular energetic balance, this degradative pathway is also involved in 

multiple biological processes including development (Levine and Klionsky, 2004), senescence 

(Young et al., 2009), lifespan extension (Vellai et al., 2009), tumor suppression immunity and 

defense against microbial invasion (Deretic and Levine, 2009).  Usually, the cellular autophagic 

activity is very low under basal conditions, but can be markedly upregulated by numerous stimuli. 

The most well-known inducer of autophagy is nutrient deprivation (in vitro and in vivo, ranging 

from yeast to mammals), although it can also be activated by other physiological stress stimuli 

(e.g. hypoxia, energy depletion, ER-stress and high temperatures); hormonal stimulation; 

pharmacological agents (e.g. rapamycin that target mTOR); innate immune signals and diseases. 

Thus, an aberrant regulation and failure to properly degrade autophagic targets are related to 

many human pathologies, including cancer, myopathies, neurodegeneration, autoimmunity, 

heart and liver diseases, and gastrointestinal disorders (Cecconi and Levine, 2008; Levine and 

Kroemer, 2008; Mizushima et al., 2008). On the other hand, if autophagy is excessively induced, it 

can result in autophagic cell death, so-called type II programmed cell death, which would imply 

that autophagy is an upstream event of apoptosis or, alternatively, it could be independent of 

apoptosis, such as in situations in which autophagy-induced cell death does not exhibit any 

characteristic feature of apoptosis, like caspase activation and DNA fragmentation (Eisenberg-

Lerner et al., 2009; Voss et al., 2010).  

According to the different pathways by which cargo is delivered to lysosomes, autophagy 

can be divided into three main types: chaperone-mediated autophagy (CMA), microautophagy 

and macroautophagy. In CMA, a chaperone protein binds first to its cytosolic target and then to a 

LAMP-2 receptor on the lysosomal membrane, where the unfolding of the protein occurs. The 

unfolded cytosolic target protein is subsequentialy translocated into the lysosome for its 

degradation (Cuervo, 2010; Massey et al., 2004). CMA performs several general functions, such 

as the elimination of oxidazed proteins and misfolded proteins, and also provides amino acids 

during prolonged periods of starvation (Kaushik et al., 2008). Microautophagy directly engulfs 

soluble cytoplasmic materials into the lysosome for degradation either by invagination, 

protrusion or septation of the lysosomal membrane, in a process dependent on GTP hydrolysis 

and calcium. The maintenance of organellar size and cell survival under nitrogen restriction are 

the main functions of microautophagy (Li et al., 2012b; Uttenweiler and Mayer, 2008). 

Macroautophagy, in turn, is characterized by the formation of a cytosolic double-membrane 

vesicle called autophagosome that captures the intracellular target, undergoes maturation along 
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the endocytic pathway and reaches the lysosomes for content degradation (Yang and Klionsky, 

2010a). Among the three main forms of autophagy, macroautophagy, hereafter referred as to 

autophagy, is the most widely studied and best characterized process. 

The autophagic pathway consists in a very complex and dynamic series of events that 

depends on a set of well-conserved core of AuTophaGy-related gene products (ATG proteins), 

which are responsible for the regulation of the different steps of autophagosome formation: 

initiation/nucleation, elongation, binding of selective substrates and closure (Burman and 

Ktistakis, 2010; Rubinsztein et al., 2012; Yang and Klionsky, 2010b). In mammalian cells, the key 

upstream kinase that regulates the induction of most forms of autophagy is the UNC-51 like 

kinase1 (ULK1, the homolog yeast Atg1), which forms a complex with Atg13, Fip200 and Atg101. 

Upon induction signals the ULK1-complex is activated by the mammalian target of rapamycin 

(mTOR), the main regulator of the balance between cell growth and autophagy in response to 

cellular physiological conditions and environmental stress (Chan, 2009; Ganley et al., 2009; Jung 

et al., 2009). During the nucleation step, the active ULK1-complex is translocated from the 

cytosol to ER domains in order to recruit another kinase complex formed by Vps34, Beclin1/Atg6 

and Vps15, which in turn generates PI3P on the outer leaflet of the ER (Funderburk et al., 2010; 

He and Levine, 2010; Levine and Deretic, 2007). Locally synthesized PI3P recruits effector 

proteins involved in the specific generation of ER-associated structures named omegasomes, 

which act as cradle for the formation of the phagophore, a precursor membrane that is able to 

expand to form the autophagosome (Matsunaga et al., 2010). Throughout this process, the 

concave side of a growing phagophore eventually becomes the luminal side of an 

autophagosomal inner vesicle, sequestering any cytoplasmic materials in that region. While 

converging evidence indicates that the phagophore originates from the ER, other sources of 

membranes such as the Golgi apparatus, mitochondria and the plasma and nuclear membranes 

have been implicated, leaving the question of its origin open (Hayashi-Nishino et al., 2009; Tooze 

and Yoshimori, 2010).  

Following initiation, two different ubiquitin-like protein conjugation systems mediate the 

elongation of the autophagosome membrane. The Atg5-Atg12 conjugation system first 

conjugates Atg12 to Atg7 (E1-like activating enzyme), and this is followed by the transfer of Atg12 

to Atg10 (E2-like conjugation enzyme). After that, Atg12 is transferred to Atg5 via a covalent 

bond. Then, Atg5-Atg12 conjugate forms a functional complex with Atg16, and this multimeric 

complex is crucial in autophagosome formation (Fujita et al., 2009; Itakura and Mizushima, 2010). 

The second conjugation system is initiated with the cleavage of the microtubule-associated 
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protein 1 light chain 3 (MAP1LC3 or just LC3) by the cysteine protease Atg4 to LC3-I, so exposing 

a glycine residue on the C-terminus end (Ichimura et al., 2000). Next, the cytosolic LC3-I is bound 

and activated by Atg7 (E1-like enzyme) and is transferred to Atg3 (E2-like enzyme). LC3-I is 

subsequently covalently linked to the lipid phosphatidylethanolamide (PE) (Geng and Klionsky, 

2008). The previous formed Atg5-Atg12-Atg16 complex acts here as an E3-like ligase on the LC3 

conjugation reaction to generate LC3-PE (LC3-II), which is incorporated into both the cytoplasmic 

and luminal faces of the elongating double-membrane, and facilitates closure of the 

autophagosome (Figure 1.7). In mammalian systems, most of the Atg proteins are only observed 

during phagophore formation and expansion, but never on the complete autophagosome 

(Longatti and Tooze, 2009). To date, only LC3, the mammalian homolog of yeast Atg8, is known 

to exist in autophagosomes, and therefore, this protein serves as a widely marker for 

autophagosomes (Kabeya et al., 2000; Mizushima, 2004). 

While yeast has only a single copy of Atg8; and Drosophila and C. elegans have two copies; 

mammals have at least 6 homologues that can be grouped into two subfamilies: LC3 subfamily, 

which includes the LC3A (including 2 splicing variants), LC3B and LC3C isoforms; and the gamma-

aminobutyrate receptor-associated protein (GABARAP) subfamily that comprises GABARAPL1, 

GABARAPL2 (GATE-16) and GABARAPL3 proteins (Geng and Klionsky, 2008; Weidberg et al., 

2010b). All these members are involved in autophagy, but probably contribute for different 

aspects of autophagosome biogenesis, for instance LC3 isoforms are involved in phagophore 

membrane extension, whereas GABARAP family is required for later stages of autophagosome 

maturation. Despite extensive studies, the exact function of Atg8/LC3 is still unclear (Weidberg et 

al., 2010a). LC3 has been shown to be essential to drive autophagosome expansion possibly by 

mediating tethering and hemifusion of lipid membranes (Nakatogawa, 2007). Likewise, the 

amount of LC3 determines the size of the autophagosome (Xie et al., 2008). Furthermore, it is 

clear that LC3 associated with the inner membrane of the autophagosome is indispensable for 

the selective recognition and sequestration of specific cytosolic cargoes (Kanki et al., 2009; Noda 

et al., 2008). 

The autophagosomes are ready to fuse with lysosomes once the vesicle membranes are 

sealed and the Atg machinery is disassembled and released back for reuse. They mature by either 

directly fusion with a lysosome to generate an autophagolysosome, or by fusing first with late 

endosomes to form an amphisome, which then fuses with the lysosome (Ganley, 2013). The 

interaction with compartments of the endocytic pathway could facilitate the autophagosome 

maturation,  since  several  protein  complex  required  for  fusion  with  lysosomes  are  shared  
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Figure 1.7. Diagram of the signaling pathway regulating autophagy. Under induction autophagy begins with the 
formation of the phagophore (membrane nucleation step). The concerted action of the autophagy core machinery 
proteins in the phagophore is thought to lead to its expansion around a cytosolic cargo (vesicle elongation), until its 
closure forming an autophagosome. When the outer membrane of the autophagosome fuses with a lysosome 
(docking and fusion steps) it forms an autophagolysosome. Finally, the sequestered material is degraded inside the 
autophagolysosome (vesicle breakdown and degradation) and recycled. (Source: http://www.cellsignal.com/). 

 

between both pathways (e.g. ESCRT, HOPS and SNAREs complexes) (Kim et al., 2012; Lamb et al., 

2013; Moreau et al., 2011; Nair et al., 2011). Moreover, this is involved in the transport of 

cytosolic antigens to MHC-loading endosomes to antigen presentation (Lee et al., 2010a; Schmid 

et al., 2007). Therefore, following the fusion with lysosomes, the lipidated LC3 on the outer 

membrane of the autophagolysosome is cleaved off by Atg4, which deconjugates LC3-PE, 

releasing LC3 back to the cytosol to be recycled (Yu et al., 2012). Meanwhile, the LC3-II on the 

inner membrane is degraded by lysosomal enzymes, together with the enclosed materials and 

the inner membrane itself. Amino acids and other building blocks that are generated by 

autophagic degradation are then returned to the cytoplasm for recycling or energy production. 

 

http://www.cellsignal.com/
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1.3.2. Selectivity in autophagy 

Sequestration of intracellular components inside an autophagosome was considered for a 

long time a non-selective bulk process by which cytosolic material was randomly captured and 

delivered to lysosomes. However, a number of recent reports present mounting evidence of 

selective autophagic degradation of protein inclusions caused by aggregate-prone or misfolded 

proteins (aggrephagy) (Filimonenko et al., 2010; Gamerdinger et al., 2009; Rubinsztein, 2006), of 

organelles such as mitochondria (mitophagy) (Okamoto et al., 2009; Tolkovsky, 2009), 

peroxisomes (pexophagy) (Kim et al., 2008), ribosomes (ribophagy) (Kraft et al., 2008), surplus ER 

(reticulophagy) (Bernales et al., 2006), lipids (lipophagy) (Singh and Cuervo, 2012), and even 

bacteria and virus (xenophagy) (Deretic, 2006; Dupont et al., 2009; Levine, 2005; Yordy et al., 

2013). Mainly, these findings revealed the existence of a growing number of proteins dedicated 

to the tag and recognition of distinct cytosolic substrates. Moreover, the recruitment of these 

autophagy effectors toward the target is proposed to initiate the in situ formation of the 

autophagosome around the specific material in an LC3-dependent manner (Itakura and 

Mizushima, 2011).  

Covalent attachment of ubiquitin to proteins has emerged as a highly versatile regulatory 

signal to several key cellular process including gene transcription, cell cycle progression, DNA 

repair, receptor-mediated endocytosis and different forms of selective autophagy (Haglund and 

Dikic, 2005). Yet, despite the binding of ubiquitin be the more often view post-translational 

modification to label selective targets to autophagy degradation, Galectin-8 bound to glycans on 

damage vesicles, phosphorylation and acetylation were also identified signals (Kirkin et al., 

2009c; Thurston et al., 2012). The process of tagging a protein with ubiquitin is called 

ubiquitination and serves as the “kiss of death” signal for protein turnover. Ubiquitination occurs 

through an isopeptide bond formation between a specific amino group of a lysine residue in a 

target protein and the C-terminal carboxyl group of ubiquitin. Proteins can be modified by the 

conjugation of a single ubiquitin monomer (monoubiquitylation and multi-monoubiquitylation) 

or by a sequential conjugation of ubiquitin polymers (polyubiquitylation), in which ubiquitin 

moieties are most often connected via lysine-mediated isopeptide linkages (Ikeda and Dikic, 

2008; Ye and Rape, 2009). Different chain linkage types arise from the fact that ubiquitin have 

seven different lysine residues, which serve as ubiquitin acceptor to another ubiquitin monomer 

(Behrends and Harper, 2011). This diversity in how ubiquitin can be attached to a certain 

substrate is decoded by distinct classes of ubiquitin-binding domains (UBDs). In selective 
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autophagy, at least 3 different ubiquitin-binding domains have been implicated in specific cargo 

receptors: ubiquitin-associated (UBA), ubiquitin binding in ABIN and NEMO (UBAN), and the 

ubiquitin-binding zinc finger (UBZ) domains (Dikic et al., 2009; Harper and Schulman, 2006). Thus, 

implementation of ubiquitin-binding domains in autophagy cargo receptors provides a flexible 

signal, which allows a much broader range of proteins to be targeted for autophagosome 

degradation. So far, a variety of cargos have been found to be depend on their ubiquitination to 

be efficiently incorporated into autophagosomes, it is the case of protein aggregates, 

mitochondria (via ubiquitination of outer mitochondrial membrane proteins), and microbes (via 

ubiquitination of bacterial membrane proteins or host binding proteins).  

Autophagy receptors are defined as proteins being able to interact directly with both the 

intracellular structure that has to be specifically eliminated and the internal surface of growing 

phagophores, working as an adaptor to mediate cargo recognition, reason why they are also 

known as adaptor proteins (Johansen and Lamark, 2011; Rogov et al., 2014) (see Figure 1.8A). 

The binding of autophagy receptors to a determined cytosolic ubiquitin-tagged cargo is mediated 

by their UBDs, whereas the interaction with the expanding autophagosome is, usually, mediated 

by a specific hydrophobic sequence commonly referred to as the LC3-interacting region (LIR) 

motif, which in turn bind to the pool of Atg8/LC3 protein family members conjugated to the 

double-membranes (Noda et al., 2008; Shaid et al., 2013). For instance, an UBA domain is found 

in adaptor proteins like p62/Sequestosome-1 (SQSTM1) and Neighbor of BRCA1 gene1 (NBR1); 

while UBAN and UBZ domains are found in Optineurin (OPTN) and Nuclear dot protein 52 

(NDP52), respectively (Rahighi et al., 2009). Beside these classical autophagy receptors 

characterized by their UBD and LIR motifs, some non-classical are appearing, targeting substrates 

selectively for autophagy independently of canonical UBD and LIR motifs. In mitophagy, for 

example, that mediates the elimination of damage or surplus mitochondria, UBDs are not always 

required. Despite the removal of mitochondria for organelle quality control is mostly mediated by 

the classical p62 receptor, the specific elimination of mitochondria from red blood cells, during 

reticulocyte maturation, critical involves the protein NIP3-like protein X (Nix) that has a LIR motif 

but is lacking a UBD (Novak et al., 2010; Sandoval et al., 2008). More, the promiscuous c-Casitas 

B-lineage lymphoma (c-CBL) shown to operates as an adaptor protein in selective autophagy 

independently of their catalytic activity, being also involved in proteasomal degradation 

(Sandilands et al., 2012) (Figure 1.8B).  
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Figure 1.8. Machinery involved in selective autophagy. Ubiquitylation of cytosolic targets is a signal that triggers 
binding of the adaptor proteins, which also binds LC3 conjugated with phosphatidylethanolamine (PE) in the double 
membrane of the forming autophagosomes, allowing specific cargo sequestering (A) [Adapted from (Tyedmers et al., 
2010)].  Some identified proteins involved in selective autophagy and their domain architecture. p62, NBR1, OPTN, 
NDP52 and c-CBL are autophagic adaptor proteins. Excluding c-CBL they all interact with both ubiquitin and LC3 to 
promote autophagic degradation. The UBD domain of c-CBL instead seems not to be involved in autophagic 
degradation. NIX is a mitochondrial membrane protein, which bind LC3/GABARP via their LIR motif (B). [Adapted 
from (Shaid et al., 2013)].  

 

Regarding to the classical machinery involved in selective autophagy, p62 is the best-known 

mammalian adaptor protein and act as a universal receptor for ubiquitinated cargo (Bjorkoy et 

al., 2005; Pankiv et al., 2007). This protein is considered indispensable for basal levels of 

autophagy and has multifunctional roles in several biological processes such as cell signaling, 

differentiation and particularly in the removal of toxic misfolded proteins (Lee et al., 2010b; 

Moscat and Diaz-Meco, 2009; Moscat et al., 2007; Rodriguez et al., 2006). Mediated by its UBA 

domain, p62 is able to bind mono- or poly-ubiquitinated proteins, while its LIR motif allows the 

binding to LC3 in emerging autophagosomes. For instance, mutations in the UBA domain of p62 

are related to chronic and metabolic disorders during bone remodeling (Goode and Layfield, 

2010). Importantly, lack of autophagy leads to p62 accumulation into ubiquitin-positive inclusion 

bodies in neurodegenerative diseases and proteinopathies of the liver and muscles, in which p62 

respond to stresses including amino acid starvation, ROS, accumulation of defective ribosomal 

products, so displaying a cytotoxic effect (Lamark and Johansen, 2012). Through its Phox and 

Bem1p (PB1) domain, p62 undergoes dimerisation, which allows interaction with protein kinases 

(e.g. MAP-kinases) and with the protein NBR1 (Lamark et al., 2003). The adaptor protein NBR1 

also contain the N-terminal PB1 domain as well as the C-terminal UBA domain and the LIR 

sequence, but instead of p62, it undergoes dimerisation via the coiled coil (CC) domain. The 

shared common PB1 domain drives multimerasation of p62 and NBR1 in complex with 

ubiquitinated proteins, thereby amplifying the engagement of ubiquitinated substrates, what is 

B A 
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critical, for instance, in aggrephagy (Kirkin et al., 2009a; Lamark et al., 2009). Sequestration of 

misfolded proteins into protein aggregates likely shields aberrantly exposed hydrophobic 

surfaces from harmful interaction with essential cellular proteins, so it is regarded as a cellular 

defense mechanism (Kopito, 2000). Moreover, p62 and NBR1 were found to be recruited to the 

site of autophagosome formation, which is dependent on self-oligomerization but independent 

of most Atg proteins, including LC3; so suggesting that their localization may determine where 

autophagosomes are nucleated (Itakura and Mizushima, 2011). Although NBR1 can directly bind 

to p62 and cooperatively they act as a cargo receptor, it can also mediate autophagy 

independently, which is the case of the autophagic elimination of midbody derivates (Kuo et al., 

2011). Once accumulation of midbody derivates is associated with cellular reprogramming of 

stem cells and enhanced tumorigenicity, NBR1 may have a role in cell differentiation and tumor 

suppression. Curiously, homologues of NBR1 are found throughout the eukaryotic domain, 

whereas the presence of p62 is unique for metazoans and likely the result of a duplication event 

early in the metazoan lineage (Svenning et al., 2011). 

Together with NDP52 and OPTN, p62 also participates in the cellular defense mechanism 

against infection (Thurston et al., 2009; Wild et al., 2011; Zheng et al., 2009). Mammalian cells 

conjugate ubiquitin to pathogens that intrude the cytosol or reside into sequestered intact or 

damage phagosomes as part of their protective response thereby tagging microbes for 

destruction by xenophagy. For instance, the autophagic degradation of the bacteria Salmonella 

Typhimurium is suggested to be dependent in three autophagy receptors. Firstly, phagosomal 

membranes damaged by Salmonella entering the cytosol attract Galectin-8, which is specifically 

sensed by NDP52 Galectin-8, which is specifically sensed by NDP52 (Thurston et al., 2012), then 

once it escapes from the phagosome and becomes exposed to the cytosol, Salmonella is coat 

with host ubiquitin, which in turn bind to the UBA domain of p62, the UBZ domain of NDP52 and 

also the UBAN domain of OPTN (Rogov et al., 2013). All these adaptor proteins seem to be 

needed for restrict intracellular replication, although they are recruited independently to distinct 

microdomains surrounding the bacteria and cooperate for efficient degradation (Cemma et al., 

2011). Yet, in spite of all three receptors act cooperatively in the same pathway, they are not 

redundant, since depletion of either protein induces bacterial proliferation, which suggest 

different roles, or even implicate a hierarchical and/or temporal recruitment. In addition, p62 and 

NDP52 were recently reported to target Shigella and Listeria to distinct autophagy pathways 

(Mostowy et al., 2011). Curiously, while p62, NBR1 and OPTN bind nonspecifically to multiple 

LC3/GABARAP proteins, NDP52 binds selectively to LC3C isoform through a non-canonical LIR 



Chapter I 

33 

motif, termed CLIR that lack an aromatic residue, providing more specificity to handle different 

autophagic cargo and suggest a hierarchy among ATG8 orthologs (von Muhlinen et al., 2012).  

Another evidence of selectivity in xenophagy is the recruitment of p62 as an antiviral defense to 

clear surplus viral capsid proteins somehow protecting the host against cell death (Orvedahl et 

al., 2010).  

In the past few years, research in the field uncovered new layers of complexity and 

functional diversity in terms of how this set of genes - originally characterized in the context of 

macroautophagy - may function to protect multicellular organisms against stressful conditions. 

However, many questions remain concerning identities of additional cargo and receptor pairs as 

well as signaling cascades leading to efficient cargo binding and recruitment to autophagic 

membranes under different physiological and pathophysiological conditions. Lastly, would be of 

great interest to elucidate the role of selective autophagy in different signalling pathways, 

especially to reveal how autophagy can control cellular homeostasis by modulating the capacity 

of intracellular signalling networks.  

 

1.3.3. LC3-Associated Phagocytosis (LAP) 

While endocytosis and autophagy were once considered largely separate modes of 

acquiring nutrients, recent evidence has shown extensive collaboration between them in 

mammalian cells, including the identification of an endocytic origin for vesicles utilized for 

autophagosome biogenesis (Ravikumar et al., 2010), fusion between autophagosomes and 

endosomes (Gordon and Seglen, 1988), lysosome delivery of cargo and co-regulation of endocytic 

trafficking and autophagy by Beclin1-Vps34 protein complexes (Funderburk et al., 2010; Lamb et 

al., 2013; Shui et al., 2008; Singh and Cuervo, 2011). However, one of the most surprising findings 

in this field is that autophagy proteins can control the degradation of several phagocytic targets, 

in an autophagosome-independent manner, what is called LC3-Associated Phagocytosis or simply 

LAP. This non-canonical recruitment of autophagy machinery to phagocytic compartments was 

first identified by the requirement of LC3, previously considered to be exclusively an autophagic 

marker of double-membrane vesicles, to single-membrane phagosomes harboring engulfed 

microorganisms in macrophages (Sanjuan et al., 2007). Thus, since this initial discovery of LAP 

occurring with agonists of TLR signalling, it has been proposed to occur in a variety of cellular 

contexts including in the clearance of apoptotic cells and other types of cell death removal, such 

as necrosis and RIPK3-dependent necrosis (Martinez et al., 2011), in FcγR-mediated engulfment 
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of IgG-opsonized substrates (Henault et al., 2012; Huang et al., 2009), zymosan internalization, 

macropinocytic uptake of fluid-filled vacuoles (Florey and Overholtzer, 2012) and in the ingestion 

and killing of live epithelial cells, a process named entosis (Florey et al., 2011). Similarly, in C. 

elegans, LGG-1 (homolog of LC3) is recruited to phagosomes taking apoptotic corpses, which 

reflects some evolutionary trend in this process (Li et al., 2012a). Furthermore, all described 

types of pathogen-related LAP seem to require bacterial viability and intact phagosome 

membrane (Lerena and Colombo, 2011). Hence, LAP has a number of different roles that include 

maintenance of cellular homeostasis and protection against invading pathogens (Martinez et al., 

2013). 

Although the participation of some phagocytic receptors are reported to induce LC3 

translocation to single-membrane phagosomes, the precise mechanism responsible for triggering 

LAP remains to be discovered. In the case of pathogens, for instance, the recognition of bacterial 

LPS, by host trans-membrane TLR-2 and TLR-4 initiates the engulfing of the microbe into a newly 

formed phagosome that is rapidly decorated by LC3; whereas suppression of TLR signaling leads 

to failure of this process (Beutler, 2009; Sanjuan et al., 2009). Moreover, the generation of 

microbiocidal ROS through the activation of NOX2 NADPH oxidase by TLR or FcγR also resulted in 

LC3 recruitment to phagosomes (Huang et al., 2009). Still, the cytoplasm Nod-like Receptor-1 and 

-2 (NLRs), which are involved in the recognition of peptidoglycans on the surface of some 

bacteria, are predicted to recruit Atg16 to the site of invasion at the plasma membrane, 

potentially facilitating the request of LC3-II to the phagosome membrane (Travassos et al., 2010). 

On the other hand, the clearance of death cells by LAP seems to require the engagement of the 

phosphatidylserine receptor TIM-4. Macrophages with reduced expression of TIM-4 were 

deficient in death cell-specific LAP, so it is possible that this eat-me signal exposed in the surface 

of dying cells may regulate such process (Martinez et al., 2011).  

So far, the easiest way to direct differentiate LAP from canonical autophagy is determine if 

the LC3 positive structure carrying the enclosed cargo is formed by a single or a double-

membrane, although molecular differences also exist (Figure 1.9). The recruitment of LC3 to 

phagosomes seems to be independent of the ULK1-complex required for pre-initiation of 

canonical autophagy, since efficient knockdown of these proteins did not affect LAP for different 

phagocytic targets. The initiation of conventional autophagy also requires the activity of PI3K 

class-III, Vps34 in complex with Beclin1. In fact, both macrophage treatment with inhibitors of 

class-III PI3K and knockdown of Beclin1 displayed no LC3 translocation to apoptotic cell-

containing phagosomes. Moreover, there is a general agreement that LAP requires Atg5-Atg12-
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Atg16 conjugation system. Thus knockdown of either Atg5 or Atg7 significantly reduced the levels 

of LC3 surrounding phagosomes containing invading bacterial (Kageyama et al., 2011), apoptotic 

cells (Martinez et al., 2011) or live cells during entosis (Florey et al., 2011). Notably, these Atg7-

deficient cells produced significantly less anti-inflammatory cytokines, such IL-10 and TGF-β, upon 

engulfment of dying cells (Martinez et al., 2011). Recent data also implicates this non-canonical 

form of autophagy in the normal visual cycle, where LC3 was found to associates with single 

membrane phagosomes containing engulfed photoreceptor outer segments in an Atg5 

dependent manner that also requires Beclin1 (Kim et al., 2013).   

Apart from the role of Atg5 and Beclin1 in LAP, these autophagy proteins are also involved 

in normal apoptotic cell removal by generate engulfment signals required for cell recognition. In 

a very elegant study about the role of autophagy in embryonic cavitation, Levine and co-workers 

have shown that mice lacking Atg5 and Beclin1 displayed defective apoptotic cell clearance 

during embryonic development owing a failure in expose PtdSer on their outer surface (Qu et al., 

2007). Likewise, the inhibition of autophagy by silencing ATG5 and ATG7 genes enhances 

apoptosis simultaneously rendering the apoptotic cells less well recognized by efferocytes in 

mouse model for atherosclerosis, suggesting that LAP may be required in this conditions in order 

to maintain an anti-inflammatory environment (Liao et al., 2012).  

 

 

Figure 1.9. Different pathways by which bacteria can be degraded in phagosomes. I, in typical phagocytosis of 
bacteria, the phagosome may undergo fusion with endosomes and lysosomes (phagosome maturation) such that the 
bacterium is contained within a phagolysosome, the degradative compartment. II, in LC3-associated phagocytosis, 
autophagy proteins including LC3-II are recruited to the surface of phagosomal membranes; these vesicles 
subsequently fuse with lysosomes for degradation. III, bacteria that are retained in, or escape from, phagosome can 
be targeted by classical autophagy machinery [Adapted from (Lai and Devenish, 2012)]. 
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The variety of vacuole types that are target by LAP activity suggest that this non-classical 

function of autophagy lipidation machinery may be a more general mechanism to facilitate 

lysosome fusion in cells than originally thought. Lipidated LC3 at single-membrane phagosomes 

may promote lysossomal fusion simply by facilitating membrane-membrane fusion directly or by 

recruiting other interacting proteins to the membranes. Altogether, these recent findings suggest 

that the participation of autophagy proteins in phagocytosis are related to accelerated levels in 

phagosome maturation and acidification, thus increasing the degradative capacity of 

phagolysosomes in digest apoptotic cells, simultaneously decreasing survival of internalized 

pathogens, contributing to the innate and adaptative immune responses, including in the 

maintenance of the anti-inflammatory response in tumor microenviroment (Kim and Overholtzer, 

2013b). Therefore, the several potential implications of this recently identified cross-talk 

between phagocytosis and autophagy need to be better dissected, in order to create more 

therapeutic tools based on the modulation of phagosome maturation. This raises the possibility 

that patients with defective dying cell removal might benefit from treatments that target both: 

endocytic and LAP machineries, in order to accelerate apoptotic cell degradation.  
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1.4. Aims 

Understanding the molecular mechanisms underlying efferocytosis is of the utmost 

importance for the successful implementation of therapeutic tools based on the modulation of 

apoptotic cell clearance. Since many efforts have been done to understand the first steps of 

recognition of apoptotic cells by phagocytes as well as the immune response elicited by 

efferocytosis, the main objective of this thesis is to examine the molecular machinery and 

mechanisms involved to the maturation process of phagosomes containing apoptotic cells in 

mammalian systems. This raises the possibility that patients who carry defective dying cell 

removal might benefit from treatments that target the machinery involved, in order to accelerate 

apoptotic cell degradation, ultimately preventing inflammation and autoimmunity, in diseases 

such as atherosclerosis that is one of the focuses of research in our laboratory. Thus, this work 

comprised the following objectives: 

Study I: 

• To characterize the kinetics of maturation of phagosomes containing apoptotic cells in 

comparison with phagosomes containing IgG-opsonized particles, the best-known phagocytic 

model. 

• To address the role of PtdSer enrichment of apoptotic cell membranes on phagosome 

maturation. 

Study II: 

• To identify some novel components and regulators of the canonical autophagy pathway 

required to an effective efferocytosis. 

• To evaluate the functional relevance of the recruitment of autophagy machinery to phagosome 

maturation of phagosomes containing apoptotic cells and IgG-opsonized particles. 
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Material and Methods 

 

2.1. Red Blood Cells isolation and aging 

Human blood was collected from healthy volunteers at Center for Neuroscience and Cell 

Biology. Written informed consent was obtained from all volunteers, who signed informed 

consent forms for this purpose, approved by the Ethical Review Board of the Faculty of Medicine 

of the University of Coimbra.  Red blood cells (RBC) from human blood were isolated using a 

Ficoll-Paque (GE Healthcare Life Sciences) gradient centrifuged for 30min at 400g at 4ºC; then 

RBC were washed twice with Phosphate-Buffered Saline (PBS; 137 mM NaCl, 2.7 mM KCl, 1.8 mM 

KH2PO4, 10 mM NaHPO4.2H2O, pH 7.4) and finally resuspended at 20% hematocrit in PBS 

supplemented with 0.1% glucose. These cells were kept at 4ºC and used as native RBCs. Aged 

RBC (agRBC) were prepared by incubating native RBCs in PBS (20% hematocrit) at 37ºC for 4 days. 

Sheep blood was obtained from Matadouro da Beira Serra and the sheep RBC (shRBC) were 

isolated and maintained as described for the human RBC. 

Loss of phospholipid asymmetry of agRBC was assessed by flow cytometry (FACScalibur, 

Becton Dickinson) using Annexin V-FITC (BD Bioscience). Briefly, for these experiments, RBC 

(native or aged) were washed twice with cold PBS, and 106 cells were re-suspended in HEPES 

buffer pH 7.4 containing 2.5 mM calcium and incubated with 5 µL of Annexin V-FITC solution (BD 

Biosciences) for 15 min at room temperature (RT) protected from the light. Following washing, 

cells were gated for biparametric histograms FL1 versus FL2 (AnnexinV-FITC versus FSC-Height, 

respectively). For each condition at least 20.000 events were counted and conducted in 

duplicates.  

The membrane integrity of the RBC and agRBC was confirmed by Trypan Blue assay. This 

dye exclusion method is based on the principle that live cells possess intact cell membranes that 

exclude certain dyes, such as Trypan blue, whereas dead cells do not. For that, a 1:1 dilution of 

the cell suspension was prepared using a 0.4% Trypan Blue solution (Gibco). Then, cells were 

counted under an inverted light microscope. 

  

 

                                                                                                                  Chapter II 
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2.2. Preparation of Phosphatidylserine (PtdSer)-liposomes and their incorporation 

into agRBC membranes 

Aqueous suspensions of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), 

obtained from Avanti Polar Lipids Inc., were prepared by adding the hydration solution (0.11 M 

NaCl, pH 7.4) to the lipid powder in a water bath at 65ºC. The samples were submitted to several 

cycles of vortex/incubation at 65ºC for at least 1 h. The resulting multilamellar vesicle suspension 

was extruded through two stacked polycarbonate filters (Nucleopore) with a pore diameter of 

0.1 μm using a minimum of 10 passages. During the extrusion the water-jacketed extruder (Lipex 

Biomembranes, Vancouver, British Columbia, Canada) was maintained at 65ºC. After extrusion 

the lipids were sonicated for 1 h and quantification of phospholipid concentration was done by a 

modified version of Bartlett’s phosphate assay (Bartlett, 1959). The solution was kept in a 

nitrogen saturated atmosphere at 4ºC to avoid lipid oxidation. For enrichment of agRBC 

membranes in PtdSer, cells were incubated overnight (around 16 h) with phosphatidylserine 

(POPS)-liposomes at different RBC:PtdSer molecules (cell:lipid) ratios (1:103, 1:104 and 1:105). The 

incorporation of PtdSer into the outer leaflet of the plasma membrane of agRBC was also 

assessed by flow cytometry with Annexin V-FITC and membrane integrity by Trypan blue assay, 

as described above.  

 

2.3. Opsonization of particles 

Isolated shRBC were washed twice with PBS, resuspended with rabbit Immunoglobulin G 

(IgG) fraction against sheep red blood cells (MP Biomedicals) at a final concentration of 1.6 μg/μL 

in PBS, and then opsonized for 2 h at RT using an orbital rotator. Cells were then washed 3 times 

with PBS before use. 

Latex beads (3.87μm diameter polystyrene microspheres from Bangs Laboratories) were 

washed 3 times with PBS, resuspended with IgG from human serum (Sigma) at a final 

concentration of 1.6 μg/μL in PBS, and then opsonized for 2 h at RT or overnight at 4ºC using an 

orbital rotator. Particles were then washed 3 times with PBS before use.  
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2.4. Cell culture and generation of a SMC stably expressing the Fcγ-RIIA  

Rabbit vascular smooth muscle cells (SMC) were purchased from ATCC (Camden, NJ, USA) 

and maintained in RPMI-1640 medium (RPMI, Gibco) containing 10% fetal calf serum (heat 

inactivated) and 100 U/mL of antibiotics (penicillin and streptomycin). Cells were grown in a 

humidified incubator at 37ºC under 5% CO2 atmosphere and used for assays during the 

exponential growth phase.  

In order to generate SMC stably expressing Fcγ-RIIA, the human Fcγ-RIIA tagged with myc 

was subcloned into the retroviral vector pBABE-puro. The retrovirus production, cells infection 

and selection with puromycin were done as described before (Cardoso et al., 2010; Schuck et al., 

2007). 

Wild-type and engineered SMC expressing the Fcγ-RIIA were used between 1 and 8 

passages. The splitting of cells was every three days using a Trypsin-EDTA solution 

(0.05% trypsin). For the assays wild-type or genetically modified SMC were plated in 24-multiwell 

plates at a density of 30  103 cells per well and grown on glass cover slips for 24 h at 37ºC under 

5% CO2 atmosphere.  

 

2.5. Bone marrow-derived macrophage isolation and differentiation  

Femurs from 8-10 week old C57BL/6 male mice (wild-type or p62 knockout animals) were 

provided by Dr. Herbert W. Virgin (Washington University in St. Louis, MO, USA). After dissection, 

the femurs were washed with ice-cold PBS and then both epiphyses were removed using sterile 

scalpel. The bones were flushed with a needle coupled to a syringe filled with cold Hank's 

Balanced Salt Solution (HBSS, Gibco) to extrude the whole bone marrow. Then, cell suspension 

was centrifuged at 1200 rpm at 4C for 10 min and the pellet was gently resuspended in 4 mL of 

high glucose Dulbecco's modified Eagle's medium (DMEM, Gibco) containing 10% fetal calf serum 

and 100 U/mL of antibiotics (penicillin and streptomycin), and homogeneized in order to 

generate a fresh bone marrow cell suspension (a mixture of monocytes, platelets, RBC, 

fibroblasts, etc). After 24h of incubation at 37ºC under 5% CO2 atmosphere, non-adherent bone 

marrow cells were collected, washed twice to remove cellular debris, counted and seeded in 

glass cover slips into 48-multiwell plates at a density of 7 x 105 cells per well, using DMEM 

supplemented with 10% L929-cells conditioned medium (LCCM) as a source of macrophage 

colony stimulating factor (M-CSF).  
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Cultures of mouse L929 fibrosarcoma cell line, kindly provided by Dr. Ira Tabas (Columbia 

University, NY, USA), were maintained in high glucose DMEM containing 10% fetal calf serum and 

100 U/mL of antibiotics (penicillin and streptomycin) in a humidified incubator at 37ºC under 5% 

CO2 atmosphere. The culture medium of these cells was replaced after 2 days and finally 

collected after two more days of incubation. Collected LCCM was centrifuged (850 rpm/5 min), 

and supernatant was filtered and stored at -80ºC to avoid protein degradation. 

To completely differentiate monocytes into bone marrow-derived macrophages (BMDM), 

plated cells were cultivated for ten days in a humidified incubator at 37ºC under 5% CO2 

atmosphere. Every three days, cells were washed to eliminate cell contaminants (mostly 

platelets) and fresh medium (supplemented with 10% LCCM) was added in order to induce 

macrophage differentiation and cells reach the appropriated confluence (about 80%). The 

phagocytic assays were performed with BMDM cultures on the day eleven.  

 

2.6. Binding, phagocytosis and phagosomal maturation assays  

Before binding, phagocytosis or phagosomal maturation assays, native-, aged- and sheep-

RBC were always labeled with Carboxyfluorescein-diacetate-Succinimidyl Ester (CFSE) or Orange-

chloromethyl-tetramethylrhodamine (CMTMR) (both from Molecular Probes) at final 

concentration of 0.5 μM, for 15 min at 37°C. CFSE and CMTMR are vital dyes that passively 

diffuse into cells, where they are metabolized and cleaved by intracellular enzymes to yield highly 

fluorescent conjugates, which are well retained and fixed on the cytoplasm of living cells. In the 

case of agRBC enriched in PtdSer levels, this staining was performed right before incubation with 

POPS-liposomes. Then, RBC were washed with PBS and resuspended in CO2-independent RPMI-

1640 Modified medium (Sigma). Likewise, after IgG-opsonization, particles ware washed with PBS 

and resuspended in RPMI-Modified medium. 

Before the experiments phagocytic cells (SMC or BMDM) were washed twice to discard 

cellular debris, and the culture medium was replaced with CO2-independent RPMI. Finally, the 

different phagocytic particles were added. The onset of phagocytosis was synchronized for the 

different particles by plate centrifugation (800rpm/1min) and then cells were incubated at 37°C 

for different time points, according to the specific assay. 

For binding experiments, phagocytic particles were added (3 x 105cell/well) to SMC cells, 

centrifuged and kept on ice at 4ºC for different time periods. Then, cells were shifted to 37ºC for 

only 35 s before 5 vigorous washes with ice-cold PBS to remove non-attached cells. Finally, cells 
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were fixed with 4% paraformaldehyde (PFA) for 30 min, permeabilized with 0.1% Triton X-100, 

stained for actin with Rhodamine-Phalloidin (1:500; Invitrogen) for 30 min at RT and analyzed 

under fluorescence-microscopy. 

For phagocytic experiments, the cells were challenged for different time points with the 

different phagocytic particles and then non-internalized RBC were lysed using water for 5 

seconds. Then, cells were fixed with 4% PFA for 30 min, permeabilized with 0.1% Triton X-100 

and stained for actin with Rhodamine-Phalloidin (1:500) for 30 min at RT, while nuclei were 

stained with DAPI (Fluka) at final concentration of 30 nM for 20 min and analyzed under 

fluorescence-microscopy. Phagocytic phenotypes were quantified by averaging the percentage of 

SMC that have internalized at least one phagocytic particle, which are reported as the Phagocytic 

Index (PI). 

Pulse-chase experiments were performed to assess phagosome maturation in SMC and 

BMDM. Briefly, after the pulse (period that phagocytic particles were allowed to be internalized 

by phagocytes) the non-internalized RBCs were lysed in water, while external IgG-opsonized latex 

beads were stained with an anti-human antibody conjugated with a fluorophore on ice. Then the 

cells were shifted again to 37ºC for different time points (chase) and fixed for further analysis.  

 

2.7. Recycling of YFP-GL-GPI from the phagosomal membranes back to the plasma 

membrane 

For the recycling of the plasma membrane marker glycosyl-phosphatidyl-inositol-anchored 

yellow fluorescent protein (YFP-GL-GPI), wild-type SMC and the variant SMC stably expressing 

Fcγ-RIIA were infected with adenoviruses expressing the YFP-GL-GPI for 1 h at 37ºC using Opti-

MEM (Gibco), washed 3 times to complete removal of viral particles and incubated overnight in 

normal culture medium to cellular recover. Then, SMC transiently expressing the YFP-GL-GPI 

were used for phagocytic pulse-chase experiments as described above.  

 

2.8. Assessment of phagosomal maturation and confocal microscopy 

To estimate phagosomal pH over time, SMC were allowed to internalize phagocytic 

particles for 30 min, chased for different time points and then 50 nM LysoTracker Red DND-99 

(Molecular Probes) was added to the cells for 5 min. After LysoTracker incubation, cells were 
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washed, fixed in 4% PFA and analyzed by fluorescence microscopy to determine the percentage 

of LysoTracker-positive phagosomes.  

To stain lysosomal compartments, adherent SMC were incubated with 1mg/mL of Dextran 

Tetramethylrhodamine conjugate (10,000 MW, lysine fixable, fluoro-ruby, Molecular Probes) in a 

serum-free media for 24 h. Then the cells were washed and chased in normal culture medium for 

2 h at 37ºC to ensure lysosome delivery of cargo. After lysosome staining, phagosomal 

maturation assays were performed as described above.  

For immunocytochemistry experiments cells were, in general, fixed in 4% PFA for 30min, 

blocked in 0.5% Gelatin from cold water fish skin (Sigma) in PBS for 30min, permeabilized using 

0.1% Triton X-100 (with 200nM glycine) for 30min and incubated with the appropriated primary 

antibody for 1h30min at RT, followed by incubation with secondary fluorescent antibody (1:800, 

from Jackson Immunoresearch) for 1h at RT. The exceptions were LBPA staining, where cells were 

permeabilized using a solution 0.05% Saponin (Sigma) for 15min; and LAMP-1 staining in BMDM, 

where cells were fixed and permeabilized using methanol for 10min. Details on primary 

antibodies used are described in the Table 2.1.  

 

Primary Antibody Host Information Company of Source References Dilution 

EEA-1 goat polyclonal (N-19) Santa Cruz Biotecnology SC-6415 1:30 

LBPA mouse monoclonal (6C4) Echelon Bioscience 117Z 1:80 

LAMP-1 rat mouse monoclonal Developmental Studies Hybridoma Bank 1D4B 1:50 

LC3-IIB rabbit polyclonal Cell Signaling 2775S 1:100 

SQSTM1 (p62) rabbit polyclonal (c-Term) ABGENT RB4614 1:80 

NBR1 mouse monoclonal (6B11) Abnova M01 1:80 

NDP52 rabbit polyclonal Abcam ab68588 1:80 

Table 2.1. List of primary antibodies.  

 

Stained samples were washed twice with PBS, mounted on glass slides using Mowiol with 

Dabco, and then analyzed by using a Carl Zeiss LSM 510 META laser scanning confocal microscope 

(LSM 510 software) or the Zeiss Cell Observer inverted widefield microscope (ZEN software), both 

with a 63x oil immersion objective. Digital images were analyzed by using LSM Image Browser or 

ImageJ software. 

 



Chapter II 

47 

2.9. Pharmacological modulation of autophagy 

JAK3 Inhibitor VI (Calbiochem) was added to the SMC at a final concentration of 5μM 

simultaneously with the phagocytic particles and was present throughout the pulse-chase 

experiments. Nortriptyline (Sigma) was added to SMC at a final concentration of 10μM (DMSO 

0.01% was used as vehicle) 30 min before the addition of the phagocytic targets and was present 

throughout the pulse-chase experiment. Control cells were incubated only with the vehicle 

(DMSO 0.01%).  

 

2.10. Statistical analysis  

Statistical analysis (Two-way ANOVA, followed by Bonferroni post-test) was performed 

using the GraphPad PRISM software version 5.0. p<0.05 (*), p<0.01 (**) and p<0.001 (***) were 

considered as a statistically significant difference. Results are presented as means ± standard 

error of the mean (SEM) from at least three independent experiments.  
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Comparison of the kinetics of maturation of phagosomes containing 

apoptotic cells and IgG-opsonized particles 

 

3.1. Rationale 

Vesicular trafficking plays a central role in the formation and maintenance of different 

intracellular compartments as well as in the communications between the cells and the 

environment. These distinct relationships are based on the endomembrane system, a set of 

interconnected sub-compartments comprising the ER, the Trans-Golgi Network (TGN), endocytic 

vesicles, lysosomes and the plasma membrane. In principle, cycles of membrane budding and 

fusion allow the lumen of any of those cellular structures to communicate with each other and 

with the cell exterior by means of transport vesicles (Bonifacino and Glick, 2004; Sanderfoot and 

Raikhel, 1999). According to the direction of the vesicles movement this system can be classified 

into exocytosis (materials are exported from the cell) or endocytosis (materials move inward the 

cell). The exocytic pathway is important in the expulsion of waste materials and secretion of 

cellular products, such as digestive enzymes, neurotransmitters or hormones via secretory 

vesicles (Sudhof and Rizo, 2011). On the other hand, the endocytic pathway involves the cellular 

internalization of extracellular fluids, molecules, foreign agents and apoptotic cells, likewise the 

sorting of plasma membrane proteins and lipids, thus being required for a vast number of 

functions: nutrient uptake, cell adhesion and migration, receptor signaling, pathogen entry and 

cell polarity. In this context, different types of endocytic processes can be distinguished by the 

size of the vesicle, the nature of the cargo and the machinery involved. In general, there are 

three types of endocytosis: phagocytosis (cell eating); pinocytosis (cell drinking); and receptor-

mediated endocytosis, in which selective materials are uptaken (e.g. cholesterol, growth factors 

and antibodies) by binding to specific receptors on the cell surface, which folds inward to form 

coated pits (Botelho et al., 2000a; Grant and Donaldson, 2009; Sorkin and von Zastrow, 2009). 

Phagocytosis, as previously discussed, represents an extremely complex cellular event by 

which large particles (>0.5μm in diameter) are actively recognized, engulfed into a phagosome 

and degraded through a finely tuned system known as phagosome maturation. Although the 

predominant interest in phagocytosis has been focused on its role in host defense against 
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infection, this process also plays a pivotal role in the removal of apoptotic cells, which is essential 

during development, tissue remodeling and for the maintenance of homeostasis in all 

multicellular organisms (Aderem and Underhill, 1999; Flannagan et al., 2012; Henson and Hume, 

2006; Parnaik et al., 2000). Remarkably, even in tissues with high cellular turnover, apoptotic cells 

are rarely seen in situ, which is thought to be due to rapid and efficient disposal mechanisms 

evolved by phagocytic cells. Actually, this is particularly important to avoid non-resolving 

inflammation, many autoimmune conditions and developmental abnormalities, factors 

considered as triggers for numerous diseases, like atherosclerosis, lupus erythematosus and 

neurodegenerative disorders (Munoz et al., 2010a; Nathan and Ding, 2010). In these cases, 

professional phagocytes are not the only players involved in efferocytosis. For instance, the 

removal of apoptotic cell debris in atherosclerosis is known to specifically involve SMC that are 

not considered professional phagocytes to a very significant degree. In fact, in atherosclerosis, 

SMC represent the major phagocytic population in the vessel wall besides macrophages (Bennett 

et al., 1995; Kolb et al., 2007; Schrijvers et al., 2005). 

The past decade has witnessed an impressive expansion on our knowledge regarding the 

fundamentals of the efferocytic process. So, based on the research from many groups, several 

distinguishable steps have been recognized in the engulfment and clearance of apoptotic cells. At 

very early stages of this type of programmed cell death, the cells release “find-me” signals 

establishing a chemotactic gradient of factors that advertise their status to local cells, while 

stimulate the migration of distant phagocytes (Elliott et al., 2009; Lauber et al., 2003; Munoz et 

al., 2010b; Truman et al., 2008). Then, the physical contact between the apoptotic cell and the 

phagocyte is mediated by ligands on the apoptotic cell (referred to as “eat-me” signals) and 

engulfment receptors displayed on the cell membrane of phagocytes. Among the vast array of 

identified “eat-me” molecules, the exposure of PtdSer on the outer leaflet of apoptotic cells 

appears to be a key marker (Fadok et al., 1992; Vandivier et al., 2006). This phospholipid, 

normally concentrated on the inner leaflet of the plasma membrane, loses its asymmetric 

distribution during apoptosis and is translocated to the outer leaflet of the plasma membrane 

(Fadok et al., 1992; Martin et al., 1995). Phagocyte recognition of PtdSer is mediated directly via 

one or more PtdSer receptors (e.g. Tim-4 and Stabilin-2); or indirectly through bridging molecules 

(e.g. MFG-E8 and Gas6) that simultaneously bind PtdSer on the apoptotic cell and a specific 

receptor expressed by phagocytes (Hanayama et al., 2004; Savill et al., 1990; Scott et al., 2001). 

For some of these receptors, direct or indirect binding to PtdSer, in combination with the 

recognition of other “eat-me” signals, results in Rac-dependent cytoskeletal reorganization, 
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which ultimately leads to the engulfment of the dying target (Ravichandran and Lorenz, 2007). 

Once inside the phagocyte, the ingested apoptotic cargo is processed via the phagolysosomal 

pathway, which shares features with the endocytic machinery, in spite of has some unique 

features of its own (Bohdanowicz and Grinstein, 2010; Erwig et al., 2006; Kinchen et al., 2008; 

Kinchen and Ravichandran, 2010; Yu et al., 2008). Specifically, the phagosomal membrane initially 

acquires markers of early endosomes that are subsequently lost and replaced by markers of late 

endosomes. Ultimately, lysosomal contents (e.g. cathepsins) and membrane constituents (e.g. 

LAMP-1, also present in late endosomes) are found in the terminal organelle, the 

phagolysosome, which represents the final degradative compartment of the host cell. All this 

coordinated sequence of events is accompanied by a progressive acidification of the phagosomal 

lumen, that correlates with the accumulation of V-ATPases (H+ pumps) and the recycling of 

phagosomal membrane components back to the plasma membrane (Blander and Medzhitov, 

2006; Erwig and Henson, 2008; Kinchen and Ravichandran, 2008; Zhou and Yu, 2008). 

Genetically tractable organisms greatly contribute to our ability to make sense of this 

complexity of interactions and downstream signals resulting in the uptake of apoptotic cells. In 

this context, the nematode C. elegans has been a widely used model organism for studying the 

engulfment and degradation of apoptotic cells (often referred as cell corpses) owing its simple 

anatomy, well-established genetics, well-known cell lineage, rapid processing of dying cells and 

distinguishable apoptotic cell morphology (Kinchen et al., 2008; Lu and Zhou, 2012; Reddien and 

Horvitz, 2004). Meanwhile, in mammalian systems, reports exploring efferocytosis has shed light 

mainly on the immune response elicited by the removal of this nature of cargo and also on the 

early stages of engulfment (recognition and physical internalization); whereas the identification 

of the machinery required for subsequent steps remain unclear (Ravichandran and Lorenz, 2007). 

In other worlds, much attention has been focused on the participating ligands, receptors, and 

mechanisms of uptake, while still poorly is known about the disposition of the ingested cell 

within the phagosome. Furthermore, most part of the literature using mammalian tools has 

addressed uptake and processing of apoptotic cells by macrophages or immature dendritic cells 

(i.e. professional phagocytes), despite there are other cell types, such as fibroblasts, endothelial 

cells and SMC, that are also absolutely important to mediating efferocytosis in certain tissue 

contexts (Erwig et al., 2006; Parnaik et al., 2000). Concluding, our current understanding of the 

molecular processes that underlie maturation of phagosomes containing apoptotic cells in 

mammalian systems is rudimentary and so, deserves more attention. 



Chapter III 

54 

Therefore, in this study, we investigated in detail the interaction of apoptotic cell-

containing phagosomes with components from different stages of the endocytic pathway, 

recycling of phagosomal membrane components and lumenal acidification over time, likewise 

comparing those kinetics with the kinetics obtained from the maturation of phagosomes 

containing IgG-opsonized particles that are engulfed via Fc-Receptors, the best-studied 

phagocytic model. More, the experiments were performed in a non-professional phagocytic cell 

line: rabbit aortic smooth muscle cells, and thus to exclude the interference of the phagocytic cell 

type in our comparative study, we also generated SMC stably expressing the Fc-RIIA. We 

specifically chose these cells because one of our major research interests is to understand why 

the uptake or the processing of apoptotic cells is impaired in atherosclerosis and as stated above 

SMC represent the major phagocytic population in the vessel wall besides macrophages. As 

phagocytic particles, we used human aged red blood cells (agRBC) as our apoptotic cell model, 

and also IgG-opsonized sheep red blood cells (shRBC) or latex beads as control. Furthermore, 

since PtdSer exposure is the most important seen alteration on dying cells, we increase the 

normal levels of PtdSer in apoptotic cell membranes and observed its effect in efferocytosis and 

phagosomal maturation.  

 

3.2. Phagocytic Particles 

3.2.1. Human Aged Red Blood Cells 

Mature red blood cells are highly specialized and terminally differentiated cells. Their main 

function is to transport oxygen (O2) through the blood flow delivering it to the tissues. Very early 

in mammalian embryogenesis, nucleated RBCs are produced in the yolk sac, in a process called 

erythropoiesis. During later stages of embryogenesis and after birth it takes place in the liver and 

in the bone marrow, respectively. There they become enucleated in order to accommodate 

maximum space for haemoglobin and assume a biconcave shape to easily squeeze through thin 

capillaries. The cytoskeleton and the cell membrane of human RBC contain several different 

proteins, such as spectrin, ankyrin, actin and glycophorin, just to mention a few.  

Healthy erythrocytes have a lifespan of about 120 days, after which they are cleared from 

the circulation mainly engulfed by Kupffer cells in the liver and by macrophages in the spleen 

(Clark, 1988; Piomelli and Seaman, 1993). The exact mechanism behind uptake and destruction 

of aged RBCs is still not completely understood, but it is clear that involves distinct morphological 
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changes including progressive shape changes, cell shrinkage, increased osmotic fragility due to 

micro-vesiculation of the plasma membrane bilayer and loss of lipid bilayer asymmetry. Klarl and 

co-workers (2006) demonstrated that the removal of extracellular glucose led to depletion of 

cellular ATP, stimulated PKC activity, enhanced serine phosphorylation of membrane proteins, 

decreased cell volume and increased PtdSer externalization (Klarl et al., 2006). Erythrocytes with 

PtdSer on their outer surface are then recognized and cleared by phagocytes (Schroit et al., 

1985). Remarkable, these changes are very similar to the morphological hallmarks of classical 

apoptosis (Connor et al., 1994; Huang et al., 2011). However, because they lack some important 

apoptotic machinery, like nucleus and mitochondria, they are said to suffer an apoptotic-like 

process, called eryptosis (Lang et al., 2012). Moreover, mature RBCs demonstrated the presence 

of the pro-caspases-3 and -8, although treatment using ionophores (apoptotic inducer agents) 

lead to the activation of the cysteine protease calpain (Berg et al., 2001; Bratosin et al., 2001). 

RBCs are considered very good phagocytic models since they offer many advantages 

compared to other cell types: 1) native RBCs cannot bind to phagocytes without previous 

modification on their surface; 2) they are easily induced to undergo an apoptotic-like process 

termed eryptosis, mimicking senescent cells; 3) the plasma membrane levels of PtdSer can be 

manipulated by incubating the cells with PtdSer-liposomes; 4) RBCs can also be opsonized with 

antibodies and then used to study receptor-mediated phagocytosis (e.g. Fc or complement -

receptors); and 5) by applying a simple hypotonic shock the distinction between attached RBCs 

from those that were really internalized is easily done (Gigli and Nelson, 1968).  

 

3.2.2. IgG-Opsonized Particles 

Detection and clearance of foreign bodies, such as bacteria, fungi and parasites, was the 

first acknowledge function of phagocytosis, playing a crucial role in immune defense. This process 

involves a variety of receptors that are able to directly or indirectly identify particular microbial 

features. Direct recognition is often mediated by Toll-like receptors (TLR), which distinguish 

pathogen-associated molecular patterns (PAMPs) displayed on the surface of microorganisms, 

such as bacterial cell wall components or viral RNA. On the other hand, indirect recognition can 

be mediated by host serum factors circulating in the blood and in interstitial fluids, the called 

opsonins, which recognize extraneous antigens and components of the complement cascade 

deposited on foreign surfaces. Following their deposition on particles, these molecules are in turn 

engaged by specific opsonic receptors on the membrane of professional phagocytes, typified by 
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Figure 3.1. Fc-Receptor interaction with an 
antibody-coated pathogen and structure. 
(Source: http://www.sinobiological.com) 

complement receptor 3 (CR3) and Fc-Receptors (FcR) that associate with complement fragments 

and with immunoglobulins, respectively (Aderem and Underhill, 1999).  

 

 

 

 

 

Our knowledge in phagosome maturation was almost entirely derived from studies using 

immunoglobulin G-opsonized particles, including IgG coated-red blood cells and -latex beads. 

Among the different Fc family of receptors, classified based on the type of antibody they 

recognize and affinity for the ligand, the Fc-gamma receptor (FcγR) is the one that specific binds 

to IgG (Ravetch and Bolland, 2001). Therefore, internalization of IgG-opsonized particles 

mediated by FcγR is by far the best-understood phagocytic model. The name of these receptors 

comes from their binding specificity for a part of an antibody known as the Fc (Fragment, 

crystallizable) region. The Fc region of the antibody points outwards, in direct reach 

of phagocytes, just after the IgG molecule binds to intruder agents through their Fab (Fragment, 

antigen binding) region (see Figure 3.1). Ultimately, the link between ligand-receptor, through 

the generic Fc-domain of FcR, elicits several biological responses beyond phagocytosis, like 

antibody-dependent cell cytotoxicity, release of inflammatory mediators, and regulation of 

lymphocyte proliferation and differentiation. Curiously, transfection of non-professional 

phagocytes (that lack opsonic receptors) with cDNAs encoding FcR dramatically increases the 

phagocytic rate (and, obviously, particle range) of these cells; thus this system has been widely 

used to dissect signaling pathways leading to particle internalization (Cai et al., 1994; Indik et al., 

1995). 

For simplicity, this receptor was mostly studied in isolation by use of model systems in 

which engagement of other receptors could be avoided or at least minimized. By contrast, in 

nature, multiple opsonic and non-opsonic receptors are engaged simultaneously, producing a 

complex and probably synergistic response, in which fast lateral diffusion and clustering occurs to 

http://en.wikipedia.org/wiki/Antibody#Isotypes
http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/Fragment_crystallizable_region
http://en.wikipedia.org/wiki/Fragment_crystallizable_region
http://en.wikipedia.org/wiki/Phagocyte
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firmly attach the prey onto the phagocyte surface (Botelho and Grinstein, 2011). Actually, FcR 

clustering is required to elicit cellular responses, so bringing the cytosolic domain of multiple FcR 

into close proximity (Nimmerjahn and Ravetch, 2008). It has been proposed that grouping FcγR 

together enables them to associate with lipid microdomains (rafts) where downstream signaling 

elements (e.g. Src-family kinases) reside. So, activated Src-family kinases recruit a variety of 

adaptor and scaffolding proteins that link and expand the signaling network by providing 

additional docking nodes, which ultimately lead to particle engulfment by an actin-driven 

mechanism and cargo processing through phagosome maturation (Fitzer-Attas et al., 2000; 

Ghazizadeh et al., 1994; Hamada et al., 1993).  

 

3.3. Results 

3.3.1. Generation of agRBC and their enrichment in PtdSer as apoptotic cell 

models for phagocytosis and phagosomal maturation studies 

We have generated agRBC and used them as our phagocytic apoptotic model. Indeed, 

although RBCs cannot undergo classical apoptosis because they lack a nucleus, mature RBC can 

undergo a rapid self-destruction process sharing several features with apoptosis, including PtdSer 

externalization, leading, in the presence of phagocytic cells, to their ingestion (Berg et al., 2001; 

Bratosin et al., 2001). To evaluate aging of RBC we used the FITC-labeled Annexin-V, which 

recognizes and binds PtdSer head group on the cell surface of dying cells, and then proceed to 

flow cytometry analysis. After being incubated in PBS at 37oC during 4 days, agRBC efficiently 

translocated PtdSer from the inner to the outer leaflet of the plasma membrane (Figure 3.2), 

since 88.9 ± 3.5% of cells were positive for Annexin-V. In contrast, less than 1% of freshly isolated 

RBC (native RBC) were positive for Annexin-V and the fluorescence intensity was negligible (<3 %) 

(Table 3.1). The values obtained for aged- versus native-RBC were within the range reported 

previously by others (Kolb et al., 2007). 

Data from many different laboratories have suggested that loss of phospholipid asymmetry 

and external expression of PtdSer are crucial for the recognition of apoptotic cells by 

macrophages and other phagocytes (Borisenko et al., 2003; Fadok et al., 2001). However, the 

literature is not clear on whether an extra amount of PtdSer on surface of apoptotic cells could 

somehow modulate the phagocytosis or phagosomal maturation. Therefore, we decided to load 

agRBC   with   more   PtdSer   by   incubating   them   with   PtdSer-liposomes  (POPS)  at  different  
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Figure 3.2. Detection of exposed PtdSer by flow cytometry. Native- and Aged- RBC were stained with Annexin-V 
conjugated with FITC. Aging process induced an increase in the population of Annexin-V positive cells (right panel). 
Data are expressed as a dot plot of one representative experiment conducted in duplicate.  

 

agRBC:POPS (cell / PtdSer molecule) ratios (Figure 3.3). Although there are a wide range of 

individual variation in the incorporation of PtdSer, when agRBC were incubated for about 16h 

with different ratios of agRBC:POPS, the percentage of Annexin-V positive cells, in fact, showed a 

slight increase. However, comparing with the control (agRBC incubated only with the vehicle) we 

observed an increment of 5- and 8-fold in PtdSer levels for the ratios of 1:104 and 1:105 

respectively, judged by the values of the mean fluorescence intensity (Table 3.1). Because no 

substantial enrichment was seen with the ratio 1:103 this condition was ignored in further 

experiments.  

Importantly, to exclude the possibility that during treatments the integrity of the plasma 

membrane of RBC was not affected, the cells were incubated with Trypan Blue (a vital dye that is 

negatively charged and does not interact with the cell unless the membrane is damaged). By light 

microscopy evaluation of agRBC or PtdSer-enriched agRBC after staining, no Trypan blue-positive 

cells were observed (results not shown), suggesting that the integrity of the plasma membrane 

was not affected by any of the treatments. 
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Figure 3.3. Schematic representation of different phagocytic models used in the experimental work.  

 

Phagocytic Particle 
Percentage of Annexin-V 

positive cells 
Mean Fluorescence 

Intensity (%) 

Native RBC 0.80 ± 0.23 3.19 ± 0.47 

agRBC 88.9 ± 3.5 65.9 ± 8.6 

agRBC+POPS 1:103 92.1 ± 2.9 56.8 ± 14.1 

agRBC+POPS 1:104 98.8 ± 0.7 303.9 ± 72.9 

agRBC+POPS 1:105 99.4 ± 0.2 520.8 ± 107.2 

Table 3.1. Enrichment of agRBC membranes in phosphatidylserine. Results of flow cytometry analysis of Native 
RBC, agRBC and agRBC after overnight incubation with different cell:PtdSer liposome ratios labeled with Annexin V-
FITC. The table shows the percentage of AnnexinV-positive cells and the Mean Fluorescence Intensity ± SEM of at 
least three independent experiments. A total of 20.000 events were analyzed in each condition.  

 

3.3.2. Enrichment in PtdSer affected neither binding nor phagocytosis           

of agRBC 

Apoptotic cell clearance by SMC has been demonstrated to occur in vitro and in vivo. 

Although they are classified as non-professional phagocytes owing to its non-myeloid origin, this 

cell type has the ability to bind and ingest cells undergoing apoptosis due to the exposure of 

PtdSer, thus playing an important role in the clearance of dying cells in disorders like 

atherogenesis. As previously mentioned, besides macrophages, SMC represent the major 

phagocytic population in the vessel wall (Bennett et al., 1995; Kolb et al., 2007; Schrijvers et al., 

2005).   

PtdSer exposure has traditionally been referred to as the key “eat-me” signal for receptor-

mediated phagocytosis of apoptotic cells. However, the effect of PtdSer loading into apoptotic 

cells in binding (attachment of phagocytic particles to the cell surface of phagocytes), 
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phagocytosis (internalization of phagocytic particles by phagocytes) and phagolysosome 

biogenesis was never addressed. Thus, here we have analyzed the relationship between PtdSer 

levels in binding and phagocytosis of agRBC by SMC. 

To study binding of agRBC and PtdSer-enriched agRBC, these particles were first labeled 

with the vital dye CFSE, fixed with 0.2% glutaraldehyde and then incubated with SMC, at 4°C, for 

different time points. Unbound cells were removed by extensive washing with cold medium, and 

samples were fixed with 4% PFA and stained for actin. The attached particles were then counted 

under fluorescence microscopy. In contrast to native RBC (result not shown), agRBC and PtdSer-

loaded agRBC associated with SMC. Binding for all particles was time- and treatment- 

independent. The results obtained with agRBC and agRBC loaded with PtdSer were very similar, 

suggesting that increased PtdSer levels on the cell surface do not affect the rate of association 

between phagocytic particles and phagocytes. To validate our assay, we further incubated native 

RBCs enriched in PtdSer with SMC, such as described above. Indeed, in accordance to other 

groups (Borisenko et al., 2003), these cells were efficiently bound to the SMC. Our results suggest 

that PtdSer exposure is sufficient for binding, but enrichment of the plasma membrane with 

more PtdSer does not imply more binding (Table3.2).  

 

Incubation Time agRBC agRBC+POPS 1:104 agRBC+POPS 1:105 

30 min 6.43 ± 0.50 7.54 ± 0.50 8.30 ± 0.19 

60 min 6.82 ± 1.10 7.35 ± 1.40 10 ± 0.5 

90 min 7.35 ± 1.40 8.75 ± 0.10 9.90 ± 0.40 

Table 3.2. Effect of PtdSer enrichment in binding of agRBC to SMC in function of time. After aging and incubation 
with different ratios of POPS cells were labeled and added to the SMC. Phagocytes were allowed to bind phagocytic 
particles on ice. Cells were then fixed and analyzed by light microscopy. The values show the number of particles 
bound per 100 phagocytic cells. Results are expressed as mean ± SD of at least three independent experiments. At 
each time point 100 phagosomes were analyzed.  

 

Binding of apoptotic particles to phagocytic receptors eventually results in phagocytosis. To 

measure phagocytosis, human agRBC loaded, or not, with PtdSer were labeled with CFSE and 

incubated with SMC for different time points at 37°C. After phagocytosis cells were fixed, 

permeabilized, stained for nucleus and cortical actin with rhodamine-phalloidin, and analyzed by 

confocal microscopy (Figure 3.4). In these studies, the same number of phagocytic particles was 

added per different experimental conditions (i.e. 3  105 cells/well). Phagocytic phenotypes were 

quantified by averaging the percentage of SMC that have internalized at least one phagocytic 
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particle, which are reported as the Phagocytic Index. SMC engulfed all models of apoptotic 

particles tested. The phagocytic index ranged from 8.64 ± 1.31 to 10.25 ± 1.41 for agRCB and 

agRBC+POPS 1:105, respectively, at 30 min of phagocytosis (Table 3.3). Again, similar to what was 

described for binding experiments, the rate of phagocytosis was independent of incubation time 

(at least for the times we tested) and PtdSer concentration. The average number of particles 

engulfed by SMC was independent of the phagocytic particle analized, ranging between 1 and 2 

particles (Table 3.4). The native RBC loaded in PtdSer, that were efficiently attached to SMC were 

not able to be engulfed (result not shown).  

 

 

Figure 3.4. Representative image of two agRBC internalized by a SMC after 30 min of incubation at 37oC. A) Actin 
staining with rhodamine-phalloidin (in red). B) Engulfed agRBC stained with CFSE (in green). C) Corresponding 
merged image showing nucleus staining with DAPI (in blue). Bar, 10 µm.  

 

Incubation Time agRBC agRBC+POPS 1:104 agRBC+POPS 1:105 

30 min 8.64 ± 1.31 9.87 ± 0.64 10.25 ± 1.41 

60 min 8.88 ± 3.46 10.76 ± 2.91 9.78 ± 1.31 

120 min 10.65 ± 0.92 10.84 ± 1.46 9.88 ± 3.67 

Table 3.3. Effect of PtdSer enrichment in phagocytosis of agRBC by SMC in function of time. After aging 
and incubation with different ratios of POPS cells were labeled and added to the SMC. Phagocytes were 
allowed to internalize particles at 37ºC. After lyses, cells were fixed and analyzed by light microscopy. The 
values show the percentage of SMC that have internalized at least one phagocytic particles (Phagocytic 
Index). Results are expressed as mean ± SD of at least three independent experiments. At each time point 
100 phagosomes were analyzed. 
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Incubation Time agRBC  agRBC+POPS 1:104  agRBC+POPS 1:105  

30 min 1.37 ± 0.05  1.63 ± 0.22  1.51 ±0.37  

60 min 1.41 ± 0.22  1.39 ± 0.14  1.34 ± 0.19  

120 min 1.71 ± 0.27  1.66 ± 0.32  1.74 ± 0.62  

Table 3.4. Effect of PtdSer enrichment in the number of particles ingested per phagocytic cell in function of time. 
After aging and incubation with different ratios of POPS cells were labeled and added to the SMC. Phagocytes were 
allowed to internalize particles at 37ºC. After lysis, cells were fixed and analyzed by light microscopy. The values 
show the average number of phagocytic particles ingested by SMC that have ingested at least one particle. Results 
are expressed as mean ± SD of at least three independent experiments. At each time point 100 phagosomes were 
analyzed.  

 

There were some quantitative differences between binding and the Phagocytic index that 

were performed at different temperatures 4º and 37ºC, respectively. To explain this discrepancy 

we can envision the following scenarios: i) appearance of more phagocytic receptors at the 

plasma membrane, via exocytosis, at 37°C; ii) further modification of agRBC, with the appearance 

of more “eat me signals” also at 37°C.  

In conclusion, our results showed that around 5- to 8- fold enrichment of agRBC in PtdSer is 

neither affecting binding nor phagocytosis, suggesting that probably the agRBC has enough of 

this phospholipid to saturate all the PtdSer-receptors at the plasma membrane of the SMC. 

An interesting feature of phagosomes is that immediately after their formation at the 

plasma membrane they are unable to perform their main task: kill and degrade pathogens and 

apoptotic cells. Indeed, the acquisition of phagosome functional properties depends on a 

complex set of interactions with various cellular compartments, driving the biogenesis of 

phagolysosomes. Thus, we next assessed some features of the maturation of phagosomes 

containing apoptotic cells, comparing it with the maturation of phagosomes containing            

IgG-opsonized particles. Likewise we addressed the role of PtdSer loading in phagosomal 

maturation.  

 

3.3.3. Phagosomes containing IgG-opsonized and agRBC particles mature at 

different rates 

The efficient particle digestion and processing require dramatic remodeling of the 

phagosomal membrane and lumenal contents, the phagosomal maturation process. This process 

culminates with the fusion between phagosomes and lysosomes, followed by subsequent cargo 
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degradation (Kinchen and Ravichandran, 2010; Vieira et al., 2002). To better understand how 

phagosomes containing apoptotic cells mature, we examined their interactions with different 

endocytic compartments, as well as we tracked some characteristic changes along the time, like 

the recycling of phagosomal components back to the plasma membrane and the gradual 

dropping in pH levels. Thus, the maturation kinetics of phagosomes containing agRBC was 

compared with phagosomes carrying IgG-opsonized particles, which are recognized through the 

widely expressed and highly studied FcγR. Because SMC are non-professional phagocytes and so 

do not express this phagocytic receptor in normal conditions, we used a retroviral system to 

generate an engineered SMC line stably expressing the Fcγ-RIIA. As IgG-opsonized particles, our 

control, we used shRBC or inert latex beads cover with antibody. Furthermore, in order to check 

whether the amount of PtdSer exposed on cells undergoing apoptosis could affect phagosome 

maturation, we compared the maturation kinetics of phagosomes containing PtdSer-enriched 

agRBC with the ratios obtained for phagosomes containing agRBC. 

To synchronize phagocytosis, the different targets were added to SMC or to the parental 

cell line (SMC stably expressing FcγR) and submitted to a short spin. Following this, cells were 

shifted to 37°C and particles were allowed to be phagocytosed for 30 min (pulse). This specific 

time of pulse was chosen according to the results obtained previously (see Table 3.3). After the 

pulse, cells were shifted to 4°C (to immediately stop phagocytosis) and the non-internalized 

agRBC were lysed in water, while the external latex beads were stained to permit further 

distinction. Then, cells were shifted again to 37°C to allow maturation of the new formed 

phagosomes for different time points (chase time). It is very important to keep in mind that all 

these procedures are crucial to study phagosome maturation, since an accurate differentiation is 

required to ensure that most phagosomes containing our targets of interest will mature with 

synchronized kinetics. Thus, we performed pulse-chase experiments to assess phagolysosome 

biogenesis. After each time-point of chase investigated, depending on the marker, cells were 

fixed, immunostained (or not, as required) and analyzed by confocal microscopy. A phagosome 

was considered positive for a given marker when a fluorescent ring was observed around the 

engulfed particle. In the case of the latex beads that were internalized after the pulse (made 

visible by labeling with secondary antibodies as described above) they were excluded to ensure 

that we were just following the phagosomes formed during the first 30 min of phagocytosis. By 

independently measuring, as a function of time, the acquisition of endocytic markers, recycling 

and phagosomal acidification under identical experimental conditions in pulse-chase experiments 

we can decouple internalization from maturation. 
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To track the association of the nascent phagosomes with early components of the 

endocytic pathway, we assessed, by immunofluorescence, the recruitment of the Rab5-effector 

EEA-1, responsible for tethering early endosomes to nascent phagosomes. For all phagocytic 

particles, EEA-1 association with phagosomal membranes was transient (Figure 3.5). So the 

phagosomes acquired the marker at early chase times and lost it in the course of time. As shown 

in Figure 3.5G, shortly after particle ingestion (0 min chase), a majority of phagosomes containing 

IgG-opsonized particles, agRBC and agRBC enriched in PtdSer (1:105 ratio) associated with EEA-1 

(45 ± 1.53%, 53.7 ± 7.4% and 44 ± 4.5%; respectively). For the same time point the percentage of 

EEA-1 positive phagosomes carrying agRBC enriched in PtdSer (1:104 ratio) was lower when 

compared with the other phagosomes although not significantly so. 

It is generally considered that phagolysosome biogenesis involves not only fusion with 

components of the endocytic pathway, but also fission events and recycling of plasma membrane 

components. Thus, we next examined the recycling of phagosomal components back to the 

plasma membrane, which is necessary for their constant remodeling and progressing of the 

maturation process. In order to follow trafficking of plasma membrane components, phagocytes 

were infected with adenovirus expressing the plasma membrane marker YFP-GL-GPI (a yellow 

fluorescent protein with glycosylation and glycosylphosphatidylinositol signals), and its recycling 

was assessed by looking at the elimination of the marker from phagosomal membranes in time. 

As shown in Figure 3.6 the plasma membrane protein YFP-GL-GPI was eliminated/recycled, with 

time, from all phagosomes. However, as shown in the graph (Fig. 15G) and illustrated in the 

Figure 3.6A-F, the recycling of YFP-GL-GPI from phagosomal membranes was faster in 

phagosomes containing IgG-opsonized particles compared with the other phagocytic particles. 

This effect was more pronounced at 15 min chase, where the percentage YFP-GPI-positive-

phagosomes was significant higher for agRBC than for IgG-opsonized shRBC (61.0 ± 5.5% and 

37.0 ± 6.2%; p < 0.05, respectively), suggesting that the recycling is delayed in phagosomes 

containing senescent particles. Since recycling of components of phagosomal membranes is 

crucial for normal progression of phagosome maturation we looked then at the acquisition of 

MVB/late endosomal markers to confirm that the kinetics of phagosomes containing senescent 

RBC and opsonized particles mature at different kinetics. The interaction of the different 

phagosomes with MVB/late endosomes was assessed by looking at the acquisition of LBPA. As 

shown in Figure 3.7G and illustrated in Figure 3.7A-F, phagosomes containing IgG-opsonized 

particles acquire LBPA much faster than phagosomes containing senescent particles with 

different levels of PtdSer. The difference was more notorious at 0 and 45 min chase time. Once 



Chapter III 

65 

more, maturation kinetics of phagosomes sheltering PtdSer-enriched agRBC was not very 

affected compared to those containing control agRBC.  
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Figure 3.5. Interaction of phagosomes containing different phagocytic particles with early endosomes. The 
interaction of early endosomes with phagosomes containing different particles was assessed by the acquisition of 
EEA-1. After pulse-chase experiments, cells were fixed, stained with EEA-1 antibody and analyzed under confocal 
microscopy. A) EEA-1 staining of a cell containing an EEA-1-positive phagosome at 15 min chase time. B) Internalized 
agRBC stained with CFSE. C) Corresponding merged image. D) EEA-1 staining of a cell stably expressing the FcγR-IIA 
and containing six EEA-1-negative phagosomes after 15 min chase time. E) Corresponding differential interference 
contrast (DIC) image. F) Corresponding merged image. Arrow indicates a positive phagosome and asterisks indicate 
negative phagosomes. Bars, 10 µm. G) Quantification of the EEA-1-positive phagosomes. Wild type and engineered 
SMC were exposed to different phagocytic particles for 30 min and then chased for the time indicated in the graph 
abscissa. The values are means ± SEM of, at least, three independent experiments. At each time point 100 
phagosomes were analyzed. *, p < 0.05 comparing differences between EEA-1 acquisition by phagosomes with 
agRBC and with IgG-opsonized latex beads. 
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Figure 3.6. Recycling of YFP-GL-GPI from phagosomal membranes containing different phagocytic particles. The 
recycling of plasma membrane components from phagosomal membranes was assessed by the loss of the plasma 
membrane marker YFP-GL-GPI. Wild-type and engineered SMC were infected with adenoviruses expressing YFP-GL-
GPI. A) Cell expressing YFP-GL-GPI and containing an YFP-GL-GPI-positive phagosome at 15 min chase time. B) 
Internalized agRBC stained with CMTMR. C) Corresponding merged image. D) SMC expressing the FcγR-IIA and YFP-
GL-GPI showing two negative phagosomes for YFP-GL-GPI at 15 min chase time. E) Internalized IgG- opsonized shRBC 
stained with CMTMR. F) Corresponding merged image.  Arrow indicates an YFP-GL-GPI-positive phagosome and 
asterisks indicate two YFP-GL-GPI-negative phagosomes. Bars, 10 µm. G) Quantification of the YFP-GL-GPI-positive 
phagosomes. Wild-type and engineered SMC expressing YFP-GL-GPI were exposed to different phagocytic particles 
for 30 min and then chased for the times indicated in the graph abscissa. The results are means ± SEM of, at least, 
three independent experiments. Samples were analyzed by fluorescence confocal microscopy. At each time point 
100 phagosomes were analyzed. *, p < 0.05 comparing differences between loss of YFP-GL-GPI by phagosomes with 
agRBC and with IgG-opsonized shRBC. 
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Figure 3.7. Interaction of phagosomes containing different phagocytic particles with MVB/Late endosomes. LBPA 
acquisition was used to assess the interaction of phagosomes containing different particles with MVB/late 
endosomes. A) LBPA staining of a cell containing a LBPA-negative phagosome at 45min chase time. B) Internalized 
agRBC stained with CFSE. C) Corresponding merged image. D) LBPA staining of a cell stably expressing the FcγR-IIA 
and containing three LBPA-positive phagosomes at 45min chase time. E) Corresponding differential interference 
contrast (DIC) image. F) Corresponding merged image. Arrows indicate three LBPA-positive phagosomes and asterisk 
indicates a negative phagosome. Bars, 10 µm. G) Quantification of the LBPA-positive phagosomes. Wild type and 
engineered SMC were exposed to different phagocytic particles for 30 min and then chased for the times indicated in 
the graph abscissa. After fixation the cells were stained with LBPA antibody and analyzed under confocal microscopy. 
Data shows the percentage of LBPA-positive phagosomes and are means ± SEM of, at least, three independent 
experiments. At each time point 100 phagosomes were analyzed. *, p < 0.05 and **, p < 0.01 comparing differences 
between LBPA-acquisition by phagosomes with agRBC and with IgG-opsonized beads. 
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Phagosomal maturation is accompanied by a gradual and profound decrease in pH levels, 

reported to be as low as 4.5 within late phagosomes. Lysotracker probes, fluorescent dyes that 

have been extensively shown be distributed into acidic compartments of the cell (e.g. late 

endosomes and lysosomes), were used to assess phagosomal lumen acidification in time 

(Borisenko et al., 2003). Thus, after performing the pulse-chase experiments for the different 

targets we monitored phagosomal acidification by incubating living SMC with Lysotracker for 

5 min at 37ºC. Acidification rates in function of the time were quantitatively evaluated through 

confocal microscopy by determining the percentage of phagosomes that co-localized with the 

Lysotracker red fluorescence. Again, phagosomes containing IgG-opsonized particles acidified 

more rapidly than those carrying the apoptotic models, an effect that was more evident at the 

beginning (0 min) of the chase period (Figure 3.8). In the course of time the differences in 

acidification were attenuated. 

The last event of phagosomal maturation includes fusion with lysosomes and consequent 

phagolysosome formation. In absence of good anti-LAMP antibodies (a classic lysosome-

membrane marker) for immunofluorescence using rabbit cells, we decided to label the lysosomes 

with Dextran conjugated with Rhodamine. For this purpose wild-type and SMC expressing the 

Fc-RIIA were preloaded with fluorescent Dextran in serum-free media for 24 h followed by 2 h 

chase to ensure that all internalized Rhodamine-Dextran had reached the lysosomes. Then, the 

different phagocytic models were added to the phagocytes and normal pulse-chase experiments 

were performed.  As shown in Figure 3.9, phagolysosome formation occurred faster for IgG-

opsonized cargos. This effect is more notorious and significant at 0 min chase time. At later time 

points, phagosomes containing opsonized particles reach the same level of maturity as those 

containing apoptotic cells. Interestingly, for all cases phagosomal acidification occurs prior to 

lysosomal fusion. 

Clearly, all the markers tested showed that different phagocytic particles, internalized by 

different receptors generated distinct phagosomes with different maturation kinetics. The less 

notorious results obtained for EEA-1 acquisition can be explained, at least in part, by the fact that 

the differences in phagosomal maturation kinetics were only delays and EEA-1 associates with 

phagosomal membranes only for few minutes. Thus, due to the short association of this 

endosomal marker with phagosomal membranes, delays in phagosomal maturation are very 

difficult to observe. 
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Figure 3.8. Acidification of phagosomes containing different phagocytic particles. Phagosome acidification was 
assessed with Lysotracker red. A) Lysotracker staining of a SMC containing a negative phagosome at 0min chase 
time. B) Engulfed agRBC stained with CFSE. C) Corresponding merged image. D) Lysotracker staining of SMC stably 
expressing FcγR-IIA with a Lysotracker-positive phagosome at 0min chase time. E) Corresponding DIC image. F) 
Corresponding merged image. Arrow indicates Lysotracker-positive phagosome and asterisk indicates a negative 
phagosome. Bars, 10 µm. G) Quantification of the Lysotracker-positive phagosomes. Wild type and engineered SMC 
were exposed to different phagocytic particles for 30 min and then chased for the times indicated in the graph 
abscissa. Before image acquisition, the cells were incubated with Lysotracker for 5 min. Data shows the percentage 
of Lysotracker-positive phagosomes and are means ± SEM of, at least, three independent experiments. At each time 
point 100 phagosomes were analyzed. *, p < 0.05 comparing differences between Lysotracker-acquisition by 
phagosomes with agRBC and with IgG-opsonized latex beads. 
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Figure 3.9. Interaction of phagosomes containing different phagocytic particles with lysosomes. Before challenging 
SMC with phagocytic particles, these cells were incubated with Rhodamine-Dextran and then chased to label 
lysosomes as described in the Material and Methods. Phagolysosome formation was then analyzed by looking at the 
phagosomal fluorescence acquisition. A) Representative image of lysosomal staining with Rhodamine-Dextran in a 
SMC containing a Rhodamine-Dextran-negative phagosome. B) Engulfed agRBC stained with CFSE. C) Corresponding 
merged image. D) Representative image of lysosomal staining with Rhodamine-Dextran in a SMC stably expressing 
the FcγR-IIA containing three Rhodamine-Dextran-positive phagosomes. E) Engulfed shRBCs stained with CFSE. F) 
Corresponding merged image.  Arrows indicate three positive phagosomes and asterisk indicates a negative 
phagosome at 0min chase time (30 min pulse). Bars, 10 µm. G) Quantification of Rhodamine-Dextran-positive 
phagosomes. Wild type and engineered SMC were exposed to different phagocytic particles for 30 min and then 
chased for the times indicated in the graph abscissa. Data shows the percentage of Rhodamine-Dextran-positive 
phagosomes and are means ± SEM of at least three independent experiments. At each time point 100 phagosomes 
were analyzed. **, p < 0.01 comparing differences between Rhodamine-Dextran-acquisition by phagosomes with 

agRBC and with IgG-opsonized shRBC. 
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Finally, to exclude the possibility that the results obtained were not attributed to 

differences in cell type (SMC or SMC expressing FcγR) we further repeat some experiments only 

using SMC stably expressing FcγR as phagocytes. Thus, by comparing the maturation process of 

phagosomes containing agRBC and IgG-opsonized beads we found that, apparently, the 

accelerated ratios previously detected for phagosomes containing IgG-opsonized targets were in 

fact trustworthy, as presented in Figures 3.10A and 3.10B, showing the acquisition of LBPA and 

YFP-GL-GPI recycling, respectively, in time.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Phagosomal maturation kinetics of IgG-opsonized particles and agRBC in wild-type and SMC stably 

expressing the FcR-IIA is similar. The expression of the FcR-IIA in wild-type SMC does not change YFP-GL-GPI 
recycling and acquisition of LBPA of phagosomes containing IgG-opsonized particles and agRBC. A) Quantification of 
the YFP-GL-GPI-positive phagosomes. B) Quantification of the LBPA-positive phagosomes. The results are 
means ± SEM of, at least, three independent experiments. Samples were analyzed by fluorescence confocal 
microscopy. At each time point 100 phagosomes were analyzed. *, p < 0.05; **, p<0.01; ***; p<0.001 comparing 
differences between loss of YFP-GL-GPI or LBPA acquisition by phagosomes with agRBC and with IgG-opsonized 
particles. The experimental details have been described in the legends of the Figures 3.6 and 3.7.  
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3.4. Discussion 

Little is known about how the final step of apoptotic cell clearance is regulated and more 

importantly how it differs from the processing of classically opsonized or microbial cells. Here, we 

tested the hypothesis that the particle itself can influence the intracellular trafficking of its 

phagosome inside a phagocyte. Especially, in this study, we characterized the maturation of 

phagosomes containing agRBC and the effect of PtdSer enrichment of the agRBC in phagosomal 

maturation. The maturation of phagosomes containing agRBC was compared with that of IgG-

opsonized particles containing phagosomes in a mammalian non-professional phagocyte cell line.  

The phagocytic particles used in this work are recognized by different receptors. The 

apoptotic cells are likely to be internalized by many different receptors that are believed to 

function cooperatively (Ravichandran and Lorenz, 2007). The IgG-opsonized particles are 

internalized via a single receptor,  the FcγR, one of the best and most studied phagocytic 

receptor, also known to be tightly coupled to the production and secretion of pro-inflammatory 

molecules such as reactive oxygen intermediates and arachidonic acid metabolites (Aderem et 

al., 1985; Wright and Silverstein, 1983). More and more data support the notion that different 

phagocytic receptors send different signals to the actin cytoskeleton and initiate different 

mechanisms of internalization (Allen and Aderem, 1996; Swanson, 2008). Apoptotic signals 

stimulated membrane ruffling and formation of large and spacious fluid-filled vesicles; while Fc-

Receptor stimulation drove pseudopod extension from the phagocytic cell, resulting in a smaller 

tight fitting phagosome without any extracellular fluid. Indeed, such differences reinforce the 

idea that phagocytic particle properties can determine the complexity of the actin arrangement 

that must be created to dictate membrane remodeling over the target, phagosome formation 

and, perhaps, further phagosome interactions (Aderem and Underhill, 1999; Champion and 

Mitragotri, 2006; Hoffmann et al., 2001). 

All events associated with clearance of apoptotic cells are extremely organized and 

elaborated (Bratton and Henson, 2008). Any disturbance of this refined process can be translated 

into different disease states linked to inflammation and autoimmunity (Elliott and Ravichandran, 

2010; Nagata et al., 2010). Although, a lot of efforts have been dedicated to the role of receptors 

and ligands involved in recognition and post-engulfment consequences, the maturation of 

apoptotic cells containing phagosomes in mammalian cells has remained elusive (Ravichandran 

and Lorenz, 2007). Phagosomes containing apoptotic cells undergo maturation to generate 

phagolysosomes, in which cell corpses are degraded but the regulation of the maturation process 



Chapter III 

73 

is poorly understood. Several studies establish that the clearance of engulfed apoptotic bodies 

through phagosome maturation and fusion with lysosomes follows a path generally similar to 

that of other endosomes and phagosomes, but with some specific features. Recent studies in C. 

elegans have identified key factors involved in this maturation process, including Rab GTPases, 

PI3-kinases and components of the HOPS complex. It is also noteworthy that components 

required for phagosome maturation, such as Rab5, also contribute to engulfment itself and this 

outcome was never observed in Fc-mediated phagocytosis (Almendinger et al., 2011; Fullard et 

al., 2009; Guo et al., 2010; Kinchen et al., 2008; Kinchen and Ravichandran, 2008; Lu et al., 2008; 

Vieira et al., 2002; Yu et al., 2008; Zhou and Yu, 2008). 

Here, the maturation of apoptotic cells containing-phagosomes was assessed by analyzing 

the time course of acquisition of early, late and lysosomal markers as well as by the loss of YFP-

GL-GPI (a plasma membrane marker) and by acidification. To our knowledge this is the first time 

that such a systematic and comprehensive study has been done in mammalian cells. The rates of 

phagosome-lysosome fusion vary depending on the nature of the ingested particle. During Fc-

mediated phagocytosis around 50% of the phagosomes have fused with lysosomes within 30 min 

(0 min chase). In contrast, for the same time point only 25% of the phagosomes containing agRBC 

have fused with lysosomes. Excluding the interaction with early endosomes, this trend was 

observed for all markers assessed, including recycling of plasma membrane components and 

acidification. This outcome, i.e., phagosomes containing apoptotic cells maturing more slowly 

than those carrying opsonized particles, is not surprising, since intuitively, we may imagine that 

the fight against potentially harmful invaders is something that the body needs to face more 

aggressively, which is reflected in agility for a prompt destruction. On the other hand, apoptotic 

cells do not represent an eminent danger, since their effective removal is something that occurs 

almost constitutively in the body, illustrated by the negligible number of apoptotic bodies 

normally seen in damaged tissues (Blander and Medzhitov, 2004; Gardai et al., 2006). These 

observations indicate that phagocytic targets can differentially affect the maturation rate, 

perhaps, through their phagocytic receptors or other host-cell factors.  

However, Erwig and colleagues (Erwig et al., 2006), in contrast with our results, showed 

that phagosomes containing apoptotic cells matured more rapidly than those containing 

opsonized cells in primary macrophages, macrophage cell lines and fibroblasts and this effect was 

independent of the phagocyte species or the ingested target cell. This discrepancy, in our opinion 

could have two possible explanations: i) differences between the phagocytes or the models of 

phagocytic particles used; and ii) experimental conditions used to assess phagosomal maturation. 
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We would like to emphasize that in our case the transport of phagosomes within the cells was 

followed by pulse-chase experiments. This experimental approach allows the decoupling of 

particle internalization from the kinetics of both phagosomal acidification and phagosomal-

endosomal/lysosomal fusion. In contrast, Erwig and colleagues (Erwig et al., 2006) followed the 

acquisition of late endocytic markers and acidification at different times of internalization and 

thus, did not discriminate between the internalization and maturation of the phagosomes 

containing apoptotic cells. In our opinion this difference, in the experimental protocol, can 

explain, at least in part, the apparent discrepancy between their results and ours. In addition, our 

data was justified by a rigorous and meticulous process of marking and analysis of different 

stages of maturation, starting with sorting/early endosomes and culminating with lysosome 

interaction. 

Finally, we addressed how the amount of PtdSer exposure on the surface of the cell corpse 

can affect its engulfment and maturation. For this purpose, we generated agRBC enriched in 

different amounts of PtdSer. The role played by PtdSer in phagocytosis of cells programmed to 

die is essentially linked to recognition and receptor engagement, in these circumstances, working 

as an “eat-me” signal. However, internalization by itself appears to involve and require additional 

ligands on apoptotic cells, PtdSer alone being insufficient to mediate phagocytic uptake 

(Borisenko et al., 2003). However, we did not observe any significant effect in engulfment of 

agRBC enriched in PtdSer or in posterior phagosome maturation suggesting that beyond a certain 

threshold the increase of negative charges at the surface of apoptotic cells by the incorporation 

of PtdSer, a critical eat-me signal, does not have any effect on the parameters measured in this 

work. While the literature suggests that the rate at which phagosomes mature may be related to 

the nature of the interaction between the particle surface and the phagosomal membrane, our 

results show that there may be a saturation threshold of PtdSer-receptors at the surface of the 

SMC. The types and abundance of receptors capable of binding PtdSer at the surface of SMC, to 

our knowledge, have still not been characterized. Another open question is whether the oxidized 

PtdSer (a process that seems to naturally occurs during apoptosis) is also critical to induce 

apoptotic cell phagocytosis (Kagan et al., 2002; Matsura et al., 2002). 

Our data show that the interactions between the phagocytic models and the endocytic 

machinery of the SMC are significantly different in their kinetic characteristics. These findings can 

be relevant since the understanding of how defects in apoptotic corpse removal translate into 

disease states is not completely understood and enhanced phagocytosis of apoptotic cells may 

be exploited for therapeutic gain (Hart et al., 2008). Furthermore, studies using non-digestible 
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latex beads have shown that the inability to degrade a target can result in decreased uptake 

(Schrijvers et al., 2005). The challenges ahead include the identification of critical players as well 

as the signalling pathways that orchestrate the different stages of engulfment and maturation. It 

is already known, by studies of apoptotic cell removal in mammalian macrophages, that RhoA 

and ERM (ezrin-radixin-moesin) proteins have a role in the timely recruitment of Rab7 to the 

phagosome while no effect was observed on maturation of phagosomes containing IgG-

opsonized particles (Erwig et al., 2006). These differences might be closely related to the 

different immunological responses induced by distinct phagocytic targets. Studies focusing on the 

degradation of apoptotic cells may provide new platforms for investigating the mechanisms 

underlying the differential processing of different phagocytic targets. 
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Role of autophagy machinery on apoptotic cell clearance 

 

4.1. Rationale 

Efferocytosis is a process that must occur efficiently and accurately to discard unwanted 

cells that die every day in order to maintain tissue homeostasis. Wherever this process fails, 

dying cells accumulate; evolve into a critical secondary necrotic state and to the onset of several 

autoimmune and inflammatory diseases. The triumph of such a process depends on a series of 

synchronized events involving both apoptotic cells and phagocytic cells (Henson and Hume, 

2006). Firstly, dying cells anticipate their own death and secret “find-me” signals to recruit not 

only professional phagocytes but also non-professional “neighboring” cells to their proximity 

(Truman et al., 2008). Non-professional SMC, for instance, are recruited to atherosclerotic 

lesions, where they play an important role by taking over local efferocytosis (Kolb et al., 2007; 

Schrijvers et al., 2005). After being located, apoptotic cells exhibit “eat-me” signals on their 

surface (e.g. PtdSer), which promote their recognition by phagocytes (Fadok et al., 1992; Paidassi 

et al., 2009). The engagement of phagocytic receptors and ligands eventually results in 

cytoskeletal reorganization, which drives the uptake of the cell corpse into the phagosome, 

likewise contributes to control inappropriate immune responses, so that apoptotic cells are 

removed in an anti-inflammatory manner (Griffith and Ferguson, 2011; Hochreiter-Hufford and 

Ravichandran, 2013). Once inside the phagosome, cargo will be processed through phagosome 

maturation, progressively acidifying, until be completely digested by lysosomal enzymes after 

fusion between the phagosome with lysosomes (Kinchen and Ravichandran, 2008; Vieira et al., 

2002).  

Another cellular process that also relies on lysosome delivery for cargo degradation is 

autophagy. According to the different ways that autophagic substrates reach the lysosomes, 

autophagy can be discriminated into three types: chaperone-mediated autophagy, 

microautophagy and the most extensively studied macroautophagy (referred to as autophagy 

hereafter) (Kubota, 2009; Levine and Klionsky, 2004; Yang and Klionsky, 2010a). This cellular 

“self-eat” process was originally considered a non-selective pathway activated under nutrient 

scarcity and metabolic stress, whereby cytosolic materials were enclosed into double-membrane 
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structures, called autophagosomes (Longatti and Tooze, 2009; Mizushima, 2007). However, 

recent studies have clearly demonstrated that autophagy has a greater variety of physiological 

and pathophysiological roles than expected, such as organelle quality control, development, anti-

aging, elimination of microorganisms, cell death, tumor suppression and even antigen 

presentation (Deretic, 2006; Levine and Kroemer, 2008; Mizushima et al., 2008). In addition, 

refined mechanisms of selectivity start to emerge with the identification of autophagy receptors 

(Rogov et al., 2014). Also known as adaptor proteins, these mediators confer cargo specificity by 

simultaneously bind to ubiquitinated substrates in cytosolic materials and LC3 in 

autophagosomes (Johansen and Lamark, 2011; Shaid et al., 2013). In mammals, the role of LC3 (a 

protein hitherto considered as an exclusive autophagosome marker) is related to the expansion 

and closure of the phagophore (pre-autophagosomal membrane) to form the autophagosome, 

besides autophagosome maturation and fusion with lysosomes (Weidberg et al., 2010b). 

Nevertheless, over the past decade, LC3 has also been implicated to be recruited to single-

membrane phagosomes, in a process termed LC3-Associated Phagocytosis or, for simplicity, LAP 

(Sanjuan et al., 2007). This crosstalk between autophagy and phagocytosis has been suggested to 

stimulate phagosome maturation by improving the degradative capacity of phagosomes 

containing distinct cargoes, including apoptotic cells, pathogens and entotic bodies (arising from 

live epithelial cells phagocytosis)(Florey et al., 2011; Florey and Overholtzer, 2012; Huang et al., 

2009; Martinez et al., 2011; Sanjuan et al., 2009). Although this unusual translocation of LC3 to 

phagosomes has been shown to be dependent on several players of the regulatory machinery of 

autophagy, for example, Atg5, Atg7 and Beclin1; so far, there is no evidence about the 

phagosomal requirement of proteins associated with selective autophagy (Henault et al., 2012; 

Martinez et al., 2011). Thus, since the steps involving the processing of apoptotic cells into 

phagosomes are still full of open questions, the exploration of this newly discovered relationship 

between endocytic and autophagic machineries may provide new insights in the area. 

Therefore, in this chapter we will show that LAP is involved in the maturation of 

phagosomes containing aged RBCs and IgG-opsonized particles in rabbit vascular SMC stably 

expressing the widely-studied Fcγ-RIIA. By using a pharmacological approach we evaluated the 

functional relevance of the recruitment of LC3 to the maturation of phagosomes containing the 

different phagocytic particles and have found that LAP manipulation may influence the normal 

rates of association between phagosomes and endocytic compartments. Furthermore, our 

results demonstrate, for the first time in the field, the involvement of adaptor proteins, such as 

p62 (also referred to as SQSTM1), NBR1 (Neighbor of Braca 1 gene) and NDP52 (Nuclear Dot 
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Protein 52) in phagosomal maturation (Bjorkoy et al., 2005; Kirkin et al., 2009b; Thurston et al., 

2009; Waters et al., 2009). Since phagosomal membranes displayed ubiquitinated proteins, these 

effectors/adaptors from the selective machinery of autophagy can also be involved in selectivity 

of targets in LAP. Thus, unravel how the molecular mechanisms associated to apoptotic cell 

removal may have impact on tissue homeostasis and pathology (e.g. cardiovascular diseases) 

could be useful to make progress in our understanding about efferocytosis.  

 

4.2. Results 

4.2.1. Phagosomes containing agRBCs and IgG-opsonized particles acquired 

LC3-IIB at very early stages of phagocytosis  

Recently, LAP was characterized in phagosomes carrying different types of dead cells 

(Martinez et al., 2011), so we asked if the engulfment of aged RBC was also able to recruit LC3 to 

their corresponding phagosomes.  For that, eryptosis was triggered by incubating fresh RBCs at 

37o C during 4 days in a glucose-independent buffer. Senescence of RBC, translated by the loss of 

phospholipid asymmetry, were validated through flow cytometry analysis by using Annexin-V, as 

previously described (Viegas et al., 2012). SMC were plated, exposed to eryptotic targets for 

30 min (pulse time) and LC3 association with phagosomes was confirmed by confocal microscopy 

of immunostained samples. Immediately after phagocytosis, the autophagic protein LC3-IIB (the 

isoform B of lipidated LC3) was translocated to nascent phagosomes containing agRBCs, as 

evidenced by phagosomes that appeared as an intense and continuous rim surrounding the 

apoptotic cell (see Figure 4.1A-B).  

To determine the kinetics of LC3 association to phagosomes containing agRBC in time, we 

performed pulse-chase experiments and compared these results with the rates obtained for 

phagosomes containing IgG-coated latex beads. As previously stated, our group has shown that 

phagosomes containing these two different particles differ in the kinetic pattern of maturation, 

suggesting that more discrepancies may exist (Viegas et al., 2012). Additionally, IgG-opsonized 

particles were proposed to induce the recruitment of LC3 through the engagement of Fc-

receptors (Henault et al., 2012; Huang et al., 2009), which was in fact confirmed to our own 

experimental conditions, as seen in Figure 4.1C-D. Because SMC are non-professional phagocytes, 

they do not naturally express the Fcγ-RIIA, so we used an engineered SMC line stably expressing 

the  Fcγ-RIIA,  a  widely  expressed  and  highly  studied  phagocytic  receptor.  We  found  that  
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Figure 4.1. Association of LC3 to phagosomes containing different phagocytic particles. LAP was assessed by the 
acquisition of LC3-IIB by phagosomes. After pulse-chase experiments, cells were fixed, stained with LC3-IIB antibody 
and analyzed under confocal microscopy. A) LC3-IIB staining of a cell containing an LC3-positive phagosome at 
15 min chase time. B) Corresponding merged image showing the internalized agRBC stained with CFSE. C) LC3-IIB 
staining of a cell containing two LC3-positive phagosomes at 15 min chase time. D) Corresponding merged image 
showing the internalized IgG-opsonized particles in DIC. Arrows indicate positive phagosomes. Bars,10 µm. E) 
Quantification of LC3-IIB-positive phagosomes. Engineered SMC were exposed to the different phagocytic particles 
for 30 min and then chased for the time indicated in the graph abscissa. The values are means ± SEM of, at least, 
three independent experiments. At each time point, at least, 100 phagosomes were analyzed. **, p < 0.01 comparing 
differences between LC3-acquisition by phagosomes with agRBC and with IgG-opsonized latex beads. 
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phagosomes containing the different targets (agRBC and IgG-opsonized beads) induced a rapid 

and transient association of LC3 onto their membranes, with peaks reaching a maximum of about 

80% (79.0 ± 1.53%) after 0 min chase for agRBC and about 64% (63.67 ± 7.22%) after 15min chase 

for IgG-opsonized beads. Then, LC3 gradually dissociated from both types of phagosomes, 

probably due to hydrolytic lysosomal degradation and/or recycling of phagosomal components 

(Figure 4.1E). 

Since autophagy, under normal physiological conditions, has a vital role in the 

maintenance of the amino acid pool during cellular starvation (Mizushima, 2007), and because 

our methodology for the phagocytic assays requires the use of serum-free medium, we further 

asked if the nutrient deprivation could affect the LC3 association to agRBC-containing 

phagosomes. Before that, we have determined the effect of the absence of serum in canonical 

autophagy and saw that after only 30 min of amino acid starvation the number of 

autophagosomes increases compared to fed SMC, judged by the higher number of punctuated 

LC3 structures (see Supplemental Figure 1 in the Appendix section). The autophagic activity in 

serum-deprived cells continued to increase until 60min of starvation; then the rates start to 

decline, likely because cells have reached the homeostatic balance. However, as shown in Figure 

4.2, no changes were observed in the LC3 pattern distribution to phagosomes containing agRBC 

when we compared fed and starved SMCs stably expressing FcR, suggesting that LAP machinery is 

independent of the nutritional status of the phagocytes.  
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Figure 4.2. LC3 association to phagosomes containing agRBC in SMC subjected to different nutritional conditions. 
LAP was assessed by the quantification of LC3-positive phagosomes. Engineered SMCs were incubated in medium 
supplemented or not with serum, exposed to agRBC for 30 min, chased for the time indicated in the graph abscissa 
and then immunostained for LC3-IIB. The values are means ± SEM of, at least, three independent experiments. At 
each time point, at least, 100 phagosomes were analyzed.  
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4.2.2. Modulation of autophagic machinery affects LC3 association to 

phagosomal membranes as well as phagolysosome biogenesis 

Since LAP represents a strait connection between phagocytosis and autophagy we decided 

to address the effect of two existing pharmacological drugs, Jak3 Inhibitor VI and Nortriptyline, in 

regulating LC3 translocation and LBPA acquisition during phagosome maturation. These 

compounds, whose actions are predicted to interfere with autophagy, were first evaluated by 

monitoring the “autophagic flux”, a term used to denote the dynamic process of autophagosome 

synthesis, maturation and degradation inside the lysosome (autophagolysosome) together with 

the autophagic substrates (Mizushima et al., 2010).  

In order to inhibit the autophagic flux we used Jak3 Inhibitor VI, a kinase target inhibitor 

characterized by suppress autophagosome formation without affecting the activity of PI3-kinases 

class-I or -III, involved in phagocytosis and phagosome maturation, respectively (Farkas et al., 

2011; Leverrier et al., 2003; Vieira et al., 2001). To determine whether this compound was able to 

modulate the canonical autophagy in SMCs we first tested its effect on LC3 puncta formation by 

comparing fed cells (control) and cells starved with HBSS for 3h in the presence or absence of the 

Jak3 Inhibitor (5uM). In fact, after 30 min incubation the cells treated with the inhibitor almost 

entirely lost the punctuate distribution of LC3, confirming that the autophagic flux was being 

negatively affected (see Supplemental Figure 2 in the Appendix section). To demonstrate the 

effect of the autophagy machinery inhibition in LAP and phagosome maturation we have 

incubated SMC with the inhibitor for 30 min before the addition of the phagocytic particles, 

attempting to minimize its impact on engulfment. Shortly after internalization of agRBC, control 

cells reached their maximum of LC3-positive phagosomes (83.90 ± 3.46%), while the maximum 

for cells incubated with the drug was observed only after 60min of maturation (74.18 ± 3.24%), 

which clearly reveals a delay in the rates of association of LC3 with the phagosomal membrane. 

On the other hand, looking for phagosomes containing IgG-opsonized particles the effect of 

autophagy inhibition was different. In contrast with the results obtained for apoptotic particles, 

Jak3 Inhibitor VI was delaying the LC3 dissociation from the phagosomal membranes. Concerning 

that, we found that after 60 min of phagosome maturation control cells had less than 15% (14.98 

± 3.44) positive-phagosomes for LC3, while at the same time point treated cells still had almost 

32% (31.60 ± 1.31) positive-phagosomes for LC3 (Figure 4.3).  
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Figure 4.3. Effect of autophagy inhibition on LC3 acquisition. LAP was assessed by the quantification of LC3-positive 
phagosomes. Engineered SMC were incubated or not with Jak3 Inhibitor VI, exposed to the agRBC (A) and IgG-
opsonized particles (B) for 30 min, chased for the time indicated in the graph abscissa and then immunostained for 
LC3-IIB. The values are means ± SEM of, at least, three independent experiments. At each time point, at least, 100 
phagosomes were analyzed. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 comparing differences between LC3-
acquisition by phagosomes with agRBC and with IgG-opsonized latex beads.  
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Figure 4.4. Effect of autophagy inhibition in phagosomal maturation. Phagosome maturation was assessed by the 
quantification of LBPA-positive phagosomes. Engineered SMC were incubated or not with Jak3 Inhibitor VI, exposed 
to agRBC (A) and IgG-opsonized particles (B) for 30 min, chased for the time indicated in the graph abscissa and then 
immunostained for LBPA. The values are means ± SEM of, at least, three independent experiments. At each time 
point, at least, 100 phagosomes were analyzed. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 comparing differences 
between LBPA-acquisition by phagosomes with agRBC and with IgG-opsonized latex beads.  
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Next, we addressed the role of Jak3 inhibitor in phagosome maturation by quantifying the 

acquisition of the lysobisphosphatidic (LBPA), a marker of MVB/late endosomes (Kobayashi et al., 

1999). 

For both types of phagocytic particles, the incubation with this drug was leading to a reduction of 

LBPA acquisition by the phagosomes, suggesting that LC3 acquisition is required for 

phagolysosome formation. Altogether, these results show that inhibition of the canonical 

autophagy machinery by Jak3 Inhibitor VI differently modulate LAP according to the phagocytic 

cargo, leading to a delay in the rates of LC3 association and/or dissociation, which in turn 

negatively influence phagosome maturation (Figure 4.4).  

To check if SMCs treated with Nortriptyline, an autophagic inductor whose action is similar 

to starvation-induced autophagy, have opposite effects in LC3 assocition and phagsosomal 

maturation we have performed a set of experiments as described by Sundaramurthy and 

colleagues (Sundaramurthy et al., 2013). To validate the effect of the compound in our 

experimental conditions we examined LC3 puncta formation in SMCs not treated (control) or 

treated with Nortriptyline (10uM) for different incubation times. We found that after 30 min 

incubation was already possible to see an increased autophagic flux, indicated by the higher 

relative number and intensity of LC3 structures (autophagosomes/autophagolysosomes) in cells 

treated with the drug (see Supplemental Figure 3 in the Appendix section). The effect of the 

autophagic induction dictated by Nortriptyline in LAP and phagosome maturation was accessed, 

again, by looking at LC3- and LBPA- acquisition by phagosomal membranes. We saw that in 

treated cells, agRBC-containing phagosomes had an attenuated effect on the rates of LC3 

dissociation, which became more visible after 90min of chase time, where our results indicated 

that around 50% of the phagosomes were still positives for LC3, while in control cells, this value 

as about 20% (Figure 4.5A). Additionally, for the same phagocytic particle (agRBC), we also found 

that Nortriptyline was able to accelerate phagosome maturation, confirmed by the fact that at 

10 min of maturation, approximately 65% (64.90 ± 1.60%) of phagosomes had acquired LBPA in 

Nortriptyline-treated cells, while in control cells only 43% (43.67 ± 4.12%) of phagosomes were 

positives for this late endocytic marker (Figure 4.6A). Concerning the phagosomes containing IgG-

opsonized cargo Nortriptyline do not appear to exert any significant effect neither in LAP nor in 

phagosome maturation kinetics (Figures 4.5B and 4.6B). Thus, these results emphasize that 

phagosomes obtained from different phagocytic particles and internalized by different receptors 

dissimilarly mobilize autophagic intermediates to phagosomal maturation. 
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Figure 4.5. Effect of autophagy induction on phagosomal acquisition of LC3. LAP was assessed as described before. 
Engineered SMC were incubated or not with Nortriptyline, exposed to agRBC (A) and IgG-opsonized particles (B) for 
30 min and then chased for the time indicated in the graph abscissa. The values are means ± SEM of, at least, three 
independent experiments. At each time point, at least, 100 phagosomes were analyzed. **, p < 0.01 comparing 
differences between LC3-acquisition by phagosomes with agRBC and with IgG-opsonized latex beads. .  
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Figure 4.6. Effect of autophagy induction on phagosome maturation. Phagosome maturation was assessed by the 
quantification of LBPA-positive phagosomes. Engineered SMC were incubated or not with Nortriptyline, exposed to 
agRBC (A) and IgG-opsonized particles (B) for 30 min and then chased for the time indicated in the graph abscissa. 
The values are means ± SEM of, at least, three independent experiments. At each time point, at least, 100 
phagosomes were analyzed. **, p < 0.01 comparing differences between LBPA-acquisition by phagosomes with 
agRBC and with IgG-opsonized latex beads. 
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4.2.3. Proteins on agRBC- or IgG-opsonized particles-containing phagosomes 

are ubiquitinated 

Despite the major degradative pathway for autophagic substrates is considered non-

specific, recent evidences demonstrated that some type of specific autophagic targeting 

mechanism also plays a role (Rogov et al., 2014). These selective mechanisms are based on 

proteins dedicated to tag and recognize distinct targets for degradation. Usually, the tag is 

mediated by ubiquitin, whereas recognition is conferred by autophagy receptors. To test whether 

ubiquitin can serve as a general signal to specifically target phagosomes for LAP, we performed 

pulse-chase experiments and immunostained the samples for the presence of poly-ubiquitinated 

proteins. Indeed, phagosomes containing agRBC and IgG-coated beads confirmed, by 

immunofluorescence followed by microscopy analysis, the presence of poly-ubiquitinated 

substrates on their membranes (Figure 4.7). By establishing a time course for the appearance of 

this tag in phagosomal membranes, we found that shortly after ingestion (0min chase) of both 

types of particles, SMC presented a high number of phagosomes positives for ubiquitinated 

components (around 60% for both particles). However, as the maturation progresses it is 

possible to distinguish two different patterns of dissociation, wherein phagosomes containing 

IgG-opsonized particles more quickly lose their link with ubiquitinated elements.  

These results raised the question whether ubiquitin serves as a signal to promote LAP. 

Then, based on this outcome, we decided to address if LC3 adaptors that also bind ubiquitinated 

cargo via ubiquitin-binding domains were recruited to the phagosomal membranes.  

 

4.2.4. The recruitment of LC3-adaptor proteins is cargo dependent 

Because the phagosomes containing the different particles presented ubiquitinated 

proteins in their membranes, we further investigated the requirement of some described 

autophagy receptors/adaptors for this process, attempting to determine whether, like in 

canonical autophagy, these adaptor proteins could also have a role in provide LAP specificity 

according to the different phagosomal cargoes. The human genome encodes, at least, four 

ubiquitin-binding receptors involved in autophagy but here we have focused only in three: the 

signaling adaptor scaffold protein p62, NBR1 and NDP52 (Shaid et al., 2013).  All of them share 

the ability to simultaneously interact with the lipidated form of LC3 in autophagosomes through a  
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Figure 4.7. Distribution of ubiquitinated proteins on phagosomal membranes in function of time. After pulse-chase 
experiments, cells were fixed, immunostained for poly-ubiquitinated substrates and analyzed under confocal 
microscopy. A) Poly-ubiquitin staining of a cell containing an ubiquitin-positive phagosome at 15 min chase time. B) 
Corresponding merged image showing the internalized agRBC stained with CFSE. C) Poly-ubiquitin staining of a cell 
containing three ubiquitin-positive phagosomes at 15 min chase time. D) Corresponding merged image showing the 
internalized IgG-opsonized particles in DIC. Arrows indicate positive phagosomes. Bars,10 µm. E) Quantification of 
ubiquitin-positive phagosomes. Engineered SMC were exposed to the different phagocytic particles for 30 min and 
then chased for the time indicated in the graph abscissa. The values are means ± SEM of, at least, three independent 
experiments. At each time point, at least, 100 phagosomes were analyzed. *, p < 0.05; **, p < 0.01 comparing 
differences between ubiquitin-acquisition by phagosomes with agRBC and with IgG-opsonized latex beads. 
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LIR (LC3 Interaction Region) motif and with ubiquitinated substrates targeted to removal through 

an UBD (Ubiquitin Binding Domain), as illustrated in the scheme below:  

 

 

 

Since p62 is the best-described adaptor protein and acts as a universal receptor for 

ubiquitinated cargo under physiological and pathological conditions, we have decided to initiate 

our investigation by testing its intracellular distribution during phagocytosis. As exhibited in 

Figure 4.8, after pulse-chase experiments, phagosomes containing agRBC or IgG-opsonized beads 

displayed completely different patterns of association for p62. Remarkably, phagosomes 

containing dying cells acquired p62 with a kinetic profile quite similar to that found for 

phagosomal protein ubiquitination. We observed the maximal percentage of p62 and 

ubiquitinated positive-phagosomes between 15 and 30 min chase, then proteins progressively 

dissociated from phagosomes. Meanwhile, phagosomes loaded with IgG-opsonized particles 

showed inexpressive levels of p62 along the time. Thus, from this set of results we can conclude 

that p62 is preferably acquired by agRBC-containing phagosomes than by IgG particles-containing 

phagosomes. 

Once p62 can directly interact with NBR1 (through a PB1 domain), together acting as a 

cargo receptor for ubiquitinated substrates in classical autophagy, we have analyzed the 

association of this other autophagy receptor with phagosomal membranes (Lamark et al., 2003). 

As seen in Figure 4.9, NBR1 was recruited to both types of phagosomes, albeit with an unusual 

kinetic profile for phagosomes containing IgG-opsonized particles. For all the other markers 

analyzed so far we saw practically the same pattern of distribution, that is, a higher percentage of 

positive-phagosomes at early stages of maturation, followed by a progressive loss, reaching low 

percentage values at later stages, which is totally understandable by reasons already discussed 

(lysosome degradation versus recycling). However, for phagosomes containing IgG-coated beads 

the association of NBR1 did not appear to be attenuated over time, exhibiting quite constant 

levels along the maturation process. In contrast, agRBC-containing phagosomes did not 

demonstrate such surprising features in NBR1 recruitment, and even behaved similarly to the 
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pattern obtained for p62, with peak values of positive phagosomes obtained at around 30min 

chase (65.57 ± 3.58%).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Acquisition of p62 by phagosomal membranes. After pulse-chase experiments, cells were fixed, stained 
for p62 and analyzed under confocal microscopy. A) p62 staining of a cell containing an LC3-positive phagosome at 
30 min chase time. B) Corresponding merged image showing the internalized agRBC stained with CFSE. C) p62 
staining of a cell containing one p62-negative phagosome at 0 min chase time. D) Corresponding merged image 
showing the internalized IgG-opsonized particle in DIC. Arrow indicates a positive phagosome and asterisk indicates a 
negative phagosome. Bars,10 µm. E) Quantification of p62 positive-phagosomes. Engineered SMC were exposed to 
the different phagocytic particles for 30 min and then chased for the time indicated in the graph abscissa. The values 
are means ± SEM of, at least, three independent experiments. At each time point, at least, 100 phagosomes were 
analyzed. *, p < 0.05; **, p < 0.01 comparing differences between p62-acquisition by phagosomes with agRBC and 
with IgG-opsonized latex beads. 
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Figure 4.9. Acquisition of NBR1 by phagosomal membranes. After pulse-chase experiments, cells were fixed, stained 
for NBR1 and analyzed under confocal microscopy. A) NBR1 staining of a cell containing a NBR1-negative phagosome 
at 60 min chase time. B) Corresponding merged image showing the internalized agRBC stained with CFSE. C) NBR1 
staining of a cell containing four NBR1-positive phagosomes at 60 min chase time. D) Corresponding merged image 
showing the internalized IgG-opsonized particles in DIC. Arrows indicate positive phagosomes and asterisk indicates 
a negative phagosome. Bars,10 µm. E) Quantification of NBR1 positive-phagosomes. Engineered SMC were exposed 
to the different phagocytic particles for 30 min and then chased for the time indicated in the graph abscissa. The 
values are means ± SEM of, at least, three independent experiments. At each time point, at least, 100 phagosomes 
were analyzed. *, p < 0.05 comparing differences between NBR1-acquisition by phagosomes with agRBC and with 
IgG-opsonized latex beads. 
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Figure 4.10. Association of NDP52 with phagosomal membranes. After pulse-chase experiments, cells were fixed, 
stained for NDP52 and analyzed under confocal microscopy. A) NDP52 staining of a cell containing a NDP52-positive 
phagosome at 30 min chase time. B) Corresponding merged image showing the internalized agRBC stained with 
CFSE. C) NDP52 staining of a cell containing three NDP52-negative phagosome at 30 min chase time. D) 
Corresponding merged image showing the internalized IgG-opsonized particles in DIC. Arrow indicates a positive 
phagosome and asterisk indicates a negative phagosome. Bars,10 µm. E) Quantification of NDP52 positive-
phagosomes. Engineered SMC were exposed to the different phagocytic particles for 30 min and then chased for the 
time indicated in the graph abscissa. The values are means ± SEM of, at least, three independent experiments. At 
each time point, at least, 100 phagosomes were analyzed. **, p < 0.01; ***, p < 0.001 comparing differences 
between NDP52-acquisition by phagosomes with agRBC and with IgG-opsonized latex beads. 
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Likely NBR1, the cargo receptor NDP52 also interacts with p62; however, instead of directly 

bind to each other, they are independently recruited to autophagosomes, forming protein 

complexes (Cemma et al., 2011). To test whether NDP52 is also acquired by phagosomal 

membranes, we immunostained samples for this marker after pulse-chase experiments and 

confirmed that NDP52 was effectively acquired by phagosomes carrying both phagocytic 

particles, although with different kinetic patterns (Figure 4.10). Phagosomes containing IgG-

opsonized particles showed a regular distribution of NDP52 over time, with almost 70% 

(67.46 ± 0.15%) of positive-phagosomes at 0min comparing to around 10% (9.30 ± 4.96%) at 

90min chase. Beyond that, agRBC-containing phagosomes showed a delay on NDP52 association 

and dissociation compared with those carrying IgG-coated beads.  

 

4.2.5. Some selective autophagy effectors are present in the phagocytic cups 

Phagosome formation is preceded by a dynamic set of events that, ultimately, induce actin 

cytoskeleton rearrangement in order to support pseudopod extension at sites of particle 

engulfment. This reorganization yields a cup-shaped invagination or protrusion of the plasma 

membrane, named phagocytic cup (Lee et al., 2007). Such structure is enriched in actin filaments, 

which greatly contributes to generate the forces that alter the shape of the cell surface. Once all 

autophagy effectors tested in this work were acquired by phagosomes at very early stages of 

phagosome maturation, we investigated whether they were being acquired even before that, 

meaning by the phagocytic cups. For that, efferocytes were fed with agRBC or IgG-opsonized 

beads for 30min, fixed and stained for LC3-IIB, p62, NBR1, NDP52, as well as for cortical-actin (F-

actin). Microscopic analysis revealed that LC3 and NDP52 were not exhibited in the phagocytic 

cup of any of the phagocytic particles offered to SMC; whereas NBR1 was present in the 

phagocytic cups of both particles. More selective, p62 was found only in the phagocytic cups of 

agRBC-fed SMC, suggesting that this protein may have a role in efferocytosis (Figure 4.11).  

Altogether, our findings reinforce that the nature of the phagocytic targets dictates the 

differences in the interactions between phagosomes and autophagy effectors. Because p62 has 

shown the most exciting differences regarding the removal of dying cells in comparison with IgG-

opsonized particles, a more detailed investigation about its functional relevance is mandatory to 

advance the characterization of the efferocytic process.  
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Figure 4.11. Association of autophagy effectors with the phagocytic cup of agRBC. SMC were fed with agRBC for 
30min, fixed, and co-stained for actin filaments assembly using Cy5-phalloidin (in blue) and autophagy effectors (in 
red). A) Co-staining of actin-filament and LC3-IIB at the site of agRBC binding. B) Co-staining of actin-filament and 
p62 at the site of agRBC binding. C) Co-staining of actin-filament and NBR1 at the site of agRBC binding. D) Co-
staining of actin-filament and NDP52 at the site of agRBC binding. Arrows and arrowheads indicate the phagocytic 
cups.  Bars,10 µm.  

 

4.2.6. p62 is not necessary for LC3 recruitment but its absence delays 
phagolysosome biogenesis 

Regarding the residual levels of p62 detected in IgG-opsonized particles-containing 

phagosomes in contrast with the results obtained for apoptotic cells containing phagosomes, we 

decided to explore further the role of the signaling adapter p62 only in efferocytosis (Moscat et 

al., 2007). For this purpose we got bone marrow-derived macrophages (BMDM) from wild-type 

and p62 knockout (KO) mice and further analyzed LC3 acquisition and phagosomal maturation. 

According to our results, p62 is not important for the recruitment of LC3 to phagosomal 
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membranes. However, unlike phagosomes in wild-type macrophages, p62-deficient cells did not 

proper dissociate LC3 from phagosomes, showing quite constant levels of this marker over time 

(Figure 4.12A). Furthermore, BMDM lacking p62 affected phagolysosome biogenesis, judged by 

the acquisition of the lysosome membrane marker LAMP-1.  As we can see in Figure 4.12B, cells 

from p62-KO animals demonstrated a delay in reaching the lysosomes compared to wild-type 

cells.  
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Figure 4.12. Requirement of p62 for LAP and phagolysosome formation in efferocytosis. BMDM from WT (black 
bars) or p62-KO (grey bars) mice were challenged with agRBC for 30 min and then chased for the time indicated in 
the graph abscissa. LAP was assessed by the quantification of LC3-positive phagosomes (A), while phagolysosome 
formation by the quantification of LAMP-1-positive phagosomes (B). The results are mean ± SD of two independent 
experiments. 
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4.3. Discussion 

The quick removal of dying cells is a key final step, if not the ultimate goal of the apoptotic 

cell program. Over the last years, significant progress has been made in understanding the events 

involved in prompt efferocytosis, although our knowledge about the stages downstream from 

internalization remains unclear (Hochreiter-Hufford and Ravichandran, 2013). We have previous 

reported that the interactions between dying cells-containing phagosomes with components of 

the endocytic pathway are different from the behavior of phagosomes containing IgG-opsonized 

particles, the best understood phagocytic model (Viegas et al., 2012). Such observation stated 

that the nature of the phagocytic target controls the vesicular trafficking required for 

phagolysosome formation. In this study we aimed at clarifying some more discrepancies related 

to the maturation of phagosomes carrying different phagocytic particles, focusing on the role of 

autophagy effectors for the successful completion of the efferocytic process.  

Sanjuan and collaborators were the first to identify LC3 as an important participant in the 

removal of cargo contained into single-membrane phagosomes (Sanjuan et al., 2007). From 

there, LAP has been suggested to contribute to the degradation of numerous phagocytic cargoes, 

including dying cells (Martinez et al., 2011). Our results showed that LC3 is not displayed on the 

phagocytic cups formed by agRBC and IgG-opsonized particles, but is quickly translocated to the 

nascent phagosomes containing the different internalized cargoes, demonstrating similar kinetics 

of association and dissociation throughout the degradative pathway. This outcome strengthens 

that LAP certainly impacts upon the immune system, by act as a defense mechanism against 

autoimmune and inflammatory responses generated by defective efferocytosis (Erwig and 

Henson, 2007; Kim and Overholtzer, 2013b; Martinez et al., 2013). Furthermore, the conjugation 

of LC3 to phagosomes containing agRBC proved to be totally independent of the nutritional 

status of the phagocytes, reinforcing that LAP does not relies on the inducer machinery of 

autophagy, composed by the ULK-complex and mTOR, upstream regulators that are sensitive to 

the environmental conditions of nutrients and metabolic stress.  

The translocation of LC3 to dead cells-containing phagosomes was previously 

demonstrated to be dependent on the engagement of the PtdSer-receptor TIM4, and does not 

seems to occur in the absence of Atg5, Atg7 and Beclin1, regulators of the classical autophagic 

machinery (Martinez et al., 2011). Interestingly, Atg7-deficient macrophages produce increased 

levels of pro-inflammatory cytokines and significantly less anti-inflammatory mediators when fed 

with cells undergoing apoptosis (Martinez et al., 2011). Very elegant in vivo data using mouse 

model of advanced atherosclerosis, characterized by sustained inflammation, have shown that 
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macrophage lacking Atg5 enhances apoptosis and NADPH oxidase-mediated oxidative stress, 

simultaneously rendering the apoptotic cells less well recognized by efferocytes, which indicates 

that autophagy itself is occurring, but also LAP is an operational process in atherogenesis (Liao et 

al., 2012). On the other hand, the exposure of self-autoantigens resulting from the leakage of 

secondary necrotic cells was reported to form DNA-immune complexes that are targeted by anti-

nuclear antibodies. The internalization of this immune reactive complex, in turn, requires the 

engagement of FcγR and also triggers the recruitment of autophagic elements in order to restrict 

autoimmunity (Henault et al., 2012). Thus, it becomes clear that Fc-mediated phagocytosis is also 

particular involved in LAP and subsequently in scenarios of non-resolving inflammation, such as 

seen in atherosclerosis (Tabas, 2010). Altogether, these recent findings justify, at least in part, 

our specific interest in these phagocytic models.  

To further understand the functional relevance of the recruitment of LC3 to phagosomes 

containing our selected phagocytic models, pharmacological drugs were used in order to inhibit 

or induce the canonical autophagy machinery. Indeed, the effects of such modulation were 

reflected in LAP and phagosome maturation distinctively according to the type of phagosome. By 

inhibiting the autophagic flux using Jak3 inhibitor VI we found that phagosomes containing dying 

cells presented a delay in LC3 association, while IgG-opsonized particles induced a delay in LC3 

dissociation from the membrane of their containing phagosomes. Since the inhibition of 

autophagy directly affected LAP we conclude that the unknown target of Jak3 Inhibitor VI is likely 

a protein shared by both machineries, otherwise such effect would not be so impressive. A good 

candidate could be the cysteine protease Atg4, since this protein plays a dual role in autophagy, 

catalyzing simultaneously the conjugation of LC3 to the lipid phosphatidylethanolamine (PE) 

during LC3 activation and in the deconjugation of LC3-PE after autophagolysosome formation (Yu 

et al., 2012). In addition, although Jak3 inhibitor VI has differently affected the recruitment of LC3 

to phagosomes, the inhibition of autophagy was ultimately translated into delays in 

phagolysosome formation for both types of internalized particles, demonstrating the role of LAP 

in facilitates phagosome maturation and probably cargo degradation.  

Curiously, when we increase the autophagic flux by inducing autophagosome formation 

using Nortriptyline we were not able to see such remarkable changes, only a slight delay in LC3 

dissociation at later stages of phagosomal maturation. Most probably, the machinery shared 

between LAP and autophagy was sequestered by canonical autophagy, which was clearly favored 

under these circumstances. The elements involved in this competition could be the regulatory 

machinery of autophagy (e.g. Atg5, Atg7 or Beclin1), but also endocytic components (e.g. ESCRT, 
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HOPS and SNAREs complexes) and, of course, lysosomes (Funderburk et al., 2010; Kim et al., 

2012; Martinez et al., 2011). If LC3 association with phagosomes is supposed to assist 

phagolysosome formation and Nortriptyline did not accelerated the process it is easy to 

understand why the maturation was not much affected as well, judged by the fact that LBPA was 

similarly acquired by phagosomes from treated and untreated cells. 

The requirement of members from the selective machinery of autophagy was never 

addressed in the context of LC3 translocation to single-membrane vesicles (LAP). Ubiquitination is 

a classic signal for target cytosolic substrates for autophagic degradation; whereas in endocytosis 

this process was described to be required for formation of acidic multivesicular structures and 

sorting of endosomal proteins into intraluminal vesicles. The sorting of ubiquitinated proteins 

coordinated by the ESCRT complex are thought to be important in receptor down-regulation and 

antigen presentation, which is central to the function of phagosomes (Katzmann et al., 2002). 

Noteworthy, the activation of FcγR was reported to trigger protein ubiquitination, whereas 

normal FcR clearance from phagosomes also requires ubiquitination (Booth et al., 2002; Lee et 

al., 2005). In this scenario is not surprising that we have found the presence of ubiquitinated 

substrates on the membrane of both types of phagosomes. Actually, our data regarding the 

kinetic profile of this marker fits well with the literature, since the peak values found for poly-

ubiquitinated substrates coincides with the time that is supposed the phagosomes interact with 

MVB. Additionally, phagosomes carrying IgG-opsonized particles have lost ubiquitinated 

components faster than agRBC-containing phagosomes, what could be explained by the fact that 

phagosomes loaded with IgG-coated particles mature faster compared with phagosomes loaded 

with dying cells (Viegas et al., 2012). 

Since ubiquitination occurs as part of the host autophagic response to tag potential targets 

and because recent advances have indicated that adaptor proteins serve to connect ubiquitin 

with LC3 in order to promote autophagosome formation and selectivity of substrates in canonical 

autophagy, we further evaluated if these autophagy effectors are also involved in LAP (Raasi et 

al., 2005). For our entire surprise, the autophagy receptors p62, NBR1 and NDP52 were recruited 

to phagosomes containing agRBC and IgG-opsonized particles, although with some divergences in 

their pattern of acquisition over time. The differences found may be due to the signals triggered 

by the engagement of distinct phagocytic receptors, confirming again that the essence of the 

phagocytic target is important to outline the process of interaction with the cellular pathways 

that ultimately lead to the degradation of phagosomal contents. The residual levels of p62 

recruited to phagosomes carrying IgG-opsonized cargo suggest that this protein apparently has a 
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negligible role in FcR-mediated phagocytosis. On the other hand, p62 rapidly associated with the 

membrane of nascent phagosomes containing dying cells and was even present on the 

phagocytic cup formed around the attached agRBC, implying that it could be specifically involved 

in efferocytosis. By using p62-deficient cells we proved that despite having a role in LC3 

phagosomal dissociation and subsequently in phagolysosome biogenesis, this signaling adapter is 

not connected to LC3 recruitment at all. Based on the involvement of p62 in several cellular 

signaling process that seem unrelated to autophagy, it might be possible that p62 is implicated in 

the recognition of cells undergoing apoptosis, or simply works as a component that ensures LAP 

specificity (Bitto et al., 2014; Lee et al., 2010b; Pankiv et al., 2007). So, we can definitely exclude 

the possibility that p62 act as an adaptor protein promoting LC3 recruitment.  

The adaptor protein NBR1 was recruited to the phagocytic cups of both particles; 

meanwhile NDP52 was not required at this early stage of phagosome formation in none of the 

particles we used. In contrast to others autophagy receptors that non-specifically bind to multiple 

Atg8/LC3 family members, NDP52 binds with more affinity to the LC3C isoform (von Muhlinen et 

al., 2012). Thus, in line with the involvement of NDP52 in LAP we may intuitively assume that the 

isoform LC3C must also perform a function in this non-canonical requirement of autophagy 

machinery. The results found for NBR1 and NDP52 also reinforce the principle that different 

cargoes distinctively modulate the phagocytic response, since the recruitment of each varied 

according to the target involved. Besides, although we were able to clarify some temporal issues 

about the recruitment of autophagy members to phagosomal membranes, their main function, 

the hierarchical requirement and the possibility of cooperativity remains to be unraveled. 

In summary, this data show for the first time the recruitment of the selective machinery of 

autophagy in LAP, a non-canonical LC3 pathway, thus enhancing the number of players that can 

be target in therapies aimed at the resolution of inflammation and autoimmunity triggered by 

insufficient or impaired efferocytosis. Nevertheless, many questions still remain open, and 

elucidation of their answers is currently one of the most important tasks in the field. 
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General discussion and future perspectives 

 

Efferocytosis is one of the oldest fundamental cellular processes in multicellular organisms 

and, possibly, it represents the final aim of the apoptotic cell program. This very efficient 

mechanism of removal is controlled by the coordinated action of dying cells and phagocytes, 

whose interaction modulates signaling pathways underlying recognition, binding, engulfment, 

digestion and the responses that keep this process immunologically silent (Hochreiter-Hufford 

and Ravichandran, 2013; Poon et al., 2014). Indeed, even animals lacking adaptative immune 

responses do not show anything resembling inflammation or autoimmunity in the presence of 

uncleared dying cells (Gardai et al., 2006; Mochizuki et al., 1996). However, a defective clearance 

(failure or delay) of corpses brought severe complications when vertebrates increased their 

immune complexity to deal with pathogens that, in turn, have developed parallel ways to avoid 

detection, exploiting this new found niche in order to survive. Therefore, the evolution of the 

immune system is a direct consequence of the selection pressure exerted by microbes on 

multicellular organisms, increasing complexity in such way that expanded the chances of eliciting 

autoimmune reactions (Green et al., 2009; Gregory, 2009).  

Unengulfed apoptotic cells have the propensity to leak their cellular contents over time, 

resulting in the exposure of self-antigens and a break in the immune tolerance (Savill and Fadok, 

2000). Thus, deficient removal of apoptotic cells coupled with impaired phagosome maturation 

have been linked to the onset of several autoimmune and inflammatory human disorders, such 

as atherosclerosis, neurodegenerative diseases and lupus erythematosus (Elliott and 

Ravichandran, 2010; Moore and Tabas, 2011; Nagata et al., 2010). In this context, the search for 

therapies based on the modulation of the efferocytic response makes it imperative a detailed 

view about the key players, molecular mechanisms and pathways involved. Although much 

attention has been focused on the role of apoptotic cell-derived ligands and phagocyte receptors 

as well as to the post-engulfment signals mediating efferocytosis, very few is known about the 

processing of dying cells inside the phagosome, especially into mammalian systems (Erwig et al., 

2006). Therefore, the challenge in this thesis was to advance our rudimentary knowledge about 

efferocytosis, focusing on steps downstream from internalization and in some unique aspects 

that differentiate the removal of apoptotic cells from the better understood phagocytic process, 
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the Fc-mediated phagocytosis. Moreover, by working with a cell type actively involved with the 

apoptotic cell clearance in blood vessels, i.e. smooth muscle cells, we could assess in vitro 

efferocytosis in cells that play a very important role in atherosclerosis, one of the diseases that 

kills more nowadays and a topic of great interest in our group (Kolb et al., 2007; Moore and 

Tabas, 2011; Schrijvers et al., 2005). 

In this work we were able to systematically characterize the process of maturation of 

phagosomes containing agRBC and IgG-opsonized particles. By comparing the kinetic of 

interaction between the distinct types of phagosomes with components from different stages of 

the endocytic pathway, we found that dying cells induced a slower process of maturation 

compared with the process triggered by IgG-coated particles. For all markers analyzed: EEA-1, 

YFP-GL-GPI, LBPA, Lysotracker and Rhodamine-Dextran (used to identify lysosomes) the result 

was the same, stating that the nature of the phagocytic target modulates the vesicular trafficking 

involved in cargo degradation. If we assume that in mammals the accumulation of dying cells is 

very rare and that their immune responses do not evolved to cope with this specific problem, it is 

not surprising that phagosomes containing agRBC have shown the slowest process of maturation. 

Maybe our system is not fully prepared yet for such demand. The loss of membrane phospholipid 

asymmetry and early exposure of PtdSer have been documented on many different cell types 

undergoing apoptosis and the mechanisms mediating this membrane alteration are an area of 

active study (Fadok et al., 2001; Fadok et al., 1992; Fadok et al., 1998c; Ravichandran, 2010). The 

role of this phospholipid in promoting apoptotic cell internalization is still not completely clear, 

but seems that PtdSer alone is insufficient to mediate efferocytosis (Bratton and Henson, 2008; 

Hoffmann et al., 2001; Somersan and Bhardwaj, 2001). Moreover, according to our findings even 

if we increase the levels of PtdSer on the cell surface of apoptotic cells, it is still not enough to 

improve binding and engulfment, or influence phagosome maturation, suggesting that beyond a 

certain threshold more PtdSer does not affect efferocytosis. 

In addition, we have shown that the endocytic machinery is not the only responsible for the 

processing of phagosomal contents, and that autophagic elements are more implicated in 

efferocytosis than previously thought. The link between phagocytosis and autophagy is recent 

and the non-canonical recruitment of the autophagic marker LC3 to phagosomes was suggested 

to promote phagosome maturation by accelerating lysosomal fusion, acidification and 

degradation of the cargo (Kim and Overholtzer, 2013a; Martinez et al., 2011; Sanjuan et al., 

2007). We were able to go further and have identified effectors previously reported in the classic 

machinery of autophagy on the phagosomal membrane of our models of phagocytic particles. 
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Dying cells and IgG-opsonized particles rapidly induced the translocation of LC3 to their 

phagosomes, which was proved to be susceptible to the manipulation of the canonical 

autophagic machinery. In turn, LAP modulation has interfered in the communication between 

phagosomes and endocytic compartments, so disturbing phagosome maturation. Intriguingly, the 

ubiquitination of phagosomal proteins was observed as well as the recruitment of autophagy 

receptors, which should not be a mere coincidence, since this is exactly the same machinery used 

to confer autophagy selectivity of substrates (e.g. aggrephagy, mitophagy, xenophagy, etc) 

(Rogov et al., 2014; Shaid et al., 2013). Again, the different phagocytic targets have determined 

selectivity for the adaptors proteins recruited in each circumstance, and also induced differences 

regarding kinetics of association and dissociation with the effectors investigated. The protein p62 

has shown the most striking results, being committed more to efferocytosis rather than to Fc-

mediated phagocytosis. Although we have evidenced that p62 is not involved in LC3 recruitment, 

its role remains be further investigated, since BMDM lacking this signaling adapter have shown 

defective phagosome maturation. 

 

Based on the work compiled in this thesis, the following conclusions have been drawn: 

• Phagosomes containing IgG-opsonized particles mature faster than phagosomes 

containing dying cells;  

• Aged RBC membrane enrichment in PtdSer does not affect phagocytosis or 

phagosomal maturation; 

• LC3-IIB is translocated to phagosomal membranes and is required for phagosome 

maturation; 

• Both phagocytic targets induce the ubiquitination of phagosomal components; 

• The autophagy adaptors p62, NBR1 and NDP52 are recruited by the studied 

phagosomes with a specific demand and dissimilar kinetic of association and 

dissociation over time; 

• The protein p62 is not involved in LC3 recruitment to phagosomal membranes in 

efferocytosis. 
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Finally, the data presented in this thesis has expanded our knowledge concerning the later 

stages of efferocytosis, showing that the molecular cascades controlling this process are much 

more sophisticated than previously thought. We hope this work will contribute to broaden the 

perspectives in the field, helping in the identification of host molecular targets for drug 

development, raising the possibility that patients might benefit from treatments that aim both 

endocytic and LAP machineries, in order to accelerate apoptotic cell degradation, as a strategy to 

fight human pathologies caused by defective efferocytosis. 
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This section contains the supplemental information regarding the control experiments of 

some results presented in the Chapter IV of this thesis.  

 

Supplemental Figure 1: 

Autophagy, under normal physiological conditions, has a vital role in the maintenance of 

the amino acid pool during cellular starvation, thus protecting cells by managing stressful 

conditions to keep the energetic balance (Cecconi and Levine, 2008). Because our methodology 

for the phagocytic assays to further access LAP requires the use of serum-free medium, we first 

investigated the effect of the absence of serum in canonical autophagy. For that, adherent SMC 

were kept in the presence or absence of serum for different time points. We were able to 

observe that after 30 min of amino acid starvation the relative number of autophagosomes 

and/or autophagolysosomes increased comparing starved and  fed SMC, judged by the higher 

number of punctuated LC3 structures (Figure S1). The autophagic activity in serum-deprived cells 

continued to increase until 60min of starvation; then the rates start to decline, likely because 

cells have reached the homeostatic balance (data not shown) (Mizushima and Yoshimori, 2007).  

 

 

Figure S1. Canonical autophagy in SMC is affected by serum-starvation. SMC were untreated (no starvation) or 
treated (starvation) during 15 and 30min in a serum-free medium, followed by fixation and immunostaining for LC3-
IIB. The images were converted into a color-coded based scale representing increasing fluorescence intensity using 
the software ImageJ. Hotter colors indicate the most intense fluorescence, while cooler colors represent the weakest 
fluorescence intensity. 
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Supplemental Figure 2: 

To determine the effect of autophagy inhibition in LAP we first validated the role of Jak3 

inhibitor VI in canonical autophagy itself. This compound is characterized by suppress 

autophagosome formation without affecting the PI3-kinases class-I or -III (Farkas et al., 2011). 

The activity of PI3K class-I is crucial to phagocytosis, while class-III is essential to phagosome 

maturation (Vieira et al., 2001), whose activities are necessary for LAP regulation. Curiously, the 

most commonly used pharmacological approaches to inhibit autophagy in vitro involves the use 

of PI3K inhibitors such as Wortmannin, LY294002 or 3-MA (Mizushima et al., 2010). To test Jak3 

inhibitor VI activity, SMC were starved using HBSS for 3h to improve LC3 signal (which become 

easier to visualize the differences) and then treated with Jak3 inhibitor VI (5μM) for 30min. By 

comparing LC3 puncta formation in fed SMC (control) and SMC starved with HBSS in the presence 

or absence of  Jak3 Inhibitor VI, we observed that after 30 min of incubation with the compound 

the HBSS starved cells almost entirely suppressed the punctuate distribution of LC3, confirming 

that the autophagic flux was being negatively affected (Figure S2).  

 

 

 

Figure S2. Effect of Jak3 inhibitor VI in canonical autophagy. SMC were untreated (control) or starved in HBSS for 3h  
in the presence or absence of Jak3 inhibitor VI (5μM) for 30min. Then cells were fixed and the autophagic flux was 
assessed by immunostaining cells for LC3-IIB. Bar, 10μm.  
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Supplemental Figure 3: 

 Autophagy is a dynamic process, so static measurements are not appropriate. Thus, the 

accumulation of autophagosomes is not always indicative of autophagy induction and may 

represent either the increased generation of autophagosomes and/or a block in autophagosome 

maturation and degradation (autophagic flux). In order to induce autophagy we have used 

Nortriptyline, an autophagic inductor whose action is similar to starvation-induced autophagy 

(Sundaramurthy et al., 2013). To evaluate the effect of autophagy induction in LAP we first 

validated the effect of Nortriptyline in canonical autophagy by examining LC3 puncta formation in 

SMC untreated or treated with Nortriptyline (10uM) for different time points in the presence or 

absence of the lysosomotropic reagent Chloroquine (Shiratsuchi et al., 2004). Cells cultured with 

choroquine, an agent that impairs lysosomal acidification, accumulate LC3-II even under normal 

(non starved) conditions because turnover of LC3-II by basal autophagy is blocked (Tanida et al., 

2005). We found that after 30 min of incubation with the drug was already possible to see an 

increased autophagic flux, indicated by the higher relative number and intensity of LC3 structures 

(autophagosomes/ autophagolysosomes) in cells treated with Nortriptyline (Figure S3). The effect 

was more pronounced when cells were co-incubated with chloroquine (100μM) for 60min, 

visualized by the bigger size and fluorescent intensity of the vesicles, which confirm that 

canonical autophagy was induced by increase autophagosome formation.  

 

 

 
Figure S3. Effect of Nortriptyline in canonical autophagy. SMC were untreated (control) or treated with 
Nortriptyline (5μM ) for 30min in the presence or absence of chloroquine (100μM) for 60min. Then cells were fixed 
and the autophagic flux was assessed by immunostaining cells for LC3-IIB. Bar, 10μm.
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