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Abstract  

Energy use in the building sector constitutes a major proportion of energy 

consumption and emissions in European Union. Distributed Generation (DG) sources, 

namely cogeneration and solar technologies, are expected to play an important role in 

future energy supply mix of building sector. However, the optimal design and 

operation of cogeneration is a complex task, due to the diversity of variables in play, 

namely different types of building energy demands (electrical, heating, cooling) and 

their variation, dynamic fuel (natural gas) and electricity prices, and fixed and variable 

costs of different types of DG. This becomes more complex by coupling solar thermal 

and photovoltaic technologies. At the same time, the liberalization of electricity 

market allows exporting onsite produced electrical energy to the grid; moreover, the 

operational strategy of DG should meet the national policy frameworks, if the aim is to 

benefit from such schemes.  

Additionally, considering the high impacts of the building sector, any rigorous 

assessment of building energy systems should also incorporate environmental aspects, 

adopting a Life-Cycle (LC) perspective. A LC Assessment (LCA) of DG should include 

stages related to their construction and operation, as well as their fuel upstream 

emissions, i.e. Natural Gas (NG). The upstream emissions of NG varies based on its 

source, type (conventional vs. unconventional) and state of delivery (in the form of 

Liquefied Natural Gas (LNG) or gas). Similarly, the impact of solar systems is affected by 

meteorology and solar radiation, which is determined by geographical location. 

Therefore, a proper assessment of DG calls for an LC framework properly modeled for 

the location (Portugal), which also incorporates the appropriate fuel input (NG) 

upstream emissions based on its sources of supply. 

The objective of this doctoral research is to present a modelling framework to optimize 

the design and operation of DG for the Portuguese commercial building sector, while 

considering the Life-Cycle Impact Assessment (LCIA) and Life-Cycle Costs (LCC) of 

meeting the building energy demand. Three types of cogeneration technologies 

(Micro-Turbines (MT), Internal Combustion Engines (ICE), Solid Oxide Fuel Cells 

(SOFC)), and two types of solar technologies [solar thermal (ST) and Photovoltaic (PV)] 
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comprise the DG sources that are coupled with conventional sources. An LC model is 

built taking into account all the impacts related to construction and operation of 

energy systems, as well as the upstream processes related to their fuel input. For the 

latter, the mix of NG consumed in Portugal in 2011 (60% from Nigeria, and 40% from 

Algeria) is identified and the upstream impacts of each route of NG to Portugal are 

separately assessed for four types of environmental impacts: Cumulative Energy 

Demand (CED), Greenhouse Gases (GHG), Acidification and Eutrophication. Due to the 

effect of GHG emissions on policy design, an uncertainty analysis of upstream GHG 

emissions of NG supplied to Portugal is also performed.  

A mathematical model is developed in General Algebraic Modeling System (GAMS; 

McCarl et al., 2013) that uses the results of LCA of energy systems and their economic 

implications to minimize the LCC and LCIA of meeting the building demand over a 

planning horizon. Pareto Optimal frontiers are derived, representing the trade-offs 

between a type of environmental impact (CED, GHG, Acidification, Eutrophication) and 

LCC arising from meeting the building energy demand. To increase the model 

robustness due to uncertainty in energy prices (NG and electricity), a cost robust 

modeling framework for DG, one that gets least affected by the perturbation of input 

fuel costs, is also developed. The application of the proposed model is tested on a real-

world case-study, a commercial building located in the city of Coimbra, Portugal.  
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Sinopse 

O setor da construção é responsável por uma grande parte do consumo de energia e 

emissões na União Europeia. A Geração Distribuída (GD) de energia, nomeadamente 

através de sistemas de cogeração e tecnologias solares, representa um papel 

importante no futuro energético deste setor. A otimização do funcionamento dos 

sistemas de cogeração é uma tarefa complexa, devido às diversas variáveis em jogo, 

designadamente: os diferentes tipos de necessidades energéticas (eletricidade, 

aquecimento e arrefecimento), os preços dinâmicos dos combustíveis (gás natural) e 

da eletricidade, e os custos fixos e variáveis dos diferentes sistemas de GD. Tal torna-se 

mais complexo considerando as tecnologias solares térmicas e fotovoltaicas. Ao 

mesmo tempo, a liberalização do mercado da eletricidade permite exportar para a 

rede, a electricidade gerada localmente. Adicionalmente, a operação e planeamento 

estratégica de um sistema de GD deve ter em conta o enquadramento economico e 

politico nacional, aos quadros políticos nacionais, para poder beneficiar das regimes 

especais. 

Considerando os elevados impactes ambientais do setor da construção, qualquer 

avaliação energética de edifícios rigorosa deve também integrar aspetos ambientais, 

utilizando uma abordagem de Ciclo de Vida (CV). Uma avaliação de Ciclo de Vida (ACV) 

de um sistema de GD deve incluir as fases relativas à operação e construção do 

sistema, bem como os impactes associados à produção dos combustíveis. Foram 

analisadas as emissões da produção de GN, as quais variam de acordo com a origem, 

tipo (convencional ou não-convencional), e estado (na forma de GN Liquefeito (GNL) 

ou gás). Do mesmo modo, o impacte dos sistemas solares é afetado pela meteorologia 

e radiação solar, de acordo com a sua localização geográfica. Sendo assim, uma 

avaliação adequada dos sistemas de GD exige um modelo de ACV adequado à 

localização geográfica (Portugal), integrando também a produção de combustível (GN), 

tendo em conta as suas diferentes fontes de abastecimento. 

O principal objetivo desta tese de doutoramento foi desenvolver um modelo para 

otimizar o desenho e operação de sistemas de GD para o setor da construção de 

edifícios comerciais em Portugal, considerando os Impactes de Ciclo de Vida (IAVC) e 
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Custos de Ciclo de Vida (CCV), de modo a satisfazer as necessidades energéticas do 

edifício. 

Três tipos de tecnologias de cogeração (Micro-Turbinas, Motores de combustão 

interna, e Células combustíveis de óxido sólido), e dois tipos de tecnologias de energia 

solar (solar térmica e fotovoltaica) constituem os sistemas que foram avaliados. Foi 

desenvolvido um modelo de CV, tendo em conta todos os impactes relacionados com 

a construção e operação dos sistemas de energia, bem como os processos a montante 

relacionados com a produção do GN. Em particular, o mix de GN consumido em 

Portugal em 2011 foi considerado (60% da Nigéria, 40% da Argélia) e os impactes 

relativos a cada uma das vias de abastecimento foram avaliados separadamente para 

quatro categorias de impacte ambiental: Consumo de Energia Primária (CEP), Gases 

com Efeito de Estufa (GEE), Acidificação, e Eutrofização. Devido à importância das 

emissões de GEE na formulação de políticas, foi também realizada uma análise de 

incerteza às emissões de GEE do GN fornecido a Portugal. 

Foi desenvolvido um modelo matemático, em “General Algebraic Modeling System” 

(GAMS), que utiliza os resultados da ACV dos sistemas de energia e as suas implicações 

económicas para minimizar o CCV e IACV ao longo de um horizonte de planeamento 

definido pelo decisor. Foram derivadas fronteiras ótimas de Pareto, representando as 

relações entre o tipo de IACV (CEP, GEE, acidificação, eutrofização) e CCV decorrentes 

da satisfação das necessidades energéticas do edifício. Para aumentar a robustez do 

modelo, dada a incerteza dos preços dos combustíveis (GN e eletricidade), foi 

desenvolvido um modelo de custos robusto para os sistemas de GD, que é menos 

afetado por perturbações relativas aos custos de combustível. A aplicação do modelo 

proposto foi testada num caso de estudo real, um edifício comercial localizado na 

cidade de Coimbra, em Portugal. 
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  Chapter 1

Introduction  

Motivation  1.1 

Energy use in building sector accounts for more than 40 percent of the EU energy 

consumption (IEA, 2013). Due to this fact and growing environmental awareness, the 

building sector is under focus to contribute to the reduction of energy use and 

emissions. A study by the World Business Council for Sustainable Development 

(WBCSD, 2009) suggests that the building sector needs to cut energy consumption 60 

percent by 2050 to assist meeting global climate change mitigation targets. In Portugal, 

energy consumption in the building stock has consistently increased over the last 

decade, being the commercial sector the one that registered the largest increase 

(ADENE, 2012).  

The employment of Distributed Generation (DG), also called decentralized generation, 

is considered as a relevant mean to enhance the energy use in building sector. The 

generation of energy at the point of consumption is pointed out as a key option for 

promoting energy efficiency and use of renewable sources in alternative to the 

traditional generation, its implementation rapidly gaining interest in several countries 

(Shrestha & Marpaung, 2005). Different technologies have been developed for DG, 

among which cogeneration, also called Combined Heat and Power (CHP), has been 

widely recognized for its high global energy efficiency compared to separate 

production of heat and electricity. Similarly, solar technologies to produce onsite 

electricity, Photovoltaic (PV), and heating energy, Solar Thermal (ST), are nominated as 

renewable alternatives to conventional grid and boilers. In this regard, Portugal boasts 

a favorable climatic situation for benefitting from solar technologies and has employed 

a Feed-in Tariff (FIT) scheme to promote PV in the building sector.  

The conventional setting of energy supply technologies for buildings (grid and boiler) 

does not leave much space for energy planning and optimization of energy use, as the 
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price of electricity is generally dictated to the consumer and there is no choice 

between different energy systems. However, by introduction of DG, different 

renewable and non-renewable sources, and thus alternative operation strategies can 

be used that provide a considerable scope for energy planning and optimization. In 

particular, the optimization of design and operation in CHP systems is complex, due to 

fuel and electricity dynamic prices, and the variation in energy demands. This becomes 

more complex by considering hourly variable solar sources and integration of 

conventional systems, such as grid and gas boilers, with CHP. At the same time, the 

liberalization of electricity market allows the building owner to be not just a consumer 

but also a producer and seller of electrical power as long as certain policy framework 

conditions are met. Therefore, the operational strategy of CHP should also meet the 

national policy frameworks, if the aim is to benefit from schemes related to exporting 

electrical power to grid. The joint consideration of these factors establishes that at the 

current stage there is a significant scope for combination and operational optimization 

of DG sources for the purpose of meeting the building sector energy demand.  

Additionally, considering the high impacts of building sector, it is well established that 

any rigorous assessment of building energy systems should also incorporate 

environmental aspects (Alanne & Saari, 2004). Life-Cycle Assessment (LCA), a 

methodology to assess environmental impacts associated with a product from cradle 

to grave, is often promoted as the suitable tool. A complete LCA should include stages 

related to construction of energy systems, their operation, as well as the upstream 

emissions related to their fuel input, such as Natural Gas (NG) in Portugal. On top of 

the impacts due to its combustion, NG has impacts associated with its production and 

transportation, their magnitude depending on the source of NG, its type (conventional 

vs. unconventional) and state of delivery: in liquid form (LNG) or gas. Similarly, the 

output and impact of solar systems depend on (many factors including) meteorology 

and solar radiation received by the system, depending on the geographical location. 

Therefore, a proper assessment of DG (in Portugal) calls for an LCA framework 

specifically modeled for the location, one that regards geographical differences and 

incorporates the correct fuel input (NG) upstream emissions based on its source of 

supply.  
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The main impact from cogeneration systems is related to fuel input to the system 

(Safaei et al., 2012), i.e. NG. NG GHG combustion emissions (downstream) can be 

estimated based on the composition of NG (API, 2009). On the other hand, a few 

studies that assessed the uncertainty in NG upstream emissions (Skone et al., 2011; 

Venkatesh et al., 2011) found a high level of uncertainty from the estimated mean 

GHG emissions. Thus, and to increase the transparency of LCA results, it is 

recommended to perform LC studies that are based on probabilistic modeling methods 

(in addition to conventional deterministic approaches). The ISO standards on LCA (ISO 

14044, 2006) also state “whenever feasible, uncertainty analysis should be performed 

to better explain and support the conclusions”.  

To summarize, high energy consumptions of building sector and the diffusion of DG 

calls for a methodological framework for overall energy management. In terms of 

structure, such a framework should include a set of distributed (including renewable) 

and centralized energy equipment, and the consideration of its links with the building 

characteristics. The framework should qualify to incorporate several factors, namely 

dynamic seasonal and hourly pricing of electricity and NG, different types of building 

energy demands (electrical, heating, cooling) and their variation, fixed and variable 

cost implications and environmental performance of components, and existing 

national legal frameworks and incentives for the promotion of each type of DG. In 

addition, environmental impact assessment of DG calls for an LC study designed for the 

location, and should account for different stages related to operation and construction 

of energy systems, as well as the NG upstream emissions. Moreover, following ISO 

14044 (2006) guidelines, whenever feasible uncertainty analysis should be performed 

to increase the clarity of the LCA results.  

Statement of the research  1.2 

This work develops an LC optimization framework for design and operation of DG in 

the Portuguese building sector. Three types of cogeneration technologies ((Micro-

Turbines (MT), Internal Combustion Engines (ICE), Solid Oxide Fuel Cells (SOFC)), and 

two types of solar technologies (solar thermal (ST) and Photovoltaic (PV)) comprise the 

DG sources that are considered along with conventional sources (two types of NG 
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boilers, electrical grid) to address the building energy demand. In order to take 

advantage of the thermal output of the cogeneration systems when cooling demand 

exists, Absorption Chillers (AC) are added to the model as an alternative to 

Compression Chillers (CC) that are considered as the current common cooling system 

in the Portuguese building stock. A mathematical optimization model is developed to 

minimize the Life-Cycle Costs (LCC) and LC Impact Assessment (LCIA) of meeting the 

building demand for four types of impacts: Cumulative Energy Demand (CED), 

Greenhouse Gas (GHG), Acidification, and Eutrophication. An LCA is conducted that 

takes into account all the impacts related to construction and operation of energy 

systems, as well as the upstream processes related to their fuel input, i.e. NG. For the 

latter, the mix of NG consumed in Portugal, based on actual share of supply from 

exporting countries (Nigeria and Algeria) is identified. Primary data from Nigerian oil 

and gas industry (NNPC, 2011) and LC databases are collected to build a model 

assessing the upstream impacts of NG consumed in Portugal. Similarly, average hourly 

local meteorology and solar radiation data of continental Portugal are used to 

calculate the output and impacts of solar systems.  

The consumption of NG in Portugal has duplicated between 2001 and 2010 (IEA, 

2011a). Due to this, and the importance of GHG emissions and their effect on policy 

design, an uncertainty analysis of upstream GHG emissions of NG supplied to Portugal 

(from Nigeria and Algeria) is performed. Two types of uncertainty in LC model are 

assessed: uncertainty in model input parameters (parameter uncertainty) and 

uncertainty in the modelling choices over the time horizon (20-, 100-, or 500-year) to 

calculate the GHG intensity (scenario uncertainty). For parameter uncertainty, a 

distribution function representing upstream GHG emissions of 1 MJ (Lower Heating 

Value (LHV)) NG consumed in Portugal is derived. For scenario uncertainty, different 

time horizons are selected to calculate the mean GHG intensity of NG consumed in 

Portugal and the variety of mean estimate due to selection of different time horizons 

are shown.  

A Mixed Integer Linear Programming (MILP) model is developed in General Algebraic 

Modeling System (GAMS; McCarl et al., 2013), which uses the results of LCA and 

economic assessment of energy systems to minimize LCC and LCIA of meeting the 
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building demand over the planning horizon defined by a Decision Maker (DM). In order 

to implement the model, an actual commercial building, a 133 room hotel complex 

located in Coimbra (Portugal), is used as the case-study. Measured hourly electricity 

consumption, and estimated heating and cooling demands of the complex were used 

to build up a load diagram, consisting of 7 block-loads for three defined seasons—Hot 

(H), Mild (M) and Cold (C)— throughout a year of the planning period. Doing this, the 

varied output profile of the solar units and dynamic pricing of electricity are embedded 

into the model. The LC model calculates the total impact arising from meeting the 

building energy demand, including the emissions due to production and 

decommissioning of energy systems, their operation and upstream NG stages. The 

following objective functions are used in the model formulation:  

- Minimizing LCC; 

- Minimizing Cumulative Energy Demand (CED); 

- Minimizing Greenhouse Gas (GHG) emissions; 

- Minimizing Acidification impact;  

- Minimizing Eutrophication impacts.  

Using the model, a detailed economic assessment of each individual cogeneration 

technology, coupled with other energy systems, according to the national regulations 

in Portugal, is carried out. For PV, since its output depend on the location of 

installment and meteorology, a detailed economic study according to average local 

meteorology in different regions in Portugal is carried out. Next, applying multi-

objective optimization techniques, four Pareto optimal frontiers are derived, each 

representing the trade-off between a type of environmental impact (CED, GHG, 

Acidification, Eutrophication) and LCC arising from meeting the building energy 

demand throughout a nominal year.  

Finally, to increase the model robustness due to uncertainty in fuel (NG and electricity) 

prices, a probabilistic and robust modeling framework for DG is developed. A 

probabilistic model incorporates uncertainty in the future fuel costs (in discrete 

scenarios) to increase the model flexibility and accuracy. A cost robust operation 

planning for a nominal year, one that gets least affected by the perturbation of fuel 
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costs, is also offered. The application of the proposed framework was tested by 

defining a number of scenarios and analyzing the results.  

Contributions  1.3 

The main contributions of this thesis can be summarized as following:  

1- An LC multi-objective model for design and operational optimization of DG for the 

building sector is developed. The model combines several cogeneration technologies, 

ST and PV, and conventional sources, and calculates the total LCC and LCIA arising from 

meeting the building energy demand over a defined time horizon. In order to calculate 

the environmental impacts, an LC model is developed that considers all the stages 

related to the construction of energy systems, their operation and fuel input upstream 

emissions. The model is suitable for selection and optimization of operation of DG 

according to the level of cost and each type of environmental impact desired by the 

DM. National policy conditions are included in the model. Additionally, the LC model 

can be used separately to assess the LC environmental impacts of meeting the energy 

demand in the building sector.   

2- The thesis develops an LC model to assess the upstream impacts of two main routes 

of LNG and NG imports to Europe from Nigeria and Algeria, based on primary data 

gathered from national oil and gas companies. Additionally, an analysis to assess the 

uncertainty in upstream GHG emissions is performed. Nigeria and Algeria together 

supply virtually the entire Portuguese NG mix (Galp Energia, 2012) and 18% of the NG 

imported to Europe in 2010 (IEA, 2011a). The uncertainty framework has direct 

applications in policy design to calculate the upstream emission of NG consumed in EU. 

This provides useful insights for decision-making within national or regional policy 

context, when the aim is to mitigate GHG emissions.  

3- A novel approach is developed to study the cost-effectiveness of solar PV systems, 

according to local meteorology, estimated output (kWh/year) of PV systems, market, 

and financial incentives. Using this methodology, we investigate the key drivers to and 

status of cost-effectiveness of PV systems in Portugal, according to current national 

established Feed-In Tariff (FIT).  
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4- A robust and probabilistic optimization framework for the design and operation of 

DG in buildings is presented. A cost robust design is the one that gets less affected due 

to small perturbation in fuel input (NG and electricity) costs. 

Structure of the thesis 1.4 

This thesis is organized as following:  

After this introduction, Chapter 2 presents a comprehensive literature review to 

demonstrate the contribution of this thesis.  

Chapter 3 presents a detailed LCA of upstream stages of Natural Gas (NG) consumed in 

Portugal. The LC model to assess the upstream impacts of NG is presented, followed by 

deterministic LCIA results. Next, we include the uncertainty in GHG input parameters 

and a distribution function is obtained, representing upstream GHG emissions of 1 MJ 

(LHV) of NG consumed in Portugal. The implications of the selected time horizon on 

the results (GHG intensity) are also discussed. 

Chapter 4 presents the results of LCA of selected DG, conventional energy sources and 

cooling systems for building sector in Portugal. Data from chapter 3 are used to 

calculate the upstream impacts of NG, which is the fuel used by cogeneration systems 

and boilers.  

Chapter 5 presents the multi-objective mathematical programming model for the 

design and optimization of DG in Portugal. It also provides an overview of the policy 

framework to promote each type of DG, as well as the case-study for the 

implementation of the model. All these information are embedded in the model, for 

which the mathematical relations are described in this chapter.  

Chapter 6 presents the selected results of the implementation of the model described 

in chapter 5 on the case-study building. The data from chapter 4, and the case-study 

data from chapter 5 are used as inputs to the model. The chapter starts with a detailed 

economic assessment of each individual cogeneration technology according to the 

policy framework in Portugal. Next, we present and discuss the Pareto frontiers 
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obtained to show the trade-offs between LCC vis-à-vis other objective functions, i.e. 

CED, GHG, Acidification, and Eutrophication.  

Chapter 7 is devoted to assess the economics of PV system in continental Portugal. A 

methodology is presented to study the cost-effectiveness of solar PV systems, 

considering the received solar radiation and meteorology in different geographical 

locations across the country and the estimated output (kWh/year) of PV systems in 

those locations.  

Chapter 8 deals with uncertainty in the fuel cost data and presents a probabilistic and 

robust modeling framework for DG. We discuss the application of the proposed 

framework by defining a number of scenarios and analyzing the model results. 

Chapter 9 concludes the thesis with the main contributions of the research and points 

out a number of recommendations for future studies.  
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  Chapter 2

Literature Review  

The purpose of this doctoral thesis was stated in chapter 1. The primary aim of this 

chapter is to provide an overview of the relevant studies found in literature. This thesis 

brings together several tools, including Life-Cycle Assessment (LCA) and mathematical 

optimization, to build a modeling framework for design and operation of Distributed 

Generation (DG), namely solar and cogeneration technologies. Due to the multi-

dimensionality of the topic, a great number of studies could be considered as relevant. 

In order to narrow down the scope of this chapter, the focus is on the studies that 

have assessed the application of DG for commercial—and a few residential—

applications mainly from economic and environmental aspects. Section 2 provides an 

overall review of the typology of studies found on the topic of this thesis in literature 

and presents the studies of application of DG in commercial buildings. These studies 

are selected to be focused on economic aspects, but some overlaps with 

environmental studies are unavoidable. Based on these, we demonstrate the necessity 

to employ an optimization framework for selection and optimal operation of DG. Next, 

in section 3, mathematical optimization models developed for DG in building sector 

are discussed. The focus is on the type of model (linear, integer, non-linear), its 

objective function(s), and novelty of approach. Multi-objective models are also 

discussed, which without exception consider economic implications as one of the 

decision criteria. Uncertainty is another topic pointed out here. Finally, section 4 is 

devoted to relevant studies on environmental aspects, or more specifically studies that 

employ LCA methodologies to assess DG and Natural Gas (NG) upstream stages.  
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Studies on application of DG in buildings 2.1 

Based on a survey of scientific journals in the last years (1999–2013), the studies on DG 

in buildings can be classified into three types. Some studies have analyzed technical 

aspects, such as thermodynamic properties of cogeneration systems, or the design 

criteria of cogeneration and PV systems. Some have focused on economic aspects, 

such as the effect of market condition including incentives on the feasibility of DG, or 

(optimization of) operation and investment planning. In recent years, an increasing 

number of studies have assessed the environmental aspects of DG, although the 

number of published studies on this topic is considerably lower compared to technical 

or economic studies. There are studies that address a combination of the above issues, 

so there are some overlaps and it is not possible to precisely classify the studies 

according to the above categorization. The main focus of this thesis and thus this 

literature review is economic and environmental aspects of DG. Nevertheless, we 

regard and underline the basic technical aspects of operation of the energy systems 

that is reported in literature.  

A survey of the relevant publications in scientific journals shows that the largest part of 

these publications is still related to cogeneration. However, the number of research 

papers related to multi-generation concepts is lately increasing (Chicco & Mancarella, 

2009). Several studies solely perform economic or technical feasibility assessments of 

DG, or study the effect of some variables (e.g. market conditions) on the design and 

operation of DG systems, and do not specifically develop optimization models. For 

instance, Xuan et al. (2006) examined the application of a gas-fuelled reciprocating 

Combined Heat and Power (CHP) in a commercial building in China. The CHP system 

under investigation uses an Absorption Chiller (AC) as the cooling system during warm 

months. In comparison to the conventional grid connected sources, CHP is capable of 

reducing primary energy consumption by 23% and CO2 emission by 36%, with a 

payback period of 3.8 years. Wu and Rosen (1999) employed an energy equilibrium 

model to compare conventional and NG cogeneration-based district energy systems 

for heating, cooling and electrical services. The authors stated that employing 

cogeneration-based systems can provide potential commercial and environmental 

benefits and reduce the primary energy consumption, while the delay in implementing 
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such systems could be costly. Marantan et al. (2002) demonstrated the potential of tri-

generation NG CHP application in commercial buildings. The study states that the high 

electricity consumption for cooling and heating purposes could be significantly 

reduced by using available heat from CHP systems such as micro-turbines and fuel 

cells. Gunes (2001), who studied the application of fuel cell-based Total Energy System 

(TES) for residential buildings, claimed that TES introduces 32 to 51 percent primary 

energy savings for conventional residential energy systems. The feasibility of using fuel 

cells in commercial buildings was also investigated by Ellis and Gunes (2002). This 

study found out that employing fuel cells was economically attractive if the initial costs 

could be reduced to the range of 1000–1500 €/kWe (kW electricity). The research by 

Dentice d’Accadia et al. (2003) dealt with the application of a small scale fuel cell 

cogeneration (electrical power <15 kW) to light commercial application users. An 

energy-based analysis of a CHP system to evaluate its conjunction with domestic 

household appliances was performed. A test facility was designed and the optimal 

operation to match the user’s thermal and electrical loads was identified. Fuel cell 

seemed to be promising on the technological aspect. It was also noted that the 

electricity and gas utilities played an important role for the diffusion of CHPs; with a 

high rate of gas connection it is more feasible to promote a market for decentralized 

cogeneration. Another study on fuel cells from Dorer et al. (2005) offered a 

methodology for assessing the performance of SOFC and Polymer Electrolyte Fuel Cells 

(PEFC), in terms of primary energy demand and CO2 emissions. Using the building 

energy simulation software TRNSYS (1976), various configurations were established to 

analyze the performance of the system with respect to the defined evaluation criteria 

on a single-family and a multi-family house. The approach analyzes the interaction of 

the CHP systems with hot water storage, Solar Thermal (ST) collectors and the storage 

size. It was noted that compared to gas boiler systems, the fuel cell systems could 

achieve a reduction of 6–48% in non-renewable primary energy demand for all the 

considered building types and electricity mixes, while the results were strongly 

dependent on the grid electricity generation mix. Moreover, it was concluded that the 

primary energy savings decline for the cases with lower heat demand and also in the 

case of employment of ST collectors.  
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Some studies emphasize the role of market regulations and prices on the economic 

attractiveness of cogeneration systems. For instance Mone et al. (2001) investigated 

the underlying factors in economic feasibility of CHP systems using commercially 

available gas turbines. Waste heat from CHP system was used to satisfy both cooling 

and heating demand and the authors deduced that the amount of savings by installing 

a CHP is a function of the cost of NG and the avoided purchased electricity. 

Bhattacharyya & Quoc Thang (2004) stated that economic feasibility of medium and 

large scale cogeneration systems is vulnerable to changes in buy-back rate of 

electricity and investment costs. Andersen & Lund (2007) explored the regulatory tools 

for the introduction of CHP plants and renewables into the energy market. The authors 

stated that the introduction of CHP plants into the electricity market can help along 

the integration of fluctuating electricity generation for renewable energy and 

therefore strongly advocated further research using different approaches.  

In industry, CHP is usually assumed to be heat led, meaning that it turns on when a 

heat load is present (COGEN Europe, 2004). Electricity is usually considered as a by-

product of a Micro-CHP unit heat cogeneration (Harrison & Redford, 2001). Hawkes 

and Leach (2007) investigated the cost-effective operating strategies for three micro-

CHP technologies: Stirling engines, gas engines, and SOFC. The cost of meeting a typical 

UK residential energy demand was calculated for heat led and electricity led operating 

strategies, and compared with that of an optimal strategy, i.e. the one that minimizes 

the cost of meeting the given electricity and heat demand profile subject to the 

technical constraints of the system. Using estimates of price parameters, and 

considering some thermal energy storage present in the system, it was shown that the 

least cost operating strategy for the three technologies was to follow heat and 

electricity load during winter months, rather than using either heat demand or 

electricity demand as the only dispatch signal. In summer months, the least cost 

operating strategy varied between technologies. The authors therefore put emphasis 

on the development of an optimization framework to evaluate the economic and 

environmental performance of CHPs in an accurate way.  

In fact, several studies promote the development of optimization techniques for 

application of DG in building sector. This is endorsed since several aspects should be 

taken into account when dealing with the application of DG for buildings (Banos et al., 
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2011; Chicco & Mancarella, 2009; Connolly et al., 2010; Lozano et al., 2010; Rubio-

Maya et al., 2011). Firstly, these aspects comprise the characteristics of different types 

of DG systems, e.g. power to heat ratio of cogeneration systems, efficiency of solar 

systems according to the location, or the DG application type, e.g. peak shaving or 

stand-by. Secondly, the market conditions are at stake, such as the spot price of 

electricity and NG, and national regulations and incentives to employ and promote DG, 

according to region. Thirdly, the demand characteristics should be addressed, such as 

the level of different demand types and their volatility. These aspects should be taken 

into account for optimal operation of DG, regardless of the objective pursued by 

installation of DG that could be, e.g., reducing costs or certain type of environmental 

impacts, or increasing the efficiency of energy use. Therefore, there is an extensive use 

of operational research techniques applied to DG, specifically to cogeneration systems, 

including linear, integer, and non-linear models that are tackled using mathematical 

programming algorithms or meta-heuristic approaches such as evolutionary 

algorithms.  

Optimization models for DG 2.2 

Cho et al. (2009) developed a model to minimize the total cost of energy usage for a 

building based on energy efficiency constraints for each component: an Internal 

Combustion Engine (ICE), a gas boiler and the electricity from the grid. The linear 

programming algorithm provides the on/off signals to each component and results in 

overall minimum energy cost for the facility. The model was tested on a facility with 

measured heating and electricity load profile for two days in winter and summer and 

illustrated that the optimized operation of CHP provides economic gains compared to 

a baseline operation.  

Monteiro et al. (2009) developed a model for planning micro-CHP plants in agreement 

with the Portuguese energy legal framework and also noticed that the price of 

electricity from the grid is an influential factor in the promotion of CHPs. According to 

EuroStat (2013) Portugal has the fourth highest electricity prices in the European 

Union and the authors cited this fact as a “favorable scenario for Micro-CHP 

generation”. The demand profiles of a number of commercial centers, hypermarkets, 
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public services and heated swimming pools were extracted and a simple linear model 

for techno-economic evaluation and optimization of CHP plants was developed. The 

model is able to design, evaluate and optimize from the techno-economic point of 

view a micro-CHP plant and it incorporates some databases, such as micro-

cogeneration technologies and power consumption profiles. 

Lozano et al. (2010) also highlighted the importance of considering legal constraints in 

the design and operation of DG. A Mixed Integer Linear Programming (MILP) 

optimization model for a tri-generation system with thermal storage was developed, 

taking into account the legal constraints for cogeneration facilities in Spain. The results 

showed that adopting different legal scenarios can significantly influence the optimal 

configuration for the CHP system.  

Arcuri et al. (2007) put forward a combination of heat pumps, AC and cogeneration 

systems to delineate the optimal operation strategy of a tri-generation plant 

maximizing annual short- and long-term economic returns. The model is based on 

linear constraints, and gives out the optimal design and operational strategies of a tri-

generation plant. The model results, for a case-study of a hospital in Athens, stated 

that a tri-generation plant in which heat pumps were directly fed by a cogenerator 

could provide economic, energy and environmental benefits. The study also pointed 

out the diversity of variables in play, such as national regulations, and the importance 

to regard them when the aim is to determine the optimal capacity and running 

conditions of CHP.  

 An equivalent annual cost minimization model was applied to determine the driving 

factors behind the investment in the technology of SOFC CHP systems for different 

sized residential and service applications (Hawkes & Leach, 2005a). The model 

consisted of a hypothetical SOFC system and the connection to grid with the possibility 

to export electricity. It was shown that under UK market conditions, households with 

small to average energy demands do not benefit from installation of SOFC, but larger 

energy demands do benefit under such conditions. A sensitivity analysis showed that 

the results were sensitive to capital cost, energy import/export prices, plant life-time, 

and the temporal precision selected for the study (Hawkes & Leach, 2005b).  

Mavrotas et al. (2008) discussed an optimization framework for energy supply systems 

in commercial buildings by taking into account the demand uncertainty. The 
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technologies studied were a CHP, AC and Compression Chiller (CC). The underlying 

uncertainty in demand was transformed into an objective function, so the model 

became a multi-objective linear model where the minimization of cost and the 

maximization of demand satisfaction were the objective functions. A Pareto-optimal 

front was derived to represent solutions to the problem under uncertainty. A minmax 

regret approach was finally employed to determine the preferred solutions.  

Osman et al. (2008) conducted a research combining LCA, energy simulation, and MILP 

techniques to optimize the cost and the environmental impacts of meeting the energy 

demand (heating, cooling and electrical) in commercial buildings. Three NG driven CHP 

technologies [Micro-Turbines (MT), Internal Combustion Engines (ICE), Solid Oxide Fuel 

Cell (SOFC)] were considered as input to a mathematical model to minimize costs, 

Green Warming Potential (GWP) and Tropospheric Ozone Precursor (TOP). The study 

includes detailed operational strategies according to different optimization objectives 

(costs, GWP, TOP) and the results were depicted on Pareto frontiers. ICE and MT 

cogeneration systems could result in the reduction of up to 38% in GWP compared to 

conventional systems and a reduction of up to 94% in TOP was achievable by 

employing SOFC and MT. 

The literature review shows that considerably less studies assess the combination of 

CHP with renewables (multi DG), although Interesting perspectives are emerging from 

such integration (Anderson & Lund, 2008). Ren & Gao (2010) developed a single-

objective MILP model for the integrated plan and evaluation of DG systems. Given the 

site’s energy loads, local climate data, and utility tariff structure, the model minimizes 

the overall costs of selection and operation of energy systems for a nominal year. The 

DG studied included Micro-turbines, gas turbines, fuel cells, PV and wind included. 

Based on the inputs to the model (building information: load profiles, climate 

conditions; technical information: power and thermal efficiencies of energy systems; 

economic information), the model provides the optimal design and operational levels 

of the energy systems. The operating CO2 emissions (in the form of carbon tax rate) 

and efficiency performance of the DG system were also taken into account (as a set of 

constraints). The results found to be particularly sensitive to the scale of energy 

demand, gas and electricity price, as well as carbon tax rate. This study also illustrated 

that employing DG might result in adverse environmental impacts, if not combined 
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suitably with heat recovery units. The model was developed to a multi-objective model 

in (Ren et al., 2010), minimizing energy costs and operating CO2 emissions. A Pareto 

frontier was obtained and concluded that least CO2 emitting technologies were also 

the most costly ones. Moreover, the value of buy-back rate of electricity had more 

effect on the results when more weight was given to the economic objective function 

while the carbon tax had marginal equal influence on the results regardless of the 

weights given to objective functions.  

Rubio-Maya et al. (2011) proposed a systematic optimization procedure to select and 

size a cogeneration plant fuelled by NG, evacuated tube solar collectors, and gasified 

biomass. An MILP model was developed and applied to a Spanish tourist resort. The 

model has one objective function (minimizing net present value) and considers energy 

savings and Greenhouse Gas (GHG) emission reduction as constraints. The results 

show that higher economic profitability was achieved with NG-based technologies, 

namely ICE systems. Higher energy savings and reduced GHG emissions were also 

possible through the gradual penetration of renewable energy sources into the energy 

systems. The study also performed a comparison between heat, electricity, and heat 

and electricity load following strategies for cogeneration systems and concluded that 

best economic results were obtained upon following both heat and electricity, then 

following heat and the worst case was obtained by following only electricity loads.  

Some studies take into account the uncertainty in the input parameters for the optimal 

design and operation of DG. Among the techniques to address uncertainty, robust 

optimization is a more recent approach (Bertsimas et al., 2010), in which the DM seeks 

a certain level of robustness against uncertainty that is present in input parameters. In 

robust optimization, uncertainty is considered explicitly ex-ante, contrarily to 

sensitivity analysis, which is typically applied as a post-optimization tool for computing 

the change in the objective function for perturbations in the inputs (Mulvey et al., 

1995). The optimal solution is called “solution robust” if it remains close to the optimal 

one when uncertain parameters alter. Likewise, it is termed “model robust” if it stays 

feasible in face of small changes in the input data. Only one study was found that 

applied robust optimization techniques to a case of DG: Rezvan et al. (2012) developed 

an MILP robust optimization model to determine the optimum capacity of DG for 
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buildings in the case of demand uncertainty. One type of cogeneration technology 

(ICE), along with AC, boiler and solar PV systems were modelled as energy systems. 

The optimization was carried out on three related criteria: economical, primary energy 

saving, and environmental performance as a multi-objective optimization. Two types 

of parameters were defined: penalty for shortage of supply, and degrees of 

robustness, where the trade-off between optimality and feasibility could be 

determined by adjusting the level of these parameters. The proposed method was 

applied to a hospital complex and concluded that by demanding model robustness, the 

capacities of CHP and AC increase to avoid the risk of shortage of supply, while the 

capacities of renewable sources decrease.  

As Chicco & Mancarella (2009) noted, a thorough energy and environmental 

assessments of DG incorporating renewables calls for a suitable modeling framework. 

In particular, the chief energy and environmental burdens of fossil-fuelled energy 

systems relate to their operation (Hayhoe et al. , 2002; Pehnt, 2008; Riva et al, 2006; 

Safaei et al., 2012; Venkatesh et al; 2011). Conversely, the operation of renewable-

based systems is virtually emission-free and the energy requirements and 

environmental burdens fall within the energy system construction and 

decommissioning (García-Valverde et al., 2009; Kaldellis et al, 2009; Safaei et al., 2012; 

Voorspools et al, 2000). These aspects can be suitably addressed by means of cradle-

to-grave LCA techniques (Chicco & Mancarella, 2009). However, the review of 

literature reveals the lack of sufficient research in this area (Osman et al., 2008), as we 

explore in the next section.  

LCA studies  2.3 

LCA is a cradle-to-grave methodology to assess the environmental impacts associated 

with a product throughout its life (ISO 14040, 2006). An LCA study basically consists of 

four steps (ISO 14040, 2006). First, the goal and scope definition describes the product 

system under analysis, including system boundaries and main data sources, and 

functional unit: a reference unit to which all the inputs and outputs are related. The 

second step of an LCA, LC Inventory analysis (LCI), involves data collection, 

identification and quantification of relevant inputs and outputs to/from the system. A 
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flow chart model is normally built, based on the system boundaries, which quantifies 

the relevant flow of energy, material and emissions to/from the system. The data must 

be related to the functional unit defined in the goal and scope. The third step is the 

Life-Cycle Impact Assessment (LCIA) that aims at calculating impacts based on the 

inventory analysis. For this purpose, an LCIA method is selected and the environmental 

impacts are categorized and aggregated into impact categories. Finally, through the 

fourth step, interpretation, the recommendations and conclusions of the LCA are 

framed based on the findings from LCI and LCIA.  

There is an increasing recognition that any rigorous and meaningful comparison of 

energy supply options must be done using LC approaches (Lund & Biswass, 2008). 

However, the number, and the scope of relevant studies on this topic are limited. Most 

studies assess solely CO2 emissions from operation level, neglecting the whole LC and 

other types of environmental impacts. Moreover, no study was found to develop an LC 

optimization framework for building energy systems combining both renewable and 

fossil fuels. In this section, we review the relevant environmental studies.  

Canova et al. (2008) characterized the CO and NOx emissions from gas fuelled MT and 

ICE by using the emission balance approach. The environmental impact of CHP was 

viewed through local and global emissions balance models and discussed that while 

cogeneration systems were advocated to be efficient in terms of energy saving and 

thus of CO2 emission saving, this may not be the same in the case of local emissions of 

CO, NOx and other non-GHG pollutants. The study made a one-to-one comparison of 

the environmental impacts of ICE and MT CHP systems and showed that neither has 

absolute dominance over the other with regard to overall environmental impacts. 

Moreover, the emission factors in the literature that refers to full-load operation of MT 

should be considered with care if the machines were planned to operate also at part-

load. The necessity to adopt further tools, specifically LCA, to analyze the more 

complex energy scenarios in case of mass adoption of decentralized energy systems, 

was also underlined.  

Pehnt (2008) assessed GHG and Acidification potential of Micro CHP (less than 5 kW) 

for residential sector in Germany. The CHP technologies analyzed were ICE 

reciprocating engines, Stirling engines, and SOFC. Using the avoided burden approach 

to credit for the heat cogenerated with electricity, authors concluded that nearly all 
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micro cogeneration systems were superior in terms of reduction of GHG emissions, not 

only to average electricity and heat supply in Germany, but also to separate 

production of electricity in modern gas power plants and heat in advanced condensing 

boilers. However, examining the GHG reduction potential at the level of a supply 

object or case-study (e.g. a multi-family house), the mitigation potential was lower 

since micro cogeneration systems could not typically supply the whole energy demand, 

implying that the additional impacts of electricity from the grid and heat from a peak 

boiler had to be taken into consideration. For this reason, the study recognizes and 

motivates the role of optimization in DG planning, to not oversize the systems, and to 

ensure that the full amount of heat is actually used by the building. Pehnt (2008) also 

found the Acidification emissions of small reciprocating engines to be higher than 

those in state-of-the-art centralized gas power plants, due to more efficient emission 

control in the latter.  

Another study (Strachan & Farrell, 2006) characterized the emissions (CO2, SO2, NOx, 

PM10) from distributed versus centralized generation and highlighted the importance 

of analyzing heat/power demands for potential host sites and more specifically to do 

so on a seasonal basis to give a better understanding of how to match-up energy 

demands with technology output. Most importantly, as far as research to date has 

been concerned with developing emission estimates of CHP plants, the impacts of 

location and ambient conditions on the results have been mostly ignored and this 

requires more in depth LCA studies (Strachan & Farrell, 2006).  

NG is considered as the main fuel for cogeneration systems (IEA, 2011). On top of the 

emissions from combustion, the production of NG also has environmental impacts, 

their magnitude depending on the source of NG, its type (conventional vs. 

unconventional) and its state of delivery, in the form of Liquefied NG (LNG) or gas. 

New reports from oil and gas industries (EPA, 2011) have measured more methane 

release from the upstream production of conventional gas fields and the IEA world 

energy outlook (IEA, 2011b) warns that an increased share of NG in the world energy 

mix alone will not put us on a carbon emissions reduction path to diminish global 

warming. In a similar way, Kavalov et al (2009) found that LNG chains imported to 

Europe tend to be more energy and GHG intensive than the supply chain for pipeline 
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gas, because of the extra life-cycle stages (liquefaction, gasification) involved and 

higher burden of transportation.  

A number of studies (Arteconi et al., 2010; Okamura & Furukawa & Ishitani, 2007; 

Tamura et al., 2001; Venkatesh et al., 2010) have addressed the LC environmental 

impacts of NG and LNG supply chains for Europe, Japan and US. Firstly, all these are 

limited to assess GHG, and no other impact is considered. Secondly, the NG in Portugal 

comes from Nigeria and Algeria (IEA 2011a, Galp Energia, 2012) and has a different mix 

from the European average NG mix (which has imports from Russia and Norway 

among other countries). We did not find any journal article to assess the upstream 

emissions of Portuguese import gas, or individually assess the upstream emissions of 

Nigerian and Algerian produced gas. At the same time, applying the upstream 

emissions of European NG chain provides misleading results regarding the impact of 

DG systems in Portugal, as some authors have pointed out the limits of applying 

“generic” LCA data to assessing changes in “unique” environments (Horne et al. 2009). 

To summarize, a proper assessment of DG in Portugal calls for an LC framework that is 

specifically modeled for Portugal, one that regards geographical differences and 

incorporate the upstream emission of the imported NG. NG is regarded as a 

transitional fuel between incumbent fossil fuels (coal and diesel) and renewables and 

its consumption is expected to grow nationally and globally. Calculating the upstream 

emissions of NG therefore provides useful insights for decision-making within policy 

frameworks by estimating the “embedded” upstream emission of NG consumed in EU 

and Portugal.  

GHG emissions due to the combustion of NG can be assessed, as long as the 

composition of NG under study is known (API, 2009). On the other hand, uncertainty in 

NG upstream emissions is rather high (Schori & Frischknecht, 2012). The only study 

(Venkatesh et al., 2011) that assessed the GHG uncertainty of LNG consumed in US 

found a 19% range from the mean value for 1MJ of NG imported in the form of LNG to 

US. The uncertainty of upstream GHG emissions of NG produced in US was just slightly 

lower (17% from mean value). The authors therefore recommend performing LC 

emission studies of NG that are based on probabilistic modeling methods (in addition 

to conventional deterministic approaches). The ISO standards on LCA (ISO 14044, 

2006) also states “whenever feasible, uncertainty analysis should be performed to 
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better explain and support the (LCA study) conclusions”. This thesis develops an LC 

model to address the uncertainty in GHG emissions of NG imported from Nigeria and 

Algeria to Portugal.  

A number of studies have assessed the LCA of solar system, although the main focus of 

research has been on GHG emissions. García-Valverde et al. (2009) performed a CO2 

assessment of a 4.2 kWp (kW peak) mono-crystalline PV system. The analysis 

demonstrated that the biggest energy requirements and emissions are in the 

construction phase of PV modules and storage system (batteries). The system was 

compared to other supply options (Spanish grid and diesel generator) and showed 

lower emissions, possessing an energy payback time of 9.08 years and CO2 emissions 

of 131 g/kWh. Kaldellis et al. (2009) studied the energy requirement of standalone PV-

lead acid battery systems and discussed that in standalone systems battery plays a 

more important role, constituting 27% of the system LC energy requirements. 

According to the application results obtained, the size of the optimal energy 

autonomous PV+battery configurations were significantly affected by the local solar 

potential. From this aspect, Portugal boasts a favorable climatic situation. According to 

Suri et al. (2007), who studied the potential of solar electricity generation in the 

European Union, Portugal and the Mediterranean region have the highest potential for 

solar electricity, mounting over 1200 kWh/kWp per year. This amount is achievable by 

the solar panels situated at the optimal angle. Moreover, the difference between 

regions in solar electricity generation can fluctuate up to 16% within Portugal. Chapter 

7 of this thesis is devoted to assess the economics of PV system in continental 

Portugal, considering the received solar radiation and meteorology in different 

geographical locations across the country.  

Using process based LCA approaches, the performance of multi-crystalline and thin 

film PV technologies was characterized on the basis of three indicators: Net Energy 

Ratio (NER), Energy Payback Time (EPBT) and CO2 emissions (Pacca et al. 2007). Based 

on a case study using US energy fuel mix, the NER and EPBT of the multi-crystalline 

modules were estimated as 2.7 and 7.4 years, respectively, with LC CO2 emissions of 

72.4 g of CO2/kWhe (kWh electricity). In fact, reviewing the LCA studies performed for 

PV technologies reveals a rather noticeable discrepancy among the results. Bhat and 
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Prakash (2009) and Pearce (2002) believe such inconsistency would be expected of 

complete LCA studies. This is because different studies use different methods, set up 

different boundary conditions, depend on different data sources and inventory 

methods, model different PV technologies at different locations, and even regard 

different life-times and analytical periods. This once again underlines the importance 

of an LCA study to accurately assess the environmental impacts of PV systems in 

Portugal, according to local meteorology and solar radiation.   

Summary and conclusions 2.4 

1- The review of literature reveals that some studies have assessed the feasibility 

of DG from the efficiency and economic perspectives; by using techniques other than 

optimization (Xuan et al., 2006; Wu and Rosen, 1999; Marantan et al., 2002; Gunes, 

2001; Dentice d’Accadia et al, 2003; Dorer et al., 2005; Bhattacharyya & Quoc Thang, 

2004; Mone et al., 2001; Hawkes & Leach, 2007). We discussed that due to the 

diversity of variables in play, namely efficiency parameters of different types of DG, 

demand magnitude and pattern, and market conditions, there is a considerable scope 

for employing optimization techniques. Among optimization models developed for 

DG, mostly consider only cogeneration systems (no other DG types), and the focus is 

mainly on economic aspects (Arcuri et al., 2007; Cho et al., 2009; Hawkes & Leach, 

2005a & 2005b; Mavrotas et al., 2008; Monteiro et al., 2009; Rezvan et al., 2012). 

Relatively few studies also incorporate environmental aspects (Osman et al., 2008; 

Ren & Gao, 2010a & 2010b; Rubio-Maya et al., 2011; Rezvan et al., 2012).  

 

2- Among studies that incorporate environmental aspects into the analysis 

(Osman et al., 2008; Ren & Gao, 2010a & 2010b; Rezvan et al, 2012; Rubio-Maya et 

al., 2011), only one study (Osman et al., 2008) explicitly performs an LCA, and the 

others are limited to assess the average CO2 or GHG emissions of DG operation. The 

same conclusions stand for the study that has assessed multi-DG for the building 

sector, i.e. Rezvan et al. (2012).  
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3- Most models developed for DG applications in buildings use MILP models. This 

is partly due to the flexibility offered by using binary variables in formulating 

problems involving fixed (or setup) costs (Williams, 2013).  

 

4- The findings by (Arcuri et al., 2007; Bhattacharyya & Quoc Thang, 2004; Lozano 

et al., 2010; Mone et al., 2001; Monteiro et al., 2009) highlight the importance of 

considering national regulatory frameworks in the design and operation of DG, 

including the effects of parameters such as buy-back rate on the results.  

 

5- Some studies (Hawkes and Leach, 2007; Rubio-Maya et al., 2011) have assessed 

the performance of cogeneration systems when operating in different load following 

modes, i.e. electricity following, heat following or both. The least cost operating 

strategy was shown to vary between technologies and the case-study. The 

development of an optimization framework for cogeneration system is therefore 

advocated.  

 

6- Robust optimization techniques have not been extensively applied to DG 

modelling. The only robust model developed (Rezvan et al., 2011) considers 

uncertainty in demand and no robust modelling has been developed for other 

uncertain coefficients, such as cost or environmental impacts.  

 

The review of LCA studies performed for DG led to following conclusions:  

 

1- When dealing with DG renewable sources, an analysis framework is required 

for a thorough energy and environmental assessment (Chicco & Mancarella, 2009). In 

particular, the energy and environmental burden of conventional generation is mainly 

laid in its operation, while the environmental burden of renewables is by large due to 

plant building and decommissioning. These aspects can be adequately addressed by 

means of cradle-to-grave LCA techniques (Alsema et al., 2009; Chicco & Mancarella, 

2009; Horne et al, 2009). 
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2- Analyzing upstream processes to produce fuels, and their associated emissions, 

is important; otherwise, the emissions resulting from electricity generation of the 

various cogeneration options are underestimated. For NG technology options, 

upstream GHG emission rates can be up to 25% of the direct emissions from the 

energy system (Weisser, 2007). The robust design of any policy to mitigate 

environmental impacts by replacing incumbent fuels with NG therefore requires a 

proper assessment of upstream emissions of fuels (Howarth et al., 2011 & 2012; 

Hayhoe et al., 2002; Venkatesh et al., 2011). No study was found to explicitly consider 

upstream emissions of NG as the main fuel to DG, while the implications of upstream 

stages of NG and LNG chains to their total GHG footprint have been recently 

questioned (Cathles et al., 2012; O’Sullivan & Paltsev, 2012; Skone et al., 2011; 

Stephenson et al., 2011; Venkatesh et al , 2011).   

 

3- A number of studies have assessed the environmental impacts of NG chains for 

different geographical locations, including for Europe (Arteconi et al., 2010; Cathles et 

al., 2011 & 2012; Howarth et al., 2011 & 2012; Okamura et al., 2007; O’Sullivan & 

Paltsev, 2012; Skone et al., 2011; Stephenson et al., 2011; Tamura et al., 2001; 

Venkatesh et al., 2010). Portuguese NG supply is different from the European average 

mix, with possibly higher upstream emissions due to the high share from LNG chain. 

No LCA study was found to assess the upstream emissions of gas production from 

Nigeria and Algeria, which together represent the entire Portuguese NG mix and 18% 

of NG consumed in Europe. On top of the impacts due to liquefaction and 

transportation of LNG, relatively high production impacts of Nigerian NG have been 

acknowledged (Anomohanran, 2012).  

 

4- The results of LCA of DG are dependent on the location: the emissions per 

output from solar systems depend on total energy produced by the system that 

depends on the location of installation. Cogeneration systems are also connected to 

NG transmission network, its upstream emissions depending on the supply mix. We 

established that Portuguese NG network system is detached from the European 

system and the average upstream emissions from Europe are not representative for 
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Portugal. Some authors point out the limits of applying “generic” data to assessing 

changes in “unique” environments (Horne et al. 2009). A proper assessment of 

potential of DG in Portugal therefore asks for an LC study framed specifically for the 

Portuguese case. This also helps policy designers to reduce the impacts of building 

sector by knowing the type and magnitude of emissions of DG, both renewable and 

NG fuelled, in Portugal.  

 

5- Performing LCA on a level of case-study or supply objects (e.g. commercial 

buildings) provides significant methodological advantages (Pehnt, 2008). By explicitly 

calculating the different flows of energy between different objects of supply and 

demand, such framework helps to calculate the “actual” impacts from operation of 

DG, rather than assuming a constant average load of operation for the system. 

Moreover, by taking into account the demand side, it is possible to ensure that full 

amount of heat is actually used, or alternatively, calculate for the level of waste.  

 

This doctoral thesis develops an optimization framework for the operation of DG in 

Portugal, taking into account both economic and environmental aspects. Four types 

of environmental impacts are assessed: Cumulative Energy Demand (CED), 

Greenhouse Gases (GHG), Acidification, and Eutrophication. As advocated by 

literature and justified in this chapter, cradle-to-grave LCA is the suitable technique 

employed to assess the environmental impacts of DG. The LCA model calculates the 

total impact arising from meeting the building energy demand, including the 

emissions due to production and decommissioning of energy systems. The model 

presents a detailed LCA of upstream emissions of NG, supplied from Algeria and 

Nigeria, to calculate the accurate emissions of DG in Portugal. A methodological 

framework is also developed to capture the uncertainty in upstream GHG emissions 

of NG, to increase the model robustness and provide insight for policy making.  

The results of LCA are used as the input to a multi-objective mathematical optimization 

model developed for the design and operation of DG in commercial buildings. Two 

types of solar systems (ST and PV) and three types of cogeneration technologies (MT, 

ICE, SOFC) comprise the DG that are coupled with conventional energy systems (boiler 
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and grid) to meet the building energy demand. ACs are coupled with CHP systems 

while the extra cooling load can be sourced by CC. The possibility of selling on-site 

produced electricity to the grid in the context of the legal framework of Portugal as 

well as dynamic pricing of electricity at peak and off-peak hours are also taken into 

account. The results of the model are tested on a case-study of a hotel complex to 

illustrate its application. Finally, a cost and demand robust optimization model is 

developed to deal with demand and cost uncertainty for optimal energy planning of 

DG.  
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  Chapter 3

Life-cycle Assessment of Natural Gas Consumed in 

Portugal* 

The motivation and relevant studies to this thesis have been presented in chapters 1 

and 2. This chapter presents a Life-Cycle Assessment (LCA) of upstream stages to 

produce and transport the Natural Gas (NG) consumed in Portugal. The chapter is 

organized as following: section 3.1 provides a background of the NG sector in Portugal 

and highlights its importance as a fuel in the country energy mix. Section 3.2 discusses 

the Life-Cycle (LC) stages of NG and the main sources and types of emissions for each 

stage. Section 3.3 comprises the LC model (including goal and scope) and LC Inventory 

analysis (LCI). Section 3.4 presents the deterministic LC Impact Assessment (LCIA) 

results for four impact categories: Cumulative Energy Demand (CED), Greenhouse 

Gases (GHG), Acidification, and Eutrophication. Section 3.5 calculates the upstream 

emissions of Portuguese NG mix based on the shares of supply sources. Section 3.6 

provides the background and discusses the results of uncertainty analysis of upstream 

GHG emissions of NG. Finally section 3.7 summarizes the findings and presents the 

concluding remarks.  

Natural gas in Portugal  3.1 

NG was introduced in Portugal in 1997. Since then, the demand for NG has solidly 

increased, except a temporary drop from 2005 to 20061. NG is mainly used for 

electricity generation (63%), in industry (23%), and commercial and residential sectors 

(14%) (IEA, 2011a). It is expected that consumption of NG in Portugal continues to 

                                                      
* This chapter is based on two journal articles: 
- Safaei, A & Freire, F & Antunes, C (2014a)  
- Safaei, A & Freire, F & Antunes, C (2014b)  
 
1
 This was due to reduced demand in the electricity sector as a result of increased production of hydro 

electricity in 2006.  



3. LCA of Natural Gas Consumed in Portugal                                                                                                           

 

28 

grow in the mid-term, mainly in industrial, services and residential sectors, and in long-

term in electricity generation sector (IEA, 2011a). Since Portugal has no significant 

proven reserves of NG, it relies on imports to meet its domestic gas demand. In 2012, 

55% of the NG was supplied from Nigeria in the form of Liquefied Natural Gas (LNG), 

and 32% from Algeria (as NG) and the remaining 13% from other sources of NG (mainly 

Trinidad and Tobago) in the form of LNG (Galp Energia, 2012).  

In order to cover the demand for NG in Portugal, Galp Energia has a contract for 

annual purchase of 2.3 Billion Cubic Meters (bcm) of NG with Sonatrach, an Algerian 

state-owned company, and three others with Nigeria LNG Ltd, for the purchase of 

annual 3.5 bcm of LNG (roughly 4.42 bcm NG). NG from Algeria is transported through 

the Euro-Maghreb Pipeline system to the main NG entry point in Campo Maior, 

located on the eastern border of Portugal (Figure 3.1), while LNG is transported (via 

LNG tankers) to the Sines LNG terminal (IEA, 2011a). In Sines terminal, LNG is offloaded 

and pumped into temporary storage tanks, where it remains until it is gasified prior to 

delivery into the national gas transmission network along with the Algerian gas. NG 

distribution network in Portugal has a total length of 1098 km (IEA, 2011a). 

 

Figure 3.1: Euro Maghreb Pipeline Distance and location (Galp Energia, 2012) 
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Life-cycle of natural gas  3.2 

The LC of NG has the following main stages: exploration, extraction, processing 

(treatment), transportation, storage, distribution and application (utilization). LNG, on 

top of above, has two more stages: liquefaction of NG and gasification of LNG. Figure 

3.2 shows an overview of stages to produce and transport NG, including the LNG 

route. In this section, we provide a brief description of each stage, focusing on main 

sources of emissions. 

 

Figure 3.2: LC stages of NG and LNG 

The LC of NG starts with the exploration: in the search for NG (and oil) reservoirs, the 

subsoil is analyzed using geophysical methods. Upon discovery of a gas reservoir, 

exploration and development wells are drilled (Sevenster & Croezen, 2006). The next 

stage is the extraction of NG, for which the details of equipments and methods are 

very site- and technology-specific and depend on several aspects, e.g. if NG is 

associated with oil or not. The energy needed to extract the (oil and) NG is typically 

met by burning the onsite produced gas, called lease fuel. On top of the emission from 

combustion, the extraction of NG is often accompanied by flaring and venting (API, 

2009; Schori & Frischknecht, 2012). Flaring refers to deliberate burning of NG that is 

associated with crude oil and NG production, while venting is the direct (deliberate or 

not) release of NG to the environment (API, 2009; Buzcu-Guven et al., 2010). Venting 

and flaring are common practices whenever NG cannot be safely recovered (OGP, 

2000). They also occur during well preparations and completions, when the wellhead 

has not yet been fitted, and when it is not financially preferable to recover the 

associated NG from an oil well (Buzcu-Guven et al., 2010; EPA, 2011). Extracted NG 

gives a mixture of raw gas, condensed higher hydrocarbons, free water and carried 
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along particles (Sevenster & Croezen, 2006; Schori & Frischknecht, 2012). Therefore, it 

has to be processed (purified) to meet the characteristics of the NG used by 

consumers. The NG is transported from the extraction sites to processing plants 

through a system of low-diameter, low-pressure pipeline, called gathering pipelines 

(API, 2009). There, a number of processes (including vapor absorption, removal of acid 

gases (CO2), sulphurous compounds, Nitrogen and heavy hydrocarbons) are performed 

to give-out a “sweet” NG, ready for pipeline transmissions (Jaramillo et al., 2007). The 

energy consumed during processing is related to the quality of the gas extracted, i.e. 

how “sweet” it is (API, 2009).  

After being processed, the NG enters the transportation system. Gas should be 

compressed before entering the pipeline and the pressure loss during the transmission 

is compensated by intermediate stations. The combustion emission from the station 

compressors and leakage along transmission comprise the emission sources of pipeline 

transportation (EPA, 2011). The last stage to deliver the NG to the consumers is 

distribution. Normally NG is transported from delivery points along the distribution 

system to local consumers by low-pressure, small-diameter pipeline systems. The 

sources of emission and energy requirements are similar to pipeline transportation 

(Schori & Frischknecht, 2012).  

In Portugal, in 2012, 60% of the NG supply was in the form of LNG (Galp Energia, 2012). 

LNG has three further LC stages: liquefaction, marine transportation and gasification. 

Liquefaction consists of cooling down the NG below its condensation temperature (–

162°C) and then pressurizing it convert to liquid form, therefore reducing its volume 

(Jaramillo et al., 2007). The liquefaction plants are generally located in coastal areas of 

LNG exporting countries. Emissions are discharged when NG is consumed (as a fuel) to 

run gas turbines that are sources of power at liquefaction plants as well as venting and 

flaring. The long-distance transportation of LNG takes place by using LNG carriers. 

Emissions arise from the combustion of fuel (normally heavy fuel oil) for propulsion 

system as well as LNG Boil-Off Gas (BOG). BOG refers to the fraction of LNG that is 

vaporized during transportation due to its cryogenic nature (Faruque Hasan et al., 

2009). The current LNG carriers recover the BOG and use it as a fuel along with heavy 

fuel oil (Arteconi et al., 2010; Faruque Hasan et al., 2009; NETL, 2005). In addition to 
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BOG, a small amount of LNG (typically ~5%) called heel is retained inside LNG tanks to 

maintain their low carrying temperature during the voyage back (Faruque Hasan et al., 

2009). Before entering the distribution system to reach the final consumers, LNG 

should pass through gasification, which involves increasing the LNG temperature to 

return it to gaseous fuel (Schori & Frischknecht, 2012).  

Life-cycle model and inventory 3.3 

Goal and scope 3.3.1 

The importance of natural gas as a low carbon fuel in Portugal was stressed in section 

3.1. This LCA aims to assess the upstream impacts of the Portuguese NG mix for four 

impact categories: Cumulative Energy Demand (CED), Greenhouse Gas emissions 

(GHG), Acidification, and Eutrophication. GHG emissions are of particular interest due 

to their influence on climate change and policy planning for implementation of the 

Portuguese National Program for Climate Change—PNAC (RCM, 2010). A high level of 

uncertainty was observed for upstream NG GHG emission. ISO 14044 (2006) 

recommends “whenever feasible, uncertainty analysis should be performed to better 

explain and support the LCA conclusions”. Thus, a probabilistic LC model was 

additionally developed to assess the underlying uncertainty in upstream GHG 

emissions of NG mix.  

The impact categories were selected from the CML 2001 method (Guinee et al. 2002), 

a problem-oriented LCIA method developed by the Institute of Environmental Sciences 

of the University of Leiden (CML). Tables 3.1–3.3 display the substances analyzed and 

their characterization factors for each type of impact category.  

Previous studies (Skone et al., 2011; Venkatesh et al., 2011) revealed high level of 

uncertainty in GHG emissions of NG supply chains. Estimating this uncertainty provides 

useful insights for policy design by calculating the “embedded” upstream emission of 

Portuguese NG mix. An assessment was performed to address two types of uncertainty 

in upstream GHG emissions of NG mix of Portugal: parameter uncertainty, concerning 

uncertainty affecting the LCI parameters; and scenario analysis, related to choice of 
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time horizon to calculate the GHG intensity. We used the values from IPCC Fourth 

Assessment Report (2007) to model the GHG characterization factors of methane and 

Nitrous Oxide for 500-, 100-, and 20-year time horizons (Table 3.4).  

Table 3.1: GHG characterization factors (IPCC, 2007) 

 Chemical formulation 100-year time horizon (CO2 eq)  

Carbon Dioxide CO2 1 

Methane CH4 25 

Nitrous Oxide N2O 298 

-  

Table 3.2: Acidification potential characterization factors (Guinee et al. 2002) 

 Chemical formulation Acidification potential 

Ammonia NH3 1.60 

Nitrogen oxides NOx 0.50 

Sulfur dioxide SO2 1.20 

-  

Table 3.3: Eutrophication potential characterization factors (Guinee et al. 2002) 

 Chemical formulation Eutrophication potential 

Ammonia NH3 0.35 

Nitrate NO3- 0.10 

Nitrogen oxides NOx 0.13 

Phosphate PO4
3-

 1.00 

Phosphorus P 3.06 

 

Table 3.4: GHG characterization factor of gases (IPCC, 2007) 

 Chemical 
formulation 

500-year time 
horizon (CO2 eq) 

100-year time 
horizon (CO2 eq) 

20-year time 
horizon (CO2 eq) 

Carbon Dioxide CO2 1 1 1 

Methane CH4 7.6 25 72 

Nitrous Oxide N2O 153 298 289 

 

We chose the year 2010 as the base year of our study. NG consumed in Portugal is 

imported from Algeria and Nigeria gas (and less amount, 13%, from other countries). 

This study performs a detailed LCA for each of the two suppliers of NG, i.e. Algeria and 

Nigeria. For the latter, the model includes the production of NG (in Nigeria), its 

liquefaction, marine transportation, and gasification. Primary data from Nigerian oil 

and gas industry (NNPC, 2011) were collected and used to build the LCI. For Algerian 
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gas, the model includes its production in Algeria in Sonatrach Complex, processing, and 

pipeline transportation of 1600 km (out of which 45 km is under oceanic pipeline) to 

Portugal. Primary data from Algerian gas companies were more difficult to obtain; 

therefore, data were taken from Schori & Frischknecht (2012) to calculate the 

emissions. The quantity of NG imported from other supply sources (e.g. Trinidad and 

Tobago) to Portugal is subject to demand conditions and in some years this quantity 

has been nearly zero (IEA, 2011a). The Portuguese NG mix is therefore determined 

based on the average share of supply between Algeria and Nigeria in 2010 (Galp 

Energia, 2012): 3.42 bcm (60%) from Nigeria, and 2.30 bcm (40%) from Algeria. The 

functional unit of the study is 1 MJ Lower Heating Value (LHV) of Portuguese NG mix. 

The impact of NG distribution in Portugal is added up to obtain the total upstream 

impacts of the NG consumed in Portugal.  

Life-cycle inventory 3.3.2 

3.3.2.1 LCI of Nigerian LNG to Portugal 

NG production in Nigeria is associated with oil production. According to NNPC (2013), 

in 2012, 852 Million barrels of oil and 2580 Billion Standard Cubic Feet (69 billion m3) 

of NG were produced. Table 3.5 shows the representative composition on a mass basis 

of Nigerian raw NG and the pipeline quality NG in Portugal derived from Nigerian LNG. 

Calculation of GHG emissions presented in this section are based on the gas 

composition values in Table 3.5, using a mass balance approach, as explained in the 

Appendix A of this thesis.  

Table 3.5: Raw Nigerian NG and pipeline quality NG from Nigerian LNG: composition on a mass basis 

Component  Raw Natural Gas   
% mass 

Source Pipeline NG                  
% mass ** 

Source 

CH4 88 
ARI & ICF (2008)* 

92.1 

REN(2008) 
 

CO2 1.8 0 

N2 1.7  
API (2009) 

 

<1 

C2H6 6.3 4.8 

C3H8 2.1 2.1 

C3+  0 n.a. <1 

* Data specific for natural gas from Nigeria 
** at LNG terminal in Portugal; LHV = 39.05 MJ/Nm

3
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The first stage of NG LC is its production. The number of wells drilled (to meet the NG 

demand by Portugal) was estimated by dividing the volume of NG from Nigeria, i.e. 

4.42 bcm  (Galp Energia, 2012), by the expected average production per well. 

Estimates of representative Nigerian gas wells production, depth (3050 m) and drilling 

time (50 days/well) were provided by ARI & ICF (2008). The emission from drilling was 

calculated considering that a 1500 hp (1100 kW) diesel engine is operating on full-load 

for 50 days to drill the wells. The energy input requirement (J) and emission factor (per 

unit fuel input) of the diesel engine was taken from API (2009).  

NNPC (2013) reported that, in 2012, 23% (16.46 billion m3) of NG produced in Nigeria 

was flared. One way to calculate the impact of flaring on NG GHG intensity is to 

allocate flaring emissions between the total annual produced crude oil and utilized gas 

based on their total energy content (calculated based on the lower heating value). In 

this way, the impact of flaring allocated to NG, considering a 98% flaring efficiency, is 

calculated as 6.9, 4.4, and 4.5 g CO2 eq/MJ (100-year time horizon) for years 2010, 

2011, and 2012, respectively. However, such approach fails to distinguish between 

different types of oil and gas fields. This is particularly important since fields with 

access to gas export likely flare less quantity of NG (Buzcu-Guven et al., 2010). In this 

way, LNG producers might be burdened with comparably higher flaring emissions by 

other producers. A way to tackle this is to look only at the fields that their gas was 

exported for LNG (LNG fields). Therefore, the system boundary addresses the gas fields 

used for LNG production. The data regarding the flaring emissions of the LNG fields in 

Nigeria (NNPC, 2013) were gathered. Emissions due to flaring of NG in LNG fields were 

calculated and allocated between oil and gas production fields (based on their total 

heating value).  

There is a limited set of conflicting data regarding the venting emissions from Nigerian 

oil and gas production. Schori & Frischknecht (2012), based on a previous LCI report 

(Jungbluth, 2007), estimated that 0.018 m3 of NG is vented per unit volume (m3) NG 

produced in Nigeria. This alone contributes to 8.5 g CO2 eq/MJ (100-year time horizon). 

Kavalov et al (2009) used this value to calculate the GHG intensity of Nigerian NG 

production as 15 g CO2 eq/MJ. On the other extreme, a recent publication by the 

World Bank (Cervigni et al. ,2013) assumed no venting practice as a result of NG and oil 
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activities in Nigeria. Taking into account that the proportion of flaring was considerably 

less in LNG fields and its quantity has reduced over the years, we assumed that the 

same applies for venting emissions. In the absence of other reliable LCI, we abided by 

the zero venting scenario by Cervigni et al. (2013) to calculate mean GHG emissions of 

LNG production in Nigeria. The implications of adopting a higher venting rate are 

further discussed in section 3.6. 

The amount of fuel to extract the NG (lease fuel) was also taken from Schori & 

Frischknecht (2012). Finally, the energy requirement and emission resulting from 

transportation of produced gas to the processing facility was accounted for through an 

average 80 km of unprotected steel gathering pipeline system, based on the emission 

factors from API (2009).  

The energy required for, and the emissions resulting from, processing the NG are 

highly dependent on the quality of the extracted (raw) gas, and are therefore site-

specific. For this reason, we used the values from ARI & ICF (2008) that have estimated 

the processing emissions for the Nigerian NG.  

The liquefaction process consists in cooling down the NG below its condensation 

temperature and then pressurizing it to convert to liquid form. The emission from NG 

liquefaction can vary considerably based on the technology used to liquefy NG (Lim et 

al., 2013; Pillarella et al., 2007). Sevenster et al. (2007)  estimate that the average 

existing liquefaction plants have a GHG intensity of 11.4 g CO2 eq/MJ (100-year time 

horizon), similar to the values reported by Schori & Frischknecht (2012) for Nigeria and 

the estimation of Kavalov et al. (2009). However, they have used the LCI for vintage 

liquefaction plants, while modern liquefaction plans are considerably more efficient 

(Lim et al., 2013; Pillarella et al., 2007; Sevenster et al., 2007). NG Liquefaction plants 

in Nigeria were commissioned in the year 2000, using the Air Products and Chemicals 

International (APCI) propane pre-cooled, mixed refrigerant (APCI-C3/MR) liquefaction 

process (Eni-Saipem, 2010). A benchmark of the GHG intensity of LNG plants 

(Woodside, 2011) recognized Nigeria as one of the most efficient liquefaction projects 

globally. The estimate by Woodside et al. (2011), 11% self-energy consumption, was 

considered to represent the intensity of Nigerian NG liquefaction, and it also matches 
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the estimation of Edwards et al. (2014) for liquefaction intensity of average LNG 

consumed in Europe.  

 Regarding LNG transportation, a mid-range BOG of 0.125% per day, and a heel of 5% 

(Faruque Hasan et al., 2009) was assumed to calculate the trips necessary and the 

corresponding emission from LNG transportation. A total loading and unloading time 

of 2.5 days per roundtrip and a diesel consumption of 35 tonnes diesel/day in port 

(Barnett, 2010) was modeled. The main LNG receiver port in Portugal is located in 

Sines (ERSE, 2011). Table 3.7 summarizes the distance, LNG carrier capacity, travel 

time, and the fuel and BOG consumption rate. Finally, the energy requirement and 

emissions resulting from gasification of LNG were taken from Schori & Frischknecht 

(2012). Tables 3.8, 3.9 and 3.10 summarize the Well-to-Tank (WtT) LCI data of Nigerian 

LNG supplied to Portugal.  

Table 3.6: Emission factor of heavy fuel oil and BOG LNG 

Emission Factor Diesel (Heavy Fuel Oil)
a
 LNG BOG

b
 

Unit (kg/tonne) (kg/tonne) 

CO2  3151 2176 

CH4  0.02 15.23 

N2O 0.16 0.12 

a
 From Danish Maritime Authority (2012) 

b
 From Tamura et al. (2001) 

Table 3.7: LNG shipping distance, trip duration and fuel consumption assumptions 

 
Shipping distance (from Nigeria-Port Harcourt to 
Portugal-Sines) (km) 

6165
a
 

LNG tanker capacity (m
3
 LNG) 135,000 

Speed (Nautical Miles)
b
 19.5 

Days per round trip (excluding the days at port)  14.5 

Fuel Oil Consumption (t/day) 165 

Port turnaround time (days) 2.5 

Fuel Consumption in Port* (t/day)  35 

LNG BOG consumption (%/day) 0.125 

Heel (%) 5 

One-way trips necessary to transport the 
contracted LNG from Nigeria  

45 

a
 Calculated from  

http://www.searates.com/reference/portdistance/ 
b
 Man Diesel (2012).  

 

 

http://www.searates.com/reference/portdistance/
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Table 3.8: WtT GHG LCI of Nigerian LNG consumed in Portugal (g/MJ) 

 g/MJ Drilling Venting  Flaring   Lease Fuel   
Gathering 
pipelines  

Total Production Processing  Liquefaction  
LNG 
Transportation 

Gasification  

Carbon 
Dioxide 

CO2 3 × 10 
-2

 0 1.49 1.85 1.07× 10 
-4

 3.40 1.67 5.85 2.73 1.60 

Methane CH4 1.60× 10 
-6

 0 6.80 × 10
-3

 6.98 × 10 
-6

 1.17× 10 
-5

 2 × 10 
-5

 3.69 × 10 
-2

 1 × 10 
-2

 1.46 × 10 
-4

 0 

Nitrous 
Oxide 

N2O 2.67 × 10 
-7

 0 2.7× 10 
-10

 6.78 × 10 
-4

 0 0.0006 2.80 × 10 
-5

 0 1.35 × 10 
-5

 0 

 

Table 3.9: WtT Acidification and Eutrophication emissions of Nigerian LNG consumed in Portugal (g/MJ) 

g/MJ 

 
Production  Processing  Liquefaction  

LNG 
Transportation  

Gasification  

Ammonia NH3 0 4.74 × 10 
-6

 9.97 × 10 
-6

 0 8.19 × 10 
-6

 

Nitrate NO3- 1.08 × 10 
-4

 5.13 × 10 
-5

 1.10 × 10 
-4

 1.28 × 10 
-4

 9.38 × 10 
-5

 

Nitrogen oxides Nox 2.10 × 10 
-2

 7.27 × 10 
-4

 4.55 × 10 
-3

 9.77 × 10 
-3

 3.92 × 10 
-3

 

Phosphate PO4
3-

 3.99 × 10 
-4

 2.04 × 10 
-4

 4.35 × 10 
-4

 4.22 × 10 
-4

 3.73 × 10 
-4

 

Phosphorus P 0 1.20 × 10 
-7

 1.67 × 10 
-6

 0 0 

Sulfur dioxide SO2 6.10 × 10 
-4

 2.53 × 10 
-4

 6.42 × 10 
-4

 5.42 × 10 
-4

 4.41 × 10 
-4

 

 

Table 3.10: WtT energy requirements of Nigerian LNG (MJ/MJ) 

MJ/MJ Production Processing Liquefaction LNG transportation Gasification 

CED 0.06 0.09 0.11 0.051 0.019 
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3.3.2.2 LCI of Algerian natural gas to Portugal  

NG import from Algeria to Portugal has the following Well-to-Tank (WtT) stages: 

production in Algeria in Sonatrach Complex, processing, and pipeline transportation. 

NG in Algeria is produced from gas fields, i.e. it is not associated with oil production. 

The estimated lease fuel to extract the NG is 5.37 × 10 -3 m3 NG per m3 NG produced, 

and the flaring and venting rates were assumed to be 0.27% and 1.8% of the total 

production, accordingly (Schori & Frischknecht, 2012). Venting and flaring emissions 

factors were calculated based on the NG composition in Table 3.11. Algerian gas is 

“sweet”; therefore it does not require a high amount of energy for processing. NG goes 

through dehydration to remove its water content. The pipeline distance between the 

producing gas company in Algeria (Sonatrach) and the receiving point in Portugal 

(Campo Maior) is 1613 km, out of which 45 km is offshore (Galp Energia, 2012). A mid-

value of 1.9% gas use in compression stations according to (Schori & Frischknecht, 

2012) was considered. For fugitive emissions, a loss of 0.02% of NG in pipeline, and 

0.006% losses per 1000 km transported NG from compression station were assessed. 

Tables 3.12 to 3.14 show the LCI of WtT stages of Algerian NG to Portugal.  

Table 3.11: Raw Algerian NG and its pipeline quality: composition on a mass basis  

Component  Algerian Raw 

Natural Gas  

Source Pipeline Natural gas* Source 

 

 % mass % mass 

CH4 72.6 

Schori & 

Frischknecht 

(2012) 

87.88 

REN(2008) 

CO2 2.4 1.26 

N2 15 1.09 

C2H6 5 8.05 

C3H8 0 1.37 

C3+ 5 <0.05 

*LHV = 38.3 MJ/Nm
3
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Table 3.12: WtT GHG emissions of Algerian NG consumed in Portugal (g/MJ) 

 

Table 3.13: Acidification and Eutrophication emissions of Algerian NG consumed in Portugal (g/MJ) 

 

 Production processing Pipeline Transportation 

Ammonia NH3 4.52 ×  10 
-6

 4.74 ×  10 
-6

 1.22 ×  10 
-6

 

Nitrate NO3- 2.79 ×  10 
-5

 5.13 ×  10 
-5

 3.09 ×  10 
-6

 

Nitrogen oxides Nox 4.54 ×  10 
-3

 7.26 ×  10 
-4

 6.95 ×  10 
-4

 

Phosphate PO4
3-

 1.01 ×  10 
-4

 2.03 ×  10 
-4

 1.25 ×  10 
-4

 

Phosphorus P 3.17 ×  10 
-6

 1.19 ×  10 
-7

 8.73 ×  10 
-7

 

Sulfur dioxide SO2 4.07 ×  10 
-4

 2.53 ×  10 
-4

 2.47 ×  10 
-4

 

 

Table 3.14: WtT energy requirements of Algerian NG consumed in Portugal (MJ/MJ) 

MJ/MJ Production  Processing  Pipeline Transportation  

CED 2.24 ×  10 
-2

 9.81 ×  10 
-3

 2.86 ×  10 
-2

 

 
 

Drilling and Lease 
Fuel  

Venting  Flaring  
Transportation –
others 

Total Production Processing  
Pipeline 
Transportation 

 

        Carbon Dioxide CO2 3.84 ×  10 
-1

 4.90 ×  10 
-3

 1.35 ×  1  
-1

 1.06 ×  10 
-4

 5.24 ×  10 
-1

 5.57 ×  10 
-1

 1.51 

Methane CH4 1.28 ×  1  
-5

 1.50 ×  10 
-1

 1.39 ×  10 
-5

 5.34 ×  10 
-6

 1.50 ×  10 
-1

 7.57 ×  10 
-4

 6.90 ×  10  
-3

 

Nitrous Oxide N2O  5.58 ×  10 
-5

 0 6.70 ×  10 
-4

 1.17 ×  10 
-5

 7.38 ×  10 
-4

 5.24 ×  10 
-6

 2.67 ×  10  
-5
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Distribution 3.3.3 

Distribution is the last upstream phase of NG before consumption. Gasified LNG from 

Nigeria together with Algerian NG are fed into national grid at corresponding receiving 

points and transferred through pipelines to reach the consumers. It was assumed that 

0.17 % of the distributed NG and 2.6 Wh/m3 of electricity were used to preheat the gas 

(Schori & Frischknecht, 2012). This energy includes the energy consumption in high, 

low and very low pressure pipelines. NG losses due to transport and distribution, 

including pipeline losses, are reported annually by UNdata (2013). Figure 3.3 displays 

the total annual import, consumption and losses in Portugal from 2000 to 2010. 

Venting and fugitive losses were calculated as a percentage of total annual 

consumption, with a high of 2% for the year 2000 and a low of almost zero for 2009. 

The losses have decreased in the most recent years, 2009 and 2010. We assumed a 

value of 0.1% (similar to year 2010) for the venting of NG from the transportation and 

distribution of NG in Portugal, to account for the recent reductions. This mounts to 5 

140 000 m3 (200 717 000 MJ) of vented NG. The emission factor for venting was 

calculated based on the NG composition in Table 3.5. Total emissions from the 

distribution, including energy use and venting emissions in Portugal were calculated 

per MJ and shown in Tables 3.15 and 3.16.  

 

 

Figure 3.3: NG - Annual losses during distribution as a percentage of consumption in Portugal 
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Table 3.15: LCI of Distribution of NG in Portugal (g/MJ) 

  g/MJ 

Ammonia NH3 2.29 ×  10 
-8

 

Carbon dioxide CO2 1.34 ×  10 
-2

 

Nitrous Oxide N2O 1.44 ×  10 
-7

 

Methane CH4 1.70 ×  10 
-3

 

Nitrate NO3- 7.14 ×  10 
-7

 

Nitrogen oxides Nox 1.02 ×  10 
-5

 
Phosphate PO4

3-
 2.50 ×  10 

-6
 

Phosphorus P 1.61 ×  10 
-9

 

Sulfur dioxide SO2 8.05 ×  10 
-6

 

 

Table 3.16: CED - Distribution of NG in Portugal (MJ/MJ) 

 
MJ/MJ 

CED 2.55 ×  10  
-4

 

 

Life-cycle impact assessment   3.4 

CED 3.4.1 

Nigeria 

The total upstream CED to deliver one MJ (LHV) of Nigerian LNG is calculated as 

roughly 0.253 MJ/MJ, as shown in Figure 3.4. The stage with highest amount of energy 

requirements is NG liquefaction that contributes to 40% (0.11 MJ/MJ) of the Nigerian 

NG upstream energy requirements. Next stands the production of NG, with a total CED 

of 0.0.06 MJ/MJ. The production sub-stages with more energy requirements 

(destruction) are lease fuel (50%) and flaring of NG (40%). Processing and gasification 

are the stages with lowest CED. CED of upstream stages of NG is mainly in the form of 

NG (85%) and Diesel (15%).  
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Figure 3.4: CED—Upstream stages of Nigerian LNG (MJ/MJ) 

Algeria 

The CED of upstream stages of Algerian gas is shown in Figure 3.5. The production and 

transportation of NG constitute 82% of the total upstream CED of Algerian gas (i.e. 

0.065 MJ/MJ) and the remaining 18% (0.02 MJ/MJ) is from processing. Pipeline 

transportation of NG has slightly more CED than its production. For all these processes, 

the energy requirement is mainly (80%) in the form of NG and rest from diesel. The 

CED of production of NG (0.025 MJ/MJ) is due to lease fuel and well-drilling (49%), 

transportation necessary for production of NG (27%), flaring (17%), and infrastructure 

(7%).  

 

Figure 3.5: CED—Upstream stages of Algerian NG (MJ/MJ) 
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GHG 3.4.2 

Nigeria 

Our analysis shows the mean upstream intensity of LNG is 16.65 g CO2 eq/MJ out of 

which 37% (6.2 g CO2 eq/MJ) is from the liquefaction stage of NG (Figure 3.6). 

Production of NG in Nigeria is the next stage with highest emission (3.8 g CO2 eq/MJ). 

These two stages together comprise more than 40% of the total upstream GHG 

intensity. Processing and transportation of NG show relatively less emissions (around 

2.8 CO2 eq/MJ, respectively) and gasification emission is almost negligible (1.2 g CO2 

eq/MJ). Figure 3.6 displays a breakdown of estimated WtT GHG emissions of the 

Nigerian LNG. 

.  

Figure 3.6: GHG emissions—upstream stages of Nigerian LNG (100-year time horizon) 

An analysis of the emissions from the production stage of LNG is shown in Figure 3.7. 

Lease fuel combustion to extract the NG and flaring make up most of the production 

emissions. Figure 3.7 shows that the emissions from well drilling and transportation of 

raw NG to processing facility were negligible. The production emission was calculated 

considering no venting practice as a result of oil and NG extraction in LNG fields.  
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Figure 3.7: Nigerian LNG GHG: Production breakdown based on LC stage 

For both processing and liquefaction, emissions are mainly discharged by combusting 

the NG to meet the energy requirement of these processes. The energy needed for 

liquefaction is significantly higher than processing and therefore the emissions.. 

Gasification of LNG represents the stage with the least GHG emissions (0.99 g CO2 

eq/MJ). 

Algeria 

Figure 3.8 shows the estimated GHG intensity of Algerian NG (6.79 g CO2 eq/MJ), out 

of which more than half (4.86 g CO2 eq/MJ) comes from the production stage of NG. 

Intensity of pipeline transportation is calculated as 1.70 g CO2 eq/MJ; mainly (90%) 

from the energy required to maintain the gas pressure through the pipelines, and the 

rest (10%) from venting and fugitive emissions.  

 

Figure 3.8: GHG emissions—production of NG in Algeria (100-year time horizon) 
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An analysis of the emission from Algerian gas production shows that GHG emissions 

are mainly (84%) due to NG venting, which releases methane (Figure 3.9). Emissions 

from well drilling and lease fuel combustion, and flaring constitute 9% and 7% of the 

total GHG emission from production, respectively.  

 

Figure 3.9: Algerian NG GHG emissions: Production breakdown based on LC stage 

Acidification  3.4.3 

Nigeria 

Acidification impact to produce and transport Nigerian LNG is estimated as 2 × 10-2 g 

SO2 eq/MJ, from which almost half is from the production stage of NG, followed by 

transportation, liquefaction and gasification. The impact of processing is negligible 

compared to other stages.  
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Figure 3.10: Acidification potential—upstream stages of Nigerian LNG  

Among the processes to produce Nigerian NG, flaring is the main source of 

Acidification emissions, due to release of nitrogen oxides. Emissions from lease fuel 

(NG) and well drilling (diesel) also contribute to the production emissions as shown in 

Figure 3.11. NOx dominates (97% of total) the Acidification emissions from production 

of Nigerian NG.  

 

 

Figure 3.11: Nigerian LNG Acidification: Production breakdown based on LC stage 
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Acidification emissions are discharged when combusting the NG required for 

processing and liquefaction stages. Equal shares (74% and 26%) of their impact come 

from NOx and SO2, respectively.  

Acidification potential of LNG transportation is caused by the electricity needed in the 

boarding and unloading ports, and the emissions from burning the heavy fuel oil for 

propulsion (5.5 × 10-3 g SO2 eq/MJ) of LNG tanker. For gasification, combustion of NG 

to meet the energy required for gasification, and infrastructure construction constitute 

74% and 26% of total Acidification impact, respectively. The main Acidification 

emissions of gasification, by order of contribution, are NOx and SO2.    

Algeria 

The Acidification impact of WtT stages of Algerian NG imported to Portugal via pipeline 

is shown in Figure 3.12. Similarly, NG production is the main contributor to NG LC 

impact (4.1 × 10-3 g SO2 eq/MJ), followed by processing and pipeline transportation. 

The impact of Algerian NG is, however, considerably lower than its Nigerian 

counterpart, due to lower production and transportation emissions, and less LC stages 

than the LNG chain.  

 

Figure 3.12: Acidification potential—production of NG in Algeria  

Since NG flaring (per m3 produced NG) is considerably lower in Algeria than Nigeria, 

the resulting Acidification impact is also lower. Twenty percent of impact comes from 

discharging NOx from flare stack. Diesel lorry transportation necessary for the 

upstream activities to produce NG causes 43% of the total production impact—
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emitting equal shares of SO2 and NOx. Well drilling contributes to the rest (37%) of 

Algerian NG production Acidification impact.  

The Acidification impact from processing is equal to that of Nigerian chain. Pipeline 

transportation impact is estimated as 6.46 × 10-4 g SO2 eq/ MJ, most (85%) of which is 

from combustion of NG in compressor stations to facilitate its transportation. 

Production of pipeline infrastructure constitutes the remaining impact. The main 

acidification emissions are NOx (92%) and SO2 and the share of ammonia is negligible.  

 

Figure 3.13: Algerian NG Acidification potential—Production breakdown based on LC stage 

Eutrophication  3.4.4 

Nigeria 

The estimated Eutrophication impact of WtT stages to produce and transport Nigerian 

LNG to Portugal is shown in Figure 3.14. Production of NG contributes significantly to 

Eutrophication impact, followed by marine transportation, liquefaction, gasification 

and processing.  
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Figure 3.14: Eutrophication potential—upstream stages of Nigerian LNG  

Figure 3.15 demonstrates that flaring of NG and lease fuel combustion with well 

drilling contribute to the major proportion of Nigerian production Eutrophication 

impact. Nox is the main contributor to the production Eutrophication impact.  

 

 

Figure 3.15: Nigerian LNG Eutrophication: Production breakdown based on LC stage 

The Eutrophication impact of processing (3.05 × 10-4 g PO4
3− eq/MJ) is due to 

infrastructure (74%), and NG and electricity needed for processing (26%). For 

liquefaction, 57% of Eutrophication emissions (1.05 × 10-3 g PO4
3− eq/MJ) are 

discharged from combustion of NG required to meet the energy for liquefaction. The 

rest of impacts come from infrastructure construction. 86% of liquefaction emissions 

are in the form of nitrogen oxides and the rest phosphates. Finally, LNG gasification 

Eutrophication impact (8.94 × 10-4 g PO4
3− eq/MJ) is due to combustion of NG to meet 
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the energy, and the infrastructure related to gasify LNG. Emissions of NOx, phosphate, 

nitrate and ammonia contribute to Eutrophication impact of gasification.  

Algeria 

Eutrophication impact of WtT stages of Algerian NG to Portugal is displayed in Figure 

3.16. Production is the stage with highest impacts caused by the upstream 

transportation activities (41%), lease fuel emissions and well drilling (32%), flaring 

(12%), and construction of infrastructure and disposal (Figure 3.17). From total (1.23 × 

10-3 g PO4
3− eq/MJ) Eutrophication impact of Algerian NG production, 65% is from 

discharging nitrogen oxides, 29% from phosphate and the rest from nitrate and 

ammonia.  

 

Figure 3.16: Eutrophication potential—upstream stages of Algerian NG  

The Eutrophication impact of processing is the same as the Nigerian case, as explained 

earlier. For pipeline transportation, the combustion of NG to meet the energy required 

is responsible for 79% of the total emissions and the pipeline infrastructure for the 

remaining value. Emissions are in the form of NOx (83%), phosphate (15%), and 

negligible amounts of phosphorus and ammonia.    
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Figure 3.17: Algerian NG Eutrophication: Production breakdown based on LC stage 

Consumption mix in Portugal 3.5 

Table 3.17 displays a summary of LCIA of upstream stages of two chains of NG (except 

distribution) discussed in sections 3.1 to 3.4. Portuguese NG mix in Portugal was 

considered as the average weighted share of supply from Nigeria and Algeria in 2010, 

i.e. 60% and 40%, correspondingly (Galp Energia, 2012). The last column in Table 3.17 

shows the LCIA of Portuguese NG mix. These results were obtained by calculating the 

weighted sum (60% Nigeria, 40% Algeria) of LCIA results calculated in sections 3.1 to 

3.4 (and summarized in corresponding columns in Table 3.17) and adding up the 

impacts of NG distribution in Portugal (Section 3.3.3).  

Table 3.17: LCIA of NG consumed in Portugal 

 

Uncertainty assessment of upstream GHG emissions from NG  3.6 

Uncertainty is present in all phases of LCA, namely the goal and scope definition, 

inventory analysis, impact assessment and interpretation. Several sources of 

uncertainty in LCA can be characterized (Huijbregts, 1998; Lloyd & Ries, 2007; Malça 

& Freire, 2011): parameter uncertainty, which arises from missing and incomplete 

Flaring

Lease fuel and
well drilling

other
transportation

Infrastructure

 LCIA Category Unit Algeria Nigeria Distribution  Portuguese mix  

CED  MJ/MJ 6.08 × 10
-2

 2.50 × 10
-1

 2.55 × 10
-4

 1.74 × 10
-1

 

GHG g CO2 eq/MJ 6.76 16.65 5.60 × 10
-2

 12.7 

Acidification  g SO2 eq/MJ 4.09 × 10
-3

 2 × 10
-2

 1.48 × 10
-5

 1.36 × 10
-2

 

Eutrophication g PO4
3-

 eq/MJ 1.23 × 10
-3

 6.47 × 10
-3

 3.92 × 10
-6

 4.37 × 10
-3
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data, and error in measured data; uncertainty in preferences or scenario uncertainty, 

which reflects the uncertainty in normative choices for constructing LCA models, e.g. 

choice of functional unit and impact assessment method, or selection of 

characterization factors; and model uncertainty, which reflects the variability in 

structure and mathematical relationships in LCA models between model inputs and 

outputs. In this thesis, we address two types of uncertainty in WtT GHG emission of NG 

consumed in Portugal: parameter uncertainty, concerning uncertainty affecting the LCI 

parameters; and scenario analysis related to choice of time horizon to calculate the 

GHG intensity. In most cases, parameter uncertainty is characterized by means of 

probability distributions, while uncertainty due to modeling choices is addressed 

through the development of scenarios (Lloyd and Ries, 2007; Malça and Freire, 2010; 

2011).  

For parameter uncertainty, we identified the parameters with highest effect on the 

model outputs, by mean of a sensitivity analysis. A literature review was then 

conducted to identify the underlying uncertainty and associate probability density 

functions to the parameters. A Monte-Carlo simulation was employed to obtain the 

sample distribution for WtT GHG emissions per MJ (LHV) of LNG and NG imported 

from Nigeria and Algeria to Portugal. Monte-Carlo simulation is a propagation method 

based on the repetition of many individual model iterations with each iteration using a 

randomly constructed set of values selected from the represented probability 

distributions; a probability mixture model then combined the values (emissions) 

calculated from each iteration to obtain the sample results. Finally, an uncertainty 

importance analysis was performed to identify the parameters that contribute more to 

the results variance.  

The type of probability distributions of input parameters to the LC model were mainly 

obtained from literature, in particular Schori & Frischknecht (2012) that assigns a log-

normal distribution to the parameters of LC inventory of NG systems. When no 

distribution was found, a uniform or triangular distribution was assigned to parameters 

with two or three data points. Finally, for the parameters that we found only one data 

point, a normal distribution with a Coefficient of Variation (CV) of 10% from the mean 

value was considered, for which we also assessed the implication of a higher CV (20%). 
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For venting emissions, since no distribution was found that represented the inherent 

uncertainty, two scenarios were defined following the two extreme values found in 

literature (minimum of zero and maximum of 0.018 m3 per m3 NG produced). Tables 

3.18 and 3.19 include the distribution functions assigned to input parameters of the 

model.  

Several time horizons can be adopted for the estimation of GHG intensity. Although 

the 100-year horizon is commonly used, the 20- and 500-year time horizons can be 

also adopted. We include this type of uncertainty into the model by calculating the 

GHG footprint of each chain of NG and the corresponding Portuguese mix for three 

different time horizons (20-, 100-, and 500-year time horizons).  

Table 3.18: WtT stages of Nigerian LNG- Probability density functions for GHG emissions. 

 
Mean (g/MJ) Distribution SD CV (%) Min (g/MJ) 

Mid-Value 

(g/MJ) 
Max (g/MJ) 

Drilling emissions  

    

 

 CO2 3 × 10
-2 a

 Normal  

 

10% 

 

 

 CH4  1.60 × 10
-6 a

 Normal  

 

10% 

 

 

 N2O  2.67 × 10
-7 a

 Normal  

 

10% 

 

 

 Venting emissions 

    

 

 CO2 0 
b
 n.a  

  

0 
b
  1.58 × 10

-2 c
 

CH4 0 
b
 n.a 

  

0 
b
  2.81 × 10

-1 c
 

Flaring emissions   

    

 

 CO2 1.49 
d
 Log Normal

c
 1.23

 c
 

  

 

 CH4 6.80 × 10
-3 d

 Log Normal
c
 1.23

 c
 

  

 

 N2O  Uniform 

  

2.2 × 10 
-10 a

  3.1 × 10 
-10 a

 

Lease Fuel Emissions  

    

 

 CO2 1.85
 c
 Log Normal

a
 1.23

 c
 

  

 

 CH4 6.98 × 10
-6 c

 Log Normal
a
 1.23

 c
 

  

 

 N2O  6.78 × 10
-4 c

 Log Normal
a
 1.23

 c
 

  

 

 Gathering pipelines  

    

 

 CO2 oxidation  1.07 × 10
-4 a, e

 Normal
 a

 

 

146% 
a
 

 

 

 CO2 leak 5.34 × 10
-6 a, e

 Normal
 a

  

 

148%
 a

 

 

 

 CH4 1.17 × 10
-5 a, e

 Normal
 a

  

 

148%
 a

 

 

 

 Processing Emission  

    

 

 CO2  1.67 f Normal  

 

10% 

 

 

 CH4  3.69 × 10
-2 f

 Normal  

 

10% 

 

 

 N2O  2.80 × 10
-5 f

 Normal  

 

10% 

 

 

 Liquefaction    

   

 

 CO2 5.85 
g
 Log Normal

a
 1.05 

c
 

  

 

 CH4 0.01 
c
 Log Normal

a
 1.50 

c
 

  

 

 



3. LCA of Natural Gas Consumed in Portugal                                                                                                           

 

54 

Transportation   

    

 

 CO2 2.73 Normal  

 

10% 

 

 

 CH4 1.46 × 10
-4

 Normal  

 

10% 

 

 

 N2O 1.35 × 10
-4

 Normal  

 

10% 

 

 

 Gasification   

    

 

 CO2 eq  Triangular 
  

1.85 
h
 1.60

 c
 1.5

 i
 

        
a 

API (2009)
 f 

ARI & ICF (2008)
 

b 
Cervigni et al (2013)

 g
 Woodside (2011)

 

c 
Schori & Frischknecht (2012)

 h
 Tamura et al. (2001) 

d 
calculated based on

 
NNPC (2013) 

i 
Ruether et al. (2005) 

e 
WilBros (2011)  

 

Table 3.19: WtT stages of Algerian NG- Probability density functions for GHG emissions. 

 Parameter uncertainty  3.6.1 

The 90% confidence intervals for GHG intensity from Algerian NG and Nigerian LNG LC 

stages were calculated based on the probability distribution of uncertain input 

parameters in Tables 3.18 and 3.19. A log-normal distribution was found to best fit the 

forecast values (Figures 3.18 and 3.19). Nigerian LNG not only has higher GHG 

emissions than the Algerian counterpart, but also higher associated uncertainty: the 

interval of the total GHG emission from WtT of LNG spans between 14.77 and 18.82 g 

CO2 eq/MJ, with a mean value of 16.59 g CO2 eq/MJ (Figure 3.18). For Algerian NG, this 

interval ranges between 4.68 and 11.41 g CO2 eq/MJ, with a mean of 7.30 g CO2 eq/MJ 

(Figure 3.19).  

We performed an uncertainty analysis to detect the LC stages that contribute more to 

GHG intensity of both chains of NG supply (Figures 3.20 and 3.21). The variation range 

for each parameter, according to the distribution defined in Tables 3.18 and 3.19, was 

computed using the 5th and 95th percentiles of the intervals. A sensitivity analysis was 

performed and the 5 parameters that most affect the mean estimated GHG intensity 

of upstream NG and LNG chains were ranked. Figure 3.20 displays that lease fuel 

combustion emissions could increase the mean GHG intensity of Nigerian LNG up to 18 

g CO2 eq/MJ. The GHG intensity of Algerian NG is particularly sensitive to venting CH4 

emissions from production stage. Flaring of NG in Nigeria and CO2 emissions from 

pipeline transportation of Algerian NG increase their relative upstream GHG by up to 
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10%. The uncertainty in other parameters in Figures 3.20 and 3.21 only slightly affects 

the mean GHG intensity. For LNG route, the uncertainty in gasification, liquefaction 

and transportation would mainly reduce the total GHG results by negligible amounts 

(2%). Similarly, processing CO2 emissions would alter the Algerian GHG intensity by 3%. 

The variability of results due to uncertainty among other input parameters was found 

to be negligible (less than 0.05%). Moreover, we tested the hypothesis of considering a 

CV of 20%, instead of CV 10%, for the parameters that we did not find any probability 

distribution data, i.e. well drilling, processing, and LNG marine transportation. Once 

again, the changes to the mean value were found to be less than 1% and thus 

negligible.  

 

 

Figure 3.18: GHG emission of Nigerian LNG — 90% confidence interval 
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Figure 3.19: GHG emission of Algerian NG — 90% confidence interval 

 

 

Figure 3.20: Nigerian LNG upstream GHG — sensitivity to input parameters 
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Figure 3.21: Algerian NG upstream GHG — sensitivity to input parameters 

Finally, the probability distribution and 90% confidence intervals for the GHG 

emissions of Portuguese NG mix were obtained. A log-normal distribution (mean = 

22.24, standard deviation = 3.29) was found to best fit the forecast values (Figure 

3.22). Similarly, an uncertainty analysis was performed to detect the LC stages that 

most affect the WtT GHG intensity of Portuguese NG mix (Figure 3.23). As expected, 

GHG intensity of Portuguese gas mix is particularly sensitive to venting CH4 emissions 

from production stage of Algerian and Nigerian chains (Figure 3.23). Other parameters 

with significant effect on the mean GHG intensity are from LNG chain (compare Figures 

3.23 and 3.20). These are CO2 emissions from flaring, lease fuel combustion, 

gasification and marine transportation. The variability of results due to uncertainty 

among other input parameters was found to be negligible (less than 0.05%). 
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Figure 3.22: GHG emission of Portuguese NG mix —90% confidence interval  

 

 

Figure 3.23: GHG Sensitivity to input parameters- Portuguese mix  
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 Scenario uncertainty  3.6.2 

The mean estimated GHG intensity (g CO2 eq/MJ) and the 90% confidence intervals of 

Nigerian LNG, Algerian NG, and corresponding Portuguese average mix are shown in 

Figures 3.24 and 3.25 for three defined time horizons. Results were calculated based 

on the GHG characterization factors in Table 3.4. The shift in the mean GHG intensity 

as a result of venting emissions is also displayed: NG venting can shift up the mean 

GHG intensity of Nigerian LNG up to 25 and 40 g CO2 eq/MJ for the 100-and 20-year 

time horizons, respectively. The 20-year GHG estimations are significantly higher due 

to higher GHG characterization factor of methane (72 vs. 25 vs. 7.6 kg CO2 eq for 20-, 

100-, and 500-year, respectively). Considering a 20-year time horizon, the mean 

estimated GHG intensity of Nigerian LNG and Algerian NG were estimated as 18 g CO2 

eq/ MJ and 13.50 g CO2 eq/ MJ, respectively. Moreover, uncertainty ranges for a 20-

year timeframe are significantly higher than 100- and 500-year values, because of high 

contribution of methane to GHG intensity of NG chains. Conversely, since N2O hardly 

contributes to LC GHG emissions of NG, implications of variation of characterization 

factors between different time horizons are not significant. The break-down of NG and 

LNG upstream stages also shows that the emissions from production stage, which has 

a high raw NG (CH4) venting, and processing vary considerably with the alteration of 

time horizon chosen, while the variations along other LC stages of NG are insignificant.  

 

Figure 3.24: Upstream GHG emissions of Nigerian LNG and Algerian NG—implications of the selection of the time 
horizon 
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Figure 3.25: Portuguese NG mix upstream GHG emissions—implications of the selection of the time horizon 

Summary and conclusions  3.7 

This chapter presented the LCA of NG consumed in Portugal. We developed an LC 

model for two supply sources of NG (Algeria and Nigeria), assessing four impact 

categories: CED, GHG, Acidification, and Eutrophication. Two types of uncertainty in LC 

model, scenario and parameter uncertainty, were discussed and analyzed. The findings 

of chapter are summarized as following:  

1- A detailed LCA shows that the LNG chain from Nigeria has considerably higher 

energy requirements and environmental impacts than the NG chain from Algeria. This 

conclusion holds regardless of the type of impact and is due to several reasons:  

a. Nigerian NG production has higher production emissions, namely higher 

associated flaring emissions than Algerian counterpart.  

b.  LNG has two additional LC stages, liquefaction and gasification, among which 

liquefaction has particularly high energy requirements and emissions.  

c. Marine transportation of LNG has slightly more impacts than pipeline 

transportation of NG.  

 

2- The production of NG is the stage with the highest Acidification and 

Eutrophication environmental impacts and considerably contributes to GHG emissions 

of both source of NG (Algeria or Nigeria). Among the processes to produce NG, venting 
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and flaring are of particular concern as we discussed individually for each type of LCIA 

categories in sections 3.4.2–3.4.4.  

 

3- Liquefaction of NG has the highest energy requirements (CED) and GHG 

emissions among upstream stages of NG chains. Liquefaction contributes to more than 

half of total CED to produce and deliver one unit (MJ) of Nigerian LNG.  

 

4- For GHG, the main emissions from NG chains are in the form of CO2 and 

methane; the emission of Nitrous Oxide is negligible. Methane is mainly released from 

venting of NG during its production; whereas CO2 emissions contribute significantly to 

GHG intensity of the other LC stages of the NG chain (except production).  

 

5- The main type of Acidification emissions from NG chains is NOx, followed by 

SO2. NOx is specifically released from flare stack (incomplete) combustion. The main 

sources of SO2 emissions are electricity consumption and burning of diesel to meet the 

energy requirements of producing and transporting NG. The contribution of ammonia 

to total Acidification potential of NG chains was found to be negligible.  

 

6- The main type of eutrophication substances from NG chains is NOx and 

phosphate. NOx is the main emission of producing NG, whereas phosphate contributes 

equally to other stages of NG chains. The contribution of ammonia and nitrate to the 

Eutrophication impact is negligible.  

 

7- Venting of NG can have influential results on the total GHG footprint of NG 

chains. The reason is the relatively high GHG characterization factor of methane that is 

the main component of raw vented NG.  

 

8- Uncertainty analysis of GHG emission of NG chains revealed a high level of 

uncertainty to the mean value. Specifically, a high level of uncertainty was found 

regarding the venting emissions of Nigerian NG production.. Flaring can also alter the 

results by 10% compare to the mean estimation. The contribution of other stages to 

total GHG intensity was found to be negligible (less than 5%).  
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9- The estimate for GHG intensity of NG can vary considerably with the alteration 

of scenario (time horizon) chosen for the study. This is due to higher GHG 

characterization factor of methane for shorter time horizons. Since N2O hardly 

contributes to total GHG emissions of NG chains, its different characterization factor 

for different time horizons does not affect the mean estimation.  
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  Chapter 4

 

Life-cycle Assessment of Energy Systems*  

The Life-cycle Assessment (LCA) of the upstream stages of Natural Gas (NG) consumed 

in Portugal was presented in chapter 3. The purpose of this chapter is to present LCA 

of selected Distributed Generation (DG) sources for the building sector in Portugal. 

Section 4.1 defines the goal and scope of the LCA. In section 4.2 we present the Life-

Cycle Inventory (LCI), including a brief description of energy systems and main 

assumptions to calculate LCI. The Life-Cycle Impact Assessment (LCIA) is discussed in 

section 4.3. Finally section 4.4 summarizes the findings and presents the concluding 

remarks.  

Goal and scope 4.1 

The environmental impacts of the following types of DG for the commercial building 

sector in Portugal were assessed: solar Photovoltaic (PV), Solar Thermal (ST), 

Combined Heat and Power (CHP) technologies, and two types of cooling systems: 

Absorption Chiller (AC) and Compression Chiller (CC). CHP systems were assumed to be 

connected to Portuguese NG distribution network, which was assessed in chapter 3. 

Similarly, solar systems were modeled as they were installed in the city of Coimbra, 

situated in the central region of Portugal. The average meteorological conditions and 

solar radiation to calculate the systems output therefore characterizes this region.  

PV generates electricity, ST produces heating energy, CHP systems simultaneously 

generate electricity and heat, and cooling systems produce cooling energy. Due to 

different types of energy output (electrical, thermal, or both) from energy systems, 

three distinct LC models were developed to assess their environmental impacts. The 

                                                      
*
 This chapter is based on the following journal article: Safaei, A & Freire, F & Antunes, C (2014c)  
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environmental impacts assessed were Cumulative Energy Demand (CED), Greenhouse 

Gases (GHG), Acidification, and Eutrophication. CML (Guinee et al. 2002) was used as 

the LCIA method.  

Generation of electricity  4.1.1 

The functional unit of 1 kWh electrical energy (kWhe) delivered was selected for the LC 

model developed to assess the environmental impacts of PV and cogeneration systems 

for the commercial building sector in Portugal. The system boundary includes energy 

systems production, their use phase and disposal. As a benchmark for (separate) 

electricity generation, DG was compared with the Portuguese electricity mix in 2011.  

Cogeneration systems produce electricity and heat simultaneously. In an LCA 

perspective, if a process provides more than one function, it is called “multi-

functional” (ISO 14044). In this case, energy inputs and emissions linked to the process 

must be divided between the product of interest and the other co-products in a 

systematic approach. There are three approaches to do so (ISO 14044):  

- system subdivision, i.e. dividing the unit process to be allocated into two or 

more sub-processes and collecting the input and output data related to these sub-

processes;  

- system expansion, i.e. expanding the product system to include the additional 

functions related to the co-products; and 

- allocation, i.e. partitioning the inputs and outputs of the system between its 

different products in such way that reflects the underlying relationships between 

them.  

ISO 14044 (2006) recommends that “wherever possible, allocation should be avoided 

by using system expansion or sub-division”. Following ISO 14044 (2006) guidelines, we 

adopted the “system-expansion” approach to deal with the multi-functionality of 

cogeneration process. Since the aim is to compare cogeneration systems against grid, 

the analysis accounts for the credit of the heat generated as co-product (with 

electricity) by cogeneration systems. We assumed that thermal energy produced by 

CHP systems replaces that of a condensing boiler. The selection of the condensing 
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boiler was to abide by the cogeneration directive (Directive 2004/8/EC, 2004) in 

Europe, i.e. to compare cogeneration with the state-of-the-art separate production of 

heat and electricity. In addition to the condensing boiler, and to account for the 

variability regarding the system replaced to produce thermal energy, a conventional 

boiler (80% efficiency) was also modeled. The emission per kWh electrical output from 

cogeneration systems was then calculated considering two alternative systems: a 

condensing boiler (90% efficiency), and a conventional boiler (80% efficiency).  

Generation of heating energy  4.1.2 

An LC model was developed to assess the environmental impacts of ST systems for the 

commercial building sector in Portugal. The functional unit selected is 1 kWh heating 

energy (kWhth) delivered in the form of hot water (temperature 60 °C) from ST 

systems. System boundary includes ST production, its use phase and disposal. As 

benchmarks for heating energy generation, ST was compared with two types of 

boilers: a modern condensing boiler (90% efficiency), and a conventional boiler (80% 

efficiency). Fuel input to boilers was considered to be supplied by Portuguese NG 

distribution network.  

Generation of cooling energy  4.1.3 

An LC model was developed to assess the environmental impact of AC and CC for the 

commercial building sector in Portugal. The functional unit selected is 1 kWh delivered 

cooling energy (kWhc) e.g. in the form of cool air (temperature 15 °C). System 

boundary includes cooling systems production, their use phase and disposal. The 

heating energy input to the AC was considered to be supplied by either a modern 

condensing boiler (90% efficiency) or a conventional boiler (80% efficiency), both 

connected to Portuguese NG distribution network (as discussed in 4.1.2). Similarly, the 

electrical energy required driving the CC, and the negligible amount of electrical 

energy for the operation of AC and fans was considered to be supplied by the 

Portuguese electricity mix in 2011.  
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Life-cycle inventory  4.2 

Internal combustion engine cogeneration technology  4.2.1 

Reciprocating Internal Combustion Engine (ICE) cogeneration technologies offer 

relatively low capital costs, fast start-up, excellent load-following characteristics, and 

significant heat recovery potential. Overall CHP efficiencies for systems range from 

65% to 80%. Reciprocating engines are well suited to a variety of DG applications, 

including standby, peak shaving and grid support. There are two types of reciprocating 

engines: spark ignition, and compression ignition. Spark ignition engines, the one 

studied in this thesis, uses a spark plug to ignite a compressed fuel-air mixture within 

the cylinder (IEA, 2009 & 2011; Onovwiona & Ugursal, 2006; Simader et al., 2006).  

The ICE studied here is a NG rich burn engine with a nominal electrical power of 172 

kWe. The life-time of the engine is assumed to be 6 years, with four maintenance 

sessions required during this period. Table 4.1 displays the efficiency parameters of the 

ICE. On top of the emissions and energy requirements of construction, the inventory 

includes the necessary piping requirement for sanitary and venting purposes. A 

storage tank for hot water can be coupled with CHP systems; however, we exclude it 

from the scope of our study considering that the building under study does already 

hold such an equipment to meet its peak hot water demand. Tables 4.4 and 4.7 show 

the emission inventory and energy requirements of ICE. The values include the 

emissions due to upstream of NG, as presented in chapter 3.  

Table 4.1: Efficiency parameters of ICE (Osman et al., 2008) 

 
Load Power  

Electric Efficiency  
(%)  

Thermal Efficiency  
(%) 

power-to-heat Ratio 

IC
E 

100%  172 33.4 54.8 0.61 

75%   129 30.4 57.8 0.52 

50%   87 26.6 60.8 0.44 

 

Micro-turbine technology 4.2.2 

Micro-Turbines (MTs) are combustion turbines whose rated power range between 

25 kW and 500 kW (IEA, 2009). MT cogeneration systems consist of a compressor, 
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combustor, turbine, alternator, recuperator (a device that collects waste heat to 

improve the efficiency of the compressor stage), generator, and the exhaust gas heat 

exchanger that transfers the remaining energy from the MT exhaust to a hot water 

system (IEA, 2009 & 2011; Onovwiona & Ugursal, 2011; Simader et al., 2006). Figure 

4.1 illustrates an MT-based cogeneration system. MTs achieve electrical efficiencies in 

the range of 23% to 32%, and overall efficiencies in the range of 64% to 74% (IEA, 

2011). Their applications include peak shaving and base load power (grid parallel) as 

well as stand-alone power supply. Since MTs reduce power output by reducing mass 

flow and combustion temperature, efficiency at part load can be below that of full-

power efficiency (IEA, 2009).  

 

 

Figure 4.1: Components of a MT cogeneration system 

The MT analyzed for this study has a nominal output of 60 kWe and an electrical 

efficiency of 26% at full load. As Table 4.2 displays, the efficiency of the system 

decreases by lowering the operating load. The turbine was assumed to have six years 

(around 50,000 hours) life-time, with four maintenance sessions for this period. The 

lubricant consumption is 4.4 liters per year (Primas, 2007). On top of the emission from 

the construction of the turbine, the inventory also includes the piping for the sanitary 

equipment, ventilation and the electrical connections. A storage tank for hot water 

could be employed along with MT; however, we excluded it from the scope of our 

study considering that the building under study does already hold such equipment. 
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Table 4.2 displays the efficiency parameters of the MT under study and Tables 4.4 and 

4.7 include the LCI of MT per kWhe output in different operating loads. The NG 

supplied to turbine was assumed to be from Portuguese NG distribution network.  

Table 4.2: Efficiency parameters of MT (EPA ETV, 2003) 

 
Load Power  

Electric 
Efficiency (%)  

Thermal 
Efficiency (%) 

power-to-heat 
ratio 

M
T 

100%  54.9 26 52 0.50 

75%   39.9 24 56 0.43 

50%   24.8 20 57 0.35 

25%   9.8 13 58 0.22 

 

Solid oxide fuel cell cogeneration technology  4.2.3 

SOFCs operate on an electrochemical process to exploit the energy contained in NG or 

hydrogen fuel to produce electricity. Their size ranges from 100-1200 kW (IEA, 2009). 

SOFCs offer the potential for low emissions, quiet and efficient power generation, 

because the fuel is not combusted but instead reacted electrochemically. Since SOFCs 

have relatively long start-up times they are more applicable to base-load needs. 

Additionally, they offer the advantage of high power-to-heat ratio and excellent load 

following characteristic that make them suitable for low-energy buildings (IEA, 2009 & 

2011). Each fuel cell system consists of three primary subsystems: 1) the fuel cell stack 

that generates direct current electricity; 2) the fuel processor that converts the NG into 

a hydrogen rich feed stream; and 3) the power conditioner that processes the 

electrical energy into alternating current or regulated direct current. 

The SOFC studied here is a 125 kWe system with tubular cell design. Table 4.3 displays 

the efficiency parameters of SOFC. The life-time of the unit was considered to be 

80,000 hours (full and partial load hours) with eight maintenance sessions including a 

major overhaul to replace the fuel stack (Primas, 2007). In addition to the 

infrastructure of SOFC, i.e. piping for sanitary equipment and the electrical 

connections, a storage tank could be also employed. We excluded the storage tank 

from the scope of our study considering that the building under study does already 

hold such equipment. Tables 4.4 and 4.7 show the LCI of 1 kWhe output of SOFC 

systems at different operating-loads.  
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Table 4.3: Efficiency parameters of SOFC (Osman et al., 2008) 

 
Load Power  

Electric 
Efficiency (%)  

Thermal 
Efficiency (%) 

power-to-heat 
ratio 

SO
FC

 

104%   130 44 37 1.20 

100%   125 45 35 1.30 

93%   116 48 32 1.50 

85%   106 49 30 1.63 

78%   98 50 28 1.79 

68%   85 50 24 2.08 

62%   78 51 21 2.43 

Photovoltaic  4.2.4 

Photovoltaic systems convey solar radiation directly into electricity. Several types of 

material can be used to produce PV, including mono- and poly-crystalline 

silicon, amorphous silicon, and cadmium telluride. At the current stage, crystalline 

based systems dominate the PV market in terms of the total capacity of installation 

(IEA-PVPS, 2011).  

The PV system modeled here is a 4 kWp (kW peak) mono-crystalline system. The main 

stages are the production of PV parts (panels and inverters), and the mounting 

structure and electric installation, which are together called Balance of System (BOS). 

The production of PV panels include the production of mono-crystalline PV cells, 

production of aluminum alloys to support the PV system, and solar glass, a glass that 

protects the PV panels against exposure to rain or dust (Jungbluth et al., 2009). The 

life-time of the PV system was considered to be 20 years, with an annual degradation 

rate of 0.5% in output (≈10% overall reduction in year 20), according to Denholm et al. 

(2009). Three 2500 W inverters were needed for the operation of the system during its 

life-time. The annual electrical output of the system was estimated using PV-Watts 

(2011) application that yields the estimated hour-by-hour power output of the 

crystalline silicon PV systems. Tables 4.5 and 4.8 display the LCI of PV system.  

Solar thermal  4.2.5 

Solar Thermal (ST) is a technology to harness thermal energy from solar radiation. ST 

system in this study is used to produce hot water for sanitary purposes. Such system 

has normally four components: the absorbing collector including the main framework, 

http://en.wikipedia.org/wiki/Monocrystalline_silicon
http://en.wikipedia.org/wiki/Monocrystalline_silicon
http://en.wikipedia.org/wiki/Amorphous_silicon
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the absorbing plate and the pipes for the thermal fluid flow; the water tank; electric 

pumps; and the support to secure the system to rooftop. The system requires a small 

amount of electricity to run the electric pumps.  

A 4 kWth ST system was modeled that includes 5.71 m2 of flat plate collector with black 

chrome coating on copper, a 2000 liters chrome steel heat storage, 3.55 units of 40 W 

pumps, and the necessary piping and electric installation for the operation of the 

system. The life-time of the system was considered to be 20 years. Tables 4.5 and 4.9 

display the LCI of ST system. 

Boiler  4.2.6 

Two 600 kWth NG boilers were modeled for this study: a condensing boiler (90% 

efficiency) and a conventional boiler (80% efficiency). The life-time of both systems 

was assumed to be 20 years. The LCI of boilers are shown in Tables 4.5 and 4.9.   

Grid  4.2.7 

The electricity generation mix of Portugal consists of hydro, coal, NG, wind and PV. The 

contribution of each type of energy source to the total electricity generation mix 

changes annually due to weather conditions that affect the output of renewable 

(hydro, wind and solar) sources. Figure 4.2 shows the annual evolution of national 

electricity mix of Portugal since 2004 to 2011.  
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Figure 4.2: Evolution of electricity generation mix in Portugal 

 The generation mix considered to model the Portuguese grid is parallel to the mix of 

year 2011, with 20% electricity from coal, 31% NG, 18% wind production, 1% PV, and 

the rest 6% imported, as shown in Figure 4.3. The estimated LCI of 1 kWhe supplied by 

Portuguese grid is shown in Tables 4.5 and 4.8. Portuguese NG mix has been 

considered as the source of supply of NG to gas plants. 

 

Figure 4.3: Electricity generation mix for the current study 
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Absorption chiller 4.2.8 

An Absorption Chiller (AC) is a cooling system that uses a heat source (e.g., waste heat 

cogeneration systems) to produce cooling energy. A common AC in large commercial 

plants uses a solution of lithium bromide salt and water. The cooling cycle works as 

following: water under low pressure is evaporated from the coils, which are being 

chilled, and is absorbed by a lithium bromide/water mixture. Using heat, the water is 

driven off the lithium bromide solution. A Coefficient of Performance (COP) of 0.55 to 

0.70 is expected for the system when coupled with cogeneration systems.  

A 104 kW AC with a COP of 0.70 was modeled for this study. The life-time of the 

system was assumed to be 20 years. A small amount of electricity, 0.02 kWhe per MJ of 

chilled water output, is required for the energy used during operation. Tables 4.6 and 

4.10 show the LCI of AC systems.   

Compression chiller  4.2.9 

Compression Chillers (CC) are the commercially available technology used for space 

cooling. They could be air source, ground source, water source or a combination of 

two or more (hybrid). Air source compression chillers are the most common type used 

in building sector. An air source CC with a nominal capacity of 15 kW and a COP of 2.2 

was modeled for this study. Tables 4.6 and 4.10 show the estimated LCI of CC.  

http://en.wikipedia.org/wiki/Refrigerator
http://en.wikipedia.org/wiki/Lithium_bromide
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Table 4.4: LCI of cogeneration systems  

 

 

 

 

    
ICE 100% 
load  

ICE 75% 
load  

ICE 50% 
load  

MT 100% 
load  

MT 75% 
load 

MT 50% 
load 

MT 25% 
load 

SOFC 
104% 
load 

SOFC 
100% 
Load 

SOFC 
93% 
load 

SOFC 
85% 
load 

SOFC 
78% 
load 

SOFC 
68% 
load 

SOFC 
62% 
load 

 
  g/kWhe  

Ammonia NH3 0.0003 0.0003 0.0004 0.0004 0.0005 0.0005 0.0007 0.0033 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 

Carbon 
dioxide 

CO2 655 711 800 854 895 1022 1552 539 532 530 528 528 528 527 

Nitrous 
Oxide 

N2O 0.0101 0.0112 0.0130 0.0116 0.0126 0.0150 0.0232 0.0611 0.0609 0.0604 0.0602 0.0601 0.0601 0.0599 

Methane CH4 1.00 1.38 1.99 0.71 1.38 9.13 7.51 0.68 0.63 0.49 0.45 0.51 0.51 0.47 

Nitrate N 0.0011 0.0011 0.0038 0.0041 0.0044 0.0054 0.0084 0.0099 0.0023 0.0022 0.0021 0.0021 0.0021 0.0021 

Nitrogen 
oxides 

NOx 0.25 0.26 0.31 0.42 0.43 0.55 0.85 0.19 0.11 0.0.02 0.02 0.0.02 0.0.02 0.02 

Phosphate PO4
3−

 0.0396 0.0772 0.0222 0.0231 0.0246 0.0286 0.0412 0.0439 0.0135 0.0130 0.0128 0.0127 0.0127 0.0125 

Phosphorus P 0.0015 0.0017 0.0098 0.0000 0.0000 0.0000 0.0001 0.0000 0.0151 0.0147 0.0146 0.0145 0.0145 0.0144 

Sulfur 
dioxide 

SO2 0.0400 0.0095 0.0937 0.0285 0.0288 0.0348 0.0541 0.0812 0.0250 0.0241 0.0238 0.0236 0.0236 0.0233 
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Table 4.5: LCI of ST, PV, grid and boilers  

  
Conventional 
Boiler 

Condensing 
Boiler 

ST PV Grid 

  g/kWhth g/kWhe 

Ammonia NH3 0 0 0.0031 0.0050 0.0161 

Carbon dioxide CO2 257 224 21 83.99 344 

Nitrous Oxide N2O 0.0032 0.0029 0.0000 0.00 0.0068 

Methane, fossil CH4 0.65 0.44 0 0.20 0.48 

Nitrate N 0.0032 0.0028 0.0138 0.0900 0.1290 

Nitrogen oxides NOx 0.12 0.115 0.059 0.190 0.752 

Phosphate PO4
3−

 0.0098 0.0086 0.0932 0.2210 0.405 

Phosphorus P 0.000009 0.000008 0 0.07 0.00137 

Sulfur dioxide SO2 0.055 0.045 0.101 0.270 0.294 

 

Table 4.6: LCI of cooling systems 

  
AC 

Heat supplied by conventional boiler 

AC 

Heat supplied by condensing boiler 

CC 

Electricity supplied by Portuguese grid 

  g/kWhc 

Ammonia NH3 0 0 0.007 

Carbon dioxide CO2  412 368 151 

Nitrous Oxide N2O  0.01 0.01 0.003 

Methane CH4  2.97 2.62 0.21 

Nitrate N 0.006 0.005 0.059 

Nitrogen oxides NOx  0.35 0.31 0.349 

Phosphate PO4
3−

 0.02 0.02 0.186 

Phosphorus P 0.00002 0.00001 0.0006 

Sulfur dioxide SO2  0.1 0.09 0.136 
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Table 4.7: CED of cogeneration systems  

 
ICE 100% 
load  

ICE 75% 
load  

ICE 50% 
load  

MT 100% 
load  

MT 75% 
load 

MT 50% 
load 

MT 25% 
load 

SOFC 104% 
load 

SOFC 100% 
Load 

SOFC 93% 
load 

SOFC 85% 
load 

SOFC 78% 
load 

SOFC 68% 
load 

SOFC 62% 
load 

 
MJ/kWhe 

CED 12.78 14.03 16.02 16.35 17.70 21.23 32.61 9.85 9.64 9.05 8.87 8.70 8.70 8.54 

 

Table 4.8: CED of PV and Grid 

 
PV Grid 

 MJ/kWhe 

CED 1.80 4.67 

 

Table 4.9: CED of boiler and ST 

 
ST 

Conventional 
Boiler 

Condensing 
Boiler 

 MJ/ kWhth 

CED 0.39 5.20 4.71 

 

Table 4.10: CED of cooling systems 

 
AC 

Heat supplied by conventional boiler 

AC 

Heat supplied by condensing boiler 

CC 

Electricity supplied by 
Portuguese grid 

 MJ/ kWhc 

CED 8.70 7.79 2.12 
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Life-cycle impact assessment results  4.3 

CED 4.3.1 

The CED (MJ) to produce one unit kWhe by grid, cogeneration systems and PV is shown 

in Figure 4.4. Similarly, Figure 4.5 shows the CED of the thermal units. The avoided 

burden heat produced by a 90% efficiency boiler is already subtracted from the total 

emissions of cogeneration systems (Figure 4.4). The extra savings, obtained as a result 

of considering a conventional boiler (80% efficiency) instead of a condensing boiler as 

the avoided burden, are shown as error bars on the total CED of CHP systems. It is 

visible that the amount of required energy to produce one unit energy output varies 

according to the type of technology and its operating load. PV systems provide 

significant energy savings compared to either grid or cogeneration systems to produce 

a kWhe (Figure 4.4). ST also has significantly less CED than boilers (Figure 4.5). 

Employing a condensing boiler (rather than a conventional one) can reduce CED by 

12%.  

 

Figure 4.4: PV, CHP and grid: CED (MJ/kWhe) 
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Figure 4.5: ST, condensing boiler and conventional boiler: CED (MJ/kWhth) 

For CHP systems, Figure 4.6 displays the CED as further broken down based on the 

three LC stages: construction of CHP, upstream stages to produce and transport NG, 

and the operation of CHP. The negative bars show the magnitude of emission savings 

obtained as a result of heat cogenerated with electricity from CHP systems, 

condensing boiler being selected as the avoided burden. The error bar shows the extra 

savings if the avoided burden is a conventional boiler. It is visible that the operating 

phase is the major contributor to CED of cogeneration systems (around 77% of total 

impact), followed by the upstream stages to produce NG. The CED to construct the 

energy systems is negligible compared to NG combustion and upstream CED. 

Moreover, since the amount of NG required producing one unit kWhe by MT and ICE is 

higher in part-loads, so is the contribution of NG upstream stages to total CED (Figure 

4.6).  
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Figure 4.6: CHP—break-down of CED based on LC stage  

Finally, Figure 4.7 displays the CED of cooling systems, AC and CC. CC has lower CED, 

due to combined effect of its higher efficiency and relatively low energy requirement 

of Portuguese grid, which supplies its electricity. On the other hand, lower COP of AC 

(0.7) implies higher CED to produce one unit kWhc. Using a condensing boiler to run 

the AC can reduce its CED by 12%.  

 

Figure 4.7: CED of cooling systems 
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GHG 4.3.2 

The LC GHG emissions to generate one unit kWhe by cogeneration, PV and Portuguese 

grid are shown in Figure 4.8, with the avoided burden heat (produced by a condensing 

boiler) withdrawn from the total emissions of cogeneration systems. Error bars in 

Figure 4.8 display the extra savings if the avoided burden was the conventional boiler. 

In terms of GHG savings, PV by far outweighs the grid and CHP technologies, among 

which ICE has the lowest emissions. Similarly, Figure 4.9 shows that ST has significantly 

less GHG emissions compared to boilers. GHG emissions from boilers arise from the 

combustion of NG (70%) and its upstream stages (30%). Compared to the conventional 

boiler, condensing boiler has 13% less GHG emissions.  

 

 

Figure 4.8: PV, CHP and grid—GHG (g CO2 eq/kWhe) 
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Figure 4.9: ST, condensing boiler and conventional boiler—GHG (g CO2 eq/kWhth) 

Figure 4.10 shows GHG emissions of generating one unit kWhe by energy systems, as 

further broken down by three stages of LC. Regardless of the type of CHP technology, 

the stage with more impact is the operation of systems. Between 72% and 76% of the 

total GHG emissions come from the operation of energy systems, between 26% and 

29% from upstream stages of NG, and rest from construction of CHP. For ICE and MT, 

decreasing the load results in higher operating emissions. The efficiency rates of SOFC 

in part-loads are similar to full-load, and so its GHG emissions. Regarding boilers 

(Figure 4.9), about 30% of GHG emissions are from NG upstream stages, the rest being 

from its combustion. 
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Figure 4.10: CHP—break-down of GHG based on LC stage  

For ICE, more than 86% of the total GHG emissions (682 g CO2 eq/ kWhe) are caused by 

the release of CO2, 12% to 13% (96 g CO2 eq/ kWhe) is by methane, and less than 1% 

(7.5 g CO2 eq/ kWhe) is by N2O. Most of CO2 emissions come from the combustion of 

NG, 20% from the upstream emissions of NG, and 1% from engine construction 

emissions. Conversely, methane and N2O are mainly (74%) emitted from upstream 

stage of NG, and less from combustion emissions (construction emissions are 

negligible).  

For MT operating in full load, CO2 contributes to 90% of total emissions, 9.5% is from 

methane and less than 0.5% (3 g CO2 eq/kWhe) is caused by N2O. Combustion of NG is 

the main source of CO2 emission (around 81%). Methane is almost entirely emitted 

from upstream stages of NG that signifies very low methane emission from full-load 

operation of MT. However, methane emissions increase dramatically from 90 g CO2 

eq/kWhe in full-load to 293 and 253 g CO2 eq/kWhe in 50% and 25% loads, 

respectively. In this way, 20% of GHG emissions of MT in part-loads loads are due to 
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discharge of methane. Methane emissions from the operation of turbine in 50% and 

25% loads even exceed NG upstream methane emissions.  

SOFC GHG emissions remain constant with the change of operation load. Once again 

most of GHG emissions (89% of 557 g CO2 eq/kWhe) are by CO2, 8% (45 g CO2 

eq/kWhe) by methane and 3% (16.5 g CO2 eq/kWhe) by N2O. The share of methane to 

total GHG emissions is considerably lower for SOFC compared to other cogeneration 

systems and nearly all of this methane is from upstream stages to produce NG. Most of 

CO2 emissions (80%) are from the operation phase of SOFC. Negligible N2O emissions 

are similarly released from the operation of engine (85%), upstream of NG (8%) and 

the rest from construction of engine.  

PV systems have very low LC emissions, mainly due to production of mono-Crystalline 

PV panels (75%), BOS (16%), inverter (6%), and different types of necessary 

transportations (3%). CO2 contributes to 93% (82 g CO2 eq/kWhe) of total emissions, 

followed by methane (6%: 5.4 g CO2 eq/kWhe) and Nitrogen Dioxide (1%: .001 g CO2 

eq/kWhe). Similar to PV, GHG emissions from ST system are essentially caused by the 

production of hot water tank (42%), ST flat plate collectors (35%), and transportation 

and installation. The impact of electricity to run the (pump for) ST is negligible. 95% of 

the total GHG intensity (20 g CO2 eq/kWhth) is from CO2 emissions, the rest being from 

N2O.  

GHG emissions from grid (447 g CO2 eq/ kWhe) are mainly caused by the combustion of 

fossil fuels (coal and NG), which together cause 92% of the GHG intensity, with slightly 

higher share for coal (52%). The main GHG emissions from NG and coal plants are CO2 

due to combustion (93%) and methane (6%, which is by large from NG chain). The rest 

of emissions from grid are from the electricity imported (7%: 31.3 g CO2 eq/kWhe 

modeled according to the Spanish mix) and a negligible 2% (9 g CO2 eq/kWhe) comes 

from renewable sources, mainly hydro.  

Finally, Figure 4.11 displays the LC GHG emissions of cooling systems. CC shows 

significantly lower emissions than AC, a joint effect of its higher nominal COP (2.2 CC 

vs. 0.7 AC) and relatively low GHG emissions of Portuguese grid. For both types of 

cooling system, the emissions are mainly associated with upstream stages to produce 
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fuel input (heating or electricity). For AC, the electricity required to drive the system 

causes only 5% of operating GHG emissions.  

 

Figure 4.11: GHG of cooling systems 

Acidification  4.3.3 

Life-cycle Acidification impacts resulting from the production of one kWhe by CHP 

technologies, PV and Portuguese generation mix in 2011 are shown in Figure 4.12. 

Cogeneration systems, regardless of type of technology, bring about significant 

reductions in Acidification compared to grid and even PV. The highest reduction is 

possible through the employment of SOFC. Regarding thermal systems, ST has more 

Acidification impact than the condensing boiler, but lower than the conventional one 

(Figure 4.13).  
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Figure 4.12: PV, CHP and grid—Acidification of energy systems (g SO2 eq/kWhe) 

 

 

Figure 4.13: ST, condensing boiler and conventional boiler— Acidification (g SO2 eq/kWhth) 

Figure 4.14 displays the Acidification of CHP systems as further broken in upstream 

stages of NG, operation and construction of energy system. Acidification impacts are 

mainly caused by the upstream stages to produce NG. Moreover, the impact of 

construction of SOFC and ICE is relatively significant, while the impact of MT 

construction is negligible.  
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Figure 4.14: CHP—break-down of Acidification potential based on LC stage 

ICE has an Acidification potential of 0.4 g SO2 eq/kWhe (without crediting the heat). 

This is mainly caused by SO2 (80%) and NOx (20%) emissions from engine. Acidification 

of ICE is also related to maintenance, involving burning of fuel oil and electricity to 

meet the energy required, which also releases SO2 (95% of the total) and NOx (5%).  

Acidification impact of MT is by large caused by upstream emissions of the gas 

supplied to the turbine. Regarding operation emissions, NOx that is formed through 

the operation of turbine is the major (98%) emission and the rest comes from SO2.   

From total Acidification emissions of SOFC (around 0.20 g SO2 eq/kWhe), 63% (0.13 g 

SO2 eq/kWhe) is in the form of NOx , 35%  in form of SO2, and ammonia (2%). SO2 and 

NOx contribute equally to the operating emissions of fuel cell, while upstream activities 

related to the production of SOFC releases mostly SO2. As Figure 4.14 shows, most of 

the emissions resulting from to produce one kWhe by SOFC are due to upstream of NG, 

a trend observed for all the systems that run on NG.  

The Acidification impact of electricity generation is due to emission of NOx and SO2. 

Coal, which constitutes 20% of electricity generation mix (Figure 4.3), causes most of 
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the impact (i.e. 0.75 g SO2 eq/kWhe), followed by NG plants and the imported 

electricity (that also has coal according to Spanish mix). Overall, SO2 and NOx cause 

47% and 50% of Acidification potential and 3% is from ammonia. 

PV shows a rather high Acidification impact compared to cogeneration systems. The 

production of PV panels and BOS requires electrical energy that has a generation mix 

consisting of coal. Moreover, the oceanic and road transportation of PV parts use 

heavy fuel oil, which also has high Acidification potential. The production of PV panels 

and BOS generate 78% of Acidification impact, and the rest is from the transportation 

along upstream stages of production of PV. In terms of substances, 76% of 

Acidification impact (0.35 g of 0.47 g SO2 eq/kWhe) is in form of SO2, 23% (10.9 g SO2 

eq/kWhe) NOx and 1% ammonia.  

Regarding ST system, the production stage of flat plate collectors, hot water tank and 

copper wiring contribute to 90% of the total Acidification impact (0.163 g SO2 

eq/kWhth). The rest of impacts come from ST upstream transportation stages and 

operation of 40 W pumps. Emissions are in the form of SO2 (78%), NOx (19%), and 

ammonia.  

Figure 4.15 displays the Acidification impact of cooling systems. For both systems, 

construction impact is negligible (less than 1%) and emissions arise from their 

operation. CC has higher impacts, almost entirely caused by upstream emissions from 

electricity chain to run CC. Acidification impact of AC is also caused by the heat input 

from the boiler (75%) and the electricity needed for its operation (25%). Using a 

condensing boiler to run the AC can improve its impact by 10%.  
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Figure 4.15: Acidification impact of cooling systems 

Eutrophication  4.3.4 

The Eutrophication impacts of DG (PV and CHP) and grid per kWhe output of the 

energy systems are shown in Figure 4.16. Similarly, Figure 4.17 displays the 

Eutrophication impacts from one kWhth from boilers and ST. CHP systems show 

significantly lower impacts compared to Portuguese generation mix in 2011. ST, on the 

contrary, has higher impacts than both conventional and condensing boilers, among 

which the latter has roughly 12% less impact (Figure 4.17).  
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Figure 4.16: PV, CHP and grid— Eutrophication (g PO4
3−

 eq/kWhe) 

  

Figure 4.17: ST, condensing boiler and conventional boiler— Eutrophication (g PO4
3−

 eq/kWhth) 

Figure 4.18 displays the Eutrophication impact of CHP systems, as further broken down 

by three stages of LC. For SOFC, Eutrophication arise from the NG upstream stages and 

construction of the unit; the operating emissions are negligible. For MT and ICE, 

construction impacts are minor and emissions are discharged by upstream stages to 

produce NG, and considerably less by the operation of CHP.   
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Figure 4.18: CHP—break-down of Eutrophication potential based on LC stage 

For ICE, NG upstream stages are the main contributor to Eutrophication impacts, 

caused by the discharge of NOx. The low emissions from ICE construction come in form 

of phosphate (99%) and negligible Nitrogen Oxides. In part-loads, NOx emissions rate 

of ICE slightly increases and this is reflected in its Eutrophication impacts (see Figure 

4.18).  

MT systems have low operating emissions due to catalyst at the exhaust that offsets 

the NOx emissions (EPA ETV, 2003). As Figure 4.18 shows, the construction emissions 

of MTs are also relatively low and NG upstream activities cause the major part of 

Eutrophication impacts. The NG upstream impacts increases per kWhe output of the 
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Eutrophication is due to NOx emissions, 21% phosphate, and other emissions are 

negligible.  

For SOFC, operating impacts are relatively low due to low NOx emission rate of the cell. 

Upstream activities to produce SOFC release half of the eutrophication emissions, 

namely phosphate (83%), Nitrogen Oxides (12%), ammonia and nitrate. The 

construction of SOFC represents the highest among the cogeneration systems.  

High Eutrophication impact of grid is from the release of phosphates (78%) and NOx 

(18%). Electricity generation from coal (89%) and imported electricity from Spain (10%) 

cause the major emissions.  

The Eutrophication impact of PV systems (0.22 g PO4
3− eq/ kWhe) is due to production 

of PV panels (60%), inverters (22%), BOS (17%) and necessary transport to produce and 

install PV. The emissions come in the form of nitrate (40%), phosphate (34%), equal 

shares of Nitrogen and Nitrogen Oxide (12%), and 3% ammonia.  

The main contributor to Eutrophication impact of ST (0.11 PO4
3− eq/kWhth) is 

phosphate, which is emitted by the production of flat plate collectors (60%), hot water 

tank (17%), and copper wiring (17%). The operation of 40 W pumps has negligible 

impacts. Nox has minimal contribution (10%) to Eutrophication impact of ST.  

Finally, Figure 4.19 shows that utilizing AC brings about significant savings compared to 

CC to produce one unit kWhc. For both systems, Eutrophication impacts are caused by 

the operation of systems and the impacts associated with systems construction are 

negligible. CC has particularly higher impacts due to higher upstream impact of its fuel 

input (electricity). For AC, heat only causes 60% of the Eutrophication impact, the rest 

being caused by the electricity needed to run the system. Using a condensing boiler 

(instead of a conventional one) can diminish the Eutrophication impacts of AC by 8%.  
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Figure 4.19: Eutrophication impact of cooling systems 

Conclusions  4.4 

This chapter presented the results of LCA of alternative DG sources for building sector 

in Portugal. An LC model was specifically designed for Portugal to account for 

upstream emissions of NG as fuel input to cogeneration systems and boiler, and the 

amount of solar radiation received by solar systems. Results were presented for four 

impact categories: CED, GHG, Acidification, and Eutrophication. The findings of the 

chapter are summarized as following:  

 

1- The relative magnitude of CED of energy systems is similar to their GHG 
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other words, the energy systems that have the least CED (PV, grid) also have the 

minimum GHG emissions. The same association is observed between Acidification and 

Eutrophication impacts where cogeneration technologies are the type of energy 
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about fourfold emission savings. GHG emissions and CED could also be reduced by 

employing DG, although the magnitude of emission savings, if any, depends on type of 

technology and its operating load. This is a result of relatively low GHG emissions and 

CED of Portuguese grid. PV provides savings compared to grid across both categories, 

while cogeneration technologies, except ICE for GHG, show relatively more CED and 

GHG emissions.  

Regarding thermal systems, ST has significantly lower CED and GHG than both 

conventional and condensing boilers, while its Acidification and Eutrophication impacts 

could be higher. CC, its electricity being source by grid, is also advantageous to AC to 

reduce GHG emissions and CED, while it shows higher impacts for Acidification and 

Eutrophication. 

3- Neither of the DG technologies has absolute dominance over the other or over 

centralized generation with regards to overall environmental performance. Solar 

systems are significantly advantageous to reduce CED and GHG emissions, while the 

magnitude of savings in Acidification and Eutrophication impacts are relatively less, 

due to relatively high NOx emissions from their production stages. CED and GHG 

emission savings by partially replacing grid with PV could be particularly high. ICE 

proves the best cogeneration technology to reduce GHG emissions providing savings in 

Acidification and Eutrophication impacts compared to separate production of heat and 

electricity. Due to low NOx and SO2 exhaust emission, MT can also provide reductions 

in Acidification and Eutrophication impacts, while its CED and GHG emissions should be 

considered with care when the turbines operate at part loads. SOFC also has the 

lowest Acidification and Eutrophication impacts, but higher CED and GHG than other 

DG or grid.  

4- The study highlighted the significance of fuel upstream energy requirements 

and emissions to the total impacts arising from systems that run on NG (CHPs, boilers). 

Upstream stages to produce NG contribute to at least 50% of LC Acidification impact 

from DG in Portugal. Up to 30% of total GHG and CED and Eutrophication impact of DG 

also come from NG upstream stages. On the other hand, the construction emissions 

were only significant for Acidification and Eutrophication impacts; the GHG emissions 
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and CED of construction of energy systems were irrelevant compared to their 

operating and NG upstream emissions.  

5- The importance of proper assessment of part-load performance of 

cogeneration systems was highlighted. The efficiency of MT and ICE cogeneration 

systems drops with decreasing the operating load of the systems and this significantly 

impairs the emission performance of the engines, specifically for MT. SOFC has 

relatively steady efficiency rates at part-loads; therefore its impact in different 

operating loads are roughly similar.   

6- A comparison between a conventional and a condensing boiler shows that the 

latter has roughly 12% less impact than a conventional boiler. The choice of a 

conventional or condensing boiler also affects the performance of AC as most of 

impacts from AC come from fuel input to the system, as we discuss next.  

7- The impact of AC and CC is predominantly related to their upstream fuel input 

(heat or electricity) emissions to run those systems. The negligible electricity 

requirement running AC only slightly affects Eutrophication impacts and does not have 

significant contribution to other impact categories (CED, GHG, Acidification). The 

impact of AC could be reduced by up to 15%, using a condensing boiler instead of a 

conventional one.  

8- In terms of substances: GHG emissions from distributed and centralized 

generation are mostly in the form of CO2 (between 85%-90% of total GHG) and the rest 

from methane from upstream stages of NG production. This is except MT in part-load, 

which has very high operating methane emissions.  

NOx and SO2 are the main Acidification substances from DG, their contribution to total 

Acidification impact depending on the type of technology. The impact of grid is caused 

by the emission of SO2 (76%) and NOx (23%). The contribution of ammonia to 

Acidification impacts of energy systems is negligible.  

Eutrophication impacts of cogeneration systems are caused almost entirely from the 

release of NOx in combustion phase. The main Eutrophication substances from 

production and BOS of PV are nitrate (40%), phosphate (34%), and less considerably 
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Nitrogen and NOx. ST production and installation releases mainly phosphate (60%) and 

less NOx (40%). The high Eutrophication impact of electricity generation from grid is 

due to the emission of phosphate (85%) and NOx (10%).  
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  Chapter 5

A Multi-Objective Mathematical Optimization Model for 

Design and Operation of Distributed Generation in 

Buildings* 

The underlying motivations to formulate an optimization model for DG in buildings in 

Portugal were presented in chapters 1 and 2. This chapter presents the multi-objective 

mathematical programming model for optimal design and operation of DG in 

Portuguese commercial buildings. Section 5.1 explains the model, its structure, inputs 

and outputs. It also provides an overview of the policy framework to promote DG 

Portugal that is embedded to the model. The description of parameter and variable 

nomenclature and detailed mathematical relations are presented in section 5.2. 

Section 5.3 presents the case-study to which the proposed model was applied. Section 

5.4 discusses the method used to calculate the Pareto frontiers that are presented in 

chapter 6. Summary and concluding notes are brought in section 5.5.  

Model description  5.1 

An optimization model for design and operation of DG was developed and 

implemented in General Algebraic Modeling System (GAMS; McCarl et al., 2013) to 

minimize the Life-cycle Costs (LCC) and Life-cycle Impact Assessment (LCIA) of meeting 

the building energy demand over the defined planning period. Three types of 

technologies [(Micro-Turbines (MT), Internal Combustion Engines (ICE), Solid Oxide 

Fuel Cells (SOFC)] comprise the cogeneration systems that are combined with 

renewable [Solar Thermal (ST) and Photovoltaic (PV)] and conventional sources 

[Natural Gas (NG) boiler, electrical grid] to meet the building energy demand. In order 

to take advantage of the thermal output of the cogeneration systems when cooling 

demand exists, Absorption Chillers (AC) are added to the energy system while the 
                                                      
* 

This chapter is based on the following journal article:  
- Safaei, A & Freire, F & Antunes, C (2013)  
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extra cooling load can be sourced by Compression Chillers (CC). The possibility of 

selling on-site produced electricity to the grid, according to the Portuguese legal 

framework, as well as dynamic pricing of electricity at peak and off-peak hours are also 

taken into account. A schematic representation of the model and the relationships 

between energy systems is shown in Figure 5.1. Each type of line in Figure 5.1

represents a form of energy (electrical, heating, cooling) flow. Next, we describe the 

policy framework for utilization and promotion of PV and cogeneration technologies in 

Portugal. This information is used as an input to the model.  

 

 

Figure 5.1: Model components and their interrelationship 

Policy framework for cogeneration systems in Portugal 

The legislative framework for utilization of cogeneration systems in Portuguese 

buildings and the conditions to export the onsite produced electricity to the grid have 

been subject to several modifications. The legislation in article 4 of the directive 

538/99 (Decree-Law 538/99, 1999) declared that a cogeneration installation was 

recognized as efficient if the condition in expression (5.1) was met:  

  
𝑅𝐸𝐸 =

𝐸

𝐶 − 
𝑇

0.9 − 0.2 
𝐶𝑅
𝐶

≥ 0.55 
(5.1) 
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in which   

REE is the equivalent electrical efficiency of the installation.  

E is the annual electrical energy produced by the cogeneration facility, excluding the 

consumption by internal parts of the systems.  

T is the useful thermal energy consumed annually from the thermal energy produced 

by the cogeneration facility, excluding the consumption by internal parts of the 

systems. 

C is the primary energy consumed annually by the cogeneration facility.  

CR is the equivalent renewable energy resources, or industrial, agricultural and urban 

waste consumed annually by the cogeneration facility.  

Provided that the cogeneration installation is recognized as efficient, it is possible to 

register the cogeneration installation and export the excess power produced onsite to 

the grid, based on two conditions:  

- the electrical energy exported to grid should be less than 60% of the electrical 

energy produced onsite.  

-  

 
𝐸𝑒𝑟 ≤ 4.5 (

0.5𝑇

𝐸 + 0.5𝑇 
) . 𝐸 

(5.2) 

where  

Eer = annual electrical energy supplied to the grid  

In 2002, the authorization of decentralized electrical energy production authorized the 

entity ‘‘producer–consumer” (Decree-Law 68/2002, 2002). Under this regime, 

decentralized power production in low voltage is allowed provided that  

a) at least 50% of the produced electricity is consumed onsite, and 

b) the maximum power allowed to be exported to the grid is 150 kWe.  

The compensation of energy injected into the grid is a function of the type of 

technology, reference values for consumer prices, and the amount of electrical energy 

supplied to the grid (decree-law 764/2002, 2002). The current legislation was not 

exclusive to cogeneration technologies, but also allowed the employment of other 

onsite energy production technologies.  
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Ultimately, by the introduction of directive 2004/8/EC (2004) of the European 

Parliament, the previous legislation (Expression 5.1) was overruled and new efficiency 

measures and market regulations were enacted. This recent directive and its 

Portuguese adaptation (Decree-law 23/2010, 2010) aims to create  

“a framework for promotion and development of high efficiency 

cogeneration of heat and power based on useful heat demand and 

primary energy savings in the internal energy market” (Directive 

2004/8/EC, 2004). 

 According to this directive, cogenerations are considered as highly efficient provided 

that they deliver Primary Energy Savings (PES) of at least 10% compared to the 

reference for the separate generation of heat and electricity. Micro-cogenerations 

(maximum capacity below 50 kWe) and small scale cogenerations (installed capacity 

below 1 MWe) providing PES also qualify as highly efficient. The remuneration regime 

is of two forms: general and special forms. The general form is accessible to all 

cogeneration plants with no restrictions on engine power. Overall, the compensation 

of thermal and electric energy produced is to appeal to the market rules, and is 

calculated monthly as follows: 

 
𝑅𝑒𝑚𝑚 =∑

2

𝑖=1

 𝑊𝑚,𝑖 × 𝑂𝑀𝐼𝐸𝑚 × 𝐶𝑖 × 𝑓𝑖  

 

(5.3) 

in which  

𝑅𝑒𝑚𝑚 is the remuneration in month m; 

i is the period (medium-low) throughout the year; 

 𝑊𝑚,𝑖 is the energy produced in month m in period i (kWh); 

𝑂𝑀𝐼𝐸𝑚 is the mean closing price of the Portuguese operator of the energy market, the 

year before, for the same month (€/kWh); 

𝐶𝑖 is a coefficient that takes the values of 0.86 and 1.13 for low and medium periods, 

respectively;  

𝑓𝑖  is the adjustment factor to take into account the losses in period i. Its value is 

announced annually by the energy services regulatory authority of Portugal.  
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The special form is only available to cogeneration plants with an installed capacity 

equal to or less than 100 MW. In this form, the compensation of thermal energy takes 

place in market conditions, but the electricity is delivered to the grid for marketing 

by the Supplier of Last Resort (SLR), in return for a temporary reference rate plus a 

monthly premium. The remuneration regime has three underlying principles: PES and 

consequent reduction of CO2 emissions, utilization of renewable sources, and 

promoting the participation of cogeneration installations in the electricity market. The 

reference rate is published periodically by the Ministry of Energy. The monthly 

premium is based on the efficiency of the installation and the proportion of renewable 

fuels consumed, and is determined by the SLR. The operation framework of the 

current legislation takes place pursuant to decree-law 68/2002 (2002), as explained 

earlier. The value of reference Feed-in Tariff (FIT) for cogeneration systems that run on 

NG is set to 89.89 €/MWh for 2012 (Administrative rule 140/2012, 2012). The 

premium of efficiency, which is rewarded monthly, is defined in (5.4): 

 
𝑃𝐸𝑚 = 𝑃𝐶 ×

𝑃𝐸𝑆

1 − 𝑃𝐸𝑆
× 𝐸𝐸𝑃𝐿𝑚 × 𝐾 ×

𝐸𝑃

𝐸𝐸
 

 

(5.4) 

in which:  

𝑃𝐸𝑚 is the value of “premium of efficiency” in month m (€); 

𝑃𝐶 is the reference cost to evaluate PES (28.71€/MWh);  

𝑃𝐸𝑆 is the primary energy saving (%);  

𝐸𝐸𝑃𝐿𝑚 is the electrical energy produced by the the cogeneration installation in month 

m (MWh);  

𝐾 is a dimensionless factor to distinguish between high and not high efficient 

cogeneration installations. It assumes a value of 0.5 for high efficient cogeneration 

systems; 

𝐸𝑃/𝐸𝐸 is a benchmark ratio between primary energy consumption and electricity 

produced at the site of cogeneration installation. Since there is no benchmark value for 

such a ratio, its value is 2.86 and 3.70 for ICE and MT, respectively.  

The “premium of renewables”, which is applicable to cogeneration systems that utilize 

renewable sources as their fuel (biomass or biofuel), is calculated as following:  
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𝑃𝑅𝑚 = 𝐹𝐼𝑇 × (

𝐶𝑅

𝐶
)𝑚 × 𝑅 × 𝐸𝐸𝑃𝐿𝑚 

 

(5.5) 

𝑃𝑅𝑚 is the value of premium of renewable energy in month m (€); 

𝐹𝐼𝑇 is the reference FIT (€/kWh); 

(
𝐶𝑅

𝐶
)𝑚 is the percentage of renewable fuel consumed by the cogeneration installation 

the year before in month m, which is certified by the entity that issues the guarantee 

of origin.  

For the purpose of the current European directive, the PES shall be calculated through 

(directive 2004/8/EC, 2004; decree-law 23/2010, 2010):  

 

𝑃𝐸𝑆 =  

(

 
 
1− 

1
𝜂𝐻 𝐶𝐻𝑃 
𝜂𝐻 𝑅𝑒𝑓 

+ 
𝜂𝐸 𝐶𝐻𝑃
𝜂𝐸 𝑅𝑒𝑓)

 
 
×100 ≥ 0.0 

(5.6) 

in which  

𝜂𝐻 𝐶𝐻𝑃 is the heat efficiency of the cogeneration production; 

𝜂𝐻 𝑅𝑒𝑓 is the efficiency reference value for separate heat production; 

𝜂𝐸 𝐶𝐻𝑃 is the electrical efficiency of the cogeneration production; 

𝜂𝐸 𝑅𝑒𝑓 is the efficiency reference value for separate electricity production. 

We analyze the fulfillment of condition in Equation (5.6) for all types of cogeneration 

systems. The electrical and thermal efficiency values of cogeneration systems have 

been presented for each technology in chapter 4, section 4.2.4 and also brought in 

Table 5.1. As regards the efficiency reference values, the directive demands that “each 

cogeneration unit shall be compared with the best available and economically 

justifiable technology for separate production of heat and electricity on the market in 

the year of construction of the cogeneration unit” (directive 2004/8/EC, 2004). 

Therefore, we calculated the PES employing different cogeneration technologies with 

reference to the efficiency values of producing electricity in state-of-the-art NG 

combined cycle (NGCC) power plants and producing thermal power in condensing 

boilers (90% efficiency). Considering that all the thermal output of the cogeneration 

systems is utilized onsite, the respective PES obtained by the operation of 
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cogenerations in different part-loads is shown in Table 5.1. Provided that all the 

thermal energy of the cogeneration is utilized, i.e. the cogeneration installations reach 

the thermal efficiency expressed in Table 5.1, the PES for all types of cogeneration 

installation (except MT working in 25% part-load) would have a positive value. We 

calculate the threshold for which the PES remains positive as a function of the 

percentage of thermal energy that should be utilized onsite.  

For example, considering MT at 100% load, we conclude: 

 0 ≤ 𝑃𝐸𝑆 ≤ 0.05 

 
(5.7) 

Regarding 𝜂𝐻 𝐶𝐻𝑃 as a variable and solving (6) for PES > 0 results:  

 𝜂𝐻 𝐶𝐻𝑃 ≥  0.47 

 
(5.8) 

So,  

 0.47 ≤  𝜂𝐻 𝐶𝐻𝑃 ≤ 0.52 =  𝜂𝐻 𝐶𝐻𝑃  𝑚𝑎𝑥 (5.9) 

This can be written as  

 0.91 × 𝜂𝐻 𝐶𝐻𝑃  𝑚𝑎𝑥 ≤ 𝜂𝐻 𝐶𝐻𝑃 ≤ 𝜂𝐻 𝐶𝐻𝑃  𝑚𝑎𝑥 

 

(5.10) 

 

 In other words, we calculated the threshold for which the PES remains positive as a 

function of the percentage of thermal output of the cogeneration system that should 

be utilized onsite. We name this parameter TT, whose value is 0.91 for the operation 

of MT in 100% load. Therefore, satisfying the PES conditions implied by Equation (5.6) 

indicates that at least TT (0.91) of the thermal output of the cogeneration system must 

be consumed onsite for cooling or heating purposes. Table 5.1 also shows the value of 

TT for other cogeneration technologies/part-loads and the last column of this Table 

displays the value we used as the input to the model for each cogeneration system.  
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Table 5.1: PES implication of cogeneration systems 

  

Cogeneration 
thermal 
efficiency  

Cogeneration 
electrical 
efficiency 

Reference 
thermal 
efficiency  

Reference 
electrical 
efficiency 

Primary 
Energy 
Savings   

  
𝜂𝐻 𝐶𝐻𝑃 𝜂𝐸 𝐶𝐻𝑃 𝜂𝐻 𝑅𝑒𝑓  𝜂𝐸 𝑅𝑒𝑓  PES TT

a
 TT overall

b
 

MT 

100% 
load  0.52 0.26 0.90 0.55 0.05 91% 

100% 

75% 
load  0.56 0.24 0.90 0.55 0.06 91% 

50% 
load  0.57 0.20 0.90 0.55 0.00 100% 

25% 
load  0.58 0.13 0.90 0.55 -0.14 - 

SOFC 

104% 
load  0.21 0.51 0.90 0.55 0.14 31% 

50% 

100% 
load  0.24 0.50 0.90 0.55 0.15 34% 

93% 
load  0.28 0.50 0.90 0.55 0.18 29% 

85% 
load  0.30 0.49 0.90 0.55 0.18 33% 

78% 
load  0.32 0.48 0.90 0.55 0.19 36% 

68% 
load  0.35 0.45 0.90 0.55 0.17 47% 

62% 
load  0.37 0.44 0.90 0.55 0.17 49% 

ICE 

100% 
load  0.55 0.33 0.90 0.55 0.18 64% 

77% 
75% 
load  0.58 0.30 0.90 0.55 0.16 70% 

50% 
load  0.6 0.26 0.90 0.55 0.13 77% 

a
 TT for cogeneration at part-load p.  

b 
Value of TT (percentage of the thermal output of cogeneration technology that must be 

consumed onsite) that is used for each cogeneration technology regardless of part-load.  
 

Policy framework for PV systems in Portugal 

In Portugal, the generation of electricity from PV sources is mainly promoted through a 

guaranteed Feed-in Tariff (FIT). A new FIT for the installation of PV systems took off in 

2011 with the publication of decree-law 34/2011 (2011). The value of FIT for 2013, in 

effect for 15 years, is initially set to 0.151 €/kWh with 30% annual reduction 

(Administrative rule 140/2012, 2012). At least 50% of produced electrical energy by PV 

systems should be consumed onsite and the amount exported is limited to 2.6 
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MWh/year. The administrative fee to register the PV installation is set to 2000€ 

(Administrative rule 140/2012, 2012).  

Mathematical model  5.2 

The optimization model is a Mixed Integer Linear Programming (MILP) to optimize the 

selection of and operating strategy for DG in Portuguese commercial buildings. 

Continuous decision variables are used to describe the energy supplied from a 

particular source, e.g. the power obtained from the grid, cogeneration or PV systems 

at a certain time; heating obtained from the boiler cogeneration, or ST units; or cooling 

obtained from compression or absorption chiller. Three sets of binary variables are 

used to add capital costs for the energy systems, and maintain the internal consistency 

of the model. The model is implemented and solved in GAMS (McCarl et al., 2013), 

using the CPLEX (2010) solver. 

It is assumed that the solar and cogeneration systems reach their designed thermal 

and electrical efficiencies presented in chapter 3. However, in real-world problems 

factors such as temperature, pressure and working conditions may affect the efficiency 

of energy systems and introduce some nonlinear effects. The model developed in this 

thesis is a MILP, so it does not study the effect of these varying factors.  

 The main input data for the model include:  

- Case-study characteristics: Power (dZ), heating (dX), and cooling demand (dC) 

for each season/block load (in kW).  

- Economic data: Interest Rate (% per year), capital cost and residual value of 

energy systems (€), operating costs of the energy systems (€/kWhoutput), 

maintenance costs of energy systems [fixed (€/kW) and variable (€/kWhoutput)], 

growth/decline rate of capital and operating costs of energy systems (% per 

year). 

- Environmental impact data: LCIA to produce one unit output (kWhe for PV, grid, 

CHP; kWhth for boilers and ST, kWhc for AC and CC) by energy systems 

(IA/kWh). Four types of LCIA categories are assessed: Cumulative Energy 

Demand (CED), Greenhouse Gases (GHG), Acidification, and Eutrophication.  
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- Cogeneration systems: max power (kW), min power (kW), power-to-heat ratio, 

fuel (NG) consumption (m3/kWe) for each operating load.  

- Boiler, CC, AC: max and min operating region (kW), Coefficient of Performance 

(COP).  

- Solar systems: Estimated received solar radiation by the systems (kW/m2) and 

their output (kWe and kWth) for each season/block-load. 

Parameters  

The demand for electricity (dZ), heating (dX) and cooling (dC) throughout the planning 

period is estimated using a forecasted growth/decline rate (gZ, gX, gC) with respect to 

the base year. The capital cost (capcost) and operating cost (opcost) for each type of 

generation unit (m) is determined using a growth/decline rate with respect to the base 

year, depending on the type of technology.  

Variables  

The decision variables assigned to solar systems determine the number of panels 

installed at each year throughout the planning period (i.e., PVnt and STnt determine the 

number of PV/ST panels installed in year t). For cogeneration, thermal and cooling 

systems the decision variables are the units installed and their output (power, thermal, 

or cooling), at part-load p for cogeneration systems, at each season/block-load (e.g., 

zm,s,b,t,p determines the electrical power output of cogeneration unit m in year t, season 

s, block-load b, part-load p).  

Three sets of binary variables are introduced in the model to account for: 

- annual recurring fixed costs (maintenance costs) associated with energy 

systems (λ1m,t for unit m at year t).  

- Once occurring fixed costs (capital costs) in the first year of employment of 

energy systems (λ2m,t for unit m at year t). Index t of these variables denotes the 

installation year of unit m.  

- Once occurring residual value in the final year of employment of energy 

systems (λ3m,t for unit m at year t). Index t of these variables denotes the retirement 

year of unit m.  

Other binary variables (e.g., λm,s,b,t,p) are used for model consistency purposes, such as 

to ensure that if a cogeneration engine is utilized it operates in one part-load only.  

Objective Functions  

The objective functions (Equations. A.1 and A.2) are defined to minimize the total 

discounted LCC or LCIA of meeting the building electrical (dZ), heating (dX), and cooling 

(dC) demand throughout the planning period. LCC comprises the Total Fixed Costs (TFC 
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including capital cost, maintenance and residual value at the end of life) related with 

the equipment acquisition and installation (Equation A.30), and the Total Variable 

Costs (TVC calculated by Equation A.31), related with the system operation including 

buying from/selling to the grid as well as variable maintenance costs. Total LCIA 

(Equation A.32) calculates the impact of meeting the energy demand over the defined 

horizon by using the energy systems defined in the model, expressed in units MJ for 

CED, g CO2 eq for GHG, g SO2 eq for Acidification, and g PO4
3− eq for Eutrophication.  

Constraints 

Different categories of constraints are included in the model. They are classified based 

on their type and cross-referenced to the mathematical model that follows this 

section. 

Demand satisfaction constraints refer to: 

- Demand satisfaction for electricity, which can be supplied from the grid, three 

types of cogeneration systems and PV systems and should also provide running the 

CCs (Equation A.3).  

- Demand satisfaction for heat, which can be supplied by boilers, three types of 

cogeneration systems and ST units, which should also provide running the AC 

(Equation A.4). 

- Demand satisfaction for cooling, which can be supplied by AC and/or CC 

(Equation A.5). 

Capacity constraints that are employed to: 

- Certify that the power output of cogeneration systems (Equation A.6), heat 

output of the boiler (Equation A.7), and cooling output from the cooling systems 

(Equation A.8) are within the operating region of that system.  

- Warrant that the power and thermal output of PV (Equation A.9) and ST panel 

(Equation A.10) during each season and at each block-load do not exceed the capacity 

of the system during the respective season and block-load.  

- Limit the number of solar PV and ST installations due to area restrictions 

(Equation A.11).  

  

National policy constraints that:  

- Calculate the electrical energy (kWh) generated onsite that is allowed to be 

exported to the grid. National regulations establish that at least 50% of the produced 

electrical energy should be consumed onsite (Equation A.12) and the power exported 

must be lower than 150 kW (Equation A.13).  
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- Guarantee the fulfillment of the national policy conditions that TT (refer to 

Table 5.1) of the thermal output of the cogeneration systems must be consumed 

onsite (Equation A.14).  

 

Consistency constraints guarantee the internal coherence of the model:  

- Warranting that the amount of thermal output from the cogeneration systems 

(operating at each part-load) is correlated with their electrical output, via the 

introduction of “power-to-heat” ratio (Equation A.15). 

- Relating the amount of cooling obtained from the AC to the energy input (i.e. 

thermal energy from the cogeneration systems and/or a gas boiler) by using the COP 

of the AC (Equation A.16). 

- Relating the amount of cooling obtained from the CC to the energy input 

(electrical energy produced onsite or imported from grid) by using the COP of the CC 

(Equation A.17). 

- Maintaining the required relationship between the binary variables for 

different generation units (Equations. A.18-26).  

- Ensuring that for cogeneration systems a single part-load operating level is in 

use (Equation A.27). 

- Establishing the continuous operation of SOFC units (Equation A.28).  

- Accounting for fuel cell stack change cost (Equation A.29). 

 

Mathematical programming model  

Nomenclature  

Capcost capital cost of generation units (€)  

Opcost Operating cost of generation units (€ /kW) 

OMcost  Fixed operating and maintenance costs of generation 

units (annual €) 

VarOMCOST Variable operating and maintenance costs of generation 

units (€ /kWh) 

ResValue Residual value of generation units (€) 

opcost-g    Rate of decrease or increase in operating costs of units 

(annual %) 

capcost-g   Rate of decrease or increase in capital costs of 
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units (annual %) 

IA LCIA of generation units (g CO2 eq/kwh for GHG; g SO2 

eq/kWh for Acidification; g PO4
3− eq/kwh for 

Eutrophication; MJ/kWh for CED)  

Life-time Life-time of generation units (years)  

Mincap Minimum capacity of the generation units (kW)  

Maxcap Maximum capacity of generation units (kW) 

PHratio Power-to-heat ratio of cogeneration units  

COP Coefficient of performance (COP)  

dX Heat demand of case-study building (kW)  

dZ Electricity demand of the case study building (kW)   

dC Cooling demand of the case study building (kW)   

Duration Duration of demand block (hours)  

Δ discount factor 

Ir Interest rate (annual %)  

gZ Electricity demand growth rate (annual %) 

gX Heat demand growth rate (annual %) 

gC Cooling demand growth rate (annual %) 

M Set of generation units. M = { mPV, mST, mSOFC, mMT, 

mICE , boiler,mCC, mAC} 

T  Set of years. T= { 1,2,3,…,n} 

S Set of seasons. S = {hot, mild, cold}  

B Set of demand block-loads. B = {peak, high, medium, low} 

E Set of LCIA categories. E = {CED, GHG, Acidification, 

Eutrophication} 
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Indexes  

t Index number for the year, t ∈ T 

s Index for the season, s ∈ S 

b Index for demand block-load, b ∈ B 

p Index for part-load performance of the cogeneration 

system, p ∈ (p1,p2,p3, ..., p7)  

e Index for LCIA categories, e ∈ E 

m Index for the generation units, m ∈ M  

mPV Index for solar PV systems, mPV ∈ {mPV-1, mPV-2,… 

mPV-20} 

mST Index for solar thermal systems, mST ∈ {mST-1, mST-2,… 

mST-20} 

mSOFC Index for SOFC unit, mSOFC ∈ {SOFC-1, SOFC-2,…SOFC-5}  

mICE Index for ICE units, mICE ∈ {ICE-1, ICE-2,…ICE-5}  

mMT Index for MT units, mMT ∈ {MT-1, MT-2, … MT-5}  

boiler Index for the boiler  

grid Index for the national grid  

mAC Index for the AC units, mAC ∈  {AC-1, AC-2}    

mCC Index for the CC units, mCC ∈  {CC-1, CC-10}    

  

Parameters   

dZs,b,t Power (electricity) demand by season, block, year (kW) 

dXs,b,t Heat demand by season, block, year (kW) 

dCs,b,t Cooling demand by season, block, year (kW) 

Durations,b  Duration of demand block b in season s (hours)  
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opcostm,t Operating cost of unit m in year t (€/ kWh), m ∈ {boiler, 

mCC, mAC}, t ∈ T   

opcostm,t,p Operating cost of the cogeneration unit m at year t 

operating at part-load p (€/kWhe), m ∈ {mMT, mSOFC, 

mICE}. p ∈ {p1, … , p3} for ICE, p ∈ {p1, … , p4} for MT, p ∈ 

{p1, … , p7} for SOFC 

opcostgrid,s,b,t Operating cost of grid in year t, season s, block-load b 

(€/kWh) 

sellcosts,b,t Price of selling electricity to the grid in year t, season s, 

block-load b (€/kWh)  

capcostm,t capital cost of unit m in year t (€), m ∈ M   

ResValuem,t Residual value of unit m in year t (€), m ∈ M   

Δt Discount factor for year t  

Life-timem Life-time of unit m (years), m ∈ M   

zPVmPV,s,b,t  Power output of a 4 kW PV system at year t, season s, 

block-load b (kW per panel) 

xSTmST,s,b,t  Heat output of a 4 kW solar thermal system in year t, 

season s, block-load b (kW per unit) 

mincapm Minimum capacity of unit type m (kW), m ∈ {boiler, mCC, 

mAC}  

maxcapm Maximum capacity of unit type m (kW), m ∈ {boiler, mCC, 

mAC} 

mincapm,p Minimum capacity of cogeneration system m at part-load 

p (kWe), m ∈ {mMT,mSOFC, mICE}  

maxcapm,p Maximum capacity of cogeneration system m at part-

load p (kWe), m ∈ {mMT,mSOFC, mICE} 

maxcapm,s,b Maximum capacity of solar (PV, ST) panels during season 

s, block-load b (kW/unit), m ∈ {mPV,mST} 

max_power_outputm  Maximum power output of cogeneration units (kW), m ∈ 

{mMT,mSOFC, mICE} 
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max_annual_power_outputm  Maximum annual energy output of unit m (kWh), m ∈ 

{mCC, boiler, mAC} 

Max_Panel Maximum number of solar PV and ST panels allowed to 

be installed due to area constraints. 

PHratiom,p Power-to-heat ratio of cogeneration m at part-load p, m 

∈ {mMT, mSOFC, mICE}     

TTm The percentage of the thermal output (kW) of the 

cogeneration systems that should be consumed onsite to 

meet the national regulations, m ∈ {mMT, mSOFC, mICE}     

COPAC COP for AC: ratio relating the cooling output to the heat 

input 

COPCC COP for CC : ratio relating the cooling output to the 

electrical power input 

Opcost-ratem Rate of decrease or increase in operating cost of unit m 

(annual %) 

capcost-ratem Rate of decrease or increase in capital cost of unit m 

(annual %) 

IAe,m,p Impact Assessment (IA) of generation units, e ∈ E, m ∈ M, 

p ∈ { p1, … , p3} for ICE, p ∈ { p1, … , p4} for MT, p ∈ { p1, 

… , p7} for SOFC 

  

Variables   

LCC Total discounted life-cycle costs (€) 

TFCt Total fixed costs in year t (€)                                            

TVCt Total variable costs in year t (€)  

LCIAe Total LCIA category e during the planning period (MJ for 

CED, g CO2 eq for GHG; g SO2 eq for Acidification; g PO4
3− 

eq for Eutrophication;), e ∈ E 

TIAe,t  Total environmental impacts of type e in year t (MJ for 

CED; g CO2 eq for GHG; g SO2 eq for Acidification; g PO4
3− 

eq for Eutrophication), e ∈ E 
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xm,s,b,t Heat output of unit m in year t, season s, block-load b 

(kW), m∈ { mMT, mSOFC, mICE, boiler} 

zgrid,s,b,t Power purchased from grid in year t, season s, block-load 

b (kW) 

ygrid,s,b,t Power sold to grid in year t, season s, block-load b (kW) 

zm,s,b,t,p          Power output of cogeneration unit m in year t, season s, 

block-load b (kW), part-load p, m∈ { mMT, mSOFC, mICE}.  

zmCC,s,b,t Power required to run the CC in year t, season s, block-

load b (kW) 

xmAC,s,b,t   Heat required to drive the AC to supply the cooling 

demand in year t, season s, block-load b (kW)  

aPVnt Total number of PV systems installed prior to year t 

PVnt                        Number of PV panels installed in year t 

aSTnt Total number of ST systems installed prior to year t 

STnt Number of ST systems installed in year t 

λm,s,b,t,p Binary variable for cogeneration units to limit their part-

load operation, m ∈ {mMT, mSOFC, mICE}. 

λ1m,t   Binary variable for the units to add the annual recurring 

(maintenance) fixed costs, m ∈ M, t ∈ T  

λ2m,t   Binary variable for the units to add the once occurring 

fixed (capital) costs, m ∈ M, t ∈ T                                                                                    

λ3m,t   Binary variable for the units to add the once occurring 

fixed residual value, m ∈ M, t ∈ T                                                                                   

λ4mSOFC,t Binary variable to add the once occurring fuel cell stack 

change maintenance cost, t ∈ T  

 

 

 

Mathematical programming Model 



5. Mathematical Optimization Model 

114 

Parameters Calculation 

Parameters serve as inputs to the mathematical model. The value of parameters (e.g. 

capital costs or operating costs) for each year of the planning period can be defined 

with reference to the base-year of the study, as following: 

 dXs,b,t+1 = dXs,b,t  × (1 + gX) (t-1) (5.11) 

 dZs,b,t+1 = dZs,b,t  × (1 + gZ) (t-1) (5.12) 
 dCs,b,t+1 = dCs,b,t  × (1 + gC) (t-1) (5.13) 
   

(t ∈ T; s ∈ S; b ∈ B) 

The above relations calculate the demand for electricity (dZ), heat (dX) and cooling (dC) 

throughout the planning period. The parameters gZ, gX, gC represent the electricity, 

heating and cooling demand growth rate, respectively.   

 Δt = (1+ir) (t-1)   (5.14) 
(t ∈ T) 

Equation (5.14) calculates the discount factor (Δt) for the planning period years. The 

parameter ir corresponds to the interest rate.  

 

 capcostm,t+1  = capcostm,t   ×(1 + capcost-ratem) (t) (5.15) 

   
m ∈  { mPV, mST, mSOFC, mMT, mICE ,mCC, boiler, mAC, grid }, t ∈  {1,2, …, n-1} 

The above relations calculate the capital cost of the generating units for each year of 

the planning period, considering the respective capital cost growth/decline rate for 

each type of generation unit m. Capital cost of the unit m in year t+1 (capcostm,t+1) is 

equal to the capital cost of the unit in year t (capcostm,t) multiplied by the capital cost 

growth/decline rate of unit m (capcost-ratem).   

 opcostmICE,t+1,p    = opcostmICE,t,p ×(1 + opcost-ratemICE ) (t)
   (5.16) 

   
(s ∈ S; b ∈ B; p ∈ { p1, … , p3}; t ∈  {1,2, …, n-1}) 

 

 opcostmMT,t+1,p    = opcostmMT,t,p ×(1 + opcost-ratemMT) (t)
 (5.17) 

   
(s ∈ S; b ∈ B; p ∈ { p1, … , p4}; t ∈  {1,2, …, n-1}) 

 

 opcostmSOFC,t+1,p    = opcostmSOFC,t,p ×(1 + opcost-ratemSOFC ) (t)
 (5.18) 
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(s ∈ S; b ∈ B; p ∈ { 𝑝1,… , 𝑝7}; t ∈  {1,2, …, n-1}) 

 

 opcostgrid,s,b,t+1 =  opcostgrid,s,b,t  × (1 + opcost-rategrid ) (t) (5.19) 
   

(s ∈ S; b ∈ B; t ∈  {1,2, …, n-1}) 

 

 Opcostm,t+1   = opcostm,t ×(1 + opcost-ratem ) (t) (5.20) 

   
(m ∈  {mCC, boiler, mAC }; t ∈  {1,2, …, n-1}) 

The above relations calculate the operating cost of the generating units m throughout 

the planning period, with regards to their operating cost growth/decline rate. 

Operating cost of the unit m in year t+1 (opcostm,t+1) is equal to the operating cost of 

the unit in year t (opcostm,t) multiplied by the operating cost growth/decline rate of 

unit m (opcost-ratem). Please note that the price of electricity purchased from grid 

varies over different seasons/blocks (Equation 5.19).  

Objective Functions 

 Min {LCC = ∑𝑛𝑡=1 [Δt × (TFCt + TVCt)]}  (A.1) 

 

 Min {LCIAe = ∑𝑛𝑡=1 (TIAe,t) }  (A.2) 

(e ∈ E) 

The objective functions are defined to minimize the total discounted LCC or LCIA (CED, 

GHG, Acidification, Eutrophication) of meeting the building energy demand. Total cost 

of year t comprises of Total Fixed Costs (TFC) and Total Variable Costs (TVC) and LCC is 

the discounted sum of the total annual costs over the time horizon of the study (n 

years). The parameter Δt is the discount factor for year t. LCIA type e of meeting the 

building energy demand over the planning horizon is the sum of LCIA of individual 

years t (TIA).   
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Constraints  

∑𝑝3𝑝=𝑝1 ∑𝑚𝐼𝐶𝐸 zmICE,s,b,t,p + ∑𝑝4𝑝=𝑝1 ∑𝑚𝑀𝑇  zmMT,s,b,t,p  + ∑𝑝7𝑝=𝑝1 ∑𝑚𝑆𝑂𝐹𝐶  

zmSOFC,s,b,t,p  + zgrid,s,b,t + (PVnt + aPVnt ) ×  zPVmPV,s,b,t    =  dZs,b,t  + z mCC,s,b,t,p + ygrid,s,b,t  (A.3) 

(s ∈ S; b ∈ B; t ∈ T) 

At each s,b,t, the power provided by grid (zgrid,s,b,t), cogeneration systems (MT: 

zmMT,s,b,t,p;   ICE: zmICE,s,b,t,p; SOFC: zmSOFC,s,b,t,p ) and PV systems [(PVnt + aPVnt ) ×  

zPVmPV,s,b,t ] must meet the power demand of the building and should be enough to 

provide the power needed (z mCC,s,b,t,p) to run the CC.   

 

∑𝑚𝐼𝐶𝐸 xmICE,s,b,t + ∑𝑚𝑀𝑇  xmMT,s,b,t  +  ∑𝑚𝑆𝑂𝐹𝐶  xmSOFC,s,b,t  + (STnt + aSTnt ) × 

xSTmST,s,b,t +  xboilers,b,t  ≥  dXs,b,t + xmAC,s,b,t                                                             (A.4)                                                                                                                                                        

 (s ∈ S; b ∈ B; t ∈ T) 

The heat provided by ICE units (xmICE,s,b,t),MT units (xmMT,s,b,t ), SOFC units (xmSOFC,s,b,t  ), 

the boiler (xBoilers,b,t), and ST systems must meet the heat demand of the building and 

should be enough to run the AC at each s,b,t. (STnt + aSTnt ) represents the total 

number of solar thermal units installed and operating in year t.  

 

 ∑𝑚𝐶𝐶 cmCC,s,b,t +  ∑𝑚𝐴𝐶 cmAC,s,b,t   = dCs,b,t (A.5) 

(t ∈ T; s ∈ S; b ∈ B) 

The cooling  provided by AC (cmAC,s,b,t) and CC (cmCC,s,b,t) at each s,b,t must meet the 

cooling demand (dCs,b,t) of the building.  

 

 mincap m,p  ≤  zm,s,b,t,p  ≤  maxcap m,p (A.6) 

   
m ∈  { mSOFC, mMT, mICE }; t ∈ T; s ∈ S; b ∈ B, p ∈ { p1, … , p3} for ICE, p ∈ { p1, … , p4} 

for MT, p ∈ { p1, … , p7} for SOFC 

 

 mincap boiler  ≤  xboilers,b,t    ≤  maxcap boiler (A.7) 

   
(s ∈ S; b ∈ B; t ∈ T) 

 

 mincap m ≤  cm,s,b,t ≤  maxcap m (A.8) 
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m ∈  {mCC, mAC}, (s ∈ S; b ∈ B; t ∈ T) 

Above constraints are employed to guarantee that at each s,b,t, the power output of 

cogeneration systems, heat output of the boiler and cooling output from AC and CC 

are within the operating region of that system.  

 

 zPVmPV, s, b, t   ≤   maxcapmPV,s,b (A.9) 

 xSTmST, s, b, t     ≤   maxcapmST s,b (A.10) 

   
(s ∈ S; b ∈ B; t ∈ T) 

Constraints (A.9) and (A.10) warrant that the power output of each PV/ST system 

during each block-load is not higher than the capacity of the system during the 

respective block-load.   

 

 ∑𝑡  PVnt  +  STnt ≤ Max_Panel (A.11) 

   

Constraint (A.11) limits the number of PV and ST installations due to area restrictions.  

 

∑𝑠,𝑏 ygrid,s,b,t  × Durations,b ≤ ∑𝑠,𝑏  Durations,b ×  [ ∑𝑝3𝑝=𝑝1 ∑𝑚𝐼𝐶𝐸 zmICE,s,b,t,p + 

∑𝑝4𝑝=𝑝1 ∑𝑚𝑀𝑇  zmMT,s,b,t,p  + ∑𝑝7𝑝=𝑝1 ∑𝑚𝑆𝑂𝐹𝐶  zmSOFC,s,b,t,p  + (PVnt + aPVnt ) ×  

zPVmPV,s,b,t ] × 0.5                                                                                                                    (A.12)                                                                                                                                                                                                                    

 ygrid,s,b,t ≤ 150 (A.13) 

   
(t ∈ T; s ∈ S; b ∈ B) 

Based on Portuguese regulation, the electrical energy (kWh) allowed to be exported to 

grid should be less than half of onsite production (A.12) and its power should be less 

than 150 kW (A.13).  

 

 TTm × ∑𝑚,𝑡 xm,s,b,t  ≤ dXs,b,t  + ∑𝑚𝐴𝐶 xmAC,s,b,t   (A.14)    

   
m ∈  { mSOFC, mMT, mICE }; (t ∈ T; s ∈ S; b ∈ B)  

At least TT of the thermal output of the cogeneration units must be consumed onsite 

to provide PES compared to separate production of heat and electricity. The above 
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constraint certifies the fulfillment of this condition, where the thermal output of the 

cogeneration systems can be used to run the AC or for direct heating purposes.  

 

 xm,s,b,t  =   zm,s,b,t,p  / PHratio m,p  (A.15) 
   

m ∈  { mSOFC, mMT, mICE }; t ∈ T; s ∈ S; b ∈ B ;p ∈ { p1, … , p3} for ICE, p ∈ { p1, … , p4} 

for MT, p ∈ { p1, … , p7} for SOFC 

The above equation guarantees that the amount of thermal output from the 

cogeneration systems operating at part-load p at each s,b,t,  is correlated to their 

electrical output, via the introduction of “Power-to-heat ratio”. 

 

 cmAC,s,b,t = xmAC,s,b,t × COPAC (A.16) 

(s ∈ S; b ∈ B; t ∈ T) 

Equation (A.16) relates the amount of cooling obtained from the AC (cmAC,s,b,t ) to the 

energy input (thermal energy from a gas boiler or the cogeneration systems; xmAC,s,b,t ) 

by using the COP of AC.  

 

 cCC,s,b,t = zCC,s,b,t × COPCC 
(A.17) 

(s ∈ S; b ∈ B; t ∈ T) 

Above equation relates the amount of cooling obtained from CC (cCC,s,b,t ) to the energy 

input (power produced by the cogeneration systems, PV system and/or grid; zCC,s,b,t ) by 

using the COP of the CC.  

 

 zm,s,b,t,p   ≤  maxcapm,p × λm,s,b,t,p (A.18) 

   
m ∈  { mSOFC, mMT, mICE }; t ∈ T; s ∈ S; b ∈ B, p ∈ { p1, … , p3} for ICE, p ∈ { p1, … , p4} 

for MT, p ∈ { p1, … , p7} for SOFC   

The above binary variables for cogeneration systems (MT: λmMT,s,b,t,p, ICE: λmICE,s,b,t,p, 

SOFC: λmSOFC,s,b,t,p ) are employed in consequent equations to ensure that, at each s,b,t  

a single part-load operating level is in use for each MT, ICE and SOFC, respectively. 

These variables get a value of one when an engine is on; operating at part-load p and 

otherwise zero. 
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 λm,s,b,t,p  ≤ λ1m,t (A.19) 

   
      m ∈  { mSOFC, mMT, mICE }; t ∈ T; s ∈ S; b ∈ B, p ∈ { p1, … , p3} for ICE, p ∈ { p1, … , 

p4} for MT, p ∈ { p1, … , p7} for SOFC 

At each year, if a cogeneration unit m is operating (engine is on), the λ1m,s,b,t,p variable 

gets a value of one. This type of binary is employed to add the annual recurring fixed 

maintenance costs to the total costs.  

 

  ∑𝑠,𝑏 cm,s,b,t  ≤  maxcapm × λ1m,t   (A.20) 

   
m ∈  {mCC, mAC }, (t ∈ T) 

 ∑𝑠,𝑏 xboilers,b,t   ≤  maxcapboiler × λ1boiler,t  (A.21) 

   
(t ∈ T) 

The above equations are formulated to introduce the binary variables λ1 mCC,t , λ1 mAC,t 

and λ1 boiler,t for respectively CC, AC, and the boiler. For each t, these variables get a 

value of one if the respective engine is on. This type of binary variable is employed to 

account for annual recurring maintenance costs to the total costs.  

 

 λ1m,t+1 = λ1m,t + λ2m,t+1  - λ3m,t+1     (A.22) 

   
(m ∈ M), (t = 1,… , 10)  

 λ1m,t = λ2m,t+1  (A.23) 

   
(m ∈ M), (t = 1)  

Equations (A.22-23) are used to construct a set of variables (λ2m,t) to account for 

capital costs of generating units. If unit m is installed in year t, λ2m,t = 1. For the first 

year (t=1), a slightly different formulation is required (A.23).    

 

 λ3m,t = λ2m,t+life-time m   (A.24) 

   

(m ∈ M), (t ∈ T) 

Equation (A.24) is to construct (λ3m,t) binary variables to account for residual value of 

the generating units at their retirement year. Variable λ3m,t gets a value of one in the 

retirement year of the unit m. 
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 ∑𝑡  λ3m,t ≤ 1   (A.25) 

   
 (m ∈ M), (t ∈ T) 

 λ3m,t = 0 (A.26)    

   

(m ∈ M), (t = 1) 

The above constraints are formulated to maintain the internal consistency of the 

model.  

 

 ∑𝑝 ∈ λm,s,b,t,p  ≤ 1 (A.27) 

   

m ∈  { mSOFC, mMT, mICE }; t ∈ T; s ∈ S; b ∈ B, p ∈ { p1, … , p3} for ICE, p ∈ { p1, … , p4} 

for MT, p ∈ { p1, … , p7} for SOFC   

Using the binary variables constructed through Equation (A.18), the above constraints 

warrant that at each s,b,t, if a cogeneration operates, it operates only at one part-load.  

 

 λ1mSOFC,t =  ∑𝑝 ∈ {𝑝1,… ,𝑝7}   λmSOFC,s,b,t,p     (A.28) 

(s ∈ S; b ∈ B; t ∈ T) 

Due to their time-consuming start-up (more than 8 hours), SOFC engines are 

constrained to operate continuously through Equation (A.28).  

 

 λ4mSOFC,t = λ2mSOFC,t+4  (A.29) 

   

(t ∈ T) 

Constraint (A.29) is formulated to account for the fuel cell stack change cost that 

occurs once per the life-time of the SOFC engines.   

 

TFCt  = ∑𝑚𝑀𝑇   (λ2mMT,t × capcostmMT,t +  λ1mMT,t × OMcostmMT,t – λ3mMT,t × ResValue 

mMT,t  ) + ∑𝑚𝐼𝐶𝐸 (λ2mICE,t × capcostmICE,t +  λ1mICE,t × OMcostmICE,t – λ3mICE,t × ResValue 

mICE,t  ) + ∑𝑚𝑆𝑂𝐹𝐶  (λ2mSOFC,t × capcostmSOFC,t +  λ1mSOFC,t × OMcostmSOFC,t – λ3mSOFC,t × 

ResValue mSOFC,t  ) + ∑𝑚𝐶𝐶   (λ2mCC,t × capcostmCC,t +  λ1mCC,t × OMcostmCC,t – λ3mCC,t × 
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ResValue mCC,t  ) +∑𝑚𝐴𝐶  (λ2 mAC,t × capcostmAC,t +  λ1 mAC,t × OMcostmAC,t – λ3mAC,t × 

ResValue mAC,t  ) + (λ2boiler,t × capcostboiler,t +  λ1boiler,t × OMcostboiler,t – λ3boiler,t × ResValuet  

) +  ∑𝑚𝑃𝑉 (PVnt × capcostmPV,t) + (PVnt + aPVnt ) × OMcostmPV,t + ∑𝑚𝑆𝑇 (STnt × 

capcostmST,t) + (STnt + aSTnt ) × OMcostmST,t                                                                 (A.30)                                                                                                                                                        

(t ∈ T) 

Equation (A.30) calculates the total discounted fixed annual cost (€) of the energy 

systems. The three types of binary variables are employed to add the annual recurring 

maintenance costs (λ1m,t), capital costs (λ2m,t), and residual value (λ3m,t).    

 

TVCt = ∑
𝑝4
𝑚𝑀𝑇,𝑝 ∑𝑠,𝑏 ((opcostmMT,t,p + VarOMCostmMT,t ) × Durations,b × zmMT,s,b,t,p) + 

∑𝑝3𝑚𝐼𝐶𝐸,𝑝 ∑𝑠,𝑏 ((opcostmICE,t,p+ VarOMCostmICE,t ) × Durations,b × zmICE,s,b,t,p) + 

∑𝑝7𝑚𝑆𝑂𝐹𝐶,𝑝 ∑𝑠,𝑏 ((opcostmSOFC,t,p+ VarOMCostmSOFC,t )  × Durations,b ×  zmSOFC,s,b,t,p  ) +  

∑𝑠𝑒𝑎𝑠𝑜𝑛,𝑏 (opcostgrid,s,b,t  ×  Durations,b   ×  Zgrid,s,b,t ) + ∑𝑠𝑒𝑎𝑠𝑜𝑛,𝑏 (opcostboiler,t × 

xboilers,b,t × Durations,b ) + ∑𝑚𝐶𝐶 ∑𝑠,𝑏  (opcostmCC,t × Durations,b ×  cmCC,s,b,t ) + 

∑𝑠,𝑏 (opcostmAC,t × Durations,b ×  cmAC,s,b,t ) - ∑𝑠,𝑏 (ygrid,s,b,t × Durations,b × sellcosts,b,t ) 

(A.31), (t ∈ T) 

Equation (A.31) calculates the total discounted operating and variable maintenance 

costs for the year t. This is calculated by multiplying the output of each unit (in kW) 

into the duration (hours) of the period of operation into the respective operating and 

variable maintenance costs (both in €/kWh) of that unit in year t.  

 

TIAe,t = ∑𝑚𝑀𝑇 ∑𝑝4𝑝 ∑𝑠,𝑏 (IAe,mMT,p × Durations,b × zmMT,s,b,t,p) + 

∑𝑚𝐼𝐶𝐸 ∑𝑝3𝑝 ∑𝑠,𝑏 (IAe,mICE,p × Durations,b × zmICE,s,b,t,p) +  

∑𝑚𝑆𝑂𝐹𝐶 ∑𝑝7𝑝 ∑𝑠,𝑏  (IAe,mSOFC,p × Durations,b × zmSOFC,s,b,t,p) + (∑𝑠𝑒𝑎𝑠𝑜𝑛,𝑏 (IAe,grid × 

Durations,b × Zgrid,s,b,t) + ∑𝑠𝑒𝑎𝑠𝑜𝑛,𝑏 (IAe,boiler  × xboilers,b,t  × Durations,b ) + 

∑𝑚𝐶𝐶 ∑𝑠,𝑏 (IAe,CC  × Durations,b ×  cmCC,s,b,t )  +∑𝑚𝐴𝐶  ∑𝑠,𝑏 (IAe,AC  × Durations,b ×  

cmAC,s,b,t) - ∑𝑠,𝑏  (IAe,grid × ygrid,s,b,t × Durations,b)                                                               

(A.32)  

(t ∈ T, e ∈ E) 

Equation (A.32) calculates the annual LCIA (type e) of meeting the building energy 

demand over the planning horizon. Similar to calculation of operating costs, impacts 

are calculated by multiplying the output of each unit (in kW) into duration (hours) of 

period of operation into its respective impact (IA/kWh) of unit in year t.  
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Case-study  5.3 

The case study for the implementation of the proposed methodology is a 133 room 

hotel complex located in Coimbra, Portugal. Electricity consumption of the complex 

was measured at 15 minutes interval and used to generate the power load demand of 

the building. Hourly heating and cooling demands were also calculated using building 

simulation and calibrating the simulation results with the historical energy 

consumption data of the building. To build up a load diagram, the year was divided 

into three seasons, Hot (H), Mild (M) and Cold (C), therefore considering the varied 

output profile of the solar units along the year. The months November, December and 

January comprised the cold season whereas June, July and August were considered as 

hot season. The rest of the months were regarded as mild season. Each season 

possesses a load duration curve (LDC) for each type of cooling, heating and power 

demand with 7 block-loads: peak1 (P1), peak2 (P2), high1 (H1), high2 (H2), medium1 

(M1), medium2 (M2) and low (L). The block-loads were defined with some adjustments 

in a way to represent the hours for which the price of buying electricity from grid 

changes and therefore at each of the 4 groups of loads (Peak, High, Medium, Low) the 

price of purchasing electricity from the grid is constant and different from the rest. 

Table 5.4 displays the case-study demand data.  

Estimation of case-study solar energy potential 

In order to estimate the output of Solar PV and thermal systems for case-study, we 

employed two different tools. As for ST systems, we used the web-application Satel-

Light (2012) to estimate the hourly available solar radiation and calculated the output 

of the system using a simplified approach (ESTIF, 2007). As for the PV systems, the 

web-application NREL's PVWATTS (PVWATTS, 2011) was used and is discussed next.  

PV systems 

By selecting the location of the study, the PVWATTS application (2011) yields the hour-

by-hour estimated power output of the crystalline silicon PV systems according to the 

settings defined by the user. The settings comprise the size of the system, tilt angle, 

azimuth angle and array type (fixed, 1 axis tracking or 2-axis tracking). These values, PV 

system specifications and the site location details for the current site are shown in 
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Table 5.2. The expected life-time of the PV system is 20 years, with an annual 

performance degradation of 0.5% (≈10% overall reduction in year 20) (Denholm et al., 

2009), as previously mentioned in chapter 3, section 3.3.  

 

Table 5.2: Site location data for PV system (PVWATTS, 2011) 

Site Location  
PV  System 
Specifications 

 

City Coimbra DC Rating (kW) 4.0 

Country/Province Portugal  
DC to AC Derate 
Factor: 

0.77 

Latitude 40.20°N Array Type Fixed  

Longitude 8.42°W Array Tilt  40.20 

Elevation 140 m Array Azimuth 180 

 

ST systems 

Referring to ST systems, the power output of collectors is calculated as (ESTIF, 2007):  

 𝑃 =  𝐴 ×  𝐺 ×  𝜂     (5.21) 

 

where  

𝑃 =  thermal output of solar collector (W); 

𝐺 =   solar irradiation (W/m2); 

𝐴 =   collector area (m2); 

𝜂 =  solar thermal collector efficiency.   

The collector efficiency, 𝜂, is estimated using Equation (5.22).  

 𝜂  = 𝜂0 – 𝑎1 × (𝑇𝑚−𝑇𝑎)/𝐺 – 𝑎2 × (𝑇𝑚−𝑇𝑎)
2
/𝐺   (5.22) 

 

where 

𝑇𝑎   = ambient air temperature (K);  

𝑇𝑚 =   collector mean temperature (K);   

𝜂0 =  Zero-loss efficiency;   

𝑎1 =  First order heat loss coefficient (W/Km²) 

𝑎2 =  Second order heat loss coefficient (W/K2m²) 

http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#dc_rating
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#dc2ac
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#dc2ac
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#array_type
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#tilt_angle
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#azimuth_angle
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We used the typical efficiency values of solar thermal glazed collectors and hourly solar 

radiation (from Satel-Light, 2012) and hourly ambient temperature data to calculate 

the efficiency of the collector at each time period. To simplify the calculation, as 

recommended by ESTIF (2007), the collector mean temperature Tm is assumed 

constant all the time. This value and the efficiency values used to estimate the output 

(kW) of ST collectors are shown in Table 5.3. Knowing 𝜂 and G at each time period, the 

potential thermal power output of a square meter ST system at each block-load can be 

calculated. The collector efficiency and the output of a 4kW ST system are shown in 

Table 5.4.  

Table 5.3: Efficiency parameters of ST systems 

Solar Thermal systems 

Solar Thermal type Glazed flat plate collectors 

Zero-loss efficiency (𝜼0) 0.78 

first order heat loss coefficient (a1 ) 3.2 W/(K×m²) 

second heat loss coefficient (a2)   0.015 W/(K²×m²) 

collector mean temperature (Tm) 50
o
 C (323 K) 

 

Table 5.4: Case-study demand characteristic and estimation of solar potential 

Block-load  Index  Duration 

Power 

demand 

Heat 

Demand 

Cooling 

demand 

Grid 

Electricity 

ST 

efficiency 

PV 

output 

ST 

output 

(hrs / yr) (kW) (kW) (kW) (€/kWh) % kW kW 

Hot.peak1 H P1 276 369 0 101 0.2103 0.64 1.69 1.68 

Hot.peak2 H P2 276 460 0 106 0.2103 0 0.17 0 

Hot.high1 H H1  184 366 0 71 0.1136 0.35 0.8 0.37 

Hot.high2 H H2  552 389 0 122 0.1136 0.63 1.02 1.55 

Hot.medium1 H M1 184 293 9 25 0. 0757 0 0.14 0 

Hot.medium2 H M2 368 363 0 51 0. 0757 0 0 0 

Hot.low H L 368 239 16 23 0. 0704 0 0 0 

Mild.peak1 M P1 543 305 86 37 0.2103 0.59 1.72 1.44 

Mild.peak2 M P2 543 378 92 52 0.2103 0 0 0 

Mild.high1 M H1  362 303 120 28 0.1136 0.29 0.8 0.31 

Mild.high2 M H2  1086 306 64 50 0.1136 0.52 1.17 0.9 

Mild.medium1 MM1 362 230 133 1 0. 0757 0 0 0 

Mild.medium2 MM2 724 287 101 45 0. 0757 0 0.1 0 

Mild.low M L 724 165 132 9 0. 0704 0 0 0 

Cold.peak1 C P1 184 284 153 0 0.2103 0.42 1.31 0.69 

Cold.peak2 C P2 184 329 107 0 0.2103 0 0 0 

Cold.high1 C H1  644 271 97 0 0.1136 0.41 1.35 0.61 

Cold.high2 C H2  184 342 123 0 0.1136 0 0 0 

Cold.medium1 C M1 276 230 206 0 0. 0757 0 0.06 0 

Cold.medium2 C M2 368 249 164 0 0. 0757 0 0 0 

Cold.low C L 368 153 191 0 0. 0704 0 0 0 
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Multi-objective framework 5.4 

In multi-objective problems, since the objective functions are often conflicting, there is 

no single optimal solution that simultaneously optimizes all the objective functions.  

Therefore, the notion of optimal solutions is replaced with that of efficient or Pareto 

optimal solutions. The efficient (Pareto optimal, non-dominated) solutions are 

solutions that cannot be improved in one objective function without deteriorating 

their performance in at least one of the rest. Efficient solutions are usually graphed as 

Pareto optimal frontiers.  

In order to enumerate the efficient solutions for our multi-objective problem, which 

consists of design and operation of t DG for commercial buildings according to cost and 

environmental criteria, we have used the algorithm presented by Sylva & Crema (2004; 

2007). Consider a typical multi-objective mathematical modeling problem as following,  

 Min 𝑍𝑙   

𝑙 =  1, . . , 𝑃 

𝑠. 𝑡:  𝐴𝑥 ≤  𝑏 

𝐿 ≤  𝑥 ≤  𝑈 

 

(5.23) 

where we have 𝑝 objective functions. The algorithm consists of repeatedly solving a 

more constrained version of the original multi-objective problem to generate a new 

efficient solution at each step. This is done by adding the following constraints to the 

model:  

 𝑍𝑙
𝑛   ≤   (𝑍𝑙

𝑛−1 − 𝛿𝑙) × 𝑄𝑙 + 𝑀𝑙 × (1 − 𝑄𝑙)  

𝑙 =  1, . . , 𝑃 

∑𝑄𝑙

𝑃

𝑙=1

 ≥ 1 

𝑄𝑙  ∈  {0,1},  𝛿𝑙 ≥ 0, 𝑙 =  1, . . , 𝑃 

 

(5.24) 

In expression (5.24), 𝑍𝑙
𝑛 is the value of the 𝑙th objective function in iteration n, 𝑍𝑙

𝑛−1 is 

the value of the 𝑙th objective function in iteration n-1, 𝛿𝑙  is a parameter (defined by 
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the user) that determines the minimum (absolute) step of improvement of 𝑙th 

objective function,  𝑄𝑙 are binary variables and 𝑀𝑙  is the highest feasible bound for the 

𝑙th objective function. The set of expression (5.24) implies that, at each iteration, the 

value of at least one of the objective functions should be improved by no less than its 

step value 𝛿𝑙. Based on the chosen step value, a series of progressively more 

constrained version of the model is built and solved until the problem becomes 

infeasible. For further details on the model applications refer to Sylva & Crema (2004). 

The algorithm was implemented in GAMS (McCarl et al., 2013) to generate the non-

dominated Pareto frontiers for LCC and LCIA, presented in chapter 6.  

Summary  5.5 

This chapter presented the multi-objective mathematical model developed for the 

optimization of operation of DG in Portugal. The case-study to implement the 

proposed model, and the procedure followed to calculate the output of energy 

systems for the case-study building were also discussed. Finally, the algorithm 

implemented in GAMS (McCarl et al., 2013) to calculate the Pareto frontiers was 

presented. The results of implementation of the proposed model are discussed in the 

next chapter.   
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  Chapter 6

Selected Results and Discussions 

The mathematical programming model and the inputs to the model were described in 

previous chapters. The aim of this chapter is to discuss the results of the optimization 

model and is organized as following. In section 6.1, we assess the economic 

implications of each individual cogeneration technology according to the national 

regulations in Portugal. This is done by considering a single-objective model with Life-

Cycle Costs (LCC) as the function to minimize. Next, in section 6.2 we develop a multi-

objective model and present the Pareto frontiers of LCC vis-à-vis other objective 

functions, i.e. Cumulative Energy Demand (CED), Greenhouse Gases (GHG), 

Acidification and Eutrophication. Finally, summary and concluding notes close the 

chapter (section 6.3).  

 

 

Economic assessment of distributed generation technologies 6.1 

Cost implications are always present as a deciding factor to plan and employ 

Distributed Generation (DG) technologies for buildings, regardless of the presence of 

other criteria of interest. This section discusses the model results when the objective 

function was to minimize the LC energy costs of meeting the building energy demand 

(over a planning period of eleven years from 2012 to 2022). In order to facilitate cross-

comparison among different technologies, we analyze the combination of each type of 

cogeneration technology with other kind of energy systems. In other words, we look at 

each cogeneration technology as a potential DG source and assess its economic 

implications for the next mid-term planning period. As explained in chapter 5, the 

model regards the national policy; hence the feasible solutions are limited to the ones 

that provide PES (defined according to European directive 2004/8/EC through Equation 

5.6.) compared to separate production of heat and electricity. We have assumed a 
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growth rate of 2% for the cost of electricity and Natural Gas (NG) for commercial 

consumers and all other growth/decline trends along the planning period are ignored. 

The first year of the study resembles year 2012 regarding cost implications. The results 

are limited to include the operational level and output of different energy systems for 

the first year and a randomly selected year throughout the planning period for 

illustrative purposes. The detailed cost factors of the energy systems are included in 

Appendix B. In section 6.1 we assess the economic implications of cogeneration 

technologies for the commercial sector in Portugal. For PV, a more detailed economic 

assessment according to local meteorology and radiation is followed in the next 

chapter.  

ICE  6.1.1 

The analysis shows that under the current policy framework in Portugal, ICE is a cost-

effective cogeneration system for commercial sector. For our case-study, on average a 

172 kWe ICE produces 33% of annual power needs of the building while satisfying 

almost all the thermal demand.  

Figure 6.1 shows the electrical output (kW) of different energy systems, according to 

cost-optimal operation planning, to meet the electrical power demand of the building. 

Figures 6.2 and 6.3 exhibit the same type of information for heating and cooling power 

demands, respectively. The output of the energy systems are shown at each block-load 

of the first year (2012) and a (randomly selected) year of the planning period (refer to 

Table 5.4 for the complete list of block-loads on the X-axis).   

The analysis shows that one unit of ICE is employed, and its electrical output level (kW) 

at each block-load is shown in Figure 6.1. In this way, ICE satisfies almost all the 

thermal demand of the building, hence there is no interest to install a backup boiler 

and ST systems (Figure 6.2). From Figures 6.1 and 6.21 we also observe that the 

electricity purchase price from grid at different block-loads affect the planning pattern 

with the engine working at low capacity during medium and low block-loads—in which 

                                                      
1
 In Figure 6.2, the heat demand (kW) refers to the total heat demand of the building, while thermal 

demand is the building heat demand plus the heat needed to run AC to meet the cooling demand during 
hot or mild seasons.  
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the purchase price of electricity is at its minimum—and at (almost) full capacity during 

high and peak block-loads. Moreover, the engine operates mostly at 100% load, 

however, the upper-bound over its annual thermal output2 forces its operation at 75% 

and 50% part-loads in a number of block-loads. Looking at the trend of exporting 

electrical power to grid, as observed in Figure 6.1, export is not economical during 

peak loads (HP1, HP2, MP1, MP2, CP1, CP2). In fact, it is economically worthwhile to 

consume the entire electrical power produced onsite rather than exporting 50% of the 

production and accordingly purchase the remainder from grid to compensate the 

amount exported. Finally, Figure 6.3 shows that the cooling demand of the building is 

addressed by one unit of AC, which runs by the heat from ICE, and the CC that supply 

the remainder of cooling need in some block-loads.  

Since ICE does not address the total electrical demand (Figure 6.1), there is enough 

demand capacity for installation of PV systems. However, the existing FIT for PV 

technologies does not trade off their high initial capital cost and PV systems are not 

deployed. In chapter 7 we explore the economics of PV technologies in more detail.  

Regarding cost implications, ICE demonstrates the best cogeneration technology 

among those analyzed in this study (for a comparative cost analysis, refer to section 

6.5). Even when we analyzed the scenario that all cogeneration technologies and solar 

systems are potential sources to meet the building energy demand, the optimal energy 

system settings are parallel to the case in which among cogeneration technologies 

solely ICE is employed with other energy systems, as discussed in this section. The PES 

achieved by employing ICE, for the building under study, is approximately 12%. 

 

                                                      
2
 In order to benefit from the remuneration regime, as explained in chapter 5, the overall efficiency of 

the cogeneration system should satisfy the PES threshold defined in the decree-laws [Decree-Law 
23/2010, 2010; Directive 2004/8/EC . 2004]. In chapter 5, section 5.2, we showed that satisfying this 
threshold dictates that at least 77% of the annual thermal output of the ICE systems should be 
consumed onsite (Table 5.1).  
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Figure 6.1: Power output in the case of ICE with other energy systems (with export to grid) 

 

 

Figure 6.2: Heat output in the case of ICE with other energy systems (with export to grid) 
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Figure 6.3: Cooling output in the case of ICE with other energy systems (with export to grid) 

MT 6.1.2 

The optimal operation planning employing MT cogeneration system along with other 

energy systems (solar and conventional) is shown in Figures 6.4–6.6. The results exhibit 

that, with existing price conditions for year 2012, MT is not cost-effective against grid 

and boiler. However, within a 5 year time-scale and with the evolution of cost of 

electricity and NG, (2% each), MT becomes an economically viable technology for 

commercial building sector in Portugal. Furthermore, 11 ST (44 kW) systems are 

installed along with MT that partially meet the need for hot water. This indicates that 

at the current stage ST systems are cost-competitive technologies with conventional 

boilers.    

Figures 6.4–6.6 exhibit the operation planning of energy systems. In first year, the 

energy mix consists of conventional sources and ST; MT starts operating in mid-year of 

planning period (2017). When employed, MT operates at 100% load at majority of the 

block-loads. In this fashion, the turbine is able to satisfy more than 70% of annual 

thermal needs jointly with 11 solar thermal systems (44 kW total) and a boiler that 

meets the rest. Furthermore, same as the trend observed for ICE, Figure 6.4 shows 

that export of electricity is not economical during peak block-loads. Finally, the 
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stringent constraint over the thermal output of the MT—100% of the annual 

production should be consumed onsite—does not justify installation of a second unit, 

which if employed would be working in part-loads that generally do not expose a cost-

effective economic profile.  

 This combination of energy systems with MT exhibits the most cost-effective 

operation strategy following the case employing ICEs. For the building under study, MT 

is capable of providing PES of approximately 5%.  

 

Figure 6.4: Power output in the case of MT with other energy systems (with export to grid)  
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Figure 6.5: Heating output in the case of MT with other energy systems (with export to grid) 

 

Figure 6.6: Cooling output in the case of MT with other energy systems (with export to grid) 

SOFC 6.1.3 

The current high price of the SOFC systems delineates that they are not yet cost 

competitive against conventional energy systems. Therefore, when minimizing LCC of 
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meeting the energy demand by combining SOFC with other sources, the set of 

solutions consists of conventional sources and 44 kW ST.  

A sensitivity analysis was performed to determine the capital cost reduction that 

makes the employment of SOFCs a cost effective choice. Considering other cost factors 

and efficiency parameters constant, approximately 60% reduction in capital cost of 

fuel cells makes them cost-effective against conventional systems. If so, Figures 6.7–

6.9 depict the optimal planning pattern of the energy systems in each block-load 

through two selected years of the planning period. Two SOFCs are employed and it is 

noted that the significantly higher electrical efficiency and lower thermal efficiency of 

the cells as well as their relatively low operating cost causes economic advantage in 

long-term by exporting more surplus power to grid. Also, Figure 6.7 shows that at 

medium and low block-loads, SOFC works in 90%-100% load to increase its thermal 

output to run the AC and meet the cooling demand. Since the thermal output of the 

SOFC engine is not enough to supply the building demand, a boiler and 11 ST (44 kW 

total) systems are employed. Here again the cooling demand is met by co-utilizing AC 

and EC.  

While the total cost of co-utilization of SOFC with other energy systems represents a 

higher level than even conventional sources, the PES achieved by deploying SOFC 

escalates to approximately 18%, which represents the highest value among 

cogeneration technologies.  
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Figure 6.7: Power output in the case of SOFC with other energy systems (with export to grid) 

 

 

Figure 6.8: Heating output in the case of SOFC with other energy systems (with export to grid) 
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Figure 6.9: Cooling output in the case of SOFC with other energy systems (with export to grid) 

Cost and PES implications 6.1.4 

This section provides the cost implications of energy systems discussed in section 

6.1.1.-6.1.3, and compare cogeneration systems in terms of their PES potential for the 

case-study. Table 6.1 summarizes the energy systems employed in each of the sections 

6.1.1.-6.1.3. It also shows the average annual PES obtained (compared with separate 

production of heat and electricity) if each cogeneration technology operates according 

to its cost-optimal plan. PES is calculated according to European directive 2004/8/EC 

(2004), as discussed in detail in chapter 5, section 5.1. We can see that the PES 

obtained by deploying SOFC engines is higher than the one by ICEs and MTs. 

Furthermore, in the case of MT and SOFC, PES is close to the level that the engines are 

capable to provide (compare with Table 5.1). While ICE engines can provide PES of 

about 18%, the PES value obtained by ICE is ~12%. This is the result of over supplying 

the building thermal demand that diminishes the efficiency and consequently the PES 

obtained by employing the ICE engines.  
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Similarly, Figure 6.10 shows the LC energy costs of the building for 11 years, if using 

each of the energy system combinations summarized in Table 6.1. Each column in 

Figure 6.10 refers to a row of energy systems in Table 6.1. Looking at mid-term (11 

years) planning period, the combination of ICE and grid exhibits a cost-effective 

cogeneration-based technology for commercial sector in Portugal. This is due firstly to 

their relatively low operating costs and secondly to the higher level of thermal output 

that fulfills the entire annual heating demand, therefore preventing the operation of 

(less efficient) boiler. These two factors contribute to reduce the total operating 

energy costs of the building. Following ICEs, in near future MT exhibits an alternative 

cost effective cogeneration system with a relatively low initial capital investment. On 

the contrary, the high initial capital cost of the SOFCs means that they are not yet cost-

effective. For our case-study, SOFCs would be employed if their initial capital 

investment were 30% lower. In terms of solar systems, we discussed that ST systems 

are cost-effective alternatives against conventional boilers while PV, considering the 

existing FIT in Portugal, is not yet cost-effective for commercial applications in the 

central region of Portugal. In our study, 42 kW of ST systems are installed along with 

MT and SOFC to meet a part of the thermal demand. A detailed cost analysis of PV in 

Portugal is presented in chapter 7.  

Table 6.1: PES—Cogeneration technologies 

 
Reference 
Section  

Cogeneration/Energy systems 
deployed  

Annual PES (to separate 
production of heat and 
electricity )  

1 6.1.1 2 ICEs/ GRID ~12% 

2 6.1.1 1 MT (from 5th year of planning 
period)/ 42 kW ST systems, BOILER, 
GRID  

~5% 

3 6.1.3 2 SOFCs (from 3rd year) / 42 kW ST 
systems, BOILER, GRID 

~18% 

4 ------- BOILER, GRID - 
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Figure 6.10: NPV—Cogeneration technologies 

Finally, Figure 6.11 depicts an example of expected annual cash flows to meet the 

building energy demand. The positive and negative values signify correspondingly the 

cash outflows and inflows, if ICEs are employed (energy systems are identical to row 1 

of Table 6.1). For instance, the outflow in the first year represents the capital cost 

incurred to obtain the energy systems. We assumed a salvage value of 10% of capital 

cost for cogeneration systems. This is credited in year 7 when the first ICE retires after 

6 years of life-time. The net income from the export to grid and premium of efficiency 

have been considered as cash inflows at each respecting year. Figure 6.11 shows that 

the expected operating energy costs by far outweigh the capital costs. The annually 

increasing operation charges in Figure 6.11 are the effect of the increase in the price of 

electricity and NG (2%).  

 

 

Figure 6.11: ICE- Expected annual cash flows 
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Pareto frontiers  6.2 

This section presents the Pareto frontiers obtained for LCC vis-à-vis environmental 

impacts for DG investment. Pareto frontiers presented in sections 6.2.1–6.2.4 show 

the trade-off between cost-efficient solutions, and the solutions with lower CED, GHG, 

Acidification and Eutrophication impacts values. Each solution consists of a set of 

energy systems, and their respective operating planning to meet the level of LCC and 

environmental impact determined by the Decision Maker (DM). For each set of dual-

objective problems—LCC vis-à-vis CED, GHG, Acidification and Eutrophication 

impacts—a minimum step of improvement in the value of objective functions was 

defined, according to their range of variation at the Pareto optimality level. An 

algorithm was implemented in GAMS (McCarl et al., 2013), which employs the 

methodology by Sylva & Crema, 2004 (section 5.4) and outputs the Pareto frontiers.  

For this section, the capital and fixed maintenance costs of the energy systems were 

converted to Equivalent Annual Cost (EAC), i.e. the annual cost owning and operating 

an asset over its entire lifespan (Fuller & Petersen, 1996; Hawkes & Leach, 2005). EAC 

is frequently used as a decision making tool when evaluating investment projects of 

unequal life spans (Fuller & Petersen, 1996). The Life-Cycle Impact Assessment (LCIA: 

CED, GHG, Acidification , Eutrophication) of energy systems (per kWh) output were 

calculated and presented in chapter 4 and summarized in Tables 6.2 and 6.3 for 

reference purposes. The capacity of a conventional boiler for the following analyses is 

considered as a variable, so the optimal solution (according to the defined objective 

function) gives out the optimal capacity of the boiler as well as its output throughout 

the planning period. Moreover, the emissions resulting from the exported power are 

deducted from the total emissions, since they avoid the generation of electricity (mix 

production in Portugal). This has been accounted by the model using the “avoided-

burden approach” (Clift et al., 2000).  
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Table 6.2: LCIA of cogeneration systems—input to the mathematical model 

 

Table 6.3: LCIA of solar and conventional systems—input to the mathematical model 

 

 PV Grid ST boiler 

 
 

kWhe kWhth 

CED 
MJ 

1.80 4.67 0.39 5.29 

GHG 
g CO2 eq 

90 347 21 287 

Acidification 
g SO2 eq 

0.472 0.770 0.158 0.124 

Eutrophication 
g PO4

3-
 eq 

0.21 0.53 0.10 0.03 

 

 ICE 

100% 

load 

ICE 

75% 

load 

ICE 

50% 

load 

MT 

100% 

load 

MT 75% 

load 

MT 50% 

load 

MT 25% 

load 

SOFC 

104% 

load 

SOFC 

100% 

load 

SOFC  

93% 

load 

SOFC 

85% 

load 

SOFC 

78% 

load 

SOFC 

68% 

load 

SOFC 

62% 

load 

CED 
MJ/kWhe 

12.78 14.03 16.02 16.35 17.70 21.23 32.61 9.85 9.64 9.05 8.87 8.70 8.70 8.54 

GHG 
g CO2 eq/ kWhe 

682 748 853 876 930 1254 1733 558 555 549 547 546 546 544 

Acidification 
g SO2 eq/ kWhe 

0.38 0.40 0.42 0.42 0.44 0.48 0.61 0.21 0.21 0.21 0.20 0.20 0.20 0.20 

Eutrophication g PO4
3-

 eq/ 
kWhe 

0.08 0.09 0.10 0.08 0.09 0.10 0.14 0.08 0.07 0.07 0.07 0.07 0.07 0.07 
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Pareto frontier for cost and CED 6.2.1 

In this section we discuss the Pareto frontier obtained for CED and LCC objective 

functions. The Pareto frontier was derived, considering a minimum step of 

improvement of δl = 2,000 for cost and 20,000 for CED. The values correspond to the 

total LCC and CED of meeting the building energy demand for a nominal year. Table 6.4 

shows the pay-off values for LCC versus CED objective functions4. The range of 

variation of CED objective function is considerably higher than that of cost; the 

magnitude of the best achievable CED (ideal solution) is three times lower than its 

maximum (nadir value) whereas for cost this difference is less than 12%.  

Table 6.4: Pay-off values for cost vs CED  

 

The Pareto frontier obtained for CED and LCC objective functions is shown in Figure 

6.12. The curve has a steep slope in the beginning and its slope decreases as it 

progresses towards less CED (or more costs). As discussed in section 6.1, none of the 

DG systems except ICE and ST are economical based on relative fuel (NG and 

electricity) cost in Portugal. Thus, the set of energy systems for the most cost-effective 

results (the solution at the most extreme left part of the Pareto frontier) is composed 

of an ICE, a boiler with minimal size (5 kW), 1 AC and 30 kW of CC. We explained that 

with the employment of ICE, there is no interest (financially) to install ST systems, as 

ICE satisfies almost all of the heat demand of the building. Compared to the case only 

employing conventional systems, the cost-optimized operation of ICE brings about 

both financial and energy savings. Thus the case employing conventional systems is 

dominated by some of the solutions located on the Pareto frontier. For reference 

purposes, the value of objective functions corresponding to employment of 

                                                      
4
 The pay-off table provides the objective function values, for each non dominated solution, resulting 

from individually optimizing each objective function of the problem. This allows the  DM to  have  a  first  
global  overview  about  the  range  of  variation  of  the  objective functions in the efficient region. Along 
with ideal solutions, nadir points are also derived from the pay-off table, by selecting, in each column, 
the worst value of the corresponding objective function 

 Min Max 

CED (MJ) 6 048 691 7 682 100 

LCC (Euros) 401 654 431 456 
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conventional systems, and conventional systems with 44 kW ST are also displayed in 

Figure 6.12. The employment of ICE, even at its cost-optimal strategy reduces CED by 

almost 60% compared to conventional case. Installing 44 kW ST can also reduce CED by 

1%, compared to case only employing conventional systems.  

 

 

Figure 6.12: Cost vs. CED—Pareto frontier 

 In order to reduce CED, the output of grid and boiler slightly increases, replacing ICE to 

partially meet the building energy demand. Therefore, shifting to solutions with less 

CED (and more cost), the output of ICE gradually decreases whereas import from grid 

and output from boiler increases. In order to further reduce CED, PV systems are 

added to energy systems. The number of PV installations gradually increases along the 

Pareto as the DM desires for less CED; the solution with least CED (11,327,998 MJ; see 

Table 6.4) employs 80 kW installed PV system, the maximum capacity allowed due to 

area restrictions of the building.  

The operation planning of energy systems to minimize CED are shown in Figures 6.13-

6.15. The optimal configuration of energy systems to minimize CED consists of 80 kW 

PV systems (maximum allowed due to area restriction), an ICE, a boiler sized 25 kW, 

and 2 ACs (208 kW). This set of energy system corresponds to most extreme right 

solution (with highest LCC and lowest CED) in Pareto frontier 6.12, referred to in Table 

6.4. It is visible that ICE operates as a base-load whereas the extra electricity and heat 
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needed is met via grid and boiler, respectively. The cooling is completely met by 2 ACs 

that run on the waste heat from ICE. The output of ICE cannot increase, otherwise it 

would violate the PES constraint (over its thermal output), so a 25 kW boiler is installed 

to meet the peak thermal demand. The main difference in the operating plan of ICE—

when minimizing CED or LCC—is that for the latter, the output of engine is sensitive to 

the price of electricity. Therefore, as shown in Figures 6.2 and 6.3, ICE operates in full 

load during the peak hours (where the price of grid is higher) and in 50–75% load 

during the medium and low block-loads, in which it is also cost-effective to export 

electricity to the grid. For the case minimizing CED, however, while 80 kW PV are also 

added to onsite generation technologies (and so more electricity is available to be 

exported), export to grid is not recommended to minimize CED. Therefore, onsite 

produced electricity is only exported in ML and CL block-loads, during which ICE 

operates to meet the thermal demand and only the extra electricity (above the 

building electrical power demand level) is exported. In fact, it is energy saving to 

consume the entire electrical power produced onsite rather than exporting 50% of the 

production. 

 

Figure 6.13: Minimizing CED - Optimal operation planning of energy systems to meet Power demand 
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Figure 6.14: Minimizing CED - Optimal operation planning of energy systems to meet heating demand 

 

 

Figure 6.15: Minimizing CED - Optimal operation planning of energy systems to meet cooling demand 

Pareto frontier for cost and GHG 6.2.2 

In this section we discuss the solutions positioned on the Pareto frontier obtained for 

GHG and LCC objective functions. The Pareto is derived, considering a minimum step of 

improvement of δl = 2,000 for cost and 200,000 for GHG. The values correspond to the 

total LCC and GHG emissions of meeting the building energy demand for a nominal 

year. Pay-off table (Table 6.5) displays the ideal and nadir points of the dual-objective 

problem. GHG objective function value has a higher range of variability (40%) at the 

Pareto optimality stage compared to that of LCC objective function (10%).  
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Table 6.5: Pay-off values for cost vs GHG 

 

Figure 6.16 shows the Pareto frontier obtained for GHG and the cost objective 

functions. The set of energy systems for the solution with minimum cost—pertaining 

to most extreme left solution of the Pareto frontier—is already known: an ICE, a boiler 

with minimal size (5 kW), 1 AC and 30 kW of CC. Figure 6.16 also shows the values of 

GHG and LCC objective functions for the solution only employing conventional energy 

systems, and for the solutions employing 44 kW ST along with other conventional 

systems. The conventional settings of energy systems has dramatically higher GHG 

emissions (almost twice), but only slightly higher LCC (less than 1%) than the case 

employing ICE. The employment of ICE (and AC) therefore provides both economic and 

GHG savings for the building.  

 

 

Figure 6.16: Cost vs. GHG—Pareto frontier 

In order to reduce GHG, the output of ICE should increase to replace the electricity by 

the grid. Thus, moving along the Pareto frontier to solutions with less GHG (and more 

costs), the contribution of ICE to meet the building energy demand gradually increases. 
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As Figure 6.16 displays, the slope of the Pareto frontier declines towards solutions with 

higher LCC. This signifies that for such solutions, it bears more costs to reduce GHG by 

one unit, as ICE is not anymore operating according to its cost optimal design; rather it 

operates to decrease GHG emissions, even in the block-loads in which its operation is 

not economical. More electrical output from ICE increases its thermal output to drive 

the AC, thus the electricity demand for cooling is diminished. Thus, the increased 

output from ICE directly (via meeting the electricity demand) and indirectly (via 

reducing the electrical energy needed for cooling) decreases the electricity import 

from grid. Interestingly, the capacity of installed boiler is higher for solutions with 

lower GHG. There is a cap over the thermal output of ICE that should be used onsite; it 

is emission saving if its heat is used for cooling purposes (by driving AC) rather than 

being used for direct heating purposes. So the ICE operates almost in full-load during 

hot and medium seasons (to feed AC), and stops in some block-loads during cold 

seasons, during which the boiler is employed to meet the thermal demand.  

Since the ICE meets most of the heating demand, there is no interest to install ST 

systems. Adversely, the capacity of PV installation increases as the DM opts for 

solutions with less GHG intensity. The optimal design of the energy systems to 

minimize GHG is actually composed of an ICE, 80 kW PV systems, 172 kW boiler and 2 

ACs.  

The optimal operation planning of these energy systems minimizing GHG are shown in 

Figures 6.17–6.19. This solution has a nominal GHG emission of 522 945 890 g CO2 eq, 

as shown in the pay-off Table 6.5. Overall, the ICE operates to meet the base-load 

whereas the extra electricity and heat needed are met via grid and boiler, respectively. 

The cooling is completely met by the AC that runs on the waste heat from the ICE and, 

to a less extent the boiler. The output of the ICE cannot increase: otherwise it violates 

the PES constraint (over its thermal output), so the ICE stops in cold season through a 

number of peak block-loads. The heating needed during this season is met by using the 

boiler. PV is able to satisfy less than 1% needs of the building; in relative terms, this 

only reduces the building GHG emissions by 3%, but in absolute terms 80 kW installed 

PV provides an annual savings of 44 tonne CO2 eq.  
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Figure 6.17: Minimizing GHG - Optimal operation planning of energy systems to meet Power demand 

 

Figure 6.18: Minimizing GHG - Optimal operation planning of energy systems to meet Heat demand 

 

Figure 6.19: GHG - Optimal operation planning of energy systems to meet cooling demand 
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Pareto frontier for cost and Acidification 6.2.3 

In this section we explore the Pareto frontier obtained for LCC vs. Acidification 

objective functions. As discussed in chapter 4, grid and after then PV have particularly 

more Acidification impact than CHPs. Thus, in order to reduce the building Acidification 

impact, imported electricity from grid should be moderated and ultimately avoided. 

The employment of cogeneration technologies—specifically SOFC—provides 

significant savings compared to conventional design of energy systems and brings 

about total negative balance of Acidification emissions for our commercial building. 

Table 6.6 displays the nadir and ideal values of objective functions. The range of 

variability of values for Acidification objective function is significantly higher (from -254 

× 103 to 1217 × 103) than LCC objective function (i.e. from 401 × 103 to 796 × 103). 

Table 6.6: Pay-off values for cost vs Acidification  

 Min  Max 

Acidification (g SO2 eq) -254 176 1 217 574 

LCC (Euros) 401 654 796 050 

 

The Pareto frontier for Acidification and LCC objective functions was derived, 

considering a minimum step of improvement of δl = 2,000 for LCC and 15,000 for 

Acidification (Figure 6.20). The values correspond to the total LCC (€) and Acidification 

(kg SO2 eq) of meeting the building energy demand for a nominal year. The Pareto 

front is composed of five sections. The solutions positioned on section A employ ICE, 

boiler, AC, and PV systems. The solutions on section B contain the same type energy 

systems in addition to SOFC systems (see Figure 6.20). The number of SOFC installation 

increases by one unit for each of the curves on section B towards reduced Acidification 

impacts. Each jump in the value of LCC objective function therefore represents the 

employment of an extra SOFC unit.  
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Figure 6.20: Cost vs. Acidification—Pareto frontier 

We first explore the solutions located on Part A in Figure 6.20. The profile of the 

solution with least cost solution is already known (ICE, 5 kW boiler, 1 AC, 30 kW CC). 

Compared to conventional sources, the employment of the ICE decreases the annual 

Acidification potential by more than 60%. The values of objective functions 

corresponding to solution using only conventional sources, and conventional sources 

with 44 kW ST (which are dominated solutions) are also shown in Figure 6.20. In order 

to reduce Acidification, the output of the ICE increases to replace that of grid. All the 

solutions positioned on part A of Pareto frontier in Figure 6.20 employ an ICE; 

however, the contribution of the ICE to meet the building demand increases towards 

costlier solutions. The total cost for these solutions increases since the ICE starts 
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operating in block-loads in which the price of purchased power from grid is low and its 

operation is not economical. PV also boasts a relatively low cost alternative to 

decrease the Acidification impacts. The capacity of PV installations also increases, until 

they occupy the total rooftop space. Acidification can be roughly reduced annually by 

500 kg SO2 eq as an effect of employing 80 kW PV systems. Solutions positioned on the 

right hand side of Part A of the Pareto front (6.15) all employ 80 kW PV systems.  

Moving along the Pareto frontier to the right, the fall in the value of Acidification 

objective function, from part A to part B, is the result of employment of SOFC in the 

subsequent solutions. SOFC systems are the most efficient DG technology to reduce 

Acidification, due to their high power-to-heat ratio, which allows them to supply most 

of the building electrical power needs while not over-supplying the thermal demand. 

The environmental impacts of electrical energy exported to grid were considered to be 

the same as the impact of energy purchased from grid. Therefore, employment of 

SOFC systems can bring about negative Acidification balance by exporting more onsite 

power to grid. Acidification is reduced by increasing the output of SOFC as a pay-off by 

bearing more costs. Consecutive drops in the value of Acidification observed in part B 

of Figure 6.20 are due to employment of an extra unit of SOFC. Ultimately 4 SOFCs are 

employed along with an ICE, 80 kW PV, 207 kW boiler, 1 AC and 45 kW CC to meet the 

building demand. This setting corresponds to optimal configuration of energy systems 

to minimize the Acidification potential.  

Figures 6.21–6.23 depict the optimal planning pattern of the energy systems in each 

block-load when the objective function is set to minimize Acidification potential. SOFCs 

are operating to meet the base-loads, while the ICE is employed as the peak shaver. As 

discussed, Acidification savings can be acquired through exporting extra power to grid; 

therefore at all the block-loads through the year, 150 kW electrical power, which is the 

maximum allowed due to policy restrictions, is exported to grid. Clearly, in this way 

cogeneration system over-supply the building heat demand in a number of block-loads 

to export more power to grid and this leads to a relatively high annual energy costs.  
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Figure 6.21: Acidification - Optimal operation planning of energy systems to meet power demand 

 

Figure 6.22: Acidification - Optimal operation planning of energy systems to meet heating demand 

 

Figure 6.23: Acidification - Optimal operation planning of energy systems to meet cooling demand 
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Pareto frontier for cost and Eutrophication 6.2.4 

This section presents the Pareto frontier obtained for LCC vs. Eutrophication impacts. 

Pay-off Table 6.7 shows a first global overview of the range of variation of the 

objective functions in their efficient regions. Significantly higher range of variability is 

visible for Eutrophication impact objective function values than that for LCC.  

Table 6.7: Pay-off values for cost vs. Eutrophication 

 Min   Max 

Eutrophication (g PO4
3−

 eq) -350 492 781 453 

LCC (Euros) 401 654 797 186 

 

The Pareto frontier for Eutrophication and LCC objective functions was derived, 

considering a minimum step of improvement of δl = 2,000 for cost and 50,000 for 

Eutrophication (Figure 6.24). The values correspond to the total LCC and 

Eutrophication impact (kg PO4
3− eq) of meeting the building energy demand for a 

nominal year. The format of the curve, and the energy systems employed in each 

solution to meet the required level of each objective function (cost and 

Eutrophication) is very similar to the Pareto obtained for cost vs. Acidification (Figure 

6.20). In order to reduce Eutrophication, the imported (exported) electrical energy 

gradually decreases (increases) to reach its minimum (maximum) value at each block-

load (150 kW due to policy restriction). The most viable technology to increase the 

export to grid (without violating the policy framework) is SOFC (due to high power-to-

heat ratio), so its installation capacity increases according to the level of 

Eutrophication reduction desired by DM. The front is composed of five sections. The 

number of installed SOFC systems increases by one unit for each section towards less 

Eutrophication impacts. On top of SOFC and ICE, 80 kW PV systems are also employed 

that results in an annual saving of up to 410 kg PO4
3− eq for our case-study building.  
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Figure 6.24: Cost vs. Eutrophication—Pareto frontier 

The optimal planning patterns of the energy systems in each block-load to minimize 

Eutrophication impact are parallel to Figures 6.21–6.23. A negative balance of 

Eutrophication impact can be acquired through exporting the onsite produced 

electricity to the grid.  

Conclusions  6.3 

This chapter presented the results of economic and environmental assessment of 

selected DG for building sector in Portugal. First, a detailed economic assessment of 

each type of CHP for the building under study was carried out. Next, we presented the 

Pareto frontiers derived for LCC vis-à-vis four impact categories, namely CED, GHG, 

Acidification, and Eutrophication. It was shown that each type of DG has its particular 

cost structure and emissions. Therefore, depending on the objective of DM (that could 

be reducing the energy costs or one or more types of LCIA categories) a particular DG 

and operating strategy could be employed. Overall, it is possible to mitigate both 

energy costs and environmental impacts of the building under study by employing 

onsite generation technologies, although saving amounts, if any, depend on the type 

of technology as well as its operating strategy.  

A detailed economic analysis of each type of DG, taking into account the current 

financial incentives to promote them in Portugal, was first undertaken in section 6.1. 

The combination of each type of cogeneration technology with other energy systems 
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was presented and showed that at the current stage ICE, and in near future, MTs 

would be economically viable cogeneration solutions for Portuguese buildings. ST 

systems also represent cost-effective solutions, whilst SOFC is not yet commercial to 

deploy. Furthermore, it was shown that the existing FIT in Portugal does not provide 

enough incentive to promote PV systems. A detailed analysis of economic implications 

of PV systems according to meteorology and existing national FIT is followed in chapter 

7, in which we will compute the level of required FIT to incentivize the deployment of 

PV technology for commercial applications in different zones of continental Portugal. 

The significance of including the varied technological profile of cogeneration systems 

and their interrelationship with the policy frameworks was stressed where it was 

observed that e.g. utilizing ICE systems leaves no space for the employment of boilers 

and ST panels, whereas this trend was not replicated for MT and SOFC systems.  

The Pareto frontier obtained for CED and GHG shows that ICE is the cogeneration 

technology that can provide the maximum saving across both categories. Either the 

DM opts to minimize the energy costs, or reduce the GHG emissions or CED arising 

from meeting the building energy demands, ICE is the cogeneration technology to 

employ. The economic advantage of ICE over the conventional energy sources, i.e. grid 

and a conventional boiler, is not remarkable; however, the magnitude of savings ICE 

provides compared to conventional settings can be up to 50% for GHG emissions and 

CED. Moreover, the operating strategy of ICE significantly affects its economic and 

environmental performance. To illustrate, all the solutions positioned on the Pareto 

frontiers obtained for CED and GHG vis-à-vis LCC (Figures 6.12 and 6.16), employ ICE 

cogeneration technology; however, the operating strategy of ICE (and consequently 

the energy systems coupled with it) differs for each solution according to the level of 

each objective function (CED, GHG or LCC) aspired by the DM. The optimal 

configuration of energy systems to minimize CED and GHG emissions are similar, 

where an ICE and PV are the DG employed. ICE operates mainly in hot seasons (in 

conjunction with AC), during which its advantage over the combination of grid and CC 

is more pronounced.  

The Pareto frontier obtained for LCC vis-à-vis Eutrophication and Acidification impacts 

indicate that in order to minimize those impacts, imported power from national grid 



6. Selected Results and Discussions 

  

155 

should be curbed and ultimately avoided. Employment of any type of DG can mitigate 

Acidification and Eutrophication impacts; however, the best DG to do so while not 

over-supplying the building thermal demand is SOFC. This is due to significantly higher 

power-to-heat ratio of fuel cells compared to other cogeneration systems. SOFC can 

even bring about negative emission balance for Eutrophication and Acidification 

impacts.  

Regarding solar systems, ST stands as the technology with lower setup costs that make 

them cost-competitive against the boiler, while PV is not yet commercial against the 

national grid in Portugal (a detailed assessment of economics of PV technology 

according to local meteorology and markets is carried out in chapter 7). However, PV 

combined with cogeneration systems has comparably higher potential to reduce the 

CED and environmental impacts of the building. This is due to the fact that a cap exists 

over the thermal output of cogeneration systems, either due to national legal 

frameworks or basically the demand of the building. For electricity, however, extra 

produced power could be exported to grid, as long as not violating the policy 

framework. Therefore, employing CHP might not leave space for the employment of ST 

systems, since the building thermal demand could be entirely met by CHP. PV, 

however, has a different position since 50% of its electricity production (as well as that 

of CHP) could be exported to grid (according to Portuguese legal framework). In other 

words, although PV has higher installed costs, it also higher potential to reduce the 

impact of building compared to ST, due to dynamics of national policies and 

conditions.  
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  Chapter 7

Solar PV economics in Portugal 

This chapter proposes a methodology to study the cost-effectiveness of solar PV 

systems. Using this methodology, we investigate the key drivers to and status of cost-

effectiveness of PV systems in Portugal, by taking into account the received solar 

radiation in different geographical locations across the country and the estimated 

output (kWh/year) of PV systems. The proposed methodology to assess the economics 

of PV systems is discussed in section 7.1. Next, we explore the underlying factors 

behind the willingness-to-pay for PV systems by looking at five different geographical 

locations in south, center and north of Portugal (section 7.2). The analysis is extended 

to assess the efficiency of the established Feed-In Tariff (FIT) on the promotion of PV 

technology in studied locations in Portugal (section 7.3). Summary and concluding 

notes close the chapter (section 7.4). 

Methodology 7.1 

The aim of this chapter is to assess the cost-effectiveness of PV systems in continental 

Portugal, by considering meteorology and solar radiation received by the systems in 

different geographical locations. The analysis was performed for 5 major cities located 

at different latitudes across the country: Faro (south), Évora (center-south), Coimbra 

(center), Porto (center-north) and Bragança (north). Figure 7.1 shows a map of 

continental Portugal where the studied locations are distinguished with red circles.  
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Figure 7.1: Map of Portugal—Studied Cities 

By selecting the location of the study and the size of the PV system, the PV-WATTS 

application (PV-WATTS, 2011) yields the hour-by-hour estimated power output of 

mono-crystalline silicon PV systems according to settings defined by the user. The 

settings comprise tilt angle, azimuth angle and array type (fixed, 1-axis tracking or 2-

axes tracking), etc. For this study, the PV-WATTS default values of the above settings 
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(that are also the optimal values regarding the azimuth and tilt angles) for each 

location were used (Table 7.1). PV systems are identical to the description in chapter 4, 

section 4.2.4. For reference purposes, the current total installed cost and FIT for PV 

system in Portugal are 4.5€/Wp (Watt-peak) (IEA-PVPS, 2011) and 0.215€/kWhe (kWh 

electricity) (Administrative rule 285/2011), respectively.  

Table 7.1: Meteorological sites specifications— Faro, Évora, Coimbra, Porto, and Bragança (PV-Watts, 2011) 

 Faro 
(south) 

Évora 
(center-
south) 

Coimbra 
(center) 

Porto 
(center- 
north) 

Bragança 
(north) 

Latitude 37.02°N 38.57°N 40.20°N 41.23°N 41.80°N 
Longitude 7.97°W 7.90°W 8.42°W 8.68° W 6.73° W 
Elevation (m) 4  321 140  73  692  
DC Rating (kW) 4.00 4.00 4.00 4.00 4.00 
AC Rating (kW) 3.08 3.08 3.08 3.08 3.08 
Array Type Fixed Fixed Fixed Fixed Fixed 
Array Tilt  37.02° 38.6° 40.20° 41.23° 41.80° 
Array Azimuth 180.00° 180.00° 180.00° 180.00° 180.00° 
 

The solar radiation received and AC energy output of the PV systems in each month, 

according to the specifications defined in Table 7.1 for each location is shown in Table 

7.2. Table 7.2 shows an interesting point: while the total annual solar radiation 

(kWh/m2/day) in Coimbra is slightly higher than that in Porto, the AC energy (kWh) 

output of the PV systems at the two cities is reversed, with Porto being slightly better 

than Coimbra. This is also shown by the monthly capacity factor of the PV installations 

(Table 7.2). We see that the capacity factor of systems in Coimbra drops significantly in 

springtime (May, June) relative to Faro, Évora, Porto and Bragança. The higher ambient 

temperature in Coimbra explains this trend. The solar resource in Coimbra is actually 

only slightly better than in Porto; this is why the temperature differences between 

Coimbra and Porto is enough to cause the unexpected result of higher annual PV 

generation in Porto, since PV output is reduced by approximately 0.5% for every 

degree Celsius increase (Denholm et al., 2009). With this input data, we calculated the 

willingness-to-pay for PV systems operating under the same market conditions for the 

five different meteorological locations.  

 

http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#dc_rating
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#array_type
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#tilt_angle
http://www.nrel.gov/rredc/pvwatts/changing_parameters.html#azimuth_angle
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Table 7.2: Solar radiation and energy output of PV systems in Faro, Évora, Coimbra, Porto and Bragança 

 

 

* Monthly Capacity factor =  
PV System AC Output per Month (kWh)

3.08 kW (PV AC rating) × hours in the month
 

 
Faro (south) Évora (center-south) Coimbra (center) Porto (center-north) Bragança (north) 

Month 

Solar 

Radiation 

(kWh/ 

m
2
/day) 

AC 

Energy 

(kWh) 

Capacity 

Factor* 

Solar 

Radiation 

(kWh/ 

m
2
/day) 

AC 

Energy 

(kWh) 

Capacity 

Factor 

Solar 

Radiation 

(kWh/ 

m
2
/day) 

AC 

Energy 

(kWh) 

Capacity 

Factor 

Solar 

Radiation 

(kWh/ 

m
2
/day) 

AC 

Energy 

(kWh) 

Capacity 

Factor 

Solar 

Radiation 

(kWh/ 

m
2
/day) 

AC 

Energy 

(kWh) 

Capacity 

Factor 

1 4.15 384 16.8 3.65 344 15 3.58 324 14.1 2.84 257 11.2 2.76 255 11.1 
2 4.76 395 19.1 3.97 333 16.1 3.64 300 14.5 3.87 322 15.6 3.9 328 15.8 
3 6.34 574 25.0 6.08 555 24.2 5.04 454 19.8 5.2 476 20.8 5.42 496 21.6 
4 6.27 548 24.7 5.49 489 22.1 5.67 490 22.1 6.1 535 24.1 5.18 451 20.3 
5 6.78 598 26.1 6.45 567 24.7 5.49 482 21.0 6.12 550 24.0 5.56 497 21.7 
6 6.89 580 26.2 6.37 531 23.9 6.03 501 22.6 6.39 529 23.9 6.59 553 24.9 
7 7.27 616 26.9 6.90 581 25.4 6.36 538 23.5 6.27 544 23.7 6.88 577 25.2 
8 7.01 592 25.8 6.92 589 25.7 6.52 555 24.2 6.37 552 24.1 6.64 566 24.7 
9 6.75 566 25.5 5.86 489 22.1 5.57 460 20.7 5.47 457 20.6 6.16 522 23.5 
10 5.43 478 20.9 4.71 419 18.3 4.56 396 17.3 4.45 397 17.3 4.26 384 16.8 
11 4.32 380 17.1 3.30 293 13.2 3.02 263 11.9 2.61 222 10.0 3.48 304 13.7 
12 3.59 328 14.3 2.99 278 12.1 2.8 254 11.1 2.59 227 9.9 2.31 203 8.9 

Year 5.8 6040 22.4 5.23 5466 20.5 4.87 5016 18.6 4.86 5069 18.8 4.93 5134 19.0 
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Willingness to pay for PV in Portugal 7.2 

We calculated the break-even cost for PV technology for the major cities located in 

south, center and north of Portugal. Break-even cost for PV technology is defined as 

“the point where the cost of PV-generated electricity equals the cost of electricity 

purchased from the grid” (Denholm et al., 2009). Break-even points are calculated 

taking into account the local solar resource and meteorology.  

The set of break-even points for one meteorological condition delivers the willingness-

to-pay curves for that site. The diagonal lines in Figure 7.2 represent the willingness-to-

pay for PV (€/WDC) for Faro, Évora, Coimbra, Porto and Bragança. It is clear that with 

the current cost of commercial class electricity in Portugal (9 € Cents/ kWh), the 

willingness-to-pay for solar systems is still substantially lower than the current 

(unsubsidized) cost of commercial PV systems, or in other words, PV is not cost-

effective in any of the regions without subsidization. Figure 7.2 also shows that 

willingness-to-pay for solar systems is significantly higher in southern cities (Faro and 

Évora) than in other regions. As a result, the “threshold” (Δ€/WDC) to become cost-

effective is lower for south versus other cities. To illustrate, in Faro and Évora, the 

“cost-effectiveness threshold” (Δ), the gap between the unsubsidized PV cost in 

Portugal (4.5 €/WDC) and “the willingness-to-pay for PV at 9 € cents”, is less than its 

value for Coimbra, Porto and Bragança. This implies that PV has a shorter path to grid-

parity in Faro. Such information is summarized in Table 7.3 in which the values of 

willingness-to-pay and “cost-effectiveness thresholds” for PV technology in the five 

locations are shown. The path to grid parity is also lower for Évora than central and 

northern cities, among which we see that the willingness-to-pay curves for PV systems 

are almost the same, with Bragança being slightly higher than Porto and next Coimbra.  
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Figure 7.2: Willingness-to-pay for PV— Faro, Évora, Coimbra, Porto, and Bragança 

Table 7.3: Summary of Willingness-to-pay PV— Faro, Évora, Coimbra, Porto, and Bragança 

  Locations 

 

Unit 
Faro 

(south) 

Évora 

(center- 

south) 

Coimbra 
(center) 

Porto 
(center-

North) 

Bragança 
(North) 

Current average retail price 

of electricity to commercial 

customers in 2012  
¢/kWh(AC) 9  

Unit Cost of Commercial 

PV system in Portugal  

 

€/WDC 4.5 

Willingness-to-pay for PV 

technology (at the current 

retail price of electricity to 

commercial customers) 

€/WDC 2.58 2.32 2.14 2.17 2.20 

“Cost-effectiveness 

threshold” for PV 

technology (Δ) 

 

[Unit Cost of PV system 

(€/WDC)  

− 

Willingness-to-pay for PV 

technology ] 

€/WDC 1.92 2.18 2.36 2.33 2.30 

Implication of FIT on economics of PV in Portugal  7.3 

We showed that that without financial incentives, PV technology was not cost-

effective in any of the studied locations in Portugal. We further explore the 

implications of the current FIT for the economics of PV across the country. Similar to 

Figure 7.2, the diagonal lines in Figure 7.3 represent the willingness-to-pay for PV 
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(€/Wp) technologies, but based on the evolution of FIT. With the current FIT (215 

€/MWh), the willingness-to-pay for solar PV systems in center and north (Coimbra, 

Porto, Bragança) is roughly 3.5 €/Wp, lower than the current cost of PV systems (4.5 

€/Wp). This implies that even by considering the current FIT (215 €/MWh), PV is not 

cost-effective in the mentioned locations. However, PV systems are just about grid-

parity in Faro, where the applied FIT seems motivating for the deployment of PV 

technology. For Évora, the FIT needs to rise to 363 €/MWh for PV to reach grid parity. 

Regarding center and north, which have similar PV cost structures, either the initial FIT 

needs to be at the level of 455–485 €/MWh, or alternatively, the installed cost of PV 

should be reduced to 3.8–4.2 €/Wp.  

 

Figure 7.3: Implication of FIT on economics of PV—Faro, Èvora, Coimbra, Porto, and Bragança 

Summary and concluding notes  7.4 

This chapter explored the cost-effectiveness of PV technology in Portugal. In summary, 

the relative cost-effectiveness of PV systems depends on a number of key factors. 

Local solar insolation and meteorological factors impact the output of PV systems. 

While this impacts the willingness-to-pay for PV systems, the distance to grid parity is 

also dependent on national electricity rates, the cost of installing PV systems including 

local permitting and labor costs, and incentives (FIT) to promote PV. 
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The net result is that the cost-effectiveness of PV systems is impacted by both local 

meteorology and economics. Policies to get PV to "grid parity" must consider both 

these factors. The framework developed for economic assessment of PV systems has 

the advantage that the implication of alteration of deciding parameters (solar PV costs, 

local electricity costs, FIT) for the promotion of PV can be easily evaluated and updated 

to reflect the actual distance to grid-parity. For the five locations shown, commercial 

PV systems were cost effective in south of Portugal (Faro) based upon a good solar 

resource, while for center and north, distance to grid parity is almost equal—due to 

uniform solar radiation—and PV is not cost-effective with the existing FIT (215 

€/MWh). The required values of FIT required to promote PV in those regions were 

calculated and discussed. Finally, we highlighted the importance of ambient factors on 

the net output of PV systems, where we demonstrated the impairment of AC output of 

PV systems in Coimbra due to high ambient temperatures.  
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  Chapter 8

Probabilistic and Robust Optimization Framework 

The purpose of this chapter is to include uncertainty in the energy cost data and 

present a probabilistic and robust modeling framework for DG. We first provide a 

general introduction to robust optimization modelling and present the corresponding 

mathematical formulation. Next, we discuss the application of the proposed 

framework by defining a number of scenarios and analyzing the model results.  

Robust modelling framework 8.1 

 𝑀𝑖𝑛  𝑍 =  𝐶 𝑥 +   𝑑𝑦   

𝑠. 𝑡:  𝐴𝑥 =  𝑏 

𝐵𝑥 +  𝑐𝑦 =  𝑒 

𝑥 ≥ 0, 𝑦 ≥ 0 

(8.1) 

Consider a mathematical programming model (8.1). According to Mulvey et al. (1995), 

we can define two types of decision variables:  

𝑥 , is the vector of decision variables whose optimal value is not conditioned on the 

realization of the uncertain parameters and cannot be changed once a specific 

realization of the data is observed. This type of variable may be associated to the fixed 

capital costs, which do not get affected by the operation planning or energy costs. 

Mulvey et al. (1995) denote them as “design “variables.  

𝑦, denotes the vector of “control” decision variables that get affected by the uncertain 

parameters as well as the value of design variables. An example is the set of variables 

associated with operating costs of the energy systems.  

The uncertainty is captured through a set of scenarios s ∈ 𝑆= {1, 2, ...}, in which each 

scenario has an associated set of coefficients {ds, Bs, cs, es,}. The parameter Ps represent 

the probability that scenario s occurs, where ∑𝑠 ∈ 𝑆 𝑃𝑠 = 1. The optimal solution is 
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called “solution robust” if remains close to the optimal when uncertain coefficients 

alter. Likewise, it is termed “model robust” if it stays feasible due to small changes in 

the input data.  

The robust model can be defined as:  

 Min  𝑍 =  𝜎 (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑠) + 𝜔 𝛽( 𝑧1, 𝑧2, … , 𝑧𝑠)   

s.t:  𝐴𝑥 =  𝑏 

𝐵𝑠𝑥 + 𝐶𝑠𝑦 =  𝑒𝑠                                

𝑥 ≥ 0, 𝑦𝑠  ≥ 0, 𝑠 ∈  𝑆  

(8.2) 

 

𝑠 ∈  𝑆 

In (8.2), variables ys (s ∈ S) are the control variables for each scenario s, and variables zs 

(s ∈ S) measure the deviation from feasibility constraints in scenario s. The function 𝜎 

can be the average of the random variable 𝜉𝑆 =  𝑐 𝑥 +  𝑑𝑠𝑦𝑠 (objective function of the 

original problem), as in stochastic programming, or the maximum value for all 

scenarios, as in the minmax formulation. The component 𝛽( 𝑧1, 𝑧2, … , 𝑧𝑠)  is a penalty 

function to penalize violations of constraints for various scenarios. The function (.) 

measures the “solution robustness”, and 𝛽(.) measures the “model robustness”, 

controlled by the parameter 𝜔.  

A possible way to formulate 𝜎(. ) is as following: 

 
𝜎 (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑠) =   ∑

𝑠∈𝑆

𝑃𝑆𝜉𝑆 + 𝜆 ∑

𝑠∈𝑆

𝑃𝑆 (𝜉𝑆 −∑

𝑠∈𝑆

𝑃𝑆𝜉𝑆 )

2

 (8.3) 

The first term in 𝜎(. ) represents the average of 𝜉𝑆, and the second term represents the 

variance of 𝜉𝑆.  

Similarly, 𝛽( 𝑧1, 𝑧2, … , 𝑧𝑠) can be formulated as:  

   ∑

𝑠∈𝑆

𝑃𝑆 ∣ 𝑧𝑆 ∣ (8.4) 

With regards to the non-linearity of 𝜎(. ), we used the approach suggested by Yu & Li 

(2000). This is done by converting (8.3) to (8.5) by adding an artificial variable (𝜙𝑠), and 

adding constraint (8.6) to model: 

 𝜎 (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑠) =  ∑

𝑠∈𝑆

𝑃𝑆𝜉 + λ ∑𝑃𝑆[(𝜉𝑆 −∑

𝑠∈𝑆

𝑃𝑆𝜉𝑆) + 2𝜙𝑆 

𝑠∈𝑆

] (8.5) 
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 𝜉𝑆 − ∑𝑠∈𝑆 𝑃𝑆𝜉𝑆  + 𝜙𝑆 ≥ 0, 𝑠 ∈  𝑆 (8.6) 

The global robust optimization problem can therefore be stated as:  

 𝑀𝑖𝑛  𝑍 = =  ∑𝑠∈𝑆 𝑃𝑆 𝜉𝑆+ λ  ∑ 𝑃𝑆[(𝜉𝑆 − ∑𝑠∈𝑆 𝑃𝑆𝜉𝑆) + 2𝜙𝑆 𝑠∈𝑆 ]  

+ 𝜔 ∑ 𝑃𝑆(𝑍𝑆 + 2𝛿𝑆 )𝑠∈𝑆  

(8.7) 

s.t: 

 𝜉𝑆 − ∑𝑠∈𝑆 𝑃𝑆 𝜉𝑆 + 𝜙𝑆 ≥ 0  𝑠 ∈  𝑆 

 𝑍𝑆 + 𝛿𝑆 ≥ 0 𝑠 ∈  𝑆 

 𝐵𝑠𝑥 +  𝐶𝑠𝑦 =  𝑒𝑠 𝑠 ∈  𝑆 

𝑥 ≥ 0, 𝑦𝑠 ≥ 0, 𝑠 ∈  𝑆  

where 𝜙𝑆 and  𝛿𝑆 are auxiliary variables to linearize the objective function.  

The second term in the objective function of (8.7) is the variance, which is considered 

with aim of providing robust solutions. Parameter λ controls the robustness of the 

solution. Similarly, the third term in the objective function measures the feasibility 

violation. Parameter 𝜔 is the factor assigned for this matter. Since uncertainty in 

energy costs only affects the coefficient of variables in objective function (𝜎), the 

model never becomes infeasible due to its alteration. In other words, we only seek 

“solution robustness” against perturbations in energy costs and disregard the 

robustness in model. In this way, parameter 𝜔 can be considered zero.  

Results 8.2 

Uncertainty in energy (NG and electricity) costs can be stated as uncertainty in the 

current year costs (around a mean value) or uncertainty in the evolution of costs 

throughout the planning period. Consider a case where DM has an estimate of the 

approximate value of this year´s energy costs, but their exact value is unknown and 

falls within ± α % of their mean value (e.g. due to market conditions). For forthcoming 

years of planning period, he/she can define a number of plausible scenarios for the 

evolution of energy costs. The idea is to offer an investment planning that has the 

minimum expected LCC across different scenarios.  

Three scenarios for the future costs of electricity and gas are considered. First 

scenario, NG and electricity costs (per kWh) increase annually with the rate of 3% and 
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1%, respectively. Second scenario, energy costs increase annually with the same but 

reverse order of magnitude: i.e. 1% and 3% for electricity and NG. Finally, for the third 

scenario energy costs increase by 2%, annually. We first explore the results associated 

with these scenarios, without considering robustness. Next, we add the robustness 

factor to provide a robust operation planning. For the first year, we have assumed 100 

scenarios in which energy costs fall randomly within ± 90% of their mean estimated 

value. We run the model by including all the cogeneration and solar technologies for a 

period of 11 years, to be consistent with the results presented in chapter 6, sections 

6.1.  

The results of the running the probabilistic model (no robustness considered i.e., λ = 

0), when minimizing the LCC, indicates that one unit of ICE and a boiler are employed 

to meet the demand throughout the planning period. In fact, the economic advantage 

of ICE, and cogeneration systems in general, is more pronounced when considering 

probabilistic modeling rather than a deterministic one (as discussed in section 6.1 of 

thesis). This is because cogeneration can regulate the operating output at each block-

load throughout the (future years of) planning period according to relative fuel price 

costs. Table 8.1 shows the expected value of the objective function for each of the 

defined scenarios. Following ICE, while MT was not seen as a cost-effective 

cogeneration technology against conventional systems in deterministic results (see 

section 6.1.2), here the employment of MT also proves economical. Once again this is 

due to the flexibility of the system to shut down (or reduce the operating load) when 

the NG price is relatively high compared to electricity, and vice versa. For both MT and 

ICE, the output of EC and AC changes according to the available heat output of 

cogeneration systems.  

Table 8.1: Expected value of objective function - different energy systems 

 

 

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Power 

(KW) ICE

Power 

(KW) grid 

Power 

(KW) boiler

Scenario 1 406500 414619 422883 431196 439666 448459 457428 466577 475908 485426 11025 21638 297

Scenario 2 398526 407516 416712 425956 435455 445123 454025 463106 472368 481815 491451 11056 21310 281

Scenario 3 405314 412223 419277 426416 433652 442325 451171 460195 469399 478787 10505 22818 23

ICE

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Power 

(KW) grid

Power 

(KW)boiler

Scenario 1 410592 418803 427172 435719 444434 453322 462389 471636 481069 490690 33194 10748

Scenario 2 402539 413816 425429 437388 449694 462357 471604 481036 490657 500470 510479 33194 10748

Scenario 3 407358 412251 417218 422247 427371 435918 444637 453530 462600 471852 33194 10748

Conventional
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Table 8.1 displays the expected value of objective functions, according to defined 

energy cost evolution scenarios, for three alternative set of energy system 

combinations: 1- a (172 kWe) ICE, 104 kW AC and 30 kW CC; 2- one unit (54 kWe) MT, 

44 kW ST, 104 kW AC and 45 kW CC; 3- Conventional systems. As mentioned, when 

employing cogeneration systems, their output adjusts according to relative energy cost 

in each scenario to minimize the expected costs. On the other hand, with only 

conventional systems, the output of energy systems is always fixed and the expected 

costs only reflect the alteration of energy costs. This example demonstrates the 

economic benefits of cogeneration systems in face of energy costs uncertainty and 

reveals that as long as the DM has plausible scenarios for the evolution of energy 

costs, probabilistic analysis provides more accurate results than a deterministic study.  

Next, we include the robustness framework for the selection and optimization of 

operation of energy systems. As already mentioned, the robustness framework is 

employed to provide a robust operation planning, one that gets less affected by the 

relative perturbation of fuel prices (per kWh). One hundred scenarios are considered, 

in which energy costs fall randomly within ± 90% of their mean estimated value. 

Parameter 𝜆 in (8.7) controls the solution robustness.  

Table 8.2 shows the LCC objective function value and configuration of energy systems 

as the robustness factor 𝜆 increases. As we already know (from 6.1), the most 

economical set of energy system is ICE and a small sized boiler (5 kW). With this energy 

systems operating at optimal operation planning to minimize costs (parallel to Figures 

6.1 to 6.3), the variance of solutions due to variation of fuel price is 12,862. This is 

already more robust than conventional energy systems, for which the solution 

variance due to energy cost perturbations is 16,560. Clearly it is not possible to 

completely offset the effect of alteration of fuel prices on results and our analysis show 

that the minimum level of variance—due to 10% random perturbation in energy 

costs—is 8,154. By gradually increasing the robustness parameter, one can obtain 

more robust solutions, which get less affected by the alteration of energy costs. 

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Power 

(KW) MT

Power 

(KW) grid 

Power 

(KW)boiler

Scenario 1 409912 418082 426407 434865 443501 452371 461418 470646 480059 489660 3932 28256 6513

Scenario 2 401820 412276 422932 433855 444999 456454 465583 474895 484393 494081 503962 4219 27905 5846

Scenario 3 407548 413297 419147 425119 431191 439814 448611 457583 466735 476069 3932 28412 6513

MT
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Overall, with increasing the level of λ, the diversity and capacity of cogeneration 

installation increase. With more desired robustness, MT is also employed along with 

ICE that operates as peak-shaver (see second row in Table 8.2). It is possible to attain a 

more robust solution with the same set of energy systems (ICE+ MT + boiler) by 

changing the operation planning: the contribution and operating hours of 

cogeneration systems, mainly ICE, slightly increases with more robustness sought. 

Increasing the robustness factor 𝜆 decreases the operating hours of DG in low and 

medium block-loads (where the grid price is at its lowest), and increases their output in 

peak-loads (where grid price is at its highest). In this way, the “chance” of conventional 

systems dominating DG (in terms of costs) decreases to provide a more robust 

operation planning in face of energy cost changes.  

As a trade-off by increasing costs, it is possible to further increase the robustness of 

solutions. This is done by adding SOFC systems to the set of energy systems. As 

explored in chapter 6, one specific advantage of SOFC compared to other cogeneration 

technologies is its high power-to-heat ratio that allows the operation of fuel cell 

without over-supplying the heat demand. Here, this feature of SOFC, plus the low 

operating cost of engine, which makes it cost-effective even in some medium-low 

block-loads, leads to its employment when more robustness is required against energy 

cost change. Employment of SOFC implicates less electricity import from the grid 

(which is subject to price volatility), so the effect of fuel price volatility on results is 

moderated. The higher operating cost of MT and ICE, compared to SOFC, increases the 

probability that they become inferior to conventional systems when energy costs 

change, while the lower operating cost of SOFC decreases such probability and 

therefore provide a more “robust” operation planning due to changes in energy costs. 

MTs coupled with SOFC mostly operate in peak-loads where they are almost certainly 

cost-effective in terms of operating costs. The minimum variance attainable, i.e. the 

most robust solution, has a variance of 8,154 and is achieved by co-employing 2 MTs, 2 

SOFCs, and 80 kW PV.  

The last rows in Table 8.2 compare the robustness of solutions when PV or ST systems 

are employed along with conventional systems. Particularly, 80 kW PV can reduce the 

variance by 681. ST, on the other hand, cannot significantly increase the solution 
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robustness, only by 14 units as Table 8.2 shows. We reiterate that more robustness 

(less variance than 8,154) is not attainable with the defined cost volatility scenario, 

since a part of volatility found in results is due to energy cost price, which cannot be 

avoided.  
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Table 8.2: Sensitivity of results to robustness parameter λ 

 
 

LCC (€) ICE (kW) MT (kW) 
SOFC 
8kW) 

boiler size 
(kW) AC (kW) CC (kW) 

PV 
(kW) ST (kW) 

Solution 
Variance Energy Systems  

         16560 Conventional systems  403360 0 0 0 257 0 150 0 0 

                      

12862 ICE, boiler 396430 172 
  

6 104 45 0 0 

12000 ICE, boiler, CC, AC, PV 397310 172 60 0 207 104 30 80 0 

11500 ICE, MT, boiler, CC, AC 403140 172 60 0 96 104 30 0 0 

11000 ICE, MT, boiler, CC, AC 404880 172 60 0 96 104 30 0 0 

10500 ICE, MT, boiler, CC, AC 407640 172 60 0 96 104 30 0 0 

10000 MT, SOFC, boiler, CC, AC 446270 0 60 125 96 104 30 0 0 

9500 ICE, MT, 1 SOFC, boiler, CC, AC 457810 172 60 125 96 104 30 0 0 

9000 MT, SOFC, boiler, CC, AC 466218 0 60 250 96 104 45 0 0 

8500 MT, SOFC, boiler, CC, AC 546360 0 60 250 201 104 60 40 0 

8154 MT, SOFC, boiler, CC, AC 655740 0 120 250 207 208 60 80 0 

                      

16546 Conventional system + 80 kW ST 397310 0 0 0 257 0 150 0 80 

15879 Conventional systems + 80 kW PV 455797 
 

0 0 257 0 150 80 0 
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Conclusions  8.3 

This chapter presented a probabilistic and robust modeling framework for DG. We first 

discussed that including future energy cost scenario analysis in the model increases its 

flexibility and accuracy, even without including the robustness factor. By incorporating 

robustness, the DM is allowed to obtain an operation planning that gets least affected 

due to perturbations in energy costs.  
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  Chapter 9

Concluding Remarks 

Summary and dissemination of results  9.1 

Distributed Generation (DG), including renewable sources, is expected to play an 

important role in the future energy mix of the building sector. This thesis presented a 

model for optimal design and operation of DG for Portuguese commercial buildings. 

The model can have extensive application in assessing the economic implications and 

environmental impacts associated with meeting the building energy demand. In terms 

of components, it incorporates different combined heat and power technologies, 

separate production of electricity (grid) and heat (onsite boilers), renewable sources 

(ST and PV) and auxiliary cooling systems (AC and CC). The national schemes to 

promote each type of DG, selling electricity produced onsite and dynamic electricity 

prices are also considered.  

The model allows a Decision Maker (DM) to select the design and operational 

strategies of the energy systems according to preferred level of costs and/or LCIA 

categories (CED, GHG, Acidification, Eutrophication). LCA techniques were used to 

calculate the LC impacts rising from of one unit energy output of energy systems. A 

description of the model, full mathematical relations and the results of economic 

assessment of DG for Portugal were presented in Safaei et al. (2013).  

In order to provide the input to the model, a detailed LCA of upstream stages of 

Portuguese NG mix was performed, based on the weighted share from exporting 

countries, detecting the main stages and emissions that contribute to each of the LCIA 

categories studied. By assessing two distinct NG supply chains, we demonstrated that 

the source of NG and its state of delivery (in liquid form via marine transportation or 

gas via pipeline) have important implications on its total upstream impacts. In addition, 

in order to provide insights for policy design, an uncertainty assessment of GHG 

footprint of NG was also carried out, taking into account the uncertainty in the LC 
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model input parameters and modeling choices. The underlying uncertainty in 

upstream GHG intensity of Nigerian LNG to Europe, and the upstream impact of 

Portuguese NG mix, are dealt with in Safaei et al. (2014a) and Safaei et al. (2014b).  

Using the model developed, we assessed the environmental impacts of distributed and 

centralized generation sources for building sector in Portugal. We characterized the LC 

impact of each type of generation technology and discussed the optimal design and 

operation of energy systems to minimize each individual objective function. It was 

argued that LCA of CHP can be suitably addressed using a modeling framework that 

considers the interrelationship between several components in building energy 

systems, like the optimization model developed in this thesis. In addition, using Pareto 

frontiers, we showed the trade-off between each type of environmental impact and 

costs. The Pareto frontiers allow a potential DM to have a firsthand view over the 

estimated costs and emission of building entity, and select the design and operation of 

energy systems according to the desired level of each type of objective function. The 

results of environmental impact analysis of DG for Portuguese buildings and the 

derived Pareto frontiers are being prepared for publication.  

An approach to study the cost-effectiveness of solar PV systems, according to local 

meteorology, their hourly estimated output (kWh/year), market, and existing financial 

incentives was presented in chapter 7. We investigated the key drivers to and status of 

cost-effectiveness of PV systems in Portugal, according to current national established 

Feed-In Tariff (FIT). Applying the methodology, the cost-effectiveness of PV systems in 

commercial applications in United States were examined. The latter study is included 

as a report in “MIT Future of Solar Energy Study” (Peer reviewed by external advisory 

committee): Safaei & Connors (2014).   

Finally, in order to consider the uncertainty in fuel costs into the model, a probabilistic 

optimization framework for design and operation of DG in buildings, one that is robust 

against small perturbation in input fuel costs, was presented.  
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Limitations and recommendations for future studies  9.2 

During the course of this doctoral thesis, important questions and limitations have 

been pointed out that are worth of further research. These are categorized based on 

their relevance to each chapter.  

Chapters 3 and 4:  

- High level of uncertainty found in GHG intensity of NG chains suggests that 

further empirical data and investigation is required to better understand and 

characterize the source and extent of emissions from NG chains, including 

other types of NG (conventional or unconventional; LNG) and supply sources. 

Thus, we strongly recommend further LC studies, including uncertainty analysis 

for other impact categories, for NG chains. In order to increase the 

transparency of LCI data, the industry also requires measuring and reducing the 

methane venting and fugitive emissions from NG production phases (Alvarez et 

al., 2012).  

- Similarly, data availability for construction and operation of DG, including 

onsite measured emissions, characterizing also their part-load operation, are 

required.  

- Conducting bottom-up studies to estimate the aggregate environmental 

impacts and energy consumption of the commercial building sector  

Chapters 5 to 8: 

- In real-world problems factors such as temperature, pressure and working 

conditions may affect the efficiency of DG and introduce some nonlinear 

effects. The model developed in this thesis is a Mixed Integer Linear 

Programming (MILP), and therefore does not assess the implications of these 

factors. An added value is to assess the effects of those factors by expanding 

the model considering non-linear aspects.  

- This study has considered 4 kW ST and PV systems into analysis. Due to the 

economies of scale, a solar system with higher size might provide cost 

advantages, which could be analysed.   
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- Extending the robustness analysis methodological approach to multiple-

objective models and more types of uncertainty  

The developed model for design and operation of DG can be improved by 

- Adding auxiliary systems, such as heat storage, or diversified technologies, such 

as other types of PV systems, or tracking PV systems to the model and examine 

the effects on the results.  

- Adapting the mathematical model formulation to include export of thermal 

energy to district heating systems.  

- Including factors that introduce non-linearity into the model.  

More suggestions for future studies include: 

- Obtaining 3-dimensional Pareto frontiers to display the trade-offs between cost 

and diverse environmental impacts.  

- Performing sensitivity analysis over several input parameters to the model, e.g. 

efficiency parameters and emission factors of DG.  

- Developing a dual-objective robust framework for design and operation of 

building energy systems, simultaneously considering the underlying uncertainty 

in costs and environmental impacts.  
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Appendix A 

Calculation of GHG emissions from gas flaring and 

venting 

This appendix presents the approach employed for estimating CO2 and CH4 emissions 

due to Natural Gas (NG) venting and flaring processes from its production stage. A 

material balance approach, based on volume emitted NG and fuel carbon analyses, is 

the most reliable method for estimating GHG emissions from stationary combustion 

sources (API, 2009) and is used in calculations of the results presented in chapter 3 of 

this thesis. This method and the formulations are briefly brought in this appendix.  

Calculation of carbon content 

In order to measure CO2 emissions, the carbon content of the NG mixture should be 

calculated. The carbon content of NG (𝑊𝑡%𝐶𝑚𝑖𝑥𝑡𝑢𝑟𝑒), either in raw or processed form, 

is a weighted average of its individual component carbon contents i (𝑊𝑡%𝐶𝐶𝑗).This is 

shown in Equation (B.1).   

 

 

𝑊𝑡%𝐶𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 
1

100
 × ∑ 𝑊𝑡%𝑖 × 𝑊𝑡%𝐶𝑖

#𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑖=1

 

(B.1) 

 

where 

𝑊𝑡%𝐶𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = carbon content of mixture, on mass percent basis; 

𝑊𝑡%𝑖= weight percent of component i; and 

𝑊𝑡%𝐶𝑖  = carbon content of component 𝑖 on a weight percent basis. 

Carbon content of component i, 𝑊𝑡%𝐶𝑖, is calculated from Equation (B.2).  
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𝑊𝑡%𝐶𝑖 =  

12 lb 𝐶
lbmole 𝐶

× 
𝑋 lbmole 𝐶
lbmole 𝐶 𝑖

 

𝑀𝑊𝐶𝑖  (
lb

lbmole 𝑖
)

 × 100%  

(B.2) 

where 

𝑊𝑡%𝐶𝑖  = carbon content of individual hydrocarbon compound on a mass percent 

basis; 

𝑖 = any hydrocarbon compound CxHyOz  

12 = molecular weight of carbon; 

X = Stoichiometric coefficient for carbon (for example X=3 for C3H8).  

and 

𝑀𝑊𝐶𝑖 = molecular weight of individual hydrocarbon compound. 

 

Calculation of flaring GHG emissions  

CO2 emissions (kg) due to flaring were calculated by Equation (B.3), considering 98% 

combustion efficiency at the flare stack (2% of gas is released noncombusted). The 

composition of Raw NG from Nigeria and Algeria (Tables 3.5 and 3.11) were used to 

calculate the carbon content of each source of NG (according to Equation B.1) and the 

corresponding emissions from its flaring.  

𝐸𝐶𝑂2 =  𝑉 / 𝑀𝑊𝐶 × 𝑀𝑊𝐶𝑂2   × [ (𝑊𝑡%𝐶𝑚𝑖𝑥𝑡𝑢𝑟𝑒 × 𝐹𝐸) + 
𝐵 𝑚𝑜𝑙𝑒 𝐶𝑂2

 𝑚𝑜𝑙𝑒 𝑔𝑎𝑠
] 

(B.3) 

where 

𝐸𝐶𝑂2 = CO2 mass emission (kg) from flare stack;  

𝑉 = Volume of gas flared (m3) 

𝑀𝑊𝐶  = conversion from molar volume to mass (23.685 m3/kg mole); 

𝑀𝑊𝐶𝑂2  = CO2 molecular weight (44); 

𝑊𝑡%𝐶𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = carbon content of mixture, on mass percent basis (excluding CO2); 

𝐹𝐸  = flare destruction efficiency (98%); 
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𝐴 = the number of CO2 moles present in the flared gas stream. 

Equation B.3 shows that the destruction efficiency and conversion of flare gas carbon 

to CO2 does not apply to the CO2 already contained in the flared stream; the CO2 

present in the flare stream is emitted directly.  

CH4 emissions from flare are calculated by assuming a value (typically 2%) for the 

amount of residual, unburned CH4 (Equation B.4). 

 
𝐸𝐶𝐻4 =  𝑉 ×   𝑀𝐹𝐶𝐻4  ×   % 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐶𝐻4 ×

 𝑀𝑊𝐶𝐻4
𝑀𝑊𝐶

 
(B.4) 

where: 

𝐸𝐶𝐻4 = CH4 mass emission (kg) from flare stack;  

𝑉 = Volume of gas flared (m3); 

 𝑀𝐹𝐶𝐻4= CH4 mole fraction; 

 % 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐶𝐻4 = noncombusted fraction of flared stream (2%); 

𝑀𝑊𝐶𝐻4  = CH4 molecular weight (16); 

𝑀𝑊𝐶  = conversion from molar volume to mass (23.685 m3/kg mole).  

 

Calculation of venting GHG emissions  

Venting refers to release of emissions without combustion (API, 2009). GHG emissions 

from venting is calculated using Equation B.5.  

 
𝐸𝑥 = 𝑉 × 𝐹𝑥  ×  

𝑀𝑊𝑥
𝑀𝑉𝐶

   

 

(B.5) 

where 

𝐸𝑥 = mass emissions of “𝑥” in units of mass (kg); 

“x” = the GHG compound of interest (CH4 or CO2); 

𝑉 = Volume of gas vented (m3) 

𝐹𝑥 = the molar fraction of compound “x” in the vent gas stream; 

𝑀𝑊𝑥 = molecular weight of compound “x”; 

𝑀𝑊𝐶  = conversion from molar volume to mass (23.685 m3/kg mole).  
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Appendix B 

Cost Assumptions 

Appendix B covers the cost assumptions of the energy systems. The data included in 

Tables B.1-B.5 serve as the input to the model. The price of natural gas for commercial 

consumers is assumed to be 0.052 Euros/kWh.  

Table B 1: Cost assumptions of Cogeneration systems 

 Solid Oxide 
Fuel Cell  
(SOFC) 

Micro-
Turbine 
(MT) 

Internal 
Combustion 
Engine (ICE) 

Capital cost (€/kW) 5,720 2,718 2,535 
Size (kW) 125 60 150 
Total Installed Cost  715,000 163,080 380,250 
Variable OM cost (€/kWh) 0.01 0.01 0.01 
Fixed OM cost (€/kW/year) 6.5 40 10 
Fixed OM cost (€/year) 812.5 2,400 1,500 
Residual Value (€) 71,500 16,305 38,025 
Operating cost P1 (€/kWh) 0.118 0.200 0.158 
Operating cost P2 (€/kWh) 0.115 0.217 0.174 
Operating cost P3 (€/kWh) 0.108 0.260 0.193 
Operating cost P4 (€/kWh) 0.106 0.400 - 
Operating cost P5 (€/kWh) 0.104 - - 
Operating cost P6 (€/kWh) 0.104 - - 
Operating cost P7 (€/kWh) 0.102 - - 

 

Table B 2: cost assumptions of ST systems 

 

 

 

 

 

 

 

Solar Thermal     

  
Capital cost (€/m2) 700 
Approximate Area(m2)   4  
Total Installed Cost  2,800 
Fixed OM cost (€/year) 60 
Residual Value (€) 0 
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 Table B 3: cost assumptions of PV systems  

 

 

 

 

 

 

 Table B 4: Cost assumptions of CC 

 

 

 

 

 

 

 Table C 5: cost assumption of AC 

 

 

 

 

 

 

 

 

 

Mono-crystalline silicon PV systems    

  
Capital cost (€/kW) 4,500 
Size (kW) 4 
Total Installed Cost  18,000 
Fixed OM cost (€/year) 60 
Residual Value (€) 0 
Approximate Area(m2)   35  

 
Compression chillers    

 

  
Capital cost (€/kW) 1,000 
Size (kW) 15 
Total Installed Cost  15,000 
Fixed OM cost (€/year) 0 
Residual Value (€) 0 

Absorption chillers     

  
Capital cost (€/kW) 1,500 
Size (kW) 104 
Total Installed Cost  156,000 
Fixed OM cost (€/year) 0 
Residual Value (€) 0 
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