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• The defense hypothesis of Ni hyperaccumulation was tested in Alyssum pintodasilvae.
• We compared the effects of A. pintodasilvae and A. simplex on Tribolium castaneum.
• No-choice and choice tests were performed using diet disks amended with leaves.
• Both high-Ni and low-Ni plants caused significant antifeedant effects on Tribolium.
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The defense hypothesis is commonly used to explain the adaptive role of metal hyperaccumulation. We tested
this hypothesis using two Brassicaceae congeneric species: Alyssum pintodasilvae, a Ni hyperaccumulator, and
the non-accumulator Alyssum simplex both growing on serpentine soils in Portugal. Artificial diet disks
amended with powdered leaves from each plant species were used to compare the performance (mortality,
biomass change) and feeding behavior of Tribolium castaneum in no-choice and choice tests. The performance
of T. castaneum was not affected at several concentrations of A. pintodasilvae or A. simplex in no-choice tests.
However, the consumption of plant-amended disks was significantly lower than that of control disks,
irrespectively of the species fed. Accordingly, when insects were given an alternative food choice, disks of
both plant species were significantly less consumed than control disks. Moreover, insects did not discriminate
between disks in the combination “A. pintodasilvae + A. simplex”. Contrary to our expectations, these results
suggest that both plant species have equally effective defenses against herbivory. While Ni is believed to be
part of the deterrence mechanism in the hyperaccumulator A. pintodasilvae, it seems likely that organic com-
pounds, possibly glucosinolates, play an important role in the defense of A. simplex or in both species.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Hyperaccumulator plants take up unusually high amounts of certain
inorganic elements (usually metals) from soils and hyperaccumulate
them in their shoots (Brooks et al., 1977). Even thoughmetal concentra-
tions in shoots range between 100 and 1000 fold higher than usual,
plants show no toxicity symptoms. The threshold values defined for
hyperaccumulation vary by element: N10000 μg g−1 for Mn and Zn,
N1000 μg g−1 for As, Co, Cr, Cu, Ni, Se, and Pb, and N100 μg g−1 for
Cd (Ma et al., 2001; Reeves and Baker, 2000). Van der Ent et al. (2013)
reported the occurrence of more than 500 hyperaccumulator plant
species, the majority of which are Ni hyperaccumulators growing on
serpentine soils. Most Ni hyperaccumulators belong to Brassicaceae,
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Euphorbiaceae and Asteraceae. The genus Alyssum (Brassicaceae) has
the biggest number of Ni hyperaccumulators, with more than 50 taxa
(Baker and Brooks, 1989; Reeves and Adigüzel, 2004).

Several hypotheses have been proposed to explain the adaptive
role of metal hyperaccumulation and its functional significance.
These include interference with neighboring plant species, metal
tolerance/disposal, drought resistance, inadvertent uptake, and defense
against natural enemies (Boyd and Martens, 1992, 1998). The “defense
hypothesis” (recently renamed “inorganic defense hypothesis” by Boyd
(2012) to precise the nature of the chemical defense) has been widely
tested for several elements (e.g.Ni, Zn, Cd) and is supported by a growing
body of experimental evidence, mostly concerning defense against
herbivores (e.g. Behmer et al., 2005; Boyd, 2002; Boyd and Martens,
1994; Boyd and Moar, 1999; Davis and Boyd, 2000; Hanson et al., 2003,
2004; Jhee et al., 1999; Jiang et al., 2005; Martens and Boyd, 1994;
Pollard and Baker, 1997), but also against pathogens (Boyd et al., 1994;
Fones et al., 2010; Ghaderian et al., 2000). Metal hyperaccumulation
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can affect herbivores by two means. One is through toxicity of the
element, so that ingestion of certain plant parts lead to lethal (increased
mortality) or sublethal effects like decreased growth (Boyd andMartens,
1994; Boyd and Moar, 1999; Freeman et al., 2007; Martens and Boyd,
1994). Another is by deterrence in which high metal containing tissues
are ingested in lesser extent than low metal tissues when a choice is
provided (Behmer et al., 2005; Gonçalves et al., 2007; Hanson et al.,
2003; Pollard and Baker, 1997). Total deterrence has been rarely dem-
onstrated (Pollard and Baker, 1997). More often there is a combination
between toxicity and deterrence and aversion to hyperaccumulating
tissues develops post-ingestively (Behmer et al., 2005; Hanson et al.,
2004). From the plant perspective, feeding deterrence is particularly
beneficial because it reduces damage (Boyd and Jhee, 2005).

Alyssum pintodasilvae Dudley (syn. Alyssum serpyllifolium ssp.
lusitanicum Dudley and Pinto da Silva) (cf. Dudley, 1986) is an
endemic taxon of the serpentine outcrops in northeast Portugal. This
Ni hyperaccumulator (Brooks et al., 1981; Menezes de Sequeira and
Pinto da Silva, 1992) can reach more than 50% cover in some locations
(Aguiar et al., 1998) and contributes to the flux of Ni to herbivore and
carnivore trophic levels in these areas (Peterson et al., 2003). The
ecological function and evolutionary value of Ni hyperaccumulation in
A. pintodasilvae has already received some attention, with defense
hypothesis gathering support. Ghaderian et al. (2000) found that Ni in
A. pintodasilvae protects the plant from the pathogenic fungus Phytium.
Using model arthropods, Gonçalves et al. (2007) have provided evi-
dence supporting the inorganic defense hypothesis in A. pintodasilvae:
Porcellio dilatatus fed A. pintodasilvae litter showed significantly greater
mortality and inhibition of food consumption than isopods fed with
non-hyperaccumulator plant species.

In this study, we further explored the defense hypothesis in
A. pintodasilvae using artificial diet disks and themodel insect Tribolium
castaneum. The congeneric plant species Alyssum simplex was used as
“control”. This plant species also grows in serpentine outcrops from
NE Portugal, but it is a non-hyperaccumulator (Brooks and Radford,
1978). Our specific objective was to compare the performance (mortal-
ity, biomass change) and feeding behavior of T. castaneumwhen offered
the Ni hyperaccumulator A. pintodasilvae and the congeneric non-
accumulator species A. simplex in choice and no-choice tests.
2. Materials and methods

2.1. Plant and animal material

Fully expanded leaves of A. pintodasilvae (n = 6) and A. simplex
(n = 5) were collected in the serpentine outcrops of Alimonde (41°47′
55.47″ N; 6°53′2.89″ W) and Carrazedo (41°46′50.22″ N; 6°53′37.49″
W), NE Portugal, in July 2009. The Ni soil concentration (ammonium
acetate extracts) was 14.48 ± 3.62 μg g−1 (mean ± SE) and 34.82 ±
0.81 μg g−1 (mean ± SE) in Alimonde and Carrazedo, respectively.
Leaves were air dried at room temperature and ground with liquid
nitrogen until completely homogenized. To determine the Ni concen-
tration in leaves, weighed sub-samples were digestedwith 2 ml of con-
centrated nitric acid (69%, v/v) during 8 h at 150 °C, in Teflon vessels.
After appropriate dilutions, Ni concentration was measured by flame
atomic absorption spectrophotometry (PerkinElmer AAnalyst 100).

T. castaneum Herbst (Coleoptera: Tenebrionidae) adults were
obtained from a laboratory population held at the Department of Life
Sciences, University of Coimbra, maintained on a wheat flour diet (Ó
Ceallacháin andRyan, 1977) and kept in a dark chamberwith controlled
temperature (28 °C) and humidity (70%). T. castaneum is a cosmopolitan
pest that feeds mostly on stored flour and other milled cereal products
(Sokoloff, 1972) and has been used as a model organism in chemical
ecology and genetics (Alonso-Amelot et al., 1994; Gonçalves et al.,
2007; Lord, 2010; Richards et al., 2008; Sheribha et al., 2010). This is a
well-characterized insect, easy to handle andmaintain in the laboratory,
suitable for both choice and non-choice experiments (Gonçalves et al.,
2007).

2.2. Experimental setup

2.2.1. No-choice tests
In no-choice experiments T. castaneumwere fed synthetic diet disks

amended with A. pintodasilvae (high Ni plants) or A. simplex (low Ni
plants). Diet disks were prepared according to Alonso-Amelot et al.
(1994). Insects and a single diet disk (previously weighed; 8 mm Ø,
ca. 40 mg) were placed in a Petri plate (9 cm Ø) lined with filter
paper and maintained in the dark at room temperature. Before the
experiments, recently emerged T. castaneum adults were exposed to
unamended diet disks during 48 h for conditioning and then starved
for another 48 h. There were ten insects per plate and five replicates
per treatment. We also included five replicates of ten non-fed insects
so we could compare the mortality of insects offered food against the
mortality of those starved. During the experiments, which lasted for
ten days, the number of insect deaths was recorded daily. At the end,
both survivor insects and diskswereweighed in order to assess biomass
change and food consumption, respectively.

Disks were amended with powdered leaves (from a composite
sample) of either A. pintodasilvae (high Ni plants) or A. simplex (low
Ni plants) at three different levels (w/w, in the disks): control (no
added leaves), 5%, 10%, and 20%. Based on the Ni concentration in leaves
(see the Results and discussion section), we could infer the following
Ni concentrations in the disks: 500 μg g−1 Ni, 1000 μg g−1 Ni, and
2000 μg g−1 Ni for A. pintodasilvae treatments, respectively, and
3.25 μg g−1 Ni, 6.50 μg g−1 Ni, and 13.0 μg g−1 Ni for A. simplex treat-
ments, respectively.

2.2.2. Choice tests
In choice experiments, designed to examine insect feeding prefer-

ences, T. castaneum were given the choice between two diets. Each
binary choice involved ten insects and two diet disks from two different
treatments; each feeding choice was replicated five times. Insects were
given a choice between: i) control disks (non-amended) and disks
amended with A. pintodasilvae (high Ni plants; at 5%, 10%, and 20%),
or control disks (non-amended) and disks amended with A. simplex
(low Ni plants; at 5%, 10%, and 20%), and ii) disks amended with
A. pintodasilvae (high Ni plants; at 5%, 10%, and 20%) and disks amended
with A. simplex (low Ni plants; at 5%, 10%, and 20%).

Insects and two different diet disks were placed in a Petri plate
(9 cm Ø) lined with filter paper and maintained in the dark, at room
temperature for 10 days. Mortality was registered daily during the
experimental period. Food consumptionwas determined by theweight
change of the disks during the experiment.

2.3. Statistical analyses

Data were analyzed using SPSS statistical package 17.0 (SPSS,
2008). In no-choice tests differences in mortality, biomass change,
and food consumption between treatments were evaluated using a
two-way ANOVA followed by a Holm–Sidak post-hoc test whenever
overall significant differences were found. Homoscedasticity and
normality were confirmed with Levene and Kolmogorov–Smirnov
tests, respectively (Zar, 1996). In choice tests food consumption was
analyzed with paired t-tests because the level of consumption of one
disk depended on the palatability of the other (Raffa et al., 2002).

3. Results and discussion

3.1. Ni concentration in plants

Nickel concentration in leaves of A. pintodasilvae and A. simplexwas
9 287 ± 529 μg g−1 (mean ± SE) and 65 ± 26 μg g−1 (mean ± SE),



Table 2
Mortality, biomass change, and food consumption of Tribolium castaneum fed artificial
diet disks amended with increasing amounts of leaves of Alyssum pintodasilvae or
A. simplex in a no-choice experiment. Values are mean ± SE of five replicates.

Treatments Concentrations
(%)

Mortality Biomass
change (mg)

Food
consumption
(mg)

Control 0 04 ± 020 0012 ± 0010 1.86 ± 010
Alyssum
pintodasilvae

5 1.2 ± 0.80 −0.007 ± 0.012 0.68 ± 0.04a

10 2.0 ± 1.10 −0.003 ± 0.009 1.07 ± 0.14a

20 1.2 ± 0.80 0.008 ± 0.006 0.80 ± 0.07a
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respectively, confirming A. pintodasilvae as a Ni hyperaccumulator
and A. simplex as a non-accumulator. These results are in agreement
with previous studies reporting Ni concentrations in A. pintodasilvae
(Brooks and Radford, 1978; Gonçalves et al., 2007; Menezes de
Sequeira and Pinto da Silva, 1992; Peterson et al., 2003). Given the
bias towards studies concerning hyperaccumulators, Ni concentrations
in non-hyperaccumulators are seldom reported. Accordingly, we
couldn't find any other study reporting on A. simplex Ni concentrations.
Nevertheless, our result adds to the few studies describing its non-
accumulator status (e.g. Brooks and Radford, 1978).
Alyssum
simplex

5 0.8 ± 0.80 0.009 ± 0.003 1.00 ± 0.08a

10 1.2 ± 0.50 0.004 ± 0.004 0.80 ± 0.04a

20 0.4 ± 0.40 0.001 ± 0.0008 0.96 ± 0.07a

a Indicates significant differences at P b 0.05 in relation to control according to
Holm–Sidak post-hoc test.
3.2. No-choice and choice tests

In no-choice trials, amendment of disks with an increasing
amount of leaves of A. pintodasilvae (high Ni plants) or A. simplex
(low Ni plants) did not significantly affect the mortality nor the bio-
mass of T. castaneum (Table 1). Mortality was low in every treatment,
ranging from 0.4 to 2.0, and did not differ significantly between treat-
ments. Also, insects gained weight in some treatments and lost
weight in others, but differences were not significant between treat-
ments (Table 2). On the contrary, food consumption was significantly
affected when T. castaneum fed synthetic diet disks amended with
A. pintodasilvae (high Ni plants) or A. simplex (low Ni plants) (Tables 1
and 2). Consumption of both leaf types at every concentration was
significantly lower than in controls (1.86 mg), and varied between
0.68 and 1.07 mg in A. pintodasilvae and 0.80–1.00 mg in A. simplex
treatments; no clear trends were observed with increasing amount of
leaves (Table 2).

In choice experiments, insects preferred control disks to disks
amendedwith plant leaves as shown by significantly greater consump-
tion of control disks in nearly all tested combinations (Fig. 1A–C).
When given a choice between control disks and disks amended with
A. pintodasilvae (high Ni plants; at 5%, 10%, and 20%), control disks
were eaten more (Fig. 1A). When the choice was between control
disks and disks amended with A. simplex (low Ni plants) insects still
preferred control disks, except at the combination control + 5%
A. simplex (Fig. 1B). Moreover, when offered a choice between
A. pintodasilvae (high Ni plants) and A. simplex (low Ni plants) insects
did not discriminate between the two plant species (Fig. 1C).

In the no-choice experiments food consumption was significantly
greater in the control than in all Alyssum' leaves treatments (Table 2)
showing that both plant species caused feeding inhibition of
T. castaneum. Accordingly, in choice trials, insects preferred control
disks to disks amended with plant leaves, irrespectively of species
identity or amount of leaves added (Fig. 1A–C). Results from the
A. pintodasilvae trials provide circumstantial support to the hypothe-
sis that Ni defends this hyperaccumulator species from herbivory in
agreement with previous studies on Ni hyperaccumulation (Boyd
et al., 2002; Boyd and Jhee, 2005; Boyd and Martens, 1994; Boyd
and Moar, 1999; Gonçalves et al., 2007; Jhee et al., 2005, 2006a;
Martens and Boyd, 1994). However, A. simplex also induced a signifi-
cant inhibition of food intake and deterred feeding in T. castaneum
Table 1
Two-way ANOVA summary results of a no-choice experiment with Tribolium castaneum f
pintodasilvae or A. simplex.

Speciesa C

F (1,40) P F

Mortality 1.070 0.309
Food consumption 0.732 0.399 6
Biomass change 2.913 0.098

a Species: A. pintoclasilvae and A. simplex.
b Concentrations: 0% (control), 5%, 10% and 20% (w/w; in disks).
despite the low concentration of Ni in its leaves (65 ± 26 μg g−1 dry
weight). It might be that Ni is not acting as an inorganic defense in
A. pintodasilvae and that the same components which have antifeeding
effect in A. simplex are also present in A. pintodasilvae. For example,
glucosinolates that are abundant in the Brassicaceae have documented
deterrence effects in generalist herbivores (Arany et al., 2008; Lankau,
2007; Noret et al., 2005; Rask et al., 2000). An alternative scenario
would be that Ni defends A. pintodasilvae against herbivores, but that
glucosinolates or other organic compounds in A. simplex leaves could
counter balance the low concentrations of Ni in this plant species.

Metal–organic compound combinations have been shown to have
implications for plant defense. For example, Noret et al. (2005) found
that feeding inhibition in the Zn hyperaccumulator Thlaspi caerulescens
was related to glucosinolate concentration rather than to plant Zn
concentration. On the other hand, Jhee et al. (2006b) showed that Ni
and several organic defense chemicals had additive “joint” effects
(two alkaloids and tannic acid) against the herbivore Plutella xylostella.
According to the “trade-off hypothesis”, the evolution of an elemental
(inorganic) defense may be followed by a reduction of organic defense
compounds (Boyd, 1998, 2007). One example of trade-off between
inorganic and organic defenses is the work by Freeman et al. (2005).
The authors showed that Ni hyperaccumulators in the genus Thlaspi
cannot produce organic defenses against pathogens because Ni toler-
ance requires constitutively elevated levels of salicylic acid, which
is an important signal molecule for induced pathogen defense in
plants. When grown under low Ni conditions Thlaspi became highly
susceptible to pathogen attack, but not when plants were able to
hyperaccumulate Ni (Freeman et al., 2005). Authors suggested that
defense against pathogens provided by organic compounds has
been replaced by an inorganic defense in these Ni hyperaccumulators.
Davis and Boyd (2000) tested this hypothesis in two species of
Streptanthus and found that the Ni hyperaccumulator Streptanthus
polygaloides contained a lower level of glucosinolates than the non-
hyperaccumulator Streptanthus insignis subsp. insignis. Similarly, we
can hypothesize that in a natural setting A. pintodasilvae benefits from
ed artificial diet disks amended with increasing amounts of leaves of either Alyssum

oncentrationsb Species ∗ concentrations

(4,40) P F (4,40) P

1.070 0.376 0.157 0.924
3.04 b0.001 4.251 0.012
1.788 0.169 0.502 0.684



Fig. 1. Food consumption by Tribolium castaneum adults when offered a choice
between two diet disks in three treatment combinations (A–C): A) control + Alyssum
pintodasilvae; B) control + A. simplex; and C) A. pintodasilvae + A. simplex. Values are
means ± SE of five replicates. Food consumption in each combination was analyzed
using paired t-tests; * indicates significant preference at P b 0.05; ns indicates no
significant feeding preference.
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Ni hyperaccumulation and A. simplex from the protection given by
organic defenses.

3.3. Conclusions

We provide evidence that the Ni hyperaccumulator A. pintodasilvae
and the congeneric non-accumulator A. simplex have a similarly strong
antifeedant effect on T. castaneum. While Ni is believed to be part of
the deterrence mechanism in the A. pintodasilvae, it seems likely that
glucosinolates play an important role in the defense of A. simplex or in
both species. Controlling for Ni and glucosinolate concentrations in
A. pintodasilvae and in A. simplex should elucidate their respective role
and provide insights about possible trade-offs and/or joint effects
between inorganic and organic defenses in these plant species.
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