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Abstract

An experimental life support system (ELSS) was constructed to study the interactive effects of multiple stressors on

coastal and estuarine benthic communities, specifically perturbations driven by global climate change and anthropo-

genic environmental contamination. The ELSS allows researchers to control salinity, pH, temperature, ultraviolet

radiation (UVR), tidal rhythms and exposure to selected contaminants. Unlike most microcosms previously

described, our system enables true independent replication (including randomization). In addition to this, it can be

assembled using commercially available materials and equipment, thereby facilitating the replication of identical

experimental setups in different geographical locations. Here, we validate the reproducibility and environmental

quality of the system by comparing chemical and biological parameters recorded in our ELSS with those prevalent in

the natural environment. Water, sediment microbial community and ragworm (the polychaete Hediste diversicolor)

samples were obtained from four microcosms after 57 days of operation. In general, average concentrations of dis-

solved inorganic nutrients (NO3
�; NH4

+ and PO4
�3) in the water column of the ELSS experimental control units were

within the range of concentrations recorded in the natural environment. While some shifts in bacterial community

composition were observed between in situ and ELSS sediment samples, the relative abundance of most metabolically

active bacterial taxa appeared to be stable. In addition, ELSS operation did not significantly affect survival, oxidative

stress and neurological biomarkers of the model organism Hediste diversicolor. The validation data indicate that this

system can be used to assess independent or interactive effects of climate change and environmental contamination

on benthic communities. Researchers will be able to simulate the effects of these stressors on processes driven by

microbial communities, sediment and seawater chemistry and to evaluate potential consequences to sediment toxicity

using model organisms such as Hediste diversicolor.
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Introduction

One of the greatest scientific challenges currently faced

by researchers worldwide is to understand how human

activities alter ecosystems and how ecosystems will

respond to future perturbations. A key question is to

what extent changes in ocean temperature, acidity and

UV radiation will affect contaminant toxicity and what

impact this will have on the marine biota (Doney, 2010;

Hader et al., 2011). Although there is increased aware-

ness of the potential for interactions between climate

change and chemical contaminants, we only have a

rudimentary understanding of how multiple stressors

interact to affect (communities of) organisms (Schiedek

et al., 2007; Gao et al., 2012; Passow & Carlson, 2012).
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Thus, it is important that we gain a mechanistic under-

standing of how anthropogenic stressors affect coastal

and estuarine marine ecosystems. These biomes pro-

vide valuable ecosystem services such as fisheries,

filtering, detoxification and carbon sequestration. How-

ever, they are among the most impacted of global eco-

systems (Barbier et al., 2010).

The processes involved in ecosystem response to per-

turbation often occur over a wide range of temporal

and spatial scales with unknown interactions, making it

difficult to establish cause–effect relationships in natu-

ral systems (Benton et al., 2007). In particular, there is

no standardized approach for the evaluation of global

change effects on different marine ecosystems.

Small scale models, for example, microcosms, can be

a useful tool to assess such complex global problems

(Benton et al., 2007). Microcosms are simplified ecosys-

tems, designed to simulate natural environments under

controlled conditions (Roeselers et al., 2006). These

model systems enable the testing of hypotheses and

ecological theories on populations or communities with

a high degree of experimental control and replication,

which would be very difficult to achieve through field

observation or in situ experimentation (Jessup et al.,

2004; Benton et al., 2007). Moreover, microcosms allow

researchers to perform experiments with potentially

toxic contaminants, which would rarely (if ever) be

carried out in the field.

In this study, we assess to what extent microcosm

conditions affect sediment bacterial communities and

the endobenthic species Hediste diversicolor (Müller,
1776, formerly known as Nereis diversicolor). Bacterial

communities are fundamental players in every relevant

geochemical cycle. However, despite the overwhelming

importance of bacterial mediated processes, the poten-

tial impact of climate change on bacterial composition

and activity is still poorly understood (Reid, 2011).

Hediste diversicolor is a key species in shallow coastal

systems: it is omnivorous, an active predator, and is

highly prone to predation by waders, fish and crabs

(Scaps, 2002). This species has been widely used as a

model or sentinel organism in the assessment of suble-

thal contaminant impact in estuaries, both in the field

and in laboratory microcosms (Moreira et al., 2006).

An important, but often overlooked, prerequisite

when performing microcosm experiments is to deter-

mine whether the structural and functional properties

of the source ecosystem are well represented in the

microcosm, and the extent to which the experimental

results are biased by the microcosm design and condi-

tions (Leser, 1994). In this study, our main goals were

to develop and evaluate an innovative experimental life

support system (ELSS) designed to (i) study the interac-

tive effects of multiple stressors on coastal and

estuarine benthic communities, that is, environmental

stressors resulting from climate change and contamina-

tion, and (ii) enable researchers to carry out complex

but well-replicated experiments. We also aimed to

develop a versatile system that could be assembled in

different marine regions across the world using

commercially available materials and equipment. The

physical, chemical and biological parameters of marine

environments can be highly variable at the regional

scale. This variability determines, to a given extent,

how intensively global climate change affects these

environments. Therefore, it is important to develop

tools to evaluate the applicability of current models in

predicting changes in local ecosystem health and

function.

Materials and methods

ELSS basic architecture

The basic concept of our ELSS was to provide a versatile

framework for microcosm simulation of climate change sce-

narios in coastal and estuarine environments that could be

easily replicated around the world. To achieve this goal, the

system was developed using the following: (i) affordable

materials and equipment, which are readily available in local

or online stores (Table S1 for a list of the main material and

equipment employed to assemble the ELSS, as well as their

respective suppliers); and (ii) a modular construction system

that will enable researchers to work over a wide range of con-

figurations, thus allowing them to address specific research

questions using statistically robust experimental designs.

The experimental life support system mimics fundamental

aspects that condition biological activity in marine ecosystems,

namely photoperiod, light intensity [including photosyntheti-

cally active radiation, (PAR)] and tidal cycles. In addition to

this, researchers are also able to control temperature, ultravio-

let radiation (UVR), salinity and pH. Our ELSS is divided into

two frames of 16 microcosms (32 in total) (glass tanks 25 cm

high, 28 cm length and 12.4 cm width, each with a maximum

functional water volume of approximately 3 l), which enable

researchers to run up to eight treatments simultaneously, each

one with a maximum of four independent replicates. All repli-

cates can be arranged in a randomized split-plot design (Fig. 1

and Fig. S1).

Tidal cycle and water circulation control system. The ELSS

is operated using synthetic saltwater, which is prepared by

mixing freshwater, purified by a four stage reverse osmosis

unit (Aqua-win RO-6080) with a commercially available salt

mixture (Tropic Marin Pro Reef salt – Tropic Marine,

Germany) (Fig. 1, B1 and B2). The water for tidal cycles is

prepared 24 h before use, to allow salt and water to mix. No

water recirculation is employed to avoid cross-contamination

between experimental treatments and to avoid chemical

artefacts that may be promoted by re-using the same water

over time. Thus, this ELSS can be described as a flow-through
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non-recirculated system operated with synthetic saltwater. Its

hydraulic system enables microcosms to be operated under

any desired tidal regime (e.g. diurnal, mixed, semi-diurnal).

Each tidal regime is controlled as follows: newly prepared

synthetic saltwater is pumped (Aquabee UP 3000) into the

saltwater reservoirs (Fig. 1C and D) for pH adjustment (if

necessary); the ELSS is equipped with four such reservoirs (each

with an approximate volume of 230 l). For high tide events,

saltwater is pumped using a submersible pump (Aquabee UP

3000) from reservoirs C and D (Fig. 1) through an indepen-

dent pipe system of polyvinyl chloride (PVC) tubes into each

microcosm. The saltwater flow rate is manually controlled by

a PVC valve located above each microcosm (Fig. S1, S2 and

S3). Low tide events are simulated using outflow submersible

pumps (Rena flow 400 °C), operated with digital timers; each

glass tank (the microcosm) is equipped with a single pump

positioned inside a PVC cylinder and protected with a mesh

screen (to avoid clogging) (Fig. S4). During low tide events,

the water is discharged from the microcosms through an

outflow pipe, and drained to a collector.

pH control system. Water pH can be manipulated by acidify-

ing the water stocked in the tide reservoirs by bubbling CO2

through a diffuser (Fig. S5) (Gattuso & Lavigne, 2009). The dif-

fuser operates with a water pump (Aquabee UP 3000) to maxi-

mize CO2 gas mixing in saltwater. CO2 addition is controlled

with a feedback system that includes a combination of a pH

electrode connected to a controller (V² control pH controller,

Tropical Marine Centre, Bristol, UK) and a pressure regulator

with an integrated solenoid valve (V² pressure regulator pro,

Tropical Marine Centre, UK). The digital display of the con-

troller allows visualization of actual pH in the saltwater reser-

voirs and pH monitoring with the pH electrode. The

controller opens the solenoid valve whenever pH rises above

the set value; CO2 is then injected until water pH returns to

the pre-set value. We tested the pH system under the experi-

mental validation parameters to simulate a pH reduction of 0.3

units. The average pH value measured during 1 week, every

2 days during each low tide (Fig. S10), was 7.67 � 0.07 (NBS

scale).

Temperature control system. To compensate for potential

temperature fluctuations during experimental trials, namely

those promoted by the illumination system implemented in

our ELSS (see below), about two thirds of microcosm were

submerged into water bath tanks (Fig. 1E1 and E2). These

water bath tanks are drilled in the bottom and connected

through a 40 mm PVC pipe with a valve. The connection of

both water bath tanks ensures the same temperature in all

microcosms. However, in experiments with different tempera-

tures the connection valve between the water bath tanks can

be closed, allowing the utilization of two distinct water tem-

perature treatments. The water in water bath tanks is continu-

ously pumped by a canister filter pump (SunSun HW-302)

through a cooler equipped with a thermostat (Teco TR10) set

to the desired temperature. The canister filter pump (com-

posed by mechanical filtration sponges and activated carbon

to remove any debris from the freshwater in the bath) operates

with a flow rate of 1000 l h�1 (Fig. S6). Four submersible

200 W heaters equipped with thermostats (Rena Cal 200) are

placed inside the water bath tanks to modify water

temperature to previously set values. The simultaneous

operation of the cooling and heating system minimizes water

temperature fluctuations to �0.5 °C.

Fig. 1 Experimental life support system (ELSS) general scheme. A, independent microcosm; B, saltwater reservoir; C, acidified salt-

water reservoir; D, normal pH saltwater reservoir; E, water bath; F, refrigerator; G, lightning system (a vinyl frame can be included to

isolate the light from the luminaires); H, pH control system. More detailed schemes of the experimental life support system are given

in the supporting information.
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Lighting control system. The ELSS is equipped with 4 Reef-

SET�, (Rees, Germany) programmable luminaire systems for

diurnal light cycle and controlled UV simulation. Each lumi-

naire holds four UV fluorescent tubes (SolarRaptor, T5/54W,

Rees, Germany) and four full spectra fluorescent tubes (Aqu-

aLight, T5/54W/10000K, Bramsche, Germany) disposed

alternately under a reflector (Figs S7 and S8). The luminaire

system incorporates a dimming ballast that allows research-

ers to adjust the light intensity by varying the voltage sup-

ply. ReefSET� proprietary software enables the simulation of

a range of scenarios by varying the percentage of light inten-

sity (please see http://www.reefset.com).

Water chemistry analysis

Water samples for dissolved inorganic nutrient (nitrate NO3
�,

ammonium NH4
+ and o-phosphate PO4

3�) determination

were collected from each microcosm at the beginning of the

experiment, after 21 days and at the end of the experiment.

Water aliquots’ were immediately filtered (Whatman GF/C

glass-fibre filter) and stored frozen at �20 °C until analysis.

NO3
� determination followed the 8039 method described in

the Hach Spectrophotometer (DR 2000) standard analytical

procedures (Hach, USA, DR2000, 44863-00). The determina-

tion of NH4
+ and PO4

3� concentrations was carried out follow-

ing standard spectrophotometric methods described

elsewhere (Limnologisk Metodik, 1992). The analytical quality

control was ensured by duplicate samples and by the analysis

of blanks between samples.

Visual inspection of NO3
�, NH4

+ and PO4
3� histograms

revealed significant deviations from normality. The distribu-

tions remained significantly deviant after logarithmic and

square-root transformation. We, therefore, tested for signifi-

cant differences in dissolved inorganic nutrient concentration

among sampling events using a repeated measures permuta-

tional analysis of variance with the adonis() function (Vegan

package) in R (http://www.r-project.org/; Accessed 4 May

2012). The script used is provided in the supporting informa-

tion.

Biological validation

Sediment sampling. Four sediment cores were collected at

the east margin of Mira channel (40°37′N, 8°44′W), one of

the main channels of the Ria de Aveiro lagoon (Portugal) in

May 2011. The Ria de Aveiro is a shallow mesotidal coastal

lagoon connected with the Atlantic Ocean through a single

inlet, and characterized by four main channels with several

secondary narrow channels, inner basins and extensive inter-

tidal areas (Dias et al., 2001). Studies have shown that the

Ria de Aveiro has a moderate level of eutrophication and

low overall human influence when compared to other estuarine

systems (Ferreira et al., 2003; Lopes et al., 2007). Plexiglass

cores of undisturbed sediment samples (10 cm deep, 27 cm

length and 10.6 cm width) were collected and each core

transferred directly into individual microcosms (four in

total) of the ELSS (Fig. 1A). Microcosms containing the sedi-

ment were taken back to the laboratory and connected to the

ELSS less than 2 h after sampling. The ELSS was operated

continuously during 57 days.

Experimental validation parameters. The ELSS system was

programmed to simulate the specific seasonal characteristics

of the coastal lagoon system (Ria de Aveiro) at the sampling

site where and when sediment cores were collected. Salinity

was adjusted to simulate the conditions recorded at the sam-

pling location and kept constant (32.6 � 1.5) during the exper-

iment, with synthetic saltwater being prepared as described

above in the ‘tidal cycle and water circulation control system’

section. Prior to each high tide, water salinity was checked.

All microcosms were exposed to a uniform semi-diurnal tidal

regime, experiencing two high tides and two low tides daily.

Each tidal cycle took approximately 1 min. The duration of

each tidal event minimizes pH and salinity fluctuations

between the reservoirs and the microcosms. The minimum

and maximum water levels above the sediment surface were

approximately 5 cm (low tide) and 10 cm (high tide). During

each tidal cycle about 50% of the water volume of each micro-

cosm was exchanged (~1.5 l), thus simulating the water

renewal percentage recorded for the central area of the estua-

rine system recreated in our ELSS (Ria de Aveiro) (Dias et al.,

2001).

Water pH was adjusted to 8.0 and water temperature to

19 °C, and the average values were recorded at the sampling

location. The average pH monitored in the system was

7.97 � 0.07 (NBS scale). With the luminaires system set to its

maximum power, the PAR value measured for the full

spectrum fluorescent lamps was 260.50 � 56.30 lmol

photons m�2 s�1, and the UV-A (320–400 nm) irradiance

emitted by the UV lamps was 2875.91 � 264.62 mW m�2

(Lamp spectrum – Fig. S9, and measurement details can be

consulted in supporting information). To mimic summer pho-

toperiod and light conditions at Portuguese latitudes during

the time of sampling, a 14 h diurnal light cycle was simulated,

with light intensity varying from 50 to 100% of the total

fluorescent tube intensity (Table S2). Since UV-A radiation is

practically unaffected by changes in ozone depletion and

plays an important role in biological systems, including

photo-repair mechanisms (Bargagli, 2005), a similar amount of

UV-A integrated irradiance was maintained constant among

microcosms. This was achieved by activating the UV lamps

for four hours a day at maximum intensity and filtering the

UV-B component with a glass panel in the luminaires.

Active bacterial community profiling

RNA extraction, denaturing gradient gel electrophoresis and

pyrosequencing. Four composite samples each of four sedi-

ment cores (ca. 1 cm of top sediment with a 1 cm diameter)

were taken in situ (ConBs), and from the microcosm after

21 days (ConIs) and 57 days (ConFs) of operation. Environ-

mental samples were collected at the study site, separated at

least 1 m from each other. Microcosm samples were obtained

from four independent microcosms. Approximately, 1 g of the

aerobic sediment layer was directly transferred into a 2.0-ml

screw cap tube containing Lysing Matrix E (FastRNA� Pro

© 2013 John Wiey & Sons Ltd, Global Change Biology, 19, 2584–2595
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Soil-Direct Kit, Qbiogene Inc.,CA, USA) and immediately

immersed in liquid nitrogen (Liu et al., 2011). Samples were

kept at �80 °C until RNA extraction.

Total RNA was isolated from sediment samples using the

FastPrep� Instrument (Qbiogene, Inc, CA, USA), for 40 s at a

speed setting of 6.0 according to the manufacturer’s instruc-

tions. Residual DNA was removed using Turbo DNA-free kit

(Applied Biosystems, Austin, TX, USA). Total RNA was then

converted to single stranded cDNA using random hexamer-

primed reverse transcription by applying SuperScript� III

Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA, USA).

The complete removal of DNA was confirmed by PCR. Uni-

versal bacterial primers U27 and 1492R were used to amplify

ca. 1450 bp of the 16S rRNA cDNA (Weisburg et al., 1991).

Specific products were detected in cDNA samples after

reverse transcription, but not in their corresponding source

RNA samples (data not shown).

Denaturing gradient gel electrophoresis (DGGE) was used

to monitor structural variation in bacterial communities in

ConBs, ConIs and ConFs. Briefly, a nested PCR approach was

used to amplify the 16S rRNA gene sequence from the sam-

ples. For the first PCR, the universal bacterial primers U27

and 1492R were used. For the second PCR, 1 ll of the product

of the first PCR was used as template with bacterial DGGE

primers 968F-GC and 1401R (ca. 433 bp) (N€ubel et al., 1996).

The GC-clamped amplicons were applied to a double-gradient

polyacrylamide gel containing 6–10% acrylamide (Rotipho-

rese) with a gradient of 40–58% of denaturants. The run was

performed in Tris-acetate-EDTA buffer (0.5 M Tris-Base,

Sigma, 0.05 M EDTA, Sigma; 0.1 M CH3CO2Na, Sigma, pH

8.0) at 60 °C at a constant voltage of 220 V for 16 h on a

DCode vertical electrophoresis apparatus (universal mutation

detection system; Bio-Rad). The DGGE gels were silver stained

(Heuer et al., 2001). The processing of the DGGE gels was

carried out using the Bionumerics software 6.6 (Applied

Maths, Kortrijk, Belgium). A barcoded pyrosequencing

approach was used for an in-depth microbial community anal-

ysis of ConBs and ConFs samples. Fragments of the 16S rRNA

(cDNA) were sequenced for each sample with primers V3 For-

ward (5′-ACTCCTACGGGAGGCAG-3′) and V4 Reverse

(5′-TACNVRRGTHTCTAATYC-3′) using the 454 Genome

Sequencer FLX Titanium (Life Sciences Roche Diagnostics Ltd,

West Sussex, UK). Sequences were analysed with the QIIME

software package following published recommendations

(Kuczynski et al., 2011). Details on sequence quality analysis

and assignment can be found in supporting information.

Sequences can be downloaded from the NCBI Short Read

Archive (Study accession - SRP013200).

Two square square matrices (i) containing the abundance of

all OTUs per sample generated with Qiime; and (ii) containing

band intensity and position of the DGGE gel were imported

into R. Both were log10 (x+1) transformed and distance matri-

ces constructed using the Bray–Curtis index with the vegdist()

function in the vegan package in R (Oksanen et al., 2008). The

Bray–Curtis index is one of the most frequently applied (dis)

similarity indices used in ecology (Legendre & Gallagher,

2001; Cleary, 2003; Cleary & Genner, 2004a; Cleary et al.,

2004b; de Voogd et al., 2009). Total rarefied OTU richness per

sample was estimated with a self-written function (Gomes

et al., 2010). Variation in OTU composition among treatments

was tested for significance using the adonis() function. In the

adonis() analysis, the Bray–Curtis distance matrix of OTU

composition was the response variable with treatment as inde-

pendent variable. The number of permutations was set at 999;

all other arguments used the default values set in the function.

Variation in the relative abundance of the most abundant

higher taxa (three most abundant phyla; three most abundant

classes and the six most abundant orders) was tested for sig-

nificance with an analysis of deviance using the glm() function

in R. Since the data were proportional, a glm with the family

argument set as binomial was first applied. However, the ratio

of residual deviance to residual df in the models exceeded 1,

so the family was set to ‘quasibinomial’. In the quasibinomial

family, the dispersion is not fixed at one so it can model over-

dispersion.

H. diversicolor stocking in microcosms. In addition to H. di-

versicolor, other marine invertebrates (the isopod Cyathura cari-

nata, and the mudsnail Hydrobia ulvae) were introduced to the

microcosms to ensure that all microcosms were colonized with

meiofauna at minimal density levels. However, for the valida-

tion of the ELSS system, only data from H. diversicolor was

used as this species has been widely used as a model or senti-

nel organism to assess contaminant impact in the field and

laboratory (Moreira et al., 2006).

Invertebrate collection. Three invertebrate species were col-

lected in June 2011 at two reference sites located in the Mond-

ego (40°08′N and 8°50′W; C. carinata) and Mira (H. diversicolor

and H. ulvae; 37°40′N and 8°45′W) estuaries. More details

about the sampling location and procedures can be found in

the supporting information. Hediste diversicolor (7/micro-

cosms), C. carinata (4/microcosm) and H. ulvae (20/micro-

cosm) were introduced after 21 days to the microcosms.

These organisms were retrieved from the sediment at the end

of the experiment, counted and immediately frozen in liquid

nitrogen and stored at �80 °C until further analysis. Pools of

2–3 ragworms from each microcosm were weighed (fresh

weight) and homogenized in ice-cold phosphate buffer

(50 mM, pH = 7.0 with 0.1% Triton X-100) (1 : 5 m v�1).

Homogenates were centrifuged at 10.000 g for 10 min at 4 °C
and supernatants were divided in aliquots and stored at

�80 °C.

Biochemical parameters. The total content in protein of each

aliquot was determined spectrophotometrically according to

Bradford (1976) using bovine c-globulin as standard. Catalase

(CAT) activity was measured spectrophotometrically at

240 nm, following Aebi (1984). Superoxide dismutase (SOD)

activity was assessed spectrophotometrically at 505 nm, using

the RANSOD (RANDOXTM, London) SOD kit and following

the procedure described in the manual provided by the sup-

plier. Glutatione S-transferase (GST) activity was measured

spectrophotometrically at 340 nm following Habig et al.

(1974). Acetylcholinesterase (AChE) activity was measured

spectrophotometrically at 414 nm, following Ellman et al.

© 2013 John Wiey & Sons Ltd, Global Change Biology, 19, 2584–2595
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(1961). Enzyme activities were measured in triplicate and

expressed in nmol of hydrolysed substrate per minute per mg

of protein, except for CAT and SOD, which were expressed in

lmol of hydrolysed substrate per minute per mg of protein

and SOD units per gram of protein.

Lipid peroxidation (LPO) was evaluated through the quan-

tification of by-products of the peroxidation of membrane lip-

ids, like malondialdeyde (MDA), after their reaction with

2-thiobarbituric acid (TBA), following Buege & Aust (1978).

The concentration of thiobarbituric acid reactive substances

(TBARS: e = 1.56 9 106 M�1 cm�1) was measured spectro-

photometrically at 535 nm and expressed in nmols of MDA

equivalents per mg of protein).

The average values recorded for each parameter, in the

organisms exposed in the microcosm control units, were com-

pared with in situ and laboratory values reported in the litera-

ture for H. diversicolor, collected in the same estuary during

the same period of the year (Moreira et al., 2006). AChE, CAT,

GST, SOD and LPO activity deviated significantly from nor-

mality (Shapiro–Wilk normality test, P = 0.046, P < 0.001,

P = 0.013, P = 0.007, and P = 0.015 respectively). With the

exception of GST after logarithmic transformation (Shapiro–

Wilk normality test, P = 0.112), the deviations remained

significant after logarithmic and square-root transformation.

GST exhibited homogenous variances between groups (Bart-

lett test, chi-squared = 1.31, df = 1, P = 0.251). We therefore

tested AChE, CAT, GST, SOD and LPO for significant differ-

ences between microcosm and reported values in literature

using the adonis() function and tested GST using a Student’s

t-test. In the adonis() analysis, the Euclidean distance matrix

of enzyme activity was the response variable with treatment

as independent variable. The number of permutations was set

at 999; all other arguments used the default values set in the

function.

Results and discussion

Water nutrient validation

During the experimental period, the concentrations of

NO3
� did not change significantly (Repeated measures

adonis, F2,9 = 5.35, R2 = 0.543, P = 0.09). NO3
� varied

from 29.96 � 1.10 lmol l�1 at the beginning, to

42.86 � 10.1 lmol l�1 after 21 days and 32.38 �
1.31 lmol l�1 at the end of the experiment. NH4

+ varied

from 0.87 � 0.27 lmol l�1 at the beginning, 1.35 �
0.74 lmol l�1 after 21 days and 1.42 � 0.48 lmol l�1 at

the end of the experiment. There was no significant

difference in NH4
+ concentration between sampling

events (Repeated measures adonis, F2,9 = 1.29, R2 =
0.223, P = 0.27). PO4

-3 varied from 1.07 � 0.05

lmol l�1 at the beginning to 1.12 � 0.05 lmol l�1 after

21 days and 1.07 � 0.05 lmol l�1 at the end of the

experiment (Repeated measures adonis analysis:

F2,9 = 1.33, R2 = 0.229, P = 0.35) (Fig. S11). In summary,

the environmental range of water parameters (tempera-

ture, salinity and pH) and dissolved inorganic nutrients

(NO3
�, NH4

+ and PO4
�3) measured in our ELSS valida-

tion were comparable to those recorded in several

Portuguese coastal systems (Table S3).

Biological validation

Sediment bacterial diversity. Denaturing gradient gel

electrophoresis (DGGE) fingerprinting was used first as

a proxy (Cleary et al., 2012) to assess the effect of the

microcosm on bacterial community structure. Ordina-

tion analysis of band profiles revealed significant differ-

ences (Adonis, F2,9 = 1.58, R2 = 0.260, P = 0.007) in

composition among sampling events (Fig. S12). A 16S

RNA cDNA-based barcode pyrosequencing approach

enabled deeper characterization of sediment bacterial

communities from ConBs and ConFs. Barcode pyrose-

quencing has been successfully used for in-depth stud-

ies of microbial diversity in several ecosystems (Roesch

et al., 2007; Keijser et al., 2008; Gomes et al., 2010; Pires

et al., 2012). Most sequence-based studies use DNA

libraries. However, DNA from dormant cells, ‘dead’

cells or extracellular DNA may bias the results (Urich

et al., 2008; Gaidos et al., 2011). RNA cDNA libraries, in

contrast, represent more recent activity and allow

insight into compositional differences and in situ activ-

ity of microbial community members in a given setting

(Urich et al., 2008). To examine changes in OTU rich-

ness promoted by our ELSS, rarefaction curves were

generated (Fig. S13) for ConBs and ConFs. Controlling

for sample size (n = 1800 sequences), OTU richness

varied from 751.75 � 12.76 in ConBs to 519.64 � 8.23

in ConFs. Rarefied OTU richness was clearly lower at

the end of the experiment. Shifts in bacterial commu-

nity composition were assessed using PCO ordination

of bacterial OTUs (97%) (Figure S14). Composition

differed significantly (Adonis analysis: F1,6 = 3.89,

R2 = 0.039, P = 0.025) between sampling events. Most

of the abundant OTUs (large grey circles; � 50

sequences) were shared between both treatments. How-

ever, certain dominant populations (OTUs) showed

stronger associations to either ConBs or ConFs samples.

Microcosm manipulation affected bacterial composi-

tion by reducing the number of rare OTUs and increas-

ing the abundance of particular OTUs. This probably

occurred because the microcosm is a more stable and

less heterogeneous environment. Reduced disturbance

may have allowed competitively superior groups to

out-compete and effectively eliminate other species.

This phenomenon is in line with the intermediate

disturbances hypothesis (IDH) (Connell, 1978). Such an

effect can also occur within different habitats in natural

marine environments, which are commonly subjected

to several levels of heterogeneity and disturbance

regimes (Gingold et al., 2010). For example, Laverock
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et al. (2010) showed that the presence of bioturbating

shrimps in marine sediment habitats can induce

changes in composition of sediment bacterial communi-

ties and increase bacterial diversity.

Bacterial composition analysis showed that 74.03 �
4.28% of all reads were assigned to the Proteobacteria at

the beginning of the experiment. This rose to

95.74 � 1.47% at the end of the experiment. The differ-

ent classes of this phylum are often abundant in marine

sediment (Gomes et al., 2010; Jiang et al., 2009). Within

the Proteobacteria, the Gammaproteobacteria was the most

dominant class; their relative abundance ranged from

36.39 � 7.08%, at the beginning of the experiment to

47.12 � 4.14% at the end. The Gammaproteobacteria is

the largest Proteobacteria group in terms of diversity and

includes a wide range of phenotypic and metabolic

diversity with recognized importance (Kersters et al., 2006).

The relative abundance of the Deltaproteobacteria class

increased significantly after microcosm manipulation

from 18.60 � 6.04% at the beginning of the experiment

to 42.70 � 5.25% at the end (Anova, F1,6, P = 0.003).

Our results show that this trend was mainly related to

an increase in the relative abundance of the

Desulfobacterales order, which includes anaerobic sul-

phate reducing bacteria (SRB) (Fig. 2). SRB play an

essential role in a variety of processes in anoxic marine

sediment including organic matter turnover, pollutant

detoxification and the carbon and sulphur cycles

Fig. 2 Relative abundance of the most dominant bacterial taxa (three most abundant phyla; three most abundant classes and the six

most abundant orders) in sediment collected in the environment (ConBs) and retrieved from the microcosm after 57 days of operation

(ConFs). Summary of analysis of deviance (glm with’quasibinomial’ family) is indicated above the bars. Note that the analysis of devi-

ance was not performed on Cyanobacteria, since sequences affiliated with this group were not detected in all replicates in ConFs.
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(Zhang et al., 2008). SRB use sulphate as an electron

acceptor in the degradation of organic compounds

resulting in the production of sulphide through the

dissimilatory sulphate reduction pathway (Muyzer &

Stams, 2008). Our ELSS was programmed to simulate

the central area of the Ria de Aveiro mesotidal system,

where approximately 50% of the water volume is

renewed between tides (Dias et al., 2001). However, the

specific original sampling site is subject to higher water

renewal percentages, leaving the sediment exposed to

air during low tide. This implies that the microcosms

simulated a more anoxic environment than the original

sampling site, leading to an increased relative abun-

dance of anaerobic Desulfobacterales. Introduction of the

ragworm to the system might have also influenced

bacterial community structure. Although bioturbation

is generally associated with an increase in oxic zones in

the sediment, infaunal activity can also augment anaer-

obic processes such as sulphate reduction (Bertics &

Ziebis, 2010). Nevertheless, the simulated conditions

did not exclude important functional aerobic groups in

sediment biogeochemical processes. The abundance of

OTUs belonging to the Methylococcales order increased

after microcosm manipulation from 3.19 � 3.23% at the

beginning of the experiment to 13.26 � 1.60% at the

end. This order includes several members that oxidize

methane under aerobic or microaerobic conditions

(Bowman, 2005).

In contrast to the Deltaproteobacteria, the abundance of

Alphaproteobacteria declined from 18.70 � 12.14% at the

beginning of the experiment to 5.36 � 1.60% at the end.

This was mainly related to a reduction in the abun-

dance of the Rhodobacterales order, which declined from

11.98 � 11.13% at the beginning of the experiment to

1.08 � 0.80% at the end. Within the Rhodobacterales,

several OTUs belonging to the Rhodobacteraceae family

were detected. Rhodobacteraceae includes the Roseobacter

clade, one of the major marine groups; 20% of coastal

and 15% of mixed-layer ocean bacterioplankton com-

munities consist of members of this clade (Sørensen

et al., 2005). Given that members of this group are likely

present in water, their higher relative abundance in the

sediment samples retrieved from the environment

could be due to near-shore seawater infiltration, thus

explaining their reduction following the microcosm

experiment. In a previous study, Sørensen et al. (2005)

found several phylotypes related to the Roseobacter

clade in an endovaporitic microbial mat. The authors

attributed this finding to seawater infiltration in the

mat (Sørensen et al., 2005). Other less abundant phyla

such as Cyanobacteria and Actinobacteria were also less

abundant at the end of the experiment.

The distribution of dominant (� 50 sequences) OTUs

across all samples is visualized using a heatmap (Fig.

S15). Results from this analysis are in line with the

pattern detected in the relative abundance analysis.

Several abundant OTUs detected at the beginning of

the experiment remained among the most dominant

OTUs at the end of the experiment, including several

known aerobic and anaerobic groups (e.g. Gammaprote-

obacteria – OTU 2987, OTU 2315, OTU 3254; Deltaproteo-

bacteria – Desulfobacteraceae – OTU 3129; Methylococcales

– 1648). As outlined above, several sulphate reducing

bacterial OTUs increased their abundance in micro-

cosm samples (e.g. Desulfobacteraceae OTUs – 1724;

1325), whereas members of the Rhodobacterales order

declined in abundance at the end of the experiment

(e.g. OTUs – 1569; 675).

Hediste diversicolor biochemical parameters. Hediste diversi-

color has been indicated as an adequate sentinel species

for transitional waters due to its wide distribution,

sensitivity and its role in the functioning and structure

of marine ecosystems (Scaps, 2002; Moreira et al., 2006;

Bouraoui et al., 2009; Sol�e et al., 2009). Ragworms usu-

ally move actively around the sediment surface or

within their burrow systems looking for food (Kristen-

sen, 2001). Furthermore, they are both sediment eaters

(Sol�e et al., 2009) and suspension feeders (Kristensen,

2001 and references cited), features that increase the

chances of exposure to contaminants associated with

different sediment components, overlying water and

interstitial water.

At the end of the experiment, 96.40% of stocked

H. diversicolor were recovered, indicating that the archi-

tecture and the conditions of the system did not

compromise the survival of these organisms even dur-

ing long-lasting exposure. Figure 3 shows boxplots for

values recorded for each biochemical parameter moni-

tored for H. diversicolor specimens stocked in the micro-

cosms of our ELSS, as well as ranges of values available

in the study of Moreira et al. (2006) for this species, col-

lected in the same estuary and in the same period of

the year. The comparability with organisms collected at

the same period of the year is of particular importance

as the influence of seasonal (e.g. water temperature)

factors, physiological factors, sexual condition, gameto-

genesis period and behaviour in antioxidant enzyme

levels is well known (Sun & Zhou, 2008). Compared to

the previous study of Moreira et al. (2006), no signifi-

cant differences were observed in the activity of AChE

(Adonis, F1,7 = 0.89, R2 = 0.113, P = 0.380; F1,17 = 1.75,

R2 = 0.094, P = 0.174, comparing with in situ and labo-

ratory data from Moreira et al., 2006 respectively), thus,

denoting no neurological adverse effects of microcosm

exposure in the polychaete. CAT and GST activities

were significantly higher in this study in comparison to

results obtained by Moreira et al. (2006) (Adonis for
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CAT: F1,7 = 6.66, R2 = 0.487, P = 0.061; F1,17 = 16.67,

R2 = 0.495, P = 0.002 and Student’s t-test for GST:

t4,5 = 5.6, P < 0.001 and t4,15 = 5.6, P < 0.001 respec-

tively, when compared with laboratory and in situ data

for each enzyme). However, the differences registered

in GST activity between the present work and the

results obtained by Moreira et al. (2006) with organisms

exposed, under controlled conditions, in the laboratory

was 22%, which is close to the 20% threshold com-

monly considered within the normal range of activity

of the enzyme and to have no biological significance

(Olsen et al., 2001). The activity measured for SOD and

LPO in H. diversicolor exposed in the ELSS was signifi-

cantly lower than that reported by the latter authors

(Adonis for SOD: F1,7 = 339.25, R2 = 0.979, P = 0.008;

F1,17 = 846.06, R2 = 0.980, P = 0.001 and Adonis for

LPO: F1,7 = 78.79, R2 = 0.918, P = 0.008; F1,17 = 100.04,

R2 = 0.855, P = 0.001). These observations indicate that

the organisms were not under neurological or oxidative

stress. The apparent depression in SOD activity may

also have been the result of the different methods

applied to assess this enzyme in both studies. Tempera-

ture and the sediment sulphide content have been

pointed out as factors responsible for the induction of

SOD activity in H. diversicolor, while anoxia seems to

have a non-significant effect on the activity of this

enzyme (Abele-Oeschger et al., 1994; Sun & Zhou,

2008). Thus, the lower temperature to which the

ragworms have been exposed in the microcosm, in

comparison to the field conditions, may have been

responsible for the depression in SOD activity. Such a

temperature effect is also likely on the activity of the

other tested enzymes, since a similar decreasing trend

has been reported for antioxidant enzyme activities in

Fig. 3 Boxplot of the values recorded for each biochemical parameter measured in Hediste diversicolor after 36 days in the microcosms

(ConF) and reported in the literature for in situ (Envir) and laboratory values (LabEx) of the same species collected at the same site and

season (Moreira et al., 2006). The boxed area represents the mean � quartile and the whiskers extend to the minimum and maximum

values.
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invertebrate species with decreasing temperatures

(Khessiba et al., 2005; Sroda & Cossu-Leguille, 2011;

Kong et al., 2012). However, the temperatures that pro-

duced a significant reduction in the activity of stress

biomarkers in the referenced studies were lower than

those recorded in the ELSS, and in some cases variation

with temperature displayed a sex-dependent tendency

(Sroda & Cossu-Leguille, 2011). Similarly, contradictory

relationships between temperature and SOD activity in

H. diversicolor have been reported (Abele-Oeschger

et al., 1994; Sun & Zhou, 2008). Although the ELSS

appeared to induce anaerobic conditions, a sulphide

rich environment and to promote the abundance of

SRB, our results did not show oxidative stress induc-

tion in ragworms.

Experimental life support system applications

In this study, we have described the development and

validation of an experimental microcosm framework

capable of simulating fundamental dynamics of coastal

systems. Water inorganic nutrient concentrations

remained fairly stable during validation trials, exhibiting

comparable values to those recorded in the coastal

lagoon. Bacterial community structure validation

revealed that the microcosm operational programme

introduced a shift that favoured the SRB group in

particular. However, these changes do not necessarily

imply a strong shift in community functioning, given that

the most abundant classes were still detected in samples

at the end of the experiment. Nevertheless, if deemed

necessary, aerobic conditions can be stimulated by choos-

ing different tidal ranges with different percentages of

water renewal. At the end of the validation period, the bi-

omarkers of H. diversicolor were within the same magni-

tude of values reported in the literature for organisms

collected in the same estuary, under reference conditions.

The ELSS described here can be easily reproduced

and operated under a moderate budget. We estimated

that the replication of this system would cost approxi-

mately 15000 euros. Assuming 0.098 euros per Kilowatt

hour-1 (average price of electricity for industry in the

European Union for the second semester 2012 – http://

appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg

_pc_205&lang=en), we estimated a daily operational

cost of approximately 4.09 euros. If necessary, the sys-

tem’s flexible architecture allows for the replacement of

several subsystems to fit specific research needs. Its

modular construction enables researchers to employ a

multitude of statistically robust complex experimental

designs. By changing the pre-sets of our ELSS values

with respect to temperature and pH subsystems, it is

possible to simulate several scenarios of global climate

change, such as the postulated increase in temperature

and reduction in pH in marine environments. If users

choose to use natural seawater and operate under a

closed recirculated water system, it is important that

other carbonate parameters, such as dissolved inor-

ganic carbon or total alkalinity, are monitored since

carbonate chemistry can be affected. Irradiance values

can also be manipulated by varying lamp intensity and

time of operation. For example, scenarios predicting an

increase in UV-B can be simulated by simply removing

the glass filter used in our validation trials and by

manipulating lamp intensity.

This system can be used to establish cause–effect
relationships on the impact of climate change and other

anthropogenic stressors on coastal marine benthic com-

munities and processes. For example, the ELSS could

be used to study bacterial mediated degradation (e.g.

petroleum hydrocarbon degradation) in coastal systems

under various climate change scenarios. Hediste diversi-

color stress indicators could then be applied to assess

the toxicity of degradation products. The data thus

obtained can provide the basis for our understanding

how climate change and pollution may interact to affect

coastal marine ecosystems in the future.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Lateral front view of the experimental life support system.
Figure S2. Water and tide circulation system detail (Front). A, independent microcosm; B, saltwater reservoir; C, acidified saltwater
tide reservoir; D, normal pH saltwater tide reservoir; E, inlet pipe (to return the exceeding water to the tide reservoir); F, Outlet pipe
(to discharge the microcosm waste water after tide circulation).
Figure S3. Water and tide circulation system detail (Back). A, outlet pipe from the microcosm; B, inlet pipe in the microcosm; C,
inflow water pump.
Figure S4. Water and tide circulation system detail (top view). A, Outflow pump positioned inside a PVC cylinder and protected
with a mesh screen.
Figure S5. pH control system detail: A, CO2 bottle; B, solenoid valve; C, pH controller; D, pH electrode probe.
Figure S6. Water bath detail (from back). A, waterbath (the 2 tanks were drilled in the bottom and connected through a 40 mm
PVC pipe); B, individual microcosm; C, refrigerator; D, canister filter pump; E, Stainless Steel 118 structure 40 9 2 mm.
Figure S7. Lighting system detail: A, luminaire.
Figure S8. Luminaire detail: A, daylight and ultraviolet lamps dispose alternately.
Figure S9. Experimental light spectra. A, Spectrum of photosynthetically active radiation (PAR: 400–700 nm) of the fluorescent
tubes set to 100% intensity.
Figure S10. Average pH measured during 1 week every 2 days in control and reduced pH treatments.
Figure S11. Concentration of dissolved inorganic nutrients (nitrate NO3

�; ammonium NH4
+ and o-phosphate PO4

3�) in water ELSS
control at the beginning of the experiment, after 21 days and at the end of the experiment.
Figure S12. Principal coordinates analysis of Denaturing-gradient gel electrophoresis fingerprints of 16S rRNA gene fragments
amplified at time 0 (ConBs), 21 days (ConIs) and 57 days (ConFs).
Figure S13. Rarefied OTU richness as a function of the number of sequences from ConBs (environment) and ConFs (microcosm)
samples.
Figure S14. Principal coordinates analysis of operational taxonomic unit (OTU) composition.
Figure S15.Heatmap showing the abundance of dominant 16S rRNA cDNA sequence reads (� 50 sequences).
Table S1. Artificial life support system main components, their manufacturers and suppliers.
Table S2. Diurnal cycles of the PAR and UV integrated radiation intensities expressed as percentages of maxima intensities of the
respective fluorescence tubes.
Table S3. The environmental range of water parameters (temperature, salinity and pH), and of dissolved inorganic nutrients
(nitrate NO3

�, ammonium NH4
+ and o-phosphate PO4

3�) in Portuguese coastal systems and in the ELSS microcosms (control
experimental units).
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