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“Go confidently in the direction of your dreams. 
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RESUMO 
 
Os CB1Rs desempenham um papel preponderante na plasticidade sináptica, metabolismo 

cerebral, neurogénese, e morte celular; fazendo com que o sistema endocanabinoide seja um alvo 

atrativo em doenças neurológicas e psiquiátricas. Os CB1Rs estão implicados na patogénese de 

uma série de desordens de humor e psicoses, sendo então um dos nossos objectivos mapear a 

possível presença e papel fisiológico dos CB1R em terminais nervosos frontocorticais, 

noradrenérgicos (positivos para dopamina-β-hidroxilase), serotonergicos (positivos para SERT), e 

glutamatergicos (positivos para VGLUT1 e VGLUT2), no rato e em ratinho wild-type e CB1R 

knockout. Resultados: Análise em microscópio confocal em fatias de cérebro revelou que os 

CB1Rs estão presentes num subconjunto de todos os tipos de terminais nervosos investigados. A 

ativação dos CB1R pelo seu agonista WIN55212-2 (1 !M) inibiu a libertação provocada por 

estímulo e dependente de cálcio do [14C]glutamato e da [3H]serotonina, medidos simultaneamente 

em sinaptoneurossomas isolados, de certa forma sensíveis a antagonistas dos CB1R, O-2050 (1 

!M) e LY320135 (5 !M). Não foi detectada imunoreactividade para CB1 e inibição de libertação 

induzida pelo WIN55212-2 no córtex frontal de ratos KO para CB1R. 

Este é o primeiro relatório sobre CB1R presinapticos funcionais em terminais serotonergicos, 

noradrenergicos e glutamatergicos, no córtex frontal de roedores. Como neuromoduladores/ 

neurotransmissores estão envolvidos na patogénese de algumas desordens de humor e psicoses 

(as quais são normalmente acompanhadas por uma sinalização alterada de endocanabinoides), é 

possível então assumir que um controlo deficiente de endocanabinoides em terminais nervosos 

frontocorticais, poderá contribuir para a patofisiologia de algumas doenças psiquiátricas. 
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ABSTRACT 
 
CB1 cannabinoid receptors (CB1Rs) are the metabotropic 7-transmembrane spanning G 

protein-coupled receptors of highest density in the mammalian brain. CB1Rs play a paramount role 

in synaptic plasticity, brain metabolism, neurogenesis, and cell death, making the endocannabinoid 

system an attractive target in neurological and psychiatric disorders. CB1Rs are implicated in the 

pathogenesis of mood disorders and psychoses, thus here we aimed at mapping the possible 

distribution and physiological role of presynaptic CB1Rs in frontocortical noradrenergic (dopamine-

β-hydroxylase-positive), serotonergic (SERT-positive) and glutamatergic (VGLUT1- and 2- 

positive) nerve terminals of the rat, and wild-type / CB1R knockout mice. 

Confocal microscopy analysis in brain slices revealed that CB1Rs are present in a subset of all 

the investigated nerve terminal types. CB1R activation by the CB1R agonist, WIN55212-2 (1 !M) 

inhibited the depolarization-evoked release of [14C]glutamate and [3H]serotonin in isolated 

synaptoneurosomes, in a manner sensitive to selective CB1R antagonists, O-2050 (1 !M) and 

LY320135 (5 !M). No CB1R immunoreactivity and no WIN55212-2-induced inhibition of transmitter 

release were detected in the frontal cortex of CB1R knockout mice. 

This is the first report on presynaptic functional CB1Rs in serotonergic, noradrenergic and 

glutamatergic terminals in the frontal cortex of the rodents. Since all three neuromodulators/ 

neurotransmitters are involved in the pathogenesis of mood disorders and psychosis (which are 

typically accompanied with impaired endocannabinoid signaling), it is feasible to assume that an 

impaired endocannabinoid control on frontocortical nerve endings may contribute to the 

pathophysiology of psychiatric disorders. 
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1. INTRODUCTION 
 

1.1 Overview 

Brain’s serotonergic system plays important roles in synaptic plasticity, perception and the 

development of neural networks, among many others. Impaired serotonergic signaling is detected 

in many neurological and psychiatric disorders, among which clinical depression is the most well 

known. Most therapies involve the control of serotonin reuptake and subtype-specific receptor 

modulation, but the presynaptic control of serotonin release has also been emerging as a potential 

therapeutic strategy. Here we aimed at studying the putative presynaptic control of serotonin 

release in the frontal cortex by a likely candidate, the CB1 cannabinoid receptor (CB1R). CB1Rs 

have high presynaptic density in the mammalian nervous system, and are involved in the 

development of mood disorders (Degroot, 2008; Tzavara et al., 2008).  

Coincidently with our research aims, a Hungarian research group has discovered that CB1Rs 

and alpha2a noradrenergic receptors (α2aRs) control the action of one another in frontocortical 

noradrenergic terminals of the rat, resulting in a tight regulation of stimulated noradrenaline efflux. 

Indeed, noradrenaline is another important neuromodulator participating in the preparation of the 

brain to adverse environmental challenges such as stress and aggression, as well as in mood 

disorders such as depression.  

These data will hopefully contribute to the better understanding of the pathogenesis of 

depression, but also, of other personality disorders such as aggression, psychoses and anxiety, in 

which impaired serotonergic, noradrenergic and endocannabinoid signaling are pathogenetic 

factors. 

 

1.2 Frontal cortex and personality disorders  

The frontal part of the cortex (frontal cortex in rodents; prefrontal cortices in man) is the anterior 

part of the frontal lobes of the brain, standing in front of the motor and premotor areas. It has 

extensive connections with other cortical regions, as well as with subcortical areas. The dorsal 

prefrontal cortex in humans is especially interconnected with brain regions involved with attention, 

cognition and action (Goldman-Rakic et al.,1988), while the ventral  prefrontal cortex interconnects 

with brain regions involved with emotion (Price JL et al. ,1999). 
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 The interaction between the frontal cortex and basal ganglia-thalamocortical circuits underlies 

mood and emotions in humans (Sackeim et al., 1982; Alexander et al., 1990; George et al., 1997). 

Neuroimaging and neuropsychological studies suggest that abnormal prefrontal cortex function 

plays a role in the pathophysiology of affective disorders such as major depression (Baxter et al., 

1989; Soares and Mann, 1997; Goodwin, 1997). Mounting evidence indicates structural and 

functional abnormalities in the prefrontal cortex of antisocial individuals (Davidson et al., 2000; 

Henry and Moffitt, 1997; Raine, 1993; Raine and Buchsbaum, 1996). However it is important to 

notice the existence of some inconsistencies in several studies (e.g. significantly increased rather 

than decreased activation). There are many studies devoted to understanding the role of the 

prefrontal cortex in neurological disorders such as schizophrenia, bipolar disorder and ADHD. 

Therefore, I have focused on the frontal cortex of the rat, a putative analogue of the human 

prefrontal cortex, during my studies. 

 

1.3 The serotonergic system 

Serotonin, otherwise known as 5-hydroxytryptamine (5-HT), was isolated and characterized in 

1948 by Maurice Rapport and Irvin Page (Rapport et al., 1948a-c). However, the first findings were 

by Vittorio Erspamer (1935), after showing that an extract from enterochromaffin cells made 

intestines contract. The first thoughts believed that it contained adrenaline, but two years later 

Erspamer was able to show that it was an unknown amine, which he named enteramine (Erspamer 

and Asero, 1952). Later, this substance was termed serotonin after the Latin word serum and the 

Greek word tonic. Subsequent studies found ample amount of serotonin in many tissues such as 

brain, lung, kidney, platelets, and the gastrointestinal tract. 

Brodie and Shore (1957) suggested the role of serotonin as a neuromodulator. This hypothesis 

was based in studies that demonstrated the localization of 5-HT receptors to specific areas of the 

vertebrate brain (Twarog and Page, 1953; Amin et al., 1954). Later it was elucidated that serotonin 

was principally located in the nerve endings of neurons in isolated portions of the mammalian brain 

(Michaelson and Whittaker, 1963; Zieher and DeRobertis, 1963). In 1964, Dahlström and Fuxe 

mapped the specific nuclei in the brain that contained serotonin, and made this clusters being 

known as the raphe nuclei. After that several findings linked serotonin to a variety of central 

nervous system functions such as mood, behavior, sleep cycles and appetite. 
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Serotonin is a biogenic monoamine structurally similar to epinephrine, norepinephrine, 

dopamine and histamine. Serotonin production has two steps: the essential amino acid tryptophan 

is hydroxlyated to 5-hydroxytrytophan (5-HTP) by tryptophan hydroxylase; then 5-HT is 

decarboxylated to form 5-HT (Clark et al. 1954). 

Within the central nervous system (CNS), serotonin is synthesized and stored in the nerve 

terminals. The raphe nuclei represent the major nuclei with both ascending serotonergic fibers 

projecting to the forebrain and descending fibers that extend to the medulla and spinal cord 

(Dahlström and Fuxe, 1964). Ninety-nine percent of total body serotonin is located intracellularly 

implying thus a tight regulation of serotonin release. Metabolism by the monoamine oxidases 

(MAO-A and to a smaller extent, by MAO-B) is the primary metabolic pathway for serotonin 

(McIsaac and Page, 1959).  

Serotonergic fibers contain hundreds of release sites (so-called varicosities), which do not form 

synaptic contact with post-synaptic targets. Therefore, the vast majority of serotonin is released 

into the extracellular space acting as a volume neuromodulator (Vizi et al., 2004). Serotonin then 

can bind to autoreceptors or to specific serotonin receptors (5-HT receptors) of surrounding cells 

(Cerrito and Raiteri, 1979). Binding of serotonin to the autoreceptor acts as a negative feedback 

against further release into the synaptic cleft (Cerrito and Raiteri, 1979). The main responsible for 

removing serotonin from the synaptic cleft is the serotonin transporter (SERT), located on the 

presynaptic membrane. 

After being transported into the presynaptic neuron, serotonin is recycled back into presynaptic 

vesicles where it is protected from being metabolized by MAO-B within the cytosol of the neuron. 

The two mechanisms directly involved in controlling the availability of serotonin in the synaptic cleft 

and the extracellular space are the binding of serotonin to its autoreceptor (most typically of the 5-

HT1 subfamily) and the activity of the SERT. Stimulation of the 5-HT1 autoreceptor decreases 

further release of serotonin creating a negative feedback, while the SERT actually removes the 

“excess” of serotonin from the synaptic cleft. We should note that the transporters for noradrenalin 

and dopamine are also effective to take up serotonin (Vanhatalo and Soinila; 1994; Zhou et al., 

2002), thus it is necessary to block these other uptake systems if one aims at studying serotonergic 

terminals in the brain.  

The serotonergic system is rather complex, although many of serotonin’s functions in the CNS 

are already described: Projections from the rostral nuclei of the raphe help regulate temperature, 
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appetite, sleep cycles, emesis, and sexual behavior. Projections from the caudal nuclei participate 

in nociception and motor tone. One of the most important serotonin’s functions and the one to 

which in the last years, has been paid more attention to, is its role in psychological disorders. The 

consensus that depression, mania and anxiety disorders are associated with altered bioavailability 

of serotonin in the CNS (Kandel, 2001) has grown in the last few years. We need to keep in mind 

that there is still much to understand about this neuromodulator. 

Although the earliest antidepressants such as the MAO inhibitors and tricyclic antidepressants 

(TCA), aimed specifically at altering serotonin levels, the most specific and potent antidepressant 

called selective serotonin reuptake inhibitors (SSRIs) came only later. These drugs bind specifically 

to the SERT, increasing the extracellular half-life of serotonin.  

 

1.4 The noradrenergic system of the brain 

Noradrenalin is synthesized from dopamine by the enzyme, dopamine-β-hydroxylase (DβH) 

which is a selective for noradrenergic neurons. The majority of the brain (limbic system, cortex) is 

innervated by the ascending noradrenergic bundle from the locus coeroleus, while the 

hypothalamus receives noradrenergic innervation from the lateral tegmental area. The two 

functionally different noradrenergic systems in the brain can be divided as the dorsal bundle and 

the ventral bundle. It is possible that dorsal bundle inhibits serotonergic neurons whilst tonically 

stimulates dopaminergic neurons. On the other hand, the ventral noradrenergic bundle seems to 

exert opposite influences (Kostowski, 1979).  

Altered noradrenergic signaling in the frontal cortex has been associated with the executive 

dysfunction component of addiction with its core deficits represented by loss of control, impulsivity 

and impaired decision making. Stress, experienced during food- or drug-restriction, lead to 

increased noradrenaline release from varicosities of locus coeruleus noradrenergic neurons in the 

frontal cortex, through the activation of hypothalamo-pituitary axis, and thereby contribute to the 

transition from reward to addiction. α2ARs in the frontal cortex are also instrumental for spatial 

working memory (Wang et al., 2007) as well as emotional behavior (Zhang et al., 2009).  

Moreover, as revealed by the STRADIVARIUS trial, the inhibition of CB1R receptors can also 

lead to an increased incidence of depression and suicide (Nissen et al., 2008), which are 

pathological conditions involving impaired noradrenergic signaling (Pandey and Dwivedi, 2007).  
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Despite the abundance of data on the action of cannabinoids on complex behavioral changes 

mediated by the monoaminergic system, relatively few and conflicting investigations concentrated 

on the interaction of cannabinoids and noradrenalin on the cellular level: In vivo, both cannabinoid 

agonists and antagonists increase the efflux of noradrenalin from prefrontal cortex (Tzavara et al., 

2003; Oropeza et al., 2005; Page et al., 2008), whilst in other regions of the brain such as the 

hippocampus the direct effect activation of CB1Rs on noradrenalin release, is inhibition (Kathmann 

et al., 1999; Schlicker et al., 1997).   

It is also well established that central noradrenergic nerve terminals are equipped with 

presynaptic α2ARs, another G protein-coupled receptor (GPCR) the activation of which inhibits the 

release of noradrenalin (Starke, 2001). Moreover, these receptors are also activated by 

noradrenalin released upon neuronal activity, thereby executing an important fine-tuning 

mechanism, i.e. the autoinhibition of transmitter release. In the primate prefrontal cortex, α2ARs are 

immunolocalized to both pre- and post-synaptic sites, and presynaptic α2ARs are also expressed 

by DβH positive varicosities (Aoki et al., 1998; Wang et al., 2007). As both CB1Rs and α2ARs use 

Gi/o downstream signaling cascades, the possibility arises that there might be interplay between 

them.   

Interestingly, one of the most known and heavily debated roles of noradrenalin in the brain is its 

involvement in clinical depression. Although clinical depression is mostly addressed to alteration of 

serotonin levels, the noradrenalin transporter knockout mice rather than the serotonin transporter 

knockout mice exhibit antidepressive phenotype (Haenisch and Bönisch, 2011).  

 

1.5 Cannabis and the endocannabinoid system 

The following introduction focuses only on the constituents of the endocannabinoid system most 

relevant to my thesis. Note that there are several more receptors, endogenous ligands and 

enzymes implicated in the endocannabinoid system whose illustration is beyond the scope of this 

thesis. Further readings can be found in the book Cannabinoids and the Brain, ed.: Attila Köfalvi 

(2008, Springer). 

Cannabis has been used for more than 8000 years for its recreational effects, and the first 

medical use of cannabis is dated back to 2727 B.C. in China. Texts related to Hinduism, also 

mention the use of cannabis for medical proposes in India between 1200 and 800 B.C. The 

psychotropic properties of cannabis appeared for the first time in a Chinese medical book around 
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100 B.C., and it is believed that the Scythians first introduced Cannabis sativa in Europe. Cannabis 

medical uses are widely described and registered along history, from the Roman Empire history, till 

the late England with Queen Victoria. However, in 1925 the Geneva Convention included cannabis 

in the list of illicit drugs. Being a symbol of revolution and terrible sins due to its psychotropic 

effects, in the USA, it was also prohibited and proclaimed as an illegal drug. With heavy weight 

supporters like President Kennedy and President Johnson, cannabis popularity increased and 200-

250 million cannabis users were reported by the UN, worldwide till 1970. 

Though Eastern cultures using marijuana as medicine for centuries, Western civilization started 

the use of marijuana for therapeutic purpose therapeutically only recently. Marijuana revealed to be 

an effective anesthetic, antihypertensive, and eye pressure reducing (in glaucoma).  

In the 60’s when hippies became interested in cannabis preparations, the structure and 

stereochemistry of the naturally occurring trans- 9-tetrahydrocannabinol ( 9-THC), the main 

psychoactive constituent o marijuana and hashish has been elucidated (Gaoni and Mechoulam, 

1964). Later, 65 more biologically active molecules were identified in the plant cannabis. Several 

other plants have been reported to produce biologically active but hardly or not psychotropic 

cannabinoid molecules which can provide further starting points for the development of new 

medicines (Gertsch et al., 2010).  

9-THC is responsible for the vast majority of cannabis effects such as antinociception, 

decreased body temperature, increased hunger and thirst, decreased metabolic rate, motor 

disturbances and catalepsy, euphoria and dysphoria, anxiety, drowsiness, altered time and 

audiovisual perceptions, panic attacks and impaired memory (Haagen-Smit et al., 1940; Lowed, 

1946; Paton and Pertwee, 1973; Howlett et al., 2004).  

Whether how 9-THC exerts these effects was unknown till 1984, when it was found that it 

inhibits cAMP accumulation (Howlett and Fleming, 1984). Four years later, specific cannabinoid 

binding sites were reported in the brain (Devane et al., 1988). This made clear that membrane 

receptors should exist for 9-THC. Indeed, in 1990 both the rat and human CB1Rs (CB1Rs) were 

finally cloned and characterized (Gérard et al., 1990, 1991; Matsuda et al., 1990), and the first 

studies on its distribution found the receptor at an unexpectedly high density in the brain, mostly in 

the basal ganglia (substantia nigra and globus pallidus), in the hippocampus, in the neocortex and 

cerebellar cortex, as well as in the hypothalamus (Herkenham et al., 1991). The virtual lack of 
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CB1Rs in the brain stem and the medulla oblongata explains why cannabis intoxication can not 

compromise vegetative functions such as breathing.  

Meanwhile, the first endogenous cannabinoid ligand, arachidonoylethanolamine or anandamide 

(AEA), was found in the porcine brain (Devane et al. 1992), followed by 2-arachidonoylglycerol (2-

AG) (Mechoulam et al. 1995; Sugiura et al., 1995). In 1994, the first selective CB1R antagonist, 

SR141716A or Rimonabant, was reported (Rinaldi-Carmona et al., 1994), and it was finally been 

marketed in Europe in 2006 under the name of Acomplia™ to treat cardiometabolic risk factors 

such as hypercholesterolemia and obesity (Matias et al. 2008). Unfortunately, in 2008, Acomplia 

has been banned from the market due to rare but serious side effects such as the induction of 

suicide thoughts and suicide itself (McPartland, 2009). This already prognosticates that the 

endocannabinoid system is a major player in mood control. 

 

1.6 The endocannabinoid system in mood disorders and anxiety 

Indeed, deregulation of the endocannabinoid system has been associated with several 

neuropsychiatric disorders. The high level of expression of CB1Rs in brain areas involved in the 

regulation of cognition and mood functions implies that the endocannabinoid system is probably 

involved in emotional processing, mood and anxiety regulation. It is also known from recent 

studies, that endocannabinoid signaling and the consequences on neuronal activity might be 

important in the etiology of schizophrenia and may help explain the impact of cannabis abuse in 

psychotic users (Köfalvi and Fritzsche, 2008). Studies with the global CB1R KO mice revealed that 

these mice became anhedonic during chronic mild stress sooner than wild type (WT) mice, 

suggesting that they are more vulnerable to the anhedonic effect of chronic stress (Martin et al. 

2002). Recently it was reported that long-lasting impairment of CB1R function led to the 

development of a depressive phenotype characterized by anhedonic state, passive coping 

behavior in the forced swim test and cognitive deficits (Rubino et al., 2008c, 2009). These 

behaviors were supported by well-known biochemical parameters of depression such as changes 

in CREB function in specific brain areas, lower levels of markers of neuroplasticity and less active 

synapses with reduced ability to maintain normal synaptic efficiency in the frontal cortex (Rubino et 

al., 2008c, 2009). 

The most interesting and important findings are related to changes found in CB1Rs and other 

elements belonging to the endocannabinoid system, reported in animal models of depression. In 
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the chronic mild stress paradigm, there was a significant increase in CB1R density or mRNA in the 

frontal cortex (Bortolato et al., 2007; Hill et al., 2008). The same increase was seen in another 

animal model of depression, bilateral olfactory bulbectomy in the rat (Rodriguez-Gaztelumendi et 

al., 2009). Hungund et al., (2004), also reported a significant increase in CB1R density and 

efficiency in the dorso-lateral frontal cortex of depressed suicide victims. We can then assume that 

either a compensatory upregulation of the CB1Rs try to counteract a decreased endocannabinoid 

functioning or the increase in CB1R density itself contribute to the depressed phenotype. 

Most antidepressants increase the level of serotonin and/ or norepinephrine (Berton and 

Nestler, 2006). Agents that act facilitating endocannabinoid neurotransmission facilitate adaptive 

stress coping behaviors and attenuate the neuroendocrine response to psychological stressors 

(Patel et al., 2004). Interestingly, both CB1R agonists and inhibitors of AEA hydrolysis increase the 

firing activity of neurons in the dorsal raphe, the major source of serotonin neurons, thus enhancing 

serotonin release in the hippocampus while exhibiting antidepressant activity (Bambico et al., 2007; 

Gobbi et al., 2005). Stimulation of CB1R activity has been shown to increase the release of 

norepinephrine in the frontal cortex (Gobbi et al., 2005; Oropeza et al., 2005; Bambico et al., 2007). 

The probable reason for this is the disinhibition of GABAergic input into monoaminergic cell bodies.  

Decrease in neurogenesis and neuronal migration has been also put forward as a major 

pathomechanism for depression. It is well known that factors that predispose to depression, 

suppress neurogenesis, whereas interventions that reduce depression stimulate neuron formation. 

We can assume that modulation of hippocampal neurogenesis is crucial to both the onset and 

treatment of depression (Perera et al., 2008; Drew and Hen, 2007). In various models, 

administration of cannabinoid agonists as well as pharmacological increase in endocannabinoid 

levels have been shown to increase neurogenesis and migration in the subventricular zone (Jiang 

et al., 2005; Hill et al., 2006; Goncalves et al., 2008; Marchalant et al., 2009; Oudin et al., 2011). 

Altogether, this data suggest that increasing endocannabinoid exerts antidepressant proprieties 

by increasing serotonin release (Parolaro et al., 2010). However, this question is more complex 

than what it appears (for the comparison of the efficacy of the activation and the inhibition of the 

endocannabinoid system as an antidepressant see Tzavara and Witkin, 2008). In fact, many found 

that the activation of the endocannabinoid system decreases serotonin release: Acute (Egashira et 

al., 2002) or 8-day (Sagredo et al. 2005) injection of rats with "9-THC induces a decrease in 

extracellular serotonin levels or in serotonin release in the frontal cortex. In agreement with these, 
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Dharmani et al. (2003), Tzavara et al. (2003) and Aso et al. (2009) reported that CB1R blockade 

augments frontocortical serotonin release. Furthermore, Mato and colleagues (2007) reported 

impaired functionality for 5-HT1A and 5-HT2A/C receptors in the CB1R knockout mouse. 

In vitro, CB1R activation also appears to decrease serotonin release: Nakazi et al. (2000) in 

cortical slices and Balázsa et al. (2008) in hippocampal slices found that CB1R activation inhibits 

evoked serotonin release. Since CB1R mRNA is present in raphe nuclei cell bodies (Häring et al., 

2007) it is feasible that presynaptic CB1Rs inhibited the evoked release of serotonin, although, 

polysynaptic processes such as the inhibition of putative glutamatergic drive onto serotonergic 

terminals might have also participated in this.     

Another alternative explanation can be that effects are dose-/concentration-dependent. Indeed, 

cannabinoid receptor agonists are known to produce bell-shaped dose-response curves in vivo. 

Though cannabis preparations are used recreationally mainly for their euphoric effects, often 

accompanied by a reduction in anxiety and a boost in sociability, some cannabis users sometimes 

experience dysphoric reactions with feelings of anxiety and panic. 

Rubino et al. (2008b) reported that in the frontal cortex, tonic activation of CB1R by low doses of 

its endogenous agonist, anandamide (AEA) and of another cannabinoid receptor, the TRPV1R by 

higher doses of AEA affected anxiety in opposite ways. It was also reported by Parolaro et al. 

(2010), that if the tissue levels of AEA become too low or too high, leading either to lack of CB1R 

activation or to TRPV1R stimulation, anxiogenic responses are observed. Physiological increases 

of AEA, on the other hand, promote an anxiolytic response through activation of CB1Rs. 

As mentioned above, deletion of the CB1R in mice, gave anxiety-like responses in different tests 

of anxiety such as the elevated plus-maze, the light-dark box, the open-field and the social 

interaction test (Haller et al., 2002, 2004b; Maccarrone et al., 2002; Martin et al., 2002; Uriguen et 

al., 2004). In intra-cerebral microinjection studies, activation of CB1Rs in the frontal cortex, ventral 

hippocampus and periaqueductal gray, induced an anxiolytic response (Moreira et al., 2009 Rubino 

et al., 2008a), whereas their activation in the amygdala and dorsal hippocampus gave rise to an 

anxiogenic one (Roohbakhsh et al., 2007; Rubino et al., 2008a). Therefore, the overall effect might 

depend on the amount of receptors saturated in each brain region, as already suggested by Hill 

and Gorzalka (2009). 
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1.7 Modulation of frontocortical glutamate release by CB1Rs  

Functional presynaptic CB1Rs have been first described by our laboratory both in rodents and 

human, and at high density in GABAergic nerve terminals of CCK-positive interneurons (Katona et 

al., 1999, 2000). Later, functional CB1Rs were also identified in striatal GABAergic terminals 

(Köfalvi et al., 2005), and in frontocortical GABAergic terminals (Fortin and Levine, 2007; Chiu et 

al., 2010). Still, the most interesting finding is that functional CB1Rs are present in many 

glutamatergic terminals either in the striatum (Köfalvi et al., 2005), or in the frontal cortex (Auclair et 

al., 2000; Barbara et al., 2003; Lafourcade et al., 2007). Results obtained from a variety of 

forebrain regions consistently indicate that cannabinoid agonists reduce glutamatergic synaptic 

transmission through CB1R activation (Domenici et al., 2006). 

 

1.8 Endocannabinoids: from where, to where? 

In the post-synaptic dendritic compartments apposing CB1R-positive terminals, in most cases 

the enzyme diacylglycerol lipase synthesizes the endocannabinoid, 2-arachidonoyl-glycerol (2-AG), 

and the enzyme phospholipase D cleaves AEA from its precursor upon Ca2+ entry and/ or 

metabotropic receptor stimulation. Then the released endocannabinoid molecules quickly traverse 

the synaptic cleft to activate presynaptic CB1Rs (Harkany et al., 2008; Haj-Dahmane and Shen, 

2011). Interestingly, one of the post-synaptic receptors capable of inducing endocannabinoid 

synthesis and the subsequent presynaptic inhibition of glutamate release is the 5-HT2-type, while 

5-HT1B receptors directly inhibit glutamate release acting presynaptically in the same synapse of 

the inferior olive (Best and Regehr, 2008). Indeed, the wide variety of different metabotropic 

serotonin receptor genes and their splice variants and RNA-edited products permit the serotonergic 

system to modulate synaptic transmission in diverse ways, depending on the subtype and the 

cellular and subcellular distribution of the receptors (Hoyer and Martin, 1996; Jensen et al., 

2010This information highlight the importance of the endocannabinoid and the serotonergic 

systems in the control of synaptic plasticity and memory formation (González-Burgos and Feria-

Velasco, 2008; Alger, 2009).  
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2. AIMS 
 
As understood from the previous section, neurological and psychiatric disorders commonly 

involve long-term impairment of serotonergic and cannabinoid control of synaptic plasticity in the 

prefrontal cortex (Otani, 2003; Köfalvi and Fritzsche, 2008; Goto et al., 2010; López-Gil et al., 

2010). Yet, little is known about the putative interaction between these two neuromodulators, for 

example, how do CB1R modulate serotonergic terminals? Thus, in this study we have mapped the 

distribution of CB1Rs in serotonin transporter- (SERT) positive terminals using fluorescent and 

confocal microscopy in the frontal cortex of the rat and the mouse. We also investigated the 

consequence of CB1R activation on stimulation-evoked, Ca2+-dependent serotonin release from 

frontocortical synaptoneurosomes. For the possible case of negative results in serotonergic 

terminals, we used glutamatergic terminals and glutamate release as a positive control (Auclair et 

al., 2000; Barbara et al., 2003; Lafourcade et al., 2007). Finally, the involvement of CB1R was 

confirmed by validating key experiments in CB1R knockout mice.  

We have been also invited to participate in collaboration with the laboratory of Dr. Beáta 

Sperlágh, Institute of Experimental Medicine, Budapest, Hungary. In this study, the Hungarian 

partner identified by pharmacological tools that putative presynaptic CB1Rs interacting with 2A 

adrenergic autoreceptors in noradrenergic terminals of the frontal cortex control noradrenalin 

release. Thus, our task was to bolster those pharmacological findings with immunohistochemistry.  
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3. MATERIALS AND METHODS 
 
3.1 Subjects 

All studies were conducted in accordance with the principles and procedures outlined in the EU 

guidelines (86/609/EEC) and by FELASA. Animals were housed in an SPF facility, with 12 h light 

on/off cycles and ad libitum access to food and water. Male Wistar rats (180-240 g, 8-10-week old) 

were purchased from Charles-River (Barcelona, Spain). CB1R null-mutant (knockout) male mice 

(Ledent et al., 1999) and their wild-type littermates on CD-1 background were genotyped from the 

tail, housed as detailed above and sacrificed daily in pairs (one WT and one KO), until 16 weeks of 

age. 

 

3.2 Microscopy sections 

Under deep sodium pentobarbital anesthesia (100 mg/kg body weight, i.p.), male Wistar rats, 

CB1R null-mutant mice of the CD-1 strain and their wild-type littermates were transcardially 

perfused with fixative (4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4). The brains 

were removed and immersed in the same fixative overnight and then kept in 30% sucrose in 

physiological saline (0.9% NaCl) for at least 48 h before sectioning. Forty micron-thick sections 

from the mouse brains and 30-!m-thick sections from the rat brains were cut using a Cryostat 

microtome (Leica) and collected into 0.1 M PBS containing 0.1% sodium azide. 

 

3.3 Immunohistochemistry 

Sagittal brain sections containing the frontal cortex of the animals were selected. Whether the 

rat and mouse have frontal cortex and if yes, what are its borders is contentious (Preuss, 1995; 

Seamans et al., 2008). Thus, we focused our study on the area called frontal associative cortex in 

the rat and the mouse (Paxinos and Franklin, 1997; Paxinos and Watson, 1998), and we will use 

the term frontal cortex hereafter. Free floating sections were blocked in 10% normal goat serum 

(Vector Laboratories, CA, USA)/ 5% BSA/ 0.3% Triton X-100 for 40 min and incubated overnight in 

a primary antibody cocktail of L-15 rabbit anti-CB1R (1:1000; raised by Dr. Ken Mackie), and 

mouse monoclonal anti-SERT (1:250; Abcam, UK), or guinea pig polyclonal anti-VGLUT1 (1:200; 

Synaptic Systems, Germany), or guinea pig polyclonal anti-VGLUT2 (1:200; Synaptic Systems). 

Sections were then washed in phosphate buffer (PB; 0.1 M) and incubated with a secondary 
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antibody cocktail containing DyLight 594 goat anti-guinea pig or anti-rabbit as well as and DyLight 

488 goat anti-mouse (all at 1:200; Kirkegaard and Perry Laboratories, Inc, USA), for 2 h. After 

washing in PB 0.1 M, the sections were mounted and coverslipped using Vectashield Hardest 

Mounting Medium (Vector Laboratories). Low magnification images where taken on a Zeiss 

axiovert 200 microscope equipped with AxioVision software and MosaiX module. Confocal images 

were taken using a Zeiss LSM510 META confocal microscope.  

 

3.4 Quality control for CB1R immunoreactivity 

Before acquiring high-resolution laser scanning images, settings were tested for possible auto-

fluorescence in a control slice without primary and secondary antibody treatment. Parameters were 

set to obtain the representative image seen in figure 1. Next, we observed that slices treated solely 

with secondary antibodies (DyLight 488 with DyLight 594) also failed to produce detectable 

staining. In conventional Western blotting, the L-15 antibody recognized a band at ~55 kDa in the 

RIPA-buffer protein extract from the wild-type but not from the CB1R knockout mouse cortex figure 

1. CB1R staining in the rat and in the wild-type mouse was virtually the same as with the guinea pig 

anti-CB1R (1:1000; Frontier Science, Hokkaido, Japan; licensed by Dr. Masahiko Watanabe) at any 

resolution tested (MS in preparation). No immunostaining was detected in the CB1R knockout 

mouse brain sections at any resolution (Figure 1). 
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Figure 1. A) Confocal image of a slice without primary and secondary antibodies to control for 

autofluorescence. B) Secondary antibodies DyLight 488 and 594 without primary antibodies. C) Western 

blotting with two different protein loads of samples prepared with RIPA buffer from the cortex of WT and 

CB1R KO mice. D) CB1R (D1) and VGLUT1 (D2) immunoreactivity and merged image (D3) in CB1R 

knockout mouse frontal cortex. Horizontal bars represent 10 m. 

 

3.5 Dual-label [3H]serotonin/[14C]glutamate release assay from frontocortical nerve terminals 

Experiments were carried out as before (Ferreira et al., 2009). Frontal cortices were quickly 

removed into 2 ml ice-cold sucrose solution (0.32 M, containing 5 mM HEPES, pH 7.4) and were 

homogenized instantly with a Teflon homogenizer, and centrifuged at 5,000 g for 5 min. The 

supernatant was centrifuged at 13,000 g for 10 min to obtain the P2 crude synaptosomal fraction. 

Synaptosomes then were diluted to 0.5 ml with Krebs’ solution (in mM: NaCl 113, KCl 3, KH2PO4 

1.2, MgSO4 1.2, CaCl2 2.5, NaHCO3 25, glucose 10, HEPES 15, pH 7.4, 37°C), containing the 

noradrenalin transporter inhibitor, reboxetine (30 nM; Tocris Bioscience, UK) and the dopamin 

transporter inhibitor, GBR12783 (100 nM; Tocris Bioscience) to prevent the non-specific uptake of 

[3H]serotonin into the respective terminals. All assay medium also contained the MAO-A/B inhibitor, 

pargyline (10 !M) to prevent [3H]serotonin degradation, and the glutamate decarboxylase inhibitor, 

Supplemental Figure 1. Teixeira et al.

Supplemental figure:

A) Confocal image of a slice without primary and secondary antibodies to control for 
autofluorescence. B) Secondary antibodies DyLight 488 and 594 without primary 
antibodies. C) Western blotting with two different protein loads of samples prepared 
with RIPA buffer from the cortex of WT and CB1R KO mice. D) CB1R (D1) and 
VGLUT1 (D2) immunoreactivity and merged image (D3) in CB1R knockout mouse 
frontal cortex. Horizontal bars represent 10 !m.
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aminooxyacetic acid (100 !M) to prevent [14C]glutamate metabolism. Under this condition, 

synaptosomes were incubated with both hydroxytryptamine 5-[1,2-3H] creatinine sulfate (American 

Radiolabeled Chemicals, Inc; final concentration, 300 nM) and [14C]-U-glutamate (PerkinElmer, 

USA; 20 !M) for 10 min. A 16-microvolume chamber perfusion setup was filled with the preloaded 

synaptosomes which were trapped by layers of Whatman GF/C filters and superfused continuously 

at a rate of 0.8 ml/min until the end of the experiment at 37°C. Upon termination of the 10-min 

washout, 2-min samples were collected for liquid scintillation assay, and the filters were also 

harvested to obtain the total radioactivity content. After collecting four 2-min samples as baseline, 

the evoked release of the transmitters was stimulated with 4-aminopyridine (4-AP) for 2 min. 

Vehicle (0.1% DMSO if agonist was tested alone and 0.2% DMSO when agonist and antagonist 

were combined) and drugs were added 4 min before the stimulation with 4-AP. In each experiment, 

treatments were applied in duplicate (i.e. eight conditions/ treatments in duplicate, averaged as n = 

1). For all conditions there was an unstimulated vehicle/ drug baseline control, which was then 

subtracted from the results, obtained with stimulation (Figure 6A,B). In this way we measured pure 

drug effects on the evoked release free from both the putative drug/ vehicle effect on the baseline 

and the putative vehicle effect on the evoked release. In fact, there was neither significant drug/ 

vehicle effect per se on the baseline or vehicle DMSO effect on the evoked release of either 

[3H]serotonin or [14C]glutamate (data not shown). 

When the wild-type (WT) and CB1R KO mice were tested, one mouse of each strain was used 

simultaneously in the same experiment, i.e. 1 WT for 8 of the 16 channels and 1 KO for the other 8 

channels.  

The [14C] and [3H] content of each samples were counted by a dual-label protocol using a 

Tricarb β-counter (PerkinElmer), and DPM values were expressed as fractional release (FR%), i.e. 

the percent of actual content in the effluent as a function of the total synaptosomal content. 

 

3.6 Chemicals not listed above 

WIN55212-2 and 4-aminopyridine were purchased from AscentScientific (UK). HEPES, 

sucrose, aminooxyacetic acid, and pargyline were obtained from Sigma (Saint Louis, Missouri, 

USA). O-2050, GBR12783, LY320135, and reboxetine mesylate were bought from Tocris 

Bioscience, UK. Non-water soluble substances were dissolved or reconstituted in DMSO and 

stored at -20 ºC until use. 
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3.7 Data treatment 

All data represent mean ± SEM of n # 6 observations (at least 6 animals) in the release 

experiments. Statistical significance was calculated on the raw data using repeated measures 

ANOVA with Bonferroni’s post-test for selected groups of data. Data then was normalized to 

everyday controls to visually enhance effect amplitudes. A p < 0.05 was accepted as significant 

difference.  
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4. RESULTS 
 

4.1 Immunohistochemistry 

CB1R staining varied from weak to very strong across the sagittal slice of the rat (Figure 2A1, 
B1, C1) and the mouse (Figure 3A1, B1, C1). Immunoreactivity was the strongest in the 

substantia nigra, in the globus pallidus, in the pyramidal cell layer of the hippocampus and in the 

cortex, including the frontal associative cortex and the pyriform cortex, while was modest in the 

caudate-putamen and was absent in the corpus callosum. Although not documented with images, 

the cerebellar cortex also showed strong CB1R immunoreactivity. For the quality controls for the 

antibody specificity and the immunohistochemical approaches, see Figure 1 as well as Figure 3D.  

In the neocortex, CB1R staining was laminar. The layers are marked in Figure 6D. Cortical 

layers II-III, Va and VI stained strongly with the CB1R antisera, intercalated with low (layers IV and 

Vb) or no CB1R staining (layer I) (Figures 2A4, B4, C4; 3A4, B4, C4, 6B). The serotonin 

transporter SERT and the vesicular glutamate transporter type-1 (VGLUT1) homogenously stained 

all layers of the cortex, while VGLUT2 staining was complementary to CB1R-positive layers, i.e. in 

layers I, IV and Vb (Figures 2A4, B4, C4; 3A4, B4, C4).  

At the highest resolution of confocal microscopy, CB1R immunoreactivity revealed fiber-like and 

punctate-like structures, i.e. probable axons and nerve terminals. VGLUT1 immunoreactivity, 

marking putative glutamatergic terminals was very dense throughout the frontal cortex, and 

frequently co-localized with CB1R immunoreactivity (Figure 4A1-3[mouse], C1-3[rat]). As 

mentioned above, VGLUT2 immunoreactivity marking other putative glutamatergic synapses was 

very sparse in CB1R-rich areas, in comparison to VGLUT1. Occasionally, CB1R immunoreactivity 

confined to VGLUT2-positive terminals as verified in the orthogonal projection of the optical slices 

(Figure 4B1-3, D1-3). SERT immunoreactivity was very strong throughout the neocortex. At the 

highest resolution of confocal microscopy, SERT staining appeared as an extremely dense 

meshwork of little dots, but sometimes fiber-like structures could also be detected. CB1R 

immunoreactivity gave high frequency co-localization with SERT as confirmed in the orthogonal 

projection of the optical slices (Figure 5A1-3[mouse], B1-3[rat]).  
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Figure 1. Teixeira et al.

 

Figure 2. (A1-3, B1-3, C1-3) Low magnification (5 $) fluorescent microscope images showing the 

distribution of the CB1R immunoreactivity in mouse sagittal brain sections and (A4, B4, C4) at 20 $ 

magnification in the frontal cortex. CB1R staining is overt in the substantia nigra (sn), in the globus pallidus 

(gp), in the pyramidal cell layer of the hippocampus (hip) and in the cortex, including the frontal associative 

cortex (fac) and the pyriform cortex (pc), while is modest in the caudate-putamen (s) and is absent in the 

corpus callosum (cc). (C) No immunostaining was detected in the CB1R knockout mouse brain slice (Figure 

1 D4; cb: cerebellum). Among the cortical layers, layers II-III, Va and VI stained strongly with CB1Rs. 

Horizontal bars represent 1 mm. 
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Figure 2. Teixeira et al.

 

Figure 3. (A1-3, B1-3, C1-3) Low magnification (5 $) fluorescent microscope images showing the 

distribution of the CB1R immunoreactivity in rat sagittal brain sections and (A4, B4, C4) at 20 $ magnification 

in the frontal cortex. CB1R staining is essentially the same as in the mouse. For the brain region labels see 

the legend of Figure 1. Horizontal bars represent 1 mm.  
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Figure 3. Teixeira et al.

Figure 4. Teixeira et al.

!
Figure 4. CB1R is present in VGLUT1-positive terminals, and to a smaller extent, in VGLUT2-positive 

terminals in the mouse (A1-3, B1-3) and rat (C1-3, D1-3) frontal cortex (confocal microscopy images; 

63x/1.40 oil DIC M27, 1 $ zoom, at 1024 dpi resolution). Co-localization is detected from all the three 

directions in the focus of the cross hair of the orthogonal projection of the 380 nm-thin optical section 

(marked with small arrows). Full arrowheads point to other co-localizations in the same field (A3-D3). 

Horizontal bars represent 10 !m. 

 

Figure 3. Teixeira et al.

Figure 4. Teixeira et al.

 

Figure 5. CB1R is present in SERT-positive terminals in the mouse (A1-3) and rat (B1-3) frontal cortex 

(confocal microscopy images; 63x/1.40 oil DIC M27, 1 $ zoom, at 1024 dpi resolution). Co-localization is 

detected from all the three directions in the focus of the cross hair of the orthogonal projection of the 380 

Figure 3. Teixeira et al.

Figure 4. Teixeira et al.
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nm-thin optical section (marked with small arrows). Full arrowheads point to other co-localizations in the 

same field (A3-D3). Horizontal bars represent 10 !m. 

 

The layered CB1R staining is somewhat mimicked by !2AR-stanining regarding that !2AR-

positive neurons (possible pyramidal cells; Figure 6C) appear in the layers II-III together with the 

CB1R, but less in layer IV, and starting again from layer Va through Vb and VI. This in clear 

contrast with D"H staining at low resolution which appears almost as background staining but at 

higher resolution, a meshwork of sometimes convoluted D"H-positive varicose fibers can be 

detected, such as the one in panel 6E. CB1R-positive elements sparsely co-localized with !2AR 

staining, forming likely presynapses connected to layer VI cells (Figure 7B). Although double or 

triple co-localizations were not evident (see e.g. Figure 6E), confocal microscopy analysis could 

detect triple co-localization, i.e. !2AR staining in CB1R-positive noradrenergic terminals (Figure 
7C4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
!



27 

Figure 6. Immunostaining in the rat frontal cortex. D"H (A, red), CB1R (B, green), α2AR (C, blue) and 

merged signal in the frontal cortex of the rat (30 !m-thick sagittal slice; 5 $ magnification). In panel D, the 

cortical layers are marked with roman numbers. The little black area in the center of panel D is amplified in 

panel E. In this panel, a DβH-positive varicose axon (red) is followed by vertical arrows, among α2AR-

positive cell bodies (putative pyramidal cells, blue), and CB1R-positive axons (green)  
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Figure 7. CB1R, DβH and α2AR co-localization revealed by confocal microscopy in the rat frontal cortex. 

(A1-3) CB1R (green; A1), DβH (red; A2) and merged signal (A3) in the layer VI of the frontal cortex of the 

rat. The yellow composite color is detected from all the three directions in the focus of the cross hair of the 

orthogonal projection of the 380 nm-thin optical section (marked with small arrows). (B1-3) CB1R (green; 

B1), α2AR (blue; B2) and merged signal (B3) in the layer II of the frontal cortex of the rat. Co-localization 

appears in turquoise from all the three directions in the focus of the cross hair, and is marked with small 

arrows. Full arrowheads point to other co-localizations in the same field (B3). (C1-4) Triple co-localization 

among DβH (red; C1) CB1R (green; C2), and α2AR (blue; C3). In panels (C1, 2, 4), the inclined small arrows 

point to CB1R-positive varicosities of a DβH-positive fiber innervating an α2AR-positive cell. In this region, 

several other varicosities were detected with CB1R staining (marked with horizontal, open arrows in C1). In 

panel (C3), asterisks label α2AR-positive, fiber-like structures (see also Figure 2C). Throughout the four 

panels, full arrowheads point to sparsely appearing triple colocalizations. All images represent 380 nm-thin 

optical sections, photographed with a confocal microscope in a sagittal slice (63x/1.40 oil DIC M27, 1 $ 

zoom, at 1024 dpi resolution).  

 

4.2 Functional assay 

CB1R activation decreases presynaptic transmitter release by inhibiting various Ca2+ channels 

(Twitchell et al., 1997), thus one needs a robust Ca2+-dependent release assay to reliably assess 

CB1R function. Usually, the stronger the release stimulus the greater and the more reliable the 

release, however, with increasing release the Ca2+-dependency decreases. Thus first, we 

optimized the simultaneously measured 4-AP-evoked [14C]glutamate (Figure 8A) and [3H]serotonin 

(Figure 8B) release from rat frontocortical synaptosomes for the size of the stimulus versus Ca2+-

dependency. We chose stimulation with 4-AP at 300 µM concentration based on the peak 

amplitude (Figure 8C) and reasonable Ca2+-dependency (Figure 8D). Notably, we used 100 nM 

Ca2+ instead of the omission of Ca2+ to preserve membrane integrity and to diminish Na+ entry 

through open voltage-gated Ca2+ channels in the “calcium-free” condition.  
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Figure 5. Teixeira et al.

Figure 6. Teixeira et al.

!
Figure 8. Optimization of the 4-aminopyridine (4-AP)-evoked and simultaneously measured 

[14C]glutamate/ [3H]serotonin release from rat frontocortical synaptosomes. (A,B) Release diagrams showing 

the time-course of unstimulated and stimulated (with 300 !M 4-AP for 2 min) release of both transmitters. 

(C) The concentration-dependent effect of 4-AP on the release of [14C]glutamate and [3H]serotonin. (D) 

Ca2+-dependency of the 4-AP- (300 µM) evoked release of [14C]glutamate and [3H]serotonin. N # 6, * p < 

0.05. 

 

The synthetic CB1R agonist, WIN55212-2 (1 !M) inhibited the evoked release of [14C]glutamate 

by 35.0 ± 4.7% (n = 8; p < 0.05) and [3H]serotonin by 17.4 ± 5.3% (n = 8; p < 0.05) (Figure 9). The 

amplitude of the inhibition depends on the size of the Ca2+ dependent fraction. Since 38.7 ± 8.0% 

(n = 6) was the Ca2+ dependent fraction for [3H]serotonin and 49.7 ± 17.8% for [14C]glutamate, the 

altogether inhibitory action of WIN55212-2 on the Ca2+-dependent release is ~44% and ~70% for 

serotonin and glutamate, respectively. 
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Figure 5. Teixeira et al.

Figure 6. Teixeira et al.

 

Figure 9. The synthetic CB1R agonist, WIN55212-2 (1 µM) diminishes the evoked release of both 

[14C]glutamate (A) and [3H]serotonin (B) in the rat, in a manner sensitive to selective CB1R antagonists, 

LY320135 (5 µM) and O-2050 (1 µM). Interestingly, the control evoked release of [3H]serotonin but not that 

of [14C]glutamate was greater in the CB1R global knockout mouse. N # 6, * p < 0.05. 

 

Both the low-potency CB1R inverse agonist, LY320135 (5 !M) and the highly potent and 

selective neutral CB1R antagonist, O-2050 (1 !M) abolished the effect of WIN55212-2 on the 

evoked release of [3H]serotonin (Figure 9B). O-2050 in the same experiments also prevented the 

inhibitory action of WIN55212-2 on the evoked release of [14C]glutamate (Figure 9A). However, 

LY320135 itself had a 21.8 ± 8.2% inhibitory action alone. Although the inhibitory action of 

WIN55212-2 was largely decreased by LY320135 it still remained statistically significant versus 

LY320135 alone.  

The parameters of the resting and evoked [14C]glutamate and [3H]serotonin releases were not 

significantly different in the CD-1 mouse form those in the Wistar rat. The amplitude of the evoked 

[14C]glutamate release was not different between the wild-type (WT) and the CB1R KO mouse (n = 

9, n.s.; Figure 9A). However, the inhibitory action of WIN55212-2 (1 !M) was totally absent in the 



31 

CB1R KO mouse (n = 9). In contrast, and to our surprise, CB1Rs in the serotonergic terminals of 

the mouse were endogenously active because WIN55212-2 could not induce further inhibition of 

evoked release of [3H]serotonin, and the evoked release of [3H]serotonin was 15.3 ± 4.8% (n = 10; 

p < 0.05) greater in the CB1R KO mouse. This difference is actually similar to the size of inhibition 

by WIN5512-2 of evoked [3H]serotonin release. 
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5. DISCUSSION 
 

Previous studies reported interaction between the endocannabinoid and the serotonergic 

systems in the brain. This interaction is bidirectional at different levels, involving various direct and 

indirect mechanisms and brain areas (see below). To our knowledge, this study is the first showing 

the presence of presynaptic functional CB1Rs in serotonergic nerve terminals of the frontal cortex. 

We showed here that CB1R activation decreases the Ca2+-dependent release of [3H]serotonin from 

frontocortical nerve terminals. Previous electrophysiological studies have shown that CB1R 

activation inhibits some glutamatergic transmission in the frontal cortex of the rat and mouse 

(Auclair et al., 2000; Barbara et al., 2003; Lafourcade et al., 2007). Interestingly, it was never 

mapped in the frontal cortex if CB1Rs are present in VGLUT1- or VGLUT2-positive terminals, or 

both. This question has been answered now by our study.  

Importantly, the distribution of CB1R immunoreactivity in the sagittal slices both at low and high 

resolution was essentially the same as in previous reports using either autoradiography 

(Herkenham et al., 1991), or immunohistochemistry with light microscopy (Tsou et al., 1998) and 

fluorescent/ confocal microscopy (Bodor et al., 2005). Although the anatomical description of the 

endocannabinoid system follows a generally consistent pattern throughout studies and assays, this 

is not quite true for the physiology and pharmacology. In fact, it is more the exception than the rule 

when a cannabinoid pharmacology study runs by the book; due to the increasing number of 

discovered and cloned cannabinoid receptors and the question of ligand selectivity (Köfalvi, 2008). 

The neutral CB1R antagonist, O-2050 abolished the effect of WIN55212-2 without having effect per 

se on the release of serotonin and glutamate. The CB1R inverse agonist LY320135 did the same 

on the release of serotonin, but already inhibited per se the release of glutamate and competitively 

antagonized the effect of WIN55212-2. This latter might be the result of that LY320135 is capable 

of binding to muscarinic and serotonin receptors in the low micromolar range (Felder et al., 1998). 

The other, actually more intriguing, finding was that while on both nerve terminal types in the rat 

and in the glutamatergic terminals in the mouse the CB1Rs were free from an endogenous tone – 

as one would expect in superfused synaptosomes – the CB1Rs appeared to be endogenously 

active in the serotonergic terminals of the mouse. This would not be the first report on constitutively 

active CB1Rs in the brain (see e.g. Hentges et al., 2005), but it is unexpected in superfused nerve 
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terminals. But then again, understanding that the majority of serotonergic terminals are actually 

varicosities and the serotonergic communication is rather non-synaptic, the origin and identity of 

endocannabinoids acting at these terminals/ varicosities are not expected to be the same as for a 

glutamatergic synapse. We assume that it well might be an autocrine regulation, i.e. these 

terminals themselves may release endocannabinoids locally. If it is true then it could be partially 

understood how CB1Rs can be kept activated in the synaptosomes. The overt difference between 

the rat and the mouse is also not surprising knowing that there are serious differences even among 

mouse substrains in those behavioral assays which involve the serotonergic system of the mouse 

brain (Matsuo et al., 2011). Importantly, in vivo there is evidence for that constitutively active 

CB1Rs inhibit medial frontocortical serotonin release, as assessed by microdialysis (Tzavara et al., 

2003). Additionally, the serotonergic neurons of the raphe nuclei (the origin of the serotonergic 

fibers of the whole brain) indeed express CB1R mRNA (Häring et al. 2007) and endocannabinoids 

release machinery (Haj-Dahmane and Shen, 2009). Thus, theoretically everything is given for a 

serotonergic neuron to release endocannabinoids to activate its own CB1Rs.  

Interestingly, endocannabinoids do not necessarily need to activate putative CB1Rs in raphe 

serotonergic neurons to inhibit serotonergic activity: endocannabinoids acting at presynaptic CB1Rs 

in excitatory afferents of other neurons can indirectly inhibit the activity of those neurons. For 

instance, Haj-Dahmane and Shen (2009) showed that glutamate induces endocannabinoid release 

from dorsal raphe serotonergic neurons, which in turn decreases further glutamate release. This 

process is termed depolarization-induced inhibition of excitation or DSE. Thus, CB1R activation 

decreases the excitatory input of serotonergic neurons and thereby indirectly decreases serotonin 

release in the brain. Notably, local glutamate release onto serotonergic fibers (Balázsa et al., 2008) 

can be also suppressed by CB1R activation, which further contributes to indirect inhibition of 

serotonergic activity by endocannabinoids. Such an indirect mechanism could have also 

contributed to the inhibition by CB1Rs of the electrically stimulated [3H]serotonin release from 

cortical slices (Nakazi et al., 2000). Balázsa et al. (2008) elegantly showed that NMDA channel 

blockade is necessary to reveal CB1R-mediated direct inhibition of depolarization-induced 

[3H]serotonin release in the hippocampal slice.  

The interaction between the two neuromodulator systems can occur at other levels as well: 

Cannabinoids are capable of directly inhibiting the serotonin 5-HT3 channel (Barann et al., 2002; 

Xiong et al., 2007; Köfalvi, 2008). This together with the direct inhibition of serotonin release by 
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presynaptic CB1Rs can be a candidate mechanism for the antiemetic action of cannabinoids 

(Parker and Limebeer; 2008). The receptor antagonism stretches beyond channel blockade: the 

natural cannabis constituent cannabigerol is a weak 5-HT1A antagonist (Cascio et al., 2010), while 

the other cannabis constituent, cannabidiol acts as a 5-HT1A agonist (Ledgerwood et al., 2010). 

These can contribute to certain extra effects of cannabis beyond the CB1R and CB2R. The “non-

selective interaction” between the two neuromodulador systems extends to the direct inhibition of 

the serotonin transporter by cannabinoids (Steffens and Feuerstein, 2003).  

Altogether, the endocannabinoid and serotonergic neuromodulator systems anatomically are 

highly overlapping, and they control the release and the function of each other in a multilayered 

fashion. This explains why the two systems are so intricately involved in most physiological and 

pathological mechanisms of the body. To better understand sociopathies and psychiatric disorders, 

a greater effort is required to study the complex interaction between serotonin and 

endocannabinoids.  

 

Our Hungarian collaborators examined whether cannabinoid receptors are involved in the 

modulation of electrical field stimulation evoked [3H]noradrenalin release from rat  frontocortical 

slices, in an experimental paradigm previously described by us (Köfalvi et al., 2005). Drs. Hardy 

Richter, Ágnes Kittel and Beáta Sperlágh (Institute of Experimental Medicine, Hungarian Academy 

of Sciences, Budapest) observed that WIN55212-2 (1 !M), inhibited the electrical stimulation-

evoked efflux of [3H]noradrenalin in a concentration-dependent fashion, which was sensitive to the 

CB1R antagonist/ inverse agonist, AM251 (1 µM). In contrast, idazoxan, a selective !2AR 

antagonist, augmented the evoked [3H]noradrenalin release. Interestingly, the combined effect of 

WIN55212-2 and idazoxan was supraadditive both in vitro, on the release of [3H]noradrenalin, and 

in vivo, on the forced swim behavior test. Furthermore, idazoxan triggered a decrease in CB1Rs 

density in the frontal cortex, suggesting that high extracellular level of norepinephrine 

downregulates CB1Rs. These all predict that CB1Rs might interact with !2ARs in noradrenergic 

terminals. Indeed, I found with the help of fluorescent and confocal microscopy analysis that CB1R 

immunoreactivity co-localizes in a subset of !2ARs in dopamine-"-hydroxilase-positive (i.e. 

noradrenergic) fibers in the frontal cortex. !2ARs are generally known to be presynaptic 

autoreceptors for noradrenergic fibers  
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6. CONCLUSIONS AND OUTLOOK 
 

In my studies I successfully concluded the aimed investigations. I established both an 

immunochemical (i.e. static) and a functional (dynamic) approach to study frontocortical CB1Rs 

with clearly positive controls, i.e. the presence of functional CB1Rs in glutamatergic nerve 

terminals.  

I thus describe here for the first time functional CB1Rs in monoaminergic nerve terminals, 

underpinning the role of the endocannabinoid system in mood/ personality disorders. My data also 

corroborate the undesired side effect - suicide - of long-term Acomplia-intake; which resulted in the 

removal of the selective CB1R antagonist, Acomplia from the market of antiobesity medicines 

(McPartland, 2009).   

I found that there has surprisingly little been done to better understand the role of the 

monoaminergic systems in the (patho)physiology of the lower- and higher-order brain functions 

such as neurogenesis, metabolism or love. The enormous density of serotonergic fibers exceeding 

that of the CB1R-positive fibers make me wonder if my research priorities has been set correctly 

before.  

I intend to further pursue the role of serotonin in the brain, and to render more complex 

experimental approaches to my previous findings, including more sophisticated immunochemical 

approaches, selective CB1R knockout animals in serotonergic neurons (a fresh collaboration 

between our laboratory and the group of Prof. Beat Lutz, Mainz, Germany), as well as in vivo test, 

respectively.  

I believe that understanding the neuromodulation of neuromodulators (for instance, 

understanding how CB1Rs control noradrenalin release) cannot be the objective of a follow-up 

study. Rather, I would aim at understanding personality disorders, and using my current knowledge 

on neuromodulator interactions as a tool.  
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