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Abstract 

 

Inflammation, in general, is a physiological response of the body to different types of tissue 

injury, causing a cascade of coordinated cellular and biochemical reactions. Neurodegenerative, 

inflammatory and neoplastic disorders involve neuroinflammatory reactions that isolate the 

damaged tissue and promote immune responses. Likewise, neuroinflammation (NI) implicates a 

complex orchestrated response to various stimuli in the central nervous system (CNS) aiming 

towards tissue preservation and restoration. Neuroinflammatory reactions involve a cellular 

response by activating cells of the monocyte lineage, whether resident or circulating. Microglia are 

the resident cells of the monocyte lineage in the CNS and their activation constitutes a main 

feature of neuroinflammation. The process involves an overexpression of the 18 kDa 

translocator protein (TSPO) receptor by cells of monocyte/macrophage lineage and, in the 

central nervous system (CNS), by activated microglia. PK11195 is a specific ligand for the TSPO 

receptor and therefore a marker for activated microglia. The (R)-enantiomer radiolabelled with 

Carbon-11, (R)-[N-Methyl-11C]PK11195, is the most widely used radiotracer for in vivo TSPO 

imaging with PET.  

In this work we report on the optimisation of the synthesis, purification and reformulation 

of (R)-[N-methyl-11C]PK11195 by the captive solvent method with the aim of being used for in 

vivo PET imaging studies. 

Carbon-11 is obtained as [11C]CO2 by irradiation of a gas target (N2+0.5% O2) using the 

14N(p,α)11C nuclear reaction in a IBA Cyclone 18/9 cyclotron. [11C]CH3I is produced by the 

‘liquid-phase’ reduction of [11C]CO2 with LiAlH4/THF(0.1M) to [11C]CH3OLi and further 

addition of HI on a methyl iodide production system. [11C]CH3I is then distilled at 120 ºC, 

trapped in captive solvent loop pre-loaded with (R)-[N-desmethyl]PK11195 precursor solution 

(dissolved on 100 μl of DMSO and saturated with 30 mg of KOH), and reaction takes place. 

Reaction products ([11C]-X) go through a semi-preparative reverse-phase C18 HPLC column for 

purification. Finally, (R)-[N-methyl-11C]PK11195 is formulated in 9 ml of physiological saline (0.9 

%) and 1 ml of EtOH, and filtered through a sterilizing 0.22 μm membrane filter. 

Synthesis process is carried out in about 35 minutes, and quality control tests were 

performed to ensure the good quality of product. 149.71±50.25 mCi of (R)-[11C]PK11195 were 

obtained at EOS with specific activities between 15-25 GBq/μmol on a short overall synthesis 

time. 
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The captive solvent method offers an easy and reproducible way to automate the routine 

production of [11C]-labelled radiopharmaceuticals for human use. The production method is fast, 

considering the short half-life of carbon-11 (20.4 min.) and can produce the final products in 

high radiochemical purities and good specific activities. 

 

Keywords: [11C]PK11195, carbon-11, captive solvent loop, ‘wet’ method, [11C]CO2, 

[11C]CH3I, neuroinflammation, microglia, TSPO, PET. 
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Resumo 

 

A inflamação, em geral, é uma resposta fisiológica do corpo para com diferentes tipos de 

lesão do tecido, provocando uma cascata coordenada de reacções celulares e bioquímicas. 

Distúrbios neurodegenerativos, inflamatórios e neoplásicos envolvem reacções 

neuroinflamatórias que isolam o tecido danificado e promovem respostas imunitárias. Da mesma 

forma, a neuroinflamação (NI) implica uma complexa e orquestrada resposta a vários estímulos 

no sistema nervoso central (SNC), com vista para a preservação do tecido e sua restauração. 

Reacções neuroinflamatórias envolvem uma resposta celular através da activação de células da 

linhagem do monócito, residentes ou circulantes. Microglia são as células residentes da linhagem 

dos monócitos no SNC e a sua activação, constitui uma característica principal da 

neuroinflamação. O processo envolve uma sobre expressão dos receptores da proteína 

translocadora de 18 kDa (TSPO) em células da linhagem dos monócitos/macrófagos e, no 

sistema nervoso central (SNC), pela activação da microglia. PK11195 é um ligando selectivo para 

o receptor da TSPO e, portanto, um identificador da microglia activada. O enantiómero (R) 

marcado radioactivamente com carbono-11, (R)-[N-metil-11C]PK11195, é o radiotraçador mais 

utilizado para imagiologia in vivo da TSPO com PET. 

Neste trabalho, reportamos a optimização da síntese, purificação e reformulação de 

(R)-[N-metil-11C] PK11195 pelo ‘captive solvente method’ com a finalidade de ser utilizado para 

imagem in vivo em estudos de PET. 

Carbono-11 é obtido sob a forma de [11C]CO2 por irradiação de um alvo de gás 

(N2+O2 0,5%), utilizando a reacção nuclear 14N(p,α)11C num ciclotrão. [11C]CH3I é produzido por 

redução de [11C]CO2 com LiAlH4/THF (0,1 M) via ‘fase liquida’ a [11C]CH3OLi, e pela adição 

posterior de HI em um sistema de produção de iodeto de metilo, o [11C]CH3I é destilado a 120ºC. 

Ao mesmo tempo, o [11C]CH3I destilado é aprisionado num loop previamente carregado com 

uma solução da molécula precursora desmetilada (R)-[N-desmetil]PK11195 (dissolvida em 100μl 

de DMSO e saturada com 30mg de KOH), iniciando-se a reacção ao mesmo tempo que se 

aprisiona o [11C]CH3I. Produtos da reacção ([11C]-X) passam por uma coluna HPLC semi-

preparativa de fase reversa (C18) para purificação. Finalmente, (R)-[N-metil-11C]PK11195 foi 

formulado em 9ml de soro fisiológico (0,9%) e 1ml de EtOH e filtrado através de um filtro 

esterilizado de membrana de 0,22μm. 

O processo de síntese realiza-se em cerca de 35 minutos, e testes de controlo de qualidade 

foram realizados para garantir a boa qualidade do produto. 149,71±50,25mCi de 
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(R)-[11C]PK11195 foram obtidos no final da síntese com actividades específicas entre 

15-25GBq/μmol num curto período de síntese. 

O ‘captive solvente loop’ proporciona uma maneira fácil e reprodutível para automatizar a 

produção de rotina de radiofármacos marcados com 11C para uso humano. O método de 

produção é rápida, tendo em conta a curta meia-vida do carbono-11 (20,4 min), podendo-se 

produzir produtos finais com elevada pureza radioquímica e boa actividade específica. 

 

Palavras Chave: [11C]PK11195, carbono-11, captive solvent loop, ‘wet’ method, [11C]CO2, 

[11C]CH3I, neuroinflamação, microglia, TSPO, PET. 
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Introduction 

 

PART I: General Introduction 

Inflammation, in general, is a physiological response of the body to different types of tissue 

injury, causing a cascade of coordinated cellular and chemical reactions. The inflammatory 

process isolates the damaged tissue and promotes an immune response [1]. Likewise, 

neuroinflammation (NI) implicates a complex orchestrated response to various stimuli in the 

central nervous system (CNS) aiming toward tissue preservation and restoration. 

Neuroinflammatory reactions involve a cellular response by activating cells of the monocyte 

lineage, whether resident or circulating. Microglia are the resident cells of the monocyte lineage in 

the CNS and their activation constitutes a main feature of neuroinflammation [2].  

This activated stage of microglia, upregulates the expression of the 18 kDa translocator 

protein (TSPO), which can be detected in vivo by positron emission tomography (PET) imaging 
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using a selective TSPO radioligand [3]. One of the first PET ligands for human studies of 

activated microglia (TSPO overexpression) was PK11195, a lipid soluble isoquinoline 

carboxamide, labelled with carbon-11 ([11C]PK11195) [4], and it still today the most widely used 

radiotracer for in vivo TSPO imaging [5]. In this work we report on the optimisation of the 

synthesis, purification and reformulation of (R)-[N-methyl-11C]PK11195 with the aim of being 

used for in vivo PET imaging studies. 

 

1.1. Objectives 

The aim of this work is to optimize and automate the synthesis, purification and 

reformulation of (R)-[N-methyl-11C]PK11195 in order to produce a stable, sterile and 

ready-to-inject solution of the radiopharmaceutical with sufficient activity and quality to be used 

in clinical PET studies of neuroinflammation. A substantial part of the work developed is 

applicable to other carbon-11 (11C) labelled compounds and, in fact, has been of critical 

importance for the production of other tracers, notably [11C]Pittsburg Compound B  ([11C]PiB). 

Accordingly, the main objectives of the work are: 

- Optimisation of synthesis process: reagents, reaction times, temperatures, solvents 

and bases; 

- Reformulation of product in a ready-to-inject solution; 

- Quality assurance of the product, e.g., quality control; 

- Quality control of the product: radiochemical yield, specific activity, chemical and 

radiochemical purity, residual organic solvents, apyrogenecity and sterility; 

- Programming and automation of the modules for routine production and 

troubleshooting; 

- Cost optimisation of all components required for the production process 

(disposable spare parts, valves, reagents and solvents). 

This was done in parallel with normal activities of a busy radiochemistry laboratory, 

including active participation in routine as well as clinical and pre-clinical production tasks. 
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1.1.1. Timeline of the Project 

 

 

Writing final 

MSc thesis 
Formulation and quality 

optimisation of product 

Synthesis process 
optimisation 

Programming module 
for adaptation of  
existing scripts 

Non-Curricular 
Traineeship 

SEPTEMBER 

2012 
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2011 

Integration 
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Know and master 
the equipment  

Adaptation of 
existent scripts 

Troubleshoot of 
hardware problems 

[11C]CH3I production 
optimisation 

Captive solvente loop 
[11C]methylation optimisation 

Specific activity optimisation 

[11C]PK11195 
formulation 

Purification of [11C]PK11195 
optimisation 

 

 

Figure 1.1 Timeline of the work during the final year project. 

 

Involvement in all laboratory activities included a substantial contribution for an optimized 

production of [11C]PiB ([11C]Pittsburg Compound B). This radioligand is a benzothiazole 

derivative of thioflavin T that is used to image beta-amyloid deposits in Alzheimer’s disease 

patients with positron emission tomography (PET).  

This collaboration work was also presented on the 2nd Bioengineering Meeting IEEE-

EMBS: 

G. Clemente, V. Alves, A.J. Abrunhosa, “Synthesis Optimisation of Pittsburgh Compound B by the 

Captive Solvent Method” – Acceptance for oral presentation at the 2nd Bioengineering Meeting IEEE-

EMBS (February, 2012 in Coimbra, Portugal). 

 

1.2. The Institute for Nuclear Sciences Applied to Health 

The work was developed at Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), 

more exactly at the Radiochemistry and Cyclotron laboratory managed by ICNAS-Produção, 

Unipessoal, Lda. 

ICNAS is an organic unit of University of Coimbra (UC) sited on the Health Campus, and 

is devoted to basic as well as clinical research on the biomedical use of radiation. It was opened in 

2009 and since then the radiochemistry laboratory has made available several 

radiopharmaceuticals labelled with short-live positron emitters (fluorine-18 and carbon-11) for 

research as well as routine clinical studies. Besides [18F]FDG, ICNAS is currently producing other 
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18F-based molecules such as [18F]NaF and [18F]Fluorocholine. As for carbon-11, the list of 

molecules available include [11C]PiB, [11C]PK11195, [11C]Raclopride and [11C]Flumazenil. 

ICNAS is equipped with a full GMP licensed laboratory for the production of 

radiopharmaceuticals and since December 2011 holds a Marketing Authorization for its own 

[18F]FDG. 
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Part II: Theoretical Background 

1.3. Neuroinflammation 

The inflammatory process [2], as a physiological response to tissue insults, is basically a 

complex orchestrated chemical and cellular response to various stimuli aiming toward tissue 

preservation and restoration. The inflammatory reaction isolates the damaged tissue and 

promotes immune responses, leading to a local production of cytokines: protein molecules that 

are responsible for the mechanisms of cellular differentiation. This culminates in the formation of 

a scar which isolates physically the lesion form healthy tissue, which is generally beneficial in 

neutralizing potential threats by minimizing cellular damage and contributing to support repair 

and regeneration (acute inflammation). On the other hand, when excessive or persistent 

inflammation degenerates the tissue injury, the inflammatory response can be detrimental, 

initiating cellular damage (chronic inflammation). The central nervous system (CNS) is 

characterised by a limited ability to regenerate its own tissues, thus chronic neuroinflammation is 

closely related with several neurodegenerative disorders such as Parkinson’s disease (PD), 

Huntington’s disease (HD), Dementias and Multiple sclerosis [3]. Acute neuroinflammation is 

generally caused by some neuronal injury after which microglia migrates to the injured site to 

minimize injury and promotes tissue repair. Otherwise, in chronic neuroinflammation, microglia 

remains activated for an extended period of time and the production of mediators is continuous. 

This response of microglial cells contributes to an increase of the neurodestructive effects, and 

the worsening of the disease [6]. In fact, there is no longer a clear distinction between acute and 

chronic states of inflammation, and in the CNS, the distinction has not been applied consistently 

prevailing the notion that when inflammation is present , chronic neuroinflammation is presumed 

[6]. 

 

1.4. Microglia 

Microglia cells are critical in the protection of the brain parenchyma against brain injuries 

such as infection, trauma, ischemia, brain tumours and neurodegenerative diseases. These cells 

are the resident macrophages of the central nervous system and they are the main component of 

immune defence on the CNS, since they have the ability to become phagocytes, when needed [3]. 

They make up approximately 20% of the total glial population of the CNS, and act as a first line 

of defence against pathological insults at this primary site [7, 8]. Del Rio Hortega was the first to 
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recognize the pathological importance of microglia in CNS, and he also coined the term [9]. In a 

healthy brain parenchyma, resting microglia do not engage in phagocytic or pinocytic activity. 

After an injury or CNS disease, microglial cells abandon their ramified resting-like morphology 

and become activated, acquiring phagocytic properties and respond to tissue insult with a 

complex array of inflammatory cytokines and actions, essentials for the annihilation of the 

neuronal insult [3, 10]. Derived from the monocytic lineage, these cells display high sensitivity to 

different types of CNS injury [11], and they are able to respond quickly. 

 

1.4.1. Activated stage of microglia 

Microglia activation plays an important role in neuroinflammation. During the process, 

cells change from a resting phenotype to an activated phenotype in response to a wide variety of 

CNS insults. That does not mean that microglial cells are totally inactive during resting state. 

Quite the contrary, cells are actually quite active, and regulate their processes by continuously 

monitoring the external milieu [12, 13]. 

During neuroinflammation, the microglia cells suffer drastic changes in their morphology, 

migrate to the lesion site, proliferate and produce neurotoxic factors such as proinflammatory 

cytokines and reactive oxygen species. This morphological change is an important characteristic 

that can be observed after activation. Cells undergo changes from a ramified structure to a hyper-

ramified and at last to an amoeboid morphology that is fully capable of fagocytosis. The 

amoeboid structure facilitates migration of the microglial cell through the parenchyma to the 

lesion sites to engulf the offending material. Microglia can become activated by disruption of the 

blood brain barrier (BBB), fluxes in extracellular glutamate, extracellular ATP from damage cells, 

and disrupted tonic inhibition via fractalkine receptor [14]. 

Most immune receptors that are essential to the initiation and propagation of immune 

responses are constitutively expressed at low levels on microglia. The immunologically relevant 

molecules are upregulated during the microglial activation, and the production of inflammatory 

mediators is stimulated [15]. Several phagocytic receptors are also expressed by microglia, 

functioning as the “professional” phagocytes of the CNS.  

Microglia is actively repressed through signals coming from electrically active neurons, and 

when this tonic inhibition is removed, it can lead to microglial activation [15]. 
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1.5. 18 kDa Translocator Protein 

Benzodiazepines are one of the most commonly prescribed class of drugs. In the CNS they 

bind to a specific benzodiazepine alosteric binding site on the γ-aminobutyric acid (GABA)A 

receptor complex modulating the GABAA-regulated opening of Cl- channels that is responsible 

for the inhibition of neuronal activity. In addition, another type of benzodiazepine binding site 

was identified in 1977 by Braestrup et al. [16] where they noticed that the benzodiazepine 

diazepam had a high affinity for the mitochondrial fractions of rat kidney. This ‘peripheral’ 

diazepam binding site was shown to be abundantly distributed in the peripheral tissues and was 

defined as peripheral-type benzodiazepine binding site or peripheral benzodiazepine receptor 

(PBR). Subsequent studies demonstrated the presence of PBR in glial and in ependymal cells of 

the brain [17]. It was also demonstrated that this “peripheral”-type benzodiazepine site for 

diazepam was pharmacologically, anatomically, structurally, and physiologically distinct from 

“central” benzodiazepine binding site [18]. 

A new name ‘TSPO’ was later proposed by a focus group in 2006 [19], being the peripheral 

benzodiazepine receptor renamed to 18 kDa translocator protein (TSPO). This new 

nomenclature aims to better represents its subcellular role (or roles) as a cholesterol translocator, 

its putative tissue-specific function (or functions) and its molecular weight [19, 20]. TSPO is a 

large transmembrane protein complex found at high levels on the outer mitochondrial membrane 

of the cells in the peripheral organs, such as heart, kidney lung, adrenal cortex, salivary gland, 

testis or ovaries [21-23]. It is also founded, but at low levels, primarily associated with the glial 

cells in the normal brain [24].  

 

1.5.1. Structure 

TSPO is an 18 kDa protein consisting of 169 amino-acids and is highly hydrophobic and 

rich in tryptophan  [10]. TSPO, at a subcellular level, is present mainly on the outer membrane of 

mitochondria, specialy at contact sites between the inner and outer membrane, where the 

translocator protein is particularly enriched. These sites are known as the mitochondrial 

permeability transition pore (MPTP) and are formed by at least three different subunits on the 

mitochondrial outer membrane (Figure 1.2): (1) the isoquinoline binding protein of 

18 kDa (TSPO); (2) a voltage-dependent anion channel of 32 kDa (VDAC); and (3) an adenine 

nucleotide transporter of 30 kDa (ANT) [5, 25]. 
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Figure 1.2 Structures of TSPO as a hetero-oligomeric complex. This multimeric complex consists at least of three 

different subunits, including the isoquinoline binding protein of 18 kDa (TSPO), a voltage-dependent anion channel 

of 32 kDa (VDAC) and an adenine nucleotide transporter of 30 kDa (ANT) Adapted from [5]. 

 

Thus, TSPO has a putative five transmembrane helical structure (Figure 1.2) forming a 

hetero-oligomeric complex present in mitochondria of astrocytes and microglia (Figure 1.3). In 

association with the VDAC and the ANT contains inner and outer membrane contact sites to 

enable the passage of lipophilic molecules through the intermembrane space [21]. 

 

 

Figure 1.3 Schematic diagram of the hetero-oligomeric complex localized on the outer mitochondrial membrane of 

astrocytes and microglia. Obtained from [4]. 

 

1.5.2. Function 

Decades of studies of TSPO in mammals showed many physiological functions that can be 

attributed to TSPO such as cell grow and proliferation, steroidogenesis, bile acid synthesis, 

calcium flow, chemotaxis and cellular immunity, heme biosynthesis, and mitochondrial 

respiration and apoptosis [24]. Amongst the physiological functions of TSPO, steroidogenesis is 

the best well-known. TSPO is enriched in steroid synthesising tissues such as the adrenal gland 
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and the testis, where TSPO mediates cholesterol transport from the outer to the inner 

mitochondrial membranes [26]. Its presence at the mitochondrial permeability transition pore 

(MPTP) also implicates TSPO in the regulation of necrotic and apoptotic cell dead as ligands that 

are able to cause opening of the MPTP result in the induction of apoptosis [27]. Cell proliferation 

in cancer cell lines is also inhibit by TSPO ligands, which cause an arrest of the cells at the G1/G0 

phase of the cell cycle, leading to the inhibition of the progression of the cells to the S and G2/M 

phase, where cell proliferation occurs [28]. Due to TSPO expression on microglia and other 

immune cells, this protein also plays a role in immune regulation. 

The functions of TSPO in the CNS are not clearly known [29]. Under normal physiological 

conditions, the levels of TSPO in the CNS are very low and limited to glial cells (astrocytes and 

microglia). But, it is thought that this receptor is involved in neurosteroid synthesis [30], 

regulation of mitochondrial function [10] and modulation of neuroinflammation in microglial 

cells [4]. Even though the function of TSPO in CNS is not yet entire clear, several studies have 

focused on changes in TSPO expression in a number of CNS disorders [3, 4, 25, 31]. 

 

1.5.3. TSPO in neuroinflammation 

As mentioned before, TSPO is present at very low levels in normal brain, limited to glial 

cells, but it is upregulated at sites of injury and inflammation [32]. TSPO is expressed by the 

mitochondria of activated microglial cells in response to a diversity of insults and pathogens. This 

process is not exclusive of microglia and can also be found on macrophages in response to 

inflammation throughout the body, e.g. associated with tumoral activity [5, 32]. Similarly to 

macrophages, microglial cells respond to any pathological event, through the production and 

release of pro-inflammatory cytokines (Figure 1.4).  
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Figure 1.4 Schematic diagram of function and mechanism of 18 kDa translocator protein (TSPO). Obtained 

from [4]. 

 

There is a range of synthetic TSPO ligands whose binding profile will potentially aid in the 

understanding of the TSPO binding sites and should help to determine any conformational 

changes in the TSPO protein that may occur in neuroinflammation and in various CNS disease 

states. TPSO ligands have the potential to be used in vivo and post-mortem analyses of a variety 

of CNS diseases including AD, PD, HD, multiple sclerosis, and mood disorders. It makes TSPO 

as an ideal and sensitive biomarker for microglial activation in neuroinflammatory processes.  

These outcomes have encouraged researchers to develop radioligands for TSPO. Although 

new probes are currently being developed to visualize this receptor, [11C]PK11195 remains the 

most widely used radiotracer for PET imaging of the TSPO benefiting from a significant clinical 

experience and important results in a number of  neuroinflammatory and neurodegenerative 

diseases [5, 33]. 

 

1.5.4. TSPO ligands 

As a consequence of the marked upregulation of TSPO in active disease states, it becomes 

an attractive target for in vivo imaging of disease progression using functional imaging modalities 

such as PET [4]. The TSPO is now considered a significant therapeutic and diagnostic target 
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promoting a substantial effort in TSPO ligands development.  

Radioligands for TSPO can be divided in seven chemical classes or entities [2], including 

benzodiazepines (1), isoquinoline carboxamides (2), indoleacetamides (3), vinca alkaloids (4), 

oxodihydropurines (5), phenoxyarylacetanides (6), and imidazopyridines and bioisoteric structures 

(imidazopyridines and pyrazolopyrimidines) (7). Examples of some TSPO-binding ligands from 

these classes are shown in Figure 1.5. 

 

 

Ro5-4864 (1) 

 

(R)-PK11195 (2) 

 

SSR180575 (3) 

 

Vinpocetine (4) 

    

 

AC-5216 (5) 

 

DAA1106 (6) 

 

CLINME (7a) 

 

DPA-713 (7b) 

Figure 1.5 Chemical structures of some TSPO-selective compounds, Ro5-4864 (1), (R) PK11195 (2), SSR180575 (3), 

Vinpocetine (4), AC 5216 (5), DAA1106 (6), CLINME (7a), and DPA 713 (7b). 

 

Benzodiazepines are a class of drugs known for being extensively prescribed for the relieve 

of anxiety and insomnia. They are also considered sedative and anticonvulsant because of their 

pharmacological effects (e.g. diazepam). After the discovery that diazepam binds with relatively 

high affinity to both TSPO and GABAA receptors in rat brain, new benzodiazepine derivatives 

began to appear aiming at establishing the difference between these two types of receptors. The 

benzodiazepine derivative [11C]Ro5-4864 (4’-chlorodiazepam), was synthesised at the same year 

as [11C]PK11195 and it was the first molecule able to discriminate “peripheral” from “central” 

benzodiazepine binding sites [2]. It was a 4’-chloro derivative of diazepam and was found to bind 

with high affinity to TSPO derived from rat kidney and with low affinity to GABAA [34]. 
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In 1983, Lefur and co-workers detailed the isoquinoline carboxamides as a new class of 

TSPO radioligands in addition to benzodiazepines [35]. The isoquinoline carboxamides (Figure 

1.6) are structurally different from benzodiazepines and have a higher affinity for TSPO than for 

GABAA. The first isoquinoline carboxamide synthesised in 1984 was PK11195 (more 

information in section 1.6) and since then it has found numerous applications in a number of 

animal and clinical studies. 

 

 

(R)-[11C]PK11195 (2) 

 

[11C]PK11211 

 

[11C]PK14105 

 

[18F]PK14105 

Figure 1.6 Chemical structures of isoquinoline carboxamides. 

 

There has been a wide range of ligands developed over the years that show high affinity to 

the TSPO binding site. All share some common features [36] including a fused bicyclic aromatic 

system containing two electronegative boundaries and a freely rotating aromatic ring. Moreover, 

many ligands also contain a third electronegative group surrounded by lipophilic substituents 

[36]. Development of new TSPO ligands is also underway with the aim of finding more selective 

and specific compounds based of those structures. From those, compounds with favourable in 

vivo binding properties and kinetics could be used to increase our understanding of the normal 

functioning of the TSPO and the chemical pathways underlying several pathological conditions. 

 

1.6. (R)-[11C]PK11195 

PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline] was the first 

non-benzodiazepine high-affinity selective TSPO ligand (KI=9.3 nM) and was labelled with 

carbon-11 ([11C]PK11195) as a probe for PET imaging [37]. It was discovered in 1984 and named 

after a French company, Pharmuka [38]. 

In 1994, Shah et al. [39] synthesised and compared in vivo the R and S enantiomer of 

[11C]PK11195 (Figure 1.7) in rats with a cortical focal lesion. This study showed a twofold higher 

affinity of the (R)-[11C]PK11195 enantiomer, making it advantageous over the (S)-[11C]PK11195 
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for imaging studies. With its nanomolar binding affinity, it remains today the most widely used 

ligand for TSPO imaging and is regarded as the prototypal reference for new compound 

development [5]. 

 

 

(S)-[11C]PK11195 

 

(R)-[11C]PK11195 

Figure 1.7 Chemical structures of (R)- and (S)-[11C]PK11195. 

 

PK11195 presents favourable kinetic proprieties that allow its use as an in vivo ligand 

including the ability to permeate the blood brain barrier (BBB) by passive diffusion [37] with an 

extraction from blood to brain of over 90%. Studies of whole-body distribution and metabolism 

of (R)-[11C]PK11195 in humans [40], showed a large inter-individual variation in the amount 

radiolabelled metabolites in plasma. Whole-body distribution of (R)-[11C]PK11195 showed the 

highest radioactivity levels in urinary bladder, adrenal gland, liver, salivary glands, heart, kidneys 

and vertebral column. (R)-[11C]PK11195 seems to be eliminated through both the renal and 

hepatobiliary systems. 

(R)-[11C]PK11195 exhibits high affinity for the TSPO in all species [41], however newer 

radioligands are beginning to appear as an alternative to PK11195 [34, 42, 43]. They have, so far, 

failed to replace it due to inadequate pharmacokinetic proprieties, poor bioavailability toward 

brain tissue or a high level of nonspecific binding [33]. All these new ligands share some common 

features that allow researchers to have a better insight of the TSPO binding domain, thus 

opening the door for the development of better, more selective and specific tracers that could be 

available in the future. 
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1.6.1. PET imaging studies of TSPO in human diseases 

Overexpression of TSPO can be detected in vivo by PET imaging with selective 

radioligands such as [11C]PK11195 [2, 3, 29, 37]. With the evidence that [11C]PK11195 binding 

potential (BPND) increases with the activation of microglia [44], this tracer has been used in a wide 

range of human CNS diseases that involve some degree of inflammation such as Parkinson’s 

disease (PD), Huntington’s disease (HD), multiple sclerosis , Alzheimer’s disease (AD), 

Dementia, Rasmussen’s encephalities, amyotrophic lateral sclerosis, infectious diseases (HIV and 

herpes encephalitis), and neuropsychiatric disorders such as schizophrenia [37]. Thus, the 

assessment of TSPO with PET provides an in vivo tool to monitor the progression and severity of 

neuroinflammation, providing a useful biomarker for several active CNS diseases. 

 

Parkinson’s disease (PD) 

Parkinson’s disease is the second most common neurodegenerative disorder of the aged 

and is associated with the motor symptoms of tremor, bradykinesia, and rigidity. PD is 

characterised by the extended loss of dopaminergic neurons in the substantia nigra pars 

compacta, resulting in a deficiency of dopamine in the striatum. PD is the most common of a 

group of parkinsonian movement disorders that also includes multiple system atrophy, 

corticobasal degeneration, and progressive supranuclear palsy [45].  

Several studies suggest a close relationship between neurodegeneration and 

neuroinflammation in PD, and further clues regarding the role of activated microglia has also 

come from in vivo PET imaging studies [3]. Inflammation through activated microglia can be 

measured directly using [11C]PK11195 and this tracer has paved the road to in vivo animal and 

human PET studies for measuring neuroinflammation in PD [45]. 

Two PET studies have reported a significant increase in (R)-[11C]PK11195 binding in both 

striatal and extrastriatal regions in PD patients when compared to normal controls (Figure 1.8) 

[46]. In one of these studies, levels of putamen dopamine transporter binding were inversely 

correlated with levels of midbrain microglial activation. 
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Figure 1.8 PET scans with [11C]PK11195 of a healthy subject and a Parkinson’s disease patient. Mild microglial 

activation is seen in the thalamus of the healthy control but a significantly raised activation is evident in the midbrain 

and striata of the PD patient. Obtained from [46]. 

 

Additional, extensive binding of (R)-[11C]PK11195 has been observed in patients with the 

atypical syndrome multiple system atrophy [47]. Taken together these findings support the 

hypothesis that neuroinflammatory responses, as evidenced by activation of microglia, contribute 

to neuronal loss in PD and other neurodegenerative diseases. 

 

Huntington’s disease (HD) 

Huntington’s disease is an autosomal, dominant inherited progressive neurodegenerative 

disorder associated with motor, cognitive, and psychiatric symptoms. HD is caused by an 

abnormal polyglutamine-repeat expansion on the IT15 gene that codes huntingtin, and involves 

the progressive loss of medium spiny dopaminergic receptor-bearing striatal GABA-ergic 

neurons [48].  

In vivo studies evidence an increase in (R)-[11C]PK11195 BPND in the striatum and cortical 

regions in symptomatic HD patients when compared with healthy controls [49]. They suggests 

that in manifest HD patients, the observed significant increase of (R)-[11C]PK11195 BPND in the 

striatum, hypothalamus, and various cortical regions is correlated with greater disease burden and 

higher motor disability. More studies using this radioligand have also found increased microglial 

activation in symptomatic HD patients and in manifest HD patients when compared with healthy 

control ([3] and references inside), and interestingly, this microglial activation in the striatum and 
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regions related to cognitive function has been shown to predict the 5-year disease clinical onset in 

pre-manifest HD patients.  

These findings show that microglia activation is an early event in the HD disease course, 

and may have a pathogenic involvement that is associated with progression of the disease.  

 

Multiple Sclerosis 

Multiple sclerosis is a disease characterised pathological by inflammatory demyelination and 

axonal transection, being the most common cause of non-traumatic disability in young 

adults [50].  

The presence of activated macrophages in areas of demyelination and the presence of 

myelin debris within the cytoplasm has been a strong argument for a direct role of this cell type in 

multiple sclerosis. Activated microglia involvement in the immune response of multiple sclerosis 

has long been proposed [51]. Consequently, pathological aspects of multiple sclerosis such as 

neuroinflammation, demyelination, and neurodegeneration may be explored in vivo by PET 

imaging studies with radiolabelled (R)-[11C]PK11195 ligand. These studies have proved that the 

inflammatory processes and microglia are actively involved in multiple sclerosis (Figure 1.9) [3].  

 

 

Figure 1.9 Increased [11C]PK11195 binding potential (BPND) in a Multiple Sclerosis patient (A) when compared to a 

healthy normal control (B). Color bar represents intensity of [11C]PK11195 tracer binding. Obtained from [3]. 

 

In conclusion, [11C]PK11195 and PET are able to demonstrate inflammatory processes 

with microglial involvement in multiple sclerosis. 
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Alzheimer’s disease (AD) 

Alzheimer’s disease is defined neuropathologically by the presence of neurofibrillary tangles 

and plaques associated with tau and β-amyloid (Aβ) protein deposition.  

Over the last decades, there was increasing evidences that neuroinflammation represents a 

crucial part in the pathogenesis of AD, such as in other neurodegenerative diseases. The 

localisation of microglia and β-amyloid plaques has been widely reported in pathological 

examination of AD suggesting that neuroinflammation may play a role in the pathogenesis 

and/or delay the progression of the disease. Activated microglia present at sites of aggregated Aβ 

deposition in the brains of AD patients may contribute to Aβ removal [52]. Nevertheless, the 

secretion of cytokines associated to the activation of microglia also can contribute to tissue 

damage and apoptosis [53].  

Other hypotheses suggest that microglial activation in AD occurs as a consequence of 

extracellular Aβ deposition or that it serves as a triggering factor for Aβ deposition in the initial 

stage of the disease. 

[11C]PK11195 has been used to image AD patients with PET but results, so far, have not 

been completely clear. One of the first study of AD with [11C]PK11195 was negative must 

probably due to the relatively high level of non-specific binding, that resulted in non-favourable 

signal strength [54]. A more recently study using the R-enantiomer of this ligand, 

(R)-[11C]PK11195 [55], showed a moderately increased binding potential (Figure 1.10). 

 

Figure 1.10 Significant increase of (R)-[11C] PK11195 uptake in Alzheimer’s Disease patients when compared with 

control. Adapted from [55] 
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However, more research with longitudinal assessment of microglial activation in humans is 

needed to understand its role as a consequence or an influence factor for the progression of the 

disease. 

 

1.6.2. PK11195 limitations 

With the exception of the earliest studies, the vast majority of PET imaging studies on 

TSPO in human diseases have been performed with the (R)-enantiomer of [11C]PK11195,. 

Although it is recognised that (R)-[11C]PK11195 and even [11C]PK11195 shows increase uptake in 

a wide array of neurodegenerative disorders, there are several methodological and kinetic 

unresolved issues that limit the interpretation and potential use of this TSPO radioligand. 

There is a lower than desirable binding potential that has attributed to the low receptor 

affinity and relatively low total brain uptake, which results from substantial binding of the tracer 

to other parts of the body. It suffers from high plasma protein binding and high non-specific 

binding related to its high lipophilic nature (logP = 3.4) [56]. Less than ideal penetration of the 

BBB and low brain uptake leads to a poor signal-to-noise ratio on PET imaging. Other 

complicating factors are the highly variable kinetic behaviour, and sensitivity and specificity issues 

which have precluded the development of a standard quantitative method for analysis applicable 

to all subjects. Therefore, the research field is open to find alternatives to PK11195 that can 

perform better for the quantification of TSPO expression in vivo. [5]  

In addition to these disadvantages, the short half-life of 11C (20.4 minutes) limits its use in 

routine clinical practice of PET imaging in centres without an on-site cyclotron facility. 

 

1.7. Molecular Imaging 

Advanced diagnostic techniques in the field of biomedical research aim to identify and 

quantify in vivo biological and biochemical processes at the cellular and molecular level. The 

intense research effort being made in this area has prompted for a new field called molecular 

imaging (MI) that includes techniques so diverse as magnetic resonance imaging (MRI), 

computed tomography (CT), ultrasound (US), optical and nuclear imaging [57, 58]. Each 

modality has its own advantages and disadvantages, but nuclear imaging has unrivalled properties 

when compared with other techniques as it can directly visualize molecular events at nanomolar 

level with high sensitivity and specificity [59]. In recognition to this, nuclear imaging techniques 
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such as positron emission tomography (PET) and single photon emission tomography (SPECT) 

are increasingly being used in the clinical setting for applications in oncology, cardiology and, of 

course, neurology. 

Particularly in neurology, PET can provide clinicians with the ability to image in vivo 

regional cerebral functions with radiotracers (radiopharmaceuticals) labelled with positron-

emission isotopes introduced into patients. As an important and useful technique for diagnosis, 

therapeutic planning and research, PET requires specific probes radiolabelled with short-lived 

positron-emitting nuclides. Therefore, the full potential of PET strongly depends on the 

availability of proper radioligands for the cellular and molecular processes that are of interest, as 

well as, on the development and optimisation of new ones when a suitable probe is not available. 

 

1.7.1. Molecular imaging probe concept 

The requirements for a successful probe for molecular imaging (MI) include high affinity 

and specificity for the intended molecular target as well as the ability to overcome the relevant 

biological barriers (Figure 1.11). Also important are the kinetics of binding to the target, blood 

clearance and the presence of metabolites that can access the specific compartment and make 

quantification impossible. 

 

 

Figure 1.11 Several key criteria for probes in molecular imaging. Adapted from [58]. 

 

The choice of a molecular target with sufficient density to allow a strong specific signal and 

easy access for the MI probe is also fundamental. In PET, the selection of a suitable nuclide with 

an adequate half-life considering the synthesis time and the kinetics of the process being followed 

is a critical issue.  Finally, the choice of labelling position is important as it has to maintain the 
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physicochemical characteristics of the compound being labelled and also be resistant to 

metabolism that could remove the label from the probe and invalidate the study. 

 

1.7.2. Principles of Positron Emission Tomography 

Positron emission tomography (PET) is a powerful scientific and clinical tool and is one of 

the most sensitive techniques to image non-invasively, molecular pathways and interactions  in 

vivo [60]. The full potential of PET is made possible by the availability of very specific and 

selective ligands for critical molecular targets that are relevant for a wide range of diseases [61]. 

The PET technique is based on intravenously administration in animals and/or humans a 

radiopharmaceutical compound labelled with a short-live positron-emitting radionuclide, in order 

to acquire 3D images of functional process by detecting and quantifying the distribution of the 

labelled tracer in the body [60]. Among the numerous short lived positron-emitting isotopes 

available, Carbon-11, Fluorine-18, Nitrogen-13 and Oxygen-15 (physical proprieties in Table 1.1) 

are the most important considering the prevalence of these elements in organic molecules making 

them very attractive to be incorporated into biomolecules. This allows the labelling to take place 

without affecting the physicochemical properties of the parent molecule a feature that is critical 

for the success of the study. 

 

Table 1.1 Physical Proprieties of the most common short lived positron-emitting isotopes [62]: Carbon-11 (11C), 

Fluoride-18 (18F), Nitrogen-13 (13N) and Oxygen-15 (15O). *EC: Electron capture. 

Radioisotope Half-life Decay mode Max. Energy Mean Energy Max. Range 

 (minutes) Decay product (MeV) (MeV) (mm) 

Carbon-11 20.4 
100% β+ 

Boron-11 
0.96 0.386 4.1 

Fluorine-18 109.8 
97% β+ 3% EC 

Oxygen-18 
0.69 0.250 2.4 

Nitrogen-13 9.98 
100% β+ 

Carbon-13 
1.19 0.492 5.4 

Oxygen-15 2.05 
100% β+ 

Nitrogen-15 
1.70 0.735 8.0 

 

1.7.2.1. Production of radiolabelled compounds for PET 

The production of radiolabelled compounds for positron emission tomography with short-
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lived positron-emitting radionuclides (e.g. Carbon-11, Fluorine-18, Nitrogen-13 and Oxygen-18) 

is limited to sites with on-site cyclotron because of their short half-life. In fact, inside the list of 

radionuclides mentioned above (Table 1.1), only the Fluorine-18 (18F) can be used in PET sites 

without on-site cyclotron through registered 18F-labelled radiopharmaceuticals distributions. For 

the other three, the production has to be performed in a medical cyclotron on-site, requiring 

dedicated equipment and specially trained and qualified personnel. 

 

1.7.2.2. The detection principle 

Positron emission tomography relies on the use of positron emitting atoms bond to 

organic molecules as tracers for endogenous physiological activity. Positron emitters are 

characterized by an excess of positive charges in their nuclei, and decay towards a stable state. 

This leads to a transformation of a proton into a neutron, having emission of a neutrino (n) and a 

positron (β+).  

The imaging of regional tracer concentration is associated to the unique properties of 

positron decay and annihilation. Because of the energy released by the electronic transition, when 

emitted, the energetic positron travels a few millimetres through the tissue until becomes 

thermalized by electrostatic interaction between the electrons and the atomic nuclei of the media 

and combines with a free electron to form a positronium. The positronium decays by 

annihilation, generating a pair of gamma rays which travel in nearly opposite directions with an 

energy of 511 keV each (Figure 1.12, A). The simultaneous and coincidence detection of both 

photons makes it possible the definition of a virtual axis on which the positron is annihilated with 

an electron of the medium, a few milimeters from the place of issue (Figure 1.12, B). The 

generation of these gamma rays is the basis of positron emission tomography. 
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Figure 1.12 Principle of PET detection. Radioactive probes emitting positively charged anti-electrons (positrons) are 

used as imaging agents for PET. The positron travels a short distance before it annihilates with any electron to give 

two photons of 511 keV travelling under a mutual angle of 180º. The simultaneous detection of these two gamma 

ray photons is behind of PET principle and allows in vivo quantitative 3D imaging acquisition. 

 

Thereby, when a probe containing a positron emitter is administered to an organism, high-

energy gamma rays are produced, which have a high penetration power, are able to escape from 

the body, and can be detected by an external ring of detectors as a coincident event. The 

simultaneous detection of many thousand pairs of gamma photons (511 keV each) allows the 

reconstruction of a 3D image containing information about the distribution of the radiolabelled 

probe in the organism. 

 

1.7.2.3. Cyclotron: high energy particle accelerator 

"Dr Livingston has asked me to advise you that he has obtained 1,100,000 volt protons. He also 

suggested that I add ‘Whoopee'!" Telegram to Lawrence, 3 August 1931. 

A cyclotron (Figure 1.13) is a particle accelerator capable of animating particles to energies 

that are high enough to promote nuclear reactions. The idea to curve the path of the particle 

beam of a linear accelerator (LINAC) into a spiral path and use over and over again the same 

electrode system to accelerate the particles, came from E. Lawrence. The first model was built in 

1930, and in 1931 the proof of particle acceleration was performed by Livingston [62]. This 

notable idea of these two American physicists is the base of all modern cyclotrons, making the 

cyclotron the most widely used type of particle accelerator. 

Currently, most radionuclides used for labelling PET radiopharmaceuticals are produced by 

bombardment in a cyclotron. 
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Figure 1.13 General views of two cyclotrons from different eras First Livingston cyclotron in 1931 (left) and an IBA 

Cyclone 18/9 cyclotron (right).  

 

1.7.2.3.1. Principles of operation 

The basic operating principles of the cyclotron are showed in Figure 1.14. In a cyclotron, 

an electrical field is used to accelerate ions, such as H- or D-, and a magnetic field is applied to 

bend the moving charges into a spiral path.  

From a structural point of view, a cyclotron is composed by two hollow copper electrodes, 

called dees (or D’s) due to their shape, inside a vacuum chamber. The two dees are connected to 

a high radiofrequency power supply that provides a sinusoidal alternating electric field between 

the two electrodes, being the electric field null inside the two dees. The dees and their vacuum 

chamber are placed between the poles of a big magnet, fed by a coil, to produce an approximately 

uniform magnetic field perpendicular to the radial plane of dees. The negative ions are generated 

by applying a high voltage to hydrogen or deuterium gas in the ion source at the centre of the 

cyclotron, getting a constant increase in energy for each passage across the gap between dees.  

 
Figure 1.14 Schematic structure of cyclotron showing the ‘dee’ structure, the ion source and the magnet. Obtained 

from [62]. 
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The acceleration of particles (protons or deuterons) in the so-called central region begins in 

the centre, where negative ions are generated by applying high voltage to a gas (hydrogen or 

deuterium). By applying an electrical field, the negative ions are extracted from the centre of 

cyclotron (ion source) and are accelerated towards the dee and counter dee by the electrical field. 

As the ions pass through the hole of the dees, they are only subjected to the magnetic field. When 

the dee is positively charged, the counter dee is negatively charged therefore when the ion leaves 

the dee is accelerated to the counter dee, because of the reversed polarity. This process is the 

same in other dee, but the speed and the orbit radius of the ion are higher. The acceleration 

process only ends when the ion reaches the border of magnetic field, being extracted by stripping 

the electrons off the negatively charged ions and allowing the magnetic field to reverse the 

curvature of the resulting positively charged paths and to transport the particles towards the 

target. The charged ion, now positive, leaves the magnetic field and continues to target position, 

where collides with specific substances (liquid or gas), to generate the nuclear reaction. 
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Figure 1.15 Schematic top view of the main body of an IBA Cyclone 18/9 cyclotron. Negative ions are generated in 

ion source (A). The electrical current passing through the coils (B) creates the magnetic field and surrounds the four 

wedge-shaped steel sectors. The two electrodes, also called dees (C), are placed between steel sectors and the counter 

dees are placed on the edges of four steel sectors close to the dees. The negative ions are accelerated until they hit a 

stripper foil (usually graphite; E) which removes the electrons and charge positively the ion leaves the cyclotron and 

strikes the selected target (placed on F) to produce the radioisotope. Adapted from: IBA user manual. 

 

After acceleration and before the collision with the target, the projectiles energy is related 

with the radius path of the ions inside the dees. As the projectiles acquire energy, the radius of 

their path within the dees increases, with the energy of projectile expressed by the follow 

equation: 

𝐸𝑘𝑖𝑛 =
1

2

𝑞2

𝑚
𝐵2𝑟2  

 
(1) 
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where q and m are the charge and the mass, respectively, of an ion, B is the modulus of the 

magnetic field vector and r is the radius of a circular path described by the ion under the effect of 

the magnetic field force. Thus, the sum of all individual accelerations in the gaps between dees is 

the energy achieved by the ion. This energy is kinetic energy and is dependant on the nature of 

the ion and the size of the magnet. 

The actual production of radioisotopes happens at the same moment in which the beam of 

accelerated particles collides against the target nucleus resulting in the desired nuclear reaction. 

 

1.7.2.3.2. Targets 

Generally, the target materials (usually gas or liquid but can also be solid) are contained in 

special containers called target chambers, which are irradiated by the beam of accelerated 

particles. Because of the heat produced by the beam, the target is continuously cooled with water 

and helium to counterbalance this heating. The target can be made up from different materials 

(e.g. silver, aluminium). All materials must be chemically and physically inert and be able to resist 

high temperatures and pressures. Target materials can be in the solid, liquid or gaseous physical 

state, operating as a target for the nuclear reaction. It is essential that these materials (composed 

by a stable isotope) are in the most pure form. This avoids side reactions, caused by the 

impurities present. 

Targets designed for the production of the most common shot-live positron emitters 

(carbon-11, fluorine-18, nitrogen-13 and oxygen-15), have been developed over the years and are 

readily implemented in all commercial available cyclotrons. 

 

1.8. Radiochemistry 

Positron emission tomography has numerous applications in the understanding of 

biological processes in living systems. It plays an important role in understanding disease 

pathology, progression and diagnosis, and also in drug development. Fundamental for this 

technique is the production of molecules labelled with short-lived positron emitting 

radionuclides. These labelled compounds are called radioligands or radiotracers, and their 

production (synthesis) forms the basis of radiochemistry. 

Considering its ubiquity in organic molecules, carbon-11, is one of the most commonly 

used PET radionuclides. It has a short-live half-life (20.4 minutes) and, due to the versatility of 
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carbon chemistry, this radioisotope can be incorporated into virtually any organic molecule 

without significant effect on biological activity. In addition, the short half-life of 11C allows for 

repeated injections in the same subject and day. Therefore, 11C radiopharmaceuticals are being 

applied in an increasing number of applications in non-invasive investigations in humans. The 

ability to study in vivo biochemistry processes, and eventually also to follow the fate of certain 

atom in a molecule, provides science and clinical practice with important new information [63]. 

 

1.8.1. Carbon-11 

Radiochemistry with carbon-11 (11C) brings considerable challenges to radiosynthesis, due 

to the short half-life of this positron emitter. Compared to the almost 2h half-life of fluorine-18, 

the shorter half-life of 11C provides the advantage to perform repeated PET studies while 

maintaining low doses on the patients.  

Carbon-11 has a 20.4 minutes half-life and decays 99.8% by positron emission and only 

0.2% by electron capture. It decays to stable boron-11. More characteristics of 11C are showed in 

Table 1.2.  

 

Table 1.2 Characteristics of carbon-11 as a PET isotope. 

Carbon-11 (11C) 

Half-life: 20.4 minutes 

Decay Mode: 99.8% β+, 0.2% EC 

Max. Energy: 0.96 MeV 

Most Prob. Energy: 0.326 MeV 

Max. Range: 4.1 mm 

Max. Specific Activity (theoretical): 9220 Ci/µmol 

 

Due to its favourable decay characteristics (Table 1.2), 11C is considered one of the most 

interesting labelling agents for clinical as well as research use with PET. Over the last 3 decades, 

thousands of 11C labelled compounds were developed and many 11C labelling precursors have 

been used to incorporate 11C-isotopes to various and different molecules. 

Figure 1.16 lists the chemical synthesis of some of the most important carbon-11 

precursors. In the present work, we are mainly focused of the pathways steaming from the 
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precursors [11C]methyl iodide ([11C]CH3I) and [11C]methyl triflate ([11C]CH3OTf). 

 

14N(p,α)11C

11CO2

11CH4

0.5% O2

5% H2

H2, Ni, 390º

LiAlH4/THF

11CH3I

11CH3O-
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CF3SO3Ag,

180ºC11CH3I ‘Wet’ method production way

11CH3I gas phase production way

 
Figure 1.16 Pathways to produce 11C-labelling precursors. [11C]methyl iodide, the most common, can be synthesised 

by two different methods: the so called ‘wet’ method with reduction of 11CO2 to methanol by lithium aluminium 

hydride (green) and the “gas phase” by the 11CH4 pathway, or by the reduction of CO2 to CH4 (yellow). 

 

1.8.2. Production of 11C 

The first production of the short-lived positron emitting radionuclide carbon-11 was made 

by Crane and Lauritsen in 1934 [63]. Their work aimed to investigate the physical properties of 

11C and demonstrated that this radionuclide decays by positron emission to the stable nuclide 

boron-11 (11B). Due to its short half-life, radiopharmaceuticals labelled with 11C are not easy to 

transport from manufacturing centres to surrounding hospitals. Consequently, this nuclide began 

to receive increasing attention in medical application only when cyclotrons and PET scanners 

begun to be installed at the same site.  

Several nuclear reactions can be used to produce 11C (Table 1.3), amongst these the 

14N(p,α)11C reaction, using nitrogen gas as target material (irradiated material), is by far the most 

commonly used. High yields of 11C production are obtained by this reaction if a small amount of 

oxygen (<2%) or hydrogen (5-10%) is available in the target gas. The primary precursors 

[11C]carbon dioxide ([11C]CO2) and [11C]methane ([11C]CH4) are, respectively, formed.  

The in-target production of [11C]CO2 is generally achieved with higher radiochemical yields, 

while the specific activity is lower compared to the production of [11C]CH4 [64]. 
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Table 1.3 Nuclear reactions used to produce carbon-11. Natural abundance of the irradiated stable isotope is listed 

in the last column. Obtained from [65]. 

Nuclear Reaction Useful Energy Range (MeV) % Natural Abundance 

11B(p,n)11C 5 - 20 80.1 

10B(d,n)11C 3 – 12 19.9 

12C(p,pn)11C 20 – 50 98.9 

14N(p,α)11C 7 – 15 99.6 

14N(d,n4He)11C 10 – 15 99.6 

12C(3He,4He)11C 7 – 15 98.9 

 

Although there are several ways to produce 11C described in literature [63], the most widely 

used is based on the so-called ‘wet’ method in which the [11C]CO2  is reduced to a [11C]lithium 

methoxide salt with lithium aluminium hydride solution (LiAlH4) and then by addition of 

hydiodic acid (HI) [11C]methyl iodide ([11C]CH3I) is produced and then distilled to produce the 

11C-methylating agent. 

The [11C]CO2  is produced, as mentioned above, using the 14N(p,α)11C reaction by 

irradiation of a material target composed by nitrogen and small amounts of oxygen. This was the 

procedure used for this work for the optimisation of the 11C-labelling of [11C]PK11195. 

 

1.9. Half-life of the radionuclide 

As mentioned above, the half-life of the radionuclide is a key factor in the production of 

PET radiopharmaceuticals. Overall, the half-life of the radionuclide should be long enough for 

the radiolabelling process and the time frame of the imaging procedure and, ideally, the 

radiolabelled compound should be produced within 2-3 half-lives of the radionuclide. This is 

important to maintain high radiochemical yields and high specific activity. 

Furthermore, the stoichiometric ratio between the precursor for labelling material and the 

radioactive precursor should be chosen in the range between 10000 and 10, due to the low mass 

of radioactive agent. As a result, the starting radiolabelled reagent is rapidly consumed in a 

pseudo-first order reaction kinetics, independently of its concentration. 
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1.10. Specific Activity 

Medical applications of radiopharmaceuticals labelled with short-live positron emitters 

require high specific activity (SA) of the compounds, i.e. they should have a high concentration 

of radioactivity per unit mass. Specific activity is arguably one of the most important parameter 

associated with the development and production of 11C labelled compounds where ‘cold’ carbon 

can contaminate the preparation at various steps in the synthesis. With advances in PET 

applications, there is an increasing demand for novel more specific labelled radioligands, mainly 

with carbon-11 and fluorine-18, and specific activity has become an important issue. This is 

particularly important when the radionuclide is incorporated into a radiolabelled compound that 

is used to probe some physiological process that has low density of target molecules in the body 

such as receptors, enzymes, gene expression, monoclonal antibodies, etc. [65].  

The specific activity of a radiopharmaceutical can be defined as the ratio between 

radioactivity of an isotope and the amount of carrier (which is normally the non-radioactivity 

counterpart of the isotope or labelled compound). According to the more updated terminology 

that is recommended by the IUPAC [66], the concept of specific activity for a certain nuclide, or 

a mixture of nuclides, is defined as the activity of a radionuclide divided by the mass of all 

radioactive and stable nuclides isotopic with the element involved. Although the theoretical 

specific activity (or specific radioactivity) for Carbon-11 is 341.14 TBq/μmol 

(9220 Ci/mmol1) [65], these values are usually very high compared with SA values of 

radiopharmaceutical obtained at end of synthesis (EOS). This decrease of SA is due to the 

dilution process with non-radioactive isotope (xC), that occurs not only during radionuclide 

production and their incorporation in a compound (radiosynthesis), but also in reagents, gases, 

impurities in target materials and many others factors. It is also noted that, if it is possible to 

decrease SA by diluting the radioligand with non-radioactive compound, the opposite (SA 

increase) is not possible. Thus, if high specific activities values are obtained during radiosynthesis, 

a radioligand with a pre-determined SA can be prepared by simple addition of the accurate 

amount of non-radiolabelled compound. It is important to note that these non-radioactive 

isotopes undergo the same chemical transformations of their radioactive conterparts. 

When this ‘cold’ contamination of labelled compound is significant and the SA is far from 

the theoretical value, the physical decay of the 11C radionuclide affects the specific activity by a 

factor of two for every 20.4 minutes (11C half-life). Consequently, synthesis time becomes an 

important factor for obtain good specific activities, since it declines rapidly with time. The total 

                                                           
1 1 Ci = 3.7 x 1010 Bq 
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amount of radioactivity injected is also related with SA, due to the total quantity of radiolabelled 

and non-radiolabelled compound administrated. 

This competition between radiolabelled and non-radiolabelled compounds may have a 

negative effect on the concentration of radioactivity in the target tissue, and it can produce 

undesired pharmacodynamic and/or toxic effects, as well as the receptor saturation and 

internalization. Hence, high SA is crucial to provide sufficient contrast in images between the 

target tissue and its surrounding. 

As mentioned above, SA decreases rapidly with time considering that, as time passes, the 

number of non-radioactive isotopes remains constant while radioactivity decays by a factor of 

two, in case of carbon-11, for each 20 minutes. For this reason, it is mandatory to calculate the 

SA by decay correction to a specific time point such as end of bombardment (EOB), end of 

synthesis (EOS), or time of injection (TOI). Therefore, radiopharmaceutical synthesis and quality 

control with carbon-11 labelled compounds must be carried out in the shortest possible time.  

In summary, the specific activity values of cyclotron produced radioisotopes depend on 

several factors, such as: 

- Materials that these radioisotopes are in contact during irradiation and target transfer to 

the synthesis hot-cells; 

- The quality of the irradiated material and the amount of radioactivity produced during 

irradiation; 

- Sources of stables isotopes from the surface of the target chamber and tubing; 

- Contamination of stable isotopes from the irradiated material; 

- Quality and quantity of reagents used in the chemical transformations; 

- Low purity of inert gases (helium or nitrogen) used in synthesis steps. 

All these factors affect the final SA values of a radiopharmaceutical. In particular for 

carbon-11, those factors assume great importance because of its short half-life and the 

competition by side reactions with environmental carbon-12 (12C) sources (especially when the 

radioactive precursor used is [11C]carbon dioxide ([11C]CO2)). This is why the main goal of the 

present work - optimisation of specific activity of radiolabelled compounds with carbon-11, most 

particularly [11C]PK11195 - is a relevant and most important challenge for the successful use of 

these compounds for in vivo molecular imaging with PET. 
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Materials and Methods 

2.1. Background 

The Radiochemistry and Cyclotron Laboratory of ICNAS, enables this multidisciplinary 

institute to produce a variety of pharmaceuticals labelled with short-lived positron emitters. 

Production operations are assigned to a University owned company ICNAS-Produção 

Unipessoal, Lda (ICNAS-P) that holds all necessary licences for GMP pharmaceutical 

manufacturing and has achieved Marketing Authorization for its first commercial product 

(Fluodesoxiglucose [18F] UC) in December 2011. Besides distribution at national level for 

hospitals and imaging centres, ICNAS-P also produces positron emitting tracers for internal use 

at ICNAS to support ongoing pre-clinical and clinical research studies as well as its own R&D 

projects. ICNAS-P has state-of-the-art equipment for radiopharmaceutical production, 

dispensing and packaging including an IBA Cyclone 18/9 cyclotron, 2 fully-equipped GMP Class 

C production labs, 4 hot-cells and 5 modules and one robotic arm for automatic 

production/dispensing of radiopharmaceuticals. The production facility is completed by a full 
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Quality Control lab that includes 2 high performance liquid chromatography (HPLC) systems, 1 

gas chromatograph (GC), 1 radio thin layer chromatograph (radio-TLC) system 1 dose calibrator 

and a High-Purity Germanium (HPGe) gamma spectrometer.  

The synthesis optimization of (R)-[N-Methyl-11C]PK11195 is well in-line with the R&D 

strategy of ICNAS as outlined by its Scientific Council and is expected to provide researchers 

with a crucial tool for in vivo molecular imaging of inflammation both in animal models as well as 

in human studies. The project fits well the objectives of the Integrated Master in Biomedical 

Engineering and is expected to take advantage of the scientific knowledge accumulated by the 

candidate during the course of the studies. 

 

2.1.1. The captive solvent loop 

A particular method for the 11C-methylation of precursors with [11C]CH3I was developed 

by Wilson et al. [67] as a part of the synthesis of [11C]raclopride (a D2-like dopamine receptor 

ligand). The originality of this method is to use of an HPLC injection loop which serves as 

reactor for radiosynthesis (Figure 2.1).  

 

 

Figure 2.1 Apparatus and flow diagram for trapping [11C]methyl iodide on HPLC loop, pre-charged (coated) with a 

non-radioactive precursor. The labelling reaction takes place instantly before injection into an HPLC 

semi-preparative column for purification. Obtained from [67]. 

 

The non-radioactive (cold) precursor is dissolved in a small volume of solvent (80 μl), and 

then slowly injected into a 2 ml stainless steel loop enabling it to coat the inner surface of the 
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tube. [11C]methyl iodide is then swept into the HPLC loop with the precursor solution by a 

stream of N2 gas (8 ml/min) at room temperature as it becomes efficiently trapped by the cold 

precursor solution and enables the reaction to take place. Once the reaction is complete, the 

mixture is readily injected into a semi-preparative HPLC column to purify the synthesised 

products. Since no vials, transfer lines, cooling, heating, or sealing valves are required, this 

technique simplifies handling and minimizes losses permitting the achievement of significantly 

higher yields. 

 

2.1.2. Quality control of PET radiolabelled compounds 

Before a PET radiolabelled compound can be administrated to a patient, there is the 

requirement to produce a compound that is of pharmaceutical quality. Care must be taken to 

ensure that the radiolabelled compound is suitably labelled, purified, formulated and sterilized. 

Quality control procedures for radiopharmaceuticals [68] are similar to those applied to 

non-radioactive pharmaceuticals, and are separated into two categories of tests: physicochemical 

tests and biological tests. The physicochemical tests establish the level of chemical, radiochemical 

and radionuclidic purity and determine the pH, osmolality, activity, concentration and other 

physical properties. The biological tests establish the sterility, apyrogenicity, and toxicity of the 

sample. 

 

2.2. Aims 

The aim of this work is the automation and optimisation of the radiosynthesis for 

(R)-[N-Methyl-11C]PK11195. Full automation, i.e. synthesis, purification and reformulation of 

[11C]PK11195 (notation used from this point, which refers to (R)-enantiomer; 

(R)-[N-Methyl-11C]PK11195) with quality for human injection  in the shortest possible amount of 

time, is required. Also important is the optimisation of the synthesis parameters to ensure the 

reproducibly and reliability of several successive radiosynthesis per day. The study of main 

sources of stable isotopes (non-radioactive) of carbon in the production of [11C]CH3I through the 

‘wet’ method, and their ‘elimination’ from the synthesis is a critical issue to be optimized, to 

ensure that the final product has the best possible specific activity. This effort is important in 

establishing general guidelines for the optimisation of SA values in the production of 

(R)-[11C]PK11195 and others 11C-labelled compounds methylated via this method. 

To achieve a final preparation of [11C]PK11195 suitable for human injection, several steps 
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are required: 1) production of carbon-11 in a cyclotron by irradiation of a N2+0.5% target; 

2) conversion of the [11C]CO2 formed in the cyclotron to [11C]methyl iodide ([11C]CH3I) or 

[11C]methyl triflate ([11C]CH3OTf); 3) 11C-methylation of the precursor 

((R)-[N-Desmethy]PK11195) in a captive solvent loop; 4) purification in a HPLC reverse-phase 

system and 5) reformulation in 10% EtOH+90%NaCl 0.9% injectable solution. 

 

2.3. Automation of radiosynthesis for (R)-[N-methyl-11C]PK11195 

2.3.1. General 

All irradiations were performed on a IBA Cyclone 18/9 cyclotron (IBA, Louvain-la-neuve, 

Belgium) using high energy (18 MeV) protons. 

Production of [11C]CH3I and conversion to [11C]CH3OTf  was carried out using a Bioscan 

MeI-Plus (Bioscan Inc., Washington DC, USA) and the methylations occurred in a specially 

designed loop (Autoloop system, Bioscan Inc., Washington DC, USA). The reaction products 

were purified using a semi-preparative HPLC system composed by a HPLC K-501 pump 

(Knauer, Berlin, Germany), a Phenomenex Luna C18(2) 5µ (250x10 mm) reverse-phase HPLC 

column (Phenomenex, Le Pecq Cedex, France), a UV K-200 detector set at 254 nm (Knauer, 

Berlin, Germany), and a suitable radiation detector. On the last step of the synthesis, the desired 

fraction was collected and formulated using a ReFORM-Plus system (Bioscan Inc., Washington 

DC, USA)ReFORM-Plus system. Cold precursors ((R)-[N-Desmethyl]PK11195 and others) were 

purchased from ABX (Advanced Biochemical Compounds, Radeberg, Germany) and all other 

reagents and solvents used in the syntheses were purchased from local suppliers are were of 

Pharm. Eur. grade, when available. 

Quality control (QC) of all radiotracers for PET synthesised during this work, in special 

[11C]PK11195, were performed to verify their purity and safety for injection. For that purpose, an 

Agilent 1200 Series HPLC system (variable wavelength detector) with a Raytest Gabi Star 1207 

radiometric detector (RaytestGmbh, Straubenhardt, Germany) and a Rheodyne (IDEX H&S, 

Wertheim-Mondfeld, Germany) model 7125i syringe-loading sample injector valve with a 20 μl 

loop was used. The chromatographic separation was performed using an analytical reverse-phase  

Agilent Zorbax Eclipse XDB-C18 column (150x4.5 mm; 5μ). A dose calibrator (ISOMED 1010; 

Elimpex-Medizintechnik GesmbH, Mödling, Austria) was used to measure the radioactivity 

concentration and the physical half-life of radioisotope. A gas chromatography (GC) system (GC 

Agilent 6850; RaytestGmbh, Straubenhardt, Germany) was used to monitor residual solvents 
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concentration in final product. The pH was measured using a pH meter (JENWAY 3510 pH; 

Bibby Scientific Limited, Staffordshire, UK). 

 

2.3.2. Automated synthesis module 

2.3.2.1. Methyl iodide production system 

The methyl iodide production system is a commercial synthesiser optimised for the 

production of [11C]CH3I and [11C]CH3OTf, the workhorses of [11C]-labelling of PET 

radiopharmaceuticals. The system includes automated procedures for loading of reagents, 

production and cleaning as well as in-process-controls that allow detailed viewing and reporting 

in accordance with modern GMP procedures. At the end of synthesis, the methyl iodide 

production system runs a cleaning procedure which removes all radioactivity and residual 

chemicals. The system is ready to another production. 

This system is composed of multiple hardware modules (Figure 2.2): the main module: the 

solvent delivery module; and the waste delivery module. 

The main module contains electronic and mechanical control circuitry, three temperature 

controlled ovens (molecular sieve, reactor and triflate), electromagnetic valves, a reactor vessel, 

and reagent stations to control the entire process of methyl iodide production. 

The solvent delivery module controls the introduction of cleaning solvents and inert gases 

(nitrogen or helium) into the system. As this module is never exposed to radioactivity, it is 

positioned outside of the shielded cell. This module has 4 solvent bottle positions which are filled 

with ethanol (position 1), acetone (position 2), diethyl ether (position 3) and distilled water 

(position 4). The unit provides solvents and inert gas not only for this system, but also for the 

[11C]-methylation module described on section 2.3.2.2. 

The waste recovery module is the recipient of waste gas and solvents during the synthesis 

and cleaning processes. It contains both a liquid waste reservoir and an ascarite® column to trap 

any radioactive [11C]CO2 that is not trapped in the molecular sieve columns or in the reactor. 
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Figure 2.2 Schematic diagram of the [11C]methyl iodide production system. Solvent delivery module (A) and waste 

recovery module (B) is represented too. A mixture of graphite and silver triflate is placed on a copper column, and 

heated up to 170-180ºC for instantaneous conversion of [11C]CH3I to [11C]CH3OTf ([11C]methyl triflate) (C). This is 

used to convert [11C]CH3I to [11C]CH3OTf, when needed. 

 

2.3.2.2. [11C]methylation system 

Based on the method development by Wison et al. (2000) [67], the [11C]methylation 

labelling system is designed to automate the labelling process by using a captive solvent HPLC 

loop (stainless steel; 2 ml).  

Before the synthesis, the precursor solution is coated on the internal surface of this loop. 

The [11C]-labelling agent carried by the inert gas is then made to flow through the loop where the 

solvent is trapped and made to react with the cold precursor. After the reaction, the mixture is 

introduced into a semi-preparative HPLC column for purification. 

The [11C]methylation system, described on Figure 2.3, is made-up by a commercial HPLC 

injection valve (V1 valve; Rheodyne 7725i; IDEX Health & Science; Wertheim-Mondfeld; 

Germany) that is equipped with a stainless steel loop (2 ml) and an injection port for introducing 

the precursor solution. A 3-way commercial valve (V2 valve; NResearsh; USA) is used to 

introduce the [11C]-labelled gas into the HPLC loop, as well as to introduce the wash solvents on 

beginning of day and on the end of each synthesis. This allows multiple radiosynthesis in one day, 

because an automated wash cycle is performed after each synthesis. There is also a selector valve 
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way (V3) between V2 and the loop which selects the introduction of the [11C]-labelled gas (or 

wash solvents) into the loop, and directs the movement of reacted products from the loop and 

into the HPLC system. 
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Figure 2.3 Schematic diagram of the [11C]methylation system. A: solvent delivery system. B: Waste recovery system. 

 

2.3.2.3. Reformulation system 

The reformulation system is an automated module with the main propose of reformulating 

radiopharmaceuticals from the HPLC mobile phase, into a ready-to-inject dose for clinical use. 

At the front panel, this module has an array of 5 rotary valves adapted to a stopcock cassette 

manifold. A dual pinch valve controls the final product/waste flows. Luer fittings connect the 

hardware cassette tubing to the HPLC input and vacuum and gas pressure ports. 

The disposable reformulation kit, was optimised during this project and is shown in Figure 

2.4. 

 B 



40 CHAPTER 2 

 

 

 

 

  

 

  

  

 

Legend: 

 
Luer connector   Y connector 

 
Sterile vial 

 
SPE cartridge 

 
Radioactivity 
detctor 

 

Figure 2.4 Schematic diagram of the disposable reformulation kit for product formulation used on reformulation 

system. 

 

2.3.2.4. Preparation of system 

On the day of production and before each synthesis, a group of steps are essential to 

prepare the system in order to obtain at the end a product with the quality needed to be ready-to-

inject, with a high radiochemical yield and the highest specific activity possible. 

 

2.3.2.4.1. Preparation of methyl iodide production system 

In the beginning of each day, a cleaning process (‘full system cleaning’ option in ‘System 

preparation’ tab of system software) should be done. The LiAlH4 and HI positions should be 

filled with ethanol (9 ml each). When the system is stopped for a long period of time, it is 

recommended to clean the system the same way, but the vial in the LiAlH4 position filled with 

EtOH (8 ml) and 0.1M HCl (1 ml), and the vial in the HI position with 9 ml of EtOH. All parts 
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of the system are rinsed with ethanol, acetone and diethyl ether using a stream of inert gas 

(nitrogen or helium). When the production of [11C]CH3OTf is needed, the AgOTf column is 

pre-heated to 180ºC. 

Before the beginning of the synthesis, the molecular sieve column is conditioned at 250ºC 

for a minimum of 20 minutes with a stream of inert gas (N2 or He). 

 

2.3.2.4.2. Preparation of the [11C]methylation system 

The [11C]methylation system is cleaned at the beginning of the day and in the end of each 

synthesis. All parts of the module (lines, valves and loop) are rinsed with distilled water and 

acetone, and then purged with a stream of inert gas (nitrogen or helium). Before the injection of 

the precursor solution in the loop, the injection port of HPLC injection valve should be purged. 

For that purpose, the ‘Dry injector valve’ on ‘System preparation’ tab in the system software 

window, should be executed. 

 

2.3.2.4.3. Preparation for reformulation 

After insertion of the kit, a solid phase extraction C18 cartridge (tC18 short) is 

pre-conditioned using 10 ml of ethanol and 10 ml of sterile water, dried and connected to its 

designated position. The fraction collection vial is filled with 20 ml of sterile water. The 3 

reservoirs are filled with sterile water (25 ml), physiological saline (0.9%; 9 ml) and ethanol (1 ml) 

respectively. 

 

2.3.3. Production of [11C]CO2 

All irradiations were performed on a IBA Cyclone 18/9 cyclotron (described on 

section 1.7.2.3) using 18 MeV protons. The [11C]carbon dioxide ([11C]CO2) target was a 50 cm3 

aluminium target. The target gas used was nitrogen of scientific grade purity (99.9999%) with 

0.5% oxygen. Process gases used were nitrogen, hydrogen and helium of scientific grade 

(99.999%). The gases were purchased from Praxair Portugal Gases, S.A (Maia, Portugal). 

The radioactive starting material, [11C]CO2, was produced by the nuclear reaction 

14N(p,α)11C on the cyclotron target. It was then transferred to a shielded hot-cell (MIP1-1P, 

Comecer S.p.A., Castel Bolognese, Italy) and trapped on a molecular sieve at room temperature. 

This trapped method allows purification of the incoming flow. 
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2.3.4. Production of [11C]CH3I 

Starting from in-target produced [11C]CO2, [11C]CH3I was synthesised using the chemical 

reaction described by Crouzel et al. in 1987 [69]. 

 

 
Figure 2.5 Reaction scheme for the synthesis of [11C]methyl iodide. 

 

The [11C]CO2 produced on cyclotron is trapped on the molecular sieve (MS) at room 

temperature, that allows a purification of the input stream. After all [11C]CO2 is trapped, the MS is 

heated at 250ºC to release [11C]CO2. Then, it is trapped in a solution of lithium aluminium 

hydride (LiAlH4) in tetrahydrofuran (THF) and reduced to a lithium [11C]methoxide. The medium 

is then heated to 115-120ºC to evaporate the THF. After the evaporation of the solvent, white 

salt of lithium [11C]methoxide is visible in the reactor. In the following step, hydriodic acid (HI) is 

added to form [11C]methyl iodide ([11C]CH3I) and then distilled off at 115-120ºC temperature in a 

stream of nitrogen or helium.  

The production of [11C]CH3I from [11C]CO2 can then be summarised in 6 steps:  

 

Table 2.1 Steps for production of [11C]CH3I from [11C]CO2 by the ‘wet method’. 

STEP Description Info 

S1 Production of [11C]CO2 in a cyclotron via the 14N(p,α)11C nuclear reaction by bombarding a target of 

N2+0.2% O2 with high energy protons 

 

S2 Unload the target content to the shielded cell (through the shielded transfer line) and trap it on a 

molecular sieve column at room temperature 

~1.5 min 

S3 Pre-fill the reactor with LiAlH4 ~150 μl 

S4 Release[11C]CO2 from molecular sieves (by increasing the temperature of column; 250ºC) and bubble 

it on the reactor with nitrogen stream 

~1.3 min 

S5 After complete trapping, the solvent (THF) is evaporated; and HI is added to generate [11C]CH3I 

which is distilled by heating the reactor (115ºC) under a continuous nitrogen (or helium) stream 

2.5 min; 

HI: ~350 μl 

S6 [11C]CH3I passes through a dry column (ascarite and P2O5) to remove unreacted [11C]CO2 and dry. 

Then [11C]CH3I is trapped in a loop pre-filled with precursor solution, where methylation reaction 

takes place 

~3min. 
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2.3.4.1. Conversion of [11C]methyl iodide into [11C]methyl triflate 

When [11C]methyl triflate ([11C]CH3OTf or [11C]MeOTf) is required, it is converted from 

[11C]CH3I by passing it through a column of silver triflate (AgOTf) heated at 175ºC (Figure 2.6). 

 

 

Figure 2.6 Reaction scheme for the convertion of [11C]methyl iodide into [11C]methyl triflate. 

 

2.3.5. Radiosynthesis of (R)-[N-methyl-11C]PK11195 

2.3.5.1. Preparation of precursor solution 

The PK11195 precursor ((R)-[N-Desmethyl]PK11195; 0.25, 0.5 and 1 mg) is dissolved in 

150 µl of DMSO, DMF or MEK and vortexed vigorously for 1 minute. After that, the precursor 

solution is transferred to a vial with a strong base (e.g. KOH; 10, 20 or 30 mg) and vortexed again 

for about 5 minutes. When the base is an aqueous solution (e.g. 8N KOH) or methanol (e.g. 1M 

TBAOH), a small volume of base solution is added to precursor solution and vortexed for a few 

more minutes. The selection of the solvent is important for an efficient trapping of the 

[11C]-methylation agent and their action (or interference) in the methylation reaction. For that 

reason, the solvents must be polar and aprotic as appropriate for a [11C]-methylation reaction by 

nucleophilic substitution. The N-alkylation reaction of (R)-[N-desmethyl]PK11195 precursor 

with [11]CH3I or [11C]CH3OTf requires the presence of a strong base for deprotonation. 

After preparation, the precursor solution (solvent + (R)-[N-desmethyl]PK11195 + base) is 

slowly injected into the HPLC loop. 

 

2.3.5.2. Labelling reaction 

Once produced, the [11C]-methylation agent ([11C]methyl iodide or [11C]methyl triflate) is 

swept into the HPLC stainless steel loop previously coated with the precursor solution by a 

stream of nitrogen (<15 ml/min) at room temperature.  

After the methylation agent is trapped in loop, the nitrogen flow is stopped and the 

reaction is allowed to proceed for a few minutes (1-5 min). The reaction proceedes (Figure 2.7) 

by the N-methylation of (R)-[N-Desmethyl]PK11195 with a methyl group labelled with 
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carbon-11 via nucleophilic substitution. 

 

 

Figure 2.7 Reaction scheme of the of the (R)-[11C]PK11195 synthesis in a captive solvent loop system. 

 

2.3.5.3. Purification of (R)-[N-methyl-11C]PK11195  

After the reaction on the loop is completed, the mixture is directly injected into a 

semi-preparative HPLC column for purification. The reverse-phase column (Phenomenex, Luna 

C18(2), 5µ, 250x10 mm) is coupled to a ultra-violet detector (UV) at 254 nm (Knauer K-200) and 

a radioactivity detector. The chosen eluent is 0.1 M ammonium formate aqueous 

solution/acetonitrile (40/60) at flow rate of 6 ml/min. The elution time of 

(R)-[N-methyl-11C]PK11195 is about 11.6 minutes with the best conditions listed above. 

 

2.3.6. Product reformulation 

After purification of labelled compounds by HPLC, they must be reformulated into 

ready-to-inject doses for clinical use. This is because the eluent of the HPLC is rarely compatible 

with injection to animals or humans. Reformulation is then needed to remove any organic solvent 

that may be present. For (R)-[11C]PK11195 the method used is solid phase extraction (SPE) [70].  

The product reformulation step is carried out on a reformulation system using a sterile 

disposable kit optimised during this project and suitable reagents, following a sequence of steps 

which are determined by the user selected method. The method uses an SPE (C18) cartridge to 

trap the (R)-[11C]PK11195 from the diluted HPLC mobile phase, rinses any residual organic 

solvents, and releases the compound in a small volume of ethanol followed by dilution with 

NaCl 0.9% and filtration through a sterile 0.22μm filter SLGV033NS (Millex-GV, Millipore). In 

summary, the following steps are involved in the process: 

1. Receiving the product fraction from HPLC purification and dilution in sterile 

water; 
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2. Mixing the product with aqueous phase (sterile water); 

3. Passing the diluted product fraction through the SPE (C18) cartridge, where the 

product (lipophilic) is retained; 

4. Rinsing the SPE cartridge with sufficient sterile water to effectively remove any 

residual organic solvents; 

5. Drying the SPE cartridge with a stream of inert gas (nitrogen); 

6. Eluting the product from SPE cartridge with a small volume of ethanol (<10 % of 

total final product volume); 

7. Diluting the product in the final product vial (FPV) with buffered saline to have the 

correct osmolarity and acceptable ethanol concentration; 

8. During steps 6. and 7. the solutions passes through an sterile 0.22 μm filter to FPV; 

9. After removal of the vial with the (R)-[11C]PK11195 solution, a bubble point test is 

performed on the sterilization filter to ensure the integrity of the membrane. 

At the end of the reformulation process, the product is prepared for quality control. 

 

2.3.7. Quality control 

Authentic samples of the compound and precursor of (R)-[11C]PK11195 were obtained 

commercially from ABX (Advanced Biochemical Compounds, Radeberg, Germany) and were 

used without further purification. All other chemicals were of reagent or HPLC grade unless 

otherwise stated. The standard solutions were prepared in acetonitrile and water and then further 

diluted with water to the desired concentrations. 

Chemical and radiochemical impurities were detected and quantified using analytical 

radio-HPLC. Acetonitrile and 0.1 M ammonium formate (75/25; v/v) were used as mobile phase 

with a flow rate of 2 ml/min on a reverse-phase C18 (Agilent Zorbax Eclipse XDB-C18; 

150x4.5 mm; 5μ) analytical column. The whole HPLC analysis was completed within 10 min, the 

retention time of the precursor ((R)-[N-methyl-11C]PK11195) was 2.5-3.1 min and the product 

[11C]PK11195 was eluted with a retention time of 1.8-2.4 minutes. The chemical identity of 

[11C]PK11195 was determined by co-injection of the unlabelled reference compound, 

(R)-[N-methyl-12C]PK11195 (sample chromatogram is shown in Figure 2.8). For calculation of 

radiochemical purity, the portion of [11C]PK11195 in relation to total radioactivity was 

determined (threshold ≥95%). Residual solvents were analysed by gas chromatography (GC 
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Agilent 6850; RaytestGmbh, Straubenhardt, Germany). The radiochemical purity was assessed by 

measurement of the physical half-life on dose calibrator (ISOMED 1010; Elimpex-

Medizintechnik GesmbH, Mödling, Austria). pH was measured on a pH meter (JENWAY 3510 

pH; Bibby Scientific Limited, Staffordshire, UK). 

 

 

Figure 2.8 Analytical UV HPLC trace for co-injection of (R)-[N-methyl-12C]PK11195 standard solution and 

(R)-[N-desmethyl]PK11195 precursor solution. 
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Results 

A full [11C]PK11195 synthesis process was optimised for routine in about 35 minutes from 

EOB. 

 
Figure 3.1 Radiosynthesis progress of (R)-[N-methyl-11C]PK11195 from EOB to EOS. 
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3.1. Production of [11C]methyl iodide: initial optimisations 

The main parameters for [11C]methyl iodide production were optimised to achieve the 

highest possible yields and insure reliability and reproducibility. The optimal settings are showed 

on Table 3.1. 

 

Table 3.1 Production conditions for [11C]CH3I. 

Setting Value 

Timer for LaH dispensing (milliseconds) 150 

Timer for HI dispensing (milliseconds) 700 

CO2 trapping time (mm:ss) 01:30 

CO2 release time (mm:ss) 01:20 

THF evaporation time (mm:ss) 02:30 

CH3I distillation time (mm:ss) 03:00 

Molecular sieve oven temperature (ºC) 250 

Reactor oven temperature (ºC) 115 

Methyl triflate oven temperature (ºC) 175 

 

With these settings, [11C]CH3I production is completed in 11.39±0.76 minutes (from EOB; 

Figure 3.2). The radiochemical yield and specific activity of [11C]CH3I produced were 70.79±7.6% 

(non-decay corrected) and 499.32±72.77 mCi/μmol (18.47±2.69 GBq/μmol), respectively. 

 

 
Figure 3.2 Diagram of in-process controls during [11C]CH3I production.. 

 

The production of [11C]methyl iodide is a critical step for specific activity optimisation. The 

SA of [11C]CH3I obtained via ‘wet method’ is largely affected by sources of stable CO2. An 

evaluation and identification of the main sources of 12C involved in the [11C]CH3I production 

using this method is the subject of the following section. 
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3.1.1. Specific activity optimisation 

3.1.1.1. Evaluation of molecular sieve pre-conditioning influence on amount of [12C]CH3I 

generated 

A molecular sieve is a material that can adsorb carbon dioxide at low temperature (room 

temperatures), and released it when heated to high temperatures (250ºC). In our tests we used 

two different scenarios: 1) synthesis without pre-conditioning the molecular sieves before; and 2) 

synthesis with pre-conditioning molecular sieves at 250ºC during 20 minutes just before the 

beginning of synthesis. Both tests were done without unloading the cyclotron target to the 

molecular sieve. 

The amount of CH3I formed in two scenarios was measured by HPLC. The results showed 

that without pre-conditioning of MS, the production of stable methyl iodide increases 315%. The 

production of CH3I under scenario 1 was 530.56±340.88 nmol and 168.10±36.51 nmol under 

scenario 2 (Figure 3.3). 

 

 
Figure 3.3 Amount of ‘cold’ CH3I formed without pre-conditioning of molecular sieves before synthesis (A) and 

with pre-conditioning just before the synthesis (B). 

 

3.1.1.2. Sources of 12C from the inert gas purity 

Aiming to investigate the influence of potential impurities in the gas supply in the final 

amount of CH3I produced, we developed an in-house filter by preparing a column with ascarite 

and phosphorus pentoxide. The results show that the final amount of CH3I was 

168.10±36.51 nmol without filtration and 59.54±7.20 nmol with filtration (Figure 3.4). 
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Figure 3.4 Amount of ‘cold’ CH3I formed without filtration of inert gas supplier of methyl iodide system and with 

filtration. 

 

3.1.1.3. Sources of 12C involved on [11C]CH3I production from reagents, materials, and 

load-unload of the target 

Three different tests were performed to evaluate the source of 12C from the gases, materials 

and reagents used on methyl iodide production process. Results were obtained from 3 scenarios 

(Figure 3.5A): 

Scenario Sc1: Synthesis was carried out by executing step S3 and S5 (Table 2.1) of the general 

procedure. Transference of the target material and the CO2 release from the molecular sieves 

were skipped. 

Scenario Sc2: Synthesis was carried out by executing step S3, S4 and S5 (Table 2.1) of the 

general procedure. Transference of the target material was skipped. 

Scenario Sc3: Synthesis was carried out by executing step S2, S3, S4 and S5 (Table 2.1) of the 

general procedure. 

The nitrogen input was filtered on all scenarios. 
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Figure 3.5 Amount of [12C]CH3I (in nmol) generated under scenarios Sc1, Sc2 and Sc3 described above (A). The 

influence of [12C]CO2 source by LiAlH4 (Sc1), release of CO2 from MS (Sc2) and the load-unload of the target (Sc3) 

was shown on graph of the right (B). 

 

The individual contribution of each source of 12C involved on the CH3I production is 

shown on Figure 3.5B. Under scenario Sc1 47.938±0.841 nmol of stable methyl iodide were 

generated. This is expected to come from the CO2 on the LiAlH4 solution, absorbed from the 

atmosphere, or from methanol formed from THF remaining on LiAlH4 after evaporation. Under 

scenario Sc2 8.190±5.262 nmol of stable methyl iodide were generated, by the contribution of 

CO2 adsorbed to the molecular sieves even after conditioning. Finally under scenario Sc3 

69.115±22.597 nmol of stable methyl iodide were generated, by the contribution of CO2 from 

load-unload target processes, such as from CO2 adsorbed on the target chamber, in the 

stainless-steel tubing that connect target to the synthesis module, or from its presence in the 

target gas. 

 

3.1.1.4. Sources of 12C involved on [11C]CH3I production: from effect of bombarding time 

Finally, we tested the contribution of bombarding time for the final amount of stable 

methyl iodide. As showed on Figure 3.6, the longer the bombarding time, the higher stable 

methyl iodide produced. 

 

A B 
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Figure 3.6 Effect of the bombarding time on the final amount of [12C]CH3I (in nmol). 
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3.2. Captive solvent loop methylation: initial optimisations 

3.2.1. Solvents and bases chosen 

The right choice of the polar aprotic solvent for the synthesis is important not only because 

of its effect on the nucleophilic substitution [11C]-methylation reaction on a loop, but also 

because of the the trapping efficiency in [11C]-methylation precursor on the loop. For that 

purpose, we compared the trapping efficacy of three different solvents. 

DMF (dimethylformamide) and DMSO (dimethyl sulfoxide), both anhydrous, were used on the 

synthesis with [11C]methyl iodide. MEK (methyl ethyl ketone) and DMSO were tested too, in 

their trapping efficacy, when [11C]methyl triflate was used as a methylation agent. These solvents 

were selected according to their ability to dissolve the (R)-[N-desmethyl]PK11195 precursor. In 

each test, 0.5 mg of precursor was dissolved in 100 µl of solvent, and then injected into captive 

solvent loop. The experimental results of precursor solvent efficiency on trapping are shown on 

Figure 3.7, and the trap efficacy of DMSO (56.09% with [11C]CH3OTf and 93.83±3.90% with 

[11C]CH3I) is a good indication that it is close to ideal as a precursor solvent. 

 

 
Figure 3.7 Influence of precursor solvent (MEK, DMSO and DMF) on the trapping efficacy of [11C]CH3I and 

[11C]CH3OTf (*) on the captive solvent loop. 

 

R)-[N-methyl-11C]PK11195 is labelled with 11C by an N-alkylation reaction, that is aided by 

a strong base for deprotonation. Two different strong bases were used with various 

concentration, to evaluate their efficacy on N-deprotonation. Summary of the results are shown 

on Table 3.2. 
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Table 3.2 Summary of the results of influence of different solvents and bases in the synthesis of (R)-[N-methyl-

11C]PK11195. 

Solvent Base [11C]-methylation 
agent 

Average 
trapping 
efficiency of 
[11C]CH3I (%) 
(mean±σ) 

Average % of 
(R)-[N-methyl-11C]PK
11195 RCY (DC)  
(mean±σ) 

(R)-[N-methyl-11C]PK
11195 at EOS (mCi) 
(mean±σ) 

n 

MEK TBAOHa [11C]CH3OTf 32.48±9.40 5.11±2.56 6.90±1.41 3 
DMSO KOHb [11C]CH3OTf 56.09 2.14 1.90 1 
DMF TBAOHa [11C]CH3I 40.87 0 0 1 
DMF  KOHb [11C]CH3I 90.09 0.83 2.13 1 
DMSO KOHb [11C]CH3I 93.83±3.90 31.58±9.97 107.85±52.13 10 
DMSO KOHc [11C]CH3I 62.74±18.06 4.41±2.78 5.45±2.73 3 

a TBAOH (1M) in methanol (TBAOH: tetrabutylammonium hydroxide); 10 µl 
b KOH (potassium hydroxide); precursor solution was saturated with 30 mg of KOH 
c KOH (8N) aqueous solution; 2 µl 

 

3.2.2. Precursor concentration: influence on RCY 

The amount of precursor (concentration) in the synthesis of [11C]PK11195 is an important 

issue not only for the radiochemical yield (RCY), but also in the ratio [11C]PK11195/[11C]CH3I. 

The total activity amount of [11C]PK11195 at the EOS was evaluated too, and correlated with 

precursor concentration. 

The synthesis conditions were: the desired amount of precursor was dissolved in 100 µl of 

DMSO, and saturated with 30 mg of KOH; and reacted 5 min on loop. All loop preparation 

processes were made just before the injection of the precursor solution. The experimental results 

are summarised on Table 3.3. 

 

Table 3.3 Influence of precursor concentration in the synthesis of [11C]PK11195. 

Precursor 
concentratio
n 
(mg/100µl) 

Average amount of 
[11C]CH3I activity 
produced (mCi) 
(mean±σ) 

Average amount of 
[11C]PK11195 
activity produced 
(mCi) (mean±σ) 

Average % of 
[11C]PK11195 RCY 
(n.d.c.) (mean±σ) 

[11C]PK11195/[11C]CH3

I ratio (mean±σ) 
n 

0.25 37.82±31.82 13.70±9.70 6.6±1.4 0.5±0.17 
4 

4 
0.5 73.92±56.97 96.32±13.31 17.8±5.2 2.6±2.05 
1 39.40±16.81 131.73±67.99 20.9±4.0 3.2±0.52 

 

Thus, increasing the amount of precursor, will increase not only the RCY of [11C]PK11195 

but also the total amount of activity at EOS (Figure 3.8). 
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Figure 3.8 Influence of precursor ((R)-[N-desmethyl]PK11195) concentration in radiochemical yield (RCY) and in 

the ratio [11C]PK11195/[11C]CH3I (left) and total amount of radioactivity of both at EOS affected by precursor 

concentration (right). (n=4). 

 

3.2.3. Reaction time 

We also evaluated the influence of reaction time on the synthesis of [11C]PK11195, with 

0.5 mg of precursor dissolved in 100 µl of DMSO, and saturated with 30 mg of KOH. All loop 

preparation processes were made just before the injection of the precursor solution. The results 

show that increasing the reaction time of 1 min to 3 min, and then to 5 minutes, results in an 

increase of RCY of the [11C]PK11195 product. Productions of [11C]PK11195 were 58.4, 118.3 

and 234.3 mCi with 1, 3 and 5 minutes of reaction, respectively (Figure 3.9). 

 

 

Figure 3.9 Effect of reaction time in [11C]PK11195 production. Radiochemical yields (left) and total activity of 

[11C]PK11195 at the end of synthesis (mCi; right); (n=1). 
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3.3. Purification and formulation of (R)-[11C]PK11195 

After the reaction in the loop, the crude mixture is injected into a semi-preparative HPLC 

column for purification.  

The retention times were 10.8-12.5 minutes for (R)-[N-methyl-11C]PK11195 and 15.8-17.5 

minutes for (R)-[N-desmethyl]PK11195 on the semi-preparative HPLC (Figure 3.10). 

 

 
Figure 3.10 Semi-preparative HPLC separation of (R)-[N-methyl-11C]PK11195 (Rt: 11.7 min). HPLC conditions–

column: Phenomenex Luna C18(2) 5µ (250x10 mm) reverse phase column; mobile phase: 0.1N aqueous solution and 

acetonitrile (40:60); and flow rate: 5 ml/min. (Decay corrected and background removed). 

 

SPE purification resulted in a recovery of >95 % using 1 ml of ethanol followed by 9 ml of 

physiological saline solution (NaCl 0.9%) for the elution of [11C]PK11195 . 

 

 
Figure 3.11 Formulation of [11C]PK11195 by solid phase extraction on the reformulation system. 
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3.3.1.1.1. Product filtration 

A measure of the sterilization filter after reformulation, showed that a large amount of 

activity was trapped on the first filter used (Millex-GS; 0.22µm). To confirm this result and make 

an evaluation of the problem, several filtration tests of the ‘cold’ product ((R)-PK11195) were 

made. Three different types of filter were used in these experiments (Figure 3.12). 

The (R)-PK11195 standard was solubilised in a mixture of saline and ethanol (solution of 

saline with 10 % of ethanol). From the concentration of the standard solution before injection 

and the measure by HPLC after injection, it was possible to evaluate the ratio of retention of the 

different filters. 

Test 1 (GS): The standard solution of (R)-PK11195 was filtered with a Millex-GS Millipore 

(0.22µm) filter (mixed cellulose esters) and the filtrate was then subjected to injection into 

analytical HPLC. 

Test 2 (GV): The standard solution of (R)-PK11195 was filtered with a Millex-GV 

Millipore (0.22µm) filter (polyvinylidene difluoride or PVDF) and the filtrate was then subjected 

to injection into analytical HPLC. 

Test 3 (minisart): The standard solution of (R)-PK11195 was filtered with a Minisart® 

Sartorius Stedim (0.2µm) filter and the filtrate was then subjected to injection into analytical 

HPLC. 

 

 
Figure 3.12 Filtration testes of (R)-PK11195 with 0.22µm sterile filters using a solution of saline at 10% of ethanol. 

(n=3). 
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The results show that the Millex-GV column retains less product then the Millex-GS and 

the Minisart. Using a saline solution of (R)-PK11195 with 10% EtOH, we obtained a filtered 

solution with a concentration of 89.02±6.92 % of the initial value. 

Hot tests with the labelled compound ((R)-[N-methyl-11C]PK11195) confirmed this result 

and with a volume of 1 ml of EtOH, the labelled product was quantitatively recovered in the final 

vial. 

 

3.4. Routine radiolabelling of (R)-[N-methyl-11C]PK11195 

The conditions for routine radiolabelling of [11C]PK11195 involve an irradiation time of 

about 30 minutes on the cyclotron with an integrated current of about 12.8 μAh. During the 

irradiation time, the molecular sieves (MeI-Plus) are pre-conditioned (heating at 250ºC for about 

20 minutes). 

The reaction conditions are: 0.5 mg of precursor (N-desmethyl-PK11195) dissolved in 

100 μl of DMSO and then saturated with 30 mg of KOH; reaction in the loop for 5 minutes with 

[11C]CH3I. DMSO as a solvent, KOH as the base, and the [11C]CH3I as methylation precursor 

offered the best productions of [11C]PK11195 (141.29±57.15 mCi at end of reformulation). 

[11C]PK11195 is easily separated from precursor, solvents and other products by the semi-

preparative HPLC. 

Radiochemical purity exceeded 99% as determined by radio-HPLC. No contamination with 

N-desmethyl-PK11195 precursor was observed (Figure 3.13). Residual solvents as determinate by 

GC were found to be 672.09 mg/10 ml ethanol and 3.28 mg/10 ml acetonitrile. pH was 6.19. 

The specific activity of the final product ([11C]PK11195) was between 15-25 GBq/μmol and the 

radiochemical of about 10-16% (non-decay corrected). 
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Figure 3.13 Analytical HPLC traces for a final (R)-[N-methyl-11C]PK11195 product sample (Rt: 2.07 min). HPLC 

conditions: Agilent Zorbax Eclipse XDB-C18 (150x4.5 mm; 5μ) reverse phase column; mobile phase: water and 

acetonitrile (75:25); flow rate: 2 ml/min. 
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Discussion 

The radioligand [11C]PK1195 was synthesised for the first time by the French company 

Pharmuka in 1984 [38]. The compound is a non-benzodiazepine high-affinity selective TSPO 

ligand and was labelled with carbon-11 as a PET imaging probe for neuroinflammation. Despite 

the limitations of carbon-11, related to its short half-life, PK11195 has remained the most widely 

used molecule for in vivo PET studies of TSPO.  

The aim of this work was to optimise the synthesis, purification and reformulation of 

[11C]PK11195 by the captive solvent method using a series of modules available at ICNAS for the 

production of methyl iodide, methylation in a captive solvent loop and reformulation by solid 

phase extraction. Automated radiosynthesis of compounds is common in PET production 

centres as it diminishes considerably doses on staff, provides a reliable and reproducible platform 

for production and facilitates record keeping and GMP compliance. A fundamental step of the 

process is the initial setup and optimisation of a synthesis that, considering there each installation 

is unique in its nature, requires substantial work in adapting production methods from the 

literature to the specific setup of each site. 
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4.1. Automation of [11C]methyl iodide production 

The first step of this work was dedicated to the [11C]CH3I production optimisation 

parameters. The goal was to establish a rapid and reliable way to produce [11C]CH3I with high 

radiochemical yields and with high specific activities. SA is a critical paramenter for a 

radiopharmaceutical and corresponds to the amount of radioactivity per unit mass of the 

compound. Thus, a low SA represents a higher mass of cold compound being injected with 

detrimental effects on image quality and possible pharmacotoxic effects on the subject. 

In the production of methyl iodide at ICNAS, the labelled carbon-11 source comes from 

carbon dioxide labelled with 11C produced on the cyclotron. This [11C]CO2 is then used to 

produce [11C]CH3I. Any possible source of stable carbon (in form of CO2) present in lines of 

module, reagents, gas impurities and material of the target chamber, will also react with LiAlH4 

and reduced to stable methanol salt. After evaporation of THF, and with addition of HI, stable 

methyl iodide is formed by distillation, which will decrease the specific activity of the final 

product. Therefore, the methyl iodide production system has to be optimised to potentiate the 

use of 11C and to reduce, as much as possible, any potential sources of stable carbon (12C). 

The optimised parameters, as showed on Table 3.1, resulted in a production of [11C]CH3I 

in about 10.57 minutes (from EOB) with radiochemical yields of 70.79±7.6% (NDC) and with 

very high reliability. In the end, more than 70% of the total activity received from the cyclotron 

(EOB) was converted to gaseous distilled [11C]methyl iodide. 

 

4.1.1. Specific Activity 

When the aim of identifying potential causes for the low specific activities associated with 

the production of methyl iodide by the so-called ‘wet’ method, we planned a series of 

experiments in order to assess the contribution of each individual element to the final amount of 

unlabelled carbon. For that purpose, we investigates the contribution to the SA of the synthesis 

module components (molecular sieves, pre-conditioning, volume of reagents and gas purity), the 

target, and the irradiation time. 

When molecular sieves aren’t pre-conditioned, values of 530.56±340.88 nmol of stable 

methyl iodide were found, and 168.10±36.51 nmol was found when pre-conditioning of 

molecular sieves been done before the start of synthesis (Figure 3.3). So, pre-conditioning of 

molecular sieves at 250ºC for 20 minutes should always be performed, to release any absorbed 

CO2 before the beginning of a synthesis run. 
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Next, were investigated the contribution of inert gas purity (nitrogen) in the final amount 

of stable methyl iodide. When N2 was used without any purification, values of 

168.10±36.51 nmol of stable methyl iodide were found. With the installation of an 

Ascarite®/P2O5 column at the entrance of module, only 59.54±7.20 nmol were found (Figure 

3.4). Furthermore, we noticed that when drying the N2 with P2O5 the THF evaporation is more 

efficiently. We then concluded that a purification (filtration) of gases used in methyl iodide 

production is essential, and proceed to use then at every synthesis.  

In a third step, the contribution from the reagents, the molecular sieves, the target chamber 

and the transfer line were investigated. The individual contribution of these factors was: 

47.938±0.841 nmol of stable methyl iodide was found due to the contribution of stable CO2 

from the CO2 adsorbed on LiAlH4 solution, from the atmosphere due to lack or tightness of the 

synthesis module, or from methanol formed from THF remaining on LiAlH4 after evaporation; 

8.190±5.262 nmol of stable methyl iodide was found due to the contribution of stable CO2 

adsorbed on molecular sieves; and 69.115±22.597 nmol of stable methyl iodide were found due 

to the contribution of CO2 from load-unload target processes, such as from CO2 adsorbed on the 

target chamber, in the stainless-steel tubing that connect target to the synthesis module, or from 

presence in the target gas. Considering these results, it is clear that a reduction of LiAlH4 loaded 

volume and a purification of the nitrogen/oxygen mixture leads to a substantial increase of the 

specific activity. 

Finally, were investigated the formation of stable CO2 during the bombarding processes. 

As it can be seen in Figure 3.6, methyl iodide production with 1 μAh of bombardment led to the 

production of 348.48±121.10 nmol of stable CH3I. When bombarding time was increased 

(integrated currents of 2, 5 and 10 μAh), 428.54±27.36, 447±16.16 and 570.72±125.82 nmol of 

stable methyl iodide were found. These results show that the first minutes of bombardment 

contribute to a great amount of stable carbon dioxide formed during the target irradiation 

(224.24±143.36 nmol were found due to integrated of 1uAh). The non-linear results of stable 

methyl iodide formation with increasing of bombarding time, suggests that the main source of 

non-radioactive (stable) carbon dioxide during the full synthesis of [11C]CH3I is due to the 

presence of carrier carbon contamination in the target content and that the material is formed 

primarily during the first minutes of bombardment. This formation of stable CO2 (combustion) is 

greater and faster on the beginning of the bombardment because of the higher concentration of 

carrier carbon, which decreases as the combustion takes place. 



64 CHAPTER 4 

 

Considering the obtained results, was decided to implement a set of procedures in order to 

improve the radiochemical yield of the methyl iodide production and improved the specific 

activity of PK11195 labelled with carbon-11 via the ‘wet’ method. These procedures are: 

1. Definitive modification:  

a. Installation of a trap in nitrogen gas supply entry, for remove the 

introduction of stable carbon in lines; 

b. Reduction of the volume of LiAlH4 loaded. 

2. Preparation of the synthesis module: 

a. Cleaning the system (EtOH, acetone and diethyl eter) and drying with 

nitrogen; 

b. Loading the reagents into module; 

c. Loading, bombarding the target (integrated current: 1µAh) and unloading to 

module, by running a simple methyl iodide production method; maintaining 

the target pressurised at 20 bar; 

d. The system is cleaned automatically; 

e. Pre-conditioning (at 250ºC for 30 minutes) the molecular sieves column to 

eliminate residual CO2; 

f. Maintaining the system pressurised. 

3. Periodical check-ups to system to follow possible leaks on the system lines. 

 

4.1.2. Synthesis module: routine maintenance  

Following the experience acquired with the synthesis module, a set of procedures was 

established to maintain the high reliability of the production. This is summarised below. 

1. Every day before the first synthesis, an inspection of the general conditions of the 

module should be performed (look for valves leaks; test operation of valves, ovens 

and reactor oven elevator); 

2. In the end of the day, after the last production, the module should always be 

cleaned to avoid residues to build up and cause malfunctioning in subsequent 

productions; 

3. Reagents needles should be changed every working day; 

4. The molecular sieves should be replaced whenever there is an insufficient trapping 

of [11C]CO2 gas. 
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5. Drying column (with ascarite and P2O5) between methyl iodide production system 

and and loop should be replaced at the beginning of each production day. 

6. Inert gas should be purified to improve radiochemical yields and specific activity. 

 

4.2. Radiolabelling (R)-[11C]PK11195 on a captive solvent loop 

The production of radiopharmaceuticals with short-live positron emitters relies heavily on 

the use of semi-preparative HPLC systems for purification of the final reaction mixture. It is 

therefore of great convenience that we use the sample HPLC loop for the labelling reaction. This 

is the basis of the captive solvent loop developed by Wilson et al. work [67]. In this system, the 

methylation agent is trapped and made to react with the precursor solution pre-loaded onto the 

loop. Using this method, a large variety of PET radiopharmaceuticals labelled with carbon-11 can 

be produced. In this work we demonstrated that, with the right choice of solvent, base, time of 

reaction and eluents for HPLC purification, labelling of [11C]PK11195 with this method is 

possible with good quality and reliability. 

 

4.2.1. Initial optimisation 

A critical parameter on a nucleophilic substitution reaction is the selection of an adequate 

polar aprotic solvent. We evaluated different solvents in the trapping efficiency of [11C]CH3I or 

[11C]CH3OTf after establishing their ability to dissolve the (R)-[N-desmethyl]PK11195 precursor. 

The experimental results are shown on Figure 3.7, and DMSO proved to be the best choice 

on trapping efficacy (56.09% of [11C]CH3OTf and 93.83±3.90% of [11C]CH3I). A strong base is 

also needed on the precursor solution for deprotonation (R)-[N-desmethyl]PK11195 for 

[11C]-methylation reaction by an N-alkylation. According to the results showed on Table 3.2., 

radiochemical yields were higher when the precursor solution was saturated with 30 mg of KOH. 

The amount of precursor injected into the loop should be sufficient to produce good 

radiochemical yields. However, it should not be excessive to ensure a good separation from 

[11C]PK11195 by reverse-phase HPLC, and to help maintain the cost of the synthesis low. As it 

can be seen by the results, with 1 mg of precursor, we obtained radiochemical yields of about 

20.9±4.0% (non-decay corrected), whereas with 0.5 mg were obtained RCY of 17.8±5.2% 

(NDC). Although the ratio between labelled [11C]PK11195 and unlabelled [11C]CH3I is higher 
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with 1 mg of precursor, the radiochemical yields suggest that 0.5 mg of precursor is enough to 

obtain the desired amount of labelled [11C]PK11195 in the end of synthesis.  

Finally, the reaction time of 5 minutes in the loop with precursor dissolved on 100μl of 

DMSO and saturated with 30 mg of precursor, provided the best production of [11C]PK11195 

with RCY about 43.13% and activity on EOS about 234.3 mCi. 

 

4.2.2. Purification and reformulation of (R)-[11C]PK11195 

Purification of (R)-[N-methyl-11C]PK11195 was performed successfully by reverse-phase 

HPLC C18 column (Phenomenex Luna C18(2), 5µ, 250x10 mm). It is an octadecyl carbon chain 

(C18) where compounds are separated based on their hydrophobic character. 

The mobile phase chosen was a 0.1N ammonium formate aqueous solution / acetonitrile 

(40:60) with a flow of 5 ml/min. With this optimised parameters, [11C]PK11195, the precursor 

and other reaction products were properly separated with retention times of 10.8-12.5 minutes 

for (R)-[N-methyl-11C]PK11195 and 15.8-17.5 minutes for (R)-[N-desmethyl]PK11195 (Figure 

3.10).  

The final step of the synthesis process is the reformulation of [11C]PK11195 collected 

fraction on a ready-to-inject dose by SPE.  A C18 column was used with an optimised 

reformulation disposable kit. SPE purification resulted in a recovery of >95 % using 1 ml of 

ethanol followed by 9 ml of physiological saline solution (NaCl 0.9%) for the elution of 

[11C]PK11195. Using the Millex-GV filter and a volume of 1 ml of EtOH, there were no 

problems of filtration and the labelled compound ((R)-[N-methyl-11C]PK11195) was 

quantitatively recovered in the final vial. 

 

4.3. Routine synthesis, purification and reformulation of 

(R)-[N-methyl-11C]PK11195 

Production of [11C]methyl iodide results showed good reproducibility and that the amount 

of radioactivity produced after the 10µAh irradiations (1173.9±85.5 mCi), was sufficient for the 

radiosynthesis of the PK11195 in sufficient quantity and quality for human use. Good distillation 

yields were obtained (84.12±12.03 %) and sufficient for the N-methylation of the desmethyl-

PK11195 precursor. For the labelling reaction, 0.5 mg of precursor (N-desmethyl-PK11195) was 

dissolved in 100 μl of DMSO and then saturated it with 30 mg of KOH, and injected into the 
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loop and made to react for 5 minutes with [11C]CH3I. 141.29±57.15 mCi of [11C]PK11195 at 

EOS were obtained and were easily separated from precursor, solvents and other products by the 

semi-preparative HPLC. 

Radiochemical purity exceeded 99% as determined by radio-HPLC. No contamination with 

N-desmethyl-PK11195 precursor was observed (Figure 3.13). Residual solvents as determinate by 

GC were found to be 672.09 mg/10 ml ethanol and 3.28 mg/10 ml acetonitrile. pH was 6.19. 

The specific activity of the final product ([11C]PK11195) was between 15-25 GBq/μmol and the 

radiochemical of about 10-16% (non-decay corrected). All parameters are within specification for 

human use. 
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Conclusion 

The present work aimed to optimise the synthesis, purification and reformulation of 

(R)-[11C]PK11195 using the captive solvent method and make its available on a ready-to-inject 

sterile saline solution for PET imaging studies of neuroinflammation. PK11195 is a lipid soluble 

isoquinoline carboxamide that, when labelled with carbon-11 ((R)-[11C]PK11195), can be used as 

an in vivo molecular imaging probe for the TSPO receptor. This 18 kDa translocator protein is 

overexpressed when microglia is activated, a main feature of neuroinflammation. 

Improved and efficient synthesis of (R)-[N-methyl-11C]PK11195 on an automated synthesis 

system was optimised for routine production with excellent radiochemical yields and good 

specific activities. Initially, the production of [11C]methyl iodide was improved by establishing the 

optimal production parameters. Possible sources of stable CO2 were investigated in order to 

obtain the best possible specific activity. Secondly, solvents, bases and times of reaction were 

optimised for the best radiochemical yield using the captive solvent loop. Finally, reaction 

products were purified by HPLC and formulated by SPE on a ready-to-inject non-pyrogenic 

saline solution. 
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Quality control tests were performed to ensure the good quality of product. Activity 

obtained was 149.71±50.25 mCi of (R)-[11C]PK11195 at EOS with specific activities between 15-

25 GBq/μmol on a short overall synthesis time. 

The approach that we have developed allows the reliable and reproducible preparation 

[11C]-radiopharmaceuticals such as (R)-[11C]PK11195 several times a day, with activity and quality 

suitable for human studies. The optimizations made are applicable to most methylation syntheses 

by this method and are already being used at the lab for the development of the next generation 

of 11C-based radiotracers.  
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Future perspectives 

 

Although the results of this work proved that we can produce (R)-[11C]PK11195 with 

specific activity suitable for human studies, other tracers, mainly for targets that are poorly 

expressed in tbe region of interest or are destined for small animal research, require even higher 

levels of specific activity.  

For that purpose, there is an interesting challenge in the short term, that is the production 

of [11C]CH3I from the in-target production of [11C]methane ([11C]CH4). This method of [11C]CH3I 

production, also referred to as the ‘gas phase’, exploits the conversion of [11C]CH4 into [11C]CH3I 

by free radical iodination with iodine vapour at high temperatures (700-750ºC) in the gas 

phase [71]. The production of [11C]CH3I via the ‘gas phase’ method offers several advantages 

over the ‘wet’ method route. Firstly, it avoids the problem of stable CO2 present on LiAlH4, 

hence leading to a high specific activity. Likewise problems of low specific activities associated to 

stable CO2 present on gases, target chambers, and others source, are skipped. Secondly, 
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avoidance of hydriodic acid prevents valves and tubing from deterioration. With implementation 

of ‘gas phase’ method on routine production of [11C]-radiopharmaceuticals we expect a significant 

increasing of specific activities. 

Other desired and promising demand is the introduction of microreactors in 

radiochemistry for enable reactions performed more rapidly, efficiently, and selectivity. This type 

of ‘microchemistry’ allows reducing the amount of reagents used in the reactions. And with some 

optimisation in time and temperature, allows us to perform reactions that are very difficult to 

control in a reactor, or loop. 
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