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Resumo 

 

A metanfetamina (MET) é uma droga psicoestimulante altamente viciante cujo consumo na 

Europa tem vindo a aumentar nos últimos anos. Vários estudos têm demonstrado que o stress 

oxidativo, a excitotoxicidade, inflamação e a disfunção mitocondrial são alguns dos efeitos 

neurotóxicos da MET. Recentemente foi demonstrado que a MET compromete a função da 

barreira hemato-encefálica (BHE) e causa edema cerebral. A BHE é uma estrutura responsável 

por proteger o cérebro de compostos tóxicos, mas também permite a passagem de nutrientes 

e várias moléculas importantes para o parênquima cerebral. A função de barreira é 

determinada pelas células endoteliais, que em conjunto com os pericitos, astrócitos, lâmina 

basal, microglia e neurónios formam a unidade neurovascular. 

Entre as diferentes regiões cerebrais, bem como entre o parênquima cerebral e a corrente 

sanguínea, ocorre constantemente um grande fluxo de água e perturbações na homeostasia 

da água podem ter efeitos prejudiciais na função cerebral. As aquaporinas (AQPs) são canais 

de água responsáveis pelo transporte de água através da BHE, sendo a AQP4 uma das mais 

importantes no Sistema Nervoso Central (SNC). A AQP4 é expressa nas extremidades dos 

astrócitos que estão em contacto com os vasos sanguíneos. Além disso, alterações na AQP4 

podem levar à formação de edema cerebral devido a um aumento anormal do conteúdo de 

água no cérebro e um consequente inchaço cerebral. De facto, o edema cerebral tem sido 

observado em várias neuropatologias, incluindo em condições de consumo de MET. 

Assim, o objetivo do presente trabalho foi avaliar se a MET induz alterações na expressão da 

AQP4 e qual o papel dos astrócitos na toxicidade induzida por MET em células endoteliais. 

Os nossos resultados mostram que a MET leva a um aumento da expressão de AQP4 em 

culturas primárias de astrócitos, sem interferir com os níveis da proteína glial fibrilar acídica 

(GFAP - Glial Fibrillary Acidic Protein). Além disso, também testámos o efeito desta droga num 

modelo animal de intoxicação por MET (binge). Com este protocolo mostrámos que a MET 

induz um aumento da expressão da AQP4 no hipocampo e uma diminuição no córtex pré-

frontal, mostrando que as diferentes regiões apresentam diferente suscetibilidade para a MET. 

No entanto, quando avaliámos o conteúdo de água no cérebro total não observámos 

alterações significativas. 

Tendo em consideração o papel dos astrócitos na função da BHE, usámos para os estudos 

seguintes uma linha celular de células endoteliais de murganho (bEnd.3). Foi possível concluir 

que os meios condicionados de astrócitos (MCA) protegeram as células endoteliais (CEs) da 

morte celular induzida por MET (3 mM). No entanto, quando expusemos as CEs aos MCA 
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recolhidos de células expostas a concentração não tóxicas de MET (1 μM e 50 μM), 

observámos uma diminuição da expressão das proteínas das junções oclusivas (JOs), ocludina 

e claudina-5, mas não se verificou nenhum efeito na condição MCA controlo. 

Em suma, os nossos resultados mostram que a MET causa alterações na expressão da AQP4 

quer em culturas primárias de astrócitos quer no hipocampo de murganhos. Além disso, os 

astrócitos numa situação controlo parecem proteger as células endoteliais da morte celular 

induzida por MET, mas quando previamente expostos a MET os astrócitos provavelmente 

libertam fatores que interferem negativamente com a expressão de proteínas da JOs o que em 

última análise pode aumentar a permeabilidade da barreira. 

 

 

Palavras-chave: metanfetamina, barreira hemato-encefálica, astrócitos, aquaporina-4, células 

endoteliais 
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Abstract 

 

Methamphetamine (METH) is a potent and highly addictive psychostimulant which 

consumption in Europe has been increased over the last years. Several reports have 

demonstrated that oxidative stress, excitotoxicity, inflammation and mitochondrial 

dysfunction are some of the neurotoxic features of METH. More recently, it was shown that 

METH can also compromise the blood-brain barrier (BBB) function and cause cerebral edema. 

BBB is a structure responsible for protecting the brain from toxic compounds, but nevertheless 

allows the passage of nutrients and several important molecules into the brain parenchyma. 

The barrier function is determined by the endothelial cells, that together with pericytes, 

astrocytes, basal lamina, microglia and neurons form the neurovascular unit.  

Large water fluxes continuously take place between the different compartments of the brain, 

as well as between the brain parenchyma and the blood. Disturbances in this well-regulated 

water homeostasis may have deleterious effects on brain function. Aquaporins (AQPs) are 

water channels that contribute to water transport across BBB, being AQP4 one of the most 

important at the Central Nervous System (CNS). AQP4 is express on astrocytic end-feet in 

contact with brain vessels. Moreover, alterations in AQPs can originate cerebral edema due to 

abnormally increased water content and consequent brain swelling. Indeed, brain edema has 

been observed in several neuropathologies, including under conditions of METH consumption. 

Therefore, the aim of the present work was to investigate if METH induces alterations in the 

expression of AQP4 and the role of astrocytes against METH-induced toxicity of endothelial 

cells. 

Our results show that METH leads to an increase of AQP4 expression in primary cultures of 

astrocytes, without interfering with the glial fibrillary acidic protein (GFAP) levels. 

Furthermore, we also tested the effect of the drug in an animal model of METH intoxication 

(binge paradigm). With this protocol we showed that METH leads to an increase of AQP4 

expression in the hippocampus and to a decrease in the frontal cortex, demonstrating that 

different brain regions present different susceptibilities to METH. However, when the water 

content of whole brain was measured we did not observe significant alterations.  

Taking into consideration the role of astrocytes in the BBB function, we further used a mouse 

brain endothelial cell line (bEnd.3). It was possible to conclude that astrocyte-conditioned 

medium (ACM) was able to protect endothelial cells (ECs) against METH-induced cell death (3 

mM). However, when we exposed the ECs to ACM collected from cells exposed to non-toxic 

METH concentrations (1 μM and 50 μM), we observed that both ACM METH conditions caused 
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a decreased in the expression of the tight junction proteins (TJs), occludin and claudin-5, 

without any effect of the ACM control.  

Overall, our results show that METH causes an increase in AQP4 expression in both primary 

cultures of astrocytes and in mice hippocampus using an acute METH administration protocol. 

Moreover, astrocytes in a control situation seem to protect the endothelial cells from METH-

induced cell death, but when previously exposed to METH they probably release some factors 

that negatively interfere with the expression of TJs proteins that ultimately may increase 

barrier permeability.  

 

Keywords: methamphetamine, blood-brain barrier, astrocytes, aquaporin-4, endothelial cells 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. METHAMPHETAMINE 

1.1.1. METHAMPHETAMINE CONSUMPTION 

Methamphetamine (METH) is a psychostimulant compound that belongs to the amphetamine 

class of drugs, along with amphetamine and ecstasy (or 3,4-

methylenedioxymethamphetamine, MDMA), which has great similarity with the 

neurotransmitter dopamine (figure 1). METH can be consumed in various ways such as 

smoked, the most commonly, but can also be injected, snorted and taken orally (Winslow 

2007; Nakama 2008). Although METH is drug of abuse, it is also approved by the FDA to treat 

attention deficit hyperactivity disorder and extreme obesity (Kish, 2008). 

According to the last United Nations World Drug Report the worldwide amphetamines 

consumption is between 14 and 52.5 million among people aged 15-64, which represents 0.3% 

to 1.2% of annual prevalence, making METH the second most widely used drug globally 

(United Nations Office on Drugs and Crime, 2012). Concerning the consumption in Portugal, 

the last report is from “Instituto da Droga e da Toxicodepência, 2009” which showed that in 

2007, 0.9% of total population or 1.3% of young adult, was amphetamine consumer. However, 
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this report includes the group of amphetamines, excluding ecstasy, which means that there 

are no national statistics of detailed consumption of METH. 

Immediately after consumption, METH leads to euphoria, alertness, wakefulness, increased 

activity (Quinton et al., 2006; Kish et al., 2008), hyperthermia, and decrease in appetite 

(Yamamoto et al., 2010). Moreover, at long-term this drug originates anxiety, confusion, 

insomnias, mood disturbances, weight loss, among others (Buchanan et al., 2010). Indeed, 

chronic METH abusers can experience psychotic and violent behavior, impaired verbal learning 

and memory, visual and auditory hallucinations, delusions, and even seizures (Quinton et al., 

2006; Ramirez et al., 2009, Yamamoto et al., 2010; Buttner, 2011).  

 

 

Figure 1. The chemical structure of dopamine and methamphetamine clearly 

shows the similarity between both (adapted from Fleckenstein et al., 2007). 

 

1.1.2. THE EFFECTS OF METHAMPHETAMINE IN THE CNS:  

     A QUICK OVERVIEW 

At the cellular level, when this drug is present in the extracellular space it can enter into the 

cell by two ways: diffuse transport due to lipophilic characteristics of METH or via  membranar 

dopamine transporter. Due to its characteristics, METH can also enter the mitochondria or 

other cellular compartments. More specifically, it can be stored in vesicles containing 

dopamine by a mechanism similar to that above mentioned (Yamamoto et al., 2010). With the 
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increase of METH inside of these vesicles, there will be an increase of dopamine release from 

those vesicles into the cytoplasm (figure 2), which consequently causes oxidative stress 

accompanied by production of reactive oxygen species (ROS) and reactive nitrogen species 

(RNS). Moreover, the increase of dopamine in the cytoplasm can reverse the membrane 

transporters leading to a great release of dopamine into the synaptic cleft, which in the case of 

neurons can cause an overactivation of postsynaptic neurons (figure 2; Kish, 2008). 

 

 

Figure 2. Effect of METH on neuronal dopaminergic system. Methamphetamine 

is able to cross neuronal membranes, leading to a release of dopamine from 

storage vesicles, which consequently reverse the membrane transporter and 

dopamine is released to the synapse. A – control situation; B – after METH 

exposure (adapted from Kish, 2008). 

 

METH is also capable of inhibit the dopamine uptake (Rothman et al., 2001) leading to an 

increase in cytoplasmic and extracellular levels of dopamine, serotonin and norepinephrine, 

which can cause an increase in the production of ROS and RNS (Yamamoto et al., 2008; Kish, 

2008; Dietrich, 2009). This increase in oxidative stress has already been described either in 

human brain microvascular endothelial cells (Ramirez et al., 2009) and in vivo accompanied by 

an increased in lipid peroxidation in rat striatum (Yamamoto et al., 1998). Moreover, METH is 

able to inhibit glucose uptake in neurons and astrocytes (Muneer et al., 2011), as well as to 
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inhibit mitochondrial electron transport chain enzyme complexes, with consequent inhibition 

of mitochondrial function (Quinton et al., 2006; Yamamoto et al., 2010). 

Some cellular effects of METH can also be due to an interaction with the glutamatergic system. 

In fact, METH can lead to an increase of glutamate release (Mark et al., 2004), with a 

consequent increase in intracellular calcium levels and activation of several kinases and 

proteases resulting in the disruption of cytoskeleton and formation of ROS (figure 3; Cadet et 

al., 2007). These observations are supported by some previous works showing that 

pretreatment with glutamate receptor antagonists can prevent METH neurotoxicity (review in 

Yamamoto et al., 2008). It was also described by several authors that METH triggers a 

neuroinflammatory process (Yamamoto et al., 2008; Gonçalves et al., 2010) characterized by 

astrogliosis in the cortex, hippocampus and striatum (Pubill et al., 2003; Thomas et al., 2004; 

Sharma et al., 2009), as well as microglial activation in striatum and caudate-putamen (Pubill et 

al., 2003; Thomas et al., 2004; Bowyer et al., 2008). Similar results were observed in humans 

(Sekine, et al., 2008; Kitamura et al., 2010). Moreover, neuronal dysfunction or/and death, has 

already been demonstrated in mice and rats exposed to METH, and in several brain regions 

such as the hippocampus (Gonçalves et al., 2010) and caudate-putamen (Bowyer et al., 2008) 

in mice, and neocortex and limbic system in rats (Kuczenski et al., 2007). 
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Figure 3. Scheme summarizing the cytotoxicity mechanisms triggered by METH. 

After drug exposure there is an increase in neuronal glutamate release, as well as 

an increase in the levels of neuronal and glial reactive oxygen and nitrogen 

species (ROS and RNS, respectively), and cytokines, such as tumor necrosis factor 

α (TNF- α) and interleukins. The intracellular effects of a METH exposure include 

endoplasmic reticulum stress (ER stress) and mitochondrial stress. The ER stress is 

followed by release of calcium, activation of calpain and proteolysis of 

cytoskeleton proteins, such as tau and spectrin. The mitochondrial stress is 

characterized by the involvement of pro-apoptotic proteins, such as Bax and tBid, 

release of cytochrome C (Cyto c), and activation of caspases. At the nuclear level, 

METH can damage the DNA and increase the c-Jun and c-fos (Jun/fos) 

polymerization, which form the activator protein 1 transcription factor (AP-1). In 

turn, this can lead to the expression of several genes involved in differentiation, 

proliferation and apoptosis (adapted from Cadet and Krasnova, 2009). 
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1.2. BLOOD-BRAIN BARRIER: FUNCTION AND STRUCTURE 

 

Blood-brain barrier (BBB), which is one of the blood-neural barriers, is present in almost all 

brain regions, except in the brain ventricular system, also denominated circumventricular 

organs, which are responsible for the regulation of autonomic nervous system and endocrine 

glands (Ballabh et al., 2004; Cardoso et al., 2010). The BBB is formed by endothelial cells, 

pericytes, basal lamina, astrocytes, and also microglia and neurons (figure 4), which gives 

raised to the new concept of Neurovascular Unit. 

 

 

Figure 4. Neurovascular Unit. Endothelial cells and pericytes are surrounded by 

basal lamina. More recently, it has been described an important role for 
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astrocytes, microglia and neurons in BBB function (adapted from Abbott et al., 

2006) 

 

 

The BBB maintains the brain homeostasis and protects the brain against toxic compounds and 

blood fluctuations, but simultaneously provides nutrients essential for the normal brain 

function (Abbott et al., 2006; Kim et al., 2006; Dietrich, 2009; Cardoso et al., 2010). The 

transports across the BBB are limited and highly selective and generally we can divide into 

paracellular and transcellular routes (Figure 5).  The first is controlled by tight junctions 

between adjacent endothelial cells, whereas the second is mainly due to the presence of a 

complex transport system and selective receptors (Abbott et al., 2006; Cardoso et al., 2010). 

Water soluble agents go into the brain via tight-junctions, and ions, solutes and small lipophilic 

molecules cross BBB by diffuse transport according to the concentration gradient (Ballabh et 

al., 2004; Cardoso et al., 2010). The transporters are very important to allow the entrance of 

small and large hydrophilic molecules and nutrients into the brain, and also to eliminate 

cellular wastes. This system involves ATP consumption and is composed by a variety of 

carriers, such as glucose-transporter 1 (GLUT1), amino acids transporters (LAT1), ATP-biding 

cassettes (ABC) family of transporters, P-glycoprotein (Pgp) and multidrug resistance-related 

proteins (MRP) (Abbott et al., 2006; Kim et al., 2006; Cardoso et al., 2010). Regarding large 

hydrophilic molecules, like peptides and proteins, the transport is done by receptor-mediated 

endocytosis. Proteins, such as transferrin, insulin and leptin, have specific receptors, whereas, 

positively charged molecules like albumin and histone are transported by adsorptive-mediated 

endocytosis. However, under normal conditions, brain endothelial cells have less endocytic 

activity than non-cerebral endothelial cells (Ballabh et al., 2004; Abbott et al., 2006; Kim et al., 

2006). 
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Figure 5. Routes across blood-brain barrier.  The transporters of proteins and 

transcellular pathway are important to suppress the nutritional needs. The 

paracellular transport is relevant for ionic homeostasis. Transcytosis may also 

occur under physiological conditions, but at a low level (adapted from Abbott et 

al., 2006). 

 

 

1.2.1. COMPONENTS OF THE NEUROVASCULAR UNIT 

1.2.1.1. ENDOTHELIAL CELLS 

 

The brain endothelial cells (BECs) are the major cellular component of the BBB, and have 

unique characteristics that differentiate them from other endothelial cells, such as more active 

metabolism, more mitochondrial quantity and activity, presence of transporters, lower 

pinocytosis activity and also absence of fenestrations (Ballabh et al., 2004; Kim et al., 2006; 

Cardoso et al., 2010). These features provide to BECs the capacity to import and export 

different types of molecules, such as nutrients and toxic compounds, respectively, and also to 

provide energy to all transport systems (Cardoso et al., 2010). Between adjacent BECs there 
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are intercellular complexes - tight and adherens junctions - which seal the brain 

microvasculature forming the primary structure of BBB. 

 

1.2.1.2. PERICYTES 

Pericytes, also known as vascular smooth muscle cells, have contractile proteins which give 

them the capacity to regulate blood flow providing structural stability to brain 

microvasculature (Ballabh et al., 2004; Kim et al., 2006; Cardoso et al., 2010). These cells seem 

to be important to the maintenance of BBB basal lamina since they produce and release 

components of the basal lamina, such as proteoglycans (Cardoso et al., 2010). Communication 

of pericytes with BEC occurs via gap and tight junctions (Kim et al., 2006, Cardoso et al., 2010), 

and seems to be important for the maintenance of microvasculature and regulation of blood 

flow. 

 

1.2.1.3. BASAL LAMINA 

The basal lamina is the acellular component of BBB composed predominantly of collagen type 

IV, laminin, fibronectin and proteoglycans (Kim et al., 2006; Cardoso et al., 2010).  This 

structure is important for anchoring endothelial cells and pericytes, and for connecting these 

cells with other neighbour cells by cell adhesion molecules (Cardoso et al., 2010). 

 

1.2.1.4. ASTROCYTES 

Astrocytes, which are one type of glial cells, play an important role in the formation and 

maintenance of BBB (Ballabh et al., 2004; Abbott et al., 2006; Kim et al., 2006) and, indeed, 

one of their functions is to connect BECs with close neurons (Kim et al., 2006). Nevertheless, 

astrocytes can have a dual role. Regarding the protective effect, they release trophic and 

soluble factors important for neuronal survival and BBB formation and maintenance (Ballabh 
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et al., 2004), and are also responsible for the reuptake and metabolism of some 

neurotransmitters, more precisely glutamate and gamma-Aminobutyric acid (GABA) (figure 6) 

(Abbott et al., 2006; Allaman et al., 2011). Also, there are some studies clearly showing that 

astrocytes are important to neurogenesis and synaptogenesis (reviewed in Kim et al., 2006), 

and to the formation of tube-like structures (Ramsauer et al., 2002; Hawkins et al., 2005). 

Astrocytes are also involved in brain water homeostasis since they are the major cells that 

express water channels, denominated aquaporins, in the brain (Abbott et al., 2006; Nag et al., 

2009). 

 

 

Figure 6. Role of astrocytes in glutamate and GABA metabolism. These cells are 

responsible for the reuptake of glutamate and GABA, and then metabolize them 

to glutamine which is released back to neurons (adapted from Hyder et al., 2006). 

GABA: gamma-Aminobutyric acid 

 

On the other hand, astrocytes can release proinflammatory molecules, such as interleukin-

1beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) (Abbott, 2002; Abbott et al., 2006) 
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(figure 7), as well as high concentrations of calcium to the extracellular space leading to 

excitotoxicity (Rossi et al., 2009). Additionally, astrocytes can also produce and release matrix 

metalloproteinases (MMPs), which are zinc-dependent endopeptidases capable of 

extracellular matrix degradation, such as basal lamina and tight junctions in the BBB 

(Rosenberg et al., 2002). 

 

 

Figure 7. Astrocytic and microglial response to damaged neuron. When there is 

an insult, astrocytes and microglia are recruited to the lesion area. The recruited 

astrocytes are able to release both trophic factors and inflammatory molecules 

(adapted from Monk et al., 2006). 

 

1.2.1.5. MICROGLIA 

Microglia is the major component of the brain immune system, and can present itself in three 

different phenotypes: surveying (resting) microglia, with small bodies; alerted microglia, with 

longer processes; and reactive microglia with phagocytic activity, (figure 8) (Hanisch and 
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Kettenmann, 2007). Importantly, resting microglia is responsible for the supervision of the 

brain microenvironment (Ransohoff et al., 2009). Activation of microglia can be triggered by 

several stimuli, such as inflammatory molecules release by astrocytes, increase in extracellular 

glutamate and blood serum molecules which can be a signal of BBB disruption (Ransohoff et 

al., 2009). Recently, these cells were found in the surroundings of BBB which suggest their 

participation in the barrier function (Choi et al., 2008). Microglia has been widely related with 

neuroinflammation, particularly due to their capacity to release inflammatory and cytotoxic 

molecules, such as TNF-α (Choi et al., 2008). 

 

 

Figure 8. Schematic representation of the microglia phenotypes. In healthy tissue 

the microglia remains its surveying (resting) state, but when a small damage 

happens in the brain tissue these cells became alert. In the last situation when the 

brain is exposed to strong or prolonged damage the microglial cells acquire its 

reactive phenotype (adapted from Hanisch and Kettenmann, 2007). 

 

1.2.1.6. NEURONS 

Neurons are considered the major and more important cells in the brain. Regarding BBB, 

neurons can regulate blood flow by local neuronal activation (Kim et al., 2006; Cardoso et al., 

2010) since BBB can be innervated by noradrenergic, serotonergic, cholinergic, and GABAergic 

neurons (Hawkins et al., 2005).  Although this important role of neurons, they are not directly 

connected to BECs, and required astrocytes to mediate this link (Kim et al., 2006). 
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1.2.2. INTERCELLULAR JUNCTIONS 

1.2.2.1. TIGHT JUNCTIONS 

 

Tight junctions (TJs) are formed by several proteins present between adjacent BECs that are 

responsible for the structure and organization of BBB. TJs act as physical barrier by limiting the 

paracellular transport, and also as membrane domain barrier, dividing apical and basal 

domains (Abbott et al., 2006; Kim et al., 2006; Cardoso et al., 2010). This polarity can be seen 

in transporter systems. 

The TJ proteins can be transmembranar, such as occludin, claudins and junctional adhesion 

molecules (JAMs), and cytoplasmic, like zonula occludens (ZO) and cingulin (figure 9). 

Moreover, transmembranar proteins can be divided into two groups: claudins/occludin, which 

have four transmembrane domains, and JAM, with one transmembrane domain (Cardoso et 

al., 2010). The cytoplasmic proteins are important to mediated interactions between 

transmembrane proteins and actin cytoskeleton (Mahajan et al., 2008). 
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Figure 9. Structure of tight and adherens junctions. The tight junctions (TJs) are 

formed by occludin and claudins, and by accessory proteins of zonula occludens 

family. Adherens junctions (AJs) are formed by cadherin and accessory proteins 

catenins. Accessory proteins of both tight and adherens junctions are able to 

connected the transmembrane proteins with actin cytoskeleton (adapted from 

Abbott et al., 2010) 

 

1.2.2.2. OCCLUDIN 

Occludin is a phosphoprotein with 65 kDa (Ballabh et al., 2004; Abbott et al., 2006) with four 

transmembrane domains and two extracellular loops. The first extracellular loop mediates 

Ca2+-independent adhesion, although ZO-1 presence is required (Cardoso et al., 2010). The 

cytoplasmic domain is responsible for the association between this protein and cytoskeleton, 

mediated by accessory proteins, like ZO-1 (Ballabh et al., 2004; Abbott et al., 2006). This 

protein is responsible for the high electrical resistance of the BECs contributing also for BBB 

stabilization. Nevertheless, recent data showed that occludin is not fundamental for TJ 

organization and function (Hawkins et al., 2005; Abbott et al., 2006; Persidsky et al., 2006; 

Cardoso et al., 2010). 
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1.2.2.3. CLAUDINS 

Claudins are a family of proteins with, at least so far, 24 members. Claudin-1 and -5 are the 

most important in brain microvascular TJs and these phosphoproteins with 20-22 kDa have 

four transmembrane domains (Ballabh et al., 2004; Cardoso et al., 2010). The domain 

responsible for the connection with actin cytoskeleton is the cytoplasmic and involves the ZO 

proteins (Ballabh et al., 2004). In fact, occludin and claudins show strong structural homology 

but with no amino acid sequence homology (Ballabh et al., 2004). The literature reports that 

claudins are the most important TJs protein, and forms the primary seal of TJs by 

homotypically connection with claudins in the adjacent BEC (Ballabh et al., 2004; Cardoso et 

al., 2010). Claudin-3 and -5 are associated with BBB integrity, contributing to lower 

permeability and also high transendothelial electrical resistance (Abbott et al., 2006; Mahajan 

et al., 2008; Cardoso et al., 2010). 

 

1.2.2.4. JUNCTIONAL ADHESION MOLECULES 

Junctional adhesion molecules (JAM-1, -2, and -3) have a molecular weight of 40 kDa, one 

transmembrane domain and one large extracellular domain with two loops (Hawkins et al., 

2005; Cardoso et al., 2010). These proteins belong to the immunoglobulin family and are 

important in cell-to-cell adhesion contributing to BBB maintenance and stabilization (Abbott et 

al., 2006). JAM-1 and -3 are expressed mainly in cerebral vessels (Ballabh et al., 2004; Cardoso 

et al., 2010) and do not need accessory proteins to bind with cytoskeleton but can be linked to 

ZO-1 protein (Mahajan et al., 2008). 
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1.2.2.5. CYTOPLASMIC PROTEINS 

This group of accessory proteins includes zonula occludens proteins (ZO-1, -2 and -3), cingulin, 

7H6 and others (Ballabh et al., 2004). ZO proteins are found in submembranous region and 

mediate the connection between claudin or occludin with actin cytoskeleton (Kim et al., 2006). 

These proteins belong to the membrane-associated guanylate kinase-like protein (MAGUK) 

family (Ballabh et al., 2004, Cardoso et al., 2010), and share between them several 

characteristics such as three PDZ domains, one SH3 domain and one guanyl kinase-like (GUK) 

domain (Ballabh et al., 2004). One of the PDZ domains, the PDZ1, is important to link claudin, 

whereas the GUK domain links occludin (Ballabh et al., 2004). 

ZO-1 is a 220 kDa phosphoprotein, and seems to be one of the most important ZO proteins 

(Kim et al., 2006; Cardoso et al., 2010), because its loss leads to an increase in permeability 

and decrease in tightness of the BBB (Choi et al., 2008; Cardoso et al., 2010). ZO-2 is a 160 kDa 

phosphoprotein that shows a great homology in amino acid sequence and structure with ZO-1 

(Ballabh et al., 2004; Cardoso et al., 2010). ZO-2 acts also as a transcription factor (Persidsky et 

al., 2006; Cardoso et al., 2010). Regarding ZO-3, it is a 130 kDa protein with homology to ZO-1 

and -2, and some studies have suggested that ZO-3 is capable to directly bind occludin and ZO-

1 (Cardoso et al., 2010). 

 

1.2.2.6. ADHERENS JUNCTIONS 

These proteins are present in the basal side of BEC, and so they regulate the paracellular 

transport and BECs adhesion (Hawkins and Davis, 2005). The adherens junctions (AJs) are 

formed by cadherin and catenin, the membrane and accessory protein, respectively (Perrière 

et al., 2007) (Figure 9). In fact, cadherin is a transmembranar glycoprotein responsible for Ca2+-

dependent cell-cell adhesion (Cardoso et al., 2010). This molecule establishes homophilic 

interactions with cadherins present in adjacent BECs (Ballabh et al., 2004). Catenin is an 
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accessory protein that mediates the connection between cytoplasmic domain of cadherins and 

actin cytoskeleton (Ballabh et al., 2004; Cardoso et al., 2010). However, catenins are not 

essential to AJ formation but for its stabilization (Cook et al., 2008), and there are four types of 

catenins: α-, β-, δ-, and γ-catenin (Cook et al., 2008; Cardoso et al., 2010). 

 

 

1.2.3. OTHER BARRIERS AT THE CNS 

 

In the CNS there are other barriers, such as the blood-cerebrospinal fluid barrier, arachnoid 

barrier, ventricular ependyma barrier, blood-retinal barrier and blood-spinal cord barrier 

(figures 10 and 11). Regarding brain barriers, the blood-cerebrospinal fluid barrier (BCFB; 

figure 10) is present in choroid plexus and it is important for the production and secretion of 

cerebrospinal fluid (CSF), which are related with protection of brain and spinal cord. The 

capillaries of this barrier are fenestrated and the barrier forming cells are the epithelial cells. In 

BCFB, TJs proteins like claudins, occludin and ZO-1 are also present but regarding claudins they 

differ from those in BBB because whereas claudins 1, 2 and 11 are present in BCFB, in the BBB 

there are claudins 1, 5 and 11 (Wolburg et al., 2001; Ballabh et al., 2004). The arachnoid 

barrier (AB; figure 10) is present in the meninges and is the least studied of all brain barriers. 

The barrier function of AB is formed by cells present in arachnoid membrane since the blood 

vessels are fenestrated. The AB function is to separate the subarachnoid space from the brain 

parenchyma (Saunders et al., 2008). The ventricular ependyma barrier (VEB; figure 10), also 

denominated fetal CSF-brain barrier, is a temporary barrier and only exist during the early 

developing brain being only permeable to small molecules like sucrose. In adult ependyma the 

VEB does not exhibit a restriction regarding passage of molecules between CSF and brain 

tissue (Saunders et al., 2008).  
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Figure 10. Schematic representation of barriers present in the brain. (a) The 

blood-brain barrier (BBB) separates the blood from de cerebral parenchyma, and 

is constituted by endothelial cells (endo), pericytes (peri), basal lamina (bm) that 

embrace endothelial cells and pericytes, and astrocytes (As endfoot) are also 

present and surround the brain microvessels. (b) The blood-cerebrospinal fluid 

barrier (blood-CSF barrier), with fenestrated capillaries, is located in the choroid 

plexus and is responsible for the production of cerebral spinal fluid. (c) The 

arachnoid barrier (AB) is present in the meninges and the blood vessels in 

arachnoid (Arach) and pial surface (PIA) has tight junctions similar to that found in 

BBB, however the vessels present in dura are fenestrated. (d, e) The ventricular 

ependyma barrier (VEB) differ in developing brain (d; fetal CSF-brain barrier) with 
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high tightness compared to adult ependyma (e) which allows a free passage 

between CSF and brain parenchyma (adapted from Saunders, et al., 2008). 

 

The blood-retinal barrier (BRB; figure 11) is important to deliver oxygen and nutrients to 

retina, and can be divided in two barriers: the inner and outer blood-retinal barrier. The outer 

BRB is formed by retinal epithelium with fenestrations, unlike the BBB, and the inner BRB by 

retina microvessels surrounded by pericytes and astrocytic end-feet (Choi et al., 2008). The 

blood-spinal cord barrier (BSCB; figure 11) is much similar to BBB, since it is also formed by 

microvessels surrounded by pericytes and astrocytes end-feet. The only differences between 

these two barriers are that BSCB has glycogen deposits and an increased permeability when 

compared to BBB (Choi et al., 2008). 
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Figure 11. The four blood-neural barriers found in the CNS. There are four 

different types of barriers. The blood-brain barrier (BBB) separates the blood from 

de cerebral parenchyma. The ependymal cells present in the blood-cerebrospinal 

fluid barrier are responsible for production of the cerebral spinal fluid. In this 

barrier the brain vessels are fenestrated which makes this barrier nonrestrictive 

however the epithelial cells have apical tight junctions conferring restrict 

intercellular molecule passage characteristic to the barrier. The blood-retinal 

barrier (BRB) segregates the retinal space from blood flow in two areas, the inner 

BRB, with a structure very similar to BBB, formed by microvessels surrounded by 

pericytes and astrocytes end-feet, and the outer BRB with fenestrated blood 

vessels and the retinal pigment epithelium layer forming the barrier. The blood-

spinal cord barrier protects the spinal cord microenvironment (adapted from Choi 

et al., 2008). 
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1.3. IMPACT OF METH ON BBB FUNCTION: WHAT IS KNOWN? 

 

Some groups have explored the effects of multiple or single doses of METH in BBB, and 

showed that this drug can cause BBB disruption through a decreased in TJ protein expression 

and/or structural rearrangement of these proteins (Mahajan et al., 2008; Ramirez et al., 2009; 

Martins et al., 2011). The BBB disruption induced by METH was described in several brain 

regions, such as cortex, hippocampus, thalamus, hypothalamus, cerebellum, amygdala and 

striatum (Bowyer et al., 2006; Ramirez et al., 2009; Sharma et al., 2009; Gonçalves et al., 

2010). Moreover, it has been extensively studied the effect of METH in astrocytes in both rats 

and mice exposed to acute or chronic METH administration (Pubill et al., 2003; Thomas et al., 

2004; Sharma et al., 2009; Gonçalves et al., 2010). This astrocyte activation can lead to 

neuroinflammation which potentiates the METH neurotoxicity, BBB dysfunction and can 

activate MMPs (Rosenberg, 2002; Gonçalves et al., 2010; Martins et al., 2011). 

Interestingly, Sharma and collaborators (2009) showed that simultaneously to BBB disruption 

induced by METH there was also water accumulation in the brain. Moreover, brain edema has 

been related with a dysfunction in astrocytic aquaporins (AQPs) (Nag et al., 2009, Sharma et 

al., 2009) and with the BBB breakdown. However, remains to be clarified if brain edema is a 

cause or a consequence of BBB disruption. Additionally, nothing is known about the effect of 

METH on AQPs, as well as the precise role of these water channels in BBB dysfunction induced 

by METH. 
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1.4. AQUAPORINS 

 

Aquaporins (AQPs) are water channels that can be divided in 13 different proteins (0 to 12; 

Itoh et al., 2005) as following: type 0, 1, 2, 4 and 5 are water permeable;  type 3, 7, 9 and 10 

are also known as aquaglyceroporins due to their permeability for water and other small 

nonpolar solutes like glycerol and urea; type 6 and 8 are also permeable to ions; and type 11 

and 12 have lack of structural characteristics related with the other aquaporins (Rojek et al., 

2008). The most expressed types in the brain tissue are type 1, 4 and 9 (Venero et al., 2001; 

Tait et al., 2008; Francesca et al., 2010). AQP1 has a role in CSF formation and is present in 

choroid plexus epithelium (Zelenina, 2010). AQP9  is important to energetic metabolism being 

present in neurons, in tanycytes in the wall of the third ventricle, and in endothelial cells of 

subpial blood vessels (Zelenina et al., 2005). The AQP4 has a role in both formation and 

resolution of cerebral edema, in K+ clearance during neuronal activity and can be found in 

astrocytes and ependymal cells (Zelenina et al., 2005). 

The AQPs are small proteins with approximately 30 kDa. Although permeability differences 

between the different types of aquaporins, all share a similar structure: the water channels 

forms a tetramer and each monomer has its own functional channel (Smith and Agre, 1991). 

Moreover, each monomer of AQP4 has six transmembrane domains with both terminals, 

carboxyl and amino, in the intracellular space (Preston et al., 1994; Nag et al., 2009) (figure 

12). 
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Figure 12. Schematic representation of aquaporin-4. Representation of the 3 

AQP4 isoforms, Mz, M1 and M23. The Mz isoform is the longer AQP4 isoform with 

364 amino acids. The M1 isoform has 323 amino acids and the M23 isoform is the 

shorter of the three isoforms with 301 amino acids. In this image is also possible 

to see residues that can be phosphorilated by different kinases, such as protein 

kinase C and calcium-calmodulin-dependent protein kinase II (adapted from 

Zelenina et al., 2010). 

 

AQP4 is expressed in astrocytes endfeet that surround the BECs (Amiry-Moghaddam and 

Ottersen, 2003). Indeed, AQP4 can be found in 3 different regions: in perivascular astrocyte 

endfeet where it plays an important role in BBB function (figure 13); in perisynaptic astrocyte 
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processes where it is involved in neurotransmitter uptake; and in astrocyte processes that are 

close to nodes of Ranvier and to nonmyelinated axons where AQP4 has a role in the clearance 

of K+ (review in Zelenina, 2010). In the brain, AQP4 is related with dystrophin glycoprotein 

complex, which include dystrophin, β-dystroglycan and syntrophin (Figure 14; Neeley et al., 

2001; Connors et al., 2004; Connors and Kofuji, 2006). In fact, Neely et al. (2001) showed that 

in mice lacking α-syntrophin the AQP4 became mislocalized and lose the characteristic 

distribution in astrocyte endfeet surrounding brain microvasculature. Furthermore, similar 

effect was observed in null mice for dystrophin (Vadja et al., 2002). 

 

 

Figure 13. Aquaporin-4 in astrocytes and water movement. This image shows 

water uptake and release by astrocytic endfeet. The arrows show the water 

movement (adapted from Amiry-Moghaddam et al., 2004). 

 



CHAPTER 1 - Introduction 

 
41 

 

 

AQP4 has two main isoforms (figure 12) originated by alternative splice, known as M1 and 

M23 (Jung et al., 1994). An additional isoform has been recently identified in rats as Mz and 

has a Nh2-terminal 41 amino acids longer than the isoform M1 that contain 323 amino acids 

(Moe et al., 2008). Isoform M23 is the smaller isoform of AQP4 with 301 amino acids but it is 

the most express isoform in the brain.  M23 is also characterized by its ability to form 

orthogonal arrays of particles (OAPs; Furman et al., 2003; Silberstein et al., 2004), which are 

supramolecular structures composed of aggregates of M23 and M1 isoforms (Sorlo et al., 

2008). However, in Chinese hamster ovary cells transfect with the two AQP4 isoforms, M1 and 

M23, the presence of M23 alone create large OAPs, whereas the presence of M1 alone creates 

almost exclusively singlets of AQP4 tetramers. Furthermore, when the two isoforms were 

expressed, the OAPs formed were more similar to the structures that can be found in 

astrocytes (Furman et al., 2003). It is already known that AQP4 has a crucial role in the control 

of water flux in and out the brain, and so on brain edema formation or resolution, respectively. 

Indeed, in several neuropathologies, such as trauma, ischemia, tumors of astrocytic origin, 

epilepsy and in neuromyelitis optica, it was demonstrated that the expression of AQP4 is 

altered (Tait et al., 2008; Nag et al., 2009; Zelenina, 2010). Nevertheless, many questions 

remain unanswered particularly related with the molecular mechanisms that regulate its 

function and its possible involvement on BBB dysfunction. 
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Figure 14. Anchoring of aquaporin-4 and interaction with dystrophin complex. 

Aquaporin-4 (AQP4) is anchored to cytoplasm and basal lamina through 

connection with α- and β-dystroglycan (α-DG and β-DG, respectively) and α-

syntrophin (α-syn). The association between AQP4 and α-syn occurs via PDZ 

domains. The α-syn links AQP4 to dystrophin-family proteins, such as dystrophin 

Dp-71 and α-dystrobrevin. Anchorage of AQP4 to basal lamina is mediated by α-

DG and β-DG that is associated with laminin and agrin (adapted from Amiry-

Moghaddam et al., 2004). 

 

There are two major types of brain edema: vasogenic and cytotoxic edema (figure 15). In 

vasogenic edema we have an accumulation of water in brain extracellular space, with AQP4 

having a role in the clearance of this water excess. In this type of edema, the entry of water is 

independent of AQPs and seems to be due to BBB opening. However, the exit of water from 

the brain is AQP-dependent (Venero et al., 2001; Tait et al., 2008; Nag et al., 2009; Francesca 

et al., 2010). The cytotoxic edema involves the swelling of astrocytes probably due to an 

increase of AQP4 activity (Tait et al., 2008; Nag et al., 2009; Francesca et al., 2010). Therefore, 

depending on the type of brain edema, different therapeutic strategies must be adopted. To 



CHAPTER 1 - Introduction 

 
43 

 

 

treat the vasogenic edema it is necessary to increase the AQP4 activity. However, regarding 

the cytotoxic edema the treatment necessarily involves the reduction of the activity of this 

water channel (Nag et al., 2009; Francesca et al., 2010). 

 

Figure 15. Cytotoxic and Vasogenic Edema. A) Cytotoxic edema, in which the 

increase in water brain content is due to an increase in astrocytic AQP activity. B) 

Scheme representing a vasogenic edema, where brain water accumulation is 

independent of AQP, but AQP4 has a key role in clearance of the excessive water 

volume (adapted from Tait, 2008). 

 

In an attempt to understand the role of AQP4 in cerebral edema, several studies with 

knockouts animals were preformed but the results were contradictory. Firstly, in models of 

cytotoxic brain edema, like hyponatremia (Papadopoulos and Verkman, 2007), bacterial 

meningitis (Manley et al., 2000) and in early focal cerebral ischemia (Papadopoulos and 

Verkman, 2005), the knockout animals showed a protection against this type of brain edema. 

On the other hand, regarding vasogenic edema the knockout animals showed a higher 

vulnerability to this type of brain edema associated with brain tumors (Papadopoulos et al., 

2004). These data demonstrated that in cytotoxic edema AQP4 is responsible for the increase 

in brain water content. However, in vasogenic edema AQP4 is responsible for removing the 

excess of water out the brain. 

Some studies have shown the involvement of AQP4 under epileptic conditions due to K+ 

clearance, and its deletion leads to an increased in seizure threshold and duration (Amiry-
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Moghaddam and Ottersen, 2003; Binder et al., 2006). Moreover, AQP4 is up-regulated in 

astrocyte-derived brain tumors and the level of this up-regulation can be associated with the 

tumor grade (Warth et al., 2007). 

Like other channels and membrane proteins, the regulation of AQPs is very important for 

normal function. Phosphorilation of two serine residues (Ser111 and Ser180) was 

demonstrated to be involved in the regulation of AQP4 activity (figure 12 and 16). The serine 

residue present in position 111 (Ser111) has been reported to be phosphorilated by 

calcium/calmodulin dependent protein kinase II (CaMKII), although this phosphorilation does 

not occur directly, but involving the activation of nitric oxide synthase (NOS) and cGMP-

dependent protein kinase (PKG; Gunnarson et al., 2008). Some studies suggested that 

phosphorilation of Ser111 leads to an increase in AQP4 water permeability (Gunnarson et al., 

2005; Gunnarson et al., 2008). Moreover, serine residue present in position 180 (Ser180) is 

phosphorilated by protein kinase C (PKC; Zelenina et al., 2002; McCoy et al., 2009) and this 

activation by PKC leads to a fast reduction in water permeability of AQP4, being prevented by a 

PKC inhibitor (Zelenina et al., 2002). On the other hand, in primary cultures of astrocytes there 

is no evidence of AQP4 phosphorilation by PKC, but the endogenous AQP4 is present in 

constitutively phosphorilated form (Nicchia et al., 2008; Kadohira et al., 2008). Kadohira and 

collaborators (2008) have also shown in primary cultures of astrocytes that phosphorilation of 

other COOH-terminal residues are involved in Golgi transition of AQP4. Moreover, 

phosphorilation of serine residue in position 276 has been correlated with internalization and 

degradation of AQP4 in renal epithelial cells (Madrid et al., 2001). 

Although the above mentioned evidence, aquaporins are also regulated by metals ions (figure 

16) like mercury (Hg) and lead (Pb). Most types of AQPs are inhibited by Hg (Amiry-

Moghaddam and Ottersen, 2003) except for AQP6 that is activated by this metal (Hazama et 

al., 2002). Concerning AQP4, first it was considered mercurial-insensitive (Nicchia et al., 2000; 
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Shi and Verkman, 1996), but a few years ago Yukutake and collaborators (2008) demonstrated 

that isoform M23 of AQP4 is inhibited by using Hg involving two cysteine residues in position 

178 and 253. The isoform M1 of AQP4 is probably regulated by mercury through NH2-terminal 

residues (review in Yukutake and Yasui, 2010). Other metal ions that are able to regulate AQP4 

are zinc (Zn) and copper (Cu) (figure 14), which cause an inhibition of isoform M23 of AQP4 

(Yukutake and Yasui, 2010). 

 

 

Figure 16. Structural 3D representation of aquaporin-4. Model of AQP4 structure 

showing the residues involved in AQP4 inhibition by phosphorilation and metal 

binding (adapted from Yukutake et al., 2010). 
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CHAPTER 2 

 

Material and Methods 

 

 

 

2.1. Animals and treatments 

Male wild-type C57BL/6J mice (3-month-old; 24–26 g body weight; Charles River Laboratories, 

Barcelona, Spain), were housed under controlled environmental conditions (12 h light:dark 

cycle, 24 ± 1ºC) with food and water ad libitum. All experimental procedures were performed 

according to the guidelines of the European Community for the use of animals in the 

laboratory (2010/63/EU) and the Portuguese law for the care and use of experimental animals 

(DL nº 129/92). 

Mice received four intraperitoneal (i.p.) injections, 2 h apart, of 10 mg/kg of METH (Chemistry 

Department, Faculty of Sciences, University of Porto, Portugal) or 100 μl of 0.9% NaCl (control 

group), and were sacrificed 24 h after the last injection.  

 

 

2.2. Primary cultures of mouse cortical astrocytes 

Astrocytes were isolated from C57BL/6J mouse pups aged P4-5. After decapitation, brain 

cortices were isolated and incubated with digestion solution [Hank’s Balanced Salt Solution 

(HBSS; GIBCO, Rockville, MD, USA), 0.25% Trypsin (SAFC, Kansas, USA), 0.001% DNase (SIGMA, 
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St Louis, MO, USA), 10 μl/ml Gentamicin (SIGMA)] for 20 min at 37ºC with gentle shaking each 

2 min.  Afterwards, the solution was centrifuged at 700 rpm for 2 min, the supernatant was 

discarded and the inhibitory digestion solution [HBSS with 10% fetal bovine serum (FBS)] was 

added and once more centrifuged at 700 rpm for 2 min. After discarded the supernatant, the 

pellet was resuspended in HBSS in order to dissociate the cells. Then, cell suspension was 

centrifuged at 1000 rpm for 5 min and the pellet resuspended with astrocyte medium (DMEM 

high glucose supplemented with 10% FBS and 1% gentamicin).  

Cells were plated in T-75 flasks at a density of 40000 cells/cm2. The medium was changed 6 h 

after culture and then every 2 days until reach confluence. Then, the flasks were shaking (200 

rpm for 4 h at 37ºC), the non-astrocytic cells were discarded (detached cells) and the 

astrocytes (adherent cells) were washed with dissociation medium [HBSS with 1mM 

ethylenediamine tetraacetic acid (EDTA, SIGMA)] followed by trypsinization with 0.1% Trypsin 

in HBSS. This process was stopped by incubation with astrocyte medium followed by 

centrifugation (1000 rpm for 5 min). The cells were resuspended, counted using Trypan blue 

dye, and plated at different densities depending on the experiments (Table 1). 

 

Table 1.  Astrocyte density according to the experiment 

EXPERIMENT 
CULTURE 

MULTIWELL PLATE 

FINAL CONCENTRATION 

(cells/ml) 

MEDIUM VOLUME 

(ml) 

Western 

blot/Astrocyte-

conditioned medium 

6 240 000 2 

Immunocytochemistry 12 with slides 60 000 1 

TUNEL assay 24 90 000 0.5 
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2.3. Astrocyte-conditioned medium (ACM) experiments 

Astrocytes were seeded in 6-well plates and after 3 days the medium was removed and the 

cells were washed with sterile PBS and incubated with two different METH concentrations (1 

and 50 μM METH) for 24 h. Afterwards, mediums were collected, centrifuged at 4000 rpm for 

10 min at 4ºC and then the supernatant was collected and stored at -80ºC until further use. 

 

 

2.4. bEnd.3 cell culture 

Mouse brain endothelial cells (bEnd.3) were purchased from American Type Culture Collection 

(ATCC; Manassas, VA, USA). Cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM; GIBCO) supplemented with 10% FBS (GIBCO), 100 U/ml penicillin, and 10 μg/ml 

streptomycin (GIBCO) in non-coating flasks or multiwells, and maintained at 37ºC in a 

humidified 5% CO2/95% air atmosphere. Cells were allowed to reach confluence within 6-8 

days. After reaching confluence the cells were trypsinized with 0.25% trypsin (SAFC) in 0.53 

mM of EDTA (SIGMA) and then counted using Trypan blue and plated at different densities 

depending on the experiments (Table 2). Experiments were performed with cells from 

passages 24 to 33. 

 

Table 2. Cell densities used to plate the endothelial cells depending on the experiments 

EXPERIMENT CULTURE 

MULTIWELL PLATE 

FINAL CONCENTRATION 

(cells/ml) 

MEDIUM VOLUME 

(ml) 

Western blot 6 100 000 2 

TUNEL assay 24 10 000 0.5 
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2.5. Western blot analysis 

After appropriate treatment, mice were killed and hippocampi, striata and frontal cortex were 

dissected on ice. Regarding in vitro studies, endothelial cells and astrocytes were seeded in 6-

well plates and treated for 24 h with ACM (Control, 1 and 50 μM METH) or different METH 

concentrations (1 and 50 μM METH), respectively. Total protein of cells or mice brain regions 

was obtain by lysing the cells/tissue using Radio-Immunoprecipitation Assay lysis buffer (RIPA; 

0.150 M NaCl, 0.050 M Tris-base, ethylene glycol tetraacetic acid (EGTA), 0.5% sodium 

desoxicolate (DAC), 0.1% sodium dodecyl sulfate–polyacrylamide (SDS) and 1% X-Triton, pH 

7.5) supplemented with a protease inhibitor cocktail tablets (Roche) and 1 mM dithiothreitol 

(DTT) (Bioron, Porto, Portugal). Protein quantification was performed using the bicinchoninic 

acid (BCA) method (Pierce, Rockford, USA) with BSA as a standard, and stored at -20ºC until 

further use. Protein samples were prepared under reduced conditions by adding sample buffer 

(0.5 M Tris-HCl, 4% SDS, 30% glycerol, 10% SDS, 0.6 M DTT, bromophenol blue; pH 6.8) and 

heating at 95ºC for 5 min. Proteins (table 3) were separated by electrophoresis on 10% or 12% 

polyacrylamide gels at 160 V for 120 min and transferred to polyvinylidene fluoride (PVDF) 

membranes (Millipore, Madrid Spain) that were blocked with 5% (w/v) low fat milk in PBS-T 

(PBS containing 0.1% (v/v) Tween-20 (SIGMA)). Then, membranes were incubated overnight at 

4ºC with primary antibodies as described in Table 4. After washing, they were incubated with 

the respective alkaline phosphatase-conjugated secondary antibody (anti-mouse 1:10000 or 

anti-rabbit 1:20000) (Amersham GE Healthcare Life Science, USA) for 1 h at RT. The 

membranes were again washed with PBS-T, and proteins were visualized using the enhanced 

chemiofluorescence (ECF) reagent (Amersham) assay on the Typhoon FLA 9000 (GE Healthcare 

Bioscience AB, Uppsala, Sweden). Immunoblots were reprobed with glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) antibody to ensure equal sample loading. Quantification 

of band density was performed using ImageQuant 5.0 software.  
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Table 3. List of proteins identified by western blot analysis 

PROTEIN MOLECULAR WEIGHT (kDa) AMOUNT OF PROTEIN (μg) 

Claudin-5 22 25 

Occludin 60-65 25 

Aquaporin-4 30 50 

GAPDH 37 - 

 

Table 4. List of primary and secondary antibodies used in western blot studies 

PRIMARY 

ANTIBODY 

DILUTION SOURCE SECONDARY 

ANTIBODY 

DILUTION SOURCE 

Mouse anti-

claudin-5 

1:100 Zymed 

laboratories, 

San Francisco, 

USA 

Anti-mouse IgG 

alkaline phosphatase 

conjugated 

1:10000 Amersham GE 

Healthcare 

Life Science  

Rabbit anti-

occludin 

1:250 Zymed 

laboratories  

 

Anti-rabbit IgG 

alkaline phosphatase 

conjugated 

1:20000 Amersham GE 

Healthcare 

Life Science  

Rabbit anti-

aquaporin-4 

1:1500 Chemicon, 

Millipore 

Anti-rabbit IgG 

alkaline phosphatase 

conjugated 

1:20000 Amersham GE 

Healthcare 

Life Science  

Mouse anti-

GAPDH 

1:1000 Abcam Anti-mouse IgG 

alkaline phosphatase 

conjugated 

1:10000 Amersham GE 

Healthcare 

Life Science  

 

2.6. Brain edema evaluation 

Brain water accumulation was evaluated by comparing the wet and dry weights, like previously 

described by Kenne et al. (2012). For that, mice were sacrificed and the intact brains were 

removed and weighed in order to obtain the wet weight (WW). Afterwards, the brains were 

dried for 72 h at 60ºC, and once again weighed to obtain the dry weight (DW). The percentage 

of brain water was calculated using the following formula:  [(WW – DW)/WW] x 100. As 
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positive control, mice were administered with 150 ml/kg (i.p.) of distilled water and sacrificed 

40 min after the injection (Haj-Yasein et al., 2011). 

 

 

2.7. TUNEL assay 

The terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay permits the 

quantification of cell death by apoptosis since it will detect DNA fragmentation. This assay is 

characterized by the detection of specific activity of terminal transferase which attaches 

labelled biotin-16-2’-deoxy-uridine-5’-triphosphate to the 3’-OH end of DNA generated during 

apoptotic-induced DNA fragmentation. 

Astrocytes and endothelial cells were exposed to different concentrations of METH, and in 

another set of experiments, endothelial cells were exposed to different ACM for 24 h followed 

by TUNEL assay. Specifically, cells are fixed with 4% paraformaldehyde (PFA) and rinsed with 

phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM 

KH2PO4, pH 7.4). Afterwards, cells were permeabilized with 0.25% Triton X-100 in PBS for 30 

min at RT and rinsed with PBS. Cells were then incubated with terminal deoxynucleotidyl 

transferase buffer (0.25 U/μl terminal transferase, 6 μM biotinylated dUTP, pH 7.5; Roche, 

Mannheim, Germany) for 1 h at 37ºC in a humidified chamber, and rinsed during 15 min with 

TB buffer (300 mM NaCl and 30 mM sodium citrate) followed by 5 min in PBS. The  incubation 

with Fluorescein (1:100; Vector Laboratories) was performed for 1 h at RT and the nuclei 

counterstaining with 4 μg/ml Hoechst 33342 (Sigma) for 5 min at RT. The slides were mounted 

in Dako Cytomation fluorescent medium (Dako North America, Carpinteria, USA) and stored in 

the dark. Fluorescent images were recorded using a camera Leica DMIRE2 incorporated on a 

Leica CTRMIC microscope (Leica, Germany). Six independent microscopy fields were acquired 

per coverslip with a magnification of x200. The number of apoptotic cells were expressed as 

percentages of total cells per field stained with Hoechst 33342 (Sigma).  
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2.8. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 5.0 (GraphPad Software, San Diego, 

CA). Data was analyzed using the one-way ANOVA analysis of variance followed by Dunnett’s 

post hoc or Bonferroni’s post hoc to compare with control or among experimental conditions, 

respectively. In western blot studies for AQP4 expression in brain regions, statistical 

significance was determined using an unpaired one tailed Mann-Whitney test. Data were 

considered to be statistical different at values of P<0.05 and were presented as means ± SEM 

(standard error of the mean). For the quantification of TUNEL-positive cells, six independent 

microscopy fields per coverslip with 200× magnification were acquired and results are 

expressed as percentages of total cells stained with Hoechst 33342 per each field (n = number 

of fields). Every experimental condition was tested in three sets of independent experiments, 

unless stated otherwise, and performed in duplicates. 
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Results 

 

 

 

3.1. Effect of methamphetamine on astrocytes 

Astrocytes are one of the components of neurovascular unit (Kim et al., 2006) and have an 

important role in tightness and maintenance of the BBB function (Abbott et al., 2006). In the 

present study, we started by evaluating cell death induced by METH and it was possible to 

observe an increase in apoptotic cell death at a concentration of 500 μΜ and 1000 μΜ (Figure 

17; control: 4.03 ± 0.25%; 1 μM METH: 3.44 ± 0.41 %; 50 μM METH: 3.24 ± 0.49%; 250 μM 

METH: 3.85 ± 0.68%; 500 μM METH: 8.03 ±0.78%; 1000 μM METH: 8.25 ± 0.64%). For further 

studies in astrocyte cultures the two lower non-toxic concentrations (1 μM and 50 μM) were 

used. 
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Figure 17. METH-induced astrocytic cell death. Primary cultures of mouse cortical 

astrocytes were exposed to different METH concentrations (1-1000 µM) for 24 h 

and apoptotic cell death was evaluated by TUNEL assay. Data are expressed as 

mean % of total cells ± S.E.M., n = 36. ***P < 0.001, significantly different when 

compared to control using one way ANOVA followed by Dunnett’s Multiple 

comparison test.  

  

Afterwards, possible alterations in AQP4 expression, which is a water channel involved in 

water movement regulation (Zelenina et al., 2005), was analyzed in the absence and presence 

of different METH concentrations. As observed in figure 18 A, 50 μM METH leads to a 

significant increase in the protein levels of AQP4, with no significant effect at the 

concentration of 1 μM (control: 99.55 ± 1.72%; 1 μM METH: 120.80 ± 5.17%; 50 μM METH: 

176.60 ± 10.39%). Furthermore, to ensure that this increase in AQP4 expression is due to a real 

increase in the protein expression and not due to an increase in the number of astrocytes or 

astrocyte reactivation, we also evaluated GFAP expression. No differences were observed 

under various experimental conditions (Figure 18 B; control: 100.70 ± 7.89%; 1 μM METH: 

98.45 ± 4.84%; 50 μM METH: 100.90 ± 12.44%). 
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Figure 18. Effect of non-toxic METH concentrations on (A) AQP4 and (B) GFAP 

expression in astrocytes. (A) Primary cultures of mouse cortical astrocytes were 

exposed to METH (1 or 50 µM) during 24 h, and protein levels were evaluated by 

western blot. Above the bars, representative western blot images of AQP4 (32 

kDa), GFAP (50 kDa) and GAPDH (37 kDa) are shown. The results are expressed as 

mean % of control ± S.E.M., n=4-5, ***P < 0.001 significantly different when 

compared to control using one way ANOVA followed by Dunnett’s Multiple 

comparison test.  
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3.2. Effect of methamphetamine on brain aquaporin 4 

expression and brain edema 

 

Recently, it was shown that acute METH treatment causes brain edema and this increase in 

brain water content is region-specific, with the hippocampus being more susceptible than the 

frontal cortex (Sharma and Kiyatkin, 2009; Kiyatkin and Sharma, 2011). Taking into 

consideration the crucial role of AQP4 water channels in the control of water flux in and out 

the brain, we further investigated the alteration of its expression in an animal model of METH 

intoxication (binge administration). It was possible to conclude that in the striatum METH did 

not induce significant alterations in AQP4 expression (115.50 ± 18.67%; n=3). However, in the 

hippocampus there was a significant increase in AQP4 expression (156.90 ± 9.56%; n=3). On 

the other hand, in frontal cortex METH led to a significant decreased in the AQP4 protein levels 

(58.42 ± 4.17%; n=3). 

 

Figure 19. Effect of acute METH administration on AQP4 expression in different 

brain regions. Mice were administered with METH (4x 10 mg/kg, 2h apart) and 

sacrificed 24 h post-injection. METH increased hippocampal AQP4 protein levels 

and there was a decrease in the frontal cortex, with no significant effect in the 
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striatum. Above the bars, representative western blot images of AQP4 (32 kDa) 

and GAPDH (37 kDa) are shown. The results are expressed as mean % of control ± 

S.E.M., n=3. *P < 0.05 significantly different when compared to control using 

Mann-Whitney post-test. 

 

We then hypothesize that the observed alterations in AQP4 expression in the different brain 

regions could be due astrocyte reactivation (Pubill et al., 2003; Sharma et al., 2009). Thus, 

GFAP expression was also evaluated, but no significant differences were observed in the three 

subregions analyzed (Figure 20; striatum: 109.50 ± 24.95%; hippocampus: 104.30 ± 26.12%; 

frontal cortex: 84.90 ± 19.83%). 

 

 

Figure 20. Effect of acute METH administration on GFAP expression in different 

brain regions. Mice were administered with METH (4x 10 mg/kg, 2h apart) and 

sacrificed 24 h post-injection. METH did not induce alterations in the GFAP protein 

levels in the different brain regions analyzed. Above the bars, representative 

western blot images of GFAP (50 kDa) and GAPDH (37 kDa) are shown. The results 

are expressed as mean % of control ± S.E.M., n=3. 

 

Afterwards, to confirm if METH also induced brain edema we evaluated the water content as 

previously described (Kenne et al., 2012). However, no alterations were observed in the brain 
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water content (control: 78.40 ± 0.09%; METH: 78.60 ± 0.26%; positive control: 80.44 ± 0.22%; 

figure 21). 

 

 

Figure 21. Quantification of brain water content. Mice were administered with 

METH or water and sacrificed 24 h post-injection. METH did not cause brain 

edema and the injection of distilled water induced a significant increase in brain 

water content (positive control). The results are expressed as mean % ± S.E.M., 

n=3, **P < 0.01 significantly different when compared to the control using one 

way ANOVA followed by Dunnett’s Multiple comparison test.  
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3.3. Effect of astrocyte-conditioned medium on brain 

endothelial cells 

Our group has already demonstrated that METH causes disruption of the BBB and leads to a 

decreased in the expression of tight junctions proteins (Martins et al., 2011). Moreover, it has 

been speculated that astrocytes can also have a role in the protection of endothelial cells 

(Gesuete et al., 2011). So, we evaluated the possible effect of ACM in endothelial cell death, 

and only 3000 μM METH ACM increased cell death (control: 0.25 ± 0.02%; ACM control: 0.12 ± 

0.03%; 1 μM METH ACM: 0.09 ± 0.02%; 50 μM METH ACM: 0.14 ± 0.03%; 250 μM METH ACM: 

0.19 ± 0.05%; 500 μM METH ACM: 0.17 ± 0.03%; 1000 μM METH ACM: 0.29 ± 0.07%; 3000 μM 

METH ACM: 0.54 ± 0.17%). Importantly, the very low number of TUNEL positive cells even in 

the presence of 3000 µM METH ACM clearly shows the high resistance of these cells. 

 

 

Figure 22. Endothelial cell death induced by ACM. Only 3000 μM METH ACM (24 

h exposure) increased cell death and for all the other conditions ACM did not 

cause a significant alteration in the number of TUNEL positive cells. The results are 

expressed as mean % of total cells ± S.E.M., n=36, **P < 0.01 significantly different 

when  compared to the control using one way ANOVA followed by Dunnett’s 

Multiple comparison test.  
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In order to study the possible protection of endothelial cells by ACM, we exposed bEnd.3 cells 

to 3000 μM METH or to the same METH concentration but incubating the cells with CTR ACM 

medium instead of the normal ECs medium. As observed in figure 23, when we exposed 

endothelial cells to 3000 μM METH there was a significant increase of cell death. Interestingly, 

we concluded that ACM was able to protect endothelial cells from METH exposure (control: 

0.25 ± 0.02%; ACM control: 0.12 ± 0.03%; 3000 μM METH: 6.12 ± 0.44%; ACM control + 3000 

μM METH: 1.45 ± 0.12%).  

 

 

 

 

Figure 23. Endothelial cell death induced by METH and the protective role of 

ACM. The endothelial cells were exposed to 3000 μM METH during 24h or to the 

same concentration but in the presence of ACM instead of the normal endothelial 

cell medium. The results are expressed as mean % of total cells ± S.E.M. n = 36-40, 

***P < 0.001 significantly different when compared to the control (CTR) using one 

way ANOVA followed by Dunnett’s Multiple comparison test; §§§ P < 0.001 

significantly different when compared to 3000 μM METH, using Bonferroni’s 

Multiple comparison test. 
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Since METH can also lead to BBB opening, with decrease in tight junctions’ proteins expression 

(Ramirez et al., 2009; Martins et al., 2011), we also evaluated the effect of ACM on the 

expression of two tight junctions proteins, occludin and claudin-5. Regarding occludin, a very 

significant decrease in the expression levels can be observed in both ACM METH conditions (1 

μM and 50 μM METH ACM) (Figure 24 A; 1 μM METH ACM: 48.44 ± 4.91%; 50 μM METH ACM: 

37.17 ± 5.11%). Regarding the protein levels of claudin-5, there was also a significant decrease 

in its levels (Figure 24 B; 1 μM METH ACM: 56.84 ± 11.89%; 50 μM METH ACM: 57.57 ± 8.21%). 

 

 

 

Figure 24. Effect of ACM on the expression of tight junction proteins, (A) 

occludin and (B) claudin-5. Endothelial cells were exposed to ACM with two 

different METH concentrations (1 μM and 50 μM) for 24 h. Above the bars, 

representative western blot images of occludin (65 kDa), claudin-5 (24 kDa) and 

GAPDH (37 kDa) are shown. The results are expressed as mean % of control ± 

S.E.M., n=3-4, **P < 0.01, ***P < 0.001 and significantly different when compared 

to control using one way ANOVA followed by Dunnett’s Multiple comparison test; 
#P < 0.05,  ##P < 0.01 and ###P < 0.001 compared to control ACM using Bonferroni’s 

Multiple comparison test. 
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AQP4 is a water channel widely present in the brain, expressed mostly in astrocytes endfeet 

that surround brain microvessels (Tait et al., 2008; MacAulay and Zeuthen, 2010). These water 

channels have a role in controlling water homeostasis (Zelenina et al., 2005) and are involved 

in the formation (Manley et al., 2000; Papadopoulos and Verkman, 2007) and resolution 

(Papadopoulos et al., 2004) of brain edema. Moreover, it is already known that METH can 

cause brain edema in animals (Kiyatkin et al., 2007) and in humans (reviewed in Butner, 2011). 

So, we hypothesize if METH could have an effect in the expression of AQP4. To clarify this 

question we used primary cultures of astrocytes and started by evaluating the direct effect of 

several METH concentrations on cell death. We concluded that only concentrations equal and 

above 500 µM were toxic to astrocytes.  With these results we chose two non-toxic METH 

concentrations (1 and 50 μM METH) to evaluate the possible alterations in AQP4 expression 

levels. The results show that METH (50 µM) leads to an increase of AQP4 protein levels. 

Nevertheless, it was referred by our group and others that METH can cause astrogliosis in vivo 
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followed an acute METH administration (Sharma and Kiyatkin, 2009; Gonçalves et al., 2010), 

which could mask the real effect of METH on AQP4 expression. In order to clarify this issue, we 

analysed the levels of GFAP expression in primary cultures of astrocytes after METH treatment, 

but there were no alterations. This suggests that METH has a direct effect on AQP4 expression. 

Accordingly, Qi et al. (2011) used an ischemia in vitro model (oxygen and glucose deprivation, 

OGD, in primary cultures of rat astrocytes) and showed an increase in the expression levels of 

AQP4 at 4h after OGD, and this increase was inhibited by the antagonist of cysteinyl 

leukotriene receptor 2, which is an inflammatory mediator (Qi et al., 2011). Moreover, using 

an animal model of ischemia it was also observed an increase of AQP4 expression that was 

prevented by the administration of thrombin, which is a serine protease (Hirt et al., 2009). 

Regarding the possible link between AQP4 and BBB, Tomás-Camardiel et al. (2005) induced 

BBB disruption by in vivo administration of lipopolysaccharide (LPS) and observed an increase 

in both AQP4 mRNA and protein levels, and this effect was sustained up to 14 days after LPS 

administration (Tomás-Camardiel et al., 2005). Nevertheless, in our model the functional 

consequence of this increase remains to be investigated. 

It is known that METH causes brain edema with different susceptibilities among brain regions 

(Sharma and Kiyatkin, 2009). Thus, we also evaluated the levels of AQP4 in the striatum, 

hippocampus and frontal cortex using an acute protocol of METH administration. The binge 

treatment is currently the most frequently used model that mimics acute toxic dosing of METH 

(Krasnova and Cadet, 2009), and provides excellent relevance to intravenous and smoked 

routes of METH exposure in humans. In addition, it demonstrates the toxic effects of METH in 

non-tolerant users.  Interestingly, we observed different effects of METH in the three regions 

studied, with an increase of AQP4 expression in the hippocampus and a decrease in frontal 

cortex. We have also previously observed that METH-induced BBB permeability is dependent 

on the region, being the hippocampus the most affected brain region (Martins et al., 2011). As 



 CHAPTER 4 – Discussion 

 
73 

 

 

for the in vitro studies, we showed that there was no astrogliosis which demonstrated that in 

the animal model there is also a direct effect on AQP4 expression. An increase in AQP4 levels 

has already been described in several pathological conditions, such as in inflammation induced 

by lysolecithin (Tourdias et al., 2011) and by LPS (Alexander et al., 2008), intracerebral 

hemorrhage stroke that also causes increase in BBB permeability (Tang et al., 2010), and 

traumatic brain injury with an increase in matrix metalloproteinase 9 expression and BBB 

permeability (Higashida et al., 2011). In all these studies the increase of AQP4 levels were 

always accompanied by an increase in the brain water content. Moreover, Yang and 

collaborators (2008) demonstrated that transgenic mice overexpressing AQP4 presented 

cytotoxic brain swelling. Interestingly, Jo et al. (2011) showed that AQP4 expression is reduced 

in piriform cortex with vasogenic edema induced by endothelin-1. Thus, since alterations in 

AQP4 can interfere with brain water content, we further evaluated if METH administration 

causes brain edema, but we did not observed any differences when compared to the control. 

One possible explanation for these results can be the fact that we measured the water content 

in total brain, whereas METH leads to alterations in AQP4 expression in a brain region specific 

manner. To clarify this question it would be important to evaluate edema formation in the 

hippocampus, frontal cortex and striatum, together with BBB permeability analysis. 

Considering that astrocytes are part of the neurovascular unit having a protective role in 

endothelial cells subject to some type of injury like ischemic (Gesuete et al., 2012), we also 

studied the effect of astrocyte-conditioned medium in cell death and in expression of tight 

junctions proteins. We have previously concluded that endothelial cells are quite resistant to 

METH because only at 3 mM it was possible to observe an increase of cell death (Almeida, C. 

2011, Master thesis). Some data shows that METH exposure in endothelial cells cultures leads 

to a decrease and also disorganization of tight junction proteins, such as occludin and claudin-5 

(Mahajan et al., 2008; Ramirez et al., 2009). Moreover, METH causes an impairment of glucose 
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transport system, with a decrease in the expression of glucose transporter 1 (GLUT-1) and 

inhibition of its activity (Muneer et al., 2011). Here, for the first time we showed that normal 

ACM has a protective role against METH-induced endothelial death, suggesting that astrocytes 

release some molecules that will somehow protect endothelial cells against the toxic effect of 

the drug. The protective effect has been already demonstrated in human endothelial cells 

(Siddharthan et al., 2007; Kuo et al., 2011). In these studies, the ACM decreased the 

permeability and increased transendothelial electric resistance, both used to assess the 

tightness of BBB. Moreover, Siddharthan et al. (2007) demonstrated that permeability 

decrease and increase of ZO-1 expression are more pronounced using ACM than astrocytes 

themselves. In future studies it will be important to analyse the composition of this medium in 

order to identify the protective factor(s). 

Astrocytes are very important in the formation and maintenance of BBB (Weiss et al., 2009), 

having also an important role in the formation of characteristic tube-like structure of BBB 

(Ramsauer et al., 2002). Additionally, astrocytes induce an upregulation of tight junction 

proteins, transporters and enzymes (reviewed by Abbott et al., 2006). Thus, we further 

evaluated the effect of ACM in the expression levels of two tight junctions proteins, claudin-5 

and occludin. Claudin-5 is very important to the normal BBB function since the knockout mice 

for claudin-5 show a disruption of the BBB (Wolburg et al., 2003; Argaw et al., 2009, Cardoso et 

al., 2010). Regarding occludin, it is a protein important for the BBB stabilization and regulatory 

properties but not essential for its barrier function because knockouts for this protein show no 

alterations in tight junctions formation, probably due to compensatory mechanisms (Hawkins 

and Davis, 2005; Cardoso et al., 2010). Moreover, our group recently showed that METH 

increases BBB permeability and decrease the protein levels of claudin-5, occludin and ZO-1 

(Martins et al., 2011). Here, we concluded that when astrocytes are exposed to non-toxic 

METH concentrations, they release some molecules that negatively affect the expression of 
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both TJ proteins. These results regarding ACM strengthens the idea that astrocytes have a dual 

role in the brain because they can be protective under conditions that trigger cell death, but 

on the other hand low concentrations of METH can lead to the release of molecules by 

astrocytes that have a negative impact on barrier functions.  Nevertheless, remains to 

understand if these changes are due to non-metabolized METH that is still present in ACM or 

to some factor(s) that astrocytes may release, or even due to the increase of AQP4 expression. 

In fact, some studies have suggested that AQP4 may regulate BBB. In hyperthensive rats it was 

shown that the increase of AQP4 expression was related with the beginning of hypertension 

(Ishida et al., 2006). On the other hand, AQP4 knockout mice do not show alterations neither 

in BBB permeability, TJ proteins, structure of brain microvessels, nor in brain water content 

(Saadoun et al., 2009; Tait et al., 2010, Haj-Yasein et al., 2011; Eilert-Olsen et al., 2012). 

However, in pathological situations, the lack of AQP4 leads to severe alterations in brain 

parenchyma, such as decrease in the expression of glutamate transporter 1 (GLUT1) that 

interferes with the glutamatergic system (Li et al., 2012), an increase in basal levels of 

apoptosis, and inhibition of proliferation and neuronal differentiation (Kong et al., 2008). 

Moreover, regarding the brain edema the lack of AQP4 leads to an increase in brain water 

content after a subarachnoid hemorrhage due to a disability of removing the excess of water 

content (Tait et al., 2010). In fact, these observations may explain why we have an increase in 

AQP4 expression without brain edema, since the system may up-regulate AQP4 expression in 

order to extrude excess water. However, other studies showed that the AQP4 overexpression 

aggravates the cytotoxic brain swelling after acute water intoxication demonstrating that in 

this situation the AQP4 is involved in edema formation (Yang et al., 2008). So, depending on 

brain edema, AQP4 can have opposite effects. Nevertheless, it is well known that AQP4 is an 

important protein for the normal function of the brain and BBB, but more studies are 
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necessary to understand the mechanisms of AQP4 function in normal and pathological 

situations. 
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Conclusions 

 

 

 

 

With this work we showed for the first time that METH interferes with the levels of AQP4. 

Specifically, METH increased AQP4 expression in both primary cultures of astrocytes and in 

mouse hippocampus. However, we did not identify brain edema formation. Moreover, we 

have shown that in a control situation astrocytes release some factors that will protect the 

endothelial cells from METH toxicity and without any effect on the expression levels of claudin-

5 and occludin. However, if astrocytes are directly exposed to non-toxic concentrations of 

METH (1 μM or 50 μM), they will probably release factor(s) that lead to a downregulation of 

these two tight junction proteins, suggesting that under such conditions astrocytes may 

negatively interfere with BBB properties. 

 

 



 

 
 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 
 
 
 
 
 
 

REFERENCES 

 

 

 

 

 

 



 CHAPTER 6 – References 

 
82 

 

 

  



 CHAPTER 6 – References 

 
83 

 

 

 

 

CHAPTER 6 

 

References 

 

 

Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the 

blood–brain barrier. Neurobiology of Disease 2010; 37: 13-25 

Abbott NJ, Ronnback L, Hansson E. Astrocyte–endothelial interactions at the blood–brain 

barrier. Nature Reviews Neuroscience 2006; 7: 41-53 

Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. Journal of 

Anatomy 2002; 200: 629-638 

Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ. TNF is a key mediator of septic 

encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int. 2008; 

52:447-456. 

Allaman I, Bélanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships: for better and 

for worse. Trends Neurosci. 2011; 34(2): 76-87. 

Almeida, C. The effect of methamphetamine on the crosstalk between endothelial cells and 

astrocytes. Coimbra: University of Coimbra, 2011. Master thesis – Master in Cellular and 

Molecular Biology, Faculty of Sciences and Technologies, University of Coimbra. 

Amiry-Moghaddam M, Frydenlund DS, Ottersen OP. Anchoring of aquaporin-4 in brain: 

molecular mechanisms and implications for the physiology and pathophysiology of water 

transport. Neuroscience 2004; 129: 999-1010 

Amiry-Moghaddam M, Lindland H, Zelenin S, Roberg BA, Gundersen BB, Petersen P, Rinvik 

E, Torgner IA, Ottersen OP. Brain mitochondria contain aquaporin water channels: 



 CHAPTER 6 – References 

 
84 

 

 

evidence for the expression of a short AQP9 isoform in the inner mitochondrial 

membrane. FASEB J. 2005; 19(11): 1459-67. 

Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat 

Rev Neurosci. 2003; 4(12): 991-1001. 

Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial 

CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci USA 2009; 106(6): 

1977-82. 

Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview Structure, regulation, 

and clinical implications. Neurobiology of Disease 2004; 16: 1-13 

Binder DK, Yao X, Verkman AS, Manley GT. Increased seizure duration in mice 

lacking aquaporin-4 water channels. Acta Neurochir Suppl. 2006; 96: 389-92. 

Bowyer JF, Ali S. High Doses of methamphetamine that cause disruption of the blood-brain 

barrier in limbic regions produce extensive neuronal degeneration in mouse 

hippocampus. Synapse 2006; 60: 521-532. 

Bowyer JF, Robinson B, Ali S, Schmued LC. Neurotoxic-related changes in tyrosine hydroxylase, 

microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute 

methamphetamine exposure. Synapse 2008; 62: 193-204 

Buchanan JB, Sparkman NL, Johnson RW. Methamphetamine sensitization attenuates the 

febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. 

Brain, Behavior, and Immunity 2010; 24: 502-511. 

Buttner A. The neuropathology of drug abuse. Neuropathology and Applied Neurobiology 

2011; 37: 118-134 

Cadet JL, Krasnova IN, Jayanthi S, Lyles J. Neurotoxicity of substituted amphetamines: 

molecular and cellular mechanisms. Neurotoxicity Research 2007; 11 (3,4): 183-202 

Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. Int 

Rev Neurobiol. 2009; 88: 101-19. 

Cardoso FL, Brites D, Brito MA. Looking at the blood–brain barrier: Molecular anatomy and 

possible investigation approaches. Brain Research Reviews 2010; 64: 328-363 

Choi YK, Kim K. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. 

BMB Reports 2008; 41(5): 345-352 

Connors NC, Adams ME, Froehner SC, Kofuji P. The potassium channel Kir4.1 associates with 

the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem. 2004; 

279(27): 28387-92 



 CHAPTER 6 – References 

 
85 

 

 

Connors NC, Kofuji P. Potassium channel Kir4.1 macromolecular complex in retinal glial cells. 

Glia. 2006; 53(2): 124-31. 

Cook BD, Ferrari G, Pintucci G, Mignatti P. TFG- β1 induces rearrangement of FLK-1 – VE-

Cadherin – β-catenin complex at the adherens junction through VEGF-mediated signaling. 

J Cell Biochem 2008; 105(6): 1367-1373 

Dietrich JB. Alteration of blood-brain barrier function by methamphetamine and cocaine. Cell 

Tissue Res 2009; 336: 385-392. 

Eilert-Olsen M, Haj-Yasein NN, Vindedal GF, Enger R, Gundersen GA, Hoddevik EH, Petersen 

PH, Haug FM, Skare Ø, Adams ME, Froehner SC, Burkhardt JM,Thoren AE, Nagelhus EA. 

Deletion of aquaporin-4 changes the perivascular glial protein scaffold without disrupting 

the brain endothelial barrier. Glia 2012; 60(3):432-40. 

Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR. New insights into the mechanism of 

action of amphetamines. Annu Rev Pharmacol Toxicol. 2007; 47: 681-98. 

Francesca B, Rezzani R. Aquaporin and Blood Brain Barrier.  Current Neuropharmacology 2010; 

8: 92-96 

Furman CS, Gorelick-Feldman DA, Davidson KG, Yasumura T, Neely JD, Agre P, Rash JE. 

Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl 

Acad Sci USA 2003; 100(23): 13609-14. 

Gesuete R, Orsini F, Zanier ER, Albani D, Deli MA, Bazzoni G, De Simoni MG. Glial cells drive 

preconditioning-induced blood-brain barrier protection. Stroke. 2011; 42(5): 1445-53. 

Gonçalves J, Baptista S, Martins T, Silva AP. Methamphetamine-induced neuroinflammation 

and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. 

European Journal of Neuroscience 2010; 31: 315-326. 

Gunnarson E, Axehult G, Baturina G, Zelenin S, Zelenina M, Aperia A. Lead induces increased 

water permeability in astrocytes expressing aquaporin 4. Neuroscience. 2005; 136(1): 

105-14. 

Gunnarson E, Zelenina M, Axehult G, Song Y, Bondar A, Krieger P, Brismar H, Zelenin S, Aperia 

A. Identification of a molecular target for glutamate regulation of astrocyte water 

permeability. Glia. 2008; 56(6): 587-96. 

Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare Ø, Laake P, Klungland 

A, Thorén AE,Burkhardt JM, Ottersen OP, Nagelhus EA. Glial-conditional deletion of 

aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on 

perivascular astrocyte endfeet. Proc Natl Acad Sci USA. 2011; 108(43): 17815-20. 



 CHAPTER 6 – References 

 
86 

 

 

Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal 

and pathologic brain. Nat Neurosci. 2007; 10(11): 1387-94. 

Hawkins BT, Davis TP. The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. 

Pharmacol Rev 2005; 57: 173-185 

Hazama A, Kozono D, Guggino WB, Agre P, Yasui M. Ion permeation of AQP6 water 

channel protein. Single channelrecordings after Hg2+ activation. J Biol Chem. 2002;  

277(32): 29224-30. 

Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D 3rd, Li 

X, Guthikonda M, Rossi NF, Ding Y. The role of hypoxia-inducible factor-1α, aquaporin-4, 

and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after 

traumatic brain injury. J Neurosurg. 2011; 114(1): 92-101. 

Hirt L, Ternon B, Price M, Mastour N, Brunet JF, Badaut J. Protective role of early aquaporin 

4 induction againstpostischemic edema formation. J Cereb Blood Flow Metab. 2009; 

29(2): 423-33.  

Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG. Neuronal-

glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow 

Metab. 2006; 26(7): 865-77. 

Ishida H, Takemori K, Dote K, Ito H. Expression of glucose transporter-1 and aquaporin-4 in the 

cerebral cortex of stroke-prone spontaneously hypertensive rats in relation to the blood-

brain barrier function. Am J Hypertens. 2006; 19(1): 33-9. 

Itoh T, Rai T, Kuwahara M, Ko SB, Uchida S, Sasaki S, Ishibashi K. Identification of 

a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res 

Commun. 2005; 330(3): 832-8. 

Jo SM, Ryu HJ, Kim JE, Yeo SI, Kim MJ, Choi HC, Song HK, Kang TC. Up-regulation of endothelial 

endothelin-1 expression prior to vasogenic edema formation in the rat piriform cortex 

following status epilepticus. Neurosci Lett. 2011; 501(1): 25-30. 

Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P. Molecular characterization of 

an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. 

Proc Natl Acad Sci USA. 1994; 91(26): 13052-6. 

Kadohira I, Abe Y, Nuriya M, Sano K, Tsuji S, Arimitsu T, Yoshimura Y, Yasui M. Phosphorylation 

in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary 

cultured astrocytes. Biochem Biophys Res Commun. 2008; 377(2): 463-8. 



 CHAPTER 6 – References 

 
87 

 

 

Kenne E, Erlandsson A, Lindbom L, Hillered L, Clausen F. Neutrophil depletion reduces edema 

formation and tissue loss following traumatic brain injury in mice. J 

Neuroinflammation. 2012; 9: 17. 

Kim JH, Kim JH, Park JA, Lee S, Kim WJ, Yu YS, Kim K. Blood-neural Barrier: Intercellular 

Communication at Glio-Vascular Interface. Journal of Biochemistry and Molecular Biology 

2006; 39(4): 339-345 

Kish SJ. Pharmacologic mechanisms of crystal meth. Canadian Medical Association Journal 

2008; 178: 1679-1682 

Kitamura O, Takeichi T, Wang EL, Tokunaga I, Ishigami A, Kubo S. Microglial and astrocytic 

changes in the striatum of methamphetamine abusers. Legal Medicine 2010; 12: 57-62 

Kiyatkin EA, Brown PL, Sharma HS. Brain edema and breakdown of the blood-brain barrier 

during methamphetamine intoxication: critical role of brain hyperthermia. Eur J 

Neurosci. 2007; 26(5): 1242-53. 

Kiyatkin EA, Sharma HS. Expression of heat shock protein (HSP 72 kDa) during acute 

methamphetamine intoxication depends on brain hyperthermia: neurotoxicity or 

neuroprotection? J Neural Transm. 2011; 118(1): 47-60. 

Kong H, Fan Y, Xie J, Ding J, Sha L, Shi X, Sun X, Hu G. AQP4 knockout impairs proliferation, 

migration and neuronal differentiation of adult neural stemcells. J Cell Sci. 2008; 121(24): 

4029-36. 

Kuczenski R, Everall IP, Crews L, Adame A, Grant I, Masliah E. Escalating dose-multiple binge 

methamphetamine exposure results in degeneration of the neocortex and limbic system 

in the rat. Experimental Neurology 2007; 207: 42-51. 

Kuo YC, Lu CH. Effect of human astrocytes on the characteristics of human brain-

microvascular endothelial cells in the blood-brain barrier. Colloids Surf B 

Biointerfaces. 2011; 86(1): 225-31. 

Li YK, Wang F, Wang W, Luo Y, Wu PF, Xiao JL, Hu ZL, Jin Y, Hu G, Chen JG. Aquaporin-

4 deficiency impairs synaptic plasticity and associative fear memory in the lateral 

amygdala: involvement of downregulation of glutamate transporter-1 expression. 

Neuropsychopharmacology. 2012; 37(8): 1867-78. 

MacAulay N, Zeuthen T. Water transport between CNS compartments: contributions of 

aquaporins and cotransporters. Neuroscience. 2010; 168(4): 941-56. 



 CHAPTER 6 – References 

 
88 

 

 

Madrid R, Le Maout S, Barrault MB, Janvier K, Benichou S, Mérot J. Polarized trafficking and 

surface expression of the AQP4 water channel are coordinated by serial and regulated 

interactions with different clathrin-adaptor complexes. EMBO J. 2001; 20(24): 7008-21. 

Mahajan SD, Aalinkeel R, Sykes DE, Schwartz SA. Methamphetamine alters blood-brain barrier 

permeability via the modulation of tight junction expression: implication for HIV-1 

neuropathogenesis in the context of drug abuse. Brain Research 2008; 1203: 133-148. 

Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 

deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. 

Nat Med. 2000; 6(2): 159-63. 

Mark KA, Soghomonian JJ, Yamamoto BK. High-dose methamphetamine acutely activates the 

striatonigral pathway to increase striatal glutamate and mediate long-term dopamine 

toxicity. J Neurosci. 2004; 24(50): 11449-56. 

Martins T, Baptista S, Gonçalves J, Leal E, Milhazes N, Borges F, Ribeiro CF, Quintela 

O, Lendoiro E, López-Rivadulla M, Ambrósio AF, Silva AP. Methamphetamine transiently 

increases the blood-brain barrier permeability in the hippocampus: role of tight junction 

proteins and matrix metalloproteinase-9. Brain Res. 2011; 1411: 28-40. 

McCoy ES, Haas BR, Sontheimer H. Water permeability through aquaporin-4 is regulated by 

protein kinase C and becomes rate-limiting for glioma invasion. Neuroscience 2010; 

168(4): 971-81. 

Moe SE, Sorbo JG, Sogaard R, Zeuthen T, Petter Ottersen O, Holen T. New isoforms of rat 

Aquaporin-4. Genomics 2008; 91(4): 367-77. 

Monk PN, Shaw PJ. ALS: life and death in a bad neighborhood. Nat Med. 2006; 12(8): 885-7. 

Muneer PM, Alikunju S, Szlachetka AM, Haorah J. Methamphetamine Inhibits the Glucose 

Uptake by Human Neurons and Astrocytes: Stabilization by Acetyl-L-Carnitine. PLoS ONE 

2011; 6(4): e19258 

Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. 

Acta Neuropathol 2009; 118: 197-217 

Nakama H, Chang L, Cloak C, Jiang C, Alicata D, Haning W. Association between Psychiatric 

symptoms and craving in methamphetamine users. Am. J. Addict. 2008; 17(5): 441-446. 

Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME. Syntrophin-

dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl 

Acad Sci USA 2001; 98(24): 14108-13. 



 CHAPTER 6 – References 

 
89 

 

 

Nicchia GP, Frigeri A, Liuzzi GM, Santacroce MP, Nico B, Procino G, Quondamatteo F, Herken 

R, Roncali L, Svelto M. Aquaporin-4-containing astrocytes sustain a temperature- and 

mercury-insensitive swelling in vitro. Glia 2000; 31(1): 29-38. 

Nicchia GP, Rossi A, Mola MG, Procino G, Frigeri A, Svelto M. Actin cytoskeleton remodeling 

governs aquaporin-4 localization in astrocytes. Glia 2008; 56(16): 1755-66. 

Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of 

excess fluid in vasogenic brain edema. FASEB J. 2004; 18(11): 1291-3. 

Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007; 22(6): 

778-84. 

Papadopoulos MC, Verkman AS. Aquaporin-4 gene disruption in mice reduces brain swelling 

and mortality in pneumococcal meningitis. J Biol Chem. 2005; 280(14): 13906-12. 

Perrière N, Yousif S, Cazaubona S, Chaverota N, Bourassete F, Cisterninoe S, Declèvese X, Horij 

S, Terasakij T, Delik M, Scherrmanne J, Temsamanii J, Rouxe F, Courauda P. A functional in 

vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain 

Research 2007; 1150: 1-13 

Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components 

and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol, 

2006; 1: 223-36. 

Preston GM, Jung JS, Guggino WB, Agre P. Membrane topology of aquaporin CHIP. Analysis of 

functional epitope-scanning mutants by vectorial proteolysis. J Biol Chem. 1994; 269(3): 

1668-73. 

Pubill D, Canudas AM, Pallas M, Camins A, Camarasa J, Escubedo E. Different glial response to 

methamphetamine- and methylenedioxymethamphetamine-induced neurotoxicity. 

Naunyn-Schmiedeberg’s Archives of Pharmacology 2003; 367: 490-499 

Qi LL, Fang SH, Shi WZ, Huang XQ, Zhang XY, Lu YB, Zhang WP, Wei EQ. CysLT2 receptor-

mediated AQP4 up-regulation is involved in ischemic-like injury through activation of ERK 

and p38 MAPK in rat astrocytes. Life Sci. 2011; 88(1-2): 50-6. 

Quinton MS, Yamamoto BK. Causes and consequences of methamphetamine and MDMA 

toxicity. The AAPS Journal 2006; 8: E337-E347. 

Ramirez SH, Potula R, Fan S, Couraud PO, Persidsky Y. Methamphetamine disrupts blood-brain 

barrier function by induction of oxidative stress in brain endothelial cells. Journal of 

Cerebral Blood Flow & Metabolism, 2009; 29(12):1933-45 



 CHAPTER 6 – References 

 
90 

 

 

Ramsauer M, Krause D, Dermietzel R. Angiogenesis of the blood-brain barrier in vitro and the 

function of cerebral pericytes. The FASEB Journal 2002; 16(10): 1274-6 

Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu 

Rev Immunol. 2009; 27: 119-45. 

Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA. A current view of the mammalian 

aquaglyceroporins. Annu Rev Physiol. 2008; 70: 301-27. 

Rosenberg GA. Matrix Metalloproteinases in Neuroinflammation. Glia 2002; 39: 279-291 

Rossi D, Volterra A. Astrocytic dysfunction: insights on the role in neurodegeneration. Brain 

Res Bull. 2009; 80(4-5): 224-32. 

Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS. 

Amphetamine-type central nervous system stimulants release norepinephrine more 

potently than they release dopamine and serotonin. Synapse. 2001; 39(1): 32-41. 

Saadoun S, Tait MJ, Reza A, Davies DC, Bell BA, Verkman AS, Papadopoulos MC. AQP4 gene 

deletion in mice does not alter blood-brain barrier integrity or brain morphology. 

Neuroscience. 2009; 161(3): 764-72. 

Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? 

Trends Neurosci. 2008; 31(6): 279-86. 

Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, 

Suzuki K, Kaway M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, 

Cadet JL. Methamphetamine causes microglial activation in the brain of human abusers. 

The Journal of Neuroscience 2008; 28 (22): 5756-5761. 

Sharma HS, Kiyatkin EA. Rapid morphological brain abnormalities during acute 

methamphetamine intoxication in the rat: An experimental study using light and electron 

microscopy. Journal of Chemical Neuroanatomy 2009; 37: 18-32 

Shi LB, Verkman AS. Selected cysteine point mutations confer mercurial sensitivity to the 

mercurial-insensitive water channel MIWC/AQP-4. Biochemistry 1996; 35(2): 538-44. 

Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and 

shear stress enhance the barrier properties of human brain microvascular endothelial 

cells. Brain Res. 2007; 1147: 39-50. 

Silberstein C, Bouley R, Huang Y, Fang P, Pastor-Soler N, Brown D, Van Hoek AN. Membrane 

organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J 

Physiol Renal Physiol. 2004; 287(3): F501-11. 



 CHAPTER 6 – References 

 
91 

 

 

Smith BL, Agre P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit 

oligomer similar to channel proteins. J Biol Chem. 1991; 266(10): 6407-15. 

Sorbo JG, Moe SE, Ottersen OP, Holen T. The molecular composition of square arrays. 

Biochemistry. 2008; 47(8): 2631-7. 

Tait MJ, Saadoun S, Bell BA, Papadopoulos MC. Water movements in the brain: role of 

aquaporins. TRENDS in Neurosciences 2008; 31(1): 37-43. 

Tait MJ, Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Increased brain edema in aqp4-

null mice in an experimental model of subarachnoid hemorrhage. Neuroscience. 2010; 

167(1): 60-7. 

Tang Y, Wu P, Su J, Xiang J, Cai D, Dong Q. Effects of Aquaporin-4 on edema formation 

following intracerebral hemorrhage. Exp Neurol. 2010; 223(2): 485-95. 

Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM. Microglial 

activation is a pharmacologically specific marker for the neurotoxicity amphetamines. 

Neuroscience Letters 2004; 367: 349-354. 

Tomás-Camardiel M, Venero JL, Herrera AJ, De Pablos RM, Pintor-Toro JA, Machado A, Cano J. 

Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in 

perivascular and parenchymal astrocytes: protective effect by estradiol treatment in 

ovariectomized animals. J Neurosci Res. 2005; 80(2): 235-46. 

Tourdias T, Mori N, Dragonu I, Cassagno N, Boiziau C, Aussudre J, Brochet B, Moonen C, Petry 

KG, Dousset V. Differential aquaporin 4 expression during edema build-up and resolution 

phases of brain inflammation. J Neuroinflammation. 2011; 8: 143. 

Vajda Z, Pedersen M, Füchtbauer EM, Wertz K, Stødkilde-Jørgensen H, Sulyok E, Dóczi T, Neely 

JD, Agre P, Frøkiaer J, Nielsen S. Delayed onset of brain edema and mislocalization of 

aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA. 2002; 99(20): 

13131-6. 

Venero JL, Vizuete ML, Machado A, Cano J. Aquaporins in the central nervous system. Progress 

in Neurobiology 2001; 63: 321-336 

Warth A, Simon P, Capper D, Goeppert B, Tabatabai G, Herzog H, Dietz K, Stubenvoll F, Ajaaj 

R, Becker R, Weller M, Meyermann R, Wolburg H, Mittelbronn M. Expression pattern of 

the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier 

disturbance but not with patient survival. J Neurosci Res. 2007; 85(6): 1336-46. 

Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and 

neurological diseases. Biochim Biophys Acta. 2009; 1788(4): 842-57. 



 CHAPTER 6 – References 

 
92 

 

 

Winslow BT, Voorhees KI, Pehl KA. Methamphetamine abuse. Am Fam Physician. 2007; 76(8): 

1169-74. 

Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner 

F, Grote EH, Risau W, Engelhardt B. Localization of claudin-3 in tight junctions of the 

blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis 

and human glioblastoma multiforme. Acta Neuropathol. 2003; 105(6): 586-92. 

Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B. Claudin-1, claudin-2 and claudin-11 

are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci 

Lett. 2001; 307(2): 77-80. 

Wolburg, H., Lippoldt, A. (2002) Tight junctions of the blood-brain barrier: development, 

composition and regulation. Vascular Pharmacology 38, 323-337. 

Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine Toxicities, Classical and emerging 

mechanisms. Annals of the New York Academy of Sciences 2010; 1187: 101-121. 

Yamamoto BK, Raudensky J. The role of oxidative stress, metabolic compromise, and 

inflammation in neuronal injury produced by amphetamine-related drugs of abuse. 

Journal of Neuroimmune Pharmacology 2008; 3: 203-217. 

Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and 

oxidative stress. Journal of Pharmacology and Experimental Therapeutics 1998; 287: 107-

114. 

Yukutake Y, Yasui M. Regulation of water permeability through aquaporin-4. Neuroscience 

2010; 168: 885-891 

Yukutake Y, Tsuji S, Hirano Y, Adachi T, Takahashi T, Fujihara K, Agre P, Yasui M, Suematsu M. 

Mercury chloride decreases the water permeability of aquaporin-4-reconstituted 

proteoliposomes. Biol Cell. 2008; 100(6): 355-63. 

Zelenina M. Regulation of brain aquaporins. Neurochemistry International 2010; 57: 468-488 

Zelenina M, Zelenin S, Bondar AA, Brismar H, Aperia A. Water permeability of aquaporin-4 

is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol. 2002; 283(2): 

F309-18. 



 

 
 

 

 


